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Abstract

We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kol-

mogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann

boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal appli-

cation for this solver is modeling human population dispersal over geographical maps with

changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying

capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the

Americas.

Introduction

There is considerable interest in modeling population dynamics at large spatial and temporal

scales, for example the modern human out-of-Africa dispersal [1–4] or Neanderthal dispersal

and extinction [5]. These models are required to interpret local and global patterns of genetic,

phenetic and cultural variation [1, 6–9].

Fisher [10] studied the problem—via a growth-diffusion equation—of an analogous but

one-dimensional situation: the propagation of an advantageous genetic mutation within an

already-present population, situated along a coast line. Kolmogorov, Petrovskii and Piskunov

[11] were more general; in particular, their analysis treated the two-dimensional case. Such a

model (called Fisher/KPP in the following) was applied to the dispersal and growth of a popu-

lation by Skellam [12], and serves as an important control for designing and validating other

more complex spatiotemporal population models [5]. Coupling population dynamics with

models of large-scale changes in continental topography, climate, and ecosystem productivity

is necessary to understand the role of environmental constraints on patterns of genetic, phe-

netic, and cultural variation among human populations [5].

Here we present a stable and efficient finite-difference solver for the Fisher/KPP equation

on the 2-D domains of geographical maps, and show how it can be extended to include envi-

ronmental fluctuations. In a brief outline of our paper, we will: review the derivation of the

Fisher/KPP equation (Section The Fisher/KPP equation); develop finite-difference schemes

in 1 and 2 dimensions for variable environmental carrying capacity K (Section Numerical
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methods and splitting) depending on both space and time Kðx; tÞ (Section Space—time

dependent capacity maps); and show our application of this technique to the out-of-Africa

dispersal of Homo sapiens by using net primal productivity (NPP) [1] as a proxy for K (Section

World-wide hominin dispersal).

The Fisher/KPP equation

An intuitive way to get the Fisher/KPP equation [10–12] is as follows. A current j of particles

(e.g., individuals) moving across an interface located at x is proportional to the gradient of the

population density p (called “Fickian diffusion”)

j ¼ � crp:

The rate of change of p is then given by the mass balance equation [13], which for Fickian

diffusion reads

@p
@t
� cr2p ¼ r:

If ρ = 0, this is the heat equation when c = D/2 and D is the diffusion coefficient. For lack of

a better model, we assume c is a constant (Young & Bettinger [4]). In Subsection Parameter

optimization, we optimize on D = 2c. The source term ρ is usually modeled by a logistic

growth function, r ¼ lpð1 � p=KÞ, and gives the Fisher/KPP equation

@p
@t
¼ cr2pþ l 1 �

p
K

� �
p; ð1Þ

where K is called carrying capacity and λ is the growth rate. In Eq (1) we wrote K as a constant.

Since ρ is a local density, it can be space, x, and time, t, dependent. To get relative density infor-

mation, all we need is that there is an upper limit �K, in which case 0 � p � �K. If Kðx; tÞ is

evolving, locally the solution p � Kðx; tÞ � �K. As in Table 1, �K can be scaled to unity,

although obviously only the relative density p=�K can be computed. A scaled version for con-

stant K is given in Eq (2), while space and space-time dependent Kðx; tÞ versions are given in

the Section Space-time dependent capacity maps. Fluctuations in climate produce environ-

mental changes in vegetation, sea levels, opening/closing of land bridges, waxing/waning of ice

sheets, and perturbations to habitable areas in general. Thus, time-dependent environments

compel us to deal with space- and time-dependent Kðx; tÞ (see Subsection Time interpolation

of maps), Section Space-time dependent capacity maps, Eq (9). Fisher and KPP were particu-

larly interested in the traveling wave case, p(x, t) = f(x0 + vt). It was shown in [14, 15] that

asymptotically (large t), the speed is v ¼ 2
ffiffiffiffiffi
lc
p
¼

ffiffiffiffiffiffiffiffi
2rD
p

in our notation. By the rescalings

show in Table 1, for constant K the Fisher/KPP Eq (1) is written

@u
@t
¼

1

2
r2uþ ð1 � uÞu; ð2Þ

Table 1. Variables in left column are scaled versions of those in right column.

