Doctoral Thesis

Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonate) polymers

Author(s):
Zoulalian, Vincent

Publication Date:
2008

Permanent Link:
https://doi.org/10.3929/ethz-a-005592904

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
FUNCTIONALIZATION OF TITANIUM OXIDE SURFACES
BY MEANS OF
POLY(ALKYL-PHOSPHONATE) POLYMERS

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

VINCENT ZOULALIAN

Ingénieur chimiste - Grade de Master
(Ecole Nationale Supérieure de Chimie de Montpellier, France) - 2003

born on January, 6th. 1981

citizen of Nancy (France)

accepted on the recommendation of

Prof. Dr. Marcus Textor, examiner
Prof. Jean-Jacques Robin, co-examiner
Prof. Dr. Dieter Schlüter, co-examiner
Dr. Samuele Tosatti, co-examiner

2008
Titanium and its alloys have a number of advantageous properties that makes this material class a preferred choice for application in implantology: high strength and fatigue resistance, excellent corrosion and repassivation properties related to a passive film that is stable over a large pH range, and biocompatibility. Titanium oxide is a transparent, high refractive index material that has found wide-spread use in optical sensing platforms such as evanescent-field-based techniques.

Surface functionalization has successfully contributed in the past to tailor the interfacial properties of titanium (oxide) to the needs of particular applications with the aim of directing the biological response in vitro and in vivo. A particularly important aspect in both the implant and biosensor field is the need for efficient, reproducible and robust interface modification with the aim to suppress undesirable, unspecific biomolecular adsorption and induce biospecific interactions with proteins and cells. While diverse surface modification systems such as molecular assembly systems have been reported to successfully fulfil the requirements on the short-term (hours to days), longer-term stability under a variety of relevant in vitro and in vivo conditions is much harder to achieve. Therefore, there is a substantial interest and need to develop novel tools that result in improved functionality and stability.

The goal of this thesis is to develop a new class of functional polymers that form stable monolayers through multiple phosphonate-titanium coordination bonds and present a brush-type poly(ethylene glycol) at the interface to aqueous solutions. Organophosphonates were chosen in view of their known strong interactions with titanium but also many other transition metals (such as niobium, tantalum, zirconium, as well as aluminium).

A series of polymers were synthesized by radical initiated chain-transfer polymerization of dialkyl(methacryloyloxyalkyl) phosphonate (C_n), PEG methyl ether methacrylate (PEG) and/or...
n-butyl methacrylate (BMA) monomers. The propagation was limited by using a thiol as chain-transfer agent. Organopolyphosphonates without PEG were first produced to study the effect of structure on adlayer formation and stability and to determine the optimum backbone structure for subsequent design of the PEG-graft polymers.

After purification, the protected phosphonate functions were cleaved to produce the water-soluble product as the mono-sodium salt. Variations in the chemical structures covered the molecular weight of phosphonate and PEG side-chains as well as the ratio between monomers as follows: (a) 3 or 11 carbons in the aliphatic chain of dialkyl(methacryloyloxyalkyl) phosphonate monomers, (b) PEG molecular weights of 1000 and 2000 g/mol, (c) monomer ratios between 1 and 8.

The resulting polymers were characterized by 1H and 31P-NMR, elemental analysis, Gel Permeation Chromatography, pH titration of the phosphonic acid functional groups and Differential Scanning Calorimetry. In general, the experimental polymer structures correlated with the expected ones except for some differences in reactivity between BMA, C$_x$ and PEG monomers. Chain lengths and polydispersity values were found to be as expected for chain-transfer polymerization (between 30-100 monomers and around 3, respectively).

The different polymers were assembled on silicon wafers sputter-coated with a thin TiO$_2$ film, following a dip-and-rinse protocol using diluted aqueous polymer solutions (0.5 mg/ml concentration, 16 h assembly time, room temperature). The resulting coatings were characterized by evaluating their thicknesses with Variable Angle Spectroscopic Ellipsometry and their elemental/component compositions with X-ray Photoelectron Spectroscopy (XPS). Ellipsometric thickness values were found to be around 30 ± 2 Å calculated. XPS intensity ratios between adlayer and substrate peaks correlated well with the polymer film thickness values.

