
ETH Library

Target following on nano-scale
Unmanned Aerial Vehicles

Conference Paper

Author(s):
Palossi, Daniele ; Singh, Jaskirat; Magno, Michele; Benini, Luca 

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000231127

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/IWASI.2017.7974242

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-4487-0836
https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000231127
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/IWASI.2017.7974242
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Target Following on Nano-Scale Unmanned Aerial
Vehicles

Daniele Palossi∗, Jaskirat Singh∗, Michele Magno∗† and Luca Benini∗†
∗Department of Information Technology and Electrical Engineering - ETH Zürich, Switzerland

† Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” - University of Bologna, Italy
Email: name.surname@iis.ee.ethz.ch

Abstract—Unmanned Aerial Vehicles (UAVs) with high level
autonomous navigation capabilities are a hot topic both in
industry and academia due to their numerous applications.
However, autonomous navigation algorithms are demanding from
the computational standpoint, and it is very challenging to run
them on-board of nano-scale UAVs (i.e., few centimeters of
diameter) because of the limited capabilities of their MCU-based
controllers. This work focuses on the object tracking capability,
(i.e., target following capability) on such nano-UAVs. We present
a lightweight hardware-software solution, bringing autonomous
navigation on a commercial platform using only on-board compu-
tational resources. Furthermore, we evaluate a parallel ultra-low-
power (PULP) platform that enables the execution of even more
sophisticated algorithms. Experimental results demonstrate the
benefits of our solution, achieving accurate target following using
an ARM Cortex M4 microcontroller consuming ≈ 130mW. Our
evaluation on a PULP architecture shows the proposed solution
running up-to 60 frame-per-second in a power envelope of ≈
30mW leaving more than 70% of the computational resources
free for further on-board processing of more complex algorithms.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) with complex au-
tonomous navigation capabilities are gaining interest in both
industry and academia due to their use in several applications
and in different sectors [1], [2]. UAVs are widely adopted
for surveillance, inspection of hazardous and hostile environ-
ments, aerial photography, just to name a few [1], [3].

The major trends of the evolution of UAVs are miniatur-
ization and autonomous navigation capabilities. In this con-
text, commercial-off-the-shelf (COTS) quadrotors have already
reached the nano-scale, featuring only few centimeters in
diameter and few tens of grams in weight. Such devices,
still lack of autonomous navigation capabilities that their
larger counterparts boast. This is, mainly, due to their limited
computational resources, heavily constrained by their small
power envelopes, making them inadequate for the execution
of sophisticated algorithms. In fact, state-of the-art techniques
for implementing autonomous navigation use computationally
demanding techniques that process video streams produced by
on-board cameras [4].

One of the basic autonomous flying functionalities is hov-
ering: the capability of the vehicle to maintain a desired 3-
dimensional position in space over time, autonomously cor-
recting its flight asset [2], [5], [6]. State-of-the-art hovering
on standard-size UAVs relies on visual algorithmic pipelines
to precisely determine position and orientation by analyzing
video streams from an on-board camera (i.e., Visual Odome-
try) [4]. Due to the already mentioned limitations in terms of
compute power, such techniques are typically not affordable at
the nano-scale; most existing COTS systems in this category

A B

Fig. 1. A) Prototype of the system. B) Object tracking experimental setup.

(e.g., Bitcraze CrazyFlie 2.0 ) try to implement hovering by
means of low-power and noisy sensors like barometers.

Thus, on nano-scale UAVs, the first challenge is represented
by the need of a lightweight, precise hovering sub-system able
to keep the vehicle at the target position (± some tolerance),
minimizing the utilization of the limited computational re-
sources. Precise hovering paves the way to the development
of more complex autonomous navigation capability. Unfor-
tunately, the visual hovering functionality alone is sufficient
to saturate the computational capability of a state-of-the-art
MCU, and the limited power budget of a nano-UAV prevents
the use of more powerful embedded computers. Thus, an ultra-
low-power parallel platform [2] is a promising solution to push
autonomous navigation functions beyond the current limits.

