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Abstract. Recent advances in weather and climate (W&C)
services are showing increasing forecast skills over seasonal
and longer timescales, potentially providing valuable sup-
port in informing decisions in a variety of economic sec-
tors. Quantifying this value, however, might not be straight-
forward as better forecast quality does not necessarily imply
better decisions by the end users, especially when forecasts
do not reach their final users, when providers are not trusted,
or when forecasts are not appropriately understood. In this
study, we contribute an assessment framework to evaluate the
operational value of W&C services for informing agricul-
tural practices by complementing traditional forecast qual-
ity assessments with a coupled human–natural system be-
havioural model which reproduces farmers’ decisions. This
allows a more critical assessment of the forecast value medi-
ated by the end users’ perspective, including farmers’ risk at-
titudes and behavioural factors. The application to an agricul-
tural area in northern Italy shows that the quality of state-of-
the-art W&C services is still limited in predicting the weather
and the crop yield of the incoming agricultural season, with
ECMWF annual products simulated by the IFS/HOPE model
resulting in the most skillful product in the study area. How-
ever, we also show that the accuracy of estimating crop yield
and the probability of making optimal decisions are not nec-
essarily linearly correlated, with the overall assessment pro-
cedure being strongly impacted by the behavioural attitudes
of farmers, which can produce rank reversals in the quantifi-
cation of the W&C services operational value depending on
the different perceptions of risk and uncertainty.

1 Introduction

Weather and climate (W&C) services, defined as informa-
tion on past, present, and future weather and climate useful to
assist decision making (GFCS, 2014), can provide valuable
aid to a variety of economic sectors, including hydropower
production (e.g. Garcia-Morales and Dubus, 2007), drought
management (e.g. Mwangi et al., 2014), flood protection (e.g.
Cloke et al., 2017), and disease spread control (e.g. Thom-
son et al., 2006). These services are particularly important in
agriculture (Hammer et al., 2001), where weather-sensitive
decisions, such as crop choices or irrigation scheduling (e.g.
Dutra et al., 2013; Winsemius et al., 2014; Wetterhall et al.,
2015), are frequently to be taken. Here, W&C services are
expected to be even more helpful over the next years, when
extreme weather conditions will be more frequent and in-
tense (Dai, 2011).

Over past decades, W&C services have undergone broad
development in many parts of the world (Cloke and Pap-
penberger, 2009; Bauer et al., 2015; Brunet et al., 2015).
The existence of slow, and hence predictable, variations in
sea surface temperature, sea ice, soil moisture, and snow
cover, which interact with the atmosphere and impact on
the global climate, can be used to extend predictability at
the seasonal timescale (Palmer and Hagedorn, 2006). Al-
though some limitations still exist (e.g. Palmer et al., 2005;
Lee et al., 2011), the recent increase in model resolutions
(e.g. Prodhomme et al., 2016a), the improvement of ini-
tialization procedures (e.g. Prodhomme et al., 2016b), and
the more accurate representation of some physical processes
(e.g. Hourdin et al., 2013) has considerably advanced the ac-
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curacy of W&C services, with current state-of-the-art prod-
ucts showing good forecast skills even over seasonal and
longer timescales (Doblas-Reyes et al., 2013).

A causal link between better forecast quality and higher
operational value is, however, not necessarily straightfor-
ward (e.g. Ritchie et al., 2004; Ramos et al., 2013), espe-
cially when forecasts do not reach their final users, when the
provider is not trusted, or when forecasts are not appropri-
ately understood (e.g. Ramos et al., 2010; Frick and Hegg,
2011). In other words, while quantifying forecast quality is a
necessary step in the assessment of W&C services, other in-
dicators should be considered for capturing the stakeholders’
judgment of the value of the forecast products, i.e. their oper-
ational value, particularly when this evaluation differs from
the opinion of forecasters (Hartmann et al., 2002). Yet, most
assessments reported in the literature focus solely on forecast
quality, defined as the similarity between the forecast esti-
mates and the actual observations of weather or hydrological
variables based on some statistically formulated performance
metrics (Murphy, 1993).

Recent attempts to assess the operational value of W&C
services have tended to apply long-term forecasts for feed-
ing simulation models in order to predict decision-relevant
information, such as soil water availability for irrigation
scheduling (e.g. Wang and Cai, 2009; Calanca et al., 2011) or
crop production for cropping pattern decisions (e.g. Hansen,
2004; Baigorria et al., 2008). The use of process-based simu-
lation models contributes to a better understanding of W&C
services by stakeholders and users as it makes it possible
to transform weather forecasts (e.g. precipitation and tem-
perature) into decision-relevant information (e.g. crop yield)
through a transparent, objective, and reproducible procedure.
For example, although farmers can quantify the risks asso-
ciated with predictions of a dry season, they would benefit
much more from information on the anticipated crop yield
and the associated risk of crop failure (e.g. Challinor et al.,
2005). In addition, the relationship between weather and
decision-relevant variables is often nonlinear, and an error in
the weather forecast will not be linearly propagated into an
error of the same magnitude in the crop yield prediction. The
quality of forecast products evaluated on weather variables
can differ from the quality of evaluations performed on crop
yield: two forecast products characterized by different levels
of accuracy in predicting weather variables can provide simi-
lar predictions of crop productivity; vice versa, two products
having similar skills in predicting temperature and precipita-
tion can show different performance in predicting crop yield.
Quantifying the value in terms of forecast accuracy in pre-
dicting decision-relevant information is therefore crucial for
improving stakeholders’ trust in W&C services.

