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Efficient Virtual Memory Sharing via On-Accelerator

Page Table Walking in Heterogeneous Embedded SoCs
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ANDREA MARONGIU and LUCA BENINI,

Integrated Systems Laboratory, ETH Zurich and

Electrical, Electronic, and Information Engineering Department, University of Bologna

Shared virtual memory is key in heterogeneous systems on chip (SoCs) that combine a general-purpose

host processor with a many-core accelerator, both for programmability and performance. In contrast to the

full-blown, hardware-only solutions predominant in modern high-end systems, lightweight hardware-software

co-designs are better suited in the context of more power- and area-constrained embedded systems and provide

additional benefits in terms of flexibility and predictability. As a downside, the latter solutions require the

host to handle in software synchronization in case of page misses as well as miss handling. This may incur

considerable run-time overheads.

In this work, we present a novel hardware-software virtual memory management approach for many-core

accelerators in heterogeneous embedded SoCs. It exploits an accelerator-side helper thread concept that enables

the accelerator to manage its virtual memory hardware autonomously while operating cache-coherently on

the page tables of the user-space processes of the host. This greatly reduces overhead with respect to host-side

solutions while retaining flexibility. We have validated the design with a set of parameterizable benchmarks

and real-world applications covering various application domains. For purely memory-bound kernels, the

accelerator performance improves by a factor of 3.8 compared with host-based management and lies within

50% of a lower-bound ideal memory management unit.

CCS Concepts: • Software and its engineering→ Virtual memory;Main memory; • Computer systems

organization→ Heterogeneous (hybrid) systems; System on a chip; Embedded software;

Additional Key Words and Phrases: Shared Virtual Memory, TLB Management, Linux, Heterogeneous SoCs,
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1 INTRODUCTION

Heterogeneous embedded systems on chip (HESoCs) are increasingly being adopted in various

application domains due to their high energy-efficiency and peak performance. Such architectures
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combine a general-purpose host processor with a massively parallel programmable many-core

accelerator (PMCA) [1, 16, 22] and are nominally capable of achieving extremely high GOPS/Watt.

Historically, the complex memory systems adopted by HESoCs has brought the biggest diffi-

culties in application development. On the host side, coherent caches and memory management

units (MMUs) make the memory hierarchy completely transparent. On the PMCA side, however,

scratchpad memories (SPMs) are physically addressed and need to be explicitly managed via direct

memory access (DMA) transfers. When data is shared between the two sides, data consistency also

requires explicit coherency operations (e.g., host cache flushes).

If partitioning program data for DMA transfers represents a significant effort for applications

with regular memory access patterns, it literally becomes a nightmare for irregular programs based

on complex data structures (e.g., pointer chasing). Offloading pointer-intensive computations to

PMCAs is incredibly burdensome, as data structures spanning several virtual memory pages must

be moved to contiguous, unpaged, and uncached memory areas. On top of that, any virtual address

stored inside the data structures (typically initialized on the host side) needs to be adjusted to point

to the copy in physically contiguous memory. Practically, this requires traversing the entire data

structure at run time, which not only hampers programmability but also kills performance [7].

In the past few years, initiatives such as the Heterogeneous System Architecture (HSA) Founda-

tion [12] have been pushing for an architectural model where the host processor and the acceler-

ator(s) communicate via coherent shared virtual memory (SVM). Nowadays, virtually all major

embedded GPU vendors are equipping their SoCs with full-fledged HW support for SVM, consisting

of input/output MMUs (IOMMUs) and coherent interconnections. In the low-end embedded SoC

domain, however, SVM is not or only partially supported. Specifically, SVM solutions for HESoCs

usually rely on mixed hardware-software designs, where simple input/output translation lookaside

buffers (IOTLBs) used by the accelerator to translate virtual addresses are fully controlled by

software (e.g., via a kernel-level driver module) [19, 31].

Compared with full-featured IOMMUs, these solutions are better suited in the context of con-

strained HESoCs as they largely reduce area and energy overheads. Moreoever, they offer much

greater flexibility than possible with the reactive miss handling performed by hardware IOM-

MUs: software-managed virtual memory can potentially exploit higher-level information of the

application to anticipate the access pattern to shared memory and thus hide latency and increase

predictability of the system. However, their simple design comes at the price of considerable run-

time overheads for some workloads. One of the key sources of overhead for state-of-the-art HESoC

SVM support is remote miss handling [31]. Here, if a processing element (PE) in the PMCA creates

a miss, this particular PE is put to sleep and the host is notified to handle the miss. The inability

to handle misses locally on the accelerator is the main limitation of such solutions, causing delays of

thousands of clock cycles due to interrupt-based accelerator-to-host communication.

In this work, we present an integrated HW/SW solution that enables on-PMCA page table

walking to efficiently implement IOTLB miss handling on HESoCs. Operating on the host’s page

table of the offloaded user-space process, the design allows the accelerator to autonomously manage

the shared translation lookaside buffers (TLBs) without host intervention. The design is flexible and

offers the possibility for collaborative TLB management, e.g., to exploit application-level knowledge

available at offload time on the host side. Our solution is based on a software implementation of a

miss handling thread (MHT), which relies on an underlying virtual memory management library

that encapsulates all the functionality for tightly-coupled interaction with the HW, and requires

only minimal hardware modifications to the Remapping Address Block (RAB) proposed in [31].

We have validated our design with a set of parameterizable synthetic benchmarks and real-world

applications capturing the most relevant memory access patterns from regular and irregular parallel
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workloads. Compared with host-based TLB management, the accelerator performance improves

substantially. Even for purely memory-bound kernels, the performance lies within 50% of an ideal

design, i.e., a TLB with zero look-up and miss latency, which is out of reach even for today’s

hardware IOMMUs [8].