In Eq (2) In Eq (1)

x
ffiffiffi
l

2c

q
x

t λt
u p=K

doi:10.1371/journal.pone.0167514.t001
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where the only sensible solutions have 0� u� 1. The initial distribution u(x, 0) = u0(x) must

be defined for all x on the habitable regions of the map.

In Murray ([14], eq. (11.17)) our growth coefficient λ is called r and c is denoted by D,

whereas in Young and Bettinger [4] the growth coefficient is R and the diffusion coefficient is

K. We use r to denote radius in Section Numerical methods and splitting, and k for the CFL

parameter, so λ andD are used here and that next section. Elsewhere, λ = r is used interchange-

ably. These inputs to our code are given in units of yr−1 and km2/yr, respectively.

Numerical methods and splitting

In one dimension, Eq (2) can be solved using the MatLab function pdepe, or if the system is

two-dimensional but rotationally symmetric, pdepe can again be used with the radial part of

the Laplace operator in cylindrical coordinates,

r2 ¼
1

r
@

@r
r
@

@r
þ non� contributing terms;

requiring only that one sets a pdepe parameter m=1. What is important is that because

MatLab function pdepe is robust, it is a valuable verification tool for testing our more gen-

eral solver when comparisons can be made.

The finite-difference scheme

Since the map on which we will be working is a pixelized plane, an obvious method uses

finite differences. First, however, let us examine the 1-D case for Eq (2). In this situation, the

second order derivative becomes a differencing operator in matrix form acting on the vector

{uj, j = 1, n}, where uj = u(x0 + (j − 1)Δx),

@
2u
@x2
!

1

ðDxÞ2
Au;

where the matrix A is

A ¼

� 2 1 0 0 . . . 0

1 � 2 1 0 . . . 0

0 1 � 2 1 . . .

0 0 1 . . .

0 0 . . . 0 1 � 2

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

: ð3Þ

If h is the time step, the Courant—Friedrichs—Lewy (CFL) parameter [16] is

k ¼
h

2ðDxÞ2
: ð4Þ

An explicit integrator for Eq (2) would require k< 1/4 [16, 17]. In our case, because bound-

ary conditions are so irregular on a map and there are strong spacial variations in K, we are

uninterested in a method of higher order than second because stability is more important [18].

Using this notation, the lowest order approximation is Euler’s method which estimates the

next step u(t + h) by

uE ¼ uðtÞ þ kAuðtÞ þ h ð1 � uðtÞÞuðtÞ; ð5Þ

Scheme for Population Growth and Diffusion on a Map
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which should be considered a vector equation in u(t) = {uj(t), j = 1, n}. The logistic terms,

which are diagonal, should be taken to mean ((1−u)u)j = (1−uj)uj for j = 1, 2, . . ., n. Euler’s

method is both low-accuracy and generally unusable if it is used alone over too many steps.

This method is in principle conditionally stable if the step size is forced to be small enough. A

step size which is too small, however, actually drives errors up, not down: e.g., C. Wm. Gear’s

Fig. 1.8 [19], page 19. Euler’s method is O(h) accurate so is useful as an explicit estimate (pre-

dictor) inside O(h) terms, and thus yields O(h2) accuracy for such terms. An application of the

trapezoidal rule yields

uðt þ hÞ ¼ uðtÞ þ
k
2
Auðt þ hÞ þ AuðtÞð Þ

þ
h
2
ð1 � uðt þ hÞÞuðt þ hÞ þ ð1 � uðtÞÞuðtÞð Þ

ð6Þ

and is an O(h2) + O((Δx)2) accurate procedure. However, solving the quadratic vector Eq (6)

for u(t + h) is awkward. To the same O(h2) accuracy, we use a semi-implicit procedure which

uses the Euler estimate Eq (5) to modify one of the terms, (1−u(t + h)), in Eq (6):

uðt þ hÞ ¼ uðtÞ þ
k
2
Auðt þ hÞ þ AuðtÞð Þ

þ
h
2
ð1 � uEÞuðt þ hÞ þ ð1 � uðtÞÞuðtÞð Þ:

ð7Þ

Eq (7) can be solved as a linear system,

1 �
k
2
A �

h
2
ð1 � uEÞ

� �

uðt þ hÞ ¼ uðtÞ þ
k
2
AuðtÞ þ

h
2
ð1 � uðtÞÞuðtÞ; ð8Þ

because the matrix, 1 � k
2
A � h

2
ð1 � uEÞ, on the left hand side is explicit, as is the right hand

side. That is, this matrix and the right hand side contain only old data, namely just information

from the previous step, u(t). Euler estimate uE Eq (5) is an explicit one step computation using

old data u(t). Significant advantages are: the matrix on the left hand side is tridiagonal with

constants on the sub/super-diagonals, and the diagonal terms are O(1) strong. The procedure

Eq (8) is only linearly stable but we find empirically that it gives good results when compared

to pdepewhen comparisons to this MatLab function are appropriate.

Fig 1 shows the results for h = 1/12, Δx = 1/5 compared to pdepe. Notice that at both t = 2

and t = 20 the agreement is quite satisfactory. The CFL number, k = 1, used to get Fig 1 is

much larger than would be possible with an explicit method [17].

Space-time dependent capacity maps

Fluctuations in climate produce environmental changes in vegetation, sea levels, opening/clos-

ing of land bridges, waxing/waning of ice sheets, and perturbations to habitable areas in gen-

eral. Thus, changing environments compel us to develop a procedure Eq (9) for the case when

Kðx; tÞ depends on both space and time.

Scheme for Population Growth and Diffusion on a Map
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Since Eq (8) is basically the trapezoidal method (see section 5.3 in [17]), the modification

for a space—time dependent Kðx; tÞ is as follows:

1 �
k
4
Ax

� �

u? ¼ 1þ
k
4
Ax

� �

uðtÞ ð9aÞ

uE ¼ u? þ kAyu
? þ h 1 �

u?

KðtÞ

� �

u? ð9bÞ

1 �
k
2
Ay �

h
2

1 �
uE

Kðt þ hÞ

� �� �

u?? ¼ 1þ
k
2
Ay þ

h
2

1 �
u?

KðtÞ

� �� �

u? ð9cÞ

1 �
k
4
Ax

� �

uðt þ hÞ ¼ 1þ
k
4
Ax

� �

u??; ð9dÞ

where we have suppressed the x dependence of Kðx; tÞ for simplicity of notation. In Eq (9), the

operators Ax and Ay are the same finite difference operators as in Eq (3) but for directions x
and y, respectively. For simulations on a lattice, uij(t) = u(x0 + (i−1)Δx, y0 + (j−1)Δy, t), where

1� i� Nx, 1� j� Ny and Δx = Δy, the following gives the action of the Ax, Ay operators:

Axui;j ¼ ui� 1;j � 2ui;j þ uiþ1;j;

Ayui;j ¼ ui;j� 1 � 2ui;j þ ui;jþ1:

A compression scheme and code outline given in Appendix Map segmentation show that

only a maximum of one row or column (i.e., max(Nx, Ny)) of storage is needed for u? and u??.
We use the simple regularization of each version of 0 � u � K in Eq (9) at every x−point,

namely

0 � u? � Kðx; tÞ;

0 � uE � Kðx; t þ hÞ;

0 � u?? � Kðx; t þ hÞ:

Fig 1. Godunov vs. pdepe. Left: Godunov vs. pdepe at t = 2. Right: same at time t = 20. Only x > 0 data are shown. The time step h = 1/12

and Δx = 1/5. Initial data: u(x) = 1 if |x| < 1, zero otherwise.

doi:10.1371/journal.pone.0167514.g001
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For example: use Eq (9b) to compute uE, then set uE max(0, uE), followed by

uE  min ðKðx; t þ hÞ; uEÞ. Intermediate values u? and u?? are constrained similarly.

Fisher/KPP on geographical maps

In order to solve Fisher/KPP on a geographical map, one segments the map into x- and y-

direction pieces, imposing boundary conditions at their endpoints; the solver acts on each

segment independently, changing the directions x! y Eqs (9a) to (9b), then y! x Eqs (9b)

to (9d) [17] of integration as in Eq (8). This approach also lends itself to efficient paralleliza-

tion. In the Map segmentation appendix we illustrate the scheme with an illustrative

MatLab code sample.