Although the model-based prediction of decision-relevant
information is surely a step forward from the end users’ per-
spective, high-quality forecasts may still be unused by stake-
holders (e.g. Rayner et al., 2005; Coulibaly et al., 2015). For
example, an attempt to increase forecast accuracy by pro-

viding more early warnings often implies a risk of increas-
ing the number of false alarms, ultimately discouraging the
use of W&C services in an operational context due to dif-
ferent perceptions of risk and uncertainty (Demeritt et al.,
2007). In addition, many studies have shown how stakehold-
ers’ adoption of weather forecasting is influenced by their so-
cial context (e.g. Hansen, 2002; Suarez and Patt, 2004; Crane
et al., 2010). Such evidence motivates exploring how users’
behavioural factors influence the uptake and the use of W&C
services, and suggests the need to quantify the operational
value of W&C services and the improvement in the system
performance obtained by informing stakeholders’ decisions
with W&C services (e.g. Zhu et al., 2002; Mylne, 2002; Giu-
liani et al., 2015; Denaro et al., 2017).

In this work, we propose a new framework for assess-
ing the operational value of W&C services, which puts hu-
man in the loop by integrating traditional forecast quality
assessments with a behavioural model reproducing farmers’
decisions. The proposed framework relies on a three-stage
procedure, which starts by investigating the quality of post-
processed forecast products. These forecasts are then used as
input to an integrated model representing a coupled human–
natural system (CHNS; see Liu et al., 2007). This includes
process-based models of the physical environment to predict
decision-relevant information, coupled with decision models
which describe the farmers’ decision-making process. Given
the predicted climate forcing as inputs, the integrated CHNS
model simulates production of different crops, from which
each farmer selects the crop to cultivate by maximizing the
expected net profit at the end of the agricultural season (Giu-
liani et al., 2016). This combination of process-based and
decision models contributes a comprehensive and complete
framework for assessing W&C services and allows the eval-
uation of both the forecast quality and operational value.
In addition, the decision model includes heterogeneous be-
havioural factors, specifically diverse levels of farmers’ risk
aversion (or degree of trust) with respect to forecast uncer-
tainty, which enable the exploration of the sensitivity of the
overall assessment of W&C services with respect to variabil-
ity of stakeholders’ behaviours.

We demonstrate the potential of our approach by devel-
oping an application in the Muzza agricultural district, in
northern Italy. The district is organized as 39 irrigation units,
each including a number of farms receiving a continuous
water supply through an extensive irrigation network. A
set of state-of-the-art long-range climate forecast products
are collected from the European Centre for Medium-Range
Weather Forecasts (ECMWF), National Centres for Envi-
ronmental Prediction (NCEP), and the Canadian Seasonal
to Inter-annual Prediction System (CanSIPS). The forecast
horizon ranges from 7 months to 10 years. Post-processing
(i.e. downscaling and bias correction) is then used to address
the mismatch of temporal and spatial resolution between the
simulation models and the raw forecast products, as well as
to resolve the systematic biases and uncertainty in the ensem-
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Figure 1. The Muzza district with the cropping pattern observed in 2004.

ble forecasts. Finally, by simulating the combined process-
based and decision models over the period 2001–2005, with
2003 and 2005 being extreme drought years, we perform the
proposed three-stage assessment of forecast quality and op-
erational value of W&C services. First, we assess the tra-
ditional forecast quality by comparing forecast meteorolog-
ical variables against observed data. Then we measure, via
model simulations, the prediction accuracy of crop yield as
an intermediate assessment of decision-relevant information
for supporting farmers in improving their practices. Finally,
we quantify the operational value in terms of the payoff (or
opportunity cost) of using W&C services for informing the
selection of the cropping pattern. This value is contrasted
with the upper bound of the system performance obtained us-
ing “perfect forecasts” as well as a baseline situation where
farmers use few simple empirical forecast models, including
climatology or past observations. In addition, our decision
models allow us to explore alternative uses of W&C services,
which depend on the personal behavioural attitude of farmers
and on their level of trust in the forecast products. In particu-
lar, we explore three different levels of farmers’ risk aversion,
namely risk averse, risk neutral, or risk prone, which create a
spectrum of possible behavioural attitudes (e.g. Mosley and
Verschoor, 2005)

The paper is organized as follows: in the next section
we describe the study area, while Sect. 3 provides details
about the methodology, including the data preparation and
the modelling framework. Results and discussion are then re-
ported in Sects. 5–6. Finally, conclusions and directions for
future research are presented in Sect. 7.

2 Study site

In this work, the assessment of W&C services is conducted
on the CHNS of the Muzza irrigation district, located south-
east of the city of Milan (see Fig. 1). The selected district is
one of the largest agricultural areas in the region with arable
land of about 700 km2. Maize (ca. 74 % of the surface) and
temporary grasslands (ca. 20 % of the surface) are currently
the major cultivated crops, with minor crops including rice,
soybean, wheat, tomato, and barley. Irrigation is provided
through an extensive irrigation network (more than 4000 km
in total length) served by the Adda River and feeding 39 irri-
gation units, which are organized in 1722 comizi and include
around 12 000 farms.

Historically, water availability has not been a major limit-
ing factor to the economic development of this area. Rather,
farmers have operated the canal network to contribute to
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flood protection. Yet, in recent decades, climate change has
exacerbated the severity of extreme events (García-Herrera
et al., 2010). For example, two severe droughts in 2003 and in
2005 generated acute crop failures and exacerbated the con-
flicts between agriculture and other sectors (Anghileri et al.,
2013). These critical events are predicted to become more
frequent over the next years (Lehner et al., 2006), represent-
ing a major challenge for the sustainability of the agricultural
practices in this region.

In this context, the use of W&C services offers a promising
option for supporting agricultural activities as the improved
forecast skill over medium to long lead times provides valu-
able information about the future agricultural season prior to
the sowing date. Such information is key for better informing
cropping pattern decisions to select the best crops with re-
spect to farmers’ objectives (e.g. the one characterized by the
highest expected profit). Moreover, most W&C services are
freely available online and thus represent a cost-effective so-
lution to improve the resilience of agricultural systems with-
out introducing infrastructural changes, such as modifying or
expanding the irrigation canal network.