The rest of the paper is organized as follows. § 2 discusses related work. The target architecture

template is described in § 3, and § 4 gives the necessary background information. The main problem

of state-of-the-art solutions is stated in § 5. We present our solution to this problem in § 6. § 7 gives

experimental results, and § 8 concludes the paper.

2 RELATED WORK

The industry’s approach for SVM is that of full-blown, hardware-only solutions targeting maximum

performance in high-end SoCs [2, 5, 14]. On the other end of the spectrum, i.e., in low-power,

embedded SoCs, heterogeneous SVM is not yet widely adopted. At the time of writing, the Xilinx

Zynq UltraScale+ MPSoC is becoming available in the form of engineering samples [34]. While this

next-generation flagship HESoC offers a full-fledged hardware IOMMU [5], it currently comes with

limited software and tool support. The tool documentation [33] does not mention the possibility

to use this IOMMU for giving a loosely-coupled accelerator direct access to user-space memory,

which would further require additional support in the form of drivers and libraries that is currently

missing. Instead, the host is meant to initiate the data movement from and to the SPMs of the

accelerator through the Linux DMA application programming interface (API) [33]. The IOMMU

is set up on a DMA transfer basis from within the DMA API, which involves the generation of a

dedicated I/O page table. As such, the IOMMU continues to serve its original purposes of isolating

the host system from malicious or faulty DMA devices and drivers [25] and of providing the DMA

engine with the illusion of a physically contiguous memory for improved performance. This is not

sufficient to enable efficient data sharing between host and accelerator.

To enable memory sharing, today’s embbeded systems stick to simpler solutions which do not

offer the convenience of SVM to the programmer and are often not zero-copy. An obvious way for

sharing memory in a heterogeneous system is to allocate a large, physically contiguous memory

section for the data to be shared. Virtual-to-physical address translation then simplifies to applying

a constant offset. With the Contiguous Memory Allocator (CMA), Linux has such a mechanism on

board [23]. A kernel-level driver can request memory from a pre-allocated physically contiguous

memory section and give access to it to user-space applications through, e.g., an mmap() system

call. While this allows for zero-copy data sharing, it suffers from limited performance: The kernel

may need to first move other data out of the pre-allocated section before the contiguous section

can be made available to the accelerator, which can incur a long latency [24]. Also, there is no

guarantee that a pre-allocated memory region can be made available at all [9]. Finally, the CMA

returns uncached memory on some widely adopted processor architectures like ARMv7. Letting

the host do computations on the shared buffer is thus very inefficient and should be avoided.

In practice, heterogeneous embedded systems often stick to copy-based, physically shared

memory where the main memory is split into two sections [18]: one exclusively accessed by the

host and a second, physically contiguous, uncached section accessible also by the accelerator. Before

and after offloading computation to the accelerator, the host must copy the shared data between the

two sections and modify any virtual address pointers inside the shared data, which is cumbersome

for the application developer and slow in performance.

There are different approaches in the embedded systems domain to enable true SVM. These

include full-fledged hardware IOMMUs [5, 17] equipped with coherent translation caches and large

buffer memories to absorb memory transactions missing in the TLB. While this approach allows
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to completely abstract away the underlying SVM system from the accelerator, its scalability to

embeddedmany-core accelerators featuring many independent DMA engines and its applicability to

more resource-constrained systems is questionable. Alternative mixed hardware-software designs

rely on placing the shared data in contiguous memory using a specific user-space API [13] or by

replacing the standard malloc() with a customized implementation [21]. At offload time, a kernel-

level driver on the host then generates an optimized page table or DMA transaction descriptors

for the accelerator. In constrast, more lightweight and less intrusive solutions suggest the use of a

hardware IOTLB that is completely software-managed by a kernel-level driver on the host [19, 31].

As a downside, the frequent host interaction and the associated interrupt latency impose substantial

accelerator run-time overheads.

To overcome the inefficiencies of the IOMMUs found in today’s processors, a new IOMMU

architecture for accelerator-centric systems has been proposed that uses local TLBs but offloads the

page table walks to the MMUs of the CPU requiring modifications to the host hardware [8]. Studies

on SVM solutions for general purpose GPUs (GPGPUs) [26, 27] and FPGA-based accelerators [29]

led to IOMMU designs targeting high-end systems and featuring (multi-threaded) hardware page

table walk engines as well as prefetching logic and coherent caches. This allows to reduce the host

interaction to a minimum required for maximum performance.

This work reduces the performance gap between hardware IOMMUs and software-managed SVM

designs targeting HESoCs. It neither requires modifications to the host architecture nor restricts

the programmer to use dedicated memory allocators. Low-level details are taken care of by the

infrastructure without additional overheads at offload time.

3 TARGET ARCHITECTURE TEMPLATE

The heterogeneous embedded system targeted in this work combines two architecturally different

processing units on a single chip. As shown in Fig. 1, the central component of this HESoC is a

powerful general-purpose multi-core CPU (the host), which is equipped with a multi-level cache-

coherent memory hierarchy and runs a full-fledged operating system (OS). To improve overall

performance/Watt, the HESoC can offload critical computation kernels to a PMCA that consists of

several tens of simple PEs [1, 22].
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Fig. 1. High-level view on the target architecture.

To allow for a highly scalable architecture, the PMCA we consider uses a multi-cluster design [16,

22]. Per cluster, multiple PEs share an L1 instruction cache and an L1 data SPM, both multi banked.

The shared L2 SPM as well as the L1 SPMs of the other clusters can be accessed through the global

interconnect, albeit at a higher latency. The main, off-chip dynamic random access memory (DRAM)

is physically shared among the host and the PMCA [12]. To constantly feed the various processing
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engines with data and exploit the available computing resources, both the host and the PMCA use

their internal memory hierarchy to keep the most frequently accessed data in fast, local storage. The

host does so using its hardware-managed cache hierarchy. In contrast, the PMCA relies on multi-

channel, high-bandwidth DMA engines and double-buffering schemes to overlap data movement

with actual computation performed on data available in the cluster-internal L1 SPM.

