
ETH Library

Uniform simplicity of groups with
proximal action

Journal Article

Author(s):
Gal, Światosław R.; Gismatullin, Jakub; Lazarovich, Nir

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-b-000234114

Rights / license:
Creative Commons Attribution-NonCommercial 3.0 Unported

Originally published in:
Transactions of the American Mathematical Society 4(2017), https://doi.org/10.1090/btran/18

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000234114
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1090/btran/18
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 4, Pages 110–130 (September 6, 2017)
http://dx.doi.org/10.1090/btran/18

UNIFORM SIMPLICITY OF GROUPS

WITH PROXIMAL ACTION

ŚWIATOS�LAW R. GAL AND JAKUB GISMATULLIN,
WITH AN APPENDIX BY NIR LAZAROVICH

Abstract. We prove that groups acting boundedly and order-primitively on
linear orders or acting extremely proximally on a Cantor set (the class in-
cluding various Higman-Thomson groups; Neretin groups of almost automor-
phisms of regular trees, also called groups of spheromorphisms; the groups of
quasi-isometries and almost-isometries of regular trees) are uniformly simple.
Explicit bounds are provided.
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1. Introduction

Let Γ be a group. It is called N-uniformly simple if for every nontrivial f ∈ Γ
and nontrivial conjugacy class C ⊂ Γ the element f is the product of at most
N elements from C±1. A group is uniformly simple if it is N -uniformly simple
for some natural number N . Uniformly simple groups are called sometimes, by
other authors, groups with finite covering number or boundedly simple groups (see,
e.g., [15, 19, 22]). We call Γ boundedly simple if N is allowed to depend on C.
The purpose of this paper is to prove results on uniform simplicity, in particular
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Theorems 1.1, 1.2, and 1.3 below, for a number of naturally occurring infinite
permutation groups.

Every uniformly simple group is simple. It is known that many groups with
geometric or combinatorial origin are simple. In this paper we prove that, in fact,
many of them are uniformly simple.

Below are our main results.
Let (I,≤) be a linearly ordered set. Let Aut(I,≤) denote the group of order-

preserving bijections of I. We say that g ∈ Aut(I,≤) is boundedly supported if
there are a, b ∈ I such that g(x) �= x only if a < x < b. The subgroup of boundedly
supported elements of Aut(I,≤) will be denoted by B(I,≤).

Theorem 1.1 (Theorem 3.1 below). Assume that Γ < B(I,≤) is proximal on a
linearly ordered set (I,≤) (i.e., for every a < b and c < d from I there exists g ∈ Γ
such that g(a) < c < d < g(b)). Then its commutator group Γ′ is six-uniformly
simple and the commutator width of this group is at most two.

For the definition of a commutator width of a group see the beginning of
Section 2. Observe that every doubly-transitive (i.e., transitive on ordered pairs)
action is proximal.

This theorem immediately applies e.g. to B(Q,≤) and the class of Higman-
Thomson groups Fq,r for q > r ≥ 1, where the latter are defined as follows. We
fix natural numbers q > r ≥ 1. The Higman-Thompson group Fq,r is defined
as piecewise affine, order-preserving transformations of ((0, r) ∩ Z[1/q],≤) whose
breaking points (i.e., singularities) belong to Z[1/q] and the slopes are qk for k ∈ Z
(see [5, Proposition 4.4]). The Thompson group F is the group F2,1 in the above
series. Moreover, Fq,r is independent of r (up to isomorphism) [5, 4.1]. The Higman-
Thompson groups satisfy the assumptions of Theorem 1.1 due to Lemmata 3.2 and
3.3 from Section 3.

Our result implies that Γ = B(Q,≤) is six-uniformly simple. Whereas Droste
and Shortt proved in [13, Theorem 1.1(c)] that B(Q,≤) is two-uniformly simple.
In fact, they proved that if Γ < B(I,≤) is proximal (they use the term “feebly
2-transitive” for proximal action) and additionally closed under ω-patching of con-
jugate elements, then Γ is two-uniformly simple. Thus, our Theorem 1.1 covers a
larger class of examples than that from [13] (as we assume only proximality), but
with slightly worse bound for uniform simplicity.

The uniform simplicity of the Thompson group F = F2,1 was proven implicitly
by Bardakov, Tolstykh, and Vershinin [2, Corollary 2.3] and Burago and Ivanov [6].
Although their proofs generalize to the general result given above, we write it down
for several reasons. Namely, in the above cited papers some special properties of
the linear structure of the real line is used, while the result is true for a general
class of proximal actions on linearly ordered sets. The Droste and Shortt argument
uses ω-patching, which is not suitable for our case. Furthermore, although in the
examples mentioned above the action is doubly-transitive, the right assumption is
proximality, which is strictly weaker than double-transitivity. In Theorem 4.2 we
construct a bounded and proximal transitive action which is not doubly-transitive.
This is discussed in detail in Section 4. The second reason for proving Theorem 1.1
is that a topological analogue of proximality, namely extremal proximality (see the
beginning of Section 5), plays a crucial role in the proofs of the subsequent results.
Extremal proximality was defined by S. Glasner in [21, p. 96] and [20, p. 328] for a
general minimal action of a group on a compact Hausdorff space.
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In Section 5 we go away from order-preserving actions, and consider groups acting
on a Cantor set, and also groups almost acting on trees. The following theorem is
Corollary 6.6(2).

Theorem 1.2. The commutator subgroup N ′
q of the Neretin group Nq of sphero-

morphisms and the commutator subgroup G′
q,r of the Higman-Thomson group Gq,r

are nine-uniformly simple. The commutator width of each of those groups is at most
three.

The group Nq was introduced by Neretin in [27, 4.5, 3.4] as the group of sphero-
morphisms (also called almost automorphisms) of a (q+1)-regular tree Tq. We will
recall the construction in Section 6.

The Higman-Thompson group Gq,r is defined as the group of automorphisms
of the Jónsson-Tarski algebra Vq,r [5, 4A]. It can also be described as a certain group
of homeomorphisms of a Cantor set [5, p. 57]. Moreover, one can view Gq,r as a
subgroup of Gq,2 and the latter as a group acting spheromorphically on the (q+1)-
regular tree [25, Section 2.2], that is, they are subgroups of Nq. If q is even, then
G′

q,r = Gq,r. For odd q, [Gq,r : G′
q,r] = 2 [5, Theorem 4.16], [17, Theorem 5.1]. The

group G2,1 is also known as the Thompson group V . It is known that Fq,r < Gq,r.
Given a group Γ acting on a tree T , in the beginning of Section 5 we will define,

following Neretin, the group �Γ� of partial actions on the boundary of T . Theorem
1.2 is a corollary of a more general theorem about uniform simplicity of partial
actions.

Theorem 1.3. Assume that a group Γ acts on a leafless tree T , whose boundary
is a Cantor set, such that Γ does not fix any proper subtree (e.g., Γ\T is finite)
nor a point in the boundary of T . Then the commutator subgroup �Γ�

′
of �Γ� is

nine-uniformly simple.