3 Methodology

The overall workflow of our assessment framework is com-
posed of three main steps, as detailed in Fig. 2: (i) fore-
cast quality assessment of post-processed W&C services us-
ing retrospective forecast (i.e. hindcast) products; (ii) exten-
sion of the forecast quality analysis via model-based predic-
tion of decision-relevant variables, namely crop production
at the end of the agricultural season; and (iii) evaluation of
cropping pattern decisions in terms of farmers’ payoff at the
end of the agricultural season as simulated by the integrated
CHNS model. In this step, different levels of risk aversion
can be simulated to explore the sensitivity of the overall as-
sessment with respect to farmers’ behavioural attributes.

The first step of the framework (upper block in Fig. 2)
starts with the post-processing of the hindcast data (see
Sect. 3.1) in order to remove the modelling biases gener-
ally affecting the simulation of coupled ocean–atmospheric
models, such as high precipitation frequency and low precip-
itation intensity (Ines and Hansen, 2006). The bias-corrected
dataset is further downscaled using a stochastic weather gen-
erator in order to resolve the spatial and temporal scale mis-
match between hindcast data and model inputs. In partic-
ular, the weather generator allows us to perform not only
the spatial downscaling but also the temporal disaggrega-
tion to obtain forecasts of daily precipitation and tempera-
ture from the forecast products, in the case that they have a
monthly time resolution (see Table 1). The comparison of the
post-processed precipitation and temperature forecast prod-
ucts with the on-site historical observations provide a first
estimate of the forecast quality.

The post-processed hindcast dataset is then fed into the
process-based component of our integrated CHNS model
(middle block in Fig. 2). This includes a spatially distributed
process-based representation of the Muzza irrigation district
(see Sect. 3.2), which extends the assessment of the forecast
quality by looking at the difference between forecast crop
yields and that simulated using observed time series of pre-
cipitation and temperature, assuming that the expected crop
yield represents the main determinant of farmers’ cropping
pattern decisions as in other similar applications (Hansen,
2004; Baigorria et al., 2008).

The human component of the CHNS (bottom block in
Fig. 2) is finally introduced in the form of an agent-based
decision model (see Sect. 3.3), which allows us to simulate
farmers’ cropping pattern decisions driven by different fore-
cast information. This decision model makes it possible to
couple the simulation of the process-based model and the
prediction of crops’ profitability with the selection by each
farmer-agent of the best cropping pattern as the one charac-
terized by the highest profitability. The agent-based model
allows us to test different behavioural criteria, capturing al-
ternative levels of farmers’ risk aversion (or degree of trust)
with respect to the forecast uncertainty. In particular, we con-
sider a spectrum of behaviours ranging from a fully opti-
mistic farmer, who makes decision on the basis of the best
possible situation, to an extremely pessimistic farmer, who,
instead, looks at the worst-case performance. Then, given the
selected cropping pattern of each farmer-agent, the model is
simulated using the observed values of precipitation and tem-
perature to obtain the production and the associated profit
at the end of the agricultural season. The estimated agent’s
profit is compared with that obtained under the hypothesis of
perfect foresight, which represents the ideal upper-bound of
the system performance. The operational value of W&C ser-
vices is finally estimated as the percentage of agents making
optimal decisions using the forecast products, which repre-
sents the opportunity cost of using W&C services with re-
spect to having perfect foresight. The results are then vali-
dated against the profit obtained by the agents when informed
with simple empirical forecasts.

Details about each step of the proposed framework, cor-
responding to a different block in Fig. 2, are reported in the
next sections.

3.1 Post-processing of forecast products

The first step of the proposed procedure (upper box in Fig. 2)
aims at post-processing the forecast products. Depending on
the characteristic of the forecast, we perform bias correction
by means of the change factor approach (Crochemore et al.,
2016) or the quantile mapping technique (Déqué, 2007).
Given the strong intra-annual seasonal cycle of our study site,
the bias correction was applied on a monthly basis. This also
means that the corrections are differentiated according to the
lead time (Doblas-Reyes et al., 2013), as the forecasts are
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Figure 2. Detailed workflow of the proposed three-stage assessment
framework of W&C services (solid line) against observed condi-
tions (dashed line).

considered for the same starting months (i.e. April, when the
agricultural season starts).

The quantile-based mapping technique is a bias correc-
tion method which builds the transfer function by mapping
the cumulated density function (CDF) of climate model out-
puts onto the site-based observations. The calibrated transfer
function is used later on to derive corrected estimates from
new incoming outputs by resolving the mismatch between
the observed site measurements and the simulated climate
outputs. Quantile-based mapping is applied to forecast prod-
ucts providing daily trajectories of precipitation and temper-
ature, which enable a proper estimation of the corresponding
CDFs. This step becomes questionable in the case of monthly
hindcast due to the limited dimension of the dataset. In this
case, we apply the change factor approach, in which a mul-

tiplicative factor is used to scale the value of precipitation,
while an additive factor is used to adjust the temperature for
each month.

Although the systematic bias in the hindcast dataset can
be partially solved by using bias correction, the difficulty
in dealing with the uncertainty of ensemble forecasts re-
mains a challenge. Previous studies (e.g. Tippett et al., 2007)
have suggested the probabilistic use of long-range weather
forecasts by deriving the statistical signatures from ensem-
ble forecasts, such as the mean or the anomaly values. This
statistic is then compared with the climatology to indicate
whether the incoming year is expected to be normal, wet, or
dry. As a consequence, the information on the intra-annual
variability of the climate, which is critical for crop growth
and agricultural management, is not preserved. Rather, in this
work the multi-ensemble data are assimilated into a stochas-
tic weather generator, whose parameters are calibrated from
observations and then perturbed based on the forecast condi-
tions. This allows us to generate synthetic time series of pre-
cipitation and temperature maintaining the information esti-
mated by the ensemble forecast. In addition, the stochastic
weather generator can also disaggregate a monthly forecast
into daily values, which are needed to run the process-based
model in the next step, without losing the generality of the
statistical behaviour of the variables. The LARS-WG model
(Semenov and Barrow, 1997) is selected for this task as it has
been reported to outperform many other weather generators
(Hashmi et al., 2011).

