Comparative and molecular approaches to identifying polymorphisms in genes associated with Arthrogryposis multiplex congenita (AMC) in swine

Author(s): Genini, Sem

Publication Date: 2006

Permanent Link: https://doi.org/10.3929/ethz-a-005203227

Rights / License: In Copyright - Non-Commercial Use Permitted
Comparative and molecular approaches to identifying polymorphisms in genes associated with Arthrogryposis multiplex congenita (AMC) in swine

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH
for the degree of
Doctor of Sciences

presented by
SEM GENINI
Dipl. Ing. Agr. ETH

born 1st of July 1976
citizen of Cresciano, Ticino

accepted on the recommendation of
Prof. Dr. G. Stranzinger, examiner
Prof. Dr. P. Vögeli, co-examiner
Prof. Dr. C. Wenk, co-examiner
Prof. Dr. A. Archibald, external co-examiner

Zurich, 2006
Summary

Arthrogryposis multiplex congenita (AMC), defined as permanent joint contractures present from birth, is one of the most common congenital defects in piglets and other mammals. For example, it is found in one of 3000 newborn babies. A genetic form of Arthrogryposis was recently identified in Swiss Large White (LW) pigs. At the beginning of 2004, at least 14 LW AI (artificial insemination) boars were known to be carriers of the defective allele and caused considerable economic losses to the Swiss pig industry. Piglets born with this syndrome had multiple defects of the legs and spinal column and did not survive. In order to study the disease, a highly inbred experimental herd with a total of 358 pigs was established. Of these, 84 (23.5%) were found to be affected, while the remaining 274 (76.5%) were normal. In the population under study, the disease was controlled by a single autosomal recessive allele designated as \textit{amc}. A total of 219 pigs were used for linkage analysis, including seven full or half-sib founders (F$_1$), three F$_0$, 160 F$_2$ and 49 F$_3$ animals. A comprehensive genome scan revealed that the defective \textit{amc} allele is located on SSC5. Significant pair-wise linkage (LOD > 6.00) was found for AMC and eight marker loci. The order that best fit with the data was SW963-SW1987-SW152-AMC-(SW904, SW1094)-SWR1526-(SWR1974, SW310). AMC was mapped by both linkage and QTL analyses to the relative position 92 cM, between SW152 and SW904/SW1094, which are located in bands q12-q23. To identify further genetic markers that can help to eliminate the disease and to determine the similarity between SSC5 and human chromosomes, porcine homologues of 18 human genes, which are interesting positional and functional candidates for AMC, were placed onto this swine chromosome with the INRA-Minnesota swine radiation hybrid panel (IMpRH). Fifteen genes (CACNA1C, COL2A1, CPNE8, C12orf4, DDX11, GDF11, HOXC8, KCNA1, MDS028, MGC5576, PHB2, PRICKLE1, SCN8A, TUBA8 and USP18) were selected from pig-human comparative database analysis. The remaining three functional candidates, C3F, NR4A1 and Q6ZUQ4 were selected from a microarray experiment comparing the genes expressed in an AMC-affected piglet with genes expressed in a normal piglet in three tissues (brain, muscle and spinal cord). Tissue samples were isolated at birth from the cerebellum, the musculus longissimus dorsi and the upper part of the spinal cord (where the AMC piglets showed scoliosis). The RNA was extracted from the tissues and reverse transcribed to cDNA. The cDNA was labeled with Cy3 and Cy5 for a dye swap experiment and hybridized on self-printed Qiagen pig 13K arrays containing probes for about 13,000 porcine transcripts. Twelve measurements were obtained from six slides and the results were analyzed with the BlueFuse and GeneSpring programs. Only the genes with a high confidence tag in each pair of dye
