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Abstract

The use of quantitative flow visualization techniques like particle
image velocimetry (PIV), particle tracking velocimetry (PTV) or
probe traversing in commercial wind tunnel testing is rather the
exception than the rule, often hindered by the comparatively com-
plex and time-consuming setup. In practice, qualitative visualiza-
tion methods like mini-tufts and smoke flow visualization are often
the only applicable option, especially when measuring in or around
complex geometries.

In this work, a novel quantitative flow visualization method (Pro-
Cap) is developed with the goal to enhance the productivity of ae-
rodynamic testing. To this end, the orientation and position of
a hand-held probe (e.g. multi-hole pressure probe, thermoelectric
anemometer) are optically tracked using a motion capture camera
system with sub-millimeter accuracy. The simultaneous recording of
the probe’s output signal allows interpolating the flow data onto a
regular grid. To provide some real-time feedback to the operator, a
GPU-accelerated interpolation and rendering scheme is applied. By
continuously scanning the probe around the test article the recon-
structed field eventually converges to the time-averaged flow field.
The interactive, real-time visualization of the measured flow is cru-
cial for the efficiency of the method as it allows the operator to focus
specifically on regions with complex flow structures. To date, Pro-
Cap supports the following visualization features: Contour slices,
vector slices, streamlines, and isosurfaces.

The scanning approach offers great flexibility as with different
probes the volumetric distribution of virtually any flow quantity
can be recorded. So far, the system has been tested mostly with
a five-hole probe, a device that allows one to measure the static
pressure, the flow velocity magnitude and the flow direction, albeit
in a limited range of angles.

To enhance the consistency and quality of the measured velocity
field, the applied interpolation method offers the possibility to ac-
count for physical constraints such as mass conservation.
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The visualization method was successfully tested on flows around
different aerodynamic models. Comparisons with measurements
from a 3-axis traversing system reveal that the setup and measure-
ment time is reduced by a factor of about 20 with acceptable losses
in accuracy. This circumstance underlines the method’s potential to
fill the gap between traditional flow visualization and high-precision,
high-complexity measurement techniques.
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Zusammenfassung

Der Einsatz von quantitativen Strömungsvisulisierungsmethoden in
kommerziellen Windkanalmessungen ist eher die Ausnahme als die
Regel, meist aufgrund des komplexen und aufwendigen Aufbaus. In
der Praxis kommen qualitative Visualisierungstechniken wie Wollfäden
oder Visualisierungen mit Rauch häufiger zum Einsatz, dies gilt ins-
besondere bei Messungen in und um komplexe Geometrien.

In dieser Arbeit wird eine neue quantitative Strömungsvisuali-
sierungsmethode (ProCap) entwickelt mit dem Ziel, die Produkti-
vität von aerodynamischen Untersuchungen zu verbessern. Zu die-
sem Zweck wird mit Hilfe eines optischen Motion Capture Systems,
welches submillimeter Genauigkeit hat, die Orientierung und die Po-
sition einer handgeführten Sonde (z.B. Mehrlochsonde, thermoelek-
trische Anemometer) bestimmt. Das gleichzeitige Aufnehmen des
Sondensignals erlaubt es, die gemessenen Strömungsdaten auf ein
reguläres Gitter zu interpolieren. Um dem Anwender ein Feedback
in Echtzeit bereitzustellen, wird für die Interpolation und räumliche
Darstellung eine programmierbare Grafikkarte (GPU) eingesetzt.
Mit fortlaufender Messdauer konvergiert die Rekonstruktion zum
zeitlich gemittelten Strömungsfeld. Die interaktive Visualisierung
der gemessenen Strömung in Echzeit ist für die Effizienz der Methode
von entscheidender Bedeutung. Sie ermöglicht dem Anwender, sich
auf Gebiete mit interessanten Strömungsstrukturen zu fokussieren.
Zurzeit unterstützt ProCap die folgenden Visualisierungsfunktionen:
Kontourflächen, Vektorflächen, Stromlinien und Isoflächen.

Das Messkonzept von ProCap zeichnet sich nicht nur durch sei-
ne Effizienz aus, sondern bietet auch diverse Einsatzmöglichkeiten.
Unter anderem kann durch den Einsatz verschiedener Sonden die
räumliche Verteilung beliebiger Strömungsgrössen gemessen werden.
Bisher wurden die meisten Messungen mit einer sogenannten Fünf-
lochsonde durchgeführt. Diese druckbasierte Messtechnik eignet sich
für Strömungen mit einer bekannten Hauptströmungsrichtung und
ermöglicht das gleichzeitige Messen von Druck, Geschwindigkeit und
Geschwindigkeitsrichtung.
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Zur Verbesserung der Messqualität wurde das Interpolationssche-
ma für die Geschwindigkeit so angepasst, dass die Massenerhaltung
der Strömung inhärent erfüllt ist.

Verschiedene Strömungen wurden mit der neuen Messmethode un-
tersucht. Vergleiche mit Traversierungen belegen die Effizienz und
das Leistungsvermögen von ProCap. Die Messzeit verkürzt sich um
zirka das 20-fache. Allerdings ist die räumliche Auflösung der kom-
plexen Strömungsstrukturen etwas schlechter. Nichtsdestotrotz be-
sitzt die Methode das Potential, die bestehende Lücke zwischen kom-
plexen, quantitativen und einfachen, rein-qualitativen Messsystemen
zu schliessen.

vi



Acknowledgment

Many people have contributed either directly or indirectly to this
project for which I am very grateful. In particular, I would like to
thank Prof. Dr. Thomas Rösgen for his help and advice I received
throughout my work at IFD. Without his support and ideas, this
thesis would not have been possible. Also, I would like to thank
Dr. Andrin Landolt who initiated and supervised the project. His
numerous ideas and suggestions as well as his enthusiasm for the
project were of great help. I also wish to thank Prof. Dr.-Ing.
Jochen Wiedemann for acting as a co-examiner, reviewing my thesis
and his interest in the project.

Moreover, I am grateful to Rene Holliger and Pius Stachel for
technical assistance and their ideas and suggestions on technical as-
pects of the project. Specials thanks are due to Bianca Maspero and
Sonia Atkison for their help in administrative matters.

I also wish to thank Martin Viertel, Lukas Kadek, Christoph Loy,
Gabriela Fisch, Yves Gerster and Dominik Rehbock for working on
various student projects which helped make this work a success.
They deserve great credit for the effort they put into this project.

Furthermore, I would like to express my sincere thanks to my col-
leagues at the institute (Oliver Häuselmann, David Borer, Martin
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Chapter 1

Introduction

Despite rapid progress in computational fluid dynamics (CFD) over
the last few decades, wind tunnel testing has remained indispensable
in the optimization and certification of aerodynamic shapes. As con-
ventional wind tunnel tests focus primarily on the measurement of
the force and moment characteristics of a model, their contribution
to the understanding of the surrounding fluid flow often remains li-
mited. However, to improve the shape of a model in a deterministic
and efficient way, detailed knowledge of the flow topology around
the model is required. Hence, there is a growing need for flow visu-
alization techniques that are both efficient and capable of covering
large measurement volumes.

One possibility to collect topological information about the flow
is the use of traditional flow visualization techniques such as smoke
visualization or mini-tufts. The main advantage of these methods
is that their implementation and operation is quick and intuitive.
On the downside, however, the results are purely qualitative, and in
general, the extraction of quantitative data for later comparison is
almost impossible.

Alternatively, the flow around a test article can be investigated
by non-intrusive, quantitative visualization methods such as particle
imaging velocimetry, particle tracking velocimetry or laser Doppler
imaging. If properly used, these methods provide high-quality, spati-
ally and temporally resolved flow data. In practice, these techniques
are rarely used in wind tunnel environments since their installation
and operation remain complex and time-consuming. In particular,
optical constraints (reflections, illumination power, seeding) make it
almost impossible to cover a large volume in a single measurement
run. Another entirely different strategy is to scan the area of inte-
rest by a traversing system in conjunction with a point measurement
probe (e.g. pressure probe, hot wire or laser Doppler anemometer).
Besides being expensive in terms of measurement time, complex mo-
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Chapter 1 Introduction

del geometries or different angles of attack make the adaptation and
control of such a system more difficult.

While these high-precision quantitative flow visualization methods
are the right choice for thorough flow studies, in a design iteration
loop (wind tunnel measurement, interpretation of results, design
modification) traditional flow visualization tools are more suitable
as time plays a crucial role. However, to enhance the productivity,
quantitative data, which provides a full picture of the flow, would be
of great value. To the best of the author’s knowledge, at present no
system exists that produces quantitative flow data on the one hand
and offers the same efficiency and flexibility (e.g. setup- and measu-
rement time, handling) as traditional flow visualization methods on
the other hand (see figure 1.1). The aim of this work is to develop
an interactive tool for quantitative flow visualization in and around
complex geometries by focusing on the gap between traditional and
high-precision, high-complexity flow visualization techniques. The
working principle of this method is based on optically tracking the
3D position and orientation of a hand-held probe (e.g. multi-hole
pressure probe, thermoelectric anemometer). In parallel with the
tracking, the data signal of the probe is recorded, processed and
spatially interpolated onto a regular grid. To accelerate the measu-
rement, a feedback loop is created by displaying the processed data
in real-time to the probe operator.

To reach its full potential and to facilitate the system’s use in
commercial wind tunnel campaigns, the development of the novel
method has to focus on:

• Real-time capability:
One way of reducing measurement time is to provide an in-
stant feedback of the measurement to the control unit (here,
the operator). This requires the extraction of high-level infor-
mation from the acquired raw data set in real-time.

• Short setup and measurement time:
In many commercial testing scenarios, the long setup and/or
measurement time is the main reason why quantitative flow
visualization is rather the exception than the rule. Therefore,
it is vital for the new system to have a shorter setup and
measurement time compared to conventional methods.
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Complexity and Cost
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Figure 1.1: This diagram illustrates the gap between traditional flow
visualization techniques and existing quantitative flow visualization

methods. Image sources: Smoke: BMW Wind tunnel (retrieved June
16, 2017, from http://www.autobild.de); Tufts: Bird and Riley

(1952); CFD: Ansys CFX (retrieved June 16, 2017, from
http://www.ansys.com); Traversing: Lienhart et al. (2002); PIV:

RUAG Aerodynamics (retrieved June 16, 2017, from
https://aerodynamics.ruag.com)

• Large-scale capability:
In general, the cost and complexity of established, quantitative
flow visualization methods increase with the size of the area of
interest. For wind tunnel measurements, it is quite common
that the model under investigation is larger than the maximum
volume that can be covered by a single measurement.

• Volumetric measurement capability:
Planar measurements usually provide not all information re-
quired to fully understand the 3D flow structures around a
wind tunnel model. Therefore, the novel approach shall mea-
sure and visualize volumetric flow data.

3



Chapter 1 Introduction

• Low-complexity operation:
The ease of operation is one of the main reasons why visualiza-
tion with a smoke probe is still in use. The hand-held approach
allows the user to focus on regions of specific interest.

• Post-processing capability:
Similar to CFD, the new method shall offer the possibility to
post-process and analyze in detail the measured flow field at a
later stage.

This application-driven viewpoint for the novel visualization tool
asks for scientific developments in different fields. On the experi-
mental side, the fusion of the data from several sensors poses the
main challenge. On the algorithmic and computational side, the dif-
ficulties arise in the processing, interpolation, and visualization of
the measured data in real-time and with the specific measurement
point distribution of free-hand scanning.

The present work is structured as follows: In chapter 2, the new
flow visualization system (ProCap) is introduced. It also contains
a description of the main components. As the current system is
most often used in conjunction with a five-hole probe, chapter 3
addresses issues related to the probe calibration and the integration
into the ProCap environment. For a detailed description of the flow
field reconstruction method and its implementation into ProCap, the
reader is referred to chapter 4. Chapter 5 provides a brief outline of
the applied visualization concepts, and in the final chapter, some of
the recent measurement results are presented and reviewed.

4



Chapter 2

System description

2.1 Overview

ProCap stands for probe capture and is a quantitative flow visu-
alization method specifically designed for large-scale wind tunnel
measurements (Landolt et al. (2016), Mueller et al. (2012)). The
method essentially combines the measurement capabilities of a tra-
versing system with the flexibility of a hand-operated (smoke) probe.
Figure 2.1 provides a general idea of the working principle. The test
engineer (operator) scans the domain of interest with a hand-guided
flow probe fitted with retro-reflective markers. For reduced inter-
ference, the operator stands well away from the flow region being
investigated, preferably outside the test section. The instantaneous
position of the probe is determined in real-time by means of a pas-

u∞
Ê

Ë

Ò Ñ

Ð

Ï

Î

Í

Ì

Figure 2.1: Experimental setting: Ê operator, Ë measuring probe, Ì

aerodynamic model, Í retro-reflective markers, Î IR illumination, Ï

cameras, Ð DAQ-board, Ñ MoCap and ProCap software, Ò feedback
display
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Chapter 2 System description

Figure 2.2: Snapshots of the real-time visualization in chronological
order.

sive marker-based, commercially available motion capture system.
Such a system consists of n ≥ 2 synchronized cameras. High-power
LEDs (contained in the housing of the cameras) emit light flashes in
the infra-red range which are reflected by the markers on the probe.
This reflected light is captured by the cameras allowing the determi-
nation of the markers’ positions in each image plane. Triangulation
is the process that combines these 2D-Data with the camera para-
meters so as to compute the 3D position of each marker. Once the
marker positions are known, one can easily deduce the position and
orientation of the probe.

As the signal of the probe is sampled time-synchronously with
the tracking, the two data sets can be fused to form a single, multi-
valued point cloud. For visualizing the flow field in real-time, these
point data have to be interpolated onto a regular grid. ProCap
makes use of a GPU-accelerated implementation of a local, adaptive
approximation method called moving least-squares (consult chapter
4 for details). This method is not only efficient, but it can also
cope with highly non-uniformly distributed data. The processed
data are then displayed in real-time on some display visible to the
operator guiding the probe. In this way, a feedback loop is created
which is necessary to significantly speed up the measurement process
(if compared to a measurement with a traversing system) and to

6



2.2 Hardware

display high-level results to the users. With the help of this visual
feedback, regions containing interesting flow structures are quickly
identified, and the probe can be navigated accordingly. Usually, the
measurement is continued until the real-time feedback is converged
(see figure 2.2), i.e. meaning that the operator no longer detects
changes in the field while crossing it with the probe.

ProCap can be used in conjunction with any probe capable of me-
asuring the quantity of interest fast enough (that is commensurate
with the probe’s motion in the flow field). The probe used here is
a conventional five-hole probe that allows one to measure the static
pressure, the velocity magnitude and the flow direction, albeit in a
limited range of angles.

In the remainder of this chapter, the key components of the system
are briefly described. On the hardware-side these are:

• the motion capture system

• the data acquisition board

• the five-hole probe

On the software side, this is the real-time visualization software.

2.2 Hardware

2.2.1 Motion capture system

An integral component of the ProCap measurement system is the po-
sitional tracking of the probe. In recent years, tracking systems have
found widespread use in fields such as robotics, augmented reality,
medical applications, film animations, etc. As a result, numerous
tracking systems have become commercially available. ProCap is
not restricted to a single system since the device-independent VRPN
(Virtual-Reality Peripheral Network) interface is used for commu-
nication. There are VRPN drivers available for more than thirty
different systems∗. However, it is important to mention that not all

∗A list of supported trackers can be found on
https://github.com/vrpn/vrpn/wiki/Available-hardware-devices
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Chapter 2 System description

systems are suitable for ProCap. ProCap pursues two goals: First,
it acts as a real-time flow visualization tool. The real-time visualiza-
tion is crucial for the overall efficiency of the measurement, i.e. the
quick localization of the relevant flow features and update about the
convergence progress of the interpolated flow field. Second, ProCap
is supposed to provide quantitative data for post-processing. Both
tasks make demands on the properties of the underlying tracking
system:

1. Latency: Since in ProCap the operator acts as a controller,
the delay of the visualization of the virtual scene should be as
small as possible. For augmented reality and virtual reality
applications, it is recommended to keep the time lag shorter
than 15ms in order to provide a realistic experience. As the
probe localization is only one part of the whole process chain,
the latency of the tracking system should remain well below
15ms. To enhance the user experience ProCap processes the
positional data of the probe in two independent threads. One
thread transfers the position of the probe to the rendering
pipeline with the least possible delay, while the other combi-
nes the positional data with the measurements from the flow
sensor. In this way, the time-consuming tasks (e.g. velocity
correction, interpolation) do not interfere with the rendered
position of the probe.

2. Update rate: From film industry, it is known that the human
brain requires at least 15fps to perceive a scene in motion as
natural and continuous.

3. Accuracy: The tracking performance is of great importance
for the overall quality of the flow measurement. The tracking
accuracy should at least match the spatial resolution capability
of the probe used.

4. Working range: The distance between the sensing device(s)
and the region of interest usually depends on the size of the
wind tunnel. Typically, the width and height of the test section
are on the order of a few meters.
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1
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Figure 2.3: Oqus3 camera (retrieved June 16, 2017, from
http://www.qualisys.com)

Regarding these requirements, optical motion capture systems seem
to be the best choice.

The results shown in this thesis are exclusively based on a high-
end marker-based optical tracking system from Qualisys AB, Swe-
den. The system contains four Oqus3 cameras (see figure 2.3). The
technical specifications of this CMOS camera model are listed in
table 2.1. The cameras are synchronized to each other and can re-

Table 2.1: Specifications of the Oqus3 camera

pixel pitch 14.6 µm

resolution 1280 × 1024 px (81920 × 65536 subpx)

max. frame rate 500 fps (full FOV)

positional noise typically ±1 subpx

aperture f/2.8− f/22

focal length 25mm

cord up to 500fps. The position of a marker in the image plane
is determined with subpixel accuracy.† The cameras are equipped

†Qualisys defines the size of a subpixel as 1/64 of a pixel.
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with a 25mm lens providing approximately a 40◦ horizontal field-
of-view. To make the retro-reflective markers detectable, the lens
is surrounded by a LED strobe light emitting in the near-infrared.
A cut-off filter is used to increase the sensitivity of the system by
blocking reflections from daylight. The aperture, flash duration and
exposure time can be adjusted according to the circumstances. Ty-
pically, the exposure time is on the order of 100µs. The working
distance is limited by the power of the LEDs and the resolving ca-
pacity of the cameras. According to Qualisys, the Oqus3 cameras
have a maximum capture distance of approximately 22m.‡ One ad-
vantage of the Qualisys system is that the Oqus cameras provide
configurable sync in and out ports for synchronization with external
hardware. The internal clock has an accuracy of 1 parts per million.
Another strength of the Qualisys system is the comparatively low
latency. Normally, the time elapsed between exposure and output
is less than 4ms, even for cases with several hundred markers and
more than ten cameras. The triangulation algorithm is highly opti-
mized and allows the system to run on an ordinary laptop without
performance losses.

2.2.2 Data acquisition board

Similar to the tracking, ProCap accesses the data signal(s) of the
probe through a VRPN connection.§ In this work, a high-end A/D
card from Measurement Computing is used, namely the USB-2533
DAQ-board (see figure 2.4). It features a 16-bit/1MHz A/D con-
verter coupled with either 64 single-ended or 32 differential analog
input channels. The range can be set for each channel separately.
Four of the analog input channels can be configured to measure data
signals from thermocouples. The A/D converter can be triggered
by an external clock which simplifies the synchronization with the
tracking system considerably. In addition to the analog channels,
the USB-2533 board also offers 24 I/O digital channels.

VRPN does not include drivers for Measurement Computing devi-

‡based on 16mm markers
§National Instruments A/D cards are on the list of supported devices
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Figure 2.4: Measurement computing USB-2533 board (retrieved June
16, 2017, from http://www.mccdaq.de)

ces. This problem is solved by a tailored server application that fills
the data recorded by the board into time-stamped VRPN packages
of the type vrpn Analog. These packages can then be accessed by
the client (ProCap software).

2.2.3 Five-hole probe

With different probe types, ProCap is capable of measuring the vo-
lumetric distribution of various spatially distributed flow quantities.
In this work, a conventional five-hole probe is used. The working
principle of a five-hole probe is based on measuring the pressure dis-
tribution across the probe tip by five differently oriented pressure
taps. Assuming that the probe is properly calibrated, these five
pressure values can be translated into local flow quantities, such as
velocity magnitude, flow direction, and static pressure. However,
this requires that the angle between the flow and the probe is smal-
ler than 60 degrees. For more details on this subject, see chapter 3.

Figure 2.5a shows the probe used for the tests. To determine the
instant position and orientation of the probe, its L-shaped head is
fitted with four retro-reflective markers (�7mm). As explained in
section 3.3, the position of these markers is of crucial importance
for the tracking accuracy. The pyramidal probe tip (see figure 2.5b)
has a diameter of 4 mm and is formed by five longitudinally aligned
tubes soldered together. The angle between two opposite taps is
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(a) For the positional tracking four
retro-reflective markers are glued

on the L-shaped head.

4mm

(b) Tip of the
five-hole probe

used.

(c) Picture of the sensor unit.

Figure 2.5: Photographs of the five-hole probe

approximately 90 degrees. The tubes which connect the forward
facing pressure taps with the pressure transducers have an inner
diameter of 0.8mm.

The distance from the probe tip to the sensor unit is about 30
cm. Basically, the sensor unit consists of a circuit board with five
miniature, differential pressure transducers (see figure 2.5c). Each
pressure transducer is assigned to one pressure tap. For the refe-
rence pressure a soft silicone tube, which extends from the sensors
to the ambiance, is used. To cope with different velocity levels,
the user can choose from three different sets of pressure transducers
(see table 2.2). According to the manufacturer (First Sensor), all
pressure sensors are temperature compensated to ensure accurate
and precise measurements. While the sensors from the HCLA series
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Table 2.2: Tested pressure transducers from First Sensor

Range T comp. Type

HCLA12X5EB ±1250Pa (/ 35 m/s) X piezores.

HCLA02X5EB ±250Pa (/ 20 m/s) X piezores.

LBAS025BE ±25Pa (/ 6 m/s) X thermal

are fast response, piezoresistive pressure transducers, the more sen-
sitive LBA-sensors are based on thermal micro-flow measurements
and therefore are comparatively slow. According to the data sheet,
the step response time τ63 is approximately 1ms.

2.3 Software design

This section provides an overview of the software that allows the
processed data to be displayed in real-time to the operator. It is
based on Unity, a software framework (all purpose engine) desig-
ned for the creation and development of video games and graphics-
focused applications. Of fundamental importance to the usability
of the system is the ability to process and display measured data
in real-time. Therefore, the primary focus in designing the software
was performance followed by functionality and flexibility. Figure 2.6
is a schematic of the software architecture. For efficiency reasons,
the workload is split between the CPU and the GPU. On the CPU
two threads running concurrently in an asynchronous manner are
involved, namely the main thread and the worker thread.

Figuratively speaking, the main thread is the nerve center of the
application, where relevant information is pooled and the processes
to be executed are coordinated. Below, a list is given of the tasks
the main thread is responsible for:

• Setting up the scene (reading project settings, loading CAD-
models, initializing probe and configuring scene camera)

• Controlling the worker thread (invocation and abortion)

13
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• Passing measurement data to the GPU memory

• Invoking and scheduling the interpolation of the flow field car-
ried out by the GPU.

• Invoking and scheduling other compute tasks on the GPU (e.g.
generation of isosurfaces)

• Coordinating the rendering process

• Processing the user input (GUI)

At the start of the measurement the main thread invokes the wor-
ker thread to execute repeatedly the following tasks:

• Accessing data from the probe and the motion capture system
via VRPN.

• Fusion of the position and probe data with the help of the
provided time stamps.

• Transforming the measured raw data into flow quantities by
making use of the probe calibration maps

Shading

Interpolation

Control 
Program

Velocity 
Correction

Data 

Reduction

GPUCPU

Main ThreadWorker Thread

Data Signal
from Probe

Calibration Map &
Sensor Calibration

Position &
Orientation

User

Figure 2.6: Building blocks of ProCap’s visualization software.
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• If required, applying corrections due to the motion of the probe
(see section 3.4)

• Storing the processed data into a dedicated buffer that can be
accessed by the main thread.

As the time stamps of the VRPN data packages are expressed in
the time frame of the corresponding server, VRPN connections per-
form ”quick syncs” at the rate of 4Hz. These syncs determine the
clock offset between server and client which in turn is required to
transform the time stamps of the data packages into the client time
frame.

Since the operations carried out by the worker thread are compu-
tationally inexpensive, the worker thread can easily run at the same
rate as the motion capture system (100Hz or higher). The update
rate of the main thread, however, is limited to 60fps mainly to save
computational power both on the CPU and GPU.

Per cycle, the GPU performs two tasks. First, the reconstructed
flow field is locally updated based on the latest measurements (in-
terpolation). Second, the virtual scene containing flow visualization
elements such as contour slices, isosurfaces or vector plots is rende-
red. The measurement principle of the ProCap system complicates
the interpolation in several respects. As the input data change over
time, the interpolated flow field has to be refreshed at regular inter-
vals. By taking the locality of the changes into account, the amount
of work can be reduced significantly. Another problem to be sol-
ved is the irregularity of the data point distribution. More detailed
information about this issue and the flow field reconstruction in ge-
neral is provided in chapter 4. Similarly, the steps involved in the
rendering of the measurement scene are taken up in chapter 5.
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Chapter 3

Five-hole probe

The next sections take up a number of issues related to five-hole pro-
bes and their integration into ProCap. The first section is intended
to provide some background information on multi-hole pressure pro-
bes. This is followed by a thorough analysis of the five-hole probe
calibration process. First, we review the conventional calibration
approach, then we introduce a few modifications that help to en-
large the angular range of the probe. The non-trivial question of
how accurately an optical tracking system determines the position
and orientation of a rigid body probe is tackled in the third section.
This information is necessary to determine the overall measurement
accuracy. The fourth and final section discusses a simple approach
to reducing the measurement errors induced by the movement of the
probe.

3.1 Background

Since the invention of the Pitot-static tube in 1732 by Henri Pi-
tot, pressure-based fluid flow instruments have been extensively used
both in industry and research. Inserting a conventional Pitot-static
tube in the flow allows one to measure the static and total pres-
sure of the flow at the position of the probe tip. By means of these
two pressure readings, one can additionally compute the magnitude
of the velocity, provided that the density of the fluid is known. It
is clear that these measurements are only accurate if the probe is
nearly aligned with the local flow direction and if the flow field’s
non-uniformity is small compared to the size of the probe tip. Thus,
for complex flow fields, the usability of a Pitot-static tube is limi-
ted as the flow direction at the point of measurement is usually not
known. To overcome these limitations, so-called multi-hole pressure
probes can be employed. The principle of operation of these pressure
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probes relies on the circumstance that the pressure distribution on
the probe’s head depends not only on the velocity but also on the
direction of incoming flow. In other words, by proper calibration,
measuring the pressure at a few distinct locations on the probe’s sur-
face is often sufficient to determine not only all three components
of the velocity vector but also the static pressure. The concept of
multi-hole pressure probes is relatively old, in fact, the first probes
were tested as early as in the 1950s. Having been unrivaled for years,
today, other, more advanced velocity measurement techniques such
as hot-wire anemometry or laser Doppler velocimetry are available.
Although these newer techniques may provide better temporal and
spatial resolution, there are still a number of arguments that support
the use of pressure-based probes:

• Simplicity of operation: Compared to other velocity sensing
techniques, multi-hole pressure probes are relatively simple to
operate.

• Ease of fabrication: The fabrication of standard pressure pro-
bes is rather simple and inexpensive. Traditionally, multi-hole
pressure probes are manufactured either by soldering a bundle
of longitudinally aligned tubes together or by drilling holes
into a cylindrical bar. Both methods require mechanical finis-
hing to shape the tip of the probe. Recently, the development
of highly accurate 3D printing systems has not only simplified
the fabrication process but also led to a significant reduction
of the fabrication costs (Hall and Povey , 2017).

• Wide application range: Optical access to the point of measu-
rement or seeding the flow with tracers is not required.

• Reliability and robustness: Pressure-based flow sensors are
very robust flow sensing instruments. They can be operated
even in very harsh conditions (e.g. high or low temperatu-
res, corrosive fluids, particle-laden flows) and tolerate mecha-
nical contact with the model. Also, age-related degradation
generally affects the pressure transducers only and therefore,
recalibration of the probe itself is not required.
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• All-in-one measurement tool: To the best of the author’s know-
ledge, multi-hole pressure probes are the only flow sensors ca-
pable of measuring the velocity vector and the static pressure
simultaneously.

On the downside, multi-hole pressure probes must be inserted in the
flow, making the technique intrusive. Normally, the flow is disturbed
only locally, but in certain situations, the presence of a multi-hole
pressure probe can alter the global behavior of the flow. For in-
stance, it is commonly known that small disturbances can trigger
flow phenomena such as flow separation or transition. To prevent
such worst case scenarios, it is important to design the probe as
small as possible. Compared to hot-wires, the temporal resolution
of multi-hole pressure probes, which is essentially dictated by the
tubing and the pressure transducers, is poor. High-end transducers
may be able to measure pressure fluctuations up to 10kHz. This
is, however, still an order of magnitude lower than what a hot-wire
can resolve. Another problem of multi-hole pressure probes is re-
lated to their calibration: Mathematically speaking, deducing the
flow conditions from the pressure readings is an inversion problem.∗

The aim of the probe calibration is to provide explicit expressions
that solve this inversion problem. It is known that the flow around
the probe is rather complex and depends on a number of parameters
(e.g. Re-number, Ma-number, wall proximity, turbulence intensity,
flow history, etc.). The calibration attempts to take care of as many
parameters as possible. It is, however, impossible to cover all pa-
rameter combinations. Thus, one is forced to make sophisticated
assumptions in order to reduce the dimensionality of the inversion
problem. Due to the complexity of the problem, the calibration
does usually not account for effects induced by turbulence and in-
terference with other bodies (e.g. walls or other probes). It is clear
that these assumptions introduce new uncertainties and thus have
a negative impact on the measurement accuracy. In short, the mea-
surement quality of a multi-hole pressure probe is in general not as
good as that of a hot-wire, except if the flow conditions are almost
identical to those the probe is subjected to during the calibration
runs (often laminar free stream flow).

∗The well-posedness is not necessarily given.
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Over the years, a large number of multi-hole probe designs have
been proposed, each with different intentions, e.g. ease of use, ease
of manufacturing, enlarging the flow angle and/or velocity range,
reduction of the probe size, measurement of turbulent flows etc..
Detailed information on different designs and multi-hole pressure
probes in general can be found in Bryer and Pankhurst (1971) and
Telionis et al. (2009). In the present work, we will focus on five-hole
probes only and their application in ProCap.

3.2 Five-hole probe calibration

The aim of this section is to give a detailed exposition of the five-hole
probe calibration process. In the first part, we set up the notation
and terminology. In the second part, we develop the theory of the
conventional calibration process. In Part 3 we derive a new set of
calibration coefficients that cover a broader range of yaw and pitch.
Part 4 is devoted to how the calibration data is attained and how this
data is parameterized in order to be used during operation. Then we
briefly address the non-trivial question of how the flow state affects
the accuracy of the measurement. The final part contains a brief
discussion of the accuracy of the tested five hole probe.

3.2.1 Notation and principle of operation

As depicted in figure 3.1, the head of a five-hole probe typically
consists of a central and four surrounding pressure sensing ports.
Usually, the outer pressure taps are symmetrically arranged around
the center hole. Five-hole probes can be classified by their tip shape
into three different categories: the hemispherical, the conical and the
pyramidal five-hole probe. Besides that, the pressure taps are either
forward facing or perpendicular to the probe’s surface. In the present
work, a pyramidal probe with forward-facing pressure taps is used.
Moreover, the angle between two opposite holes is approximately 90
degrees. For the numbering of the pressure taps and the definition
of the probe-specific coordinate system, the reader is referred to
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Figure 3.1: Definition of the pitch (α) and yaw (β) angle and
numbering of the pressure taps.

figure 3.1. Mathematically, the flow direction relative to the probe
can be fully described by two angles. Commonly, the polar and the
azimuth angle of the corresponding spherical coordinate system are
taken. To shorten the analysis below, we use here a slightly different
definition of the flow angles (cf. figure 3.1):

pitch: tan (α) =
w

u
yaw: tan (β) =

v

u
, (3.1)

where u = [u, v, w]
T

denotes the velocity vector relative to the
probe-specific coordinate system. Clearly, this angle definition is
only valid for a hemisphere, i.e α ∈ (−90◦, 90◦) and β ∈ (−90◦, 90◦).