The perturbation factors of the mean daily precipitation
intensity (FP,pert

i ) and of the mean temperature (F T ,pert
i ),

along with the monthly average number of wet (dry) days
(Fwet,pert
i ,F

dry,pert
i ), are the key parameters of the weather

generator. These are determined according to Eq. (1), where
m is the number of days in the ith month and 1( q) is the bi-
nary operator that returns 1 if the daily precipitation intensity
Pi,j is larger than 1 mm (wet), and 0 otherwise (dry) (Cebal-
los et al., 2004). In particular, Eqs. (1a)–(1b) represent the ex-
pected change of precipitation frequency with respect to the
average historical observations (P h) measured by the local
stations located in the considered study area, while Eq. (1c)
specifies the change of precipitation intensity conditioned on
rainy days. For the precipitation, the computed perturbation
factor is used to scale up (down) the original parameter val-
ues. The change of temperature is formulated in Eq. (1d) as
an additive term. Specifically, we estimated a monthly per-
turbing factor for each ensemble member by aggregating the
daily hindcast data, and then we considered the average fac-
tor across the ensemble’s members. The perturbation param-
eters are then used to generate synthetic, daily time series for
1 year according to the considered forecast information:

F
wet,pert
i =

E[
∑m
j=11(Pi,j ≥ 1mm)]

E[
∑m
j=11(P h

i,j ≥ 1mm)]
, (1a)
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F
dry,pert
i =

E[
∑m
j=11(Pi,j < 1mm)]

E[
∑m
j=11(P h

i,j < 1mm)]
, (1b)

F
P,pert
i =

E[Pi |wet]
E[P h

i |wet]
, (1c)

F
T ,pert
i = E[Ti] −E[T

h
i ]. (1d)

3.2 The process-based agricultural model

The second step of our procedure (middle block in Fig. 2)
aims at estimating expected crop yield at the end of the agri-
cultural season, which is assumed to be decision-relevant
information for the considered farmer-agents. For this pur-
pose, we rely on a spatially distributed process-based model
of the Muzza irrigation district (Giuliani et al., 2016), which
is composed of three interlaced modules: (i) a distributed-
parameter water balance module that simulates water re-
sources, conveyance, distribution, and soil–crop water bal-
ance (Facchi et al., 2004; Gandolfi et al., 2006); (ii) a heat
unit module that simulates the sequence of growth stages as
a function of temperature (Neitsch et al., 2011); and (iii) a
crop growth module that estimates the optimal and actual
yields, accounting for the effects of water stresses due to the
insufficient water supply that may have occurred during the
agricultural season (Steduto et al., 2009).

The water balance module partitions the irrigation district
with a regular mesh of cells with a side length of 250 m,
which was selected to properly reproduce the spatial distribu-
tions of all the modelled processes, especially in terms of wa-
ter balance (Vassena et al., 2012). Each individual cell iden-
tifies a soil volume which extends from the soil surface to the
lower limit of the root zone. This soil volume is subdivided
into two layers, modelled as two nonlinear reservoirs in cas-
cade: the upper one (evaporative layer) represents the upper
15 cm of the soil; the bottom one (transpirative layer) repre-
sents the root zone and has a time-varying depth. The water
percolating out of the bottom layer constitutes the recharge
to the groundwater system.

The heat unit module defines the relationships between the
temperature and some variables and parameters related to the
crop growth stage (e.g. root length, basal coefficient, leaf area
index), which also influence the water balance module. Ac-
cording to heat unit theory (Neitsch et al., 2011), crop growth
stage at time t in i-cell is defined as a function of the cumu-
lated heat units (HU(i)t ). A range is defined for each crop:
the minimum is the base temperature Tb, which defines the
day of sowing (i.e. when HU(i)t > Tb) and the maximum is
the cut-off temperature over which heat units are no longer
cumulated.

Finally, the crop growth module first estimates the max-
imum yield achievable in optimal conditions and then re-
duces it to take into account the stresses due to insufficient
water supply from the precipitation and irrigation that oc-
curred during the agricultural season. The yield response to
water stresses is estimated according to the empirical func-
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Figure 3. Growing period of the four considered crops.

tion proposed in the AquaCrop model (Steduto et al., 2009;
Raes et al., 2009) and based on the approach proposed by the
FAO (Doorenbos et al., 1979):

1−
Y
(i)
real

Y
(i)
opt

= ky

(
1−

Tr(i)real,tot

Tr0(i)tot

)
, (2)

where Y (i)real and Y (i)opt are the actual and optimal yield in the

ith cell, Tr(i)real,tot and Tr0(i)tot the actual and optimal transpira-
tion in the ith cell during the whole growth period, and ky
is a crop-specific coefficient relating yield decline and water
stress.

3.3 The agent-based decision models

In the last step of our procedure (bottom block in Fig. 2),
the process-based model described in the previous section is
combined with an agent-based model representing the deci-
sions made by the farmers in the 39 irrigation units of the
Muzza irrigation district. In particular, each irrigation unit is
modelled as a single agent and the decision of each agent is
limited to a single crop in each agricultural season. The pos-
sible crop choices include tomato, corn, soybean, and rice,
which are the most common crops in the considered study
area. The crop-growing period slightly varies from one crop
to another, with maize being the crop with longest growing
period (see Fig. 3). Note that the modelled agents do not rep-
resent individual farmers in the system, but rather a group of
farmers located in one of the 39 irrigation units. This hypoth-
esis is tantamount to describing the median behaviour of the
ensemble of farmers aggregated at the irrigation unit level
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Figure 5. Comparison between the mean precipitation intensity and wet day frequency for IFS/HOPE model from ECMWF annual product
in 2002 before (a, b) and after (c, d) the bias correction.

under the assumption of rational behaviours, and provides a
simple and effective way to capture the inter-annual dynam-
ics of land use at the district scale (Giuliani et al., 2016).