In this work we extend the hardware and software of a 27-
grams nano-size COTS quadrotor (Crazyflie 2.0) to achieve a
object tracking capability. The Crazyflie 2.0 has been modified
integrating a camera module on the vehicle from an hardware
point of view. On the software side, we first increased the
accuracy of the pre-existing inertial hovering control and
then we implement a low-complexity visual tracker which
enables the deployment of an object tracking control algo-
rithm. The object tracking has been demonstrated to be able
to achieve up to 60 frame-per-second (fps) on the quadrotor’s
microcontroller ARM Cortex M4. Moreover, we ported the
target-following capability also on an ultra-low power parallel
platform (PULP) to evaluate the benefits in terms of power
consumption and computational resources used and available
for further advanced algorithms.

The main contributions of this work are:
• an improved inertial hovering sub-system, capable of

reducing the drift of ≈ 50% w.r.t. the original system,
has been implemented in a nano-scale UAV;

• a low-computation object tracking module, tested on the
field, able to track movements of monochromatic red
objects with an average error of ≈ 34cm;

• an insightful evaluation on the accuracy and performance
of the proposed solution on both the Cortex M4 and the
PULP architecture;

• the development of a fully working cyber-physical pro-
totype, shown in Fig. 1 (A);

Final published version in IEEE Xplore available at http://ieeexplore.ieee.org/document/7974242/
DOI: 10.1109/IWASI.2017.7974242



• the evaluation of a novel PULP platform that can enable
more sophisticated algorithms for autonomous navigation
in nano-scale UAVs.

II. RELATED WORK

In the last decade, the trends of evolution for UAVs have
mainly followed two directions. The first one focuses on the
development of accurate algorithms (e.g., employing deep
learning [7]), aimed to achieve autonomous navigation capabil-
ity understanding the surrounding environment [1] (e.g. deci-
sion making, autonomous tracking, etc). For this first direction,
the state-of-the-art is defined by high-level capabilities [7], [4]
achieved on large (standard-size) robots operating in a power
envelope of tens of Watts [8]. The literature demonstrates
that UAVs autonomous navigation is a crucial feature [7], [8]
and brining it in small form factor UAVs is still a challenging
task [9].

In fact, the second direction focuses on vehicle miniaturiza-
tion, which has today reached the pico-scale [10], featuring
only few grams of mass and a total power consumption of
≈ 100mW [11]. Both the directions shown potential for
the next generation UAVs that are targeting the nano-scale,
coupled with autonomous capabilities. In this papers we tackle
the challenge of autonomous navigation in nano-scale UAV
combining video processing, inertial sensors and advanced
control on a commercial MCU. Moreover, we demonstrate
the benefit of the ultra-low power parallel paradigm exploring
a novel ultra-low power platform that meets the strict power
envelope constraints of nano-UAVs.

One of major challenge, in UAVs domain is the trade-
off between power consumption and processing capability, as
they are supplied by low weight batteries. Wood et al. [10]
estimated in 5mW the power budget for on-board computation
on pico-size UAVs, showing how this only accounts for 5%
of the total, the rest being used by the propellers (86%) and
the low-level control parts (9%). The taxonomy presented by
Palossi et al. [2] defines for the nano-size UAV, that is the
target of this work, a total power envelope of ≈ 5W , bounding
the computational budget to 250mW .

Today, most of promising algorithms are using visual
approaches to achieve the best performance in autonomous
navigation [7]. Moreover, it has been shown that, in order
to enable autonomous visual navigation, it is necessary to
provide and process a real-time visual stream running at a
minimum of ≈ 10fps [6], [12], defining a second bound on
the computational requirement.

It is undeniable that energy-efficient architectures, highly
optimized software and new classes of algorithms – conceived
with low power consumption in mind – are compulsory, if
state-of-the-art navigation capabilities (e.g. hovering, path-
planning, object tracking, obstacle avoidance, etc.) are to be
brought onto the most challenging nano-size and pico-size
classes of UAVs. Palossi et al. [13] show how parallelism is a
key asset to achieve energy-efficient path planning using only
on-board computational resources for standard-size UAVs.