Five-hole probes can be operated in two different modes: The
null-reading and the calibrated mode.

• In the null-reading mode, the angular orientation of the probe
is adjusted such that the probe is aligned with the flow di-
rection (nulling). For a symmetric tip shape, the probe is
considered to be aligned with the flow if the pressure readings
of two opposite holes are equal. When the probe is nulled,
the orientation of the probe gives the direction of the velo-
city, whereas the central hole returns the stagnation pressure.
The advantage of the null-reading method is that calibration
becomes trivial as only a simple calibration map for the dyn-
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amic pressure is required. But this comes at a cost, the nul-
ling of the probe is not only very time-consuming (practically
only steady flow measurements are possible), it also requires a
complex probe traversing system that allows the probe to be
rotated. Furthermore, the method relies on the assumptions
that the probe is symmetric and that the probe tip is small
compared to the length scales of the flow.

• In the calibrated mode, there is no need to change the orienta-
tion of the probe. Assuming that the probe is properly calibra-
ted, the five pressure readings provide all information required
to determine the flow direction, the flow speed, and the in-field
pressure. On the one hand, this approach has the advantage
of being more flexible than the nulling method, one the other
hand the calibration task is much more involved. As ProCap
is, by design, only compatible with the calibrated operation
mode, the calibration is addressed in detail in the next sub-
sections.

3.2.2 Conventional calibration process

For each hole i = 0, 1, . . . , 4 one can define a dimensionless pressure
coefficient

cpi =
pi − ps
1
2ρ|u|2

, i = 0, 1, . . . , 4 (3.2)

where ps stands for the static pressure, |u| for the true velocity, and
ρ for the density. In addition, pi stands for the pressure measured
by the i-th pressure tap. Dimensional analysis reveals that these
pressure coefficients depend on a number of parameters

cpi = f

(
α, β,Red,Ma,

∆wall

d
,

∆shear

d
, Tu

)
(3.3)

α and β are the flow angles as defined above, Red is the Reynolds
number based on the diameter of the probe tip d, Ma is the lo-
cal Mach number, ∆wall is the distance to the next wall, ∆shear

is the length scale of the local flow gradient (‖∇u‖/|u|), and Tu
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is the turbulence intensity. Provided that the probe is sufficiently
small, the effect of the wall vicinity and of the flow gradient can
be neglected. Moreover, it is quite common that the dependence
on the Reynolds number, on the Mach number and on the turbu-
lence intensity are also not taken into account. Of course, these
simplifications are only physically meaningful if the flow conditions
are similar to those during the calibration or if the mentioned de-
pendencies are small within the range of application. Due to the
hand-guided approach, ProCap allows only measurements at rela-
tively low flow speeds. Thus, the Mach number plays indeed only
a minor role and can be ignored without consequences. Regarding
turbulence and Reynolds number effects, this may not be the case.
For details, the reader is referred to the sections 3.2.5, but for now,
we assume that the pressure coefficients depend on the flow angles
only, i.e.

cpi = f (α, β) , i = 0, 1, . . . , 4. (3.4)

The pressure coefficients cannot be determined by the pressure rea-
dings alone as the static and dynamic pressure are unknown. This
issue is normally solved by combining the pressure coefficients in
such a manner that the static and dynamic pressures drop out. To
uniquely determine the flow angles, one has to find two of these com-
binations that form a bijective, vector-valued function over α and
β. Typically, the following coefficients are taken (cf. Dudzinski and
Krause (1969), Treaster and Yocum (1979)):

cα :=
cp1 − cp3

cp0 − 1
4

∑4
1 cpi

=
p1 − p3

p0 − 1
4

∑4
1 pi

(pitch coefficient)

cβ :=
cp2 − cp4

cp0 − 1
4

∑4
1 cpi

=
p2 − p4

p0 − 1
4

∑4
1 pi

(yaw coefficient)
(3.5)

Although there is no real physical significance in these coefficients,
the denominator is occasionally referred to as the pseudo-dynamic
pressure. In addition, it is worth noting that the pressure difference
p1−p3 is mainly sensitive to changes of the pitch angle, while p2−p4

senses yaw angle variations. This circumstance allows us to relate
these coefficients to the quantities we intend to measure, namely α,
β, the static and the dynamic pressure. More precisely, the bijecti-
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vity of the function f : [α, β]
T → [cα, cβ ]

T
guarantees the existence

of the following functions:

α (cα, cβ) , β (cα, cβ) , cs (cα, cβ) , ct (cα, cβ) (3.6)

Here, cs and ct denote the pseudo-static and pseudo-total pressure
coefficient, which are defined as follows

cs :=
1
4

∑4
1 pi − ps

p0 − 1
4

∑4
1 pi

, ct :=
p0 − pt

p0 − 1
4

∑4
1 pi

. (3.7)

pt is a label for the total pressure, which is defined by the sum of the
static pressure ps and the dynamic pressure pdyn = 0.5ρ|u|2† The
aim of the five-hole probe calibration is to determine the precise
relationships (3.6), commonly known as calibration maps. To this
end, the probe is inserted into a known flow field while varying the
pitch and the yaw angle. The five pressure values are recorded for
all angle combinations. Subsequently, this data is used to deduce
the calibration maps (3.6). This task is often referred to as data
reduction step and many different techniques have been proposed,
e.g. look-up tables in combination with local interpolation, various
spline interpolation methods, artificial neural networks, etc.. The
data reduction method used for this work is explained in section
3.2.4.

3.2.3 Novel set of calibration coefficients

For small flow angles (approx. ±30◦ for a probe with cone angle
90◦) the coefficients cα, cβ , cs, ct introduced in the previous section
work fine. At larger flow angles, however, one is confronted with
two problems:

1. The denominator (pseudo dynamic pressure) passes through
zero causing singularities of the pressure coefficients.

2. The flow over one or more pressure holes separates causing

†This definition is only valid for a subsonic flow.
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loss of sensitivity. Furthermore, flow separation is known to
be sensitive to changes of the Reynolds number and of the
turbulent motion.

Different approaches have been proposed to overcome or to reduce
these problems. Two solution categories can be distinguished:

• Redefinition of the denominator: A popular attempt to
prevent singularities of the pressure coefficients is to apply a
different denominator. One common approach is to replace
the average pressure pavg = 1/4(p1 +p2 +p3 +p4) by the smal-
lest pressure reading, i.e. min (p1, p2, p3, p4). However, this
is problematic as it leads to kinks in the calibration surfaces.
A more sophisticated but also a more complex modification of
the denominator was proposed by Pisasale and Ahmed (2002).
They come up with the idea of replacing the denominator by
D = p0−ps+A(pt−ps), where the constant A is selected such
that D is positive for all angle combinations. Since the static
and the total pressure are unknowns, D cannot be computed
from the five pressure readings alone. Therefore, Pisasale and
Ahmed (2002) suggest the use of an additional 1D calibration
function that relates the pressure values to the newly defined
denominator D.

• Sectioning: Here, the angle range to be covered is split into
different sectors (e.g. Gallington (1980), Zilliac (1993),Paul
et al. (2011)). Typically, the pressure reading with the highest
value determines the sector number. If properly designed, this
kind of approach overcomes the singularity problem. However,
it does not necessarily solve the separation problem (although
sometimes stated otherwise) as according to Dominy and Hod-
son (1992) separation bubbles may occur even at angles as
small as a few degrees. In addition, it leads to a more compli-
cated calibration since continuity of the calibration coefficients
at the boundary of two sections is not given and therefore, one
has to create separate calibration maps for each zone. On top
of that, there is no guarantee that the sectioning is not influ-
enced by the flow state (e.g. turbulence, Re number, etc.). In
the worst case, the calibration maps have to be extrapolated
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to retrieve the flow properties (velocity, static pressure, etc.),
which in turn may lead to unnecessary large errors.

Both approaches do not address the problem caused by flow sepa-
ration. On the one hand, pressure readings which are affected by
flow separation do not provide much information about the flow
direction. On the other hand, and this is more problematic, flow
separation is known to be sensitive to changes in the flow conditions
(e.g. turbulence, Reynolds number). In the worst case, hysteresis
effects may be observed. Consequently, reducing the influence of
flow separation on the calibration maps is not primarily a matter of
how one selects the pressure coefficients but of how the probe tip is
designed (shape and position of the taps). For instance, an edged
probe tip has the advantage that the flow topology around the probe
is less dependent on the flow conditions as the sharp edges provoke
separation (Dominy and Hodson, 1992).

Below, we derive a new set of pressure coefficients that bypass the
singularity problem and thus allow calibration at angles of pitch and
yaw much larger than the standard coefficients. But since the pres-
sure coefficients are derived based on potential flow theory, they only
perform well as long as the Reynolds number is sufficiently large.‡

From potential flow theory, the normalized pressure distribution for
a stationary flow around a sphere is given by (Kundu et al. (2016),
eq. (7.106)):

pi − ps
1
2ρ|u|2

= −5

4
+

9

4
cos2 (θi) (3.8)

where θi is the angle between the vector pointing upstream −u and
ai, which is the vector from the sphere center to the point on the
surface where the pressure pi is required, i.e.

cos (θi) = − u · ai|u||ai|
(3.9)

For the next steps, the geometrical difference between a sphere and
a forward facing pyramidal probe tip is neglected. If we assume a
cone angle of 90◦, the corresponding positions of the pressure taps

‡The standard coefficients face the same problem.
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on the sphere are given by

a0

|a0|
= [−1, 0, 0]T

a1

|a1|
=

1√
2

[−1, 0, 1]T

a2

|a2|
=
−1√

2
[1, 1, 0]T

a3

|a3|
=
−1√

2
[1, 0, 1]T

a4

|a4|
=

1√
2

[−1, 1, 0]T

(3.10)

Furthermore, using the angle definition (3.1), the normalized flow
vector can be expressed by

u

|u| =
1√

1 + tan2(α) + tan2(β)︸ ︷︷ ︸
=:N(α,β)

[1, tan(β), tan(α)]T . (3.11)

Substituting these expressions into equation (3.8) leads to formulas
for the theoretical pressure coefficients, which, as a matter of fact,
depend on the flow angles only.

cp0 = −5

4
+

9

4N(α, β)
cp1 = −5

4
+

9 (1− tan(α))2

8N(α, β)

cp2 = −5

4
+

9 (1 + tan(β))2

8N(α, β)
cp3 = −5

4
+

9 (1 + tan(α))2

8N(α, β)

cp4 = −5

4
+

9 (1− tan(β))2

8N(α, β)

(3.12)

In order to eliminate the static pressure we introduce the following
four coefficients

k1 := cp1 − cp0 =
p1 − p0
1
2
ρ|u|2 =

tan2(α)− 2 tan(α)− 1

N(α, β)

k2 := cp2 − cp0 =
p2 − p0
1
2
ρ|u|2 =

tan2(β) + 2 tan(β)− 1

N(α, β)

k3 := cp3 − cp0 =
p3 − p0
1
2
ρ|u|2 =

tan2(α) + 2 tan(α)− 1

N(α, β)

k4 := cp4 − cp0 =
p4 − p0
1
2
ρ|u|2 =

tan2(β)− 2 tan(β)− 1

N(α, β)

(3.13)

The task is now to find two coefficients which on the one hand are
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Chapter 3 Five-hole probe

functions of either α or β only and on the other hand are independent
of the dynamic pressure. By trigonometry, we can show that

k1 − k3

k1 + k3
=

p1 − p3

p1 + p3 − 2p0
= tan(2α) (3.14)

and
k4 − k2

k2 + k4
=

p4 − p2

p2 + p4 − 2p0
= tan(2β). (3.15)

If we employ the following trigonometric relationship

tan(γ) =



tan(2γ)

1+
√

1+tan2(2γ)
if γ ∈

(
−π4 , π4

)
tan(2γ)

1−
√

1+tan2(2γ)
if γ ∈

(
−π2 ,−π4

)
∪
(
π
4 ,

π
2

)
1 if γ = π

4

−1 if γ = π
4

(3.16)

and take into account that
p1 + p3 − 2p0 < 0 if α ∈

(
−π4 , π4

)
p1 + p3 − 2p0 > 0 if α ∈

(
−π2 ,−π4

)
∪
(
π
4 ,

π
2

)
p1 + p3 − 2p0 = 0 if α ∈

{
−π4 , π4

} (3.17)

and 
p2 + p4 − 2p0 < 0 if β ∈

(
−π4 , π4

)
p2 + p4 − 2p0 > 0 if β ∈

(
−π2 ,−π4

)
∪
(
π
4 ,

π
2

)
p1 + p3 − 2p0 = 0 if β ∈

{
−π4 , π4

} (3.18)

we finally obtain theoretical expressions for α and β, that do not
depend on the dynamic pressure:

α = tan−1

[
p1−p3

p1+p3−2p0−
√

(p1−p3)2+(p1+p3−2p0)2

]
β = tan−1

[
p4−p2

p2+p4−2p0−
√

(p4−p2)2+(p2+p4−2p0)2

] (3.19)

Figure 3.2 confirms the correctness of the derived result, both the-
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Figure 3.2: Comparison between theory and measurement

oretically (left figure) and experimentally (right figure). While the
theory is based on the potential flow solution around a sphere, the
experimental data stems from a real flow around the pyramidal five-
hole probe. Due to physical limitations, it was only possible to
measure within the range (α, β) ∈ [−60◦, 60◦]× [−45◦, 45◦]. Despite
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Chapter 3 Five-hole probe

this, it is clearly visible that no singularities are present. Deviations
between the experimental and the ideal plane are explained by the
non-spherical shape of the probe tip, by imperfections in the ma-
nufacturing process and by the fact that potential flow is only an
idealization of the real flow.

Now, based on the potential flow theory, the two denominators in
eq. (3.19), i.e.

p1 + p3 − 2p0 −
√

(p1 − p3)2 + (p1 + p3 − 2p0)2 (3.20)

and

p2 + p4 − 2p0 −
√

(p4 − p2)2 + (p2 + p4 − 2p0)2 (3.21)

are identical (= −4/N(α, β)). Consequently, we are allowed to re-
place these denominators by their arithmetic mean. This modifica-
tion serves the purpose of reducing the uncertainty of the pitch and
yaw coefficient, which we define as follows

cα = tan−1

[ 1
2 (p3 − p1)

D

]
(3.22)

cβ = tan−1

[ 1
2 (p2 − p4)

D

]
(3.23)

with

D := p0 +
1

4

√
(p1 − p3)2 + (p1 + p3 − 2p0)2

+
1

4

√
(p2 − p4)2 + (p2 + p4 − 2p0)2

=: p̃t

−
1

4
(p1 + p2 + p3 + p4)

}
=: p̃s

(3.24)

Here, p̃t and p̃s denote the pseudo-total and the pseudo-static pres-
sure. By means of these new definitions, the static and total pressure
coefficients can be redefined as well

cs :=
p̃s − ps
D

, ct =
p̃t − pt
D

. (3.25)
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Figure 3.3: Dimensionless denominator as a function of pitch and yaw

To improve the angular range of the probe, one has to guarantee
that the denominator D is non-zero over a wider range of angles.
As demonstrated in figure 3.3, the theoretical value of D is indeed
non-zero for (α, β) ∈ (−90◦, 90◦) × (−90◦, 90◦). The experimen-
tally determined values are plotted in the right figure. Although the
function looks less smooth, it certainly satisfies the requirement of
not passing zero as shown in figure 3.3.

Besides circumventing singularities, it is also important to mini-
mize the propagation of uncertainty. To this end, we compare the
error propagation for the standard coefficients with that for the new
set. The assessment below is based on the following assumptions:

1. The flow is adequately described by potential flow theory

2. There are no errors induced by the data reduction, i.e. α =
α (cα, cβ) and β = β (cα, cβ) are exact

3. The uncertainties of the pressure readings are independent,
have zero mean, are Gaussian distributed and have the same
standard deviation δp

4. The uncertainties of the measured angles are negligible

31



Chapter 3 Five-hole probe

Therefore, one can employ the following formula

δφ = δp

√√√√ 4∑
i=0

(
∂φ

∂pi

)2

=
δp

pdyn

√√√√ 4∑
i=0

(
∂φ

∂ci

)2

(3.26)

where φ is a physical quantity estimated by the pressure readings,
e.g. α, β, cs or ct. Applying the chain rule on the derivatives ∂φ/∂ci
leads to

δφ =
δp

pdyn

√√√√ 4∑
i=0

(
∂φ

∂cα

∂cα
∂ci

+
∂φ

∂cβ

∂cβ
∂ci

)2

(3.27)

Using potential flow theory, these terms can be analytically evalu-
ated for both calibration coefficients sets. Figure 3.4 illustrates the
error amplification factor for the pitch angle (i.e. δα/(δp/pdyn)) as a
function of α and β. The domain covers only the angle range where
the uniqueness of the standard method is ensured. It is clearly vi-
sible that within this domain the two methods perform similarly.
However, it is worth pointing out that the assumption, that no er-
ror is introduced by the generation of the calibration map, rather
applies to the new than to the standard approach. This is explai-
ned by the fact that for the standard method cα(α, β) and cβ(α, β)
have a more complex shape than their newly derived counterparts.

Since the new approach aims at extending the probe’s angular
range, the error amplification at larger flow angles is also of inte-
rest. Figure 3.5 shows the amplification factor of the pitch angle for
(α, β) ∈ [−60◦, 60◦]× [−60◦, 60◦]. Not surprisingly, the error grows
with the magnitude of the pitch and yaw angle. At about 60◦ the
amplification is roughly 4 times larger than at the center. For high-
quality pressure transducers with a good signal-to-noise ratio, this
might still be acceptable.

To sum up, with the presented calibration coefficients we do not
face the problem of singularities in the calibration maps. In addi-
tion, the pitch and yaw angle coefficients are nearly one-dimensional,
linear functions. Thus, it is suggested that the parameterization of
the corresponding calibration maps requires fewer degrees of free-
dom than the conventional setting. Regarding propagation of un-
certainty, at small flow angles the new calibration coefficients per-
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Figure 3.4: Propagation of uncertainty: Comparison of the error
amplification factor of the pitch angle.
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Figure 3.5: Propagation of uncertainty: Error amplification factor of
the pitch angle for (α, β) ∈ [−60◦, 60◦]× [−60◦, 60◦].
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form similarly to the standard coefficients. At larger flow angles,
however, the uncertainty level increases with pitch and yaw angle.
Nonetheless, acceptable results are expected for angles less than 60◦.

3.2.4 Data acquisition and reduction

To determine the calibration maps α (cα, cβ), β (cα, cβ), cs (cα, cβ)
and ct (cα, cβ), one has to measure the probe hole pressures for a
large number of pitch and yaw angle combinations. Normally, the
flow angles are varied by changing the probe orientation rather than
the flow direction. This can be achieved by using a dedicated appara-
tus that allows one to adjust the probe orientation without changing
the position of the probe tip (see figure 3.6). In most cases, the probe
is positioned in the center of a uniform free jet with known flow pro-
perties (i.e. ps, pt and ρ). For every combination of pitch and yaw
angle, the five pressure values are recorded for later use. One diffi-
culty of this approach lies in the alignment of the probe with the jet.
In the case of ProCap, the alignment problem is aggravated as in
addition, the optically tracked probe frame has to be mapped to the
physical frame of the probe. To bypass this problem, the calibration
data for this work was acquired in the empty ETH wind tunnel by
varying the probe orientation manually (see figure 3.7). As in the
measurement, the probe is tracked optically by the MoCap system.
In this way, one has only to map the wind tunnel flow direction to
the tracked probe frame. Besides reducing the alignment problem,
this approach also has the advantage that no additional mechanical
calibration fixture is required. In order to ensure that the measu-
red points cover the complete pitch-yaw range, the scatter plot of
the point distribution is displayed to the operator in real-time. It
may be criticized that this approach leads to inaccurate calibration
data because the probe tip is not kept at a fixed position and since
the laminarity of the wind tunnel flow may be insufficient. Regar-
ding the first concern: In the literature, it is often stated that it
is essential to keep the position of the probe tip fixed as even the
best designed free jet may contain non-uniformities. However, this
statement is questionable as in most cases the flow properties are
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u

β

α′

Figure 3.6: Setup for standard calibration

u

α

β

α

β

Figure 3.7: Setup for five-Hole probe calibration with ProCap

measured simultaneously at slightly different positions or are mea-
sured beforehand. In other words, there will always be a discrepancy
between the measured and the true flow properties at the probe’s
location. Consequently, keeping the probe tip at a fixed position can
introduce systematic errors in the calibration, which are of the same
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order as the non-uniformities of the jet. In contrast, if the probe
tip randomly changes position within the core of the jet there is a
chance of averaging out these errors. Regarding the concern about
the flow laminarity: As turbulence influences the flow pattern on
the probe tip, it is more reasonable to perform the calibration in
flow conditions similar to the actual experiment. In order to reduce
the variance of the pressure signals, it is suggested that oversam-
pling is the better approach than physically lowering the pressure
fluctuations of the flow.

Since the probe is directed by hand, one has to subtract the motion
of the probe. Details on how this issue is solved are given in section
3.4.

Following the acquisition of the calibration data, the calibration
maps are determined. As depicted in figure 3.8, the process that
converts the raw data into calibration maps is divided into two steps:

1. Interpolation onto a regular grid: Varying the flow angles
manually results in an irregular distribution of the collected
data points in the pitch-yaw plane (cf. figure 3.8). The pro-
blem with an irregularly distributed point set is that fitting a
global parametric model to the data leads to a poor approxi-
mation since areas with a high point density are weighted more
strongly than others. To this end, the pressure coefficients are
first interpolated onto a regular grid using a first-order moving
least squares filter. The grid spacing is typically 1◦. As later
shown in chapter 4, the moving least squares interpolation is
less affected by uneven point distributions than standard ap-
proximation methods.

2. Generation of the calibration maps: In the second step
the calibration maps α(cα, cβ), β(cα, cβ), ct(cα, cβ) and cs(cα, cβ)
are computed. In the cα-cβ-space the interpolation nodes are
nearly evenly distributed, since the proposed cα and cβ depend
almost linearly on α and β, respectively. Hence, the calibration
maps can be created using a global polynomial least squares
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Chapter 3 Five-hole probe

fit:

φ (cα, cβ) =

n∑
i=1

n−i∑
j=1

aφ,i,jc
i
αc
j
β , φ = α, β, cs, ct (3.28)

It is found that a sixth order polynomial fit (i.e. n = 6) meets
the accuracy requirements of the application as the mean ab-
solute error of the fit is typically less than 0.2◦ for both the
pitch and yaw angles. If higher accuracy is required, a lo-
cal polynomial spline interpolation is sometimes applied. For
completeness, in figure 3.9 a graphic illustration of the calibra-
tion maps at an arbitrary Reynolds number (Red = 3.2 · 103)
is provided.
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Figure 3.9: Calibration maps at Re = 3.2 · 103
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3.2 Five-hole probe calibration

3.2.5 Potential error sources

The calibration scheme described above relies on the assumption
that the Reynolds number and turbulence have little or no influence
on the calibration coefficients. In this section the validity of this
idealization is examined.

Reynolds number effects

According to Dominy and Hodson (1992), two distinct Reynolds
number effects influence the probe calibration:

• Influence on the flow separation: For a five hole with a
cone angle of 90◦ this effect is observed if Red < 1.5 · 104.

• Influence on the structure of the flow over the sensing
holes: This effect is present at all Reynolds numbers. More-
over, Dominy and Hodson (1992) found that the impact on
the dynamic pressure is the largest, while the yaw and pitch
coefficients do not change significantly.

Additionally, at very low Reynolds numbers the assumption of invis-
cid flow does not hold and viscosity strongly affects the flow structure
around the probe tip. The transition from an inviscid to a viscosity-
dominated flow is gradually and eventually, leads to a flow governed
by the laws of creeping flow (Stokes). For instance, if we suppose
that the tip of the probe can adequately be described by a sphere,
Stokes flow yields the following surface pressure distribution:

pi − ps
1
2ρ|u|

= 6cos (θi)
1

Red
, (3.29)

where θi is the angle between the upstream flow direction and the
vector from the center of the sphere to the point i on the surface.
Although Stokes flow is a simplified assumption, it confirms experi-
ments that report an increase in the stagnation pressure when the
Reynolds number is lowered. More accurate solutions may be obtai-
ned by the theory of Oseen which partly accounts for inertia terms.
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Figure 3.10: Reynolds number effect

From experiments, it is known that for a Pitot-static tube the in-
crease of the stagnation pressure becomes evident at Red < 103.

For a ProCap measurement Red often falls into the range with
the highest Reynolds number sensitivity. Figure 3.10 displays the
contour lines of cα and cβ in dependence of the pitch and yaw angle
for three slightly different Red. This example clearly demonstrates
that even small Reynolds number variations can have a significant
impact on the probe’s accuracy. For instance, at large pitch and
small yaw angle, the error of the measured yaw can be as large as
10◦ if the wrong calibration map is used. To reduce the influence of
the Reynolds number and therefore to increase the reliability of the
measurement, ProCap allows the user to upload multiple calibra-
tion files, which contain the calibration data for different Reynolds
numbers. At each time step, ProCap selects the calibration file on
the basis of the Reynolds number computed in the previous step
(nearest neighbor criterion).
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3.2 Five-hole probe calibration

Effect of turbulence

Turbulence can bias the measurements of a five-hole probe signifi-
cantly. One can distinguish the following effects:

1. Eddies, which are smaller than the tip size, lead to erratic me-
asurements of the flow direction as well as of the static and
dynamic pressure. This effect can be reduced by miniaturi-
zing the probe. However, it is important to keep in mind
that a smaller probe also implies a smaller Reynolds number
and therefore can negatively impact the probe’s measurement
accuracy.

2. When the pressure over the probe tip is fluctuating in time, the
pressure readings of the transducers do not necessarily reflect
the actual pressure on the surface. Due to the flexible hoses the
amplitude and the phase of the pressure signals are distorted.
The distortion is typically a function of the signal’s frequency.
As theoretical models are imprecise, the exact transfer function
has to be obtained experimentally. If this transfer function is
known, one can easily deduce the true pressure values. In
practical terms, this involves three steps:

a) A fast Fourier transform is applied to a subset of the data.
This subset is usually selected by a sliding box filter.

b) In the frequency domain, the deconvolution is performed
to correct the pressure signal, applying for example a suit-
able Wiener filter.

c) Finally, the inverse Fourier transform is applied to the
deconvolved data to obtain the corrected signal in time
space.

Since no acoustic calibration system was available, ProCap
does not yet support this kind of signal correction. The effect
on the time-averaged flow field is considered to be small.

3. Measuring highly fluctuating flows with a five-hole probe is
delicate as acceleration effects come into play. This issue may
best be explained by making use of the apparent mass model
from potential flow theory. The pressure on the surface of
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a sphere subjected to an unsteady flow with velocity u (t) is
given by (Kundu et al. (2016), eq.(7.105))

pi − ps
1
2 |u|2

= − 5

4
+

9

4
cos2 (θi)︸ ︷︷ ︸

cpi,steady

− d

2|u|2ai ·
du

dt︸ ︷︷ ︸
cpi,unsteady

, (3.30)

where d stands for the diameter of the sphere, ai is the norma-
lized vector from the sphere center to the point i on the surface,
and θi is the angle between the ai and −u. As the calibra-
tion does not account for the unsteady term cpi,unsteady, highly
fluctuating flows result in erroneous measurements. Telionis
et al. (2009) estimated that for a probe with a tip diameter
of 2mm and a flow that fluctuates with an amplitude of 10%
of the mean velocity and with a frequency of 2kHz errors are
caused in the computed dynamic pressure of approximately
6.3%.

4. It is known that turbulent disturbances in the flow can alter
the flow separation behavior and the boundary layer of a bluff
body. As most calibrations are performed in a laminar free
jet, this can have an effect on the probe’s performance. Inte-
restingly, no publications were found discussing this particular
issue.

3.2.6 Performance of the tested five-hole probe

The intention of this section is to evaluate the performance of the
five-hole used for these tests. The accuracy of the probe is exa-
mined experimentally by subjecting the calibrated probe to a flow
with known properties. The probe was calibrated at three different
Reynolds numbers, namely at Re = 2.1 · 103 (=̂ 8.5m/s), 3.2 · 103

(=̂ 13.0m/s) and 4.5 · 103 (=̂ 18.3m/s). These Re-numbers cover
the complete velocity range of the validation runs. The five valida-
tion runs are conducted in the ETH wind tunnel using the same
setup as for the calibration (see figure 3.7). During these runs
the probe is steered by hand and it is attempted to collect data
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Figure 3.11: RMSE distribution

for all flow angle combinations that fall in the calibrated range
(α, β) ∈ (−40◦, 40◦) × (−40◦, 40◦). To prevent that the validation
data becomes biased by only measuring at one Reynolds number,
the validation runs are conducted at different flow speeds.

The measurement error per sample is defined by the difference
between the measured value φi and the reference value φ:

ei = φi − φ (3.31)

It is worth noting that the reference values are not the true values as
they contain uncertainties themselves. Potential error sources are:

• Measurement errors of the flow angles by the MoCap system
(cf. section 3.3).
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Chapter 3 Five-hole probe

• Small temporal and spatial disturbances of the wind tunnel
flow.

The error, as defined above, comprises:

• random errors (noise), and

• systematic errors (bias)

A common measure for the accuracy of a measurement system is
the so-called root-mean-square error (RMSE):

RMSE =

√
1

M

∑
i

e2
i (3.32)

Here, M is a label for the number of samples. A small RMSE
implies a high accuracy and vice versa, a low RMSE implies a
low accuracy. Unlike the accuracy, which accounts for both error
components, the trueness is associated with the systematic error
only. A widely used measure for the trueness is the mean of the
error (ME), i.e.

ME =
1

M

∑
i

ei (3.33)

A small ME indicates a small systematic error and in turn a high
trueness. Both the RMSE and the ME of a five-hole probe are
functions of the flow around the probe, in particular, they depend on
α and β. Since the probe is hand-guided, it is impossible to collect
data for each pitch-yaw angle combination individually. Despite
this, one can estimate the distribution of the RMSE over α and β
by accounting only for samples in the vicinity of a point. In practice,
this requires a k-nearest neighbor search. The results are shown in
figure 3.11 for the pitch α, the yaw β, the normalized velocity and
the static pressure normalized by the dynamic pressure. Clearly,
as expected in section 3.2.3 the RMSE of the flow angles α and β
is in general below 0.5◦ but can exceed 1◦ at large yaw and pitch.
Moreover, the RMSE of the velocity is typically smaller than 1%.
More problematic is the static pressure, where RMSE values as high
as 10% are observed. This extreme values can partly be explained
by the high uncertainties associated with the reference value. In
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3.2 Five-hole probe calibration

the ETH wind tunnel the static pressure is externally measured by
means of a manual barometer.

Ignoring the dependence on α and β, one can compute the overall
RMSE and ME values, which may serve as rough accuracy and
trueness estimates. The numerical values are listed in table 3.1 and
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Figure 3.12: Error histograms

Table 3.1: Performance of the tested five-hole probe

∆α [◦] ∆β [◦] ∆|u|
|u| [−] ∆ps

pdyn
[−]

Accuracy: RMSE 5.2e-1 4.8e-1 1.0e-2 5.1e-2

Trueness: ME 5.0e-3 -3.0e-2 3.9e-4 1.2e-2
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the normalized distributions are shown as histograms in figure 3.12.
While these results provide an indication of the probe’s performance,
they are not fully conclusive since:

• the tests were conducted at a constant, low turbulence level,
and

• there is a risk that the computed measures (RMSE and ME)
are dominated by uncertainties in the reference flow properties.

3.3 Tracking accuracy

The use of a five-hole probe in ProCap requires that the position
and orientation of the probe are known at every point in time when
measurements are taken. Although the method is not limited to
a particular tracking system, often optical, marker-based trackers
provide the best choice due to their outstanding performance (low
latency, high spatial and temporal resolution). Tracking accuracy
plays an important role in improving the overall measurement qua-
lity. To this end, this section contains a brief assessment of the
positional and orientational accuracy of a probe being tracked by a
marker-based camera system. In principle, the theory given below is
applicable for all tracking systems but elaborated here on the basis
of the used Qualisys system with the Oqus3 cameras.

3.3.1 Tracking error of a single marker

When an optical tracking system is used, the positional accuracy of
a single marker is highly dependent on a number of factors inclu-
ding number cameras, geometrical setting, lighting conditions etc..
Below, there is a list of the most important errors:

• Calibration errors are caused by inaccurate scaling of the
three room axes during the calibration.