Boundary conditions for Fisher/KPP

Two versions for boundary conditions were implemented and tested: (1) zero solution Dirich-

let, and (2) zero net flux Neumann conditions. Both variations require some explanation.

Dirichlet BCs

In this case, a border of zero pixels were added to the land masses. In our Godunov method,

each direction (X, respectively Y) segments acquire two zero pixel end points, and the result-

ing nseg + 2 one dimensional difference equations are solved, but only the nseg land mass

pixel values of the solution are updated. For example, in the Appendix Map segmentation,

an X direction segment passing through equatorial central Africa has nseg pixels, each of

which also has a corresponding space/time dependent carrying capacity Kðx; tÞ. Two zero

pixels are added, one at each end, but Kðx; tÞ for those additional points are not relevant,

nor used. Single pixel land mass segments thus become 3 pixels, where only the middle point

is updated. The differencing operator (3) becomes very simple with three elements/row (1,

-2, 1). Simulations with high resolution, say Nx = 720 and Ny = 360, show that the coastal

region populations look too small. This is because of smoothing between zero (water) and

the second adjacent pixel away. Our ancestors fished, so we concluded Dirichlet BCs seem

inappropriate.

Neumann BCs

In consequence, we use zero net flux, @u/@x = 0 or @u/@y = 0 into the sea conditions. This is

more awkward and two issues must be dealt with:

• Derivative information (ux, uy toO(Δx2)) must be available, or approximated. From LeVeque

[17], we know that when nseg> 3, we may use @u=@x � 3
2
uðxÞ � 2uðxþ DxÞ

�
þ 1

2
uðxþ

2DxÞÞ=Dx as a one-sided (to the right, here) difference approximation. If nseg� 3, however,

things are clumsier.

• Furthermore, because our Godunov splitting advances two one half steps of the heat equa-

tion per time step, there is the question of whether the solver simulates these half-steps in a

properly posed way. It is well known (again [17]) that the heat equation with Neumann

boundary conditions can be an ill-posed problem. This is easy to see: ut ¼ 1
2
uxx with ux = 0 at

the end points remains invariant to the shift u! u + C, for any constant C. Thus, in that

case, the solution cannot be unique. Uniqueness must be imposed by the logistics term in

(2). That term is not invariant under the shift, so uniqueness is assured. Only single half

time—steps for the heat equation steps, Eqs (9a) and (9d), are taken.

Scheme for Population Growth and Diffusion on a Map
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If nseg> 3, the resulting linear equations to be solved are of the form Eq (9c).

1; � 4=3; 1=3 � � � 0

�
k
2
; 1þ k �

h
2
ð1 � uE;2Þ; �

k
2

� � � 0

0 �
k
2
; 1þ k �

h
2
ð1 � uE;3Þ; �

k
2

� � �

� � � � � � � � �

0 � � � 1=3; � 4=3; 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

u??

¼ RHS;

ð10Þ

where RHS1 = RHSnseg = 0. Elements uE,j denote the j−th elements of the Euler estimate vectors

uE. Note that this system has bandwidth 5, not 3. However, the upper and lower 2nd sub/

super-diagonals contain only one element (1/3). As LeVeque [17] points out, this only slightly
disturbs the tridiagonal structure. To be able to still use a tridiagonal solver, we modify Eq (10),

by using explicit Heun rule estimates for u3 and unseg−2 and move those to the right hand side:

that is,

RHS1 ! �
1

3
uest

3
; and RHSnseg ! �

1

3
uestnseg � 2

;

and remove the first and nseg-th row elements 1/3 in Eq (10). The u1 and unseg elements can be

updated after the tridiagonal system solution to correct for the explicit estimates, if desired.

We find no discernible differences doing so.

Three special cases remain: nseg = 1, 2, 3.

• If nseg = 1, only the logistics term can be used: set Ay = 0 in (11b) and (11c) and update the

single element u??1 . This must be kept non-negative, however.

• Surprisingly, the nseg = 2 is the most awkward. Eq (11) use the 2nd order differencing opera-

tor on the old (previous time step) solutions,

Ax ¼
� 2 1

1 � 2

 !