This is an immediate corollary of Theorems 5.1 and 6.4. The latter theorem
concerns several characterizations of extremal proximality of the group action on
the boundary of a tree.

Section 7 is devoted to the proof that the groups of quasi-isometries and almost-
isometries of regular trees are five-uniformly simple.

The uniform simplicity of homeomorphism groups of certain spaces has been
considered since the beginning of the 1960s, e.g., by Anderson [1]. He proved that
the group of all homeomorphisms of Rn with compact support and the group of all
homeomorphisms of a Cantor set are two-uniformly simple (and have commutator
width one). His arguments used an infinite iteration arbitrary close to every point,
which is not suitable for the study of spheromorphism groups and the Higman-
Thompson groups.

N -uniform simplicity is a first-order logic property (for a fixed natural number
N). That is, it can be written as a formula in a first-order logic. Therefore, N -
uniform simplicity is preserved under elementary equivalence: if G is N -uniform
simple, then all other groups elementary equivalent with G are also N -uniformly
simple. In particular, all ultraproducts of Neretin groups, and Higman-Thompson
groups mentioned above, are nine-uniformly simple.

Another feature of uniformly simple groups comes from [19, Theorem 4.3], where
the second author proves the following classification fact about actions of uniformly
simple groups (called boundedly simple in [19]) on trees: if a uniformly simple group
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acts faithfully on a tree T without invariant proper subtree or invariant end, then
essentially T is a bi-regular tree (see Section 6 for definitions).

In Section 4 we discuss the primitivity of actions on linearly ordered sets (i.e., lack
of proper convex congruences). In fact, we prove that primitivity and proximality
are equivalent notions for bounded actions (Theorem 4.1). Our primitivity appears
in the literature as o-primitivity ; see, e.g., [26, Section 7].

Calegari [9] proved that subgroups of the pl
+ homeomorphism of the interval,

in particular the Thompson group F , have trivial stable commutator length. Essen-
tially by [7, Lemma 2.4] by Burago, Polterovich, and Ivanov (that we will explain
for the completeness of the presentation) we reprove in Lemma 2.2 the commutator
width of the commutator subgroup (and other groups covered by Theorems 3.1 and
1.1) of the Thompson group F .

Let us discuss examples and nonexamples of bounded and uniform simplicity.
It is known that a simple Chevalley group (that is, the group of points over an
arbitrary infinite field K of a quasi-simple quasi-split connected reductive group) is
uniformly simple [15, 22]. In fact, there exists a constant d (which is conjecturally
4, at least in the algebraically closed case [23]) such that, any such Chevalley group
G is d · r(G)-uniformly simple, where r(G) is the relative rank of G [15].

Full automorphism groups of right-angled buildings are simple, but never bound-
edly simple, because of the existence of nontrivial quasi-morphisms [10], [11, The-
orem 1.1] (except if the building is a bi-regular tree [19, Theorem 3.2]).

Compact groups are never uniformly simple. More generally, a topological group
Γ is called a sin group if every neighborhood of the identity e ∈ Γ contains a neigh-
borhood of e which is invariant under all inner automorphisms. Every compact
group is sin (as if V is such a neighborhood, then

⋂
γ∈Γ γ

−1V γ has nonempty inte-

rior). Clearly every infinite Hausdorff sin-group is not uniformly simple. Moreover,
many compact linear groups (e.g., SO(3,R)) are boundedly simple, because of the
presence of the dimension with good properties. (See also the discussion at the end
of this section.)

Let us conclude the introduction by relating simplicity and the notion of central
norms on groups. Let Γ be a group. A function ‖·‖ : Γ→R≥0 is called a seminorm if

• ‖g‖ = ‖g−1‖ for all g ∈ Γ, and
• ‖gh‖ ≤ ‖g‖+ ‖h‖ for all g, h ∈ Γ.

A seminorm is called

• trivial if ‖g‖ = 0 for all g ∈ Γ,
• central if ‖gh‖ = ‖hg‖,
• a norm if ‖g‖ > 0 for 1 �= g ∈ Γ,
• discrete if inf1�=g∈Γ ‖g‖ > 0, and
• bounded if supg∈Γ ‖g‖ < ∞.

A seminorm is discrete if and only if the topology it induces is discrete. A discrete
seminorm is a norm. Every central seminorm ‖·‖ is conjugacy invariant: ‖ghg−1‖ =
‖h‖.

A typical example of a nontrivial central and discrete norm is a word norm
‖ · ‖S attached to a subset S ⊆ Γ (cf. [16, 2.1]):

‖f‖S = min{k ∈ N : f = g1 · . . . · gk, each gi is conjugate

with an element from S ∪ S−1}.
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For a nontrivial central norm ‖ · ‖ we define an invariant Δ(‖ · ‖) = supg∈Γ ‖g‖
inf1 �=g∈Γ ‖g‖ . Of

course, if ‖ · ‖ is either nondiscrete or unbounded, then Δ(‖ · ‖) = ∞. We define
Δ(Γ) to be the supremum of Δ(‖ · ‖) for all nontrivial central norms on Γ.

Proposition 1.4. Let Γ be a group. Then:

(1) Γ is simple if and only if any nontrivial central seminorm on Γ is a norm;
(2) Γ is boundedly simple if and only if every central seminorm on Γ is a

bounded norm;
(3) if Γ is uniformly simple, then every central seminorm on Γ is a bounded

and discrete norm;
(4) Γ is N-uniformly simple if and only if Δ(Γ) ≤ N .

Proof. (1) It is obvious that the kernel of a central seminorm is closed under mul-
tiplication and conjugacy invariant. Thus, it is a normal subgroup. On the other
hand, if Γ0 �� Γ is a proper normal subgroup of Γ, then

‖g‖ =

{
0 if g ∈ Γ0,

1 if g �∈ Γ0

is a nontrivial central seminorm. It is a norm only if Γ0 = {1}.
(2) Suppose that ‖ · ‖ is a central seminorm and assume that Γ is boundedly

simple. Choose 1 �= g ∈ Γ. There exists N = N(g) such that every element f is a
product of at most N conjugates of g and g−1. Thus, by the triangle inequality and
conjugacy invariance, ‖f‖ ≤ N‖g‖. The number N‖g‖ is finite and independent on
f . For the converse take 1 �= g ∈ Γ and consider the word norm ‖ · ‖S attached to

S = Γg ∪ Γ
g−1 =

{
x ∈ Γ : x is conjugated to g or g−1

}
. It is obvious that ‖ · ‖S is

a central seminorm on Γ. Thus Γ is boundedly simple, as ‖ · ‖S is bounded.
(3 & 4) Suppose Γ is N -uniformly simple, i.e., N is independent on g ∈ Γ and

takes nontrivial central norm ‖ · ‖. By the triangle inequality we conclude that
Δ(‖ · ‖) ≤ N , which proves the necessity of the condition in (4). For the converse,
take 1 �= g ∈ Γ, and consider the word norm ‖ · ‖g above. We have that Γ is
Δ(‖ · ‖g) ≤ Δ(Γ)-uniformly simple. This completes the proof of (4), which implies
(3). �

In particular, the infinite alternating group A∞ =
⋃

n≥5 An is simple but not
boundedly simple. To see the latter, observe that the cardinality of the support is
an unbounded central norm. This norm is maximal up to scaling. Indeed, essentially

by [14, Lemma 2.5] every element σ ∈ A∞ is a product of at most
⌊
8# supp(σ)
# supp(π)

⌋
+2 ≤

10# supp(σ)
# supp(π) conjugates of π.