At the micro-size class there are several works able to map
high level navigation skills in “relatively” low-power archi-
tectures, but they are still an order of magnitude away from
the nano-size power-budget [4]. Forster et al. [4] propose a
precise, robust and fast semi-direct monocular visual odometry
algorithm, running on a embedded processing device Odroid-

U2 featuring a 4-core ARM Cortex A-9 computational unit
running at 1.6GHz.

In nano-size UAV, the state-of-the-art is represented by
solutions that either perform very basic functionality like
hovering [2], [6] or offload computation to some external
base-station [5], [14]. A method to surpass the computational
limitations of such MCU-based UAVs is presented by Briod
et al. [6], who show an ego-motion estimation algorithm for
hovering that does not rely on feature tracking. On one side
their solution requires comparatively much simpler electronics
and can rely on the available on-board MCU. On the other
side, as discussed by the same authors, the method does not
reach the accuracy of techniques based on feature tracking,
with an average drift of 50cm after 2 minutes of flight.

Another option, presented by Dunkley et al. [5] is to offload
all sensors’ information to a remote, power-unconstrained
base-station through a wireless link, relying on a visual-
inertial navigation system for a nano-scale quadrotor. Here
all the computation is performed off-board, streaming video
and inertial information to a ground-based laptop. Zhang et
al. [14] proposed a visual-inertial odometry system for a 46-
grams UAV, operating in a GPS-denied environments. Also in
this case, both visual and inertial information are streamed to
a laptop for the intense computations (i.e., pose estimation).

Considering our target application, i.e., object tracking,
there are many examples of standard-size, power-hungry
COTS UAVs able to provide such capability relaying on on-
board computation (e.g., DJI Phantom 4). Pestana et al. [15],
have shown a standard-size quadrotor (i.e., AR Drone 2.0)
performing object-following offloading the intense computa-
tion to a base-station and receiving back attitude commands.

In this work we propose and demonstrate that object track-
ing on a nano-size UAV, relaying only on on-board sensors and
computation is i) feasible through the proposed visual-inertial
approach and ii) the autonomous navigation capability can be
furthermore increased by the adoption of parallel MCUs-class-
of-device paradigm.

III. ADVANCED NANO-SIZE UAV
In this section we introduce the UAV platform used in our

work. We describe both the available computational resources
and the existing sensing system. We also analyze the software
architecture showing the computational and memory bounds.
Then, we describe how we extended the on-board visual
sensing capability through the camera integration. Lastly,
we introduce a parallel ultra-low power (PULP) architecture
as solution to improve the system, reducing the limitations
introduced by computational intensive visual pipeline built on
top of the camera.

A. Crazyflie Platform
Our target vehicle is Bitcraze CrazyFlie 2.0 (CF), an open-

source and open-hardware nano-size quadcopter. It weights
27g with a diameter of 92mm and maximum take-off weight
of 42g (i.e., a payload of 15g). The on-board main process-
ing unit is the STM32F405 microcontroller (MCU), while a
Nordic nRF51 module is responsible for the wireless commu-
nication. The STM32 is an ARM Cortex-M4F, operating at
168MHz. The on-board sensing is performed by a 9-axis IMU
MPU-9250 which contains a gyroscope, an accelerometer, and
a magnetometer, and a ST LPS25H pressure sensor with a
typical accuracy of ±1 meter. The vehicle is powered by



a 240mAh Li-Po battery, that enables a flight time of ≈
7 minutes. The CF has been chosen also for the available
expansion interfaces, crucial for the integration of additional
sensors, such as a camera. This interface offers both SPI and
I2C buses directly accessible through an expansion connector.

Position Estimator

P
o

w
er

 D
is

tr
ib

u
ti

o
n

Velocity PID

Vx

Vy

Vz

M
ot

or
s

Manual
thrust

Hold
altitude
thrust

Hold altitude
enable?