The accelerator uses a Remapping Address Block (RAB) [31] for interfacing the shared main

memory which allows the host and the accelerator to exchange virtual address pointers. As opposed

to full-fledged hardware IOMMUs [5, 26, 27], the RAB is essentially an IOTLB that is completely

managed by software.

4 BACKGROUND

In this section, we discuss the specifics and challenges of managing virtual memory (VM) on a

PMCA in a HESoC on the basis of a systemwith a 32-bit ARM host processor running Linux.We first

discuss structure and entries of the page table (PT) and how the PT is used for virtual-to-physical

address translation. As the PT can be cached at different locations, we then discuss the related

coherence issues. Next, we discuss the RAB, a lightweight hardware module that enables VM on

PMCAs. We conclude this section by examining the limitations of the state-of-the-art solution and

derive the challenges our implementation (in § 6) has to solve.

4.1 Linux Page Table

PTs store the virtual-to-physical address translations of all processes. There is one PT per process.

All PTs are managed by the OS, which creates, modifies, and removes PT entries. In addition to the

OS, the PT is read by the MMU of the CPU. The layout of the PT is defined by the CPU architecture.

The Linux kernel generally uses the four-level PT shown in Fig. 2. The individual tables are called

Page Global Directory (PGD), Page Upper Directory (PUD), Page Middle Directory (PMD), and

Page Table Entry (PTE).

 Virtual Address:

Page

Page Table

PGD

PUD

PMD

PTE

PUD Index PMD Index PTE Index Page Offset

Base Address

PGD Index

Fig. 2. The Linux page table. Elements that are grayed out are unused the host architecture used in this paper.

The host processorwe use, a 32-bit ARMv7CPUwithout Large Physical Address Extension (LPAE),

however, uses a two-level PT. To match this architecture, Linux uses only the lower two of its four

tables (i.e., the PMD and the PTE) and sets the base address of the PT to the base address of the

PMD. Another difference between processor and kernel is the number of entries per table: The

Linux kernel uses 2048 and 512 entries in the first and the second table, respectively. The processor,

on the other hand, uses 4096 and 256 entries in the two levels. The kernel compensates for this

difference by duplicating the information in the second table and by defining additional entries

suitable for the processor in the first table. We will not discuss this mechanism in more detail

because we work with the Linux representation of the PT. As a consequence, our implementation

can be adapted for all host architectures that are supported by the Linux kernel.
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Entries in the upper-level table contain the physical base address of a lower-level table. Entries

in the lower-level table contain the physical base address of a page and multiple flag bits, of which

the read-only and the user-mode bit are relevant for us: If the user-mode bit is zero, unprivileged

processes (e.g., all user-space applications) may not access the page. If the read-only bit is set,

processes may not write the page. If the physical address of an entry is null, the given virtual

address (VA) does not translate to a physical address.

The translation from a virtual to a physical address for a given process is done in a page table

walk (PTW): First, the 11 most-significant bits of the VA are used to index the PMD that is located

at the process-specific PT base address to get the physical base address of the PTE. Second, the next

9 bits of the VA are used to index the PTE to get the physical base address of the page. Finally, the

12 least-significant bits of the VA are added to the page base address to obtain the physical address.

4.2 Page Table Coherence

The PTs of all processes are stored in main memory due to their size. However, the virtual-to-

physical address translations they contain are used very often, and accessing main memory on

every translation would cause huge run-time overheads. To avoid this, the most frequently used

translations are cached.

There are two types of caches: (IO)TLBs store individual address translations and are a core

component of every (IO)MMU. They allow the direct translation of a set of recently used addresses

without having to walk the PT. In addition to TLBs, parts of tables may be present in caches in the

memory hierarchy after a PTW. Similarly, some high-performance (IO)MMUs even include private

caches to buffer entire tables [5]. These caches speed up (a part of) the PTW, because some tables

are available in local low-latency memory. Regardless of their type, caches introduce the problem

of coherence: when the OS modifies an entry in the PT in main memory, all cached versions of this

entry are invalid and may no longer be used.

To ensure this, an invalidation is broadcast whenever a PT entry is changed [20]. Caches are

obliged to listen to these broadcasts and may not use invalidated entries any longer. There is

a subtle difference in how the two cache types deal with invalidations: Caches in the memory

hierarchy are subject to a cache-coherency protocol. TLBs, on the other hand, are not part of the

memory hierarchy and thus cannot use cache invalidation broadcasts. To invalidate a TLB entry, an

additional TLB invalidation that contains the modified virtual address is broadcast. On the ARMv7

host processor used in this paper, TLB invalidations are propagated through distributed virtual

memory (DVM) transactions [4].

4.3 Remapping Address Block

The Remapping Address Block (RAB) [31] connects the PMCA to the shared main memory inter-

connect (see Fig. 1). Similar to the IOMMUs found in high-performance systems, the RAB performs

the virtual-to-physical address translation for the accesses of the accelerator to the shared main

memory. Unlike a full-fledged hardware IOMMU, however, the RAB is completely managed in

software by a kernel-level driver module running on the host.

The top-level architecture of the RAB is shown in Fig. 5 (uncolored elements). At its heart is an

IOTLB of configurable size. This IOTLB is fully associative and looks up translations in a single

clock cycle. An IOTLB entry (called RAB slice) contains a virtual address range of arbitrary length,

a physical address offset, and two flag bits: slice and write enable. The widely-adopted AXI4 [4]

protocol is used on all interfaces.

When a transaction from the accelerator to shared memory arrives on the slave port, the metadata

of the transaction (i.e., virtual address, length, ID, and read/write) are fed to the control block that
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interfaces the IOTLB. In case of a RAB miss—i.e., if the virtual address does not match any enabled

RAB slice or if a write has been requested but is not permitted—the RAB drops the transaction,

responds with a slave error, stores the metadata inside the miss FIFO queue, raises a miss interrupt,

and processes the next transaction. In case of a RAB hit, the RAB translates the virtual address

of the transaction to the physical address, forwards the transaction through the master port, and

processes the next transaction (returning the response of the downstream slave as it becomes

available).