• Occlusion errors arise from objects that partly occlude the
cameras’ line of sight to a marker.
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3.3 Tracking accuracy

• Identification/correspondence errors occur when the iden-
tification of two neighboring markers is mixed up or when by
mistake a single marker is interpreted as two markers.

• Thermal drift may be present due to the heating of the ca-
meras.

• Quantization errors result from the discretization of the
image.

• Dynamic errors comprise uncertainties which are caused by
the motion of the markers, e.g. positional error due to finite
exposure time (elongated blob in the image plane) or due to
imprecise camera synchronization.

• Noise/Jitter

Phenomenologically, these errors fall into two categories:

1. Systematic errors

2. Random errors

Usually, random errors can be well approximated by random varia-
bles with a Gaussian distribution. This simplification does normally
not apply to systematic errors. However, Bauer (2007) demonstra-
ted that because systematic errors arise from many different sour-
ces, they can be reduced to a single quasi-random error in the image
plane with an isotropic, unbiased Gaussian distribution. This ap-
proximation, however, is only valid if the calibration errors are com-
pletely eliminated beforehand. Bauer (2007) suggested removing the
calibration errors manually by assuming independent scaling of the
three space axes. If data for such a correction is available, the error
at every point in the region of interest can be estimated using the
uncertainty propagation analysis described in Borer (2014) (chapter
B.5). For the cameras used in this work, measurements show that
the standard deviation of the marker errors in the image plane is ap-
proximately 1/64 pixel. Applying Borer’s method, the shape of the
resulting 2σ-ellipsoids in the measurement domain is then a function
of the camera setup and the marker position only (cf. fig. 3.13). At
the center of the covered domain the 2σ-ellipsoids become spheres
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if the cameras are optimally arranged. In the ETH wind tunnel,
where the working distance is approximately 2m, the 2σ-confidence
interval is on the order of 10µm provided that all four Oqus3 ca-
meras capture the marker being analyzed. But as indicated before,
this value is rather a measure for the precision than for the accuracy
of the marker positions, as in most cases one has neither the tools
nor the data or the time to eliminate the systematic errors introdu-
ced by the calibration process. More reliable accuracy measures are
therefore:

• Reconstruction error: The reconstruction error is the shor-
test distance between a reconstructed 3D point and the ray
associated with the projection of the measured 2D position
in the image plane into the 3D space. Qualisys provides two
related measures:

1. The average residual is the mean of the reconstruction
errors of all the points measured by a single camera du-
ring a calibration or measurement run. The cameras used
in this work have an average residual which is typically
smaller than 0.5mm for a working distance of about 2m.

2. The 3D residual is computed by averaging the recon-
struction errors of all rays that belong to the same 3D
point. It is calculated in real-time for all reconstructed
marker points. For a working distance of 2m and mar-
kers with a diameter of about 7mm, the 3D residual is
usually smaller than 0.5mm. For better control Quali-
sys allows the user to select the maximum accepted 3D
residual. A too small threshold value usually leads to
poor measurement results as so-called ghost trajectories
are likely to be produced. On the other hand, a too large
value also results in defective trajectories as the triangu-
lation algorithm attempts to merge data from different
markers. It is recommended to set the maximum value
2-5 times larger than the average. 2mm proved to be a
good threshold value for measurements in the ETH wind
tunnel, where the cameras are about 2m away from the
actual measurement domain.

48



3.3 Tracking accuracy

Figure 3.13: Illustration of the 2σ-confidence intervals for a given
camera setup.

• Reprojection error: The reprojection error is the distance of
the measured 2D position and the point obtained by the back-
ward projection of the reconstructed 3D point on the image
plane. Qualisys’ tracking software does not provide the repro-
jection error directly, but on the basis of the recorded data§

one can compute the reprojection error separately.

• Root-mean-square error of a rigid two marker target:
The root-mean-square error of the measured distance between
two markers belonging to the same rigid body provides useful
information about the accuracy of the tracking system. In case
the target is in motion, this measure does account for dynamic
errors but ignores the fact that in reality, the error is also a
function of space. If the camera system is calibrated using a
wand, the root-mean-square error of the distance between the
two markers is obtained without additional effort. Typically,
this value is between 0.1− 0.5mm.

To sum up, the measures provided by the camera system used in-
dicate that for most measurement scenarios the error of the trian-

§Qualisys provides both 2D and 3D marker data
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gulated 3D position of a marker is smaller than 0.5mm. Of course,
this requires that the system is properly calibrated. Furthermore, if
no additional correction is applied, the tracking accuracy is mainly
dictated by the calibration errors (i.e. uncertainties in the extrinsic
camera parameters) which are known to be systematic and cannot
be modeled by an unbiased Gaussian distribution.

3.3.2 Tracking error of a rigid body

The aim of this subsection is to evaluate the influence of the tracking
errors of the markers on the rotational and positional accuracy of
the probe at hand. Determining the position and orientation of a
rigid body on the basis of a few marker positions is described by the
so-called orthogonal Procrustes problem:

Problem 1 (Orthogonal Procrustes problem)
Given are two ordered sets of N points in R3:

X = {xi}Ni=1 (3.34)

Y = {yi}Ni=1 (3.35)

Each of these sets represents the same rigid body but at a different
location and with a different orientation (see figure 3.14). Find a
rotation matrix R ∈ R3×3 and a translation vector t ∈ R3, such
that the mapping

zi = Rxi + t, i = 1, . . . , N (3.36)

minimizes the mean squared error between Y and Z = {zi}Ni=1, i.e.

E =
1

N

N∑
i=1

‖zi − yi‖2 → min. (3.37)

The solution of this minimization problem is obtained in two steps:

(i) Find the optimal translation vector t∗.

(ii) Find the optimal rotation matrix R∗.
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Figure 3.14: Orthogonal Procrustes problem

Derivation of the optimal translation vector

Substituting the mapping ansatz (3.36) into equation (3.37) yields

E =
1

N

N∑
i=1

(Rxi + t− yi)T (Rxi + t− yi)

=
1

N

N∑
i=1

[
‖t‖2 + 2 (Rxi − yi)T t+ ‖Rxi − yi‖2

] (3.38)

Since this function is convex with respect to the translation vector
t, the optimum t∗ is found as follows:
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∂E

∂t

∣∣∣∣
t=t∗

=
1

N

N∑
i=1

[2t∗ + 2 (R∗xi − yi)] !
= 0

⇔ t∗ =
1

N

N∑
i=1

yi︸ ︷︷ ︸
=:yc

−R∗
1

N

N∑
i=1

xi︸ ︷︷ ︸
=:xc

⇔ t∗ = yc −R∗xc (3.39)

Here, xc and yc denote the positions of the centroid of the rigid body
before and after the transformation. Equation (3.39) reveals that
the optimal translation vector t∗ depends on the optimal rotation
matrix R∗.

Derivation of the optimal rotation matrix

To find the optimal rotation matrix, the translation vector in equa-
tion (3.37) is replaced by its optimum (3.39):

E =
1

N

N∑
i=1

‖R (xi − xc)︸ ︷︷ ︸
=:x̆i

− (yi − yc)︸ ︷︷ ︸
=:y̆i

‖2, (3.40)

where x̆i and y̆i are the coordinates of the i-th marker relative to the
respective body-centered coordinate system. The standard approach
to solving this optimization problem is based on the singular value
decomposition (SVD) of the cross-covariance matrix

C̆ =

N∑
i=1

x̆iy̆i
T (3.41)

and is commonly known as Kabsch algorithm (Kabsch, 1976). Here,
we apply a slightly different algorithm which is based on the paper of
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Coutsias et al. (2004). This alternative approach replaces the SVD
of a non-symmetric 3× 3-Matrix by an eigendecomposition (ED) of
a symmetric 4×4-Matrix. While the results of these two algorithms
are identical, the latter has a number of advantages:

• Our goal is to investigate how errors in the marker positions
influence the orientational accuracy of the probe. Studying
error propagation of a SVD compared to an ED is in general
more difficult.

• Both rotations and reflections are represented by orthogonal
matrices. For a reflection the determinant of this transforma-
tion matrix is −1, while for a rotation it is +1. In certain
situations a reflection can yield a smaller mean squared er-
ror than a rotation. Because reflections have no meaning in
the context of rigid body tracking, special attention has to be
paid to exclude them from the space of possible solutions. In
the author’s opinion, the method of Coutsias provides a more
natural way to omit reflections than the standard Kabsch al-
gorithm.

In the following, the method of Coutsias et al. (2004) is briefly out-
lined. As quaternions play a central role in the derivation of this
method, the interested reader is referred to appendix A, where one
can find a summary of the basic concepts of quaternions. It is straig-
htforward to show that in quaternion notation equation (3.40) can
be expressed as follows

E =
1

N

N∑
i=1

[(
qq xq,iqq − yq,i

) (
qq xq,iqq − yq,i

)]
0
. (3.42)

Here, the bar indicates the conjugation of a quaternion. Further-
more, the subscript q labels an element as a quaternion, while the
subscript 0 stands for the scalar component of a quaternion. More-
over, xq,i and yq,i denote the pure quaternions of the shifted marker
positions, i.e.

xq,i = (0, x̆i) and yq,i = (0, y̆i) (3.43)
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The quaternion qq has unit length and represents a rotation around
an axis c̆ and with an angle φ, i.e.

qq =
(
q0, [q1, q2, q3]

T
)

=

(
cos

φ

2
, c̆ sin

φ

2

)
(3.44)

Using the distributive property of quaternions, the formula of the
mean squared error can be rearranged in the following manner

E =
1

N

N∑
i=1

[(
qqxq,iqq

) (
qqxq,iqq

)
+ yq,iyq,i −

(
qqxq,iqq

)
yq,i

−yq,i
(
qqxq,iqq

)]
0

=
1

N

N∑
i=1

[
xq,ixq,i + yq,iyq,i −

(
qqxq,iqq

)
yq,i − yq,i

(
qqxq,iqq

)]
0

=
1

N

N∑
i=1

‖x̆i‖2 + ‖y̆i‖2 + 2
[
yq,iqqxq,iqq

]
0︸ ︷︷ ︸

=:P

 (3.45)

For the remaining part of this derivation, the quaternions are ex-
pressed as column vectors with four elements, i.e.

a = [aq]v = [a0, a1, a2, a3]
T

with aq = (a0, [a1, a2, a3]
T

), (3.46)

where the subscript v implies that the quaternion is interpreted as a
column vector. In appendix A, it is shown that in vector notation the
multiplication of two quaternions, e.g. uqvq, can either be expressed
by

AL (uq)v or AR (vq)u, (3.47)

where AL and AR are defined as in formula (A.5). With the help
of these conventions, the term P in equation (3.45) can be modified
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in the following way

P =
[
yq,iqqxq,iqq

]
0

= qT [yq,iqqxq,i]v

= qTAL (yq,i)AR (xq,i) q. (3.48)

Hence, the mean squared error can be written as follows

E =
1

N

N∑
i=1

{
‖x̆i‖2 + ‖y̆i‖2

}
− 2

N
qTMq (3.49)

where the matrix M is defined as

M = −
N∑
i=1

AL (yq,i)AR (xq,i) . (3.50)

M is a symmetric matrix and can be expressed in terms of the
cross-covariance matrix C̆ (defined in (3.41)):

M =


C̆11 + C̆22 + C̆33 C̆23 − C̆32 C̆31 − C̆13 C̆12 − C̆21

C̆23 − C̆32 C̆11 − C̆22 − C̆33 C̆12 + C̆21 C̆13 + C̆31

C̆31 − C̆13 C̆12 + C̆21 C̆22 − C̆11 − C̆33 C̆23 + C̆32

C̆12 − C̆21 C̆13 + C̆31 C̆23 + C̆32 C̆33 − C̆11 − C̆22

 (3.51)

Revisiting the minimization problem, the optimal rotation quater-
nion q∗ is found by minimizing the function E (given by eq. (3.49)).
Since only the last term depends on q the minimization problem is
equivalent to the following maximization problem:

qTMq → max
‖q‖=1

(3.52)

SinceM is symmetric, the Courant-Fischer Min-Max theorem states
that the maximum is the largest eigenvalue of M . In another way of
saying, the optimal rotation quaternion q∗ is equal to the normalized
eigenvector that belongs to the largest eigenvalue of M .
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Error-free case

Before we focus on the error propagation properties of the algorithm
described before, it is important to examine the case where the me-
asured points Y are assumed to be exact. This implies that there
exists a rotation matrix R and a translation vector t such that the
mean squared error E as defined in eq. (3.36) is zero. Without loss
of generality, the orthogonal Procrustes problem can be expressed
in terms of the principle axes of the point set X . More precisely,
because the auto-covariance matrix

Ă =

N∑
i=1

x̆ix̆i
T (3.53)

is real, symmetric and positive definite, the eigenvalues µ1 ≤ µ2 ≤ µ3

are both non-negative and real. Therefore, the eigenspace of Ă can
be used to construct an orthonormal basis {e1, e2, e3} (a.k.a. princi-
ple axes) for which the auto-covariance matrix Ă becomes diagonal.
If the eigenvalues are mutually different, {e1, e2, e3} are simply the
normalized eigenvectors. Hence, the shifted marker positions ex-
pressed in the principle axes coordinate system are given by

x̆′i = ST x̆i (3.54)

y̆′i = ST y̆i (3.55)

where
S = [e1, e2, e3] (3.56)

Here and in the following, we use the prime to indicate that the vec-
tor is expressed in the principle axes coordinate system. Similarly,
R′ and q′q symbolize the rotation matrix and the rotation quaternion
with respect to the principle axes coordinate system, i.e.

R′ = STRS and q′q =
(
q′0, [q

′
1, q
′
2, q
′
3]
T
)

=
(
q0,S

T [q1, q2, q3]
T
)
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Since we assume that the measurements Y are exact, the cross-
covariance matrix C̆′ has the following form

C̆′ =

N∑
i=1

x̆′iy̆
′
i
T

=

N∑
i=1

x̆′ix̆
′
i
T

︸ ︷︷ ︸
=Ă

′

R′
T

= diag (µ1, µ2, µ3)R′
T
. (3.57)

Now, let q′q = (q′0, q
′
1, q
′
2, q
′
3) be the rotation quaternion that trans-

forms x̆′i to y̆′i, then it is easy to verify that the eigenvalue decom-
position of M ′ yields:

Eigenvalues: Eigenvectors:

λ1 = µ1 + µ2 + µ3 q′1 = [q′0, q
′
1, q
′
2, q
′
3]
T

λ2 = µ1 − µ2 − µ3 q′2 = [q′1,−q′0,−q′3, q′2]
T

λ3 = µ2 − µ1 − µ3 q′3 = [q′2, q
′
3,−q′0,−q′1]

T

λ4 = µ3 − µ1 − µ2 q′4 = [q′3,−q′2, q′1,−q′0]
T

(3.58)

In accordance with the theory, the eigenvector with the largest eigen-
value, that is q′1, does indeed correspond to the rotation quaternion.
Now, we have all the tools to study how the measurement errors
affect the solution of the orthogonal Procrustes problem.

Linear perturbation analysis

Suppose the measurements have some degree of uncertainty that
stems from the tracking of the markers (see figure 3.15):

ỹ′i = y′i + ∆y′i, i = 1, . . . , N (3.59)

For the sake of generality, we do not further specify the positional
errors of the markers ∆y′i, except that they are assumed to be small
in magnitude. Naturally, these positional errors also give rise to
errors in the estimate of the rotation quaternion

q̃′1 = q′1 + ∆q′1 (3.60)
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Figure 3.15: Marker position errors

Following the method outlined in appendix B, the first order ap-
proximation of the eigenvector error ∆q′1 is

∆q′1 =

3∑
i=1

εiq
′
i+1 (3.61)

with

ε1 =
q′2
T

∆M q′1
2µ2 + 2µ3

, ε2 =
q′3
T

∆M q′1
2µ1 + 2µ3

, ε3 =
q′4
T

∆M q′1
2µ1 + 2µ2

. (3.62)

As before,
{
q′i
}4

i=1
represent the eigenvectors of the undisturbed ro-

tation scenario, while {µi}3i=1 are the eigenvalues of the undisturbed

cross-correlation matrix C̆′. Moreover, ∆M is simply the deviation
of the matrix M caused by the positional errors of the markers. In
quaternion notation the disturbed eigenvector q̃′1 can also be expres-
sed by a concatenation of two rotations, namely the true rotation
given by qq and a rotation sq caused by the measurement errors. In
mathematical terms, this means:

q̃′1 = q′1 + ∆q′1 =̂ q̃q = sqqq, (3.63)

where sq is defined as follows

sq = (cos(∆φ/2), sin(∆φ/2)p) (3.64)
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As ∆φ is assumed to be small, sq can be linearized

sq ≈
(

1,
∆φ

2
p

)
(3.65)

Substituting this approximation into equation (3.63) yields

[sqqq]v = q′1 +
∆φ

2

 − [q′1, q
′
2, q
′
3]p

q′0p+ p× [q′1, q
′
2, q
′
3]
T


︸ ︷︷ ︸

=:∆q′1

. (3.66)

The subscript v indicates that the quaternion is expressed as a vec-
tor. One can show that if

∆φ

2
p = R′ [ε1, ε2, ε3] (3.67)

the second term on the right-hand side of equation (3.66) conforms
to the previously derived expression (3.61). Now, by taking the norm
of equation (3.67) and using the two facts that

• the multiplication of R′ with a vector preserves the length of
the vector, and that

• the length of p is 1,

we finally find the first order approximation of the angular error:

|∆φ| ≈ 2
√
ε21 + ε22 + ε23 (3.68)

Remarks:

• To avoid large angle errors, the markers, which define the body,
shall be placed such that at least two eigenvalues of the auto-
covariance matrix Ă are much larger than zero. This ensures
that the denominators of ε1, ε2 and ε3 are far from being zero.

• This error estimation allows us to study two special scenarios:
The worst case and the random error scenario. Both will be
discussed below.
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Worst case scenario

First, we study the case, where the positional errors ∆yi of the
markers remain unspecified except that their magnitudes are smaller
than a certain threshold |∆y|max. Based on that, we aim to find the
marker configuration which produces the largest angle error. It is
clear that for every rigid body rotation there exists a similar worst
case that returns the exactly same orientation error. Therefore,
without loss of generality we can assume that

qq = (1, 0, 0, 0) (3.69)

which simplifies eq. (3.62) as follows

ε1 =
−∆M12 (∆y1, . . . ,∆yN )

2µ2 + 2µ3
,

ε2 =
−∆M13 (∆y1, . . . ,∆yN )

2µ1 + 2µ3
,

ε3 =
−∆M14 (∆y1, . . . ,∆yN )

2µ1 + 2µ2
.

(3.70)

Thus, in order to find the largest angle error, we have to solve the

Table 3.2: Marker positions of the tested five-hole probe

x [mm] y [mm] z [mm]

Probe tip 0.00 0.00 0.00

Marker 1 40.60 0.00 5.50

Marker 2 75.36 0.00 5.50

Marker 3 89.07 −45.18 8.50

Marker 4 87.85 −113.59 8.50
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Figure 3.16: Maximum angle error as a function of the maximum
positional error |∆y|max

following constrained minimization problem:

−
[

∆M2
12

(µ2 + µ3)
2 +

∆M2
13

(µ1 + µ3)
2 +

∆M2
14

(µ1 + µ2)
2

]
→ min

∆y1,...,∆yN

subject to |∆yi| ≤ |∆y|max, i = 1, . . . , N

(3.71)

Due to the non-linear constraints, no analytic solution could be
found. However, the problem can be solved numerically using Mat-
lab’s fmincon function. The marker positions for the five-hole probe
used in this work are listed in table 3.2. The solution to this problem
is depicted in figure 3.16. It is found that the maximum angle error
|∆φ|max increases linearly with the maximum positional error at a
rate of approximately 3.8◦/mm.

With the help of this result, we can easily define an upper bound
for the positional error of the probe tip. In ProCap, the position of
the tip ypt is computed on the basis of the nearest marker y1:

ypt = y1 +R (xpt − x1)︸ ︷︷ ︸
=:l

(3.72)
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From this equation we can deduce the maximum positional error of
the tip

|∆ypt| ≤ |∆y|max + 2|l|sin
( |∆φ|max

2

)
≈ |∆y|max + |l| |∆φ|max (3.73)

With |l| = 40.2mm, the maximum error of the probe tip position
can be estimated by the following formula:

|∆ypt| ≈ 3.7|∆y|max (3.74)

From section 3.3.1 we know that for the measurements presented in
this work the maximum error of a marker is estimated to be smaller
than 0.5mm. Larger errors which may occur due to an erroneous
correspondence search or marker occlusion are eliminated by the
software considering the 3D-residual tolerance and the bone length
tolerance. The bone length tolerance is a user-selected threshold
value which limits the maximum variation of the distance between
all possible marker pairs of a rigid body. Concluding this section, we
can say that for the presented measurements the tracking accuracy
of the five-hole probe is better than 1.9mm in position and 1.9◦ in
orientation.

Random error scenario

In this case we assume that the positional errors of the markers can
be modeled by independent random vectors having a multivariate
Gaussian distribution with zero mean. Naturally, this assumption
is only valid in the absence of calibration errors. Furthermore, we
assume that the cameras are optimally placed, which allows us to
specify the positional error distribution:

∆yi ∼ N
(
0, σ2I

)
, i = 1, . . . , N (3.75)
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Figure 3.17: PDF and CDF of the angle error depending on σ

This error model turns the formulas for ε1, ε2 and ε3 (see eq. (3.62))
into the following distributions

ε1 ∼ N
(

0,
σ2

4(µ2 + µ3)

)
, (3.76)

ε2 ∼ N
(

0,
σ2

4(µ1 + µ3)

)
, (3.77)

ε3 ∼ N
(

0,
σ2

4(µ1 + µ2)

)
. (3.78)

Revisiting equation (3.68), the distribution of the angle error |∆φ|
can be approximated by means of the Welch-Satterthwaite equation,
i.e.

|∆φ| ∼ Nakagami
(
m̃, Ω̃

)
(3.79)

with

m̃ =
0.5
(

1
µ1+µ2

+ 1
µ1+µ3

+ 1
µ2+µ3

)2

(
1

µ1+µ2

)2

+
(

1
µ1+µ3

)2

+
(

1
µ2+µ3

)2 (3.80)

and

Ω̃ = σ2

(
1

µ1 + µ2
+

1

µ1 + µ3
+

1

µ2 + µ3

)
(3.81)

63



Chapter 3 Five-hole probe

0 0.25 0.5 0.75 1
0

1

2

3

4

σ [mm]

C
D
F

−
1
(0
.9
5
)
[◦
]

Figure 3.18: 95th precentile of the angle error as a function of σ

Based on the marker positions given in table 3.2, figure 3.17 plots
the estimated probability density function (PDF) and the cumula-
tive density function (CDF) for different noise levels σ = 0.2 − 1.0.
As expected, a larger noise level raises the risk of large orientational
errors. This is also confirmed by figure 3.18 which indicates a linear
increase of the 95th precentile with the standard deviation of the
marker positions σ. Last but not least, it is worth noting that the
presented approximation of the angle error distribution may also be
valid for cases where the spatial variations of the calibration errors
are small considering the spread of the markers on the probe. Since
the main part of the calibration error arises from the uncertainties
of the extrinsic camera parameters, this is likely to be the case.

3.4 Corrections for the probe motion

The way ProCap works, the pressure distribution on the surface of
the probe does not only depend on the flow to be studied but also on
the motion of the probe itself. This is particularly true at low flow
speeds. Phenomenologically, three distinct effects can be identified:

• Linear motion: An imaginary observer sitting on a moving
probe registers a wind speed that differs from the flow velocity
measured by a stationary observer. The flow velocity seen
by the probe is essentially the superposition of the true flow
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3.4 Corrections for the probe motion

velocity and the probe speed.

• Rotary motion: By the laws of physics, a rotary motion
of a body with finite size induces a fluid flow on its surface.
This implies that the pressure readings of a five-hole probe are
biased if the probe undergoes a change of orientation.

• Acceleration effects: If the probe speed is changed rapidly
(e.g. abrupt movements), the time-stationarity assumption,
on which the calibration of the probe is based, is violated. In
other words, terms that account for the temporal changes of
the apparent flow become important and cannot be neglected.

Because in most cases the probe movements are regular and relati-
vely slow, the last two effects can be considered to have little impact
on the pressure measurements. As the probe position is tracked in
time, the translational motion of the probe can be filtered out ea-
sily from the measurements. Figure 3.19 gives an overview of the
correction scheme implemented in ProCap. It involves the following
steps:

¶ Estimation of the probe velocity: Based on the tracked
positional data of the markers, one can deduce the position and
velocity of the probe tip at every frame instant. Calculating
the velocity by a first order backward difference scheme proved
to be insufficient as the measurement errors in the positional
data are amplified. Currently, ProCap retrieves the velocity by
applying a 1D-filter to each component of the discrete position-
signal. The shape of this filter is defined by the derivative of a
Gaussian filter¶. This approach causes a delay of half the filter
width.‖ For augmented reality and virtual reality applications,
it is recommended to keep the time lag smaller than 15ms to
provide a realistic experience. To this end, the software is
designed such that the introduced time lag does only affect
the velocity estimate but not the position of the virtual probe.
An alternative, more elegant way of estimating the velocity

¶cf. differentiation property of convolutions
‖When measuring with 100Hz, a filter width of 20 frames has proven to be

a good choice.
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Chapter 3 Five-hole probe

of the probe might be the use of a Kalman filter. For time
reasons, this approach is not yet included.

· Determining the apparent flow quantities: Based on the
pressure measurements the instantaneous flow quantities (i.e.
velocity, static and total pressure) relative to the probe coor-
dinate system are computed using the previously determined
calibration maps. The breve accent symbolizes that compo-
nents of the velocity vector are based on the probe coordinate
system. The subscript a stands for ”apparent” and indicates
that the measured quantity corresponds to what is seen by the
probe.

¸ Transformation to global coordinate system: The ap-
parent flow velocity is transformed to the global coordinate
system using the corresponding tracking data of the probe.

¹ Correction: Superposition of the apparent flow speed and
the probe velocity reveals the true flow velocity at the point of
measurement. In addition, the measured stagnation pressure is
also biased by the movement of the probe. However, knowing
the true velocity, the correction is straightforward.
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❶
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❹

Figure 3.19: Velocity correction scheme.
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Chapter 4

Flow field reconstruction

The reconstruction of the flow field onto a regular grid based on
measured data points is undoubtedly a key task of the ProCap mea-
surement system. This becomes particularly evident when conside-
ring that most real-time flow visualization features implemented in
ProCap (e.g. arrow glyphs, streamlines, contour planes) rely on the
reconstructed flow field. This chapter provides a detailed exposition
of the reconstruction problem encountered in ProCap. In the first
section, the general scattered data approximation problem is intro-
duced. Section 4.2 briefly sketches the particular challenges to the
reconstruction process imposed by the ProCap measurement system.
With respect to these challenges, the most common meshfree approx-
imation techniques are compared. The preferred method (Moving
least squares) is introduced in section 4.3. Subsequent to that, the
performance of two moving least squares subvariants are demonstra-
ted by means of a simple example (sec. 4.4). In section 4.5 we address
the complex question of how to select the bandwidth of the weight
function by reviewing two different approaches. This is followed by
a detailed description of the method’s implementation into ProCap
(sec. 4.6). The attention is directed at the data reduction step, the
bandwidth selection and the implementation on the graphics pro-
cessing unit (GPU). The final section of this chapter is devoted to
a physically based extension of the approximation technique, the
so-called pseudo-divergence-free moving least squares method.

4.1 The scattered data approximation problem

The objective of scattered data approximation is to find an estimate
û of an unknown function u : Rd → R on the basis of a few samples
U = {ui}Mi=1. These samples represent the function values at M
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Chapter 4 Flow field reconstruction

distinct, usually unorganized data sites X = {xi}Mi=1. If no errors
are present, one often aims at finding an estimate that reproduces
the given data exactly, i.e.

û (xi) = ui, i = 1, . . . ,M (4.1)

Such problems are referred to as scattered data interpolation. On
the other hand, if the sampled data or the data sites contain errors,
an exact interpolation often leads to an inaccurate reproduction of
the unknown function (e.g. overfitting). To overcome this issue, the
interpolation requirement (4.1) is relaxed in favor of other criteria,
e.g. continuity, smoothness, etc.. This second type of problem is
commonly referred to as scattered data approximation.

Scattered data approximation problems arise in different fields of
science and engineering, such as

• Computer Graphics, e.g. surface reconstruction from point
clouds, texture mapping

• Tomography and medical imaging, e.g. tomographic recon-
struction

• Geophysics, e.g. terrain modeling, mapping and predictions

• Statistics, e.g. data regression

• Computational science and engineering, e.g. meshless methods
for solving partial differential equations

As a result of that fact, the vast majority of papers devoted to scat-
tered data approximation is published in subject-specific journals
leading to the somewhat irritating circumstance that similar con-
cepts/methods are known by many different names. On the other
hand, multidisciplinary reviews of scattered data interpolation and
approximation methods are relatively rare considering the frequency
of occurrence of the problem. Noteworthy studies on this topic are
Franke (1982), Alfeld (1989), Franke and Nielson (1991), Mitas and
Mitasova (1999) and more recently Fasshauer (2007).
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4.2 Scattered data approximation in ProCap

4.2 Scattered data approximation in ProCap

At first glance, the flow field reconstruction in ProCap is similar to
any other scattered data approximation problem, which means that
accuracy is the primary and often sole focus. A closer examina-
tion, however, reveals several additional challenges that need to be
addressed accordingly:

• Performance/real-time capability: The user adapts the
scanning path according to the displayed visualization of the
flow field. Therefore, a continuous and instantaneous update
of the reconstruction is essential to ensure the efficiency of the
method.

• Dynamic and large dataset: A potential difficulty arises
from the fact that during the measurement the number of data
points is continuously growing. Regarding the real-time capa-
bility of the method, this fact poses special requirements on
the data structure and on the approximation technique. In
contrast, the standard approximation scenario presumes that
all sampling data is known a priori. Therefore, it is no big
surprise that little attention has been paid to approximation
problems with a dynamically changing dataset so far.

• Multiple output/scalability: Conventional approximation
techniques focus on reproducing scalar-valued functions only.
In our method, the number of measured quantities and by that
the number of functions to be approximated may be considera-
bly larger than one. It depends on the probe used for the mea-
surements. From a computational point of view, treating each
of these quantities independently is very inefficient. Hence, an
algorithm that approximates more than one function with as
little additional work as possible is preferred.

• Error handling: The errors in the ProCap measurement data
have different sources. Three classes of errors may be distin-
guished: Position error (tracking), measurement error (probe-
based) and error due to the instationary flow field (physics).
This distinction should not be understood as a clear-cut. For
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instance, in the case of a direction-sensitive probe, the tracking
is likely to influence the measurement error of the probe, too.
The error usually varies not only between different measure-
ments but also in time and space. Due to this complex cha-
racter, the approximation scheme should be able to cope with
all sorts of errors.

• Data distribution and robustness: As a result of the scan-
ning approach, the data sites are located along a continuous
path, i.e. the points are highly irregularly distributed. It
is known that the geometric configuration of the data sites
strongly affects the stability and accuracy of the approxima-
tion method. For instance, consider the 2D scenario, where
data sites lie on a single line. Fitting a plane to these points is
not unique as the slope perpendicular to the line is undefined.
These points form a so-called degenerated point configuration
for this kind of approximation. The chance to encounter this
type of problem usually increases with the approximation or-
der of the method and with the dimensionality of the domain.

• Physical constraints: One possibility to increase the reliabi-
lity and consistency of the reconstructed field is to incorporate
physical properties of the flow into the approximation scheme.
For instance, incompressible velocity fields are known to be
divergence-free. Therefore, the use of a method allowing only
solenoidal vector fields may improve the overall reconstruction
quality considerably.

Scattered data interpolation and approximation methods can be di-
vided into two categories: Mesh-free and mesh-based methods. Ex-
amples of the latter are finite elements, wavelets, box splines, mul-
tivariate splines etc. Mesh-based scattered data methods work well
if the data sites are moderately non-uniform, but often fail to cope
with highly irregular data sites. As a consequence, these techniques
have been discarded from the list of candidates. Truly mesh-free
techniques, on the other hand, are generally more flexible regarding
the non-uniformity of the data sites. The most common mesh-free
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4.2 Scattered data approximation in ProCap

Table 4.1: Evaluation of meshless approximation methods
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Moving least squares � � � � � �

Radial basis functions � � � � � �

Partition of unity � � � � � �

techniques are radial basis functions∗, moving least squares† and par-
tition of unity. Among these three techniques, moving least squares
is found to be the most appropriate technique with respect to the re-
quirements mentioned above. The overview of the evaluation results
is given in table 4.1.