The agent’s decision problem is hence formalized as fol-
lows:

γ ∗k = argmax
γk
9ε̂

[
P
(
Yreal(γ

k),p(γ k),c(γ k),σ (Ak)
)]

k = 1, . . .,39, (3)

where P( q) is the net profit obtained at the end of the agricul-
tural season from the yield Yreal(γ

k) of crop γ k (estimated

from Eq. 2), p(γ k) and c(γ k) are the corresponding price
and cost, respectively, and σ(Ak) the subsidies for the kth
agent (with k = 1, . . .,39). The subsidies, which depend on
the cultivated area Ak and not on the selected type of crop
(Gandolfi et al., 2014), derive from the EU’s Common Agri-
cultural Policy (CAP), which complements a system of di-
rect payments to farmers with measures to help rural areas in
facing a wide range of economic, environmental, and social
challenges (Britz et al., 2003).
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Figure 8. Simulated crop productivity from the period 2001–2005. The arrangement of simulated crop types are tomato (upper left), maize
(upper right), soybean (lower left), and rice (lower right). The mean absolute error of each forecast product over the 5 years is reported within
square brackets in the legend of each plot.

In problem (3), the optimal cropping pattern decision γ ∗k is
conditioned on the forecast information ε̂, with the statistic9
filtering the uncertainty in the forecast products and captur-
ing the personal risk aversion of each farmer-agent (Giuliani
and Castelletti, 2016). In fact, depending on its personal be-
havioural attitude and on its level of trust in the forecast prod-
ucts, an agent can use the forecast information in different
ways, particularly when it is provided in the form of predic-
tion ensembles. In this work, we explore three different levels
of farmers’ risk aversion creating a spectrum of behavioural
attitudes, namely risk averse, risk neutral, or risk prone (e.g.
Rogers, 1975; Mosley and Verschoor, 2005; Koundouri et al.,
2006; Djanibekov and Villamor, 2017). A risk-averse, pes-
simistic behaviour (or a low level of trust in the forecast prod-
ucts) implies that agents decide on the basis of the worst-case
realization, which means they will select the cropping pat-
terns able to ensure the highest profit in the most adverse
conditions. Yet these decisions may prove to be overly con-
servative if the actual realization is different from the worst
possible one. Conversely, a risk-prone, optimistic behaviour
produces decisions that rely on the best possible situation.

This choice increases the chance of cultivating crops that are
highly productive under favourable weather conditions, but
might also be highly vulnerable under more adverse condi-
tions. Finally, risk-neutral agents with a sufficient level of
trust in the forecast products ground their decisions on the
expected profitability of the crops using the probability of
realizations derived from the forecast information.

These alternative behaviours are formalized by means of
the following three statistics 9 which are used in Eq. (3) to
filter the uncertainty in the forecast products:

– Risk-averse behaviours are modelled using the minimax
regret metric (Savage, 1951), where decisions are based
on the regret, defined as the difference between the per-
formance resulting from the best alternative given that
the predicted ε̂j is the true realization of precipitation
and temperature and the performance of a given crop-
ping pattern γ under the same weather conditions ε̂j ,
i.e.

r(γ, ε̂j )=max
γ

(
P(γ, ε̂j )

)
−P(γ, ε̂j ). (4)
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Figure 9. Scatterplot of forecast quality of predicted crop productiv-
ity (y axis) and farmers’ crop decisions performance (x axis) under
different forecast products.

Then, this metric selects the best cropping pattern γ ∗

adopting a pessimistic approach, namely by minimizing
the maximum regret across all the members of the fore-
cast ensemble ε̂ ∈4, i.e.

γ ∗ = argmin
γ

(
max
ε̂∈4

r(γ, ε̂)

)
. (5)

– Risk-neutral behaviours are modelled using the princi-
ple of insufficient reason (Laplace, 1951), where deci-
sions are made by assigning equal probability to each
forecast ensemble member. Then, the best cropping pat-
tern γ ∗ is selected as the one associated with the maxi-
mum expected performance, i.e.

γ ∗ = argmax
γ

(
1
n

n∑
j=1

Pj (γ, ε̂j )
)
, (6)

where n is the number of members in the ensemble.

– Risk-prone behaviours are modelled using the maximax
metric (French, 1988), where decisions are made by
looking at the best possible performance of each deci-
sion and selecting the cropping pattern γ ∗ such that

γ ∗ = argmax
γ

(
max
ε̂∈4

P(γ, ε̂)
)
. (7)

This metric is generally associated with an optimistic
point of view as it assumes that the best state of the
world will be realized.

4 Experiment settings

Hindcast of precipitation and surface temperature data are
collected from the ECMWF ENSEMBLE project, NCEP,
and the Canadian Centre for CCCma, respectively. Table 1
reports some general information about the considered fore-
cast products.

The ECMWF hindcast consists of a comprehensive set of
seasonal, annual, and decadal products. The Climate Forecast
System version 2 (CFS v2) from NCEP is similar to ECMWF
products, generated using fully coupled models represent-
ing the interactions between the Earth’s atmosphere, oceans,
land, and sea-ice (Saha et al., 2014). The Canadian Seasonal
to Inter-annual Prediction System (CanSIPS) is a long-range
multi-model prediction system whose objective is to fore-
cast the evolution of global climate conditions (Merryfield
et al., 2011). There are two versions of coupled climate mod-
els inside the CanSIPS system, namely the CamCM3 model
(Arora et al., 2011) and the CamCM4 model (Scinocca et al.,
2008). To tackle the impact of uncertainties in the initial
conditions, most models run a number of simulations with
slightly different atmospheric and oceanic initial states to
generate ensemble outputs.

In addition to the institutional forecast products, we also
include in the analysis three simple empirical models rep-
resenting farmers’ prior knowledge based on past observa-
tion. Specifically, EmpPast refers to the empirical forecast
obtained by duplicating the past year’s observations. The
Emp2Ave stands for the simple forecast averaging the past
2 years’ observations which is analogous to the climatology
forecast with a 2-year memory basis as reflective of farmers’
best possible capacity. Lastly, the EmpClima is simply the
climatology forecast over past observations.