Supporting RAB misses requires a non-intrusive extension of the cluster: The RAB response is

buffered in a low-latency, PE-private TRYX register. Each PE reads this register after every virtual

memory access to check for a RAB miss. In case of a miss, the corresponding PE goes to sleep. It

is woken up as soon as the miss is handled and then retries the memory access. The necessary

instructions are automatically inserted by a compiler extension. Other PEs and DMA engines can

continue accessing SVM while the miss is being handled.

In the state-of-the-art implementation [31], RAB misses are handled by the host CPU. For this,

the miss interrupt and the configuration interface of the RAB are connected to the host, and a

kernel driver is registered to handle that interrupt. When an interrupt occurs, the driver schedules

the miss handler routine and clears the interrupt. When invoked, the handler then reads the miss

FIFO in the RAB, walks the PT of the offloaded process, sets up a new RAB slice, and wakes up the

PE that has caused the miss.

5 THE PROBLEM: HOST-BASED RAB MISS HANDLING

While handling RAB misses on the host comes at minimal hardware costs and is simple from

the view of the PMCA, it adds an extensive run time overhead to every miss. On our evaluation

platform, handling a single RAB miss on the host takes an average of 5400 PMCA clock cycles.

Fig. 3 shows the interactions (top) and the timeline (bottom) of host-based miss handling.

t15%15% 35%35%35% 4% 4%12%30%

5400 PMCA clock cycles

handle IRQ schedule Miss Handler Page Table Walk
get RAB miss config RAB slice

wake core up

Coherent Interconnect
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DMA
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Low-Latency Interconnect
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Fig. 3. Interactions (top) and timeline (bottom) of handling RAB misses on the host.

After a RAB miss, an interrupt from the RAB arrives at the host and is handled by one of the

CPUs (dark gray); this takes ca. 15% of the total time. Then, the kernel thread executing the RAB

miss handler in the process context is scheduled (light gray), which takes another 35% of the

time. This step is required because some functions used in the miss-handling routine may sleep

and thus cannot be executed in interrupt context. The miss handling routine first reads the RAB

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39. Publication date: October 2017.



39:8 P. Vogel, A. Kurth, J. Weinbuch, A. Marongiu and L. Benini

miss FIFO (yellow, ca. 4% of the time) and then translates the virtual to a physical address using

get_user_pages() (blue, ca. 30% of the time). Next, the routine configures a RAB slice in a series

of transactions (orange, ca. 12% of the time) and finally wakes the sleeping PE up (red, ca. 4%

of the time). In conclusion, there are two main contributors to the prohibitively large run time

overhead: multiple interactions between loosely-coupled components and the long scheduling

delay to execute the miss handler on the host.

Our solution, described in the next section, reduces the extensive run time overhead of the

state-of-the-art design while maintaining the standard compliance and flexibility of the host-based

solution. This will make VM viable also for applications that use VM extensively and potentially

cause many RAB misses.

6 HW/SW SOLUTION FOR HANDLING RAB MISSES ON THE ACCELERATOR

The PMCA uses a multiple instruction multiple data (MIMD) execution model as visualized in Fig. 4.

Multiple parallel worker threads mainly operate on data in the shared SPM. Accesses to SVM are

protected by load and store macros (1) automatically inserted by a compiler extension [31]. These

macros protect a PE from using an invalid response returned by the hardware upon a RAB miss by

putting the PE to sleep. To reduce the problematic overhead caused by handling RAB misses on

the host, we must instead handle misses right where they occur: on the PMCA. For this, we add a

miss handling thread (MHT) to the execution model. Upon a RAB miss (2), the runtime starts an

MHT (3) that handles all outstanding RAB misses through our virtual memory management (VMM)

library. After every handled miss, the MHT sends a signal to the runtime that wakes up the sleeping

PE (4). In addition, worker threads can explicitly call the VMM library to map and unmap pages,

e.g., before setting up DMA transfers (5).

RAB
load()✔
store()✔
load()✔
store()✔

Worker Threads

load()✔

map()
load()✔ dma()

unmap()

time

①

②③

④ ⑤ 

load()✔
store()✔

store()✘

store()✔

load()✔

store()✔
store()✔

✘load()VMM

Runtime

Miss

Handler

Thread

Fig. 4. Execution model on the PMCA with a miss handling thread (MHT).

To let the PMCAoperate its VMhardware autonomously through the VMMsoftware library (§ 6.3),

two small modifications to the RAB hardware as proposed in [31] are required. First, the PMCA

must be able to read the PT of the user-space process in main memory coherently with the caches of

the host (§ 6.1). Second, the PMCAmust have access to the configuration interface of the RAB (§ 6.2).

Finally, handling RAB misses on the PMCA instead of on the host requires two small changes

to the driver on the host: During the offload, the driver must set up a RAB slice that enables the

PMCA to access the PT. For this, the driver gets the physical address of the initial level of the PT

(i.e., in our case, the PMD) and sets up a cache-coherent read-only slice for it. Additionally, the RAB

miss interrupt handler on the host must be deactivated.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39. Publication date: October 2017.



Efficient Virtual Memory Sharing via On-Accelerator Page Table Walking in HESoCs 39:9

6.1 Page Table Coherence

There are two issues related to page table coherence (§ 4.2): all accesses to the PT must be coherent

with the caches of the host, and all TLBs must respect TLB invalidations. We solved these issues as

follows:

6.1.1 Cache-Coherent Memory Accesses. The PMCA accesses the PT coherently with the caches

of the host for two reasons: First, this removes the need to flush caches every time the host changes

the PT while the accelerator is running and on every offload. Second, this allows to exploit the

memory hierarchy of the host to cache parts of the PT, reducing the average access time to the PT

without the expensive dedicated hardware caches as used, e.g., in some IOMMUs.