Also, it is easy to see that SO(3) is boundedly simple, but not uniformly simple.
The angle of rotation is a full invariant of an element of that group, and this function
is a central norm. Clearly it is not discrete. As before, one can observe that if R is
a rotation by an angle θ, then every other rotation can be obtained by at most

⌈
π
θ

⌉
conjugates of R.

Every universal sofic group [14, Section 2] is boundedly simple, but not uniformly
simple. Namely, let (Sn, ‖ · ‖H)n∈N be the full symmetric group on n letters with
the normalized Hamming norm: ‖σ‖H = 1

n | supp(σ)| for σ ∈ Sn. Take

(G, ‖ · ‖) =
∏

U

met
(Sn, ‖ · ‖H)
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as the metric ultraproduct of (Sn, ‖·‖H)n∈N over a nonprincipal ultrafilter U . Then
the proof of [14, Proposition 2.3(5)] shows that G is boundedly simple. Furthermore,
G is not uniformly simple, as ‖·‖ is a nondiscrete central norm on G (see Proposition
1.4(4)). As before, this norm is maximal up to scaling due to [14, Lemma 2.5].

2. Burago-Ivanov-Polterovich method

The symbol Γ will always denote a group. For a, b ∈ Γ we use the following
notation: gh := ghg−1 and [g, h] := gh.h−1 = g. hg−1. By Γg we mean the conjugacy
class of g ∈ Γ.

Let C be a nontrivial conjugacy class in Γ. By C-commutator we mean an
element of [Γ, C] = {[g, h] : g ∈ Γ, h ∈ C}. If h ∈ C we will use the name h-
commutator as a synonym of C-commutator, for short. Of course [Γ, C] = C.C−1,
thus the set of C-commutators is closed under inverses and conjugation.

The commutator length of an element g ∈ [Γ,Γ] is the minimal number of
commutators sufficient to express g as their product. The commutator width of
Γ is the maximum of the commutator lengths of elements of its derived subgroup
[Γ,Γ] = Γ′.

We say that f and g ∈ Γ commute up to conjugation if there exist h ∈ Γ
such that f and hg commute.

Lemma 2.1. Assume that α and hβ commute. Then [α, β] is a product of two
h-commutators. More precisely [α, β] can be written as a product of two conjugates
of h and two conjugates of h−1 by elements from the group generated by α and β.

Proof. We have [α, [β, h]] = [αβ, αh]
[
β−1, βh

]
. Also, [α, [β, h]] =

[
α, β hβ−1

]
=

[α, β], since α−1 commute with hβ−1. �
Following Burago, Ivanov, and Polterovich [7, Sec. 2.1] assume that H < Γ is a

subgroup, h ∈ Γ, and k ∈ N ∪ {∞}. We say that an element h k-displaces H if[
f, h

j

g
]
= e for all f, g ∈ H and j = 1, . . . , k

(hence also
[
hi

f, h
j

g
]
= e for 1 ≤ |i− j| ≤ k).

We will say that h displaces H if it 1-displaces H. We say that H < Γ is
k-displaceable in Γ if there exists h ∈ Γ such that h k-displaces H (this prop-
erty is called strongly k-displaceable in [7, Sec. 2.1]). In particular, elements of a
displaceable subgroup commute up to conjugation.

Lemma 2.2 ([7, Lemma 2.5]). Assume that h ∈ Γ k-displaces H < Γ. Let f ∈ H ′

be a product of at most k commutators (k ≥ 2). Then there exist α, β, and γ ∈ Γ
such that f = [α, β][γ, h].

Burago, Polterovich, and Ivanov [7, Theorem 2.2(i)] proved that if for every
k ∈ N some conjugate of g k-displaces H, then every element of H ′ is a product of
seven g-commutators. We get a better result under a stronger assumption.

Proposition 2.3. Assume that g ∈ Γ is such that for every finitely generated
subgroup H < Γ and k ∈ N, there exists a conjugate of g which k-displaces H. Then
every element of Γ′ is a product of two commutators in Γ and three g-commutators
in Γ. Moreover,

Γ′ ⊆ Γ′
g Γ′

g−1 Γ′
g Γ′

g−1 Γ′
g Γ′

g−1 =
(
Γ′
g Γ′

g−1
)3

.
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Proof. Every element f ∈ Γ′ can be expressed as a product of k commutators of
2k elements of Γ for some k ∈ N. Call the group they generate H. Since some
conjugate of g, say h, k-displaces H, by Lemma 2.2, there exist α, β, and γ ∈ Γ
such that f = [α, β][γ, h].

Since some conjugate of g displaces the group generated by α and β, by Lemma
2.1, [α, β] is a product of two g-commutators. Thus f is a product of three g-
commutators.

The “moreover” part follows from the fact that [γ, h] ∈ Γg Γg−1 and that Γh and
Γ′
h are equal. The last claim follows from the fact that if f ∈ Γ commutes up to

commutation with gf−1, then

fh =
f(gf−1

h
)
= [f,g]h.

�

Note that the assumption of the above corollary implies that neither Γ nor Γ′ is
finitely generated. However, we will use this approach to prove uniform simplicity
of the Higman-Thompson groups which are known to be finitely generated.

Lemma 2.4. Assume that every two elements in Γ commute up to conjugation.
Then every commutator in Γ can be expressed as a commutator in Γ′. In particular,
Γ′ = Γ′′ is perfect.

Proof. Let α and β belong to Γ. Choose h and g such that α and hβ commute and
also gα and [β, h] commute. Then [[α, g], [β, h]] = [α, [β, h]] = [α, β]. �

Proposition 2.5. Let g ∈ Γ′ displace Γ0 < Γ. Assume that, for every k ∈ N, every
finitely generated subgroup H < Γ0 is k-displaceable in Γ0. Then every element of

Γ′
0 is a product of four g-commutators from Γ′

0. In particular Γ′
0 ⊆

(
Γ′
0g Γ′

0g−1
)4

.

Proof. By Lemma 2.2 every element of Γ′
0 is a product of two commutators of Γ0.