A total of 13 years of observations (1993–2005) are avail-
able, with the last 5 years (i.e. 2001–2005) used for running
the model simulations and estimate the operational value of
the considered forecast products. This horizon was selected
to include a fairly balanced number of normal, wet, and dry
agricultural seasons with variable temperature patterns, as
shown in Fig. 4. For each simulation, all observations avail-
able at the beginning of the year are used for bias correc-
tion and downscaling. For example, if the simulation starts
in 2003, then the control dataset from 1993 to 2002 is used
to calibrate the transfer function and the parameters in the
LARS-WG, which will be used to bias-correct the hindcast
data in 2003 and generate the time series of precipitation
and temperature required by the model. As an illustrative ex-
ample, Fig. 5 shows the performance of bias correction for
the IFS/HOPE model from ECMWF annual product in 2002.
The hindcast data (top panels) clearly overestimate the pre-
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levels of risk aversion (right y axis).

cipitation frequency and underestimate the precipitation in-
tensity, particularly during the summer. The bias correction
successfully solves these issues and the post-processed val-
ues match the observations (bottom panels).

5 Numerical results

The first step of our framework (Fig. 2) aims at evaluat-
ing the forecast quality in terms of the difference between
the post-processed forecast variables and the observed ones.
Figure 6 shows the post-processed forecast of precipitation
against the observed one during the crop-growing season
across different forecast products. The empirical memory-
based forecast (blue bars in Fig. 6) assumes the weather in
the incoming year to be similar to previous conditions. This
mechanism leads to significant forecast errors, such as for
2002, which was predicted as a normal year but was wet, or
2003, which was predicted as wet but was extremely dry. The
climatology-based forecast assumes the realization of aver-
age conditions determined from historical observations. This
strategy works in normal years, such as 2001 or 2004, when
extreme weather conditions tend to be filtered out during av-
eraging, and year-to-year variations are less significant. For
the institutional forecast products, the CFS product seems to
work well in normal years while being less accurate in wet
and dry years. In particular, it is not able to capture the vari-
ation from high to low precipitation in 2002–2003. Similar
results can be observed for the Canada CanSIps products,
with CamCM4 generally underestimating the precipitation
compared with CamCM3. Estimating the total precipitation
for wet/dry years is challenging also for ECMWF products,
which involve multiple forecast systems with various lead

times. Nevertheless, there are some exceptions, such as the
IFS/HOPE model from among the annual forecast products,
which seems to be able to predict quite well the variability
from the period 2002–2004. Similarly to the results in Fig. 6,
the comparison of the forecast quality evaluated with respect
to the daily mean temperature reported in Fig. 7 shows sim-
ilar patterns among all products, with most of the forecast
values close to the observed ones, except for 2003, which
was an extremely hot summer due to a European heat wave
(García-Herrera et al., 2010).

The second step of our framework (Fig. 2) moves the
focus from climatic variables to decision-relevant variables
obtained via simulation of the process-based agricultural
model. In our problem, this implies looking at the accuracy
of estimating the crop yield given the post-processed forecast
information. The agricultural model described in Sect. 3.2
provides a mean to transform the climatic variables of in-
terest into the crop yield, which is considered one of the
most relevant variables involved in farmers’ decision-making
process. The comparison between the predicted and the ob-
served (i.e. simulated using the observed weather data for
removing possible model biases and focus only on the fore-
cast errors) crop productions is reported in Fig. 8, with the
mean absolute error (MAE) of each forecast product over
the 5 years reported within square brackets in the legend
of each plot. In general, the fluctuations of the production
follow the fluctuations of climate variables, especially the
precipitation, with the highest productions in 2002 and the
lowest in 2003. For most institutional forecast products, the
predicted crop productivity in wet/dry years is significantly
different from the ones obtained with the observed climate.
In many cases, several products tend to overestimate crop
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Table 1. Summary of the W&C services used in this work. The entries from 1 to 10 are all obtained from ECMWF ENSEMBLE project with
different lead time.

Institutes Model Spatial Temporal Lead time Ensemble Reference
name resolution (◦) resolution members

ECMWF IFS/HOPE 2.5× 2.5 daily 7 months 9 Facchi et al. (2004)
ECMWF ECHAM5/MPIOM 2.5× 2.5 daily 7 months 9 Roeckner et al. (2003)
ECMWF HadGEM2-AO 2.5× 2.5 daily 7 months 9 Martin et al. (2011)
ECMWF IFS/HOPE 2.5× 2.5 daily 14 months 9 Facchi et al. (2004)
ECMWF ECHAM5/MPIOM 2.5× 2.5 daily 14 months 9 Roeckner et al. (2003)
ECMWF HadGEM2-AO 2.5× 2.5 daily 14 months 9 Martin et al. (2011)
ECMWF IFS/HOPE 2.5× 2.5 monthly decadal 3 Facchi et al. (2004)
ECMWF ECHAM5/MPIOM 2.5× 2.5 monthly decadal 3 Roeckner et al. (2003)
ECMWF HadGEM2-AO 2.5× 2.5 monthly decadal 3 Martin et al. (2011)
ECMWF DePreSys 2.5× 2.5 monthly decadal 3 Liu et al. (2012)
NCEP CFS v2 0.9375× 0.9375 6-hourly 9 months 4 Kim et al. (2012)

(i.e. T126 Gaussian)
CCCma CanSIPS CamCM3 2.5× 2.5 monthly 12 months 10 Kharin et al. (2009)
CCCma CanSIPS CamCM4 2.5× 2.5 monthly 12 months 10 Kharin et al. (2009)
Empirical EmpPast – – – – –
Empirical Emp2Ave – – – – –
Empirical EmpClima – – – – –

yield in dry years and to underestimate it in favourable wet
years. One exception is again represented by the IFS/HOPE
model, which is able to provide quite accurate forecast of
crop yield (i.e. average MAE across the four crops equal
to 17.1 kg ha−1). These results suggest that, as expected,
forecasting crop yields is a more complex task than fore-
casting precipitation and temperature. This is further con-
firmed by the poor performance attained by the empirical
products when their forecast quality is evaluated in terms of
crop yield (i.e. average MAE across the four crops and the
three empirical forecast products equal to 24.4 kg ha−1). Es-
pecially for a water-demanding profitable crop like tomato,
erroneously forecasting a wet year causes an over-optimistic
expectation, which significantly differs from the actual out-
come. Similarly, some products (e.g. decadal forecast from
ECMWF ECHAM5/MPIOM models) may forecast a wet
year which instead turns out to be dry, such as 2005, thus pro-
ducing a large overestimation of crops’ productivity. Finally,
these results also show the emergence of some differences
in the accuracy of precipitation and temperature forecasts
with respect to the corresponding prediction of crop yield. A
clear example is 2001, for which CFS V2 exhibits a signifi-
cantly higher accuracy in predicting the precipitation than the
IFS/HOPE model with ECMWF annual product (see Fig. 6).
Yet, this superiority does not imply a better forecast of crop
production and both the products indeed have similar levels
of accuracy across all the four simulated crops (see Fig. 8).