Many modern SoCs offer an Accelerator Coherency Port (ACP) that enables accelerators to access

main memory coherently with the caches of the host [15, 32]. To access the PT coherently, we could

route all memory accesses through the RAB to the ACP. However, application data may be known

to be uncached by the host at accelerator run time. In this case, accessing memory through the

host’s caches unnecessarily increases the access latency and causes interference. Thus, we added

a multiplexer that routes cache-coherent accesses through the ACP and non-coherent accesses

directly to the DDR memory interface (drawn yellow in Fig. 5). To control this multiplexer, we

added one bit that defines cache coherence to each RAB slice.
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Fig. 5. The RAB with our hardware extensions highlighted in color.

6.1.2 TLB Invalidations. Ensuring coherence of the IOTLB in the RAB is more involved, because

the RAB does not support TLB invalidations through DVM transactions. We solved this problem

with another low-overhead hardware-software solution: We added a register to the RAB (drawn

orange in Fig. 5) and amended the TLB invalidation routine in the Linux kernel to write the

invalidated virtual address to that register. When an address is entered in the register, the RAB

disables the corresponding slice within the next clock cycle and before processing any outstanding

translations. A single register is sufficient because the RAB processes invalidations at a much higher

rate than the OS generates them. This solution requires only little extra hardware and, since TLB

invalidations happen rarely, the associated run time overhead is acceptable: On the evaluation

platform (described in § 7.1), writing the invalidation register in the PMCA takes 200 clock cycles

on average. This is comparable to the invalidation of a host TLB entry that takes 130 cycles on

average.
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6.2 Securely Configuring the RAB on the PMCA

The PMCA requires hardware access to the RAB configuration to be able to set up slices. To share

the configuration port of the RAB among host and PMCA, we added an interconnect in front of

the port and attached the PMCA SoC bus and the existing host master (light blue in Fig. 5). While

this solution is simple and functionally sufficient, it would elude the isolation aspect of VM: If the

PMCA was free to write any configuration to RAB slices, any application running on the PMCA

could grant itself unrestricted access to any memory region, including regions that belong to the

OS kernel.

We prevent illegal RAB configurations with a hardware filter on the configuration port (dark

blue in Fig. 5). This filter ensures two properties based on address and content of incoming writes:

First, only the host is allowed to write the one slice that maps the initial level of the PT. Second,

the accelerator may only configure slices according to the response of a PT lookup. To ensure the

second point, the filter snoops the read request and response channels between the RAB and the

clusters of the PMCA (triangular filter port in Fig. 5) for lookups in the PT. The physical address,

the access permissions, and the address range returned by a lookup are stored. On the next write

to the RAB configuration by the accelerator, the values to be written are compared with the stored

values of the last lookup: If one of them does not match or if the page is not accessible from user

space, the write request is dropped and an error is returned. Applications could still escape this

protection by faking an extra level in the PTW with one of their data pages. To prevent this, the

filter keeps track of the number of indirections that occur during the PTW, which is fixed for any

given host architecture.

This lightweight hardware solution enables untrusted accelerator software to configure the

IOTLB while maintaining the isolation guarantee of VM. It does not have any impact on run time

and comes at negligible hardware costs.

6.3 VMM Library for the PMCA

There are three basic requirements on this library that is located between the application program-

mer and PMCA hardware and host-dependent data structures. First, the library must expose a

simple API that remains stable regardless of variations between different host architectures or

evolution in PMCA hardware. Second, the implementation of the library must be flexible and

extensible to accommodate different host architectures and evolving PMCA hardware. Third, the

library is highly performance-critical and must guarantee correctness properties such as strict

ordering of memory transactions. To meet the first two requirements, the library (shown in Fig. 6)

is organized in layers and composed of modules. To meet the third requirement, we implement

these abstractions with no overhead: the compiler expands all function calls inline and reduces all

data structures to collections of primitive types. In the remainder of this section, we will discuss

the modules and their interaction from top to bottom.

6.3.1 Top-Level VMM Module. The VMM library provides two different sets of functionalities

in its interface: one to handle all outstanding RAB misses and automatically map the required

pages V1 and one to manually map and unmap pages V2 . In the most common use case of this

library, an MHT calls the function to handle RAB misses V1 upon a RAB miss interrupt. The library

will then dequeue the first miss from the RAB miss queue and translate its virtual address to a

physical address. Next, it will select a RAB slice to replace and configure that slice accordingly.

Finally, it will wake up the PE that caused the miss. The other use case is the explicit mapping of

pages V2 , e.g., in preparation of a DMA transfer. This works the same as V1 without the functions

related to miss handling.
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in the interface.

An advantage of this software implementation is that the algorithm to replace slices can be

modified easily. We focused on a simple FIFO policy due to its low time and space complexity, but

certain applications could benefit from a more complex algorithm such as least recently used (LRU).

6.3.2 Host Hardware Abstraction Layer. The host hardware abstraction layer (HAL) provides

a normalized interface to translate addresses on different host architectures. Its implementation

structure allows to add support for every architecture supported by the Linux kernel with little

extra development efforts.

This module translates virtual to physical addresses H1 by walking the PT of the host. The

translation starts at the first-level table, which has been mapped by the host at offload. At each level,

the function first calculates the table index from the virtual address and reads the corresponding

table entry. It then checks if this entry contains the physical address of a table in the next-lower

level; if so, it sets up a new RAB slice for cache-coherent read-only access to that table and proceeds

with the next level. At the last level, the table entry contains the physical address of a page along

with access permissions. Thus, the module finally checks if the page is accessible from user space

and maps it with the appropriate read/write permissions.