Although radial basis functions are known to be very accurate,
there are mainly two issues that are in conflict with ProCap:

1.) The method is global, i.e. each time a new sample arrives a
large linear system has to be solved. An iterative solver, using
the old solution as initial guess, may reduce the computatio-
nal costs significantly. But even in that case, the number of
arithmetic operations required exceeds the ’real-time’ limits of
a regular PC. In addition to that, also almost all visualization
elements (e.g. isosurfaces) require being updated in the entire
domain since the approximation changes globally.

2.) To get the best approximation within the radial basis function
framework, one has to determine the optimal shape parameter
of these radial functions. Unfortunately, applying the theo-

∗a.k.a. Kriging, Gaussian process regression or Wiener-Kolmogorov pre-
diction

†a.k.a. local polynomial regression or normalized convolution
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retical optimum often results in an ill-conditioned and dense
system of linear equations. So in practice, it comes down to a
compromise between accuracy and numerical stability (a.k.a.
accuracy vs. stability trade-off).

Regarding ProCap, partition of unity seems to be the best alterna-
tive to moving least squares. Besides the fact that there is only a
limited amount of literature on the subject, the main question to
be answered is how to choose the subdomains. There are essentially
two options of how partition of unity can handle an input data set
that grows in time:

1.) The division of the subdomains is temporally adjusted, e.g. by
insertion of a new subdomain. However, in this case, the local
character of the approximation scheme is diminished.

2.) At the cost of numerical stability, the approximation order in
the affected subdomains is step-wise increased.

In the remainder of this chapter, moving least squares will be ex-
plained in more detail with special focus on the ProCap requirements
and on the adaptions made. For the other two mesh-free approxi-
mation techniques the interested reader is referred to Appendix C or
to more comprehensive sources (e.g. Fasshauer (2007), Wendland
(2004)).

4.3 Moving least squares

Moving least squares (MLS) is a powerful multivariate approxima-
tion technique, especially when the data sites are non-uniformly dis-
tributed and the data values are noisy. In approximation theory, the
method was first introduced by Lancaster and Salkauskas (1981) as a
generalization of the famous Shepard’s approximation method (She-
pard , 1968). In statistics, MLS is better known as local polynomial
regression (LPR), a nowadays well-established non-parametric re-
gression technique. While first applications of LPR can be traced
back as far as the end of the 19th century, the mathematical foun-
dation was not laid before the late 1970s (Stone, 1977; Cleveland ,
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1979). In other fields such as image processing, MLS is occasio-
nally called normalized convolution (NC). NC was first proposed
by Knutsson and Westin (1993) as a method for interpolation and
filtering of incomplete and uncertain image data.

MLS differs from most other approximation and interpolation
techniques insofar as the global problem is split into a series of smal-
ler local subproblems. In practical terms, instead of one large linear
system one has to solve many small linear systems. Originally, this
property was considered as a disadvantage because the resulting
total number of arithmetic operations required to solve the global
problem is rather high. But, with the emergence of massively pa-
rallel computing units this argument may no longer be true. As
demonstrated below, the MLS approximation problem is inherently
parallel and therefore it can be solved very efficiently. Regarding
ProCap, a local change of the input data does not mean that the
complete approximation needs to be recomputed. Due to the local
character of the approximation scheme, only a few subproblems have
to be updated.

Since Bos and Salkauskas (1989) showed that MLS is Backus-
Gilbert optimal, there exist two equivalent formulations of the MLS
approximation method: The standard formulation and the Backus-
Gilbert formulation. Because both approaches are crucial for the
understanding of MLS, they are briefly outlined in the two subse-
quent sections.

4.3.1 Standard formulation

As mentioned above, the key idea of MLS is to decompose the global
curve fitting problem into a series of smaller local approximation
problems. This is achieved in the following way: Around every
evaluation point x0 the unknown function u (x) is approximated by
a linear combination of N + 1 basis functions

û (x,x0) =

N∑
j=0

cj (x0) bj (x− x0) . (4.2)
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Here, {bj}Nj=0 denote the set of basis functions and {cj}Nj=0 are the
coefficients to be determined.
Remarks:

• In principle, the linear approximation space B = span {b0, ..., bN}
can be defined by any set of linearly independent basis functi-
ons. For smooth functions, low order polynomials proved to
be a reasonable choice. Hereafter, we restrict our analysis to
polynomials of degree m. For simplicity, the basis functions
are assumed to be the corresponding monomials.

• In the formula above, the basis functions are centered around
the evaluation point x0. This coordinate shift is not manda-
tory but strongly recommended as it improves the numerical
stability of the resulting least squares problem (Mirzaei et al.,
2011).

• The coefficients {cj}Nj=0 are not constant but vary with the
evaluation point x0. Thus, every time the evaluation point x0

is changed, another but similar approximation problem has to
be solved. As the method’s name suggests, the global approx-
imation of the unknown function is obtained by moving the
evaluation point to every location where the approximation is
sought. Commonly, the evaluation points are arranged in a
regular grid.

In order to measure the quality of the local, linear approximation
ansatz, a weighted semi-inner product and its induced norm are
introduced

〈u, v〉w(·,x0) =

M∑
i=1

u (xi) v (xi)w (xi,x0) , (4.3)

‖u‖2w(·,x0) = 〈u, u〉w(·,x0) =

M∑
i=1

u2 (xi)w (xi,x0) , (4.4)

in which w (x,x0) acts as a weight function. Typically, w (x,x0) is
non-negative for all x ∈ Rd, has a maximum at x0 and decays mo-
notonically as the distance ‖x− x0‖ goes to infinity. For simplicity,
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Table 4.2: List of radial weight functions; χ is the indicator function

φ (r)

Inverse distance r−β , β ∈ N

Gaussian e−r
2

Inverse quadratic
(
1 + r2

)−1

Inverse multiquadratic
(
1 + r2

)−1/2

Epanechnikov
(
1− r2

)
χ[0,1] (r)

C2-Wendland function (1− r)4
(4r + 1)χ[0,1] (r)

Cosine cosβ
(
π
2 r
)
χ[0,1] (r) , β ∈ N

we further assume w to be radial, i.e.

w (x,x0) = φ

(‖x− x0‖
h (x0)

)
, (4.5)

where h (x0) is the so-called shape parameter of w. It can be mo-
deled as a function of the evaluation point x0. To improve the qua-
lity of the reconstructed function, some authors (Pham et al., 2006;
Ruppert and Wand , 1994; Liu, 2001) suggested applying non-radial
weight functions. The local shape and orientation of these weight
functions depend on the point distribution and on the nature of
the underlying function. Since these models are computationally
expensive, they do not conform to the real-time requirement of Pro-
Cap. As shown below, in the case of radial weight functions, the
approximation order is not affected by the choice of φ as long as
h (x0) scales with the local fill distance. However, from statistics
it is known that the asymptotically optimal weight function is the
so-called Epanechnikov kernel as it minimizes the asymptotic mean
squared error (Fan and Gijbels, 1996). Some often employed radial
weight functions are listed in table 4.2.
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Returning to the MLS problem, the unknown coefficients {cj}Nj=0

of the local approximant (4.2) are found by minimizing the residual
function

r (x,x0) = u (x)− û (x,x0) (4.6)

with respect to the previously introduced norm, i.e.

‖r (x,x0)‖2w(·,x0) → min. (4.7)

The normal equation of this weighted least squares problem has the
form

G (x0) c (x0) = v (x0) (4.8)

with

Gi,j = 〈bi (x− x0) , bj (x− x0)〉w(·,x0) , i, j = 0, . . . , N

c = [c0 (x0) , . . . , cN (x0)]
T

vi = 〈u (x) , bi (x− x0)〉w(·,x0) , i = 0, . . . , N.

(4.9)

Alternatively, the right-hand-side vector v and the Gram matrix G
can be written in terms of the Vandermonde matrix

Bi,j+1 = bj (xi − x0) , i = 1, . . . ,M, j = 0, . . . , N (4.10)

and the weight matrix

W = diag [w (x1,x0) , . . . , w (xM ,x0)] (4.11)

in the following way

G = BTWB (4.12)

v = BTWu (4.13)

where
u = [u1, . . . , uM ]

T
. (4.14)

From a computational point of view, one only has to account for
the set of data sites located in the support of the weight function
w (x,x0), i.e. X∗ = X ∩ supp [w (x,x0)]. By definition, the Gram
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matrixG strongly depends on the sampling point distribution around
x0. An inappropriate combination of the approximation space B and
the weight function w (e.g. shape parameter h or support) leads to
an ill-conditioned normal equation. This issue can be diminished by
solving the error equation directly

√
WBc =

√
Wu (4.15)

using either a QR or SVD decomposition. In the worst case, ho-
wever, the rank of the Matrix B is smaller than N + 1, meaning
that the weighted least squares problem (4.7) is not well-posed. As-
suming that B spans the polynomial space of degree m, the set of
data sites X∗ is then said to be not m-unisolvent. Consequently, to
guarantee uniqueness of the MLS solution, a weak constraint on the
data site distribution has to be imposed: For every evaluation point
x0 the set of data sites located in the support of the corresponding
weight function w (x,x0) has to be m-unisolvent. From the Haar-
Curtis theorem it becomes clear, that for m > 0, this is not directly
linked to the number of distinct data sites.

The final step of the standard MLS algorithm is simply the eva-
luation of the linear approximation ansatz (4.2) at x = x0, i.e.

û (x0,x0) =

N∑
j=0

cj (x0) bj (0) (4.16)

As we assume monomial basis functions, the formula simplifies to

û (x0) = c0 (x0) . (4.17)

An advantage of the MLS method lies in the possibility to estimate
not only the function value u but also its spatial derivatives (multi-
index notation):

∂̂αu (x0,x0) =

N∑
j=0

cj (x0) ∂αb (0) , α ∈ Nd0 (4.18)

Clearly, this requires the polynomial degree m of the approximation
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space to be larger than the order of the derivative |α|. It is impor-
tant to point out that these estimates are not identical to the true

derivatives of the approximation û, i.e. ∂̂αu 6= ∂αû. However, they
possess the same approximation order. In the literature, these deri-
vative estimates are ususally referred to as diffuse derivatives. They
play a key role in the diffuse element method (DEM), a meshless
technique to solve partial differential equations first proposed by
Nayroles et al. (1992). In section 4.5, the approximation quality of
these diffuse derivatives is analyzed.

Below, the algorithm of the standard MLS method is summarized:

Standard MLS

Input: data sites {xi}Mi=1, data values {ui}Mi=1

Output: approximation values {ûk}Rk=1

begin

define basis functions b (x) = [b0 (x) , . . . , bN (x)]
T

define weight function φ (r)

define evaluation sites {x0,k}Rk=1

for k ← 1 to R do

determine optimal shape parameter hk

find X∗ = X ∩ supp
[
φ
(
x−x0,k

h

)]
initialize G = 0 and u = 0

foreach xi ∈ X∗ do

w ← φ
(
‖xi−x0,k‖

hk

)
G← G+ w b (xi − x0,k) bT (xi − x0,k)

u← u+ w ui b (xi − x0,k)

end

c (x0,k)← G−1u

ûk ← bT (0) c (x0,k)

end

end
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4.3.2 Backus-Gilbert formulation

In the late 1960s, two geophysicists, George Backus and Freeman
Gilbert, developed an elegant method to solve ill-posed inverse pro-
blems, nowadays known as Backus-Gilbert method (Backus and Gil-
bert (1967), Backus and Gilbert (1968), Backus and Gilbert (1970)).
Two decades later, Bos and Salkauskas (1989) showed that the
Backus-Gilbert method and MLS are closely related by reformu-
lating the MLS method. This section is devoted to this dual for-
mulation beginning with a short introduction of the Backus-Gilbert
method for general linear inverse problems. The second part focuses
on scattered data approximation only. We will complete this section
by demonstrating that the standard MLS and the Backus-Gilbert
formulation are indeed identical.

The Backus-Gilbert method is only applicable if the known data
is given in terms of M linear functionals {µi (u)}Mi=1. Note, in the
case of scattered data approximation these are simply the point-
evaluation functionals. Now, the objective of the Backus-Gilbert
method is to find an estimate of another linear functional µ (u).
Due to linear nature of this problem, a simple, linear approximation
ansatz is proposed

µ̂ (u) =

M∑
i=1

µi (u)ψi (µ) . (4.19)

Since the values {µi (u)}Mi=1 are known, all that remains to be de-

termined are the coefficients {ψi (µ)}Mi=1. To this end, a function
q (µi, µ) ≥ 0 is introduced that acts as a separation measure. Bro-
adly speaking, the separation measure should follow the rule: the
more similar two functionals (arguments), the smaller is the function
value q and vice versa. In the case of point-evaluation functionals,
q is usually selected such that it only depends on the two points,
where the function u is evaluated. In other words, the further apart
the two points are the larger is the corresponding function value
q. According to Backus and Gilbert, the optimal approximation of
µ is obtained by minimizing the following quadratic form (spread
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functional)

S (ψi, . . . , ψM ) =
1

2

M∑
i=1

[ψi (µ)]
2
q (µi, µ) (4.20)

Obviously, by solely minimizing this functional we obtain the trivial
solution ψi = 0, i = 1, . . . ,M . To prevent this from happening,
an additional constraint is required. Backus and Gilbert stated this
constraint as follows: If u belongs to a certain finite function space
B = span {b0, ..., bN}, the approximation method µ̂ (u) has to be
exact. Due to linearity this condition implies N + 1 reproduction
constraints:

M∑
i=1

µi (bj)ψi (µ) = µ (bj) , j = 0, . . . , N. (4.21)

To sum up, the resulting constrained minimization problem reads as
follows:

1
2ψ

TQψ → min

subject to BTψ = b
(4.22)

where

Q = diag [q (µ1, µ) , . . . , q (µM , µ)]

ψ = [ψ1 (µ) , . . . , ψM (µ)]
T

Bi,j+1 = µi (bj) , i = 1, . . . ,M and j = 0, . . . , N

b = [µ (b0) , . . . , µ (bN )]
T
.

(4.23)

By introducing N+1 Lagrange multipliers λ = [λ0 (µ) , . . . , λN (µ)]
T

the following linear system can be deduced (Euler-Lagrange equati-
ons) [

Q −B
BT 0

][
ψ

λ

]
=

[
0

b

]
. (4.24)

The upper part of this linear system can be rearranged

ψ = Q−1Bλ. (4.25)
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4.3 Moving least squares

Substituting this expression into the lower part of equation (4.24),
we obtain a decoupled system for the Lagrange multipliers

BTQ−1Bλ = b. (4.26)

In a nutshell, the Backus-Gilbert method comprises three steps:

1. Compute λ by solving system (4.26)

2. Compute the coefficients ψ using equation (4.25)

3. Compute the approximation µ̂ (µ) by inserting ψ into the ap-
proximation ansatz (4.19)

By adapting the Backus-Gilbert technique to the scattered data
approximation problem, the given functionals {µi}Mi=1 are simply the
point-evaluation functionals, i.e.

µi (u) = u (xi) = ui, i = 1, . . . ,M. (4.27)

In order to attain a two-variable formulation, the functional µ is
considered as the point-evaluation functional at a point x, which lies
in the very near proximity of the point x0. Thus, the approximation
ansatz (4.19) can be rephrased as a local quasi-approximant:

û (x,x0) =

M∑
i=1

uiψi (x,x0) , (4.28)

where {ψi (x,x0)}Mi=1 are known to be the generating functions of
the quasi-approximant. The actual approximation at x0 is obtained
by setting x equal x0:

û (x0,x0) =

M∑
i=1

uiψi (x0,x0) , (4.29)

Furthermore, the separation measure q (µi, µ) is simplified such that
it only depends on xi and x0. This approximation is justified by the
fact that x is known to be very close to x0. In mathematical terms
this means that q (µi, µ) can be written as q (xi,x0).
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Without loss of generality and to improve numerical robustness,
the reconstruction constraints are expressed with respect to the shif-
ted basis functions

M∑
i=1

bj (xi − x0)ψi (x,x0) = bj (x− x0) , j = 0, . . . , N. (4.30)

Finally, the unknown generating functions {ψi (x,x0)}Mi=1 are found
by solving equation (4.26) and (4.25), where, however, the terms and
coefficients possess a much simpler form than in the general case:

Q = diag [q (x1,x0) , . . . , q (xM ,x0)]

ψ = [ψ1 (x,x0) , . . . , ψM (x,x0)]
T

Bi,j+1 = bj (xi − x0) , i = 1, . . . ,M and j = 0, . . . , N

b = [b0 (x− x0) , . . . , bN (x− x0)]
T

λ = [λ0 (x,x0) , . . . , λN (x,x0)]
T

(4.31)

To show the equivalence of the Backus-Gilbert and the standard
MLS approach, two conditions have to be fulfilled:

(i) The weight function in the standard approach is the inverse
of the separation measure in the Backus-Gilbert approach, i.e.
w (x,x0) = 1/q (x,x0)

(ii) The approximation space B in the standard approach is iden-
tical to the reproduction function space of the Backus-Gilbert
approach.

Due to the diagonality of Q and W , the first condition yields

Q−1 = W . (4.32)

Thus, equation (4.25) and (4.26) can be reformulated as follows

ψ = WBλ (4.33)

BTWBλ = b (4.34)

Now, by combining these two equations we get an explict formula
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for the generating functions only

ψ = WB
[
BTWB

]−1

b. (4.35)

Inserting this expression into the quasi-approximation ansatz leads
to:

û = ψTu = bT
[
BTWB

]−T
BTWu, (4.36)

where u is defined as in (4.14). Note that the matrix product in
the squared brackets is the Gram matrix G as defined in (4.12).
Moreover, as the Gram matrix is symmetric, the transpose operation
has no effect. According to definition (4.13) the second factor in the
above formula can be replaced by v. These trivial modifications in
conjunction with equation (4.8) lead to the following expression:

û = bTG−1v = bT c. (4.37)

Evidently, this is the vector notation of the approximation ansatz
in the standard MLS formulation and by that, we have shown that
the standard and the Backus-Gilbert MLS formulations are indeed
identical.

4.4 Examples

In this section, the two most simple subvariants of the MLS method
are deduced, discussed and compared. These are the zeroth-order
and the first-order MLS method. To illustrate and compare the
performance of the two methods a simple one-dimensional approxi-
mation problem is solved. The function to be approximated is given
by

u (x) = cos (x) sin (4x) + 0.1 cos (15x) . (4.38)

One hundred data sites are selected as realizations of a random va-
riable with a uniform distribution in the interval [0, π]. In the first
case the samples are the exact function values, while in the second
case, the samples are perturbed by Gaussian noise with a standard
deviation of 0.1. A Gaussian kernel is used as weight function with
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Figure 4.1: Comparison of 0th-order and 1st-order MLS using a
Gaussian kernel with a globally fixed shape parameter (h = 0.05).

The function values given at the data points are exact.

a globally fixed shape parameter h. In the error-free case, h is set
equal 0.05, while in the disturbed case h = 0.1. The results are
depicted in figures 4.1 and 4.2.

4.4.1 Zeroth-order MLS

In the simplest case, the unknown function is locally approxima-
ted by a constant. Thus, the finite approximation space is trivial
and consists only of one single constant. Without loss of generality,
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this constant is usually set equal to one. Because the Gram matrix
consists of only one element

G =

M∑
i=1

w (xi,x0) , (4.39)

the inversion and thus the computation of the coefficient c0 (x0)
becomes trivial. The formula of zeroth-order MLS approximation is

û (x0) =

M∑
i=1

ui
w (xi,x0)

M∑
j=1

w (xj ,x0)

. (4.40)

From this formula, one can easily deduce explicit expressions for the
generating functions

ψi (x,x0) =
w (xi,x0)

M∑
j=1

w (xj ,x0)

, i = 1, . . . ,M (4.41)

The zeroth-order MLS method is also referred to as Shepard’s ap-
proximation method (Shepard , 1968). Occasionally, if w corresponds
to the inverse distance function (cf. 4.2) the name inverse distance
weighting is used. In other fields such as statistics, the method is
usually called the Nadaraya-Watson estimator.

The main advantage of the zeroth-order MLS is its simplicity. As
no linear system has to be solved, the computational costs are low
compared to higher order methods. In addition to that, the method
is known to be very robust. If the support of the weight function
contains one or more data points the approximant is well-defined.
Furthermore, since the generating functions are strictly positive, it
is clear that the approximation is bounded by the smallest and lar-
gest data value in the support of the corresponding weight function
(Min-Max property). This implies that the zeroth-order MLS has
very poor extrapolation properties or leads to unsatisfactory results
at locations where the data sites are highly non-uniformly distri-
buted and the gradient of u is large (staircase effect). These two
observations are highlighted in figure 4.1. The staircase effect is clo-
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sely related to the selection of the shape parameter. It turns out
that if the shape of w is too narrow relative to the local data site
distribution, the approximation becomes very uneven (amplification
of the staircase effect). Vice versa, a too wide shape of w leads
to the unwanted effect of a very flat approximant (oversmoothing).
Obviously, there is an optimum between the two extremes. In the
case of noisy data, one takes advantage of the smoothing effect: by
selecting a larger shape parameter, overfitting can be successfully
avoided. The optimal shape parameter selection is covered in more
detail in the next section.

For a better understanding of the flow topology, not only the
distributions of the primary‡ but also of derived quantities§ are of
interest. To determine these derived quantities one is often confron-
ted with the task of computing spatial derivatives. Unfortunately,
the zeroth-order MLS provides no diffuse derivatives and therefore,
additional effort has to be put into the calculation of such derivative
estimates.

4.4.2 First-order MLS

Now, we focus on the MLS method that exactly reproduces linear
polynomials. Taking the monomials as basis functions, the Gram
matrix G simplifies to

G =

M∑
i=1

w (xi,x0) x̂i ⊗ x̂i, with x̂i =
[
1,xTi − xT0

]T
. (4.42)

The same simplification applies to the right-hand side of equation
(4.8) yielding

v =

M∑
i=1

w (xi,x0)uix̂i. (4.43)

If the dimension d is small, a direct inversion of the Gram matrix is
computationally still feasible as G is only a (d+ 1)× (d+ 1) matrix.

‡pressure and velocity
§e.g. vorticity, shear rate, Q-criterion, λ2-criterion
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u(x)=cos(x)sin(4x)+ 0.1cos(15x)
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1st order MLS, RMSD=0.20816

Figure 4.2: Comparison of 0th-order and 1st-order MLS using a
Gaussian kernel with a globally fixed shape parameter (h = 0.1).

The raw data is superimposed with Gaussian noise, σ = 0.1

Although numerically not ideal, one advantage of knowing the in-
verse of the Gram matrix explicitly is that the MLS approximation
of a n-dimensional vector-valued function is obtained with relati-
vely little computational effort. This is crucial for the scalability
of ProCap, since the number of functions to be approximated onto
the domain of interest depends on the chosen probe. For instance, a
conventional five-hole probe measures four quantities: three velocity
components and the static pressure.

A direct consequence of the monomial basis is that the first coef-
ficient of the ansatz (4.2) c0 is the approximation value at x0 itself,
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while the other coefficients c1, . . . , cd+1 represent the components of
the diffuse gradient. Therefore, the first order MLS solution might
be written as follows

û (x0)

∂̂x1
u (x0)
...

∂̂xdu (x0)

 = G−1v (x0) . (4.44)

Figure 4.1 reveals that in general the first-order MLS approxima-
tion outperforms the zeroth-order counterpart in terms of accuracy.
Especially, the extrapolation behavior at the boundaries is worth
mentioning. Additionally, the staircase effect is barely visible. This
means that the combination of highly non-uniform point set and
large gradients is less problematic. Of course, the problem of highly
non-uniform point distributions is still present, but only in regions
with high curvature (Hessian). The observed improvements come at
a cost:

• Computational costs: As mentioned above, the size of the
Gram matrix is (d + 1) × (d + 1). Applying a Gauss-Jordan
elimination scheme, the complexity of the matrix inversion is
O((d+ 1)

3
).

• Robustness: The first-order MLS approximation problem is
only well-posed if at any point in the domain the Gram matrix
is invertible, i.e. the point set in the support of every weight
function w has to be at least 1-unisolvent. From Haar’s the-
orem it is known that for d > 1 the condition of having more
than d data sites in the support of w is not sufficient. Furt-
hermore, as shown in the next section, unisolvence does not
guarantee a good approximation. An unfavorable distribution
of the data sites may lead to a very large approximation error
despite unisolvency.

Besides that, the problem of choosing the weight function’s shape
parameter remains. It is even aggravated as the chance of facing a
not well-posed or ill-conditioned approximation problem is increa-
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sed. In return, though, the first-order MLS method provides direct
estimates of the gradients in form of the diffuse derivatives. This
allows for the computation and visualization of derived quantities
such as vorticity at almost no extra cost.
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4.5 Error analysis and optimal shape parameter

The selection of the weight function’s shape parameter h (x0) is a
difficult but important task. To highlight the importance, we start
this section with a simple example in 2D. Let Franke’s test function

u (x, y) = 1
2e−

1
4 (9x−7)2− 1

4 (9y−3)2 − 1
5e−(9x−4)2−(9y−7)2+

3
4e−

1
4 (9x−2)2− 1

4 (9y−2)2 + 3
4e−

1
49 (9x+1)2+ 1

10 (9y+1)
(4.45)

be the function we wish to approximate. As depicted in figure 4.3
its shape is characterized by two peaks, a depression and a flat part.
The data sites are given by a set of 1024 Halton points, which are
quasi-uniformly distributed within the unit square (cf. fig. 4.3). To
keep the problem simple, the sampling values correspond to the ex-
act function values. The left column of figure 4.4 shows the result
obtained by the zeroth-order MLS method using a Gaussian kernel
as weight function. Three different shape parameters are tested,
h = 0.02, 0.05 and 0.1 (from top to bottom). Clearly, for h = 0.02,
the zeroth-order MLS fails to return a smooth surface. More preci-
sely, the reconstructed surface is afflicted with severe acne (staircase
effect). Widening the shape of the weight function leads to a smoot-
her surface but at the expense of overall accuracy. The inaccuracy
is revealed by the deviation of the height of the highest peak and by
the deflections near the boundaries with large gradients. As illustra-
ted in the right column of figure 4.4, the first-order MLS methods
generates significantly better results. Although the staircase effect is
still visible at h = 0.02, the irregularities are clearly less pronounced
than in the zeroth-order case. However, it is worth mentioning that
the least squares problems near the boundaries are close to being
ill-posed. This means that in the case of inaccurate input data, a
strong amplification of the errors may be observed. Visually, the
best result is obtained with a shape parameter of 0.05. The stair-
case effect is almost not visible and the dominance of the peaks and
of the depression seems to be comparable to that of the exact sur-
face. In addition to that the condition of the least squares problems
near the boundaries is measurably improved due to the wider shape
of the weight function. A further widening, however, leads to an
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Figure 4.3: Numerical example with Franke’s test function

over-smoothed solution as shown in the right bottom of figure 4.4.
In that case, the scale of the peaks and the depression is evidently
smaller than in the original.

Compared to a ProCap measurement the reconstruction scenario
in the previous example is much simpler, as the data sites are quasi-
uniformly distributed, the input data is exact, and the problem is
only two-dimensional. But even in this simple example, the signifi-
cance of the shape parameter selection becomes clear. In the past,
relatively little attention has been paid to that problem. In com-
puter graphics, the shape parameter is usually tuned such that the
result meets the visual expectation of the user. To the best of the
author’s knowledge there exist two more scientific approaches for as-
sessing the mentioned selection problem: In approximation theory,
first a tight-as-possible error bound is derived, which, in a second
step, is minimized by varying the shape parameter accordingly. In
statistics, the optimal shape parameter is obtained by minimizing
an estimate of the asymptotic mean squared error or of a related
accuracy measure. Below, both techniques are briefly outlined by
touching only the relevant aspects.
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Figure 4.4: Effect of shape parameter h: (a,c,e) 0th order MLS; (b,d,f)
1st order MLS; (a,b) h = 0.02; (c,d) h = 0.05; (e,f) h = 0.1

94



4.5 Error analysis and optimal shape parameter

4.5.1 Error analysis based shape parameter selection

In approximation theory, the accuracy of the MLS approximation
is assessed by finding a tight-as-possible bound of the point-wise
approximation error, which is defined by the difference between
the MLS-approximation û (x) and the function to be reconstructed
u (x):

e (x) = û (x)− u (x) . (4.46)

Let u be (m+1)-times continuously differentiable, i.e. u ∈ Cm+1 (Ω),
and let the basis functions in ansatz (4.2) span the polynomial space
of degree m, i.e. B = Pdm. From the Backus-Gilbert formulation it
is known that the generating functions ψi, i = 1, . . . ,M satisfy

M∑
i=1

p (xi)ψi (x,x) = p (x) , ∀p ∈ Pdm. (4.47)

In section 4.3.1 we have shown that if |γ| < m the MLS method pro-
vides an elegant and more importantly an efficient way to compute
estimates of the derivatives ∂γu. Therefore, the point-wise error
formula (4.46) can be generalized to

eγ (x) = ∂̂γu (x)− ∂γu (x) . (4.48)

For reasons of compactness the multi-index notation is used. By
applying the triangle inequality, the point-wise error can be bounded
as follows

|eγ (x) | ≤ |∂̂γu (x)− ∂γp (x) |+ |∂γp (x)− ∂γu (x) |, (4.49)

where p denotes an arbitrary polynomial in Pdm. Now, the first term
on the right-hand side is reformulated by using the local polynomial
reconstruction property (4.47)

|∂̂γu (x)− ∂γp (x) | = |
M∑
i=1

∂γψi (x,x) [u (xi)− p (xi)] |

≤ ‖u− p‖L∞(Bδx )

∑
i∈Ix
|∂γψi (x,x) |.

(4.50)
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Here, Bδx is the ball centered at x and with radius δx and corre-
sponds to the support of the weight function w (·,x). Ix is the indi-
ces collection of all data sites being contained in Bδx . As x ∈ Bδx ,
the second term in (4.49) is bounded by ‖∂γu− ∂γp‖L∞(Bδx ) and

therefore, inequality (4.49) changes to

|eγ (x) | ≤ ‖u− p‖L∞(Bδx )

∑
i∈Ix
|∂γψi (x,x) |

+ ‖∂γu− ∂γp‖L∞(Bδx )

(4.51)

Note, the above inequality is true for all p ∈ Pdm. In particular,
replacing p by the m-th order Taylor polynomial of u allows for
further simplification. Taylor’s theorem yields

‖u− p‖L∞(Bδx ) ≤ C1δ
m+1
x ,

‖∂γu− ∂γp‖L∞(Bδx ) ≤ C2δ
m−|γ|+1
x ,

(4.52)

where the constants C1 and C2 are given by

C1 =
∑

|β|=m+1

1
β!

∥∥∂βu∥∥
L∞(Bδx )

C2 =
∑

|β|=m−|γ|+1

1
β!

∥∥∂β+γu
∥∥
L∞(Bδx )

(4.53)

Finally, we end up with the following error bound

|eγ (x) | ≤ C1Λm,γ (x) δm+1
x + C2δ

m−|γ|+1
x (4.54)

Here, Λm,γ (x) :=
∑
i∈Ix |∂γψi (x,x) | is the so called Lebesgue

function. In the next paragraph the importance of the Lebesgue
function will be discussed.

In general, finding a bound for the Lebesgue function is not trivial
except in the zeroth-order case (i.e. m = 0 and γ = 0), where the
generating functions are known explicitly. More specifically, Λ0,0 =
1 unless Ix = ∅. Furthermore, as C1 = C2 the error bound of the
zeroth-order MLS is simply

|e0 (x) | ≤ 2C1δx. (4.55)
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For m > 0, the error analysis becomes rather complicated. If certain
conditions on the data sites X are satisfied and if the support radius
δx is chosen accordingly, Levin (1998) showed that the MLS met-
hod provides an approximation order of O

(
δm+1
x

)
. Based on that,

Wendland (2001) succeeded to derive an explicit expression for the
bound of the Lebesgue function. More recently, Mirzaei et al. (2011)
extended Wendland’s error analysis to obtain explicit error bounds
not only for the function estimates but also for the diffuse deriva-
tives. In the following, the results from Levin (1998), Wendland
(2001) and Mirzaei et al. (2011) are briefly summarized.