swap slides were considered. In the diseased piglet, 308 genes (~2.4%) were differentially expressed (fold change >2), 131 were upregulated and 177 downregulated. Only one gene (SFRS6) was overexpressed and none underexpressed in all three tissues of the AMC piglet. The differential expression of C3F, NR4A1, Q6ZUQ4, SFRS6 and SLC2A1 was also examined by real-time PCR with a TaqMan assay. The microarray findings were confirmed in all the genes but not in all the tissues, the exceptions being SFRS6 in the brain and SLC2A1 in the muscle. Five genes (CPNE8, PRICKLE1, Q6ZUQ4, TUBA8 and USP18) mapped to the interval believed to contain the gene that causes AMC. The mapping data suggested that the chromosomal regions from TUBA8 to USP18 on HSA22 and from CPNE8 to PRICKLE1 on HSA12, spanning about 4.5 Mb and containing 16 genes, are the human counterparts of the region containing the porcine AMC locus. Furthermore, the findings of radiation hybrid mapping for SSC5q12-q22 revealed that, between the segments of HSA12p13 and HSA12q12, there is a small chromosomal interval of HSA22q11.2, spanning less than one million base pairs and containing human homologues of microsatellite SW152 and genes Q6ZUQ4, TUBA8 and USP18. Seven breakpoint blocks were identified and further comparative information was obtained about the extensive rearrangements in the order of the genes between HSA12, HSA22 and SSC5 in the proximity of the AMC region. Hence, 17 partial gene sequences of ABCD2, CNTN1, CPNE8, FOXM1, KCNA1, KIF21A, SLC2A13, TUBA8 and YAF2 were compared between normal and diseased piglets in order to provide additional markers for fine mapping, linkage mapping and association studies and to describe the AMC region in more detail. Genetic differences, strongly associated with the defect in the research population, were found in TUBA8 and CNTN1. Three SNPs in TUBA8 and one SNP in CNTN1 co-segregated with the AMC phenotype in 230 pigs of the experimental herds without recombination events (LOD scores of 38.5 and 24.1, respectively). However, based on examinations of affected pigs on commercial farms, these mutations are not considered to cause AMC. Furthermore, a new microsatellite (bE77) locus was identified in the region. The allele bE77306 co-segregated in the resource family with amc without recombination (LOD score = 51.2). An already assembled physical contig, containing BAC clones carrying the microsatellites of interest, combined with the information of 15 recombinant pigs in the studied family, enabled the delineation of a new order of loci on SSC5: SW152-bE77-TUBA8-(AMC/CNTN1)-SW904/SW1094. The microsatellites bE77 and SW904 were used as genetic markers to predict the susceptibility to AMC of 80 LW AI boars in Switzerland. The alleles bE77306, SW904180 and SW904172, strongly associated with the disease in the experimental herd, indicated a higher risk of susceptibility to AMC for 17 boars (21.3%). This marker test
was also applied to 41 piglets from 14 commercial families, believed to be affected with AMC. The results confirmed the previous diagnosis in 34 cases (83%) and revealed incorrect paternities in three families. In conclusion, we developed a powerful and highly reliable marker test to discover AMC carriers and, thus, to limit the incidence and spread of the disease and to reduce economic losses in the Swiss pork industry. Furthermore, the results reported here are an important roadmap for future studies of poorly understood forms of AMC in humans and other species. They are a useful tool for collecting data for determining the order of genes for the sequencing project of the pig genome.
Zusammenfassung