By Lemma 2.4 they can be chosen to be commutators of elements of Γ′
0. By Lemma

2.1 each of them is a product of two g-commutators over Γ′
0. �

3. Bounded actions on ordered sets

The purpose of this section is to prove that numerous simple Higman-Thompson
groups acting as order-preserving piecewise-linear transformations are, in fact, uni-
formly simple.

We always assume that a group Γ acts faithfully on the left by order-preserving
transformations on a linearly ordered set (I,≤). Given a map g : I → I, we define
the support supp(g) of g to be {x ∈ I : g(x) �= x}. Given a and b ∈ I we define
(a, b) = {y ∈ I : a < y < b}. By (a,∞) we will denote the set {x ∈ I : a < x}. The
group of all bounded automorphisms of (I,≤) is denoted by B(I,≤).

We call such an action

• proximal, if for every a, b, c, d ∈ I such that a < b and c < d there is g ∈ Γ
satisfying g(a, b) ⊇ (c, d);

• bounded, if for every g ∈ Γ there are a, b ∈ I such that supp(g) ⊆ (a, b).

Note that being proximal implies that (I,≤) is dense without endpoints.
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Theorem 3.1. Assume that Γ acts faithfully, order-preserving, boundedly, and
proximally on a linearly ordered set (I,≤). Then its commutator group Γ′ is six-
uniformly simple and the commutator width of Γ′ is at most two.

Proof. We apply Proposition 2.3. Let g be an arbitrary nontrivial element of Γ′.
Let a ∈ I be such that g(a) �= a. Replacing g by g−1 we may assume that a < g(a).
Choose b ∈ I such that a < b < g(a). Then g(a, b)∩(a, b) = ∅. LetH be an arbitrary
finitely generated subgroup of Γ. Then there exists an interval, say (c, d), containing
supports of all generators of H, hence also containing supports of all elements of
H. By the proximality of the action, we may assume (possibly conjugating g) that
(c, d) ⊆ (a, b). It is clear that such a conjugate of g ∞-displacesH. Thus Proposition
2.3 applies. �

Let us apply Theorem 3.1 to the Higman-Thompson groups of order-preserving
piecewise-linear maps. We first recall the definitions. Let q > r ≥ 1 be integers.
Recall that Fq,r (Fq, respectively) is defined as piecewise affine (we allow only
finitely many pieces), order-preserving bijections of ((0, r) ∩ Z[1/q],≤) ((Z[1/q],≤),
respectively) whose breaking points of the derivatives belong to Z[1/q] and the slopes
are qk for k ∈ Z (see the bottom of page 53 and the top of page 56 in [5]).

Define BFq,r (BFq, respectively) to be the subgroup of Fq,r (Fq, respectively)
consisting of all such transformations γ that are boundedly supported, that is,
supp(γ) ⊆ (x, y) for some x, y ∈ (0, r) ∩ Z[1/q] (x, y ∈ Z[1/q], respectively).

We use the following lemma. The first part of it is a known result [3].

Lemma 3.2.

(1) The groups BFq,r and BFq are isomorphic [3, Proposition C10.1].
(2) The commutator subgroups of Fq,r and BFq,r are equal.

Proof. (2) It is obvious that BF ′
q,r ⊆ F ′

q,r. Let us prove ⊇. Note that F ′
q,r ⊆ BFq,r

(because for g1, g2 ∈ Fq,r, the element [g1, g2] acts as the identity in some small
neighborhoods of 0 and r). Thus, if f ∈ F ′

q,r, then supp(f) ⊆ (b−j , bj) for some
j ∈ Z. Therefore f(b−j , bj) = (b−j , bj). A slight modification of ψ above gives
ψj : Z[1/q] → (0, r) ∩ Z[1/q] which

• sends (−∞, b−j ] ∩ Z[1/q] piecewise affinely onto (0, b−j ] ∩ Z[1/q],
• is the identity on [b−j , bj ] ∩ Z[1/q],
• sends [bj ,+∞) ∩ Z[1/q] piecewise affinely onto [bj , r) ∩ Z[1/q].

Then ψ∗
j (x) = ψjxψ

−1
j is another isomorphism between BFq and BFq,r such that

ψ∗
j (f) = f (we regard Fq,r as a subgroup of BFq). Write f =

∏m
i=1[g2i−1, g2i] for

gi ∈ Fq,r ⊂ BFq. Then f = ψ∗
j (f) =

∏m
i=1[ψ

∗
j (g2i−1), ψ

∗
j (g2i)] ∈ BF ′

q,r. �

We consider the action of BFq on Z[1/q] and its orbits. Let I�Z[1/q] be the ideal
of Z[1/q] generated by (q − 1).

Lemma 3.3 ([3, Theorem A4.1, Corollary A5.1]).

(1) I is BFq-invariant.
(2) BFq acts in a doubly-transitive way on I. In particular, the action is prox-

imal.

As a corollary of the above lemmata we get that groups Fq,r satisfy the assump-
tions of Theorem 1.1.
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Corollary 3.4. F ′
q,r

∼= BF ′
q is six-uniformly simple and the commutator width of

it is at most two.

Remark 3.5. Theorem 3.1 applies to the following groups.

• Bieri and Strebel [3] define a more general class of groups acting boundedly
on R. They take a subgroup P in the multiplicative group R>0 and a
Z[P ]-submodule A < R and define Γ := B(R;A,P ) to be a group of
boundedly supported automorphisms of R consisting of piecewise affine
maps with slopes in P and singularities in A. They define an augmentation
ideal I = 〈p − 1|p ∈ P 〉 of Z[P ] and prove that Γ acts highly transitively
on IA. Thus Γ′ is six-uniformly simple.

• Another example of doubly-transitive and bounded action on a linear or-
der (thus satisfying the assumptions of Theorem 3.1) was considered by
Chehata in [12], who studied partially affine transformations of an ordered
field and proved that this group is simple. Theorem 3.1 implies that the
Chehata group is six-uniformly simple.

4. Proximality, primitivity, and double-transitivity

In this section we prove (Theorem 4.1) that proximality (from the previous sec-
tion) and order-primitivity are equivalent properties for bounded group actions. In
general, these properties are inequivalent. The action of the group of integers on
itself is primitive but neither proximal nor bounded. We also give an example of
bounded, transitive, and proximal action, which is not doubly-transitive (Theorem
4.2).

An action of a group Γ on a linearly ordered set (I,≤) is called primitive (or
order-primitive by some authors), if for any other linearly ordered set (J,≤) and
homomorphism Ψ: Γ → Aut(J,≤) and order-preserving equivariant map ψ : (I,≤)
→ (J,≤) (that is, ψ(γx) = Ψ(γ)ψ(x)), the map ψ is injective or ψ(I) is a singleton.

Theorem 4.1. Every proximal action is primitive. Any bounded and primitive
action is proximal.