At all levels but the last, a RAB slice mapping a table is set up. When the translation of a virtual

address (at least partially) requires the same tables as the previous address, however, setting up

these tables again is unnecessary. Our implementation avoids such redundancy by caching the

addresses of the currently mapped tables and starting the PTW at the first level that cannot be

reused. This is especially beneficial for higher-level tables, which are reused often because they

cover a large range of addresses. Our results show that this optimization already for a two-level PT

reduces the run time of a PTW by up to 65% on the evaluation platform.

6.3.3 PMCA Hardware Abstraction Layer. The PMCA HAL implement the uniform access prin-

ciple for memory-mapped hardware components of the PMCA by providing a consistent interface.

This allows aggressive compiler optimization throughout this performance-critical library while still

guaranteeing correctness at the instruction level, e.g., with respect to memory access ordering: con-

structs such as volatile variables and fixed-width types are used consistently where required—and

only where required.

The RAB module controls RAB slices R2 and dequeues misses from the hardware FIFO R1 .

Parameters for a RAB slice are: the index of the slice, the virtual address range, the base physical
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address, access permissions, and cache coherency. If the parameters are valid, the implementation

then disables the target slice, writes the new configuration in a sequence of memory transactions,

and re-enables the slice. Other operations on slices are R3 : disabling it, determining whether it maps

a given virtual address, and determining whether it is enabled. The implementation is thread-safe:

those operations that require more than one transaction lock the slice on which they operate by

means of synchronization hardware in the PMCA.

From the cluster module, the VMM library currently only uses the function to wake up a given

PE C1 that has gone to sleep after accessing a virtual address that misses in the RAB. This function

triggers an interrupt to the PE in the event hardware unit of the PMCA.

7 RESULTS

Before discussing the results, this section gives an overview of the evaluation platform and the

benchmark applications visualized in Fig. 7 and 8, respectively.

7.1 Evaluation Platform

Our evaluation platform is based on the Xilinx Zynq-7000 SoC [32]. It features a dual-core ARM

Cortex-A9 CPU that is used to implement the host of the HESoC. The cores have separate L1

instruction and data caches with a size of 32 KiB each. Further, they share 512KiB of unified L2

instruction and data cache including a controller that connects to the high-priority port of the

DRAM controller. The host is running Xilinx Linux 3.18 with swapping and the LPAE disabled.

The programmable logic of the Zynq is used to implement a cluster-based PMCA architecture [28].

The PEs within a cluster feature 8 KiB of shared L1 instruction cache and share 256 KiB multi-banked

tightly-coupled data memory as L1 SPM. Ideally, every PE can access one word in the L1 SPM per

cycle. Every cluster features a multi-channel DMA engine that can be quickly programmed by the

PEs by just writing 4 low-latency, PE-private registers and thus enables fast and flexible movement

of data between L1 and L2 memory or shared DRAM.

The event unit in the peripherals of each cluster is used for intra- and inter-cluster synchroniza-

tion, to put PEs to sleep, and to wake them up. The PMCA is attached to the host as a memory-

mapped device and is controlled by a kernel-level driver module and a user-space runtime. The host

and the PMCA share 1GiB of DDR3 DRAM. The RAB uses one port with 32 slices for PMCA-to-host

communication. It connects the PMCA to the high-performance AXI slave port of the DRAM

controller and to the ACP of the Zynq. The latter allows the PMCA to access the shared main

memory coherent to the data caches of the host. The configuration interface of the RAB is accessible

to both PMCA and host through the general-purpose AXI master port. In case a RAB miss happens,

this is signaled back to the PE using the per-core, low-latency TRYX register.

This platform enables us to study and evaluate the system-level integration of a PMCA into

a HESoC. Thus, we did not optimize the PMCA for the implementation on the FPGA; the FPGA

implementation should be seen as an emulator instead of a full-featured accelerator. We adjusted

the clock frequencies of the different components to obtain ratios similar to a real HESoC with

host and PMCA running at 2133MHz and 500MHz, respectively. The DDR3 DRAM is clocked at

533MHz. The hardware modifications to the RAB [31] add only minor contributions to the overall

hardware complexity. The modified RAB accounts for less than 6% and 10% of the look-up table

and flip-flop resources of the entire PMCA featuring a single cluster with eight PEs, respectively.

For future evolutions of our SVM system, we are currently migrating to a bigger evaluation

platform combining a more recent, multi-cluster, ARMv8 host processor with an FPGA fabric

capable of implementing multiple PMCA clusters. Since the VMM library presented in this work

operates on the Linux PT, it is fully compliant with the new host architecture.
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7.2 Benchmark Description

To evaluate the performance of our SVM system under various conditions including identifying its

limits, we have used three configurable benchmark applications. They were obtained by extracting

critical phases from real-world applications suitable for the implementation on a HESoC, and

by parameterizing them to cover a large parameter space. They exhibit main-memory access

patterns representative for various application domains. Operating on pointer-rich data structures,

the support for SVM is fundamental to allow implementations on heterogeneous platforms at a

reasonable effort. Otherwise, developers need to completely rethink the application, which is a

huge pain. Moreover, the access patterns exhibited by such operations are highly irregular and thus

represent a worst-case scenario for the SVM subsystem.
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Fig. 8. The synthetic benchmark applications: a) Pointer Chasing (PC) and b) Random Forest Traversal (RFT).

Pointer Chasing (PC): This benchmark is a representative example for a wide variety of

pointer-chasing applications from the graph processing domain [6, 11]. Prominent examples include

PageRank (PR), breadth-first search, shortest path search, clustering, and nearest neighbor search.

Due to the irregular and data-dependent access pattern to shared memory and low locality of

reference, they represent worst-case scenarios for a virtual memory subsystem. The principle of the

benchmark is visualized in Fig. 8 a). The host builds up the graph and stores the vertex information

in a single array in main memory. Every array element stores the number of successors of the

corresponding vertex, a pointer to an array of successor vertex pointers, and a configurable amount

of payload data. For every vertex, the PMCA reads the number of successors and copies the payload

data and successor pointers to the L1 SPM using DMA. Then, it performs a configurable number of
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computation cycles on the payload data and writes the payload data to the successors in shared

main memory.