Ground-station

Altitude
Estimator

Barometer
(altitude)

Accelerometer
(x,y,z)

Estimated x,y,z

Estimated
Thrust

Attitude Controller Rate PID

pitch

roll

yaw

Attitude PID

pitch

roll

yaw

Desired
Rate

Measured
Rate

pitch, roll, yaw

IMUAttitude Estimation

T1

T2

T3

T4

Tk

yes/no

Desired Thrust

D
at

a 
F

us
io

n

pitch, roll, yaw

Desired Attitude

Measured
Attitude

pitch
roll
yaw

M
ot

or
 C

on
tr

ol
 F

un
ct

io
n

s

Fig. 2. Nano-size quadrotor control flow block diagram.

The main flight control flow is reported in Fig. 2. The overall
control is built on top of several proportional integral derivative
(PID) controllers in closed-loop configuration. Key software
modules are the attitude controller, the power distribution
and the position estimator block. The main flow, always
active, is represented by the attitude controller that first tries
to determine how to compensate the current attitude (based
on gyroscope and accelerometer data) to match the desired
attitude sent by the ground-station. Then, the angles (yaw,
pitch, roll) are converted in angle rates and propagated to
the power distribution that merges them with the target thrust
specified by the user and computes the intensity for the motors.

The CF also offers the possibility to enter in altitude
hold mode (i.e., it tries to keep the current altitude over
time). This mode is mapped in the position estimator. It
relays on the existing on-board sensors (i.e., accelerometer
and barometer) to estimate the current vertical position (i.e., Z-
axis) through a complementary filter [16] meaning both high-
pass and low-pass filters simultaneously (altitude estimator in
Fig. 2). Then, it tries to maintain the current altitude providing
his attitude prediction to the attitude controller. Such prediction
is then merged with the attitude controller internal estimation
described in the main flow.

In order to evaluate the available computational and mem-
ory budget of the original architecture we performed a first
evaluation on processing and communication modules and on
memory usage running the CF’s stock firmware. As shown in
Fig. 3, the firmware on the STM32 leaves free 56% of the total
memory (i.e. ≈ 100KB) and 25% of the computational bud-
get. In Fig. 3 (on the right) we report the most computational
intense tasks active during the flight: sensor data collection
task (SENS), wireless communication task (SYSL), attitude
control stabilizer task (STAB) and the task for the conversion of
the transfer protocol (CRTP). In order to evaluate the free CPU
load we introduced a computational intense “dummy” task

Fig. 3. Memory occupancy (left) and on computational load (right).

(DUMM) in order to prevent the OS in over-scheduling other
low-priority tasks due to the availability of CPU resources.

B. Visual Sensor Integration

To enable the object tracking capability we extended the
CF’s sensing system with an image sensor. The ArduCAM
Mini V2 camera shield was selected on the basis of its weight,
power consumption, form factor, frame rate and software
support. The camera module is based on the OmniVision
OV2640 a 2Mpixel chip, with a maximum frame rate of
60fps and it is interfaced using an I2C bus and SPI bus. This
lightweight camera, with a weight of only 5g and a form factor
of 24× 34× 6 mm, is based on a rolling shutter sensor that
consumes on average 350mW (experimentally measured).

The I2C is directly connected to the OV2640 and is used for
the registers configuration. Instead, the SPI channel is used for
accessing the raw data through a FIFO buffer. We integrated
the existing camera driver on the CF firmware achieving an
image stream of 25fps. The prototype is shown in Fig. 1 (A).

C. PULP Architecture

To investigate on the possible technology enabling the new
generation of autonomous nano-scale UAVs, we evaluate an
energy efficient parallel ultra low power platform: PULP.
PULP can boost up both energy efficiency and available
computation resources to process complex algorithms. The
platform is a scalable, clustered computing platform designed
to operate on a large range of operating voltages, achieving in
this way a high level of energy efficiency [17]. In particular,
we focus on the fourth embodiment of the platform, called
Fulmine. Fulmine features a single quad-core cluster integrated
with 192kB of L2 SRAM memory and several IO peripherals.

The PULP cluster has 4 OR10N cores improved with
extensions for higher throughput and energy efficiency in
parallel signal processing workloads. The ISA extensions
of the core include general-purpose enhancements, such as
zero-overhead hardware loops and load and store operations
embedding pointer arithmetic, and other DSP extensions that
can be explicitly included by means of intrinsic calls.