Proof. Assume the action is not primitive. Choose a, b, and d such that a �= b and
ψ(a) = ψ(b) �= ψ(d). Reversing the order if necessary, we may assume ψ(b) < ψ(d).
Set c = a. This choice contradicts proximality, as if g(b, a) ⊆ (d, c), then

ψ(d) ≤ Ψ(g)ψ(b) = Ψ(g)ψ(a) ≤ ψ(c) = ψ(b) < ψ(d).

Assume that action is bounded, but not proximal. Let a, b, c, and d witness the
latter. For x, y ∈ I, x < y, consider the relation ∼x,y on I defined as

s ∼x,y t if s ≤ t and there is no γ ∈ Γ such that γ(s, t) ⊇ (x, y).

By the assumption a ∼c,d b. Let ≈c,d be the transitive closure of ∼c,d. The symmet-
ric closure �c,d of ≈c,d is transitively closed, thus �c,d is an equivalence relation,
which has convex classes. Moreover, �c,d is Γ-invariant, that is, x �c,d y implies
γ(x) �c,d γ(y) for all γ ∈ Γ. It is enough to prove that �c,d is not total, that is,
e ��c,d f for some e, f ∈ I, because then the quotient map

ψ : I → I/ �c,d

proves nonprimitivity of the action (I/ �c,d has a natural Γ-action).
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First, we claim that there is γ ∈ Γ such that γ(c) ≥ d. Indeed, if there is no such
group element, define a map ψ : I → {0, 1} by the formula

ψ(x) =

{
0 if there is no γ ∈ Γ such that γ(x) ≥ d,

1 if there is γ ∈ Γ such that γ(x) ≥ d.

This map would contradict primitivity.
Choose e and f from I such that supp(γ) ⊆ (e, f). Then {γt(c, d) : t ∈ Z} is a

countable family of intervals in (e, f), which are pairwise disjoint. We claim that
e ��c,d f , as otherwise there are x, y ∈ [e, f ], x < y, such that x ∼c,d y and (x, y)
contains γt(c, d) for some t ∈ Z, which is impossible. �

Clearly, if Γ acts proximally on (I,≤), then it acts in such a way on any orbit.
Thus, we will restrict to transitive actions.

Examples of actions we discuss above are doubly-transitive (cf. Lemma 3.3(2)
and Remark 3.5). Thus they are proximal. This property seems to be easier to check
than double-transitivity. We construct below an example of bounded, transitive, and
proximal action, which is not doubly-transitive. The reader may compare this result
with a result of Holland [24, Theorem 4], which says that every bounded, transitive,
primitive, and closed under min, max action must be doubly-transitive. Moreover,
any group acting boundedly and transitively cannot be finitely generated. Indeed,
a finite number of elements have supports in a common bounded interval, thus the
whole group is supported in that interval, so does not act transitively.

Theorem 4.2. There exists a subgroup Γ < B(Q,≤) acting transitively and prox-
imally but not doubly-transitively.

Proof. For each k ∈ N we will define a countable linear order (Ik,≤), a group Γk

acting on it, and a function fk : Ik × Ik → Z such that:

(1) Γk < Γk+1;
(2) Ik is a Γk-equivariant linear bounded suborder of Ik+1;
(3) for k > 0, Γk acts transitively and proximally on Ik by order-preserving

transformations (but not doubly-transitively);
(4) fk is Γk-invariant: fk(γa, γb) = fk(a, b) for γ ∈ Γk, a, b ∈ Ik, and fk ⊂ fk+1.

Then we take Γ∞ =
⋃

k∈N Γk, which acts boundedly, transitively, and proximally,
but not doubly-transitively on I∞ =

⋃
k∈N Ik, because of f∞ =

⋃
k∈N fk, which is

a Γ∞-invariant map I∞ × I∞ → Z.
Since (I∞,≤) is a countable and, by proximality, dense linear order without ends,

it is isomorphic to (Q,≤).
In the following inductive construction we will define three auxiliary points i−k <

ik < i+k from Ik.
We put Γ0 = Z and I0 = Z, where Γ0 acts on I0 by translations. Let f0(n,m) =

n−m and i−0 = −1, i0 = 0, i+0 = 1.
Assume we have constructed Ik, Γk, and fk. Let

Ik+1 =
{
a ∈ Ik

Z : ∀∞n ∈ Z, a(n) = ik

}
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and ik+1(n) = ik for all n ∈ Z. In plain words, Ik+1 consists of all functions from
Z to Ik which differ from a constant function (denoted by ik+1) taking the value
ik, only at finitely many places. Define a linear order on Ik+1 by putting a < b if
min{n ∈ Z : a(n) < b(n)} < min{n ∈ Z : a(n) < b(n)}, with the convention that
min∅ > n for all n ∈ Z. Note that Ik embeds into Ik+1:

Ik � a �→
(
n �→

{
a if n = 0,

ik otherwise

)
∈ Ik+1.

Consider Conv(Ik) = {a ∈ Ik+1 : a(n) = ik for all n < 0}, with the following ac-
tion of Γk:

(γa)(n) =

{
γa(0) if n = 0,

a(n) otherwise.

Define

i±k+1(n) =

{
i±k if n = −1,

0 otherwise.

The interval (i−k+1, i
+
k−1) ⊂ Ik+1 contains the embedded copy of Ik.

Extend the action of Γk to the whole of Ik+1 by the identity on the complement
Ik+1 � Conv(Ik). Thus the action of Γk on Ik+1 is bounded. Define yet another
automorphism σk+1 of Ik+1 by (σk+1a)(n) = a(n + 1). Let Γk+1 be the group
generated by Γk and σk+1. The action of Γk+1 on Ik+1 is clearly transitive.

For every pair a �= b from Ik+1, define ma,b = min{n ∈ Z : a(n) �= b(n)}.
For a<b and c<d let γ∈Γk be such that (c(mc,d), d(mc,d))⊆γ(a(ma,b), b(ma,b))

(such γ exists by proximality of the action of Γk on Ik). Then

(c, d) ⊆ σ
−mc,d

k+1 γσ
ma,b+1
k+1 (a, b),

which proves the proximality of the action of Γk+1 on Ik+1.
Finally, define fk+1(a, b) = fk(a(ma,b), b(ma,b)). Clearly, fk+1 is Γk+1-invariant,

hence the action of Γk+1 on Ik+1 is not doubly-transitive. �

The element σk ∈ Γk stabilizes ik and has unbounded orbits on (ik,∞) ⊂ Ik.
Thus the stabilizer of i∞ = lim ik has unbounded orbits on (i∞,∞) ⊂ I∞. This is
enough to conclude that the action is proximal.

Question 4.3. Is there any transitive, proximal bounded action without the prop-
erty that point stabilizers have unbounded orbits?

5. Extremely proximal actions on a Cantor set

and uniform simplicity

The main goal of the present section is prove Theorem 5.1, which gives a criterion
for a group acting on a Cantor set to be nine-uniformly simple.