;

and likewise Ay. The resulting solutions of Eqs (9a) and (9d) contain limited derivative infor-

mation, hence the Neumann boundary conditions require u?
1
¼ u?

2
, u??

1
¼ u??

2
, and

u1(t + h) = u2(t + h) and all these must be non-negative. Similar restrictions are also made on

the Euler estimate in (11b).

• When nseg = 3 the resulting 3-vector equations for u? u??, and u(t + h) all take a form

1 � 4=3 1=3

S1 S2 S1

1=3 � 4=3 1

0

B
@

1

C
A

u1

u2

u3

0

B
@

1

C
A ¼

0

RHS2

0

0

B
@

1

C
A:

A couple of simple manipulations show u1 = u2 = u3, which says that there is no derivative

information if Neumann boundary conditions are imposed on this nseg = 3 case. The solution

is u2 = RHS2/(2S1 + S2), and thus we get the other two. They must also be kept non-negative.

Scheme for Population Growth and Diffusion on a Map
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World-wide hominin dispersal

We now focus on our principal application using the methods presented above: the world-

wide dispersal of Homo sapiens out of Africa.

Capacity maps

Our construction of a time-dependent K uses Net Primary Productivity (NPP) as a proxy [1].

The Miami model [20] was originally formulated in 1972 to estimate NPP (in (grams of carbon

in dry organic matter)/m2/day) from annual temperature and rainfall [21]. In order to com-

pute our NPP maps, we obtained the temperature and precipitation data from simulations by

the BRIDGE program [22] organized at the University of Bristol [23–26]. The simulation data

that we use are computed on a 96 × 73 grid, which we interpolate to size 720 × 360 and convert

to NPP maps [27] by applying the formulas given in [20].

World—wide NPP data are difficult to obtain, so our Miami model-like maps are somewhat

rough. Via testing, we found our Godunov solver to be quite robust with respect to abrupt x

−steps in the carrying capacity Kðx; tÞ.

Time interpolation of maps

We assembled 61 NPP maps, from 120 kya to 1 kya. These are in 4 kilo—year steps for the first

10; 2 ky steps for the next 21; then 1 ky steps for the remainder. The time stepper in our Godu-

nov scheme has no information about continuity between these discrete NPP maps, so an

interpolation scheme needs to be used.

If we have available some estimates for the carrying capacities KL, KH at times tL, tH, one

possible estimate for KðtÞ at times tL� t� tH in between is a homotopy,

Kðx; tÞ ¼ KLðxÞð1 � SðtÞÞ þKHðxÞSðtÞ;

where a sigmoid function 0 = S(tL)� S(t)� S(tH) = 1 smoothly interpolates between lower

and higher time frames. There are many choices available, such as that used in [1]. We use the

following variant.

Start with the classical sigmoid

SðzÞ ¼ ð1þ e� zÞ � 1
ð11Þ

which is zero at z = −1 and unity at z = +1. The −1< z< +1 interval is not what we want,

but the following t 7! z transformation permits several variants:

z ¼
2DTðt � tLÞ � ðDTÞ

2

ððt � tLÞðDT � ðt � tLÞÞÞ
n : ð12Þ

where ΔT = tH − tL. Notice that S(z(tL)) = 0 and S(z(tH)) = 1. The exponent ν in Eq (12) gives

some freedom in choosing a particular form for z for almost any ν> 0. If ν< 1/2, d2 S/dt2 has

more than two sign changes, so ν� 1/2 is preferable. With choice ν = 1/2, the interpolant is

nearly a straight line: see Fig 2. However, its turn-up at t = tL and turn-down at t = tH numeri-

cally resemble very quick derivative changes. So, we choose ν = 1 which also makes z(t) time

scale independent. At both ends, all derivatives of S(z(t)) in t smoothly vanish. We also have

the forward/backward symmetry S(z(tH − t)) = 1−S(z(t)) for tL� t� tH, as does [1].