Looking at the accuracy of the predicted precipitation and
temperature as well as the predicted crop yields provides a
measure of the forecast quality without exploring the poten-
tial benefit of using W&C services to inform farmers’ deci-
sions. The quantification of the operational value of W&C

services is performed in the third step of our framework
(Fig. 2), where we use our agent-based model to simulate
farmers’ decision-making process and estimate the profit ob-
tained from the cultivation of the selected crops. This is
contrasted with the profit obtained under the assumption of
perfect foresight to estimate the opportunity cost of using
W&C services. It is worth pointing out that, although per-
fect forecast accuracy can hardly be achieved, farmers’ deci-
sions under forecast information may coincide with that se-
lected with perfect foresight. Figure 9 illustrates the relation-
ship between the performance of agents decisions (x axis),
measured in terms of fraction of farmers making optimal de-
cisions (i.e. selecting the same cropping pattern as in the per-
fect foresight case) and attaining an opportunity cost equal
zero, and the associated forecast quality (y axis), evaluated
in terms of MAE of the selected crops. The scatterplot is di-
vided into four zones, where the bottom right corner indicates
that a good prediction skill leads to better decision outcomes,
while the upper left corner corresponds to the situation where
forecast errors induce a large opportunity cost. Both the em-
pirical forecast and the institutional forecast products are
spread along the y axis, confirming the variability of fore-
cast quality in predicting crops’ productivity. Numerical re-
sults show that most of the points characterized by a good
forecast quality, defined as MAE below 1000 kg ha−1, corre-
spond to institutional products. These high-quality forecast
products provide valuable information to support agents’ de-
cisions, as demonstrated by the fact that all the points be-
low the 1000 kg ha−1 line successfully inform a large frac-
tion of agents (i.e. 90–100 %), who are able to make optimal
decisions. However, many empirical products are also able
to achieve zero opportunity cost, even though their forecast
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quality is generally worse than that of institutional forecasts.
This can be explained by considering that agents are deciding
by looking at the ranking of crops’ profitability rather than on
absolute expected profitability. As a consequence, an overall
under/overestimation of the profitability of all the crops (e.g.
the profit of each crop is predicted to be 10 % lower than re-
ality) results in a poor forecast quality but, at the same time,
this forecast error does not generate a rank reversal and the
agents select the optimal cropping pattern anyway.

6 Impacts of farmers’ behavioural attitudes

The results presented in the previous section are obtained as-
suming risk-neutral agents, where the most profitable crop-
ping pattern is selected by the modelled agents on the basis
of the crops’ profitability predicted by the agricultural model
when simulated under a single synthetic time series of post-
processed precipitation and temperature (see Fig. 2). Yet, in a
more realistic setting, farmers are exposed to uncertain fore-
casts and, moreover, their behavioural factors may influence
the use of W&C services. In this section, we explore how dif-
ferent levels of risk aversion affect the agents’ decisions and,
consequently, on the estimated operational value of W&C
services. In particular, we focus on the ECMWF annual prod-
uct, which attained both high forecast quality and high op-
erational value, and we generate 100 synthetic time series
of precipitation and temperature over the evaluation horizon
(2001–2005) by means of the weather generator. These sim-
ulations yield 100 uncertain values of crop profitability at
the end of the agricultural season. This uncertainty is then
filtered by agents through a proper statistic capturing their
personal risk aversion, including risk-neutral, risk-prone, and
risk-averse behaviours (see Sect. 3.3).

The results obtained by adopting these different levels of
risk aversion are reported in Fig. 10, where the left y axis
shows the distributions of the forecast quality for the three
considered models, while the right y axis shows the fraction
of farmer-agents making optimal decisions. The figure shows
that, although we are considering a single forecast product,
the forecast quality varies according to the model used for
producing the forecast, with IFS/HOPE characterized by the
lowest MAE, both in terms of median and variance, and out-
performing both ECHAM5/MPIOM and HadGEM2-AO. In-
terestingly, these differences in terms of forecast quality are
not linearly transferred to the performance of agents’ deci-
sions. Our results show that the level of agents’ risk aver-
sion significantly affect their use of forecast products. Risk-
averse behaviours (i.e. agents deciding on the basis of mini-
max regret, represented by the solid red line) attain a perfor-
mance that decreases when moving from high- to low-quality
forecast. However, this does not hold for risk-neutral or risk-
prone behaviours, simulated as agents deciding according to
the principle of insufficient reason (red dashed line) and the
maximax metric (red dotted line), respectively. In both cases,

the highest fraction of agents making optimal decisions is ob-
tained by using the ECHAM5/MPIOM forecast despite this
product having a lower quality than IFS/HOPE.

This unexpected finding can be explained by the fact that
forecast accuracy metrics quantify the error in predicting
the agricultural production, while the operational value es-
timated through the decision model relies on the ranking of
the available options (i.e. cropping patterns). Sub-optimal de-
cisions are made when the forecast productivity of the crops
produces a different ranking with respect to the one result-
ing at the end of the agricultural season. However, such rank
reversals are not linearly related to the forecast accuracy:
large but consistent (e.g. systematic over/underestimation)
errors for all the crops may produce the same ranking and
result in optimal decisions, while smaller and variable errors
can produce sub-optimal decisions. For example, the values
of forecast accuracy reported in Fig. 8 show that in 2001
ECHAM5/MPIOM (which in Fig. 10 attains the highest deci-
sion performance) systematically overestimates the produc-
tivity of all the crops, while IFS/HOPE underestimates the
productivity of tomato and overestimates that of rice, poten-
tially reversing the ranking of these crops and producing sub-
optimal decisions.