To this end, three mathematical terms need to be introduced, the
interior cone condition, the fill distance and the separation distance.

Definition 1 (Interior cone condition)
A set Ω ⊂ Rd satisfies an interior cone condition with respect to a
radius r > 0 and an angle θ ∈ (0, π/2) if for all x ∈ Ω there exists a
vector ξ (x) of length 1, such that the cone

C (x, ξ, θ, r) :={
x+ λy : y ∈ Rd, ‖y‖2 = 1, λ ∈ [0, r] ,y · ξ ≥ cos (θ)

} (4.56)

is a subset of Ω.

Definition 2 (Fill distance)
Consider a domain Ω ⊂ Rd and a finite collection of points X . Then,
the fill distance hX ,Ω is defined by the largest ball that has its center
in Ω and contains no point of X , i.e.

hX ,Ω = max
x∈Ω

min
xi∈X

‖x− xi‖2 (4.57)

Definition 3 (Separation distance)
For a given collection of points X the separation distance qX is
defined by the smallest distance between any two distinct points of
X , i.e.

qX = min
xi 6=xj

‖xj − xi‖2 (4.58)

As before, let Ω ⊂ Rd denote the domain in which the function
u is to be approximated and let X be the set of data sites at which
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u is known. The corresponding fill distance is denoted by hX ,Ω.
Assuming

(A1) that the domain Ω satisfies an interior cone condition with
radius r and angle θ,

(A2) that hX ,Ω ≤
3r sin θ

16 (1 + sin θ)
2
m2

(A3) and that the selected support radius δx scales with the fill
distance as follows

δx =
32 (1 + sin θ)

2
m2

3 sin2 θ
hX ,Ω,

it can be shown that the Lebesgue function Λm,γ is bounded by

Λm,γ ≤ 2

√√√√√#Ix
max
r∈Bδx

w (r,x)

min
r∈Bδx/2

w (r,x)

[
3 sin2 θ

16m2 (1 + sin θ)

]−|γ|
δ−|γ|x (4.59)

Here, the expression #Ix stands for the number of data sites in the
support of the weight function centered around the evaluation point
x. And Bδx is the ball around x with radius δx/2. Combining this
result with the previously derived formula (4.54) leads to the con-

clusion that the approximation order of the MLS estimate ∂̂γu is

O(δ
m−|γ|+1
x ) (or in terms of the fill distance O(h

m−|γ|+1
X ,Ω )). Expe-

rimental verification of this statement can be found in Wendland
(2001) and Fasshauer (2007). But it is important to point out that
this is only correct if the assumptions (A1)− (A3) hold.

Before we proceed, there are a few points worth mentioning:

• Due to the complexity of the problem, so far no error bounds
have been derived for weight functions with infinite support
(e.g. Gaussian kernel) and for weight functions with a locally
adapting shape parameter (Fasshauer , 2007).

• The above error bound presumes that the support of w is not
a function of the evaluation point x but a global constant.
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For data sites which are quasi-uniformly distributed¶ this ap-
proach usually leads to satisfactory results. Numerical tests
performed byWendland (2001) however suggest that the as-
sumption (A3) is too restrictive and can be relaxed to obtain
better results by choosing a much smaller support radius.

• Suppose that the data sites are highly non-uniformly distribu-
ted but still fulfill (A2). Then, in regions with a high point den-
sity, the bound of the Lebesgue function becomes rather large
as it is linked to the number of data sites in the support of the
weight function #Ix. To solve this problem, Lipman (2009)
recently introduced the stable MLS method, a technique that
adjusts the weights w such that the Lebesgue function becomes
independent of #Ix. Unfortunately, this improvement comes
at a cost: the method requires the computation of the Voronoi-
tessellation of the data sites. Moreover, the method addresses
only one problem caused by the data sites’ non-uniformity,
namely the influence of the Lebesgue function. The other pro-
blem is related to the global criterion of the support radius
δx. Because the non-uniformity of the data sites leads to a
large fill distance, it is likely that in regions with a high point
density the suggested global support radius exceeds its local
optimum.

The derived error bound is useful to select the shape parameter or
rather the support radius of the weight function if the data sites are
similarly distributed in all regions of the domain of interest Ω, if
the fill distance is not too large with respect to Ω‖ and if the data
values are exact and not noisy. In ProCap all three requirements are
violated which confirms our initial intuition that a globally constant
shape parameter is not adequate. For approximation scenarios si-
milar to the problem encountered in ProCap, the paper of Lipman
et al. (2006) offers a relatively simple but computationally expensive
solution. His idea is to minimize an estimate of the error bound at
every evaluation point individually. He uses a slightly different error

¶the uniformity can be measured by the ratio between the separation dis-
tance and the fill distance

‖cf. (A2)
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bound than the one derived above:∣∣eγ (x)
∣∣ ≤ Λm,γ(x)ε

+
C (x)

(m+ 1)!

∑
i∈Ix

∣∣∂γψi (x,x)
∣∣ ∑
|β|=
m+1

∣∣xi − x∣∣β (4.60)

where ε is the maximum magnitude of the noise and

C (x) = max
|α|=m+1

‖∂αu (x)‖L∞(Bδx ) (4.61)

The derivation of this inequality is explained in appendix D. Further-
more, he formulates two approaches: one assumes that the unknown
coefficient C is replaced by a global constant while the other uses a
local estimate of C. Besides being computationally expensive, the
handling of noisy data is questionable. The formula (4.60) suggests
that the higher the noise level the more important is the minimi-
zation of the Lebesgue function (first term) and the less important
is the size of the bandwidth (second term). Although this usually
implies a larger bandwidth, it omits the fact that the average of
independent random errors converges to zero with the number of
samples. In other words, at high noise level the bandwidth obtained
by Lipman’s approach is likely to be below the optimum. This is
best seen by considering the zeroth-order case. There, the Lebes-
gue function is known to be one and therefore the first term of the
inequality (4.60) is a constant no matter how large the bandwidth
is. Consequently, the noise level has no effect on the bandwidth
computed by the approach above.

4.5.2 Shape parameter selection within the framework of
LPR

From a mathematical perspective, the concepts of local polynomial
regression (LPR) and MLS are identical. However, the selection of
the optimal shape parameter is handled somewhat differently. In
LPR, one attempts to minimize the mean squared error (MSE).
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This is either done by cross-validation or by so-called plug-in met-
hods (Wand and Jones, 1994; Fan and Gijbels, 1996). Plug-in met-
hods often take the asymptotic MSE of the estimator as a basis for
optimization. Although the approximation scheme in the current
ProCap version relies on a more heuristic approach, the formula for
the asymptotic MSE may provide useful information for future im-
provements. The results in this section are simplifications of the
formulas presented by Liu (2001) and Ruppert and Wand (1994),
since our attention is only devoted to locally constant (Nadaraya-
Watson estimator) and locally linear regressions with radial weight
functions.

In LPR, the sampling points are modeled as a set of independent
and identically distributed Rd-valued random vectors {Xi}Mi=1 with
a probability density function fX : Rd → R. For the derivation of
the asymptotic MSE, it is assumed that

(a) the support of fX covers the entire domain Ω, and

(b) fX belongs to the continuously differentiable functions.

Within the LPR framework, {Xi}Mi=1 are generally called design
variables. To each of these design variables a scalar response Ui is
assigned. In regression analysis, one is interested in estimating the
mean function

u (x) = E[U |X = x]. (4.62)

For further analysis, a simple model of the scalar response is used

Ui = u (Xi) + σεi. (4.63)

The second term represents the noise, in which {εi}Mi=1 are mutually
independent random variables with zero mean and unit variance and
σ is the standard deviation. A more complex scenario, in which the
noise is spatially correlated is described in detail in Liu (2001). As in
the classical MLS approach, the locally constant estimator of u (x)
is obtained by solving the following minimization problem

min
c∈R

{
M∑
i=1

(Ui − c)2
w (Xi,x)

}
. (4.64)
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For simplicity, the weight function w is assumed to be radial with
a locally varying shape characterized by the function h:

w (Xi,x) =
1

h (x)
φ

(‖Xi − x‖2
h (x)

)
(4.65)

φ denotes a pre-defined kernel function, i.e.
∫
φ (r) dr = 1 and

φ (−r) = φ (r) , ∀r ∈ R. We introduce two quantities describing the
shape of the kernel function φ:

σ2
φ :=

∞∫
−∞

r2φ (r) dr

p2
φ :=

∞∫
−∞

φ2 (r) dr
(4.66)

For non-radial weight functions, the interested reader is referred to
Liu (2001) and Ruppert and Wand (1994). Returning to the mini-
mization problem (4.64), the solution, as derived in section 4.3.1, is
simply

û (x) = c (x) =

M∑
i=1

Ui
w (Xi,x)
M∑
j=1

w (Xi,x)

(4.67)

In order to obtain the asymptotic mean squared error, we assume
that as M → ∞, h → 0 with a rate slower than O

(
M−1/(d+2)

)
,

i.e. Mhd+2 →∞ as M →∞. Under these assumptions Liu (2001)
(Theorem 2.3) showed that the asymptotic MSE for the constant
estimator is

AMSE0 = h4σ4
φ

[
∆u

2
+
∇u · ∇fX

fX

]2

︸ ︷︷ ︸
=Bias2

+
σ2p2

φ

MhdfX︸ ︷︷ ︸
=Variance

(4.68)

Remarks:

• As intuitively expected, increasing the bandwidth leads to a
smaller variance of the estimator but also to a larger bias.

• A larger curvature of the underlying function(∆u ↑) leads to
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a larger bias of the estimator.

• ∇fX/fX can be thought of as a directional measure of the
local non-uniformity of the sampling points. Thus, a high gra-
dient of u has a negative effect on the AMSE only if the data
points are highly non-uniformly distributed. In the previous
section we called this observation staircase-effect.

• A larger noise level (σ ↑) leads to a larger variance of the
estimator.

• The term MhdfX reflects the effective number of sampling
points in the support of the weight function around x. Conse-
quently, a higher effective number of sampling points leads to
a smaller variance of the estimator.

The minimization of expression (4.68) returns the optimal band-
width of the Nadaraya-Watson estimator with respect to the asymp-
totic MSE:

h0,opt =

 dσ2p2
φ

MfXσ4
φ

(
∆u+ 2∇u·∇fX

fX

)2


1
d+4

(4.69)

This formula is often the starting point of the so-called plug-in met-
hods. The idea of plug-in methods is to replace the unknowns (i.e.
fX , σ

2,∆u,∇u) by sophisticated estimates. As in practice these cal-
culations are computationally expensive, plug-in methods are cur-
rently no option for multi-dimensional real-time applications such
as ProCap.

For the linear estimator, one has to solve a slightly different mi-
nimization problem:

min
c∈R
e∈Rd

{
M∑
i=1

(Ui − c− d · (Xi − x))
2
w (Xi,x)

}
. (4.70)

The solution to this problem has been derived in section 4.3.1

û (x) = c (x) = iT0G
−1v (4.71)

103



Chapter 4 Flow field reconstruction

G and v are defined by (4.12) and (4.13), respectively. The vector

i0 ∈ Rd+1 is simply [1, 0, . . . , 0]
T

.
Using the same assumptions as in the constant estimator case,

Liu (2001) also derived an expression for the asymptotic MSE of
the locally linear estimator (Theorem 2.1):

AMSE1 = h4
σ4
φ (∆u)

2

4︸ ︷︷ ︸
=Bias2

+
σ2p2

φ

MhdfX︸ ︷︷ ︸
=Variance

(4.72)

From this expression the optimal bandwidth can be deduced:

h1,opt =

[
dσ2p2

φ

MfXσ4
φ (∆u)

2

] 1
d+4

. (4.73)

The only difference to the locally constant estimator is the fact that
the second term in the bias is missing. Consequently, the approxi-
mation quality of the locally linear estimator

(i) does not depend on the gradient of the function to be approx-
imated,

(ii) is less affected by the non-uniformity of the sampling points.

However, as mentioned in the previous section the second statement
is only valid if the minimization problem (4.70) is well-posed. In
other words, the locally linear estimator usually provides better re-
sults than the locally constant estimator albeit at the expense of
robustness.
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4.6 Shape parameter selection in ProCap

In the previous section the importance but also the complexity of
the bandwidth selection in MLS has been demonstrated and discus-
sed. Although this problem is well known, so far no consensus on
the optimal selection scheme has been reached. It is known that the
performance of a selection scheme often depends on the particular
approximation problem. Regarding ProCap, the non-uniformity of
the data sites and the real-time requirement make the direct appli-
cation of existing solutions difficult, if not impossible. In the current
version, ProCap relies on a rather simple but efficient selection ap-
proach. The details of this heuristic scheme will be discussed in the
second part of this section. In the first part a local error bound of
the MLS approximant is derived which will be used to justify the
proposed selection scheme.

4.6.1 Derivation of a local error bound

The aim of this subsection is the derivation of the theorem that forms
the basis of the bandwidth selection scheme applied in ProCap. The
mathematical building blocks are found in Wendland (2001) and
Mirzaei et al. (2011). However, we pursue a somewhat different
goal: Instead of formulating an error bound in terms of the global
fill distance an error bound that depends on the local fill distance is
sufficient. This simplifies the analysis considerably as the local fill
distance has not to be linked with the global fill distance.

First, let us define two balls Bδx/2 and Bδx , both centered at the
evaluation point x. The radius of the first ball Bδx/2 shall be half
the radius of the second ball Bδx , with δx denoting the radius of
the second ball. As before, let X = {xi}Mi=1 be a set of arbitrary
but mutually distinct data points in Rd. Moreover, the sets Xδx/2
and Xδx are the intersections X ∩ Bδx/2 and X ∩ Bδx , respectively.
Note, that Xδx/2 ⊆ Xδx ⊆ X . Iδx/2 and Iδx stand for the indices
collection of Xδx/2 and Xδx , respectively.

Since a ball satisfies an interior cone condition with the same
radius and an angle θ = π/3, corollary (4.10) of Mirzaei et al. (2011)
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can be applied on Bδx/2:

Corollary 1
Let m be a positive integer and let hXδx/2,Bδx/2 be the fill distance
of Xδx/2 in Bδx/2. If

hXδx/2,Bδx/2 ≤
√

3

8m2
(
2 +
√

3
)δx (4.74)

then there exist for every x′ ∈ Bδx/2 (in particular for x) and every

multi-index γ ∈ Nd0 with |γ| ≤ m real numbers si,γ (x′) such that∑
i∈Iδx/2

|si,γ (x′) | ≤ 2
(

2 +
√

3
)−|γ|

h
−|γ|
Xδx/2,Bδx/2 (4.75)

≤ 2

(
8m2

√
3

)|γ|
δ−|γ|x (4.76)

and ∑
i∈Iδx/2

si,γ (x′) p (xi) = ∂γp (x′) (4.77)

for all p ∈ Pdm.

Suppose s̃i,γ is the trivial extension of the numbers si,γ onto Iδx :

s̃i,γ (x′) =

{
si,γ (x′) , i ∈ Iδx/2
0, otherwise

(4.78)

As in chapter 4, the generating functions of the mth-order MLS
approximation at x are denoted by ψi (x′,x). If we assume that
the support of the weight function w is given by the ball Bδx , the
Lebesgue function at x can be written as follows

Λm,γ (x) =
∑
i∈Iδx

∣∣∂γψi (x,x)
∣∣ (4.79)

To obtain an explicit expression for the bound of the Lebesgue
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function, we first apply the Cauchy-Schwarz inequality to this equa-
tion yielding

Λm,γ (x) =
∑
i∈Iδx

∣∣∂γψi (x,x)
∣∣√w (xi,x)

w (xi,x)

≤
√√√√∑
i∈Iδx

∣∣∂γψi (x,x)
∣∣2 1

w (xi,x)︸ ︷︷ ︸
=:A

√√√√∑
i∈Iδx

w (xi,x)

︸ ︷︷ ︸
=:B

(4.80)

While finding a bound for the second term (B) is trivial

B ≤
√

#Iδx max
x′∈Bδx

w (x′,x), (4.81)

the steps used for bounding the first term (A) are a bit more invol-
ved. Note that by definition of the MLS approach (Backus-Gilbert),
the generating functions ψi minimize term A under the polynomial
reproduction constraint (cf. eq. (4.77)). Thus, if the local fill dis-
tance hXδx/2,Bδx/2 satisfies condition (4.74), it is valid to write

A ≤
√√√√∑
i∈Iδx

∣∣s̃i,γ (x)
∣∣2 1

w (xi,x)
=

√√√√ ∑
i∈Iδx/2

∣∣si,γ (x)
∣∣2 1

w (xi,x)

≤

√√√√√√
∑

i∈Iδx/2

∣∣si,γ (x)
∣∣2

min
x′∈Bδx/2

w (x′,x)
≤

∑
i∈Iδx/2

∣∣si,γ (x)
∣∣√

min
x′∈Bδx/2

w (x′,x)

≤ 2√
min

x′∈Bδx/2
w (x′,x)

(
8m2

√
3

)|γ|
δ−|γ|x (4.82)

Finally, by means of equation (4.54) we can now formulate our main
result:
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Theorem 1
Given a set of points X , suppose that the fill distance of the subset
Xδx/2 = X ∩Bδx/2 in Bδx/2 satisfies

hXδx/2,Bδx/2 ≤
√

3

8m2
(
2 +
√

3
)δx (4.83)

Then the approximation error at x is bounded as follows

|eγ (x) | ≤2C1

√√√√√#Iδx
max
x′∈Bδx

w (x′,x)

min
x′∈Bδx/2

w (x′,x)

(
8m2

√
3

)|γ|
+ C2

 δm−|γ|+1
x

(4.84)

with
C1 =

∑
|β|=m+1

1
β!

∥∥∂βu∥∥
L∞(Bδx )

C2 =
∑

|β|=m−|γ|+1

1
β!

∥∥∂β+γu
∥∥
L∞(Bδx )

(4.85)

Considering the most relevant case γ = 0, the above error formula
reduces to

|e0 (x) | ≤ C1

1 + 2

√√√√√#Iδx
max
x′∈Bδx

w (x′,x)

min
x′∈Bδx/2

w (x′,x)

 δm+1
x (4.86)

4.6.2 A heuristic approach

Challenges

Figure 4.5 gives an example of how the data sites are typically dis-
tributed during the course of a measurement. The non-uniformity
is usually defined by the ratio between the fill distance and the se-
paration distance. Although the non-uniformity decreases as the
measurement progresses, the local fill distance hXδx/2,Bδx/2 remains
large. Hence, if the shape parameter is chosen such that inequa-
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Figure 4.5: Illustration of the data sites distribution during a ProCap
measurement. Time increases from left to right.

lity (4.83) holds it is quite possible that the support of the weight
function is large. Under the assumption that the previously derived
error bound is tight this also implies a large approximation error.
This follows not only because the approximation error is proporti-
onal to δm+1

x but also because the input point set is characterized
by a small separation distance. The small separation distance arises
from the fact that ProCap acquires data along a single path at a
relatively high frequency. It follows that the number of data sites
in the support of the weight function and therefore the value of the
Lebesgue function are large too.

Although the derived error bound (4.86) does not account for me-
asurement noise, one can identify two competing mechanisms related
to noise:

• If the noise is random and mutually independent logic would
suggest that the variance of the MLS estimate decreases with
the number of data sites taken into account (cf. section 4.5.2).

• On the other hand, a widening of the support radius may not
only increase the number of included data sites but also the
non-uniformity. In this case the Lebesgue function becomes
large and amplification of the measurement noise by the ap-
proximation process is the logical consequence.
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Design decisions and simplifications

In view of this, we are now able to define the guiding principles of
our selection scheme:

• Reduce the influence of the number of measurement points on
the Lebesgue function.

• Decrease the data sites’ non-uniformity.

• Select the bandwidth such that inequality (4.83) is approxi-
mately satisfied.

• Keep the computational costs to a minimum.

These goals may be achieved by taking the following measures:

1. Spatial binning: The data sites’ non-uniformity can be re-
duced by either decreasing the fill distance or by increasing
the separation distance. While the fill distance is automati-
cally decreased in the course of the experiment, the separation
distance remains the same. This lends weight to the argument
that the approximation quality can be improved by imposing a
lower bound on the separation distance. Simply discarding of
samples, however, is not advisable as useful information is lost
that may be used to reduce the noise level of the input data. In
ProCap we pursue a different approach: The domain is divided
into cubic subdomains (voxels). We then reduce the data in
each voxel by taking the average over the measurement points
contained in this voxel. To put it another way, a voxel repre-
sents all measurement points within this sampling volume by
a single, less noisy data point. As the number of data sites per
voxel is not a constant the noise levels of the voxel averages are
likely to be different. This issue can be resolved by multiplying
the weight of each voxel by an individual certainty value. It
seems clear that the certainty value should reflect the number
of effective measurement points within a voxel. Details of how
to model this certainty function are discussed below.

2. Reduction of the domain of interest: A maximum ball
radius δmax is defined. If all voxels in a ball with this radius
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are empty no approximation at the ball’s center is computed.
By doing that, we not only restrict the domain of interest, we
also lower the fill distance of the data sites which in turn leads
to a better approximation.

3. Limiting the number of considered data sites: The se-
lection of the optimal shape parameter is always a trade-off
between keeping the support size small and bounding the Le-
besgue function. As the number of data sites is monotonically
increasing with the support radius, logic suggests that the mi-
nimum of the Lebesgue function is given by the smallest band-
width that still satisfies inequality (4.83)∗∗. Since the spatial
binning ensures that the effective separation distance is lar-
ger or equal than the voxel size it seems reasonable to replace
inequality (4.83) by a slightly different criterion: If the ball
Bδx around the evaluation point x contains k or more mea-
surement points (voxel averages) the error bound (4.86) may
still hold. k is an integer that has to be specified by the user.
From a mathematical standpoint, we cannot be certain that
the two criteria are equivalent, but provided that k is selected
appropriately the k-nearest neighbor criterion should be suffi-
cient for the majority of evaluation points. Since the certainty
of the voxel averages is not a constant, it is better to replace
the number of measurement points by the sum of all certainty
values within the support of the weight function. In short,
instead of an integer k a threshold value s needs to be defined.
The bandwidth is then set as small as possible but such that
the sum of certainty values does not fall below s. To avoid
unsatisfactory results ProCap offers the possibility to visua-
lize the distribution of the Lebesgue function. This allows the
operator to rescan regions where the point distribution is not
favorable for the approximation scheme.

We make no claims here that the spatial binning as proposed above
is the best solution in terms of approximation accuracy but it of-
fers a number of advantages: The separation distance is increased,
the noise of the input data is reduced, the amount of data to be

∗∗assuming that the error bound derived in the previous section is tight
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transferred to the GPU is significantly smaller than before and as a
result of the data sites’ regularity the k-nearest-neighbor search be-
comes simple. For the sake of completeness it is worth noting that
the subdivision of the domain into voxels is not only used to reduce
the measurement points, it also defines the points at which the MLS
approximation is computed. Consequently, the voxel size should be
set in accordance with the selected spatial resolution and/or the
resolution capability of the probe at hand.

Certainty function

The concept of adding a certainty function c to the input data was
introduced by Knutsson and Westin (1993) as integral part of the so-
called normalized convolution method (NC). NC is a method which,
in its simplest form, is identical to the previously introduced MLS
method. In most cases, Knutsson and Westin (1993) suggested c
to be modeled as an indicator function, i.e. c = 1 if data at the
corresponding location is available and 0 otherwise. In ProCap this
binary ansatz seems to be inappropriate as the number of measure-
ment values per voxel and therefore the voxels’ certainty levels do
vary in space.

In what follows, we assume that the measurements in a voxel
{ũi}Mv

i=1 are discrete values of one observation ũ of a continuous time

random process Ũ (t). Naturally, this assumption is only justified
if the size of the voxels is sufficiently small, otherwise the spatial
dependence cannot be ignored. The random process Ũ (t) shall cap-
ture both: measurement errors and fluctuations due to turbulent
motions in the flow. For simplicity, however, we assume that Ũ (t)
is a wide-sense stationary process, i.e.

(C1) E
[
Ũ (t)

]
= u = const. (4.87)

(C2) E
[(
Ũ (t)− u

)(
Ũ (t+ τ)− u

)]
= C (τ) (4.88)

C (τ) denotes the autocovariance function. The integral time scale
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of this process is defined as

T =
1

C (0)

∫ ∞
0

C (τ) dτ (4.89)

and is assumed to be finite. Furthermore, let the random process be
ergodic in the wide sense, i.e.

(C3) u = lim
T→∞

1

T

∫ T

0

Ũ (t) dt (4.90)

(C4) C (τ) = lim
T→∞

1

T

∫ T

0

(
Ũ (t)− u

)(
Ũ (t+ τ)− u

)
dt (4.91)

The question we are interested in is how well the voxel average
1/Mv

∑Mv

i=1 ũi estimates E[Ũ (t)]. But before we turn to the dis-
crete case it is helpful to study the properties of the continuous time
average estimator:

û =
1

T

∫ T

0

ũ dt (4.92)

Here, T defines the period over which ũ is averaged. Clearly, if the
conditions (C1)-(C4) hold the estimator is unbiased:

E [û] = E

[
1

T

∫ T

0

ũ dt

]
=

1

T

∫ T

0

E
[
Ũ
]

dt =
T

T
E
[
Ũ
]

= E
[
Ũ
]

� (4.93)

The determination of the estimators variance is a bit more involved:

Var [û] = E

( 1

T

∫ T

0

ũ dt− u
)2
 = E

( 1

T

∫ T

0

ũ− u dt

)2


=
1

T 2

∫ T

0

∫ T

0

E [(ũ (t)− u) (ũ (t′)− u)] dt dt′

=
1

T 2

∫ T

0

∫ T

0

C (t− t′) dt dt′ =
2

T

∫ T

0

C (τ) dτ

≈ 2T
T

Var
[
Ũ
]

(4.94)
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The last step is only justified if C is rapidly decaying and if T is
larger than T . We now turn to the discrete case where the integral
can be replaced by a sum

û =
1

Mv∆t

Mv∑
i=1

ũi∆t =
1

Mv

Mv∑
i=1

ũi (4.95)

Here, the time between two samples ∆t is assumed to be constant.
This is reasonable since in most cases the samples contained in one
voxel are from the same path segment. Now, with the same reaso-
ning as above, the discrete time average is unbiased and its variance
can be approximated by

Var [û] ≈ 2MT
Mv

Var
[
Ũ
]

(4.96)

where MT is number of samples that fit into the integral time scale
T (i.e. T /∆t). If the measurements are uncorrelated the variance
of the average is known to be

Var [ûuncor.] =
1

Mv
Var

[
Ũ
]

(4.97)

Consequently, Mv/(2MT ) can be considered as the effective number
of samples in a voxel. In other words, if one is only interested in the
mean values sampling with a frequency larger than 1/(2T ) does not
improve the accuracy of the estimated average. For Gaussian noise
we know that the width of a confidence interval is proportional to
the standard deviation. This strongly suggests that the certainty
function should be tied to the standard deviation of the discrete
time average estimator. To this end, we define a value σ0 that acts
as a cut-off standard deviation. More specifically, if the standard
deviation of the estimator is larger than this value the certainty
value shall be zero. On the other hand, if the standard deviation is
below σ0 the certainty function shall take a value between 0 and 1.
More precisely, the certainty shall go to 1 as the number of samples
Mv goes to infinity. In mathematical terms, we propose the following
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Figure 4.6: Left: Influence of the noise level L on the certainty function
c. L = 0 . . . 0.5 . . . 5, MT = 0.5. Right: Influence of the correlation

length MT on the certainty function c. MT = 0.5 . . . 1 . . . 20, L = 0.5

model

c (Mv) = max

0, 1−
√

2MT
Mv

σu
σ0︸︷︷︸
=:L

 (4.98)

Here, σu is the standard deviation of the measurement signal, while
the ratio L describes a measure of the noise level. L is a positive
number and goes to zero as the input data become less noisy††.
The second quantity that has to be known is the correlation length
MT . In the simplest case where one assumes that the measurement
points are uncorrelated MT reaches its minimum, which is 0.5. In
the current version L and MT are pre-defined, global values. In the
future, they might be deduced from the measurement itself. The
effect of the noise level L and the integral time scale MT on the
certainty function c is illustrated in figure 4.6.

††turbulence & measurement noise

115



Chapter 4 Flow field reconstruction

4.7 An overview of the implementation of the
reconstruction algorithm

This section gives a short overview of the interpolation algorithm
and its implementation into the ProCap visualization software. As
mentioned before it is essential for the method to generate an up-to-
date visualization of the flow. This clearly requires that the inter-
polation has to be recomputed in real-time. The basic steps to be
performed in one update cycle are displayed in figure 4.7 and des-
cribed below. Steps 1 to 4 are computed on the CPU, while steps 5
and 6 are executed on the GPU by means of a compute shader.

1 The measurement points collected in the period between two
interpolation updates form the input data for the next interpo-
lation step. The exact number depends on the capture rate of
the data acquisition (MoCap and probe) and on the frame rate
of the ProCap visualization software. Normally, the two rates
are of the same order, i.e. there are only a few measurement
points to process. If the distance between two consecutive
points exceeds a certain threshold the group of points is split
into two or even more subgroups. To guarantee a high update
rate only one subgroup is processed per frame. Then for every
measurement point of the subgroup one has to perform two
tasks: First one has to identify the voxel to which the point
belongs and second one has to recompute the corresponding
voxel averages and the certainty value. Hereafter, we denote
the set of voxels being updated as raw-data-region (RDR).

2 Based on the raw-data region the voxels in which the interpola-
ted values might change have to be identified. More precisely,
one has to find all voxels that are within a radius of δmax to
a voxel of the raw-data region. This set of voxels is called
region-to-interpolate (RTI)

3 The interpolation is solved by means of a compute shader – a
program that runs on the GPU but is not part of the rendering
pipeline. As the invocation of a compute shader is decompo-
sed into groups of threads the region-to-interpolate has to be
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extended in such a way that the number of voxels in each di-
mension is a multiple of the 1D size of a thread group.

4 In the next stage, one has to select the voxels whose data is
required to compute the approximation in the extended RTI
(eRTI). As depicted in figure 4.7 this set of voxels, named as
region of influence (ROI), is determined by adding a layer of
thickness δmax to the eRTI. Subsequently, the voxel values of
the ROI are sent to the global memory of the GPU.

5 After the completion of the data transfer, the interpolation
compute shader is invoked. A compute shader divides its work
into a 3D grid of thread groups. A thread group is simply a
set of threads. Ideally, the number of threads per group is
a multiple of the warp size‡‡. Here, every voxel of the RTI
corresponds to a single thread. Threads within one group are
not independent but execute the same instruction on different
data. In exchange, they can be synchronized and have access
to so-called group-shared memory, a fast, user-controlled ca-
che. As group-shared memory can be accessed approximately
100 times faster than global memory§§, it is crucial to transfer
the data used by several threads to the group-shared memory.
Consequently, the compute shader’s kernel function comprises
two stages: First the relevant data of the ROI is transferred to
the group-shared memory. Second all threads within a group
are synchronized which is then followed by the actual interpo-
lation.

6 For each voxel in the RTI a moving least squares problem is
solved. First of all, the bandwidth/shape parameter of the
weight function is determined using the method described in
section 4.6. Next, the first-order MLS problem is solved by
directly inverting the 4×4 Gram matrix. If at some point
the user-defined certainty level is not reached although the
maximum bandwidth is applied then the first-order MLS ap-
proximation is replaced by the more robust zeroth-order MLS

‡‡the warp size for most nVidia GPUs is 32
§§assuming that no bank conflicts occur

117



Chapter 4 Flow field reconstruction

estimate. The zeroth-order MLS approximation can easily be
deduced from the terms used to compute the first-order esti-
mate. Thus, code branching can be kept to a minimum.