Parameter optimization

Other tasks remain: optimize the r = λ and D = 2c parameters in Eq (1); choose our starting

value Ts, the start time for our simulation; and choose a threshold value for arrival. For
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example, a migration wave reaching some fraction of the local carrying capacity at a studied

site would constitute arrival. Roughly, the distance from Eritrea/Djibouti to any site, arriving

at time tA, looks like

distance ¼ a
ffiffiffiffiffiffi
rD
p

tA þ b
ffiffiffiffiffiffiffiffi
D tA
p

where a, b are unknown fractions of the distance. The terms consist of a nearly constant speed

(�
ffiffiffiffiffiffi
rD
p

) traveling wave, and a diffusion
ffiffiffiffiffiffiffi
DtA
p

, respectively. This is a scaling argument using

the units D* km2/yr and r* yr−1. A fraction ccFRAC� 1/2 of the carrying capacity would

mostly probe the first term, a
ffiffiffiffiffiffi
rD
p

tA. Conversely, a tiny value of ccFRACweighs too much of

the diffusion tail b
ffiffiffiffiffiffiffi
DtA
p

. The right-hand frame of Fig 1 shows that the wave consists of a steep

traveling wave with extended diffusion tails. We found that arrival times are relatively insensi-

tive to values of ccFRAC*0.2. Larger values can produce much later arrival times, as in

Table 2 and its missing error bars. Hence, our choice is ccFRAC = 0.1: When the incoming

population reaches 10 percent of the local carrying capacity, it has arrived. For this ccFRAC
choice, the differences between NPP and FEP (Food Extraction Potential [28]) arrivals did not

seem significant. The opening of the Bering Straight “bridge” occurs before any of our simula-

tion start-times, Ts, so arrival times in the Americas become almost linearly increasing for

Fig 2. Time frame interpolation methods. The interpolation maps K at different times: sigmoids Eq (12) for ν = 1/2 and

ν = 1, straight line, and Eriksson’s f(f(f(t))) model [1]. Time scaling is s = (t − tL)/(tH − tL).

doi:10.1371/journal.pone.0167514.g002
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Ts� 45kya. Hence, Ts = 45kya value is a reasonable lower limit. Our NPP data and masks are

later than 120 kya, after the beginning of the Tarantian period. A Bering Strait crossing was

possible until the Holocene period began around 10 kya. Thus migration data would permit a

transit until closure. Arrival in northeastern India is known to have happened before 40kya, so

Ts cannot be that small. Thus to limit our optimization space, we choose Ts = 45kya. For this

choice of Ts, we still have to choose r,D. Some estimates were known [4, 5] to be approximately

D� 200km2/yr and r� 2.0 × 10−3 yr−1. With the hope that we might be more precise, we opti-

mize on the following RMS parameter,

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðsimMC � archMCÞ

2
þ ðsimFC � archFCÞ

2
� �

r

;

where archMC = earliest estimated population of Meadowcroft, PA; similarly, archFC = earliest

known population of Fell’s Cave, near the tip of Cape Horn, Isla Grande, Tierra del Fuego

Table 2. Predicted arrival times for 10 sites [29–31]. The furthest apart American sites†, Meadowcroft and Fell’s Cave, were used for optimization. Error

estimates give approximate sensitivities to the coarse r steps in the left-hand plot of Fig 3. Entry NA means the half-filling wave did not arrive. All values are in

kilo—years before present.

Early Archaeological sites

site arch. range arrival at 10% CC arrival at 50% CC

Meadowcroft† 16–14 19.0 ± 0.7 17.5

Taima-Taima 14 ? 13.4 ± 0.9 11.8

El Inga 9 13.2 ± 0.9 11.8

Pachamachay 12–10.5 17.4 ± 0.7 NA

Pikimachay 22.2–12 12.5 ± 0.9 11.4

Pedra Furada 12–5 11.4 ± 0.9 10.3

Tagua-Tagua 11.5 13.4 ± 0.9 11.8

Monte Verde 14.6–12.5 9.9 ± 0.9 8.6

Page-Ladson 14.6 19.4 ± 0.7 18.3

Fell’s Cave† 11 9.3 ± 1.0 7.6

doi:10.1371/journal.pone.0167514.t002

Fig 3. Diffusion and growth parameters optimization. Left: the RMS value of simulation compared to earliest known

populations of Meadowcroft and Fell’s Cave. The approximate optimal value of D is 190km2/yr. The minimum RMS value is

shallow in D but sensitive to r = λ, showing we are probing both the traveling wave and diffusion tail. Right: a detailed

minr(RMS) optimization in D and in r at D = 190: λmin = rmin = 2.04 × 10−3 yr−1.

doi:10.1371/journal.pone.0167514.g003
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[29, 30]. Our simulation values simMC and simFC depend on the diffusion/growth parameters

r, D, the arrival threshold ccFRAC, and starting time Ts.