Zusammenfassung

Riassunto

L’Arthrogryposis multiplex congenita (AMC) rappresenta uno dei difetti congeniti più comuni nel maiale come, in generale, in tutti i mammiferi. Si manifesta fin dalla nascita con permanenti contratture delle articolazioni ed è, per esempio, riscontrata negli umani con una frequenza di un neonato affetto su 3000 nati. Una forma genetica d’artrogrifosi è stata recentemente identificata in Svizzera nella razza suina Large White (LW). Analisi condotte hanno permesso di identificare, ad inizio 2004, almeno 14 verri utilizzati in un programma d’inseminazione artificiale (IA) portatori dell’allele difettoso, con considerevoli perdite economiche per il settore suinicollo svizzero. I maialini nati con questa sindrome presentano molteplici difetti alle gambe ed alla colonna vertebrale tali da non consentirne la sopravvivenza. Allo scopo di analizzare geneticamente questa patologia è stata creata una famiglia sperimentale di 358 maiali altamente consanguinea, di cui 84 animali (23.5%) presentavano la tipica sintomatologia, mentre 274 (76.5%) non risultavano presentare alcun sintomo. Appare così evidente come, in questa popolazione, la malattia risulti controllata da un singolo allele autosomale recessivo indicato come amc. Un campione di 219 maiali, costituito da sette animali “half o full sib” fondataori (F₁), tre F₀, 160 F₂ e 49 F₃, è stato usato in un’analisi di “linkage”. Attraverso analisi comprensiva del genoma, è stato dimostrato come l’allele difettoso amc sia posizionato sul cromosoma 5 di maiale (SSC5). Un significativo “pair-wise linkage” (LOD > 6.00) è stato trovato per AMC e otto marcatori. L’ordine che meglio si adattava con i dati era SW963-SW1987-SW152-AMC-(SW904, SW1094)-SWR1526-(SWR1974, SW310). Attraverso sia analisi di “linkage” che di QTL, è stato possibile mappare AMC alla posizione relativa di 92 cM, tra SW152 e SW904/SW1094, situati nelle bande q12-q23. Per l’identificazione d’ulteriori marcatori genetici utili ad eliminare la malattia ed a determinare la similità di SSC5 con cromosomi umani, si è proceduto alla mappatura sul cromosoma SSC5 di 18 geni suini omologhi di geni umani, riconosciuti come interessanti candidati posizionali e funzionali per AMC, mediante l’“INRA-Minnesota swine radiation hybrid panel” (IMpRH). Quindici di questi geni (CACNA1C, COL2A1, CPNE8, C12orf4, DDX11, GDF11, HOXC8, KCNA1, MDS028, MGC5576, PHB2, PRICKLE1, SCN8A, TUBA8 e USP18) sono stati scelti tramite analisi comparativa delle sequenze geniche depositate in banca dati, mentre i rimanenti tre (C3F, NR4A1 e Q6ZUQ4) da un’analisi d’espressione genica basata su tecnologia microarray tra maiali affetti e soggetti sani condotta su tre diversi tessuti (cervello, muscolo e midollo spinale). I campioni di tessuto sono stati prelevati alla nascita rispettivamente dal cervelletto, dal muscolo longissimus dorsi e dalla parte superiore del midollo spinale (dove i soggetti...
affetti da AMC presentano scoliosi). Dopo averne estratto l’RNA si è quindi proceduto alla produzione dei rispettivi cDNA tramite trascrizione inversa. I cDNA sono stati marcati con i fluorofori Cy3 e Cy5 come indicato nel protocollo per “dye swap experiments” e quindi ibridizzati su self-printed Qiagen pig 13K arrays contenenti circa 13000 geni porcini. Un totale di dodici misure sono state ottenute da sei vetrini ed i relativi risultati analizzati con i programmi GeneSpring e BlueFuse. Solamente i geni presentanti valori affidabili per ogni coppia di vetrini sono stati considerati. Nel soggetto affetto, 308 geni (~2.4%) hanno manifestato espressione differenziale (differenza d’espressione > 2), e precisamente 131 sono risultati essere sovraregolati mentre 177 sottoregolati. In particolare il solo gene SFRS6 è risultato essere sovraespresso nel soggetto affetto in tutti e tre i tessuti