Let C be a Cantor set. Assume that a discrete group Γ acts on C by homeomor-
phisms. By the topological full group �Γ� < Homeo(C) of Γ we define (see, e.g.,
[18])

�Γ� =

{
g ∈ Homeo(C) :

for each x ∈ C there exist a neighborhood
U of x and γ ∈ Γ such that g|U = γ|U

}
.
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Throughout this section we assume that:

• the group Γ acts faithfully by homeomorphisms on a Cantor set C;
• Γ is a topological full group, i.e., Γ = �Γ�;
• the action is extremely proximal, i.e., for any nonempty and proper
clopen sets V1, V2 � C there exists g ∈ Γ such that g(V2) � V1.

The second assumption is not hard to satisfy as �Γ� = ��Γ��.

Theorem 5.1. Assume that Γ satisfies the above assumptions. Then Γ′, the com-
mutator subgroup of Γ, is nine-uniformly simple. The commutator width of Γ′ is
at most three. Therefore, if Γ is perfect (i.e., Γ′ = Γ), then Γ is nine-uniformly
simple.

Before proving Theorem 5.1, we need a couple of auxiliary lemmata.
Suppose x ∈ C and h ∈ Γ. By the Hausdorff property of C, if h(x) �= x, then

there exists a clopen subset U ⊂ C containing x such that h(U) ∩ U = ∅. In such
a situation we define an element τh,U ∈ Γ exchanging U and h(U):

τh,U (x) =

⎧⎪⎨
⎪⎩
x if x �∈ U ∪ h(U),

h(x) if x ∈ U,

h−1(x) if x ∈ h(U).

Such an element belongs to Γ, since Γ = �Γ� is a topological full group. Observe
that τ2h,U = id and fτh,Uf

−1 = τfh,f(U) for f ∈ Γ.

Lemma 5.2. Assume Γ acts extremely proximally on a Cantor set C.

(1) Γ′ acts extremely proximally on C.
(2) For any nontrivial f ∈ Γ and a proper clopen V � C there is h ∈ Γ′ such

that V ∩ hf(V ) = ∅.
(3) Let f, g ∈ Γ be nontrivial. Then there exists h ∈ Γ′ such that hg.f is sup-

ported outside a clopen subset.

Proof. (1) Let U and V be nonempty and proper clopen subsets of C. Shrinking
U , if necessary, we may assume that U ∪ V �= C (that is, we may always take
g ∈ Γ and U1 = g(U), V1 = g(V ) such that U1 ∪ V1 �= C; then h(U1) � V1 implies
hg(U) � V ). By extremal proximality, find elements g1, g2, h1, and h2 in Γ such
that g1(U) � C � (U ∪ V ), g2(U) � C � (U ∪ V ∪ g1(U)), h1(V ) � g1(U), and
h2(U) � C � (U ∪ V ∪ g1(U)). Define g = τg2,Uτg1,U and h = τh2,Uτh1,U .

It is straightforward to check that, since U , g1(U), and g2(U) are pairwise dis-
joint, we have g3 = 1 which is equivalent to

g = τg2,Uτg1,U = [τg1,Uτg2,U ] ;

and similarly for h. In particular, g and h belong to Γ′. Furthermore, g−1h(U) =
g−1h1(U) � g−1g1(V ) = V .

(2) Choose U to be a nonempty clopen such that f(U)∩U = ∅. Choose, by (1),

h ∈ Γ′ such that h−1(V ) � U . Then V ∩ hf(V ) ⊆ h(U ∩ f(U)) = ∅.
(3) We may choose clopens U and V such that f(U) ∩ U = ∅ = g(V ) ∩ V . If

h1 ∈ Γ′ satisfies h−1
1 (U) � V , then h1g(U) ∩ U = ∅ (such an h1 exists by (2)).

If h1gf is the identity on U the proof is finished. Otherwise define γ = h1g. We
may find W ⊂ U such that γf(W )∩W = ∅ and W ∪ f(W )∪ γ−1(W ) � C. Notice
that γ−1(W ), W , and f(W ) are pairwise disjoint.
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Choose η ∈ Γ such that η(W )∩
(
W ∪ f(W ) ∪ γ−1(W )

)
= ∅. Put τ1 = τηγ,γ−1W ,

τ2 = τfγ,γ−1(W ), and h2 = [τ1, τ2]. As in (1), we have that h2 = τ1τ2 ∈ Γ′ and if

w ∈ W , then h2(w) = w and h2γ
−1(w) = τ1f

−1w = f−1w.
Hence h2h1gf = h2γf is the identity on W . Indeed, let w ∈ W . Then f(w) ∈

f(W ). Thus h−1
2 f(w) = γ−1(w), i.e., γh−1

2 f(w) = w ∈ W . Therefore h2γh
−1
2 f(w) =

w. �

For any clopen U ⊂ C, let ΓU be the subgroup of Γ consisting of elements of Γ
supported on U .

Lemma 5.3. Let V � C be a proper clopen set. Then there exists a proper clopen
V � U � C such that Γ′ ∩ ΓV ⊂ Γ′

U .

Proof. Let α ∈ Γ be such that α(V ) � V . Let U = V ∪ α(C � V ) � C. Define
ψ : U → C:

ψ(x) =

{
x if x ∈ V,

α−1(x) if x ∈ α(C � V ).

Then ψ is a homeomorphism, which induces an isomorphism Ψ: Γ → ΓU given by

Ψ(h)(x) =

{
x if x ∈ C � U,

ψ−1(h(ψ(x))) if x ∈ U,

for any h ∈ Γ and x ∈ C. Since Ψ is the identity on ΓV , Ψ(f) = f for any f ∈ ΓV .
Therefore, if f ∈ Γ′, then f ∈ Γ′

U . �

Lemma 5.4. Assume that U � V ⊆ C are clopens. There exists h ∈ Γ′
V such that

for all k ∈ Z, the sets hk(U) are pairwise disjoint.

Proof. Choose clopen W such that U � W � V . By extremal proximality, choose
β and γ ∈ Γ such that β(W ) ⊂ V �W and γ(W ) ⊂ W � U . Define α ∈ ΓV by

α(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x if x ∈ C � (W ∪ β(W )),

γ−1(x) if x ∈ γ(W ),

β(x) if x ∈ W � γ(W ),
βγ(x) if x ∈ β(W ).

Then the sets αk(U) are pairwise disjoint. Indeed, it is sufficient to prove that
αk(U) ∩ U = ∅ for all k > 0. Since U ⊂ W � γ(W ), we have α(U) ⊂ β(W ). As
αβ(W ) ⊂ β(W ), for k ≥ 1, αk(U) ⊂ β(W ) which is disjoint from U .

Since τβ,W ∈ ΓV conjugates α to α−1, the element h = α2 = [α, τβ,W ] satisfies
the claim. �

Proof of Theorem 5.1. Let f be an element of Γ′ and let A be a nontrivial conjugacy
class of Γ′. By Lemmata 5.2(3) and 5.3 we have that f = g−1

1 f1 for some g1 ∈ A
and f1 ∈ Γ′

V1
for some proper clopen V1 � C.