Population dispersal

An initial population at t = Ts = 45 kya at an Eritrean is shown in Fig 4. The integration units

are scaled following Table 1 such that λ = 2.04 � 10−3 y−1 and D = 2c = 190 km2/y (consistent

with those used in [4]). The solver is then run using time frame K maps described above,

down to 1 kya before present. The remaining plots (Figs 5, 6, 7, 8 and 9) display the resulting

population dispersal simulation on space-time dependent K maps. Using population parame-

ters optimized in Subsection Parameter optimization gives results consistent with the litera-

ture. The gross features of the late (45-50 kya) out-of-Africa dispersal of Homo sapiens are

reproduced [32], e.g. the colonization of Western Europe before 40 kya and that of South

America before 14 kya [31]. As the upper plot in the right-hand panel of Fig 3 shows, for these

(r, D) parameters, arrival times increase as Ts� 45 increases. Figs 4, 5, 6, 7, 8 and 9 show our

results graphically. Furthermore, the predictions of arrival times shown in the table of Table 2

are also quite reasonable considering the uncertainties involved in our crude NPP maps. The

2nd column of Table 2 also indicates archaeological uncertainties.

Fig 4. Color-coding and labeling for all of out-of-Africa dispersal plots. Dark blue shows water, with K ¼ 0. Growth

rate is λ = 2.04 � 10−3 y−1, and diffusion coefficient D = 190km2/y. The initial distribution at Ts = 45 kya is denoted by a small

dark red spot in Eritrea, west of the Bab al Mandab straight: a σ = 3 pixel Gaussian with peak u = local K ¼ 0:72, color scale

2.1.

doi:10.1371/journal.pone.0167514.g004
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Conclusions

In this paper, we present a semi-implicit Godunov scheme for the Fisher/KPP equation with a

variable carrying capacity K. In one dimension, the expected traveling wave [10, 11] develops

as shown in Fig 1. As in the one-dimensional situation, a traveling wave also develops as

expected [11] in 2-D. Plots in Subsection Population dispersal clearly show these evolving

waves.

In the Section Space-time dependent capacity maps we describe our procedure for han-

dling x and time dependent Kðx; tÞ, Eq (9).

Finally, we apply our scheme to our principal objective of population dynamics: the out-of-

Africa dispersal of Homo sapiens. On the Mercator projected world map, by using vegetation

net primal productivity (NPP) as a proxy for carrying capacity, we get Table 2 which shows

that interpolating in time between discrete K� maps yields stable and reasonable results.

These results show ancestor arrival in NE India before 40 kya, then a crossing of the Bering

Strait before 10 kya. Multiple routes into South Asia [33] are also evident. Honesty requires

that we admit our size (56km)2 pixels do not resolve the two crossing points at Bab al Mandab

and Sinai adequately. Additionally, we make no attempt to model coastlines effectively. Nei-

ther simple boats nor easier passages along beaches are included in our model: only Neumann

Fig 5. log(1 + 10u) plot for out-of-Africa dispersal population distribution at t = 39 kya.

doi:10.1371/journal.pone.0167514.g005
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boundary conditions determine such movements here. Better modeling of coastlines and

more detailed NPP maps would improve our results.

The core computations performed by our solver are independent tridiagonal solutions,

which can be easily parallelized to deal with larger grids (e.g. [34], p. 116). In order to improve

numerical performance, in the Appendix Map segmentation, we discuss a compressed storage

scheme to integrate the Fisher/KPP equation on a projected world map. About 71% of the

earth’s surface is water, so this compressed storage reduces computational work by the same

amount.

Provenance

For this paper, the simulations were run on either a Mac Mini, 2.3 GHz Intel Core i7, or a 2.8

GHz i7 MacBook (both OS 10.9.5). On the Mini, MatLabR2015b was used, R2015a on the

MacBook laptop. Our codes and maps are available [27].