contemporaneamente, mentre nessuno sottoespresso. In seguito si è proceduto all’analisi d’espressione di C3F, NR4A1, Q6ZUQ4, SFRS6 e SLC2A1 attraverso “real-time” PCR basata su chimica TaqMan. Questa ha confermato i risultati ottenuti in precedenza tramite analisi microarray, con le sole eccezioni rappresentate da SFRS6 nel cervello e SLC2A1 in muscolo. Cinque geni (CPNE8, PRICKLE1, Q6ZUQ4, TUBA8 e USP18) sono stati mappati nell’intervallo ipotizzato contenere il gene responsabile della patologia. Questi dati di mappatura suggerivano che le regioni cromosomiche comprese tra TUBA8 e USP18 su HSA22 e tra CPNE8 e PRICKLE1 su HSA12, lunghe circa 4.5 Mb e contenenti 16 geni, siano le controparti umane della regione contenente il locus AMC suino. Nello stesso modo il mappamento per SSC5q12-q22 ha rivelato che, fra i segmenti di HSA12p13 e di HSA12q12, è presente un piccolo intervallo cromosomico di HSA22q11.2, che misura meno di un milione di basi, e che contiene gli omologhi umani del microsatellite SW152 e dei geni Q6ZUQ4, TUBA8 e USP18. Sette “breakpoints blocks” sono stati identificati ed ulteriori informazioni comparative sono state ottenute sulle molteplici riorganizzazioni nell’ordine dei geni fra HSA12, HSA22 e SSC5 in prossimità della regione AMC. Partendo da ciò, 17 sequenze parziali dei geni ABCD2, CNTN1, CPNE8, FOXM1, KCNA1, KIF21A, SLC2A13, TUBA8 e YAF2 sono state comparative fra individui sani ed affetti nell’intento di ottenere sia dei marcatori supplementari da utilizzare in ulteriori studi di “linkage” e di associazione, che una descrizione e mappatura più fine della regione AMC. Differenze genetiche fortemente connesse con il difetto sono state trovate nella popolazione in analisi in TUBA8 ed in CNTN1. Tre SNPs in TUBA8 ed uno SNP in CNTN1 sono risultati co-segregare senza eventi di ricombinazione (valori LOD di 38.5 e 24.1 rispettivamente) con il fenotipo AMC in 230 maiali. Tuttavia, dopo aver esaminato capi affetti provenienti da allevamenti commerciali, queste mutazioni sono state escluse essere la causa della patologia. In seguito un nuovo microsatellite (bE77) è stato...
identificato nella regione. L'allele $bE77^{306}$ è risultato co-segregare con amc senza ricombinazioni (LOD = 51.2). Un “physical contig” gia’ assemblato, contenente cloni BAC portanti i microsatelliti d’interesse, uniti alle informazioni di 15 maiali ricombinanti appartenenti alla famiglia studiata, ha permesso la delineazione di un nuovo ordine di loci su SSC5: $SW152-bE77-TUBA8-(AMC/CNTN1)-SW904/SW1094$. I microsatelliti $bE77$ e $SW904$ sono stati poi utilizzati come marcatori genetici per la predizione della suscettibilità verso questa patologia di 80 verri LW utilizzati per l’inseminazione artificiale in Svizzera. Gli alleli $bE77^{306}$, $SW904^{180}$ e $SW904^{172}$, strettamente associati alla malattia, hanno indicato un elevato rischio predispositivo per AMC in 17 sugli 80 verri analizzati (21.3%). Questo test di marcatori è stato poi applicato a 41 maialini, appartenenti a 14 famiglie commerciali, ritenuti essere affetti da AMC. I risultati hanno confermato la diagnosi precedente in 34 casi (83%) mentre hanno rivelato casi di falsa paternità in tre delle 14 famiglie. In conclusione, in questo lavoro è stato sviluppato un potente ed altamente affidabile test, basato su marcatori molecolari, per l’identificazione di capi portatori di AMC, utilizzabile per limitare l’incidenza e la diffusione della malattia e per ridurre così le perdite economiche al settore suinicolo svizzero. I risultati riportati costituiscono inoltre un’importante base per futuri studi su forme poco conosciute d’AMC negli umani, come pure in altre specie. Essi rappresentano anche un utile mezzo di raccolta dati per la determinazione dell’ordine dei geni nell’ormai prossimo progetto di sequenziamento del genoma del maiale.