Random Forest Traversal (RFT): This benchmark operates on regular, binary decisions trees

of configurable size typically used for regression and classification [10]. The host generates the

decision trees in virtual memory and passes virtual address pointers to both the root vertices and

the samples to be classified to the accelerator. The trees themselves are stored in a large array as

shown in Fig. 8 b). Every vertex or array element stores a configurable amount of payload data and

a limit for the binary decision. When a sample arrives at a non-leaf vertex, the accelerator loads the

corresponding payload data from shared memory using DMA, performs a configurable amount of

computation cycles using the sample and the payload data, and selects the next vertex based on the

outcome of the computation. Upon arriving at a leaf vertex, the index of the leaf vertex is stored.

MemoryCopy (MC): This application features a highly regular access pattern to sharedmemory

and is a representative example for streaming applications. It simply lets the host create a buffer

of configurable size in virtual memory and then passes a pointer to the buffer to the PMCA. The

PMCA uses DMA transfers to copy the buffer from shared memory into the L1 SPM at maximum

bandwidth.

7.3 Miss Handling Cost

We used a synthetic benchmark application to profile the VMM library and compare it with host-

based RAB management. The host allocates a large array and passes a pointer to this array to the

PMCA. The PEs of the PMCA then issue read and write accesses to this array. To measure the

execution time of the different sub-functions of the RAB miss handling routines, the application

uses the internal performance counters of the PEs and the peripheral timers of the cluster.

On average, the handling of a RAB miss using the VMM library takes 450 PMCA clock cycles.

Around 50% of this time are spent in memory accessing the PT. The reconfiguration of RAB slices

(to access currently unmapped PT sections and to map the requested user-space page) accounts for

20% of the execution time. The remaining time is spent on various sub-tasks of the VMM library

that can be executed internal to the cluster. These include computing addresses of the next PMD

and PTE entries, checking access privileges, handling the RAB slice replacement strategy, and

waking the sleeping PE up after handling the miss. Overall, handling a RAB miss directly on the

PMCA using the proposed VMM library is 11 times faster than handling misses on the host.

7.4 Synthetic Benchmark Results

The three benchmarks were run using the parameters summarized in Table 1 to test the presented

SVM subsystem under various workload conditions. The selected parameter sets represent a mix

of real use cases [10, 11], problem sizes still bearable by embedded systems, and performance

transition points of the evaluation platform1.

Table 1. Benchmark parameters

Pointer Chasing

#Vertices 10 K
Vertex Size [B] 44 - 2,060
#Cycles per Vertex 10 - 1,000

Random Forest Traversal

#Tree Levels 5 - 16
Vertex Size [B] 28 - 1,036
#Cycles per Vertex 10 - 1,000

Memory Copy

#Iterations 1 - 64
Data Size [KiB] 64 - 1,024

1For example, we found that graphs with larger vertex count do not notably change the results for PC as long as the total

graph size is larger than the amount of memory that can be remapped with the available 32 TLB entries (128 KiB).
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We selected a randomly distributed graph of type Erdős-Rényi for PC and configured RFT to sort

random input numbers. As a consequence, access patterns to shared memory are highly irregular

and randomized. We measured the execution time on the PMCA, both when using the PTW design

presented in this work and when letting the host handle the RAB misses. We compare these two

designs with an ideal SVM subsystem, i.e., a TLB with a single-cycle lookup latency that always

contains the requested mapping and thus never misses. While ideal SVM would be desirable, even

full-fledged hardware IOMMUs today are far from reaching this performance: a recent study has

shown that their average performance on a mixed set of accelerator workloads is less than 13% of

ideal SVM [8]. We modeled the ideal SVM subsystem by letting the host copy the shared data to a

reserved, physically contiguous section and translate any virtual address pointers in the shared

data. While this allows for zero overhead at PMCA run time, it leads to considerable design-time

overheads and very high offload costs, which are to be avoided by using SVM.
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Fig. 9. PC results for different vertex/graph sizes and resulting operational intensities. The labels PMCA and

Host denote the unit that manages the RAB in the corresponding curve.

Pointer Chasing (PC): Fig. 9 shows the performance normalized to ideal SVM for different

numbers of computation cycles per vertex and increasing vertex sizes, i.e., the total amount of

data in the linear array per vertex, in a) - d). Given a specific vertex size, varying the number of

computation cycles per vertex changes the operational intensity defined as the number of operations

performed per data transferred between shared main memory and the local SPM of the PMCA.

The operational intensity is a characteristic property of a specific algorithm implementation. It

is denoted on the x-axis of the plots. Since the graph cannot be remapped by the available TLB

entries at once and since the access pattern is random, PC is dominated by RAB miss handling.

Thus, letting the PMCA manage the RAB is always substantially better than involving the host.

The proposed SVM system achieves between 60 and 88% of the performance of ideal SVM for

operational intensities between 0.28 and 28 cycles per byte. For example, a single-precision floating-

point implementation of PR performs 1 division, 1 multiplication per vertex and 1 addition per

successor, and accesses 20 B of data for these operations. On the ARM Cortex-A9 host CPU, this

leads to an intensity of 1.2 cycles/B [3].

Random Forest Traversal (RFT): The results for RFT are shown in Fig. 10. The x-axis of the

plots denotes the number of tree levels. Every plot shows two pairs of curves corresponding to

different operational intensities. It can be seen that changing the vertex size from 28 to 268 B

(Fig. 10 a) to b) ) mainly shifts the transition point beyond which letting the PMCA manage the

RAB becomes increasingly beneficial. This transition point corresponds to where the total tree size

becomes greater than the capacity of the TLB. For smaller tree sizes, the application causes only
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compulsory TLB misses, i.e., TLB misses happening on the very first access to every memory page.