We claim that f1 is a product of four A-commutators in Γ′. Choose V1 � V0 � C
and ω ∈ V0 � V1. We apply Proposition 2.5. Namely, let Γ0 denote the union of
groups ΓV such that V is a clopen contained in V0 � {ω}. Clearly, Γ0 is a proper
subgroup of ΓV0

. By Lemma 5.2(2), we may choose g ∈ A such that g(V0)∩V0 = ∅.
Thus, g displaces Γ0. Let H be a finitely generated subgroup of Γ0. The union of
supports of its generators is a clopen U , properly contained in V0, since ω �∈ U .
Hence H < ΓU < Γ0. Choose U � V � V0 such that ω �∈ V . Let h ∈ Γ′

V < Γ′
0
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be as in Lemma 5.4. Then h ∞-displaces H. Thus Proposition 2.5 applies and
f1 ∈ Γ′

V1
< Γ′

0 is a product of four g-commutators.
By Lemma 2.2, the commutator width of Γ′

0 is at most two. By Lemma 5.2(3),
every element decomposes as a product of a conjugate of a given nontrivial element
from Γ′, say a commutator, and an element conjugate into Γ′

0. Thus every element
of Γ′ is a product of three commutators. �

6. Groups almost acting on trees

In this section we apply Theorem 5.1 to groups almost acting on trees.
By a graph (whose elements are called vertices) we mean a set, equipped with a

symmetric relation called adjacency. A path is a sequence of vertices indexed either
by a set {1, . . . , n} orN (in such a case we call the path a ray) such that consecutive
vertices are adjacent, and no vertices whose indices differ by two coincide (i.e., there
are no backtracks). A graph is called a tree if it is connected (nonempty) and has
no cycles, i.e., paths of positive length starting and ending at the same vertex (in
particular, the adjacency relation is irreflexive).

Ends of T are classes of infinite rays in T . Two rays are equivalent if they
coincide except for some finite (not necessarily of the same cardinality) subsets.
The set of all ends of T is denoted by ∂T and is called the boundary of T .

Given a pair of adjacent vertices (called an oriented edge) e = (v, w), we call
the set of terminal vertices of paths starting at e a halftree of T and we will denote
it by T	e. The classes of rays starting at e will be called the end of a halftree T	e and
will be denoted by ∂T	e ⊂ ∂T . By −e we denote the pair (w, v).

We endow ∂T with a topology, where the basis of open sets consists of ends of
all halftrees.

A valency of a vertex v is the cardinality of the set of vertices adjacent to v.
A vertex of valency one is called a leaf. If every vertex has valency at least three
but finite, then the boundary ∂T is easily seen to be compact, totally disconnected,
without isolated points, and metrizable. Thus, ∂T is a Cantor set. In such a case,
every end ∂T	e of a halftree is a clopen (open and closed) subset of ∂T .

A spheromorphism is a class of permutations of T which preserve all but
finitely many adjacency (and nonadjacency) relations. Two such maps are equiva-
lent if they differ on a finite set of vertices (see, e.g., [17, Section 3]). We denote the
group of all spheromorphisms of T by AAut(T ). If T is infinite, then the natural
map Aut(T ) → AAut(T ) is an embedding. Every spheromorphism f ∈ AAut(T )
induces a homeomorphism of its boundary ∂T .

For an integer q > 1, by Tq we denote the regular tree whose vertices have
degree (q + 1). The group Nq was introduced by Neretin in [27, 4.5, 3.4] as the
group AAut(Tq) of spheromorphisms of the (q + 1)-regular tree Tq. It is abstractly
simple [25].

In what follows, we will be interested in subgroups Γ < Aut(T ) acting extremely
proximally on the boundary ∂T (see Theorem 6.4 and Corollary 6.7 below). The
whole group of automorphisms Γ = Aut(Tq) of Tq is such an example. Another
example (cf. Example 6.8) is the automorphism group Γ = Aut(Ts,t) of a bi-regular
tree Ts,t, s, t > 2 (i.e., every vertex of Ts,t is black or white, every black vertex is
adjacent with s white vertices, every white — with t black vertices). We prove that
the group �Γ� of partial Γ-actions on ∂T is then nine-uniformly simple.



124 ŚWIATOS�LAW R. GAL AND JAKUB GISMATULLIN

The group Aut(Ts,t) itself is virtually 8-uniformly simple [19, Theorem 3.2].
(Bounded simplicity in [19] means uniform simplicity in our context.)

There is a connection between the notion of a spheromorphism and a topological
full group acting on a boundary of a tree.

Example 6.1.

(1) Any subdivision of ∂T into clopens can be refined to U1, a subdivision into
ends of halftrees (since any clopen in ∂T is a finite union of boundaries of
halftrees). Therefore the Neretin group Nq can be characterized as Nq =
�Aut(Tq)� = AAut(Tq).

(2) Another, well studied, example comes from considering

Aut0(Tq) =

{
automorphisms of Tq preserving chosen cyclic orders
on edges adjacent to any vertex of Tq

}
.

One may induce cyclic orders by planar representation of Tq. The group
�Aut0(Tq)� is the Higman-Thompson group Gq,2 [17, Section 5], [25, 2.2].

(3) The previous two examples can be generalized in the following manner
(see [8, Section 3.2]). Let c : E(Tq) → {0, . . . , q} be a function from the set
E(Tq) of (undirected) edges of the (q+1)-regular tree Tq such that for every
vertex v, the restriction of c to the set of edges E(v) starting at v gives a
bijection with {0, . . . , q}. We say that such c is a proper coloring of Tq.
Let F < Sq+1 be a subgroup of permutations of {0, . . . , q}. Using proper
coloring c and F we define the universal group U(F ) to be

U(F ) =
{
g ∈ Aut(Tq) : c ◦ g ◦ c−1

|E(v) ∈ F for every vertex v
}
.

In fact U(F ) is independent (up to conjugation in Aut(Tq)) of the choice

of proper coloring c. We prove (see Corollary 6.6) that �U(F )�
′
is nine-

uniformly simple, provided that F is transitive on {0, . . . , q}. If F is gener-
ated by a (q+ 1)-cycle, then U(F ) = Aut0(Tq) from (2). If F = Sq+1, then
U(F ) = Aut(Tq).

We call an action for a group Γ on a tree T minimal if there is no proper Γ-
invariant subtree of T . Given a subset A of a tree, we define its convex hull to be
the set of all vertices which lie on paths with both ends in the set A. It is a subtree.
The action is minimal if and only if the convex hull of any orbit is the whole tree.

Example 6.2. Every action on a leafless tree with a finite quotient is minimal.
The converse is not true (see Example 6.8).