To avoid the energy overhead of memory coherency, the
cores do not have private data caches: they all share a L1
multi-banked tightly coupled data memory (TCDM) acting
as a shared data scratchpad. Intra-cluster communication is
based on a high bandwidth low-latency interconnect imple-
menting word-level interleaving to reduce access contention
to the TCDM. A lightweight multi-channel DMA enables fast
communication with the L2 memory and external peripherals.
The DMA features a direct connection to the TCDM to reduce
power consumption.



aslAlpha

Δt

Barometer
(altitude)

estAlpha

vFactor

Accelerometer
Z-Velocity

estAlpha

estimatedAcc

estimatedBaro

estimated Z
position

Previously
estimated 
Z position

÷
estimated Z

velocity

estimated Z
position

Altitude Estimator - Proposed Method

Fig. 4. Proposed altitude estimator control flow.

IV. AUTONOMOUS NAVIGATION CAPABILITY

In this section we describe the proposed techniques to
extend the autonomous navigation capability of our target
nano-UAV. We first illustrate our proposed solution to enhance
the accuracy of the existing altitude hold control flow, only
using the on-board inertial and pressure sensor. Then, thanks
to the improved hovering capability and the on-board visual
sensor, we present a simple visual algorithm for red-based
object tracking capable of following a target object exploiting
only on-board computational resources.

A. Altitude Hold Enhancement
As introduced in Sec. I, a key component of any au-

tonomous rotorcraft is the capability of precise hovering [2],
[6]. The CF flight mode relays on the inertial sensor (affected
by constant drift [18]) and the pressure sensor characterized by
an accuracy error of ±1.69m, that in our application scenario
makes it unreliable as basic component to build more complex
tasks on top of it.

To achieve the target-following, we first propose an en-
hanced altitude hold based on a more robust position estimator.
The basic idea is to split the original complementary filter
into two independent filters, one for the barometer and a
second one for the accelerometer, both estimating the vehicle’s
position w.r.t the Z-axis (i.e., altitude), as shown in Fig. 4.

Each filter has its own feedback loop, where the resiliency to
high frequency signal variation is determined by the estAlpha
coefficient. Then, the two independent flows are merged with
a weighted sum, where the accelerometer’s data is weighted
with a higher gain than the barometer’s data. In this way,
the estimation mostly relay on the accelerometer information,
where the constant drift is partially compensated by the the
barometer flow. Note that, for our target application constant
smooth drift is favorable w.r.t. jerk movements (that would
cause very noisy images).

B. Object Tracking Algorithm
Enabling a quasi-stationary vehicle’s motion with smooth

movement is a key feature to introduce into the system the
object tracking capability with a simple, low-computation, vi-
sual algorithm. As proof-of-concept we propose a lightweight
approach which localizes a structure that significantly differs
from its neighbors in intensity and texture. This approach has
been used to detect monochromatic red-based objects. Then,
after the object coordinates are determined on the image plane,
they are used to correct the desired attitude through the control
fusion stage of the algorithm.

Object Detection: For each RGB image we first extract
the red channel checking also the intensity of the others in
order to distinguish between completely white and red regions.
Then, the red image is divided, and labeled, into homogeneous
segments on the basis of the pixel’s intensity. The region
of interest (ROI) is defined as the segment with the highest
number of pixel and the coordinates of its center of mass
(CoM) are forwarded to the next stage.

Control Fusion: In this stage the coordinates of the target’s
CoM (i.e., CoM of the ROI) are converted into a desired
attitude for the existing control flow. In our approach we first
split the image in 3 × 3 rectangular sectors (3 rows and 3
columns). Then, we adjust the attitude in order to keep, over
time, the ROI both in the central sector and with a constant
dimension (i.e., constant number of pixels). Moreover, we in-
crease the robustness discarding ROIs that exceed a maximum
displacement threshold between two consecutive images.

For example, if the ROI appears on the left-most column
of the image, the nano-UAV needs to move to the left (Y-axis
in Fig. 1 (B)) to bring back the ROI in center of the image.
Similarly, if the ROI lies on the up-most row of the image, the
drone needs to increase its altitude (Z-axis in Fig. 1 (B)) and
if the ROI is bigger than a given threshold then the drone is
too close to the target and it needs to fly back (X-axis in Fig.
1 (B)). These three dimensions of movements are evaluated
simultaneously. Thus, if the ROI appears on the right-down
corner, the vehicle will fly contemporary down and on the
right.