The described program was tested on two laptops:

1. CPU: Intel Core i7-4810MQ, 2.8GHz, 16GB RAM, GPU: nVi-
dia Quadro K2100M, OS: Windows 10 Pro, 64 bit

2. CPU: Intel Core i7-4700MG, 2.4GHz, 32GB RAM, GPU: nVi-
dia GeForce GTX 770M, OS: Windows 10 Home, 64 bit

In both cases the maximum frame rate of 60Hz could be achieved
without changing the compute shader parameters. Last but not
least, it is worth stressing that the progress of the scanning and
the quality of the interpolation can be monitored in real-time by
visualizing the distribution of the bandwidth, the distribution of the
Lebesgue function and/or the distribution of a flow field quantity.
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Figure 4.7: Interpolation algorithm in ProCap. δ∗ = δmax
A RDR, A RTI, A eRTI, A ROI
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4.8 Pseudo-divergence-free moving least squares

In low-speed aerodynamics, the flow under investigation is known to
be incompressible. This implies that the divergence of the velocity
field has to vanish at all points to satisfy mass conservation. Due
to various errors, velocity measurements that resolve all flow struc-
tures usually violate this condition. Denoising schemes that enforce
mass conservation have proven to perform significantly better than
those ignoring the solenoidal nature of the velocity field (Song et al.,
1993; Azijli and Dwight , 2015). For measurement techniques that
do not resolve all flow structures, the task is not only to reduce the
measurement noise, but also to fill in the data gaps in a physically
consistent way. In general, the incorporation of mass conservation
into the flow field reconstruction process can be done in two ways:

(a) Two-step approach: 1.) Reconstruct velocity field ignoring
mass conservation. 2.) Solenoidal denoising.

(b) One-step approach: Direct use of a divergence-free interpola-
tion/approximation scheme to reconstruct the velocity field.

The latter is arguably the more elegant approach. Within the frame-
work of RBF, Narcowich and Ward (1994) introduced matrix-valued
basis functions that lead automatically to a solenoidal vector field.
Lowitzsch (2002) extended this concept to locally supported basis
functions. In a similar context, Azijli and Dwight (2015) recently
demonstrated the effectiveness of solenoidal filtering within the fra-
mework of Kriging. In MLS, one can think of three direct ways to
enforce mass conservation:

(a) Penalty method: An additional term is added to the functio-
nal to be minimized. This term consists of a measure of the
local divergence times a so-called penalty parameter. This
parameter steers the priority of getting a divergence-free ap-
proximation.

(b) Exact method: The exact divergence of the MLS approxima-
tion is forced to be zero. This can be done by replacing the
penalty parameter by a Lagrangian multiplier.
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4.8 Pseudo-divergence-free moving least squares

(c) Pseudo-divergence-free method: This approach is identical to
the previous one except that instead of the exact, the diffuse
derivatives are used to build the divergence.

A disadvantage of the first approach is that a new parameter is
introduced. Similarly to the bandwidth, this parameter has to be
preselected. As this adds to the complexity of the optimal band-
width problem, this approach was not further pursued. The second
approach leads to a second order differential equation for the La-
grangian multiplier which has to be solved in the entire domain Ω.
This is not only computationally expensive, it also ruins the local
character of the MLS method. Thus, with regard to the real-time
capability of the ProCap system, the third approach is the most
promising and has been successfully integrated into the ProCap re-
construction procedure. As the name may suggest, the method does
not lead to a proper divergence-free vector field, since the diffuse
derivatives and the exact derivatives of the approximation are not
equal. However, it is worth to point out that the approximation
orders of both estimates, the diffusive and the exact derivatives,
are identical and therefore, similar results are expected. The idea
to apply the divergence constraint on the diffuse derivatives is not
new. In fact, it has been the subject of Huerta et al. (2004) and
Hong et al. (2008). However, in the present work the divergence
constraint is treated slightly differently allowing decoupling of the
resulting linear system such that the pseudo-divergence-free MLS
approximation can be computed in a very efficient way.

4.8.1 Mathematical derivation

Consider a vector-valued function u : Rd → Rd, which is known to
be divergence-free, i.e.

∇ · u = 0. (4.99)

Given a set of samples ui = u (xi) at M distinct locations xi, i =
1, . . . ,M , the task is to find an approximation û at an arbitrary
point x0. For this the MLS approximation ansatz (4.2) is extended
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to multi-valued functions:

û (x,x0) =

N∑
j=0

cj (x0) bj (x− x0) , (4.100)

with cj (x0) ∈ Rd. As demonstrated in section 4.3.1, the standard
MLS approximation is obtained by solving the following unconstrai-
ned minimization problem

M∑
i=1

w (xi,x0) |u (xi)− û (xi,x0) |2 → min
cj
. (4.101)

Without adding further constraints this problem can be split into
d decoupled minimization problems, each associated with a single
component of u. Here though, the solution space is limited such
that the local approximation is divergence-free with respect to the
diffuse derivatives, i.e.

∇x · û (x,x0) = 0, ∀x ∈ Rd (4.102)

Restricting our analysis on the first-order case with monomial basis
functions¶¶, this constraint simply translates to

d∑
k=1

ck,k = 0. (4.103)

Here, the first subscript describes the index of the basis function,
while the second subscript labels the component of the vector ck.
By introducing a Lagrangian multiplier λ (x0), the constraint mini-
mization problem can be formulated as

d∑
k=1

{
M∑
i=1

w (xi,x0) (ui,k − [c0,k, . . . , cd,k] x̂i)
2 − λck,k

}
→ min

c,λ
, (4.104)

where x̂i =
[
1,xTi − xT0

]T
. The Euler-Lagrange equations of this

constrained minimization problem lead to the following system of

¶¶as defined in section 4.4.2
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linear equations:

G 0 · · · · · · 0 e2

0
. . .

. . .
...

...

...
. . .

. . .
...

...
. . .

. . . 0
...

0 · · · · · · 0 G ed+1

eT2 · · · · · · eTd+1 0





c̆1

...

...

c̆d

λ



=



v1

...

...

vd

0



(4.105)

Here, G is the first order Gram matrix as defined by equation (4.42),
while the definitions of the vectors ei, c̆i and f i are given below

ei = [
1
0, . . . ,

i−1
0 ,

i
1,
i+1
0 , . . . ,

d+1
0 ]T

c̆i = [c0,i, . . . , cd,i]
T

=
[
ûi (x0) , ∂̂x1

ui (x0) , . . . , ∂̂xdui (x0)
]T

vi =
M∑
j=1

w (xj ,x0)uj,ix̂j

(4.106)

Evidently, the size of the system grows with the dimension of the
space. In R3 the number of equations is 13 making a direct matrix
inversion almost impossible. Fortunately, as indicated in the above
equation, the matrix on the left-hand side can be partitioned into
four blocks. This partition enables a blockwise matrix inversion of
the form

[
L E

ET 0

]−1

=

[
L−1 −L−1E(ETL−1E)−1ETL−1 L−1E(ETL−1E)−1

(ETL−1E)−1ETL−1 −(ETL−1E)−1

]
(4.107)

Note, the only relevant part of the inverted matrix is the upper left
block, since
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(1) the last entry of the right hand side vector is zero, and

(2) there is no need to know the Lagrangian multiplier explicitly.

Due to the block diagonal structure of the matrix L, its inversion is
trivial to compute

L−1 =



G−1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 G−1


(4.108)

This also implies

(1)
(
ETL−1E

)−1

= 1/
∑d+1
i=2

(
G−1

)
i,i

(2) L−1E =
[
gT2 , . . . , g

T
d+1

]T
, {gi}d+1

i=1 are the columns of G−1.

(3) L−1
[
vT1 , . . . ,v

T
d

]T
= [c̆1, . . . , c̆d]

T
(uncon)

(4) ETL−1
[
vT1 , . . . ,v

T
d

]T
=
[
∇̂ · u (x0)

]
(uncon)

Here, the expression (uncon) labels the coefficients one obtains from
the unconstrained, component-wise decoupled first-order MLS mini-
mization problem. Finally, with (1)–(4), the solution of the pseudo-
divergence-free MLS at x0 can be written in the form:

ûi

∂̂x1
ui

...

∂̂xdui


(sol)

=


ûi

∂̂x1
ui

...

∂̂xdui


(uncon)

−

[
∇̂ · u

]
(uncon)

d+1∑
j=2

(
G−1

)
j,j

gi+1 (4.109)
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where the subscript (sol) stands for solenoidal. The above formula
shows that the divergence-free MLS approximation can be computed
in two steps:

(1) Solve the standard first-order MLS problem for each compo-
nent of the unknown vector-valued function u. Note, G is only
a function of the evaluation point x0 and does not depend on
u. Therefore, one has to perform one matrix inversion per
evaluation point only.

(2) To obtain the pseudo-divergence-free MLS approximation one
has to subtract a correction term from the unconstrained MLS
approximation. This term can be evaluated from the inverted
Gram matrix and the unconstrained solution only. Therefore,
the additional computational costs are negligible.

4.8.2 Numerical experiment

The effectiveness of the pseudo-divergence-free MLS method is de-
monstrated on the basis of a simple two-dimensional numerical expe-
riment. A synthetic solenoidal vector field u : R2 → R2 can be con-
structed by the derivatives of a scalar-valued function ψ : R2 → R
(a.k.a. stream function):

u (x, y) =

[
∂ψ

∂y
,−∂ψ

∂x

]T
(4.110)

For the simulations at hand, the stream function is assumed to be gi-
ven by Franke’s test function∗∗∗. The resulting flow field, as depicted
in fig. 4.8, is characterized by three eddies of different strength and
different orientation. Moreover, the domain in which the velocity
field is reconstructed is the unit square. For convenience, the velo-
city field is scaled such that the maximum velocity in the unit square
is equal to one.

In order to imitate a ProCap measurement, the sampling points
are located along smoothed random paths as exemplified in fig.

∗∗∗defined in eq. (4.45)
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Figure 4.8: Velocity field created by Franke’s test function.

4.9. For each numerical experiment a different realization of such a
smoothed random path is generated. A short description of how the
random paths are constructed is given in appendix E. In accordance
with the previous section, the accuracy and numerical stability of
the MLS approximation is enhanced by limiting the minimum se-
paration distance. To this end, the input data set is reduced such
that the distance between two subsequent measurement points is
always larger than 0.01. Furthermore, to be as close to reality as
possible, the known velocity data is disturbed by random noise. It
is modeled by an independent, Gaussian distributed random vector.
Let the noise level (NL) be defined as

NL =
σ

|u|max
, (4.111)

where σ denotes the standard deviation of the noise in both directi-
ons. Note that the maximum velocity magnitude of the undisturbed
flow |u|max is one by definition. The noise level is varied between 0
and 50% using 5% increments.

Furthermore, the evaluation points of the MLS approximation lie
on a regular grid with spacing of 0.01. Then, the approximation
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Figure 4.9: Example of a smoothed random path. The color depicts the
support size of the weight function so as to contain 30 data points.

error ε may be defined by

ε =
1

T

T∑
i=1

|u (xi)− û (xi) | (4.112)

where xi denotes the i-th evaluation point and T is the total number
of grid nodes in the unit square. Additionally, let ε denote the error
averaged over all random path realizations.

The required weight function w is formed by the Epanechnikov
kernel with a locally varying bandwidth. This bandwidth function
is defined such that the number of data sites located in the support
of every w is fixed by integer M . The contour plot in fig. 4.9 gives an
example (M = 30) of how the spatial distribution of the bandwidth
may look like. As discussed in the previous section, the optimum M
depends on the selected approximation order, on the nature of the
underlying function, on the distribution of the data sites and last
but not least on the noise level. In addition, it is important to note,
that
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(i) the optimal bandwidth of the standard and the pseudo-diver-
gence-free MLS method do not necessarily have to be the same,
and

(ii) the integer M , which is in the current ProCap version prede-
fined by the user, is likely to be suboptimal.

Thus, in order to obtain a comprehensive comparison between the
standard and the pseudo-divergence-free MLS method, one has to
account for the influence of the integer M . So, M is varied between
20 and 150 using an increment of 5. To sum up, for each of the 100
different random paths, both the noise level NL and the integer M
are varied, forming a total of 29700 different input data sets. Figure
4.10 shows the distribution of the mean error ε (i.e. averaged over
all random path realizations) for the standard and the solenoidal
MLS method. The marks ◦ and × reveal that for both methods the
optimal bandwidth increases with the level of noise. The contour
lines of the average error already suggest that the solenoidal MLS
method generally produces better results. To directly compare the
two approximation schemes, we introduce an improvement factor
denoted as Imp:

Imp = 1− ε(sol)

ε(uncon)
. (4.113)

The subscript (sol) stands for the pseudo-divergence-free MLS met-
hod, while (uncon) indicates the standard MLS method. Imp essen-
tially measures the amount of improvement resulting from the sole-
noidal correction step. In other words, if Imp is positive/negative
the pseudo-divergence-free MLS method performs better/worse than
the standard MLS method. An Imp of one (100%) means that
pseudo-divergence-free MLS method recovers the velocity field ex-
actly. In figure 4.11, the average Imp as a function of NL and M is
displayed. The following observations are made:

• On average, the pseudo-divergence-free MLS method reduces
the approximation error for all noise levels and all bandwidths.
It is important to note that this does not automatically imply
that the error always becomes smaller. There might be unfa-
vorable configurations for which the closest pseudo-divergence-
free MLS approximation amplifies the noise. Although such a
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Figure 4.10: Contour plot of the average error ε as a function of the
noise level (NL) and the number of data sites (M) in the support of
the weight function. ◦ and × indicate the optimal integer M for a

certain NL

scenario is not impossible, it is highly unlikely. In the 29700
test cases at hand it did not occur once.

• For a fixed noise level, the mean improvement factor Imp de-
creases monotonically with increasing bandwidth. This makes
perfect sense as in the limit the reconstructed flow field beco-
mes uniform and therefore divergence-free. This also implies
that the optimal bandwidth of the pseudo-divergence-free MLS
method is slightly smaller than that of the standard method.

• Interestingly, the highest improvement factor is obtained at
zero noise level. A possible but so far untested explanation
could be that in the present study, the major error contribu-
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Figure 4.11: Distribution of the improvement factor

tion is induced by the highly non-uniform point distribution
and not by the measurement noise. As a consequence, the so-
lenoidal correction step mainly attempts to reduce this error
component, which intuitively is more efficient for more accu-
rate data values.

In figure 4.12 the two methods are compared under the assumption
that for both cases the optimal bandwidth has been selected. At
zero noise level, the average improvement is around 25%, while at
50% noise level the improvement is merely 5%. Note, the filled area
depicts the 95% confidence interval of the improvement factor, which
as stated above does not cross the zero improvement line. Another
strength of the method is indicated by the error bar plot: With the
solenoidal approach the variance of the error is slightly reduced. In
other words, outliers are expected to occur less often.

To complete this section figure 4.13 shows the result of one re-
alization at zero noise level. The corresponding point distribution
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Figure 4.12: Improvement of the pseudo-divergence-free 1st-order MLS
over the standard 1st-order MLS method at different noise levels.
The filled area and the error bars cover 95% of the realizations.

is given in figure 4.9. The improvement factor is slightly below the
average and amounts to approximately 23%. Some regions in which
the changes are clearly visible are enlarged by a factor 3. Looking at
the point distributions in these selected areas does not give a clear
picture of what is causing these changes. A more thorough analysis
of the error may shed some new light on that issue.
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Figure 4.13: → exact, → standard MLS, → solenoidal MLS
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Real-time visualization

The reconstruction of the flow field in real-time is only useful if
the acquired data is made accessible to the operator during the
experiment to improve the scanning. This refers not only to the
measurement accuracy but also to the measurement efficiency (e.g.
reduction of the measurement time). In ProCap this is achieved
by visualizing the flow topology and the progress of the measure-
ment to the operator. This in turn allows the operator to adapt the
handling of the probe in a non-random, determined fashion. Visu-
alization of scientific data is a field of research on its own. ProCap
employs simple, well-known visualization concepts such as isosurfa-
ces, streamlines, contour- and vector-slices. Hence, the difficulties to
be overcome are not rooted in the visualization methods themselves,
but related to the way they are integrated into the ProCap software.
Because the spatial interpolation is carried out on the GPU using
a compute shader, the interpolated data is stored in a buffer in the
global memory of the GPU. Considering the limited data rates be-
tween the CPU and the GPU, performing the calculations required
for the visualization on the GPU seems to be the most appropri-
ate solution in terms of efficiency. The advantage of this approach
is that substantially fewer data has to be exchanged between the
two processing units. Thus, this approach allows us to preserve the
real-time functionality of the system.

This chapter provides a brief outline of the applied visualization
concepts and their implementation into ProCap using Microsoft’s
DirectX graphics API. The aim of the first part is to shed some light
on the DirectX rendering pipeline, on its stages and on the DirectX
GPGPU ansatz. As we are just going briefly through these concepts,
for details the reader is referred to more comprehensive literature
on computer graphics. The second part covers the visualization
methods and their implementation into ProCap using the techniques
introduced in the first part.
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5.1 Shaders

Computer programs that determine how an object is rendered on a
display are usually referred to as shaders. Typically, shaders run on
a GPU and are attached to a stage of the rendering pipeline. While
the first video cards were fixed-function processors, today’s GPUs
have turned into powerful programmable processors, allowing not
only customization of the shading but also general purpose compu-
tations (GPGPU). Microsoft’s graphics API, Direct3D 11, offers two
different shader types (cf. figure 5.1): Shaders that are attached to a
stage of the rendering pipeline and shaders that run independently,
i.e. that are not attached to any stage of the rendering pipeline.
The latter are commonly known as compute shaders. In Direct3D,
the language used to program these shaders is usually Microsoft’s
high-level shader language, commonly abbreviated as HLSL.

5.1.1 Shaders attached to the rendering pipeline

As shown in figure 5.1 the rendering pipeline comprises several sta-
ges:

• Input assembler: The first stage of the DirectX rendering
pipeline is the input assembler, which is essentially responsible
for three tasks:

1. read data from user-filled buffers (geometry data)

2. assemble data into primitives, e.g. line lists, triangle lists
etc.

3. attach system-generated values such as vertex ID, primi-
tive ID, instance ID etc. to the data

To date, the input assembler is not programmable.

• Vertex shader: As the name implies the second stage in the
rendering pipeline processes the vertices passed in by the in-
put assembler. Generally, the main task of the vertex shader
is the transformation of the coordinates into the camera space.
Not exclusively however, as other, user-defined transformati-
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Figure 5.1: Shader types under Direct3D 11

ons such as morphing or skinning can be applied. It is im-
portant to recognize that the term vertex is not limited to
coordinates but may also contain other per-vertex data such
as information about the lighting, the color, the texture and
the surface normal. Thus, other per-vertex operations, for in-
stance related to lighting or coloring, may be performed. While
the output vertex structures may be different from their input
counterparts, the deletion and diversification of vertices are
not possible. This means for each input vertex there is exactly
one output vertex. Since the number of vertices is normally
lower than the number of pixels it is better to perform the com-
putationally expensive operations at this stage rather than in
the fragment shader.

• Tesselation stages (hull shader, tessellation, domain
shader): Unlike the vertex shader, the three tessellation sta-
ges are optional. These stages allow you to add more details
to low-resolution models by subdividing the primitives into
smaller pieces. Improving the model quality by means of these
shader stages has a number of advantages:
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1. Saving computational costs as expensive calculations (phy-
sics, lighting) can be done on the level of the low-resolution
model.

2. Saving memory and bandwidth. In particular, the data
transmission traffic between the CPU and the GPU is
reduced.

3. Support of scalable-rendering, e.g. levels-of-detail can de-
pend on the viewpoint.

As these processing stages have not been used in the ProCap
visualization software we do not go further into details and re-
fer the interested reader to other, more comprehensive sources.

• Geometry shader: Like the tesselation, the geometry shader
stage is optional. The geometry shader function is invoked
once for every primitive (e.g. triangle, line, point). Besides
the primitive ID provided by the input assembler, one has
access to all vertices of the primitive being processed. In ad-
dition to that, the vertex data of the edge-adjacent primitives
are also accessible. Unlike the vertex shader, the geometry
shader stage allows you to define a new set of vertices provi-
ded that they belong to the same topology (e.g. triangle strip,
line strip, point strip). Thus, contrary to the vertex shader
diversification of vertices is possible. However, it is required
that the number of output vertices is fixed for all primitives.
In a final step, the output of the geometry shader can either
be streamed to the rasterization stage or one can activate the
so-called stream output stage, where the vertices are simply
stored in a vertex buffer on the GPU memory.

• Rasterization: The rasterization stage combines the fixed-
function steps required to map the vertex and primitive data
to a 2D raster image. A raster image is essentially a matrix
of pixels (a.k.a. fragments). The rasterization process may
include the following operations:

1. Vertex clipping: Consider a primitive that lies partly in-
side and partly outside the view frustum. Clipping is the
process that first splits this primitive into several smaller
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primitives and then discards all primitives that lie outside
the view frustum.

2. Face culling: Primitives facing away from the viewer (ca-
mera) are discarded without being rendered.

3. Perspective division: The primitives are projected on the
2D viewport. In doing so, the affected fragments are tag-
ged for further processing.

4. Interpolation: The per-vertex data (e.g. color, texture
coordinates) is interpolated onto the affected segments.
Although not programmable, the user can specify whet-
her and how the interpolation shall be done, e.g. inter-
polation in the projected space or in the 3D space.

• Fragment shader: Another optional and programmable stage
of the rendering pipeline is the fragment shader (a.k.a. pixel
shader), which enables the programmer to apply per-fragment
operations, such as lighting, color mapping. The output of the
fragment shader essentially consists of two buffers: the color
buffer that stores the color of the fragments and the depth
buffer that informs the output merger about the distances of
the processed fragments from the camera.

• Output merger: In Direct3D the last step in the rendering
pipeline is the output merger. This stage determines the final
color of a pixel that is written to the frame buffer. First, a
fragment has to undergo a number of tests, which determine
whether and how a pixel is updated. Commonly, the following
tests are done:

– Pixel-ownership-test

– Stencil-test

– Depth-test

Which tests are actually active depends on the pipeline state,
i.e. they are user-selectable. The pixel color in the frame
buffer is only changed if the corresponding fragment passes
all activated tests. The color assigned to a pixel in the frame
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buffer may also depend on the previous pixel color, e.g. trans-
lucent surface. This mixing process is commonly known as
color blending.

5.1.2 Compute shader

Compute shaders provide a way to carry out work not only in pa-
rallel but also detached from the rendering pipeline. An advantage
of compute shaders compared to other GPGPU solutions (Cuda C,
OpenCV) is that they allow interaction with the rendering process
in a straightforward fashion. More precisely, they consume and pro-
duce memory resources that can also be accessed by the draw calls.

A compute shader divides its work into a 3D grid of thread groups.
Each thread group consists of a 3D grid of threads and each thread
executes the compute shader’s kernel function once. A thread group
is assigned to a processor unit sometimes called multiprocessor. In-
ternally, the thread group is split into so-called warps (a.k.a. wa-
vefronts). On nVidia cards the warp size usually corresponds to 32
threads. Therefore, it is recommended that the number of threads
in a thread group is a multiple of the GPU’s warp size. Unlike CPU-
threads, threads within a warp share a single instruction unit, i.e.
they are not independent and at best they execute the exact same
instructions on a different set of data. Therefore, in order to fully
utilize the computational power of a GPU, code branching within
a warp should be avoided. It is worth mentioning that threads be-
longing to the same thread group can not only be synchronized but
also share on-chip memory (with read and write permission) known
as shared memory. In today’s video cards, the shared memory size
is typically limited to 32 KB and is divided into 32 memory banks
(on compute shader 5.x). Normally, a memory bank can be accessed
only by a single thread per cycle. If this rule is violated the memory
access will be serialized. This artifact is commonly referred to as
bank conflict. The main advantage of shared memory is that it can
be accessed about hundred times faster (i.e. approx. 2-3 cycles)
than off-chip global memory provided that no bank conflict occurs.
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Figure 5.2: Compute shader architecture

5.2 Visualization features

5.2.1 Isosurfaces

Isosurfaces are useful data visualization methods to study the three-
dimensional features of a flow. An isosurface is given by the col-
lection of points that have the same value of a scalar function. To-
day’s GPUs are powerful processors mainly in real-time rendering of
polygonal surfaces. From this perspective, a method that computes
the isosurface as a triangulation is preferred. A simple, but nevert-
heless efficient approach is the so-called marching cubes algorithm
(Lorensen and Cline, 1987). As the name suggests the algorithm
marches through a set of cubes. Regarding ProCap, the cubes are
formed by the regular grid whose nodes are given by the center
points of the interpolation voxels (staggered grid). It is vital for the
algorithm that the value of the scalar quantity is known at the cor-
ners of the cubes. Now, each of the cube’s 8 vertices can either be
smaller or larger than the predefined isovalue. Thus, there are in to-
tal 28 = 256 different configurations how the isosurface can intersect
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Figure 5.3: Isosurface

a cube. Naturally, this statement is only true if we assume that the
scalar function between two edge-connected nodes changes monoto-
nically. By symmetry, one can reduce the number of configurations
to 15. If an edge intersects the isosurface (i.e. one vertex value is
larger and the other is smaller than the isovalue), the resulting in-
tersection point is used as a vertex of the triangulated isosurface.
The exact position of the intersection point is determined by line-
arly interpolating the scalar function between the two corresponding
corners of the cube.

Responsible for the efficiency of the marching cubes algorithm is
the fact that apart from the interpolation almost all operations can
be bypassed by look-up tables.

The marching cubes algorithm is embedded into ProCap by me-
ans of a compute shader that is invoked once per frame. To render
the isosurface one has to call a second shader that is attached to
the rendering pipeline and uses the triangle data produced by the
compute shader. This segregated design allows you to restrict the
marching cubes algorithm to the cubes that have been affected by
the previous interpolation step. While this approach may save com-
puting time it is not optimal regarding the memory consumption.
To prevent memory overflow ProCap limits the number of displayed
isosurfaces to one. Alternatively, instead of using a compute shader
the marching cubes calculations could also be carried out by a cu-
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stomized geometry shader. This ansatz possibly reduces the access
requirements on the memory but increases computing time. This is
due to the fact that in the most natural algorithm design the geo-
metry shader will update all cubes instead of only those affected by
the interpolation.

Improvements in the rendering quality of the isosurface (e.g. light-
ing, smoothness) often require that the normal vectors at the tri-
angles’ vertices are known. A simple way of estimating the normal
vector at a vertex is to interpolate the gradient field of the scalar
quantity along the cube’s edge. In ProCap the gradient field can
be created either by using the diffuse derivatives or by applying a
finite difference scheme on the interpolated data (additional com-
pute shader). To be less dependent on the interpolation method the
latter approach was selected.

5.2.2 Contour slices

As shown in figure 5.4 contour slices display the color-coded distri-
bution of a scalar quantity in a plane. In ProCap they are created
by adjusting the vertex and fragment shader accordingly. The only
inputs of the vertex shader are the vertex positions that describe a
user-defined triangulated plane. This triangulated plane is built be-
forehand on the CPU by a layer of regularly distributed points. To
prevent oversampling, the grid distance of these points is set equal
to the size of the voxels used for the interpolation.

Before we turn our attention to the operations carried out by the
vertex shader, we look at the format of the vertex shader’s output.
The per-voxel output of the vertex shader is a structure consisting
of two variables:

• P : position of the vertex with respect to the camera-view coor-
dinate system

• UV : 2D vector, where the first component indicates whether
the vertex lies in the domain of interest or not and the second
component is simply the value of the scalar quantity at that
particular location.
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Figure 5.4: Contour slice

In the vertex shader itself the following per-vertex operations are
performed:

1. Coordinate transform 1: To ensure fast access to the inter-
polation data and to allow clipping, the coordinates of the ver-
tex position are transformed to the normalized domain space.
In the normalized domain space, the domain of interest is the
unit cube.

2. Clipping: In the normalized domain space is it trivial to de-
tect whether the vertex at hand lies in the domain of interest
or outside. If it is inside, the first component of the output
variable UV is set to zero, else to one.

3. Identification of the relevant interpolation nodes: As
described in the previous chapter, the domain of interest is
decomposed into a grid of voxels. As the interpolated data is
stored at the center of these voxels one can define a second,
staggered grid where the interpolated data points are not the
centers but the corners of the grid cells. Assuming that the
vertex is contained in the domain of interest the shader has to
accomplish two simple tasks: Find the cell in which the vertex
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is located and then extract the corresponding corner values
from the interpolation data buffer.

4. Trilinear interpolation: By means of these eight data points
at the corners of the cell, the value at the vertex is calculated
by trilinear interpolation. The computed value is then assigned
to the second component of the output variable UV .

5. Coordinate transform 2: Subsequent to the trilinear inter-
polation, the vertex position is transformed to the camera-view
space and then passed to the output object P .

Right after the vertex shader the vertex and primitive data go through
the rasterization stage. Since the input plane is only single-layered
but has to be visible regardless of the viewing direction, face culling
is deactivated.

On completion of the rasterization the fragment shader is invoked.
First of all, all fragments are discarded for which the first component
of the UV variable is nonzero. Next, the color of the fragment is de-
termined. Thereby, the second component of UV is linearly mapped
to the colors of the colorbar. This mapping is fully described by the
user-specified minimum and maximum value and by the selected 1D
colorbar texture. The reason why the color mapping is performed in
the high resolution fragment shader rather than in the low resolu-
tion vertex shader is that with this approach the boundary between
two contour levels remains sharp and does not become blurred by
the interpolation in the rasterization stage.

5.2.3 Vector slices

In ProCap vector slices are visualization objects that display the
direction of the flow (cf. figure 5.5). Naturally, this requires that
the probe used is capable of measuring all three components of the
velocity. Similar to contour slices vector slices are generated by
adaptation of the vertex and fragment shader. In addition to that,
a few computational steps have to be performed in the geometry
shader stage.
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In contrast to contour slices, the input primitives are not triangles
but just individual points. The output of the vertex shader compri-
ses:

• the start- and endpoint of the vector associated with the vertex
being processed (represented in camera-view coordinates)

• the size and the orientation of the arrow head.

Briefly, the vertex shader is responsible for the following operations:

1. Vector extraction: At each vertex the vector to be visualized
is determined. To this end, we employ the same approach
as in the contour slice shader, i.e. find the cell in which the
vertex is located, extract the corresponding corner values from
the interpolated data buffer and use for each component the
trilinear interpolation scheme to get a local estimate of the
vector. If the vertex does not lie in the domain of interest
or no interpolated data is available a degenerated arrow is
returned.

2. Vector manipulation: For visualization reasons the user can
turn on or specify several vector manipulations: 1.) Projection
of the vector on the plane, 2.) normalization and 3.) scaling
of the vector’s length. If the vector is projected on the plane
the orientation of the arrow’s head is given by the normal of
the plane otherwise the normal of the head is set parallel to
the viewing direction.

3. Coordinate transform: Transformation of the per-vertex
data to the camera-view space.

In the geometry shader, each vertex primitive is replaced by a line
strip that forms the arrow to be rendered. To prevent backface
culling the line strip is two-layered. After the rasterization, the
fragment shader simply sets the color of the involved pixels to black.
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Figure 5.5: Vector slice

5.2.4 Streamlines

Another way to visualize the three-dimensional topology of the flow
field are streamlines (cf. figure 5.6). In case of a stationary flow, a
streamline corresponds to the trajectory of a fluid particle denoted
as ξ (t). ξ (t) is described by an initial value problem

d

dt
ξ (t) = u (ξ (t)) , ξ (0) = ξ0, (5.1)

where u is the velocity as a function of space, t is the time and ξ0

is the position of the fluid particle at t = 0. From a numerical point
of view, parallelization of algorithms that solve this kind of initial
value problem is not trivial (Burrage, 1993). Hence, The decision
was made to parallelize not the computation of a single trajectory
but the computations of several trajectories. The calculation of the
streamlines itself is completed by means of a compute shader. In
the current design, the number of threads per group is set to 32,
which corresponds to the warp size of most of today’s GPUs. Each
thread of the compute shader is responsible for the calculation of
one streamline. To keep the computational costs low the time inte-
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gration relies on an explicit Euler scheme. Moreover, the number of
time steps and therefore the number of streamline segments is limi-
ted to one hundred. Per streamline segment one particle is drawn.
For animation reasons its position is not fixed but moves along the
segment. The speed of this movement can be adjusted by the user.
The output of the compute shader is a buffer storing the particle po-
sitions at a certain time. To render the particles the point data has
to pass the stages of the rendering pipeline. The vertex shader uses
the per-vertex IDs to retrieve the particle positions from the output
buffer of the compute shader. At the geometry shader stage each
point primitive is replaced by two triangles forming a square. The
normal of this square is set parallel to the viewing direction while
the size of the square can be adjusted by the user. Additionally,
to each corner of the square a 2D texture vector is ascribed. These
texture vectors simply correspond to the corner coordinates of the
unit square and are subsequently used in the fragment shader to
generate the pseudo-spherical shape of the particles. An advantage
of the fact that the streamlines are updated once per frame is that
the initial point ξ0 can change its position. For instance to enhance
the functionality of the probe one can attach the initial point of
a trajectory (or even more) to a point on the probe. By doing so
the probe is both a flow sensing instrument but also some sort of a
virtual smoke probe that can be used for flow diagnostics.