For the polymers 30-Na-BMA-r(4/1)-C$_{11}$ (PEG-free) and 30-Na-BMA-r(8/1)-C$_{11}$-g(1/1)-PEG(2) (PEG-functionalized), it was found that the bulk polymer (analyzed by NMR) and the polymer adlayer composition (analyzed by XPS) correlated reasonably well. Furthermore, angle-dependent XPS proved to provide detailed information on the organization of the polymer class, in particular the structural organization with phosphonates bound to titanium at the interface to the substrate, and PEG chains forming the top layer.

Stability tests of the 30-Na-BMA-r(4/1)-C$_{11}$ and 30-Na-BMA-r(8/1)-C$_{11}$-g(1/1)-PEG(2) polymeric monolayers on TiO$_2$ were performed under three different conditions and exposure times from 4 hours to 3 weeks: (a) HCl solution, pH = 2, (b) NaOH solution, pH = 9, (c) different
Abstract

Ionic strength, from 160 mM to saturated (about 6 M), HEPES buffer, pH = 7.4. Two established systems were investigated as reference surfaces: poly-L-lysine-graft-poly(ethylene glycol) (PLL-g-PEG), also a graft copolymer but attached through multiple electrostatic interactions, and alkane phosphate SAMs (DDPO₄, dodecyl phosphate), interacting with TiO₂ through single phosphonate-Ti coordination bonds. Furthermore, coatings of 30-Na-BMA-r(8/1)-C₁₁-g(1/1)-PEG(2) were exposed to full serum and the ability to resist protein adsorption evaluated by XPS, Dual Polarization Interferometry (DPI) and Optical Waveguide Lightmode Spectroscopy (OWLS), both before and after stability testing. The PEG-graft polymer, 30-Na-BMA-r(8/1)-C₁₁-g(1/1)-PEG(2), was found after assembly by XPS, OWLS and DPI to be protein-resistant (5 ng/cm² serum adsorbed mass, close to the detection limit) at a level comparable to the reference system PLL-g-PEG.

The general interface stability of the poly(alkyl-phosphonate) monolayers under the three test conditions and for long-term (up to three weeks) duration was found to be strongly improved when compared to the two surface reference systems. At higher ionic strength (160 mM), the reference PLL-g-PEG coating desorbed due to screening of the interfacial charge, while 30-Na-BMA-r(4/1)-C₁₁ was stable (less than 5% change of coverage) but both DDPO₄ and 30-Na-BMA-r(8/1)-C₁₁-g(1/1)-PEG(2) showed similar loss of coating (thickness and XPS atomic composition) as PLL-g-PEG. At pH = 2, the reference PLL-g-PEG was fully desorbed, while the coverage of DDPO₄, 30-Na-BMA-r(4/1)-C₁₁ and 30-Na-BMA-r(8/1)-C₁₁-g(1/1)-PEG(2) adlayers was only slightly (by 10 - 20%) reduced. At pH = 9, both reference systems, PLL-g-PEG and DDPO₄, desorbed by more than 80% whereas 30-Na-BMA-r(4/1)-C₁₁ and 30-Na-BMA-r(8/1)-C₁₁-g(1/1)-PEG(2) were only little affected (10% and 20% reduction, respectively). These results confirm the important role of multivalent interaction for adlayer stability.

Stability test experiments, especially for longer exposure times (up to three weeks), revealed a complex degradation pattern, depending not only on the test solutions but also the presence or absence of ambient light and a specific role of TiO₂ as a substrate (comparison tests performed with other substrates such as niobium oxide). The observed degradation is discussed in the light of two mechanisms: (a) autocatalytic PEG chain cleavage, and (b) photochemical decomposition of adsorbed organic components induced by the specific photocatalytic properties of TiO₂. These longer-term degradation processes strongly depend on the exact storage media used, but the underlying mechanisms are not understood in detail.
30-Na-BMA-r(8/1)-C_{11}-g(1/1)-PEG(2) proved to be a promising new polymer for the surface modification of titanium oxide, combining extended stability in aqueous media and anti-fouling property in comparison to the tested reference systems. In a preliminary study it is shown that this polymer adsorbs to other metal oxides such as niobia and magnesium oxide.
Le titane et ses alliages possèdent un nombre important de propriétés qui contribuent à les désigner comme matériaux de choix pour des applications dans le domaine des implants, à savoir: leur haute résistance mécanique, leurs propriétés anti-corrosion et de repassivation liées à la couche externe d’oxyde inerte sur une large gamme de pH et leur biocompatibilité. L’oxyde de titane est un matériau transparent, avec un fort indice de réfraction, largement utilisé dans le domaine des senseurs optiques basées sur les champs evanescents.