The control flow parameters influenced by the visual
pipeline are the vertical velocity (Vz), the roll angle and the
pitch angle (in Fig. 2), respectively compensating for the Z,
Y and X displacement in Fig. 1 (B).

Proposed
Object 
Tracker

KCF
Object 
Tracker

Fig. 5. Visual comparison of the proposed object tracker (gren box) and the
KCF algorithm (red-dot box), over four consecutive frames.

Fig. 5 presents a visual comparison of the proposed algo-
rithm with a state-of-the-art object tracker: Kernelized Corre-
lation Filter (KCF) [19]. From left to right four consecutive
frames are evaluated, the target identified by the proposed
algorithm is defined by a green box in contrast with the KCF
detected target represented by a red box with a red dot on the
center. In the first frame we can see the target object (i.e., red
square) correctly tracked by both approaches. In the second
frame we introduce some noise with a second potential red
target (up-right corner of the image), but both approaches still
hold on the correct one. Lastly, in the fourth frame the target
is significantly occluded (exceeding the image boundary) and
in this case only KCF is able to locate the target correctly.

V. RESULTS & DISCUSSION

In this section we will evaluate the accuracy, the power
consumption and the performance of the proposed autonomous
nano-UAV. In particular we will evaluate the accuracy of each



algorithm independently as well as a final evaluation of the
complete system. Lastly, we will introduce an evaluation of
the power consumption and computational load of both the
on-board MCU and the proposed PULP platform. All the
measurements addressing the motion analysis of the flying
vehicle are based on external Vicon motion capture system,
which is a camera-based positional system that provides sub-
millimeters accuracy at 200Hz.

A. Extended Inertial Hovering
The improvement in hovering accuracy is shown in Fig. 6

where, using the Vicon system, the original altitude hold and
the proposed one are compared. The desired altitude (dotted
yellow line) is set to 1 meter, the vertical variation (Z-axis)
is reported in red for the original system and in blue for
the one proposed. The experiment shows an evaluation over
37.5 seconds resulting in an improved average accuracy of the
proposed inertial hovering w.r.t. the original system. In fact,
the average error decrease from 33.6cm to 12.1cm, with a
reduction also of the maximum error, from 83.4cm to 41.6cm.
Note that, the reduction on the peak error implies smoother
movements, resulting in the reduction of the noise in the image
acquisition.

Time [s]
0 5 10 15 20 25 30 35

Enhanced
Original

Desired

Z
 p

os
iti

on
 [c

m
]

0

50

100

150

200

Fig. 6. Inertial hovering evaluation using the Vicon motion capture system.

B. Object Tracker
In order to evaluate the precision of the proposed re-based

object tracker we compared it with the KCF algorithm [19].
In Fig. 7 we present an evaluation based on a video (708
frames) from the VOT dataset1. In Fig. 7 (A) is presented a
4-frame sample of the video where the target is associated
to a red moving object. The ground-truth, the KCF identified
target and the target tracked by our algorithm are respectively
represented by a green, blue and red box.

The precision has been calculated as the percentage of
correctly tracked frames (w.r.t. the ground-truth) for a given
tolerance threshold in pixel (X-axis). As expected KCF results
more robust than the proposed algorithm with a precision of
0.9 with a tolerance error of 20 pixel. In fact, our object
tracker needs to relax the tolerance error to 35 pixel to achieve
similar precision.