Figure 5.6: Streamlines
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Figure 5.7: Left: Voxel eraser. Right: Current-state-visualizer

5.2.5 Visualization techniques decoupled from
interpolation

Independent of the interpolation, two other helpful measurement
visualization techniques are available in ProCap (cf. figure 5.7).
Since these two methods do not depend on the interpolated flow
field the underlying geometries are created on the CPU. For the
rendering standard, built-in shaders are applied.

• Voxel eraser: The voxel eraser splits the domain of interest
into a set of uniform voxels. The size of these voxels can be
adjusted by the user and is typically larger than those used for
the interpolation. A voxel disappears as soon as the number of
samples within this volume exceeds a user-defined threshold.
To put it another way, a rendered voxel indicates a region
where the measurement point density is low. Thus, a possi-
ble measurement strategy for uniform scanning is to erase all
voxels. At first, the size of the voxels shall be set large but as
the measurement progresses one is encouraged to reduce the
size in order to spot under-resolved zones.
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• Current-state-visualizer: By means of the current-state-
visualizer ProCap provides a way of visualizing the latest sen-
sor data. A colored sphere attached to the probe’s head dis-
plays the most recent value of a measured, scalar quantity, e.g.
static or dynamic pressure. In addition to the colored sphere,
the probe is also equipped with a virtual arrow that indicates
the direction of a user-selected vector quantity (e.g. velocity).
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Results/Measurements

To demonstrate the performance and versatility of the ProCap sy-
stem, this chapter presents measurement results for three different
test cases, namely:

• Tip vortex of a symmetric NACA wing

• C-pillar vortex of the Ahmed body

• Flow field around a sailing yacht

The first two measurements were carried out in the large subsonic
wind tunnel of the Institute of Fluid Dynamics, ETH Zurich. To
assess the accuracy of the ProCap measurements, the reconstructed
flow fields are compared to flow data acquired with the built-in tra-
versing system. The third experiment showing the flow around a sai-
ling yacht was conducted in the twisted flow wind tunnel (TFWT)
of the University of Auckland.

6.1 Test facilities

6.1.1 Large subsonic wind tunnel

The large wind tunnel of the Institute of Fluid Dynamics is a closed
return wind tunnel built in 1935 under the direction of Prof. Jakob
Ackeret. The side view of the tunnel is illustrated in schematic form
in figure 6.1. The air flow is generated by two fans, each powered
by a 175kW electric motor. Before the air reaches the test section,
it passes a screen and a flow straightener (honeycomb) to create a
uniform laminar inflow. In the corners, where the flow changes its
direction, an array of vanes prevents the growth of flow instabili-
ties. The converging nozzle located upstream of the test section not
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Figure 6.1: Large subsonic wind tunnel at ETH Zürich

only increases the wind speed but also has a stabilizing effect on
the flow (favorable pressure gradient). Normally, the wind speed
is determined by means of the pressure drop across the inlet con-
traction. Under normal conditions, the maximum flow velocity is
around 60m/s, which corresponds to a Mach number of approxima-
tely 0.17. The test section itself has the dimensions 2.1 × 3 × 5m
(height×width×length). To reduce the effect of the growth of the
boundary layer on the core flow, the cross-sectional area of the test
section widens slightly in the flow direction. The test objects are
usually mounted on a turn-table which allows the operator to change
the angle of flow incidence. Moreover, for the precise measurement
of the aerodynamic forces, the turn-table is mounted on a stationary
6-component piezoelectric force balance. The test section is closed,
but is, if required, accessible through three windows on the top,
front and rear wall. In addition, antireflective glass windows in the
sloped part of the ceiling allow for optical access without disturbing
the flow. Furthermore, to obtain volumetric flow data from point
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measurements, the wind tunnel is equipped with an integral 3-axes
traversing system.

The ETH wind tunnel can be operated in two different modes,
either stagnation pressure regulated or rotation-speed regulated. All
experiments carried out for this work are based on the latter opera-
tional mode.

6.1.2 Twisted flow wind tunnel

As the air flow around a sailing yacht is rather complex, wind tun-
nel testing is of crucial importance for design optimization. To make
wind tunnel measurements of sailing yachts more reliable, the Yacht
Research Unit of the University of Auckland built in 1994 the first
twisted flow wind tunnel (Flay (1996)). As indicated in figure 6.2
the wind experienced by a sailing boat (a.k.a apparent wind) is the
superposition of the true wind and the head wind (=̂ inverse of the
boat velocity). The magnitude of the true wind varies with the
distance to the surface of the water (atmospheric boundary layer)
resulting in a vertical twist of the apparent wind profile. To simulate
this twist the twisted flow wind tunnel (TFWT) at the University of
Auckland uses an array of flexible vanes, which are located 1.5m up-

Figure 6.2: Twisted flow profile
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stream of the test section (see figure 6.3). The shape of these vanes
can be mechanically adjusted allowing one to change the strength of
the vertical flow twist (max. 40◦). Moreover, to properly simulate
the atmospheric boundary layer the TFWT contains a comparati-
vely long settling chamber (18m) and a set horizontal bars spanning
the width of the tunnel. By adjusting their heights one can change
the flow such that it conforms to the target flow profile. Typically,
the boundary layer has a height of about 50cm and a turbulence
intensity between 15 and 5%. In the bulk flow the turbulence level
is approximately 4%.

The TFWT is operated as a blow down, open return wind tunnel.
The two 75kW fans can produce wind speeds of up to 8m/s. The
course and heel angle of the boat can be adjusted by the remote
controlled turn table. Moreover, to eliminate artifacts caused by
the air flow around the hull of the ship, the model is immersed in a
basin of water. The forces acting on the model are measured by a
built-in 6-component force balance.

Figure 6.3: Twisted flow wind tunnel at University of Auckland
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6.2 Test cases

6.2.1 Tip vortex of a NACA airfoil

An interesting and well-studied flow phenomenon is the tip vor-
tex generated by a wing of finite size. Here, a symmetric wing
of length 1m is installed vertically at the center of the wind tun-
nel’s test section (see figure 6.4). The profile has a constant chord
length of 200mm and its shape corresponds to a standard profile
from the NACA series, namely the NACA0012 airfoil. The num-
ber 0012 signifies that the profile is symmetric and that the ratio
of thickness to chord is 12%. For this experiment, the wing model
is tilted at an angle of 10◦ to the flow inducing a strong tip vortex.
As shown in figure 6.4, the domain of interest is set about 150mm
downstream of the trailing edge and measures 100×420×800mm
(length×width×height). The wind speed u∞ is 12m/s. Thus, the
five-hole probe is fitted with the HCLA02X5EB pressure transducers
which have a range ±250Pa.

For the ProCap measurement the domain is divided into 268’800

Figure 6.4: Measurement domain for NACA0012
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cubic voxels of edge length 5mm. The technique used to interpolate
the data onto a regular grid is the adaptive first-order moving least
squares method described in chapter 4. The interpolation parame-
ters are set as follows:

• The samples are considered to be uncorrelated, therefore the
integral time scale MT is equal 0.5.

• The noise level L is assumed to be 0.5.

• The certainty threshold value s defining the kernel bandwidth
is set to be 20.

The data is acquired at a frequency of 100Hz. To cover the whole
domain of interest, the measurement takes about 1200 seconds to
complete. For a ProCap scan this is relatively long, and can be
explained by the time it takes to resolve the fine structures found in
the flow field.

Similar to the ProCap measurement, the traverse is used in con-
junction with the same five-hole probe (HCLA02X5EB pressure trans-
ducers). However, only one y-z-plane at the center of the domain
is scanned. To further reduce the measurement time, the traversing
aperture is programmed to scan the plane continuously at a speed
of 10mm/s. The scanning paths are vertically layered with a sepa-
ration distance of 5mm. Hence, the measurement time for one scan
adds up to approximately 7200 seconds. Although only one plane is
measured, this is about six times longer than the volumetric ProCap
measurement. As before the acquisition rate of the probe signal is
100Hz resulting in 50 samples per 5mm. To reduce the noise of the
measurement these 50 samples are averaged together and replaced
by a single measurement point.

Figure 6.5 compares the distribution of the scaled velocity mag-
nitude (i.e. |u|/u∞). Not surprisingly, both methods are capable
of capturing the two dominant flow structures present in the do-
main of interest, namely the tip vortex and the sharp vertical wake
in the velocity profile. While the locations of these structures are
practically identical, some differences are found with respect to their
strengths. The ProCap measurement tends to smooth out sharp fea-
tures (roll-up of the tip vortex, depth and thickness of the wake).
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This behavior becomes evident by examining the distribution along
a line as shown in the two graphs in the lower half of figure 6.5).
The effect can be explained by the following facts:

• due to the shorter measurement time and the larger volume
to be covered, the density of the measurement points with
ProCap is considerably lower than that of the traversing scan

• the selection of the interpolation parameters (certainty thres-
hold and voxel size) is based on a trade-off between robustness
and spatial resolution. The spatial resolution can be improved
by using more aggressive interpolation settings. However, this
leads to considerably longer measurements and bears the risk
of creating ill-conditioned interpolation problems.

As illustrated in figures 6.6 to 6.8, the smoothing effect appears to
have a larger impact on the main-flow component of the velocity
than on the cross-flow components. When expressed in absolute
numbers, the differences in the cross-flow components are insignifi-
cant. In closing, it is worth mentioning that the probe tip size is
not ideal considering the flow structures being observed. Moreover,
the scan speed of the traverse should be reduced since the average
values in the interesting flow regions still seem to be biased by noise
(measurement noise, flow fluctuations).

155



Chapter 6 Results/Measurements

Figure 6.5: Comparison of the scaled velocity magnitude, i.e. |u|/u∞
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Figure 6.6: Comparison of the scaled velocity in x-direction, i.e. u/u∞
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Figure 6.7: Comparison of the scaled velocity in y-direction, i.e. v/u∞

158



6.2 Test cases

Figure 6.8: Comparison of the scaled velocity in z-direction, i.e. w/u∞
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6.2.2 C-pillar vortex of the Ahmed body

Often the scan of a single plane using a traversing system is insuffi-
cient to fully understand the three-dimensional topology of the flow.
This is particularly true for flows around complex geometries such
as the Ahmed body (Ahmed et al., 1984). The Ahmed body is a
standardized bluff body shape specifically designed to simulate the
flow around a road vehicle. The schematic in figure 6.9 shows the
geometry and dimensions of the body. It is known that the angle
of the rear slant ϕ has a major influence on the global flow pattern.
In this work ϕ measures 25◦ resulting in a rather complex, highly
three-dimensional flow field. If no angle of incidence is applied the
flow direction coincides with the x-axis introduced in figure 6.9. For
both measurements the incident flow velocity is fixed at 18m/s. The
wake flow is characterized by two vortices generated at the lateral
edges of the slanted surface (a.k.a. C-pillar vortices). In addition,
the flow over the slanted surface is partially separated, to be precise,
there is a thin separation bubble near the centerline. At the rear
edge of the slanted surface the flow becomes completely detached,
thereby two counter-rotating separation zones are formed. Close to
the ground the flow contains a number of smaller, relatively com-
plex flow structures generated by the legs of the body, the ground
floor and the rear end of the body. However, this is irrelevant as
the measurement domain covers only one C-pillar vortex and part
of the separated flow (cf. figure 6.10 ).

To accommodate the prevailing flow conditions, the five-hole probe
is fitted with the 250Pa pressure transducers (HCLA02X5EB). Since
the acceptance angle of the five-hole probe at hand is limited to
±60◦, reverse flow, as it is seen in the separated flow regions, can-
not be properly captured. This implies that the probe processes
only pressure data that fall into the valid range of operation, while
”invalid” pressure readings are simply ignored. Consequently, the
measurement in these regions is strongly biased. This circumstance
underlines the need for fully omnidirectional flow sensors.

For the measurement using the traversing system, the domain of
interest is split into 19 parallel y-z-planes (see figure 6.10). The dis-
tance between two neighboring planes is 25mm. The five-hole probe
is traversed continuously along horizontal paths with a scan speed of

160



6.2 Test cases

10mm/s. The distance between two adjacent paths is 5mm. Every
scan path is divided into 5mm segments over which the average of
the recorded data is computed. The probe is operated at 100Hz.
Thus, at best, there are 50 samples per segment. However, in the
separated flow region the number of ”valid” data points may be re-
duced considerably. The net time to scan all 19 planes is about 12
hours.

The ProCap data is collected in two measurement runs, each with
a length of 20 minutes. Compared to the measurement with the
traversing system, this corresponds to a speed-up factor of 18. It is
worth noting that this value does not account for the time it takes to
program/teach the traverse. For the ProCap measurement the dom-
ain is split into voxels measuring 5mm in each direction (=̂ 473’760
voxels). The acquisition rate of the tracking and of the pressure
signals is 100Hz. To reconstruct the flow field the approximation
method introduced in chapter 4 is applied. The parameters to be
selected are set as follows:

• As the samples are considered to be uncorrelated, the integral
time scale MT is 0.5.

• The noise level L is assumed to be 0.5.

• The adaptive kernel width is determined by the certainty thres-
hold s. For this measurement scenario, s is set rather conser-

Figure 6.9: Geometry and dimensions of the Ahmed body (in mm).
Figure from Hinterberger et al. (2004).
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Figure 6.10: Measurement domain for Ahmed body

vative to a numerical value of 30.

Below, the results of the two measurement approaches are com-
pared at two different positions, namely at x = 371mm (Plane 7)
and at x = 271mm (Plane 11). Figure 6.12a shows the distribution
of the total pressure loss (scaled by the bulk dynamic pressure) at
x = 371mm. The arrows indicate the direction and magnitude of the
projected velocity field. Qualitatively, the distributions of the total
pressure loss look quite similar. In particular, the C-pillar vortex and
the separation zone are clearly visible in both cases. As expected,
away from the low-pressure zones, both approaches predict marginal
losses of total pressure (inviscid flow). ProCap, however, seems to
perform worse in regions where the total pressure field has a high
curvature (cf. chapter 4). The tendency to smooth the underlying
function becomes more marked if the distributions are plotted along
a line (cf. figure 6.12a). ProCap’s smoothing behavior can be partly
explained by the comparatively conservative approximation settings
(voxel size and certainty threshold s). To achieve better accuracy
one could reduce the voxel size and/or the certainty threshold s.
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But this comes at the cost of a longer measurement time.
Figures 6.12b, 6.13a and 6.13b depict the scaled distributions of

the velocity components u, v and w in the same plane (at x =
371mm). The results support the findings described above, i.e. re-
garding the ProCap measurement regions with a large Hessian are
less accurately resolved due to the smoothing behavior of the ap-
proximation scheme. In addition to that, the figures also show that
for the measurement with the traverse the noise in the detached flow
zone is significantly higher than in the surrounding area. This has
two causes: On the one hand, the flow fluctuations in this region
are stronger, therefore more samples are required to reduce the un-
certainty of the average estimator. On the other hand, there is a
good chance that the mean flow direction falls outside the applica-
tion range of the five hole probe. Hence, the number of samples used
to determine the average may be substantially less than usual. In
the ProCap case, the noise is less conspicuous as the lower sampling
density is compensated by a kernel with a larger support.

If the test model intersects the domain of interest, scanning with
a traverse is challenging. One has to make sure that the probe/sting
and the model do not come in contact with one another. Since
the flow leads to slight probe and model vibrations, measurements
close to the model surface are almost impossible. By comparison,
in ProCap the movement of the probe can be precisely controlled
by the operator allowing one to measure in the proximity of the
model∗. By examining figures 6.14 and 6.15 the benefit of the hand-
guided approach is immediately visible in that the scan with the
traverse covers the interesting flow region only partially. As before,
these figures show the distributions of the total pressure loss and
the three velocity components, but this time at x = 271mm. At
first sight, there seems to be a systematic difference in the curves
depicting the distribution of the quantity being studied along the
line C-C, particularly near the centerline of model. However, this is
an artifact and can be explained by the fact that a large part of the
line lies in a zone where the function has a high curvature. To put
it another way, the observations made at x = 271mm coincide with

∗It is worth pointing out that the probe calibration does not account for the
wall effects
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those made at x = 371mm.
As seen above, with the selected interpolation parameters the

in-plane resolution of the ProCap measurement is worse than that
obtained by the traversing system. However, it may also be noted
that for the traverse scan the spatial resolution in the x-direction
is a factor 5 lower due to the relatively large gap between two pla-
nes. ProCap, on the other hand, is not subject to this limitation.
Another advantage of the ProCap system is that the recorded data
is inherently interpolated onto a 3D grid allowing for a truly volu-
metric visualization of the flow topology (see figure 6.11).

Figure 6.11: ProCap provides visualization capabilities so far only
known from CFD.
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(a) ∆ptot/(0.5ρu2∞)

(b) u/u∞

Figure 6.12: Comparison between ProCap measurement and traversing
scan at x = 371mm (Plane 7)

165



Chapter 6 Results/Measurements

(a) v/u∞

(b) w/u∞

Figure 6.13: Comparison between ProCap measurement and traversing
scan at x = 371mm (Plane 7).
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(a) ∆ptot/(0.5ρu2∞)

(b) u/u∞

Figure 6.14: Comparison between ProCap measurement and traversing
scan at x = 271mm (Plane 11)
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(a) v/u∞

(b) w/u∞

Figure 6.15: Comparison between ProCap measurement and traversing
scan at x = 271mm (Plane 11)
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6.2.3 Sailing yacht

The preceding examples have demonstrated how ProCap performs
compared to conventional traversing measurements. In doing so, no
attention was paid to the fact that measurements using a traversing
system are often not practical. This is particularly true if the shape
of the test article depends on the flow conditions or if the domain
of interest is not accessible due to the model blocking the traversing
path. Considering this aspect, ProCap is much more flexible, as
demonstrated in the next example. A custom race yacht in close-
hauled configuration (1:12.5 scale) is installed in the twisted flow
wind tunnel at the University of Auckland. As shown in figure 6.16,
ProCap is used to scan two measurement volumes. One is intended
to study the rather complex vortex system in the wake of the jib
and the main sail (see figure 6.16a), while the other focuses on the
flow around and between the two sails (see figure 6.16b). The wind
speed measures 4.2m/s, therefore, the five-hole-probe is fitted with
the 25Pa pressure transducers (FirstSensor LBAS025BE).

The first volume is 400mm long, 1000mm wide and 1200mm
high and is decomposed into cubic voxels of 10mm edge length
(i.e. 480’000 voxels). The ProCap scan takes about 40 minutes
to complete. As a result of the low wind speed (u ∼ 4m/s) and
the relative large model size (l ∼ 1m), the integral time scale of the

(a) Domain in the wake (b) Domain around the sails

Figure 6.16: Sailing yacht in close-hauled setup
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Figure 6.17: Wake measurement (plane x = 250mm): The colors
indicate the distribution of the velocity magnitude, whereas the

vectors show the in-plane velocity.

flow fluctuations is relative large and can be estimated by the large-
eddy-turnover time (l/u ∼ 0.25s). Since the recording frequency is
100Hz, the integral time scale MT used for the approximation can
be estimated to be 25 samples. The noise level L and the certainty
threshold s are set as in the previous cases, i.e. L = 0.5 and s = 20.

Figure 6.17 displays the distribution of the velocity magnitude in
the y-z center plane. The arrows illustrate the projected velocity.
On the leeward side the air is displaced downward. In contrast, an
upwash can be detected on the windward side. Moreover, the wakes
of both sails are visible; the wake of the jib sail is considerably
weaker than that of the main sail. Compared to the NACA wing,
the wake profile is less regular. This can be explained by the higher
complexity of the ”wing” shapes, the interaction between the two
wakes and the disturbances introduced by the rigging (standing and
running).

For the second domain, the same approximation settings are app-
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Figure 6.18: Streamlines around the jib and the main sail. The color
maps the velocity magnitude

lied, except that the edge length of the voxels is reduced by a factor
2 (=̂5mm). The whole domain, consisting of 1’920’000 voxels, takes
about 40 minutes to scan. The streamlines in figure 6.18 illustrate
the twist of the flow caused by the jib sail. The local wind speed is
reflected by the color of the streamlines. Clearly, the flow is acce-
lerated on the leeward side of the jib and main sail (see also figure
6.19). Furthermore, from figure 6.19, one can make the following
observations:

• At this height, the wake of the main sail is significantly stron-
ger than that of the jib.

• The mast creates a separation bubble on the leeward side of
the main sail. Interestingly, this flow structure can be partially
captured by the ProCap system, despite the short distance to
the sail (wall effects) and the limited angle range of the probe.
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Figure 6.19: Velocity distribution around the jib and the main sail.
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6.3 Application examples

The aim of this section is to demonstrate the versatility of ProCap
and its many applications. We forego a comprehensive description of
the examples since our only goal here is to provide a brief overview
of the wide range of applications:

• Figure 6.20a illustrates the flow around a 1:1 scale model of
a cyclist. The tests aimed at assessing the effect of different
fabrics and helmets on the wake.

• Figure 6.20b shows the velocity distribution in the wake of a
cyclist. The goal of these measurements was to demonstrate
repeatability. In the first and the third run there was a small
gap between the mannequin’s back and the saddle. Whereas
in the second and the forth run the gap was plugged with a
piece of rubber foam. The position of the rider and the bike
was not changed.

• In another test, ProCap was used to measure the flow created
by a bladeless table fan (Dyson Cool™AM06). Figure 6.20c
shows the velocity distribution in two planes.

• ProCap can be operated with different probe types. To study
the ventilation system of a passenger car (see figure 6.20d),
ProCap was used in conjunction with thermoelectric anemo-
meter (Schiltknecht ThermoAir I).

• Due to the complex geometry, setting up and running a CFD
calculation of a flow around a tree is challenging, particularly
regarding the amount of modeling involved. On the other
hand, the time it takes to set up and run ProCap is com-
parable to that of any other test case. Figure 6.20e shows the
vorticity distribution resulting from a Christmas tree exposed
to wind.

• Figure 6.20f displays the flow created by an array of computer
fans.
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(a) Flow around a cyclist (velocity
distribution)

(b) Wake of a cyclist (velocity
distribution). Run1 → upper left;

Run2 → upper right; Run3 →
lower left; Run4 → lower right

(c) Air flow created by the Dyson
Cool™AM06 (velocity distribution)

(d) Ventilition of a VW T5 (velocity
distribution)

(e) Air flow around a Christmas tree
(vorticity distribution)

(f) Flow created by an array of
computer fans (velocity

distribution)

Figure 6.20: Gallery
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Conclusions and Outlook

The presented work differs from previous research in a number of
respects. Most quantitative flow visualization techniques focus on
measurement accuracy only. ProCap, on the other hand, extends its
focus towards applicability and efficiency. This different viewpoint
bears its own difficulties of which a number have been addressed in
this study:

1. Combining data from different sources in an efficient manner

2. Real-time data processing

3. Efficient interpolation of highly irregularly distributed data

4. Interactive, real-time visualization of the measured data

The multi-threaded design of the software enables fast data acqui-
sition and processing. Of fundamental importance to the system’s
usability is the real-time interpolation of the non-uniformly distribu-
ted measurement data onto a regular grid. To preserve the real-time
functionality of the system, the interpolation is carried out in paral-
lel on the GPU. A moving least-squares approximation scheme that
adapts to the local point distribution proved to perform well both
in terms of reconstruction quality and computing time. Tests with
two ordinary GPUs have revealed that the interpolation is able to
keep up with the target frame rate of 60fps without difficulty. Ho-
wever, a challenge for future research will be to incorporate a more
sophisticated bandwidth selection scheme without losing the real-
time capability. To ensure smooth visualization of the interpolated
data, ProCap makes use of the programmable shader functionality
of Microsoft’s DirectX framework. Currently, ProCap supports the
following flow visualization tools: Contour slices, vector plots, stre-
amlines and isosurfaces.
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Provided that an appropriate flow sensor is available, the cur-
rent system is capable of determining the time-averaged, volumetric
distribution of any measurable flow quantity. In this work, the sy-
stem was tested with a conventional five-hole probe. For a working
distance of approximately 2m the maximum tracking error of the
probe was estimated to be smaller than 1.9mm in position and 1.9◦

in orientation. A novel, flow-based calibration method was develo-
ped and implemented into ProCap with the aim of extending the
measuring range of the probe. In addition, corrections were made
to eliminate errors caused by the motion of the probe.

While the measurement quality is comparable to that of a scan-
ning traverse system, the real benefit of ProCap lies in the simpli-
city of the setup, the comparatively short measurement time, the
capability of covering relatively large volumes and the possibility of
providing a visual feedback of high-level measurement data in real-
time. The way of operation closely resembles that of hand-operated
(smoke) probes. This parallel does not, however, extend to the na-
ture of data being collected. While ProCap provides high-quality,
quantitative flow data, smoke probes usually serve only as quali-
tative flow visualization tools. Compared to measurements with a
traversing measurement, the overall speed up factor may be as high
as 20. Thereby, the method demonstrates its potential to fill the gap
between simple yet purely qualitative and quantitative but highly
complex flow visualization techniques.

Although the current system is fully functional, there are areas
that offer opportunities for further research and development, such
as:

• Error quantification in ProCap is a difficult task as interpola-
tion errors are mixed with measurement errors and temporal
changes of the underlying flow. Due to the ”one measurement
per point and time” paradigm statistical quantification is al-
most impossible or requires assumptions about the flow (e.g.
spatial and temporal correlation properties). Having said that,
displaying the distribution of a measure that accounts for the
reliability of the measurement at a certain location would be
of real value to the system.

• In complex low-speed flow scenarios outside the controlled
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wind tunnel environment (e.g. in-cabin room ventilation, clean
room ventilation) the use of a five-hole probe is inadequate
(sensitivity, Re-number dependence, responsiveness). The lack
of commercial available solutions will require the development
of a new low speed, omni-directional flow sensing probe.

• The integration of a 3D head-mounted augmented reality dis-
play is suggested to improve the ease of operation considerably.

• To shorten the measurement time and to improve the large-
scale capability of the method, the single-probe design could
be changed to a multi-probe design.

• Other potential areas of applications can be identified, e.g. re-
placing the hand-guided probe by a drone-mounted flow sensor
would allow scanning considerably larger volumes (cf. figure
7.1). Similarly, the hand-guided probe may be replaced by a
remotely and interactively controlled probe arm, enabling me-
asurements in high speed wind tunnel flows without human
access.

Figure 7.1: Possible possible application in the future: Large-scale
wake surveys using drones
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Appendix A

Quaternions

Quaternions are a number system that can be considered as an ex-
tension of complex numbers. The concept of quaternions was intro-
duced by the Irish mathematician William Rowan Hamilton in 1843.
At the beginning of the 19th century, complex numbers were studied
extensively by mathematicians such as Cauchy and Riemann. In-
spired by the power and usefulness of complex numbers, Hamilton’s
intention was to find an number system that could be used not only
for 2D problems but also for 3D problems, e.g. describing rotations.
His first attempt were numbers that consisted of one real part and
two imaginary parts, i.e. z = a + b i + c j. The problem with this
natural approach is that closeness under multiplication cannot be
achieved. Hamilton’s solution to this problem was the addition of
a third imaginary number k, i.e. z = a + b i + c j + d k. Then the
algebraic structure is closed under multiplication by following the
rules

i2 = j2 = k2 = ijk = −1. (A.1)

In mathematical terms, quaternions possess all properties of a field
except that the multiplication does not fulfill the commutative pro-
perty. Such an algebraic structure is called skew field or division
ring. The skew field of quaternions is often denoted as H in honor
of Hamilton.

Shortly after their discovery, quaternions became very popular
in physics and mathematics. However, with the advent of vector
analysis in the second half of the 19th century, the importance of
quaternions in science decreased rapidly and they faced the risk
of falling into oblivion. However, by the end of the 20th century,
quaternions found their way back into science and technology and
proved to be very useful in computer graphics, robotics and altitude
control. There are mainly two reasons responsible for this revival:

(1) Compared to rotation matrices, quaternions are more com-
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pact and the calculation of rotations is computationally less
expensive.

(2) Quaternions are not/less susceptible to gimbal lock.

A.1 Notation and Properties of Quaternions

A quaternion zq ∈ H can either be written as a sum of four terms
(one real part and three imaginary parts)

zq = a+ b i+ c j + d k, a, b, c, d ∈ R (A.2)

or simply as quadruple

zq = (a,a) , a ∈ R, a = [b, c, d]
T ∈ R3. (A.3)

We use the subscript q to indicate that number at hand is a quater-
nion. Below we list a number of important properties and calculation
rules of quaternions. Given are three quaternions aq, bq, cq ∈ H that
can be expressed either in sum or quadruple notation:

Sum notation Quadruple notation

aq = a0 + a1i+ a2j + a3k aq = (a0,a) with a = [a1, a2, a3]
T

bq = b0 + b1i+ b2j + b3k bq = (b0, b) with b = [b1, b2, b3]
T

cq = c0 + c1i+ c2j + c3k cq = (c0, c) with c = [c1, c2, c3]
T

(A.4)

1.) Addition of quaternions

Sum notation:
aq + bq = (a0 + b0) + (a1 + b1) i + (a2 + b2) j + (a3 + b3) k

Quadruple notation:
aq + bq = (a0 + b0,a+ b)

Summation of quaternions is commutative, i.e.
aq + bq = bq + aq

and associative, i.e.
(aq + bq) + cq = aq + (bq + cq)
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2.) Subtraction of quaternions

Sum notation:
aq − bq = (a0 − b0) + (a1 − b1) i + (a2 − b2) j + (a3 − b3) k

Quadruple notation:
aq − bq = (a0 − b0,a− b)

3.) Multiplication of quaternions

In the sum notation, the following identities are used
i2 = j2 = k2 = ijk = −1,
ij = k, ji = −k,
ki = j, ik = −j,
jk = i, kj = −i,

to deduce the quaternion product:
aqbq = a0b0 − a1b1 − a2b2 − a3b3

+ (a0b1 + b0a1 + a2b3 − a3b2) i
+ (a0b2 + b0a2 + a3b1 − a1b3) j
+ (a0b3 + b0a3 + a1b2 − a2b1) k

Quadruple notation:
aqbq = (a0b0 − a · b, a0b+ b0a+ a× b)

Quaternion multiplication is non-commutative, i.e.
aqbq 6= bqaq

However, the associative law still holds:
(aqbq) cq = aq (bqcq)

4.) Distributive property

aq (bq + cq) = aqbq + aqcq,
(bq + cq) aq = bqaq + cqaq

5.) Length of quaternions

The length of a quaternion is given by:

|aq| =
√
a2

0 + a2
1 + a2

2 + a2
3

Alternatively it can be expressed in quadruple notation:

|aq| =
√
a2

0 + a · a
An important property of quaternions is that the length is mul-
tiplicative, i.e. the length of a product is given by the product
of the lengths:
|aqbq| = |aq||bq|
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6.) Conjugation of quaternions

Similar to complex numbers, one can define a conjugate of a
quaternion:
aq = a0 − a1i− a2j − a3k

= (a0,−a)
In the context of quaternion conjugation, one can deduce a num-
ber of rules:
aqbq = bqaq
aqaq = |aq|2

7.) Inverse elements of quaternions

The inverse element of a quaternion aq with respect of addition
is simply −aq, since the neutral element is zero.
The neutral element of the quaternion multiplication is one, thus
it is easy to verify that the inverse element of aq is defined as

a−1
q =

aq
|aq|2

8.) Division of quaternions

Since quaternion multiplication is non-commutative, there are
two ways to define quaternion division. We call them either
right division aqb

−1
q or left division b−1

q aq .

9.) Unit quaternions

A quaternion aq is called unit quaternion if and only if the length
|aq| is one.

10.) Pure quaternions

A quaternion aq is called pure quaternion if and only if the
scalar component a0 is zero. Commonly points in the three-
dimensional Euclidean space are expressed by pure quaternions,
i.e.
x ∈ R3 → (0,x) ∈ H
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11.) Rotation with quaternions

In the Euclidean space R3 the rotation of a point vector x is
defined by a matrix multiplication
y = Rx, x,y ∈ R3 and R ∈ R3×3.