Above the transition point, more and more TLB misses to previously mapped but at some point

discarded pages (capacity misses) are generated until the performance saturates. In this regime, the

proposed design is up to 2.4 times faster than when the host manages the RAB. Also, it can be seen

that increasing the vertex size (Fig. 10 a) to c) ) does not notably affect performance in the regime

dominated by capacity misses. The distance between a vertex and its successors increases with

the depth in the tree. As the size of all vertices in a tree level reaches the size of a memory page,

accessing the successors of a vertex on the next level always generates a TLB miss. A larger vertex

size means that more data on the remapped page is accessed and helps to amortize the cost of the

miss despite a potentially very low operational intensity.

Memory Copy (MC): Fig. 11 shows the performance for MC normalized to the ideal SVM

system for different input data sizes. In practice, the size of the L1 SPM might not suffice to hold

the entire input data at once and multiple iterations over the same input data might be required to

apply a specific application kernel. The number of iterations are denoted on the x-axis. For data

sizes smaller than the TLB capacity, it can be seen that performing multiple iterations helps to

amortize the compulsory TLB misses occurring during the first iteration. This effect is much more

pronounced when the host is managing the TLB because misses are more expensive in this case.
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As the data size becomes greater than the TLB capacity, this effect diminishes. It can also be seen

that with increasing data size, the relative performance of the SVM schemes under comparison

decreases. For larger data sizes, the number of DMA transfers increases while the size of the local

SPM stays constant. Thus, also the total SVM overhead associated with the DMA transfers increases.

Overall, letting the PMCA handle the TLB improves performance by factors of 3.8 to 4 compared

with host-based management.

MC offers a highly regular access pattern to SVM that is known in advance. Our virtual memory

management approach offers the flexibility to exploit this information on the host side at offload

time for prefetching. Fig. 12 compares the achievable performance of such a scheme when copying

a buffer with a size of 1MiB. Clearly, this allows to improve performance beyond what is possible

with purely reactive miss handling (MH). The achievable performance is very close to that of

ideal SVM.
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Fig. 12. MC effective bandwidth normalized to ideal SVM.

7.5 Real Application Benchmark Results

To evaluate the performance of the proposed SVM design for real-world applications operating on

irregular, pointer-rich data structures, we have used three different applications that combine the

access patterns of the synthetic benchmarks. PR [6] is a typical example for a PC application. Since

the PMCA implementation of our evaluation platform does not feature floating-point units, we have

used a custom fixed-point software library, which leads to an increased operational intensity. The

vertices have a size of 20 B. The Random Hough Forest (RHF) application is part of the classification

stage of an object detector [10]. Besides the actual classification stage exhibiting the access pattern

of RHF on trees with 16 levels, also a set of filtering operations are executed on the PMCA. These

filtering operations are well parallelizable, operate on the input images previously copied to the

L1 SPM and are highly compute intensive. They can help to amortize potentially high overheads

during phases operating on SVM. The transfer of the input image features an access pattern to

shared memory very similar to MC. The third application performs face detection (FD) using the

well-known Viola-Jones algorithm [30] operating on degenerate decision trees. The access pattern

to shared memory is similar to RFT. The intensive computation of the integral and squared integral

images fed to the detector is also performed on the PMCA using data in the L1 SPM. Similar to

RHF, the transfer of the actual input image features a streaming-type access pattern like MC.

We have run the benchmarks for different data sets. Fig. 13 compares the measured performance

normalized to ideal SVM when using the host or the PMCA to manage the RAB. For PR with

4, 000 vertices as well as for FD, the pointer-rich data structure can be remapped completely with

the available RAB slices. Only few compulsory misses must be handled, which can be well amortized

by the computation, independent of whether the PMCA or the host manages the RAB. As the

number of vertices for PR increases to 10, 000, the overall execution time starts to get dominated

by capacity misses. Letting the PMCA manage the RAB improves the performance by a factor of
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roughly 1.5. For RHFs, the highly compute-intensive filter operations allow to partially amortize

the many capacity misses during the classification phase (1.75MiB of data per tree). As the number

of trees and thus the number of capacity misses increases, more and more time is spent on handling

these capacity misses while the amount of filter operations remains constant. Letting the PMCA

manage the RAB using the VMM library presented in this work brings the performance close to

the performance of ideal SVM.
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Fig. 13. Results for real-world applications normalized to ideal SVM.

8 CONCLUSION

In this work, we have presented a novel hardware-software solution for accelerator-managed

shared virtual memory in heterogeneous embedded systems on chip. Our solution is based on an

accelerator-side helper thread using a virtual memory management software library that enables the

accelerator to autonomously perform the correctness- and performance-critical task of operating

its virtual memory hardware, including page table walking and IOTLB management. The library

provides a simple API and is compatible with any host CPU architecture supported by the Linux

kernel. In addition, the design retains the flexibility of a software-managed solution, which allows,

e.g., the exploration of novel ideas such as managing the IOTLB in a collaboration among host and

accelerator. We have validated the design on our evaluation platform using both parametrizable,

synthetic benchmarks and real-world benchmarks covering various application domains including

linked data structures. Letting the accelerator manage its VM hardware autonomously eliminates

frequent interventions of the host CPU and brings substantial performance improvements by

factors of up to 3.8 compared with state-of-the-art host-based IOTLB management. Compared with

an ideal system for SVM, the performance lies within 50% for purely memory-bound applications

and within 5% for real applications.

We are extending our studies in multiple directions, including the dynamic parallelization of the

VMM library to reduce the miss latency when many misses occur simultaneously. Also, we are

investigating alternative and larger RAB designs and smart prefetching techniques to reduce the

RAB miss rate. Finally, we are extending the entire SVM framework to support the operation of

multiple many-core clusters combined with a state-of-the-art ARMv8 host processor.
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