C. Autonomous UAV Evaluation
As last test on the accuracy, we evaluate on the field

the motion of the proposed autonomous nano-UAV during
the object tracking activity. The setup, shown in Fig. 1 (B),
is composed of a moving red marker and the vehicle free

1http://www.votchallenge.net/vot2016/dataset.html

KCF object tracker

Proposed object tracker

A

P
re

ci
si

o
n

Tolerance Error Threshold [pixel]
10 15 20 25 30 35 40 45 50

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 7. Accuracy comparison between the proposed object tracker (red box
in (A)) and KCF (blue box in (A)). In (A) 4 frames of the video stream
evaluated with a green box for the ground-truth.

to fly autonomously, without any external interaction. The
visual stream, processed on-board, provides 25fps due to the
bottleneck introduced by the camera’s driver. In Fig. 8 we
evaluate each reference axis independently. The blue dashed
line represents the ideal motion in order to follow each single
movement of the target marker. The red line shows the actual
movements of the drone. Respectively for the X, Y and Z-
axis, the average error is of 34.7cm, 28.6cm and 14.9cm and
the peak error is respectively of 58.0cm, 47.2cm and 29.4cm,
resulting in a smooth object following, as shown in Fig. 8.

D. Power Consumption vs. Performance

In this section we evaluate the power consumption and
the computational load of the proposed solution for both the
STM32 MCU and a PULP architecture [17]. For the parallel
platform the results are gathered trough the PULP simulator,
capable of precisely modeling the behavior of the architecture
in term of execution cycles, core stalls, memory conflicts, and
cache misses.

Tab. I shows the power consumption and the free computa-
tional load for both architectures running the proposed object
tracker algorithm with different image sizes streamed in at
60fps, that represents the maximum frame-rate of our camera.
In the experiments the STM32 has been considered with the
same configuration presented in Sec. IV, characterized by an
available computational budget of 25% for the object tracking.
The quad-core PULP platform has been evaluated under few
conservative assumptions. The implementation considered for
the object tracking algorithm, is the same used on the STM32,
thus non-optimized for the PULP platform. We verified that the
single-core execution of this algorithm results in is very similar
number of cycles on both architectures. For this reason one
core of the PULP platform is dedicated to all the control tasks
and the remaining three cores are used for the object tracking.
A conservative speedup factor of 2.5x has been used scaling
the single-core execution time of the algorithm to the three
cores available. The results of this configuration is reported in
Fig. 9.

As shown in Tab. I, with 80 × 60 image resolution both
the STM32 and PULP are able to process the 60fps input
stream, leaving 16.8% and ≈ 70% of computational resources
free, respectively. Instead, for the 160× 120 pixel image only
PULP is able to perform the required computation leaving
more than half of the resources free for additional work. In



5 10

Time [s]
5 10

Time [s]
5 10

Time [s]

X
 p

os
iti

on
 [c

m
]

Y
 p

os
iti

on
 [c

m
]

Z
 p

os
iti

on
 [c

m
]

Fig. 8. Evaluation of the prototype during the target-following of a moving red marker. Measured with the Vicon motion capture system.

MCU@Frequecy
[MHz]

Power
[mW]

Free Computation
(80× 60) [%]

Free Computation
(160× 120) [%]

STM32@168 ≈ 130 16.8 −7.5
PULP@100 ≈ 13 70.1 58.5

PULP@150 ≈ 23 72.1 63.6

PULP@180 ≈ 30 72.6 65.4

PULP@220 ≈ 41 73.1 67.5

TABLE I
POWER CONSUMPTION AND FREE COMPUTATIONAL LOAD FOR THE

PROPOSED OBJECT TRACKER (80× 60 AND 160× 120 PIXEL AT 60fps).

fact, we can see how the STM32 needs an additional 7.5%
of the computational resources in order to process 60fps of
160× 120 pixel. Tab. I shows also that both architectures (in
all configurations) are able to respect the power envelope for
the nano-size UAVs class of ≈ 250mW .

Control
Available
Object Tracker

Parallelization Overhead

75%

16.8%

8.2%

25% 72% 2.5% 0.5%

STM32@168MHz PULP@150MHz

Core0 Core1

Core3Core2

Fig. 9. Computational load breakdown for the STM32 and PULP architecture,
running all the tasks with a frame resolution of 80× 60 pixel at 60fps.

Lastly, considering the state-of-the-art KCF object tracking
algorithm, we evaluated the STM32 (168MHz) capable of
processing ≈ 2fps w.r.t. ≈ 11fps processed by PULP
(200MHz). This last result shows how the ultra-low power
parallel paradigm represents a good candidate for running
high-accuracy and computational intense algorithms respecting
the real-time requirement of ≈ 10fps and the nano-size UAVs
power envelope.