Dans le passé, la fonctionnalisation de surface du titane (oxyde) visant à orienter la réponse biologique in vitro et in vivo a largement contribué à conférer les propriétés superficielles requises pour répondre aux besoins d’applications particulières. Un aspect essentiel concernant les domaines des implants et des biosenseurs est le besoin d’interfaces efficaces, reproductibles et robustes, dans le but d’éliminer l’adsorption indésirable et non spécifique de biomolécules afin de favoriser les interactions biospécifiques avec les protéines et les cellules concernées. Alors que de nombreux systèmes pour modifier les surfaces, tels que les systèmes moléculaires assemblés, ont été décrits comme répondant positivement aux exigences requises à court terme (de quelques heures à quelques jours), la stabilité à long terme dans des conditions variables et appropriées in vitro et in vivo est beaucoup plus difficile à obtenir. Aussi, une demande avec un intérêt grandissant s’est affirmée pour le développement de nouveaux outils débouchant sur des propriétés de fonctionnalisations et stabilité accrues.

Le but de cette thèse a été de développer une nouvelle classe de polymères fonctionnalisés capables de former des monocouches par l’intermédiaire de multiples liaisons phosphonate-titane et présentant une structure poly(éthylène glycol) en peigne à l’interface des solutions
Résumé

aqueuses. Les organophosphonates ont été choisis en vertu des connaissances sur leur forte interaction avec le titane mais également avec de nombreux autres métaux de transition (tels que le niobium, le tantale, le zirconium et l’aluminium).

Deux séries de polymères ont été synthétisées par télomérisation radiculaire des monomères dialkyl(méthacryloyloxyalkyl) phosphonate (Cₓ), PEG méthyl ether méthacrylate (PEG) et/ou n-butyl méthacrylate (BMA). La propagation a été limitée par l’utilisation d’un agent de transfert de type thiol. Dans un premier temps, des organopolyphosphonates sans PEG ont été produits afin d’étudier l’effet de la structure sur la formation et la stabilité des couches, et pour déterminer la structure optimale du squelette en vue de concevoir les polymères greffés avec du PEG.

Après purification, les fonctions phosphonates protégées ont été clivées sous forme de monosel de sodium pour parvenir à des composés solubles dans l’eau. Les variations chimiques des structures s’étendent de la masse moléculaire des chaînes latérales de phosphonate et de PEG au rapport entre monomères, comme indiqué ci-après: (a) 3 ou 11 carbones dans la chaîne aliphatique (Cₓ) des monomères dialkyl(méthacryloyloxyalkyl) phosphonate, (b) masses moléculaires des PEG de 1000 ou 2000 000 g/mol, (c) rapport entre monomères variant de 1 à 8.

Les polymères résultants ont été caractérisés par ¹H et ³¹P-RMN, analyse élémentaire, chromatographie d’exclusion stérique, dosage du pH des groupes fonctionnels acides phosphoniques et calorimétrie différentielle à balayage. En règle générale, les structures expérimentales des polymères coïncident avec les attentes, mises à part quelques exceptions dues à des différences de réactivité entre monomères BMA, Cₓ et PEG. Les longueurs de chaînes ainsi que les valeurs de polydispersité sont concordantes avec le procédé de télomérisation (respectivement entre 30 et 100 monomères et environ 3).

Les différents polymères ont été assemblés sur des substrats cristallins (wafers) de silicium recouverts d’une couche de TiO₂ déposée par pulvérisation (sputter-coating), en adoptant un protocole d’immersion et de rinçage en solutions aqueuses diluées de polymère (concentration de 0.5 mg/ml, 16 h de temps d’assemblage, température ambiante). Les couches résultantes ont été caractérisées par leurs épaisseurs à l’aide de l’ellipsométrie spectroscopique à angle variable et leurs compositions élémentaires/fonctionnelles avec la spectroscopie de photo-électrons par rayons X (XPS). Des épaisseurs autour de 30 Å ± 2 ont été calculées avec les données ellipsométriques. Les rapports en intensité des signaux XPS entre la couche et le substrat sont en bonne corrélation avec les valeurs des épaisseurs de film de polymère.
Pour les polymères 30-Na-BMA-r(4/1)-C11 (sans PEG) et 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2) (fonctionnalisé avec du PEG), une corrélation raisonnable a été établie entre le polymère solide (analysé par RMN) et la composition de la couche de polymère (analysée par XPS). De plus, l’XPS à résolution angulaire a fourni des informations détaillées sur l’organisation des polymères en surface, en particulier l’organisation structurale avec les fonctions phosphonates liées au titane à l’interface du substrat, les chaînes de PEG formant la couche supérieure.