Finally, it is worth noting that the criterion associated
with the largest fraction of agents making optimal decisions,
which might be considered as the “best” way for taking ad-
vantage of W&C services, varies across the models. The
minimax regret is the best when applied to the IFS/HOPE
forecast, while the principle of insufficient reason is supe-
rior when used for ECHAM5/MPIOM and HadGEM2-AO
products. A misdefinition of the stakeholders’ perception of
W&C services, here explored in terms of risk aversion, may
hence represent a strong bias in the analysis of W&C ser-
vices operational value. For example, the opportunity cost
of using ECHAM5/MPIOM simulated assuming the princi-
ple of insufficient reason is equal to 3 %, meaning that one
agent over the 39 considered in our model is selecting a sub-
optimal cropping pattern. The opportunity cost for the same
product simulated assuming the minimax regret is instead
equal to 4 %, meaning that two agents over 39 select sub-
optimal cropping patterns. Finally, the simulation of risk-
prone agents adopting the maximax criterion produces an op-
portunity cost of 10 %, meaning that four agents select sub-
optimal cropping patterns. These results provide strong evi-
dence supporting the importance of considering personal, be-
havioural attributes to produce a proper assessment of W&C
services operational value.

7 Conclusions

In this work, we propose a novel framework for assessing
the operational value of several weather and climate services.
This approach, which relies on an integrated model of a cou-
pled human–natural system, is applied in the Muzza irri-
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gation district (Italy), a complex agricultural system where
farmer-agents select the crops to cultivate by maximizing the
expected net profit at the end of the agricultural season. Our
framework allows us to quantify the quality of the consid-
ered forecast products both in terms of climatic and decision-
relevant variables as well as to estimate the associated payoff
for the farmers, and also to explore the impact of behavioural
attributes on the uptake and use of W&C services.

Our study shows that, at present, the accuracy of most
state-of-the-art weather forecast products is still limited, es-
pecially in regard to the prediction of precipitation with a
lead time of 7 months or longer. The ECMWF annual fore-
casts simulated by the IFS/HOPE model displayed the max-
imum forecast skill among the considered products and they
were able to also predict some extreme events, including
the intense drought of 2003. The predictions of crop yield
obtained via simulations of process-based models using the
predicted values of precipitation and temperature as climate
forcing show similar performance in terms of forecast qual-
ity.

Numerical results on the use of these forecast to inform
agents’ decisions show that the accuracy of estimating crop
yield and the probability of making optimal decisions are not
necessarily linearly correlated. The assessment of the opera-
tional value of W&C services should therefore include a de-
cision model reproducing the actual users’ adoption of fore-
cast products within their decision-making process. Some in-
stitutional forecast products (e.g. ECMWF products) attain
both high forecast quality and high agent decision perfor-
mance. However, our results also show that in many cases
the agents’ decisions are still optimal even though informed
by products with low forecast quality (e.g. CFS products).
From the farmers’ point of view, the operational values of
ECMWF and CFS products are therefore equivalent despite
ECMWF largely outperforming CFS in terms of forecast
quality. Finally, we provide numerical evidence of the im-
pact of different farmers’ behavioural attributes (i.e. levels of
risk aversion) on the quantification of W&C services opera-
tional value. The exploration of this behavioural uncertainty
further amplifies the key role of the decision model in the
assessment procedure. Our results show that the opportunity
cost of the same forecast product increases from 3 to 10 %
while moving from risk-neutral to risk-prone decisions, po-
tentially producing rank reversals in the quantification of the
W&C services’ operational value.

To generalize the results obtained in this work, future
research efforts should focus on the following directions:
extending the evaluation horizon, using large multi-model
ensembles, exploring the socio-economic dimension of the
problem, and simulating dynamic attitudes of farmers. Our
analysis is limited to the time period 2001–2005 because the
historical observations available for running the model cov-
ers the period 1993–2005, which was divided into two pe-
riods, with the first period used for post-processing the fore-
cast products and the second one for performing the analysis.

Moreover, ECMWF forecast products are obtained from the
ENSEMBLES project, which provides hindcasts over the pe-
riod (1960–2005). Although this time period includes a fairly
balanced number of normal, wet, and dry agricultural seasons
with variable temperature patterns, a longer time horizon in-
cluding more extreme events would produce more robust
findings. The forecast products considered in this work are
characterized by a relatively small ensemble size. The use of
larger ensembles (possibly multi-model ensembles) has the
potential to attain a better performance in terms of forecast
quality and, possibly, also in terms of operational value, es-
pecially if the analysis is performed on each single ensemble
member to better represent the extreme events. However, us-
age of such large ensembles opens up a number of additional
challenges, such as how to limit the smoothing effect on the
extreme events or how to combine multiple products with dif-
ferent levels of accuracy, which is beyond the scope of this
paper and will be explored in a future analysis. Our model as-
sumes that the predicted water availability is the main factor
influencing farmers’ decisions, while additional drivers (e.g.
expected crop prices, use of nutrients and fertilizers), are as-
sumed as deterministically known. Another next step in our
research will be to explore the role of the socio-economic
dimension of the problem and its impacts on farmers’ deci-
sions. The behavioural attitudes considered in our analysis
include diverse levels of farmers’ risk aversion with respect
to forecast uncertainty. Future research will focus on captur-
ing dynamic behavioural dependences, where the attitude of
the farmers in making decisions for the incoming agricultural
season is affected by the yield in the previous one. However,
the calibration of a decision model implementing such be-
havioural dependency requires long behavioural time series
to identify the proper lag time as well as the magnitude of the
effect for different levels of drought intensity.
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