VI. CONCLUSION

In this work we demonstrate the feasibility of precise
hovering and target-following on a nano-size UAV, relaying
only on on-board sensors and computation. A commercial
nano-quadrotor, has been equipped with a camera and the
its control flow has been extended i) enhancing the inertial
hovering and ii) performing the proposed object tracking algo-
rithm. Experimental results, in-field, demonstrated that simple
autonomous navigation capabilities can be achieved with the
existing hardware. Moreover, we shown how the adoption

of a PULP architecture can met the required computation
in ≈ 30mW power envelop, leaving enough computational
resources (more than 70% of the total computational power)
free for further on-board processing.

ACKNOWLEDGMENT

This work has been funded by projects EC H2020 HER-
CULES (688860) and Nano-Tera.ch YINS.

REFERENCES

[1] E. Cano et al., “Comparison of small unmanned aerial vehicles perfor-
mance using image processing,” Journal of Imaging, 2017.

[2] D. Palossi et al., “Ultra low-power visual odometry for nano-scale
unmanned aerial vehicles,” in 2017 Design, Automation Test in Europe
Conference Exhibition (DATE), 2017.

[3] H. Menouar et al., “Uav-enabled intelligent transportation systems for
the smart city: Applications and challenges,” IEEE Communications
Magazine, 2017.

[4] C. Forster et al., “Svo: Fast semi-direct monocular visual odometry,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014.

[5] O. Dunkley et al., “Visual-inertial navigation for a camera-equipped 25g
nano-quadrotor,” in IROS2014 Aerial Open Source Robotics Workshop,
2014.

[6] A. Briod et al., “Optic-flow based control of a 46g quadrotor,” in
Workshop on Vision-based Closed-Loop Control and Navigation of
Micro Helicopters in GPS-denied Environments, IROS 2013, 2013.

[7] D. Maravall et al., “Vision-based anticipatory controller for the au-
tonomous navigation of an uav using artificial neural networks,” Neuro-
computing, vol. 151, pp. 101–107, 2015.

[8] S. Ward et al., “Autonomous uavs wildlife detection using thermal
imaging, predictive navigation and computer vision,” in Aerospace
Conference, 2016 IEEE. IEEE, 2016, pp. 1–8.

[9] R. Brockers et al., “Towards autonomous navigation of miniature uav,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2014, pp. 631–637.

[10] R. Wood et al., “Progress on ’pico’ air vehicles,” Int. J. Rob. Res., 2012.
[11] S. B. Fuller et al., “Controlling free flight of a robotic fly using an

onboard vision sensor inspired by insect ocelli,” Journal of The Royal
Society Interface, 2014.

[12] F. Lin et al., “A robust real-time embedded vision system on an
unmanned rotorcraft for ground target following,” IEEE Transactions
on Industrial Electronics, 2012.

[13] D. Palossi et al., “An energy-efficient parallel algorithm for real-time
near-optimal uav path planning,” in Proceedings of the ACM Interna-
tional Conference on Computing Frontiers. ACM, 2016.

[14] X. Zhang et al., “Autonomous flight control of a nano quadrotor
helicopter in a gps-denied environment using on-board vision,” IEEE
Transactions on Industrial Electronics, 2015.

[15] J. Pestana et al., “Computer vision based general object following for
gps-denied multirotor unmanned vehicles,” in 2014 American Control
Conference, 2014.

[16] S. Colton and F. Mentor, “The balance filter,” Presentation, Mas-
sachusetts Institute of Technology, 2007.

[17] F. Conti et al., “An iot endpoint system-on-chip for secure and energy-
efficient near-sensor analytics,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2017.

[18] M. Rockwood et al., “Adaptive drift calibration of accelerometers with
direct velocity measurements,” in Instrumentation and Measurement
Technology Conference (I2MTC), 2015 IEEE International. IEEE,
2015.

[19] J. F. Henriques et al., “High-speed tracking with kernelized correlation
filters,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2015.