Les tests de stabilité des monocouches polymériques 30-Na-BMA-r(4/1)-C11 et 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2) ont été effectués sous trois conditions différentes et des temps d’exposition variant de 4 heures à 3 semaines: (a) solution d’HCl, pH = 2, (b) solution de NaOH, pH = 9, (c) différentes forces ioniques, de 160 mM à saturée (environ 6 M), tampon HEPES, pH = 7.4. Deux systèmes déjà étudiés ont été choisis comme surfaces de référence: couche de poly-L-lysine-graft-poly(ethylene glycol) (PLL-g-PEG), également un copolymère greffé mais adsorbé par de multiples interactions électrostatiques, et monocouche auto-assemblée (SAMs) d’alcane phosphate (DDPO₄, dodecyl phosphate), dont les interactions avec le TiO₂ se font par liaison unique phosphonate-Ti. De plus, des couches de polymère 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2) ont été exposées au sérum et leur capacité à résister à l’adsorption de protéines évaluée par XPS, interférométrie à double polarisation (DPI) et spectroscopie optique à champ évanescent via guide d’onde (OWLS), avant et après les tests de stabilité. Le polymère greffé avec du PEG, 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2), a été caractérisé après assemblage par XPS, DPI et OWLS comme résistant aux protéines (5 ng/cm² de masse de sérum adsorbé, proche de la limite de détection) à un niveau comparable au système de référence PLL-g-PEG.

La stabilité interfacialement des monocouches de poly(alcane-phosphonate) sous les trois conditions de test et pour des durées à long terme (jusqu’à trois semaines) a été trouvée améliorée par rapport aux deux systèmes de référence. A haute force ionique (160 mM), la couche de référence PLL-g-PEG désorbe suite à un écran des charges interfaciales tandis que 30-Na-BMA-r(4/1)-C11 reste stable (moins de 5% de changement dans la couverture). Toutefois, les deux systèmes DDPO₄ et 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2) montrent des pertes de couche (en épaisseur et composition atomique en XPS) similaires au PLL-g-PEG. A pH = 2, la référence PLL-g-PEG est complètement désorbée tandis que les couvertures par les couches DDPO₄, 30-Na-BMA-r(4/1)-C11 et 30-Na-BMA-r(8/1)-C11-g(1/1)-PEG(2) sont simplement légèrement réduites (de 10 - 20%). A pH = 9, les deux systèmes de référence, PLL-g-PEG and DDPO₄, désorbent de plus de 80% alors que 30-Na-BMA-r(4/1)-C11 et 30-Na-
BMA-r(8/1)-C_{11}-g(1/1)-PEG(2) sont seulement un peu affectés (10 % et 20% de réductions respectives). Ces résultats confirment l’importance des interactions multivalentes en vue de la stabilité des couches formées.

Les expériences de stabilité, en particulier pour des temps d’exposition prolongés (jusqu’à trois semaines), ont révélé un mélange complexe de dégradations dépendant non seulement des solutions tests mais aussi de la présence ou de l’absence de lumière et du rôle spécifique du substrat TiO₂ (tests de comparaison effectués avec d’autres substrats tels que l’oxyde de niobium). Les dégradations observées ont été interprétées selon deux mécanismes: (a) clivage autocatalytique des chaînes de PEG et (b) décomposition photochimique des composés organiques adsorbés dûe aux propriétés photocatalytiques spécifiques du TiO₂. Ces processus de dégradation sur le long terme dépendent fortement des conditions de stockage utilisées, mais les mécanismes sous-jacents n’ont pas été établis avec précision.

30-Na-BMA-r(8/1)-C_{11}-g(1/1)-PEG(2) a démontré être un nouveau polymère prometteur pour la modification de surface de l’oxyde de titane, combinant stabilité élargie en milieu aqueux et propriété d’anti-adhésion, par rapport aux systèmes de référence étudiés. Dans une étude parallèle, nous avons démontré que ce polymère adsorbe sur d’autres oxydes métalliques tels que l’oxyde de niobium et de magnésium.