Here, R denotes the rotation matrix. In terms of quaternions a
rotation of a point vector can be expressed by two quaternion
multiplications
yq = qqxqqq, xq, yq, qq ∈ H

where xq and yq are the pure quaternions of the point x and
the point y respectively. The quaternion qq is a unit quaternion
being defined by the rotation axis c and the rotation angle φ:
qq = (cos (φ/2) , sin (φ/2) c)

The rotation matrix R is linked to the rotation quaternion qq
by the following formula:

R =


q20 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q20 − q21 + q22 − q23 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q20 − q21 − q22 + q23


By expressing rotations based on quaternions, it is relatively
easy to concatenate rotations. This may be illustrated by ap-
plying two consecutive rotations qq and pq
zq = pqyqpq = pqqq︸︷︷︸

=:rq

xq qqpq︸︷︷︸
=rq

12.) Multiplication in matrix notation

Alternatively, the multiplication of two quaternions aqbq can be
formulated by a product of a 4 × 4-Matrix and a 4-component
column vector. Depending on which quaternion is used to con-
struct the matrix, there are two ways to introduce this reformu-
lation:

aqbq =

{
AL (aq) b (bq)

AR (bq)a (aq)
,

where ”L” and ”R” stands for left and right. While a and b
are the natural interpretation of the quaternions aq and bq as
4× 1-vector, i.e.
a = [a0, a1, a2, a3]

T
and b = [b0, b1, b2, b3]

T
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the construction of the matrices AL and AR is less obvious:

AL (aq) =


a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

 (A.5)

AR (bq) =


b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1

b3 b2 −b1 b0

 (A.6)
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Eigenvalue Perturbation

Let A be a symmetric, positive definite N×N -Matrix. The eigen-
values {λi}Ni=1 are known to be real. It is further assumed that
all eigenvalues are mutually distinct. Thus, the normalized eigen-
vectors {ui}Ni=1 form an orthonormal basis. The eigenvalues and
eigenvectors are linked by the following set of equations:

Aui = λiui, i = 1, . . . , N. (B.1)

Suppose the matrix A is contaminated with noise

Ã = A+ δA. (B.2)

The level of noise δA is small compared to A, i.e. δA << A. Furt-
hermore, it is assumed that the noise does not affect the properties of
A, i.e. Ã remains symmetric and positive definite. The eigenvalues
{λ̃i}Ni=1 and normalized eigenvectors {ũi}Ni=1 of the noisy matrix Ã
are the solutions of

Ãũi = λ̃iũi, i = 1, . . . , N. (B.3)

The goal of this section is to deduce estimates for the perturbations
of the eigenvalues

δλi = λ̃i − λi, i = 1, . . . , N (B.4)

and eigenvectors

δui = ũi − ui, i = 1, . . . , N (B.5)

caused by the noise δA. Substituting expression (B.4) and (B.5)
into equation (B.3) yields
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(A+ δA) (ui + δui) = (λi + δλi) (ui + δui)

⇔ Aui +Aδui + δAui + δAδui

= λiui + λiδui + δλiui + δλiδui, i = 1, . . . , N (B.6)

As the perturbations are considered to be small, the last term on
both the left and right-hand side of the equation above are neglected.
Subtracting equation (B.1) from this first order approximation leads
to

Aδui + δAui = λiδui + δλiui, i = 1, . . . , N (B.7)

As previously mentioned, the noise-free eigenvectors {ui}Ni=1 build
an orthonormal basis. Thus, the perturbation vectors can be ex-
pressed in terms of this basis

δui =

N∑
j=1

εijuj , i = 1, . . . , N. (B.8)

Inserting these linear combinations into equation (B.7) yields

A

N∑
j=1

εijuj + δAui = λi

N∑
j=1

εijuj + δλiui

⇔
N∑
j=1

εij Auj︸︷︷︸
=λjuj

+δAui = λi

N∑
j=1

εijuj + δλiui (B.9)

To determine the first order approximation of the eigenvalue pertur-
bations, equation (B.9) is multiplied from the left by uTi :
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N∑
j=1

εijλj u
T
i uj︸ ︷︷ ︸

=δij

+uTi δAui = λi

N∑
j=1

εij u
T
i uj︸ ︷︷ ︸

=δij

+δλi u
T
i ui︸ ︷︷ ︸
=1

⇔ εiiλi + uTi δAui = εiiλi + δλi

⇔ δλi = uTi δAui , i = 1, . . . , N (B.10)

In a similar way, the eigenvector perturbations can be obtained.
Equation (B.9) is multiplied from the left by uTk (k 6= i):

N∑
j=1

εijλj u
T
k uj︸ ︷︷ ︸

=δkj

+uTk δAui = λi

N∑
j=1

εij u
T
k uj︸ ︷︷ ︸

=δkj

+δλi u
T
k ui︸ ︷︷ ︸
=0

⇔ εikλk + uTk δAui = εikλi

⇔ εik =
uTk δAui
λi − λk

, i 6= k and i, k = 1, . . . , N (B.11)

The missing coefficient εii is determined by the condition that the
eigenvector has unit length:

ũTi ũi = 1⇔ (ui + δui)
T

(ui + δui) = 1

⇔ uTi ui︸ ︷︷ ︸
=1

+ 2uTi δui︸ ︷︷ ︸
=2εii

+ δuTi δui︸ ︷︷ ︸
≈0

= 1 (B.12)

Thus, assuming small changes, the solution for the missing coeffi-
cient is:

εii = 0 (B.13)

To sum up, the first order approximation of the eigenvector pertur-
bations is given by

δui =

N∑
j=1
j 6=i

uTj δAui

λi − λj
uj (B.14)
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Appendix C

Meshless scattered data approximation
techniques

This chapter provides a summary of selected meshless scattered data
interpolation methods, namely radial basis functions, Kriging and
partition of unity. The methods are only outlined and not described
in full detail. If more information is requested, the reader is referred
to more comprehensive sources quoted in the text below.

C.1 Radial basis function Interpolation

C.1.1 Linear interpolation problem

There are an infinite number of functions û solving the scattered
data interpolation problem:

û (xi) = ui, i = 1, ...,M (C.1)

To obtain a unique solution additional constraints have to be im-
posed. Basically, two interpolation methods differ from each other
in the choice of these constraints. An often-used constraint that
have a lot of methods in common (e.g. RBF, Kriging etc.) is the as-
sumption that û belongs to a linear M -dimensional function space U ,
which is typically a subspace of the space the unknown function u be-
longs to. Suppose that U has a basis {ai}Mi=1, i.e. U = span {ai}Mi=1,
then û may be expressed as

û (x) =

M∑
i=1

ciai (x) (C.2)

191



Appendix C Meshless scattered data approximation techniques

This ansatz is often referred to as the linear interpolation approach.
Taking the interpolation constraints C.1 into account, the interpo-
lation problem yields a system of M linear equations:

Ac = u (C.3)

with

Ai,j = aj (xi) , i, j = 1, ...,M

c = [c1, ..., cM ]
T

u = [u1, ..., uM ]
T

(C.4)

The matrix A is the so called interpolation matrix.

C.1.2 Well-posedness of the linear interpolation problem

The linear interpolation problem above is well-posed if and only if
A is invertible, i.e. A has full rank. As A only depends on the basis
functions {ai}Mi=1 and on the data sites {xi}Mi=1, the well-posedness of
the linear interpolation problem is independent of the measured data
values {ui}Mi=1. From a mathematical point of view, an interesting
question is whether there exists a function space U such that A is
non-singular for any set of M distinct data sites. Such a function
space is known as Haar space. The Maierhuber-Curtis Theorem
provides an answer to this question:

Theorem 2 (Maierhuber-Curtis Theorem)
On Rd, d ≥ 2 there exist no Haar spaces of continuous functions
expect the one-dimensional ones.

In other words there exist Haar spaces of continuous functions if
either d = 1 or M = 1. The proof of this theorem can be found in
Fasshauer (2007).

From the Maierhuber-Curtis theorem one can deduce that in order
to guarantee a solvable linear interpolation problem for d ≥ 1 and
M ≥ 1, the interpolation space U has to depend on the data sites.
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C.1.3 The relevance of strictly positive definite functions

Now, we look at a special subclass of data-sites dependent basis
functions that guarantee well-posedness of the linear interpolation
problem. Real positive definite matrices are defined as follows

Definition 4 (Positive Definite Matrix)
A real symmetric M ×M matrix A is called positive definite if

cTAc ≥ 0, (C.5)

for every non-zero vector c ∈ RN .

Positive definite matrices are known to be invertible. Similarly,
one can define strictly positive definite functions:

Definition 5 (Strictly Positive Definite Function)
A real-valued continuous function Φ : Rd → R is strictly positive
definite if and only if the function is even and if

M∑
i=1

M∑
j=1

cicjΦ (xi − xj) ≥ 0, (C.6)

for every set of M distinct nodes x1, ...,xM ∈ Rd and every non-zero
vector c ∈ RM .

Thus, if we use U = span {Φ (x− xi)}Mi=1 with Φ being a strictly
positive definite function, the resulting linear interpolation matrix
A is positive definite and therefore non-singular. More specifically,
the linear interpolation ansatz transforms into

û (x) =

M∑
i=1

ciΦ (x− xi) (C.7)

resulting in a system of M linear equations:

Ac = u (C.8)
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with

Ai,j = Φ (xi − xj) , i, j = 1, ...,M

c = [c1, ..., cM ]
T

u = [u1, ..., uM ]
T
.

(C.9)

C.1.4 Linear Interpolation with polynomial precision

Let us consider the case where the function to be interpolated is a
polynomial of order m. If the interpolation matrix is constructed
on the basis of a strictly positive definite function, the linear in-
terpolation does not reproduce the underlying polynomial exactly.
For some applications, however, it is required that the interpola-
tion method is capable of exactly reproducing such polynomials. As
shown below, this requirement can be met by an extension of the
linear interpolation approach. Nonetheless, it is worth mentioning
that this technique does not improve the quality of the interpolant
in terms of approximation power, it only allows to reproduce global
low order polynomials exactly.

In order to reproduce a polynomial of degree m it is required that
the data sites form a m-unisolvent point set.

Definition 6 (m-unisolvent point set)

Given a polynomial basis P = span {pi}Ni=1 of order m on Rd, i.e.

N =
(
m+d
m

)
, a set of M ≤ N data sites X = {xi}Mi=1 on Rd is said

to be m-unisolvent if
rank (A) = N (C.10)

with
Ai,j = pj (xi) , i = 1, ...,M, j = 1, ..., N (C.11)

In other words, if the data values are zero, i.e. ui = 0, i = 1, ...,M ,
the only interpolating polynomial of degree m is the zero polynomial.
Assuming that X is m-unisolvent (if m and d is small and N is
rather large, this is nearly always the case), the linear interpolation
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approach above can be modified accordingly:

û (x) =
M∑
i=1

ciai (x) +

N∑
i=1

dipi (x) , (C.12)

where {ai}Mi=1 is a basis of U and {pi}Ni=1 of the polynomial vector
space Pm. The interpolation requirement û (xi) = ui, i = 1, ...,M
yields the following system of linear equations:

Ac+ Pd = u (C.13)

with

Ai,j = aj (xi) , i, j = 1, ...,M

P i,j = pj (xi) , i = 1, ...,M, j = 1, ..., N

c = [c1, ..., cM ]
T

d = [d1, ..., cN ]
T

u = [u1, ..., uM ]
T
.

(C.14)

Clearly, the number of equations (M) is less than the number of
unknowns (M + N), and thus at least N additional equations are
required to solve the problem. Besides uniqueness of the solution,
we require that interpolation method reproduces the polynomials
of order ≤ m exactly. Or to put it in other words, if u (x) =∑N
j=1 ejpj (x) we wish to get the solution c = 0 and d = e :=

{e1, ..., eN}T . As shown below, this condition provides the M ad-
ditional equations required to assure a unique solution. First, we
rewrite the system of linear equations for the case where u is an
arbitrary polynomial of order m:

Ac+ Pd = Pe. (C.15)

Assuming that c = 0 this equations guarantee that d = e, because
due to the unisolvence condition the rank of P is N . Thus, the
additional equations and the choice of basis functions {a}Mi=1 have
to make sure that c = 0 for u being an arbitrary polynomial of
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order m. Usually, one picks P T c = 0 as additional equations. By
multiplying eq.(C.15) from the left with cT yields

cTAc+ cTPd = cTPe
PT c=0−−−−−→ cTAc = 0. (C.16)

As required, this equation is fulfilled in the trivial case c = 0. Ho-
wever, in order to ensure that the trivial solution is the only solution
the basis functions have to be selected accordingly. Provided that
P T c = 0, basis functions for which the quadratic form cTAc is only
zero in the trivial case c = 0 and larger zero otherwise are called
strictly conditionally positive definite.

Definition 7 (Strictly conditionally positive definite function of
order m+ 1)
A real-valued continuous function Φ : Rd → R is known to be strictly
conditionally positive definite of order m+ 1 if

M∑
i=1

M∑
j=1

cicjΦ (xi − xj) ≥ 0, (C.17)

for every set of M distinct nodes x1, ...,xM ∈ Rd and all non-zero
vectors c ∈ RM satisfying

P T c = 0. (C.18)

P is constructed by a basis {pi}Ni=1 of the polynomial vector space
Pm, i.e.

P i,j = pj (xi) , i = 1, ...,M, j = 1, ..., N (C.19)

Consequently, if X = {xi}Mi=1 is a m-unisolvent point set and A
is determined by

Ai,j = Φ (xi − xj) , i, j = 1, ...,M, (C.20)

with Φ being a strictly conditionally positive definite function of
order m+ 1, the linear interpolation problem defined above is well-
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C.1 Radial basis function Interpolation

posed. The resulting linear system is then given by[
A P

P T 0

][
c

d

]
=

[
u

0

]
(C.21)

C.1.5 Radial basis function

Often, the linear approximation approach is used in conjunction
with radial basis functions. In this case, the method is referred
to as radial basis function (RBF) interpolation. The basis functi-

ons {Φ (x− xi)}Mi=1 depend only on distance between the evaluation
point x and the center of the function xi and are defined by a scalar
function ϕ (x), i.e.

Φ (x− xi) = ϕ (‖x− xi‖2) , i = 1, . . . ,M (C.22)

To guarantee solvability, the function ϕ has to be chosen such that
the point-dependent basis function Φ is strictly positive definite.

C.1.6 Least squares approximation

The linear interpolation approach C.7 can also be used for least
squares approximation. Assuming that the samples {u}Mi=1 are the

function values at the data sites X = {xi}Mi=1. Now, we introduce a

second point set Y =
{
yj
}N
j=1

withN ≤M . These mutually distinct

points shall define the N basis functions Φ
(
x− yj

)
, j = 1, . . . , N

used in the linear approximation ansatz

û (x) =

N∑
j=1

cjΦ
(
x− yj

)
. (C.23)

As in the interpolation case, the basis functions are often radial

functions centered at the collocation points Y =
{
yj
}N
j=1

. The

coefficients [cj ]
N
j=1 can be found by solving the following least squares
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problem:

M∑
i=1

ui − N∑
j=1

cjΦ
(
x− yj

)2

→ min (C.24)

This approximation problem is well-defined if the matrix

Aj,i = Φ
(
xi − yj

)
, i = 1, . . . ,M, j = 1, . . . , N (C.25)

has full rank, i.e. rank (A) = N .

C.2 Kriging/Gaussian Process Regression

In principle, Kriging is identical to the RBF interpolation, as it will
be outlined later. However, it differs from RBF by its stochastic-
based formalism and interpretation. Furthermore, it has the advan-
tage of providing an estimate of the interpolation precision. The
basic concept of Kriging is that the unknown function u (x) is as-
sumed to be one realization of a random function U (x). Roughly
speaking, at every point x in Ω we construct a random variable U (x)
that depends on the random variables at other locations, and the
sampled data {ui}Mi=1 are the point evaluations of one realization of

the random function U (x) at the data sites {xi}Mi=1. The goal is to

find an estimate Û (x) for the random function U (x) in terms of the

random variables {U(xi)}Mi=1. In a second step, these random vari-

ables are replace by their realization counterparts {ui}Mi=1 to obtain
an estimate û (x) for the function u (x).

In Geostatistics, Kriging, sometimes also called Gaussian Process
Regression or Wiener-Kolmogorov prediction, is a collective term for
a variety of multivariate interpolation techniques. Following three
common representative of this group are briefly outlined, namely
simple Kriging, ordinary Kriging and universal Kriging.
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C.2.1 Simple Kriging

Simple Kriging is based on the assumption that the underlying
random function U (x) is second-order stationary. By definition,
this is fulfilled if

(i) the expectation is not a function of space, i.e. E[U (x)] =
m, ∀x ∈ Rd

(ii) the covariance of two points is only a function of the separation
vector, i.e. Cov [U (x+ h) , U (x)] = c (h) , ∀x,h ∈ Rd

An integral part of simple Kriging is the assumption that the expec-
tation value m is known a priori. An good estimate is the average
of all sampled values. Another practical problem involved in simple
Kriging is the modeling of the covariance function c (h). Possible
strategies are properly covered in Wackernagel (2013). Frequently,
not the covariance function but the semi-variogram γ (h) is modeled,
which is defined as follows

γ (h) =
1

2
Var [U (x+ h)− U (x)] (C.26)

As second-order stationarity is applied, a simple relation between
the semi-variogram and the covariance function can be found

γ (h) = c (0)− c (h) (C.27)

For the estimate of the unknown random function a linear ansatz is
proposed

Û (x) = m+

M∑
i=1

wi (x) (U (xi)−m) (C.28)

Under the assumption of second-order stationarity, it is straight for-
ward to show that this linear estimator is unbiased, i.e. E[Û (x)] =

E[U (x)] = m. The unknown weight functions {wi}Mi=1 are deter-
mined by minimizing the variance of the estimation error ε (x) =

Û (x)− U (x). In the literature, this variance is usually called esti-
mation variance and denoted as σ2

E . Taking the previous assumpti-
ons into account, the following expression for the estimation variance
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can be derived

σ2
E = c (0) +

M∑
i=1

M∑
j=1

wiwjc (xi − xj)− 2

M∑
i=1

wic (x− xi) (C.29)

or in terms of the semi-variogram

σ2
E = −

M∑
i=1

M∑
j=1

wiwjγ (xi − xj) + 2

M∑
i=1

wiγ (x− xi) (C.30)

Setting the functional derivatives with respect to the weight functi-
ons equal to zero yields a linear system

Cw (x) = c (x) (C.31)

with

Ci,j = c (xj − xi) , i, j = 1, . . . ,M

w (x) = [w1 (x) , . . . , wM (x)]
T

c (x) = [c (x− x1) , . . . , c (x− xM )]
T

(C.32)

Or equivalently in terms of the semi-variogram

Γw (x) = γ (x) (C.33)

with

Γi,j = γ (xj − xi) , i, j = 1, . . . ,M

w (x) = [w1 (x) , . . . , wM (x)]
T

γ (x) = [γ (x− x1) , . . . , γ (x− xM )]
T

(C.34)

We note that the solution of this linear system defines the global
minimum of the estimation variance. This minimum is called simple
kriging variance σ2

sk and often serves as an precision estimator of the
kriged interpolation value at point x:

σ2
sk = c (0)−wT c or σ2

sk = wTγ (C.35)
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As mentioned above, in the ansatz (C.28) the random variables

(U (xi))
M
i=1 are replaced by their sampled values (ui)

M
i=1 to get an

estimate for u (x). From the analysis above it becomes clear why
Kriging is also known as best linear unbiased estimator.

C.2.2 Ordinary Kriging

Ordinary kriging is closely related to simple kriging. Whereas second-
order stationarity still holds, it is not assumed that the expectation
value m is known a priori. Consequently, the linear estimation an-
satz must be slightly modified

Û (x) =

M∑
i=1

wi (x)U (xi) (C.36)

To guarantee an unbiased estimator, it is required that

M∑
i=1

wi = 1 (C.37)

It can be shown that this modification does not imply a change of the
estimation variance σ2

E , i.e. the expressions (C.29) and (C.30) are
still valid. However, what does change is the minimization problem
since the constraint from above has to be satisfied:

σ2
E → min

subject to
M∑
i=1

wi = 1
(C.38)

To handle this constraint minimization problem, a Lagrangian mul-
tiplier λ (x) is introduced, yielding a system of Euler-Lagrange equa-
tions [

C 1

1T 0

][
w

λ

]
=

[
c

1

]
(C.39)
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1 represents a N × 1 vector with each element being 1. The other
terms are defined as in section (C.2.1). Alternatively, the system
can also be expressed in terms of the semi-variogram:[

Γ 1

1T 0

][
w

λ

]
=

[
γ

1

]
(C.40)

C.2.3 Universal Kriging

Essentially, universal Kriging can be considered as a generalization
of ordinary Kriging. Instead of assuming a constant expectation
value m of the random function, m is allowed to vary in space. To
this end, a so-called trend model is introduced:

m (x) =

L∑
k=1

gkpk (x) , (C.41)

where {pk}Lk=1 is a basis of a predefined function space (usually,
polynomials). Clearly, the first condition of the second-order stati-
onarity is violated. Thus, a relaxed formulation of the second-order
stationarity is introduced by replacing the violated condition with
the trend model from above. This assumption forms the basis of
universal Kriging. Interestingly, it does not affect the formulas for
the estimation variance (eq. (C.29) and (C.29)). However, the linear
estimator ansatz (C.36) is only unbiased, if

M∑
i=1

wi (x) pk (xi) = pk (x) , ; k = 1, . . . , L (C.42)

Imposing these additional constraints leads to the following minimi-
zation problem:

σ2
E → min

s.t.
M∑
i=1

wi (x) pk (xi) = pk (x) , k = 1, . . . , L
(C.43)
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As in ordinary Kriging, we reformulate the problem using L Lagran-
gian multipliers (i.e. λ = [λ1, . . . , λL]

T
) and compute the Euler-

Lagrange equations:[
C P

P T 0

][
w

λ

]
=

[
c

p

]
, (C.44)

or rewritten in terms of the semi-variogram function γ:[
Γ P

P T 0

][
w

λ

]
=

[
γ

p

]
. (C.45)

Here, the matrix P and the vector p are given by

P i,j = pj (xi) (C.46)

p (x) = [p1 (x) , . . . , pL (x)]
T
, (C.47)

while the rest is defined as in the previous sections. For an in-
depth analysis of the various Kriging methods the interested reader
is referred toWackernagel (2013).

C.2.4 Dual formalism and connection to RBF
interpolation

For most scattered data interpolation problems the number of data
sites is quite large. Thus, to solve the resulting linear system ite-
rative methods are preferred to direct solution methods. In the
standard formalism of Kriging, the right-hand side of the linear sy-
stem to be solved is a function of the evaluation point x. From a
computational point of view this is rather inefficient as for every
evaluation point one has to solve a slightly different linear system.
Fortunately, there exists a dual formalism of the Kriging method
resulting in a linear system with a fixed right-hand side. Below, this
alternative form is derived.

We begin by recalling the standard interpolation ansatz in vector
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notation:
û (x) = uTw (x) . (C.48)

In the case of universal Kriging, the generating functions w are
found by solving the following linear system[

C P

P T 0

][
w

λ

]
=

[
c

p

]
(C.49)

In the first step, we solve this system for w symbolically:

1.) Cw + Pλ = c
∣∣P TC−1·

P Tw︸ ︷︷ ︸
=p

+P TC−1Pλ = P TC−1c
∣∣− p, [P TC−1P

]−1

·

λ =
[
P TC−1P

]−1

P TC−1c−
[
P TC−1P

]−1

p (C.50)

2.) Cw + Pλ = c
∣∣C−1·

w = C−1c−C−1Pλ (C.51)

3.) insert 1.) into 2.)

w =

[
C−1 −C−1P

[
P TC−1P

]−1

P TC−1

]
c

+C−1P
[
P TC−1P

]−1

p (C.52)

In the second step, the vector w in the ansatz C.48 is replaced by
the expression above, i.e.

û =uT
[
C−1 −C−1P

[
P TC−1P

]−1

P TC−1

]
︸ ︷︷ ︸

=:eT

c

+ uTC−1P
[
P TC−1P

]−1

︸ ︷︷ ︸
=:dT

p

(C.53)
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As indicated above, we can rewrite the interpolation ansatz as

û (x) = cT (x) e+ pT (x)d (C.54)

where

e = C−1u−C−1P
[
P TC−1P

]−1

P TC−1u (C.55)

and

d =
[
P TC−1P

]−1

P TC−1u (C.56)

Equation C.55 and C.56 can be rearranged as follows

1.) e = C−1u−C−1P
[
P TC−1P

]−1

P TC−1u︸ ︷︷ ︸
=d

∣∣C·, +Pd

Ce+ Pd = u (C.57)

2.) d =
[
P TC−1P

]−1

P TC−1u
∣∣P TC−1P ·

P TC−1 Pd︸︷︷︸
=u−Ce

= P TC−1u

P Te = 0 (C.58)

To put it another way, the unknown coefficient vectors e and d can
be determined by solving the following linear system[

C P

P T 0

][
e

d

]
=

[
u

0

]
(C.59)

To sum up, in the dual formalism of Kriging, the esimation is ex-
pressed by a sum of two terms (see eq. C.54). The unknown coeffi-
cients are found by solving the linear system given in equation C.59.
Comparison of equation C.54 and C.12 shows that Kriging and RBF
with polynomial precision are identical provided that the correlation
function c and the radial function Φ are equal.
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Appendix C Meshless scattered data approximation techniques

C.3 Partition of Unity Method

The partition of unity approach is an efficient interpolation and ap-
proximation method introduced by Babuška and Melenk (1997) as
part of a meshfree solution algorithm for partial differential equa-
tions. As shown above, most global interpolation/approximation
methods (e.g. RBF, Kriging) result in solving a large linear system.
The partition of unity method (PUM) offers a simple alternative by
splitting the global problem into many smaller subproblems which
are independent of each other and therefore can be solved in parallel.
A two-step strategy is applied:

(I) Decomposition: The domain of interest Ω ∈ Rd is split into

S subdomains {Ωi}Si=1. The subdomains need to fulfill two
conditions:

(i) The union of the subdomains must contain the under-

lying domain, i.e.
S⋃
i=1

Ωi ⊆ Ω

(ii) To guarantee continuity of the global interpolant the
subdomains should slightly overlap among each other.

For each subdomain a separate interpolation or approximation
problem is solved considering only the data points located
within this subdomain. One point worth noting here is that
the method to solve these subproblems is not restricted to a
certain type, i.e. all interpolation/approximation techniques
(e.g. RBF, Kriging, polynomial fit) are equally valid. For
this reason, we denote the solution of subdomain Ωi as ûi (x)
without further clarification.

(II) Assembly: Every subdomain is assigned to a personal weight
function wi (x). These functions are continuous, bounded be-
tween 0 and 1 and their support is limited to the region of
the corresponding subdomain. Moreover, it is required that
at every point in Ω the sum of these functions is 1, i.e.

S∑
i=1

wi (x) = 1, ∀x ∈ Ω (C.60)
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C.3 Partition of Unity Method

A common way to design these weight functions is to use the
Shepard method. In mathematical terms this means

wj (x) =
χΩj (x)
S∑
i=1

χΩi (x)

(C.61)

with χΩi being the indicator function of the subdomain Ωi,
i.e.

χΩi (x) =

{
1 if x ∈ Ωi

0 otherwise
(C.62)
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Appendix D

Derivation of a simple error formula

As shown in chapter 4.5.1 the generalized approximation error is
defined by

eγ (x0) = ∂̂γu (x0)− ∂γu (x0) (D.1)

To derive an analytical expression for this error it is assumed that
the unknown function u (x) is (m + 1)-times differentiable, i.e. u
belongs to Cm+1. By this assumption and by Taylor’s theorem,
u (x) can be expressed as follows

u (x) =
∑
|α|≤m

∂αu (x0)

α!
(x− x0)

α
+

∑
|β|=m+1

Rβ (x) (x− x0)
β (D.2)

where the remainder term is

Rβ (x) =
1

β!
∂βu (x0 + ηβ (x− x0)) , ηβ ∈ [0, 1] . (D.3)

As before the multi-index notation is used. The derivative of the
generating functions can be deduced from eq. (4.35):

∂γψ (x,x0) = WBG−1∂γb (x− x0) (D.4)

The MLS approximant around x0 can be retrieved from formula
(4.28):

∂̂γu (x,x0) =

M∑
i=1

ũi∂
γψi (x,x0) , (D.5)

where {xi}Mi=1 are the sampling points in the support of the weight
function. Further as indicated by the tilde, the measured values
{ũi}Mi=1 are assumed to be contaminated by arbitrary noise:

ũi = u (xi) + εi, i = 1, . . . ,M. (D.6)
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Appendix D Derivation of a simple error formula

Replacing u (xi) by the Taylor series introduced above and substi-
tuting expression (D.6) into equation (D.5) yields

∂̂γu (x,x0)= ∂γ
M∑
i=1

ψi (x,x0)
∑
|α|≤m

∂αu (x0)

α!
(xi − x0)

α

+

M∑
i=1

∂γψi (x,x0)

εi +
∑

|β|=m+1

Rβ (xi) (xi − x0)
β

 (D.7)

Due to the polynomial reproduction property, this equation can be
simplified to

∂̂γu (x,x0)=
∑
|α≤m|
α≥γ

∂αu (x0)

(α− γ)!
(x− x0)

α−γ

+
M∑
i=1

∂γψi (x,x0)

εi +
∑

|β|=m+1

Rβ (xi) (xi − x0)
β

 (D.8)

By evaluating this equation at x0, the first term on the right hand
side becomes ∂γu (x0). Consequently, the formula for the approxi-
mation error at x0 reduces to:

eγ (x0) =
M∑
i=1

∂γψi (x0,x0)

εi +
∑

|β|=m+1

Rβ (xi) (xi − x0)
β

. (D.9)

Since only the sampling points {xi}Mi=1 in the support of the weight
function Ω0 = supp [w (·,x0)] are taken into account, the upper
bound of

∣∣Rβ (xi)
∣∣ can be written as follows

∣∣Rβ (xi)
∣∣ ≤ 1

(m+ 1)!
max
|α|=m+1

‖∂αu (x)‖L∞(Ω0) ,
∣∣β∣∣ = m+ 1 (D.10)

Further, let the magnitude of the data errors be limited by ε, i.e.∣∣εi∣∣ ≤ ε, i = 1, . . . ,M. (D.11)
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Then, it follows that the error eγ is bounded by∣∣eγ (x0)
∣∣≤ Λm,γ(x0) ε

+
C (x0)

(m+ 1)!

M∑
i=1

∣∣∂γψi (x0,x0)
∣∣ ∑
|β|=m+1

∣∣xi − x0

∣∣β (D.12)

with
C (x0) = max

|α|=m+1
‖∂αu (x)‖L∞(Ω0) (D.13)

and Λm,γ being the Lebesgue function

Λm,γ(x0) =

M∑
i=1

|∂γψi(x0,x0)| (D.14)
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Appendix E

Smoothed random paths

This section contains a brief description of how the smoothed random
paths, which are used for demonstration purposes in chapter 4, are
generated. If compared with the probe path of a ProCap measure-
ment, a ’standard’ random walk seems to be a poor imitation, since
the changes in direction are rather sharp. A smoother random walk
is obtained by introducing a specific force f (acceleration) that un-
dergoes a Wiener process with zero drift and an adjustable volatility
σ∆t = σ

√
∆t. Let ∆t be the time step, integrating the specific force

twice by using an explicit Euler scheme leads to the new position of
the virtual particle. The initial position, velocity and acceleration
are denoted by x0, u0 and f0, respectively. To better control the
random walk, two corrective actions are applied:

(i) the magnitude of the specific force is limited by a parameter
fmax

(ii) a decelerating force (drag) that is proportional to the velocity
square is implemented. The proportionality factor is denoted
by β.

To restrict the particle coordinates to the simulating box, periodic
boundary conditions are applied. For the numerical experiments in
chapter 4, the following settings were chosen:

∆t = 0.01 x0 ∼ uniform in [0, 1]× [0, 1]

# steps N = 25000 u0 = 0

σT = 0.01 f0 = 0

β = 5 fmax = 0.1

(E.1)

The algorithm for a smoothed random path in a unit square is out-
lined below.
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Appendix E Smoothed random paths

Smoothed Random Path

Input:

time step size ∆t initial position x0

number of steps N initial velocity u0

force variance σ2
T initial force f0

drag coefficient β force limit fmax

Output:

random path {xk}Rk=1

begin

for k ← 1 to N do

fk ←random vector ∼ N (fk−1, σ
2
T I)

if
∣∣fk∣∣ > fmax then

fk ← fmax
fk
|fk|

end

ak ← fk − β|uk−1|uk−1

uk ← uk−1 + ∆tak

xk ← xk−1 + ∆tuk

xk ← xk modulo 1

end

end
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