Map segmentation appendix

Our solver on a geographical map uses a map outline, i.e., a rectangular grid with 1’s in habit-

able regions, and 0’s in the water, see Fig 10. Each Godunov direction step only involves

Fig 6. log(1 + 10u) plot for out-of-Africa dispersal population distribution at t = 31 kya.

doi:10.1371/journal.pone.0167514.g006
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independent rows, resp. columns, indexed by starts/ends of habitable segments. Independent

columns, i = 1. . .NX in Fig 10 will have nysegs(i) of habitable segments, whose start and

end positions are ystart_seg(k) and yend_seg(k), respectively, where

k = 1. . .nysegs(i). Likewise, for j = 1. . .NY rows, each have nxsegs(j) also with start/

end positions. A 100 × 50 example, Fig 10, shows row 26 has 4 segments of varying size. Col-

umn 87 has 5 segments.

Each time a new carrying capacity map is loaded (up to 61 total) [1, 22] a suitable mask is

computed from KL and KH , then resegmentation is performed: see Subsection Time interpo-

lation of maps. Resegmentation facilitates time changing coastlines.

We include here an illustrative MatLab code sample of our Godunov-Strang-Yoshida

scheme. Notation: cfl = Eq (4), carrying capacities kL at t, kH at t + h. Over multiple time-

steps, godunovstep1which is used in the two half-steps, h/2, of Eq (9) can be doubled up:

at step tn+1 Eq (9a) can be combined with Eq (9d) used at tn for one full step, h. This is common

for all trapezoidal rule integrations: for example, equation (2.1.4) in [35], or in a stochastic set-

ting [36].

Fig 7. log(1 + 10u) plot for out-of-Africa dispersal population distribution at t = 20 kya. Notice that the bridge across

the Bering Straight is not yet closed.

doi:10.1371/journal.pone.0167514.g007
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% NY X directionupdatesfor 1/2-step1,Y directionfor step2
locx = 0;
for j = 1:NY

nsegs = nxsegs(j);
for k = 1:nsegs

istart= xstart_seg(locx+k); iend = xend_seg(locx+k);
ninseg= iend-istart+1;
u0(1:ninseg)= u(istart:iend,j);

% Eq (9a) solution,sc1, sc2 are static workspaces
ut = godunovstep1(ninseg,h,cfl,u0,sc1,sc2);
u(istart:iend,j)= ut(1:ninseg);

end
locx = locx + nsegs;

end

Fig 8. log(1 + 10u) plot for out-of-Africa dispersal population distribution at t = 10 kya. The bridge across the Bering

Straight is now closed.

doi:10.1371/journal.pone.0167514.g008

Scheme for Population Growth and Diffusion on a Map

PLOS ONE | DOI:10.1371/journal.pone.0167514 January 13, 2017 15 / 19



% do NX Y dir. updatesstep2, wt0,wt1= time interpolationweights
locy = 0;
for i = 1:NX

nsegs = nysegs(i);
for k = 1:nsegs

jstart= ystart_seg(locy+k); jend = yend_seg(locy+k);
ninseg= jend-jstart+1;
u1(1:ninseg)= u(i,jstart:jend)';
kL(1:ninseg)= w_L(i,jstart:jend)�(1-wt0) . . .

+ w_H(i,jstart:jend)�wt0;
kH(1:ninseg)= w_L(i,jstart:jend)�(1-wth) . . .

+ w_H(i,jstart:jend)�wth;
% Eq (9c) solution:

ut = godunovstep2(ninseg,h,cfl,u1,sc1,sc2,kL,kH);
u(i,jstart:jend)= ut(1:ninseg);

end
locy = locy + nsegs;

end

Fig 9. log(1 + 10u) plot for out-of-Africa dispersal population distribution at t = 1 kya.

doi:10.1371/journal.pone.0167514.g009

Scheme for Population Growth and Diffusion on a Map

PLOS ONE | DOI:10.1371/journal.pone.0167514 January 13, 2017 16 / 19



% Repeat godunovstep1,as above for Eq (9d)
% locx = 0;
% for j = 1:NY
% ETC
% end
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