Indeed, the distance from a Γ-orbit is a bounded function. Hence the complement
of an orbit cannot contain an infinite ray. Thus every vertex lies on a path with
endpoints in a given orbit.

Lemma 6.3 ([28, Lemma 4.1]). Assume that a group Γ acts minimally on a leafless
tree T . Then for every vertex v and an edge e the orbit Γv intersects the halftree
T	e.

Proof. If Γv is all contained in T−	e, so is its convex hull. Thus the claim. �

We call an action for a group Γ on a tree T parabolic if Γ has a fixed point
in ∂T .
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An action of a group by homeomorphisms on a topological space is called mini-
mal if there is no proper nonempty closed invariant set (equivalently, if every orbit
is dense). This notion should not cause confusion with the notion of minimal ac-
tions on trees. (A tree is a set equipped with a relation as opposed to its geometric
realization which is a topological space.)

Theorem 6.4. Assume that T is a leafless tree such that ∂T is a Cantor set. Let
Γ act on T . The following are equivalent:

(1) The action of Γ on ∂T is extremely proximal (see the beginning of Section
5 for the definitions).

(2) The action of �Γ� on ∂T is extremely proximal.
(3) The action of Γ on ∂T is minimal and ∂T does not support any Γ-invariant

probability measure.
(4) The action of Γ on T is minimal and not parabolic, that is, there is no

proper Γ-invariant subtree of T and Γ has no fixed point in ∂T .

Proof. (1 ⇒ 2) This is straightforward.
(2 ⇒ 3) Let F be a closed, nonempty, proper, and Γ-invariant subset of ∂T .

Choose x ∈ F and a proper clopen V ⊂ ∂T containing x. Define U = ∂T �F . Then
there is no g ∈ �Γ� such that g(V ) ⊂ U , since g(x) = γ(x) ∈ F for some γ ∈ Γ;
thus a contradiction.

Similarly, let μ be a Γ-invariant measure on ∂T . Decompose ∂T = U1 ∪U2 ∪U3,
where the Ui’s are disjoint nonempty clopens. We may assume that μ(U1) < 1/2.
Then there is no g ∈ �Γ� such that g(U2 ∪ U3) ⊂ U1. Indeed, for any g ∈ �Γ�
we may decompose U2 ∪ U3 (by compactness) as a finite disjoint union of clopens

U2 ∪ U3 =
⋃k

i=1 Vi such that g|Vi
= γi|Vi

for some γi ∈ Γ and then

1/2 < μ(U2 ∪ U3) =
k∑

i=1

μ(Vi) =
k∑

i=1

μ(γiVi) < μ(U1) < 1/2

is a contradiction. Hence, the action is not extremely proximal.
(3 ⇒ 4) If there is an infinite Γ-invariant subtree T ′ of T or a fixed point ω ∈ ∂T ,

then either ∂T ′ or {ω} is a Γ-invariant closed subset of ∂T .
Suppose that there exists a finite Γ-invariant subtree T ′ of T . We use the following

definition. Given a vertex v of T , we define the visual measure associated to v
to be the unique measure μv on ∂T with the following property: if {vi}ni=0 is any
injective path starting at v0 = v, then

μv

(
∂T(vn−1,vn)

)
=

1

d0
∏n−1

i=1 (di − 1)
,

where di is the valence of vi. The visual metric μv is obviously invariant under the
action of the stabilizer Stab(v) of v in Aut(T ).

We can consider the average of the visual measures associated to the vertices of
this subtree T ′. It will be a Γ-invariant measure on ∂T .

(4 ⇒ 1) By Lemma 6.3 we may assume that, for every pair of edges e and f ,
there is γ ∈ Γ such that either Tγ	e or T−γ	e is strictly contained in T	f . It is enough

to show that one can find γ ∈ Γ such that the latter holds, i.e., ∂T−γ(	e) � ∂T	f

(indeed, since ends of halftrees constitute a basis, we can find edges e and f such
that ∂T	e ⊂ U and ∂T	f ⊂ C � V for nonempty proper clopens V and U in ∂T ; if

there is γ ∈ Γ such that ∂T−γ(	e) � ∂T	f , then γV ⊆ ∂T−γ(	e) � ∂T	f ⊆ U).
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It is enough to prove this claim for e = f . Indeed, if there exists γ1 ∈ Γ such
that Tγ1	e � T	f and T−γ2	e � T	e, then T−γ1γ2	e � Tγ1	e � T	f .

Assume that there exists γ ∈ Γ such that Tγ	e � T	e. Let {vi}ni=0 be a path such
that e = (v0, v1) and γe = (vn−1, vn). Then {vi}i∈Z, defined as vnq+r = γqvr, is a bi-
infinite path. Let ω be its end as i → ∞. Choose η ∈ Γ such that η(ω) �= ω. Consider
the bi-infinite path from ω to η(ω). It coincides with {vi}i<i− and {ηv−i}i>i+ for
some i± ∈ Z. Therefore T−ηγk	e � Tγk	e for k big enough. Hence, T−γ−kηγk	e � T	e.
Thus the claim. �

Remark 6.5. Only clause (3) from Theorem 6.4 concerns an action of a group on
a tree. The other parts of Theorem 6.4 are about actions on a Cantor set. We do
not know if there is a straight argument for proving equivalence of (1) and (4) from
Theorem 6.4, without referring to actions on trees.

Below is an application of Theorems 5.1 and 6.4 to the Neretin groups and the
Higman-Thompson groups.

Corollary 6.6.

(1) Suppose F < Sq+1 is a transitive permutation subgroup and let c be a
proper coloring of Tq (see Example 6.1(3)). Then U(F ) acts transitively on

the directed edges of Tq, and thus �U(F )�′ is nine-uniformly simple.
(2) Fix natural numbers q > r ≥ 1. The commutator subgroup N ′

q of the Neretin
group Nq and the Higman-Thompson group G′

q,r, are nine-uniformly simple
and have commutator width bounded by three.

Proof. Let Γ = U(F ). Then the action of Γ on Tq is not parabolic as there is no
Stab(v)-fixed edge adjacent to v, hence no Stab(v)-fixed ray. It is minimal since the
action is transitive.

Therefore, in the case of the Neretin group N ′
q and the Higman-Thompson group

G′
q,2, Theorem 5.1 applies immediately due to Theorem 6.4.
Suppose F is a family of pairwise disjoint ends of halftrees ∂T	ei ⊂ ∂Tq for

0 ≤ i ≤ q − r. If ΓF is a pointwise stabilizer of F in �Aut0(Tq)� (see Example
6.1(2)), then ΓF is isomorphic to Gq,r [17, Section 5]. Moreover, ΓF is its own

topological full group acting extremely proximally on C = ∂Tq �
⋃q−r

i=0 ∂T	ei . Hence
we get the conclusion for G′

q,r. �

Corollary 6.7. Suppose Γ = Fn is a free group of rank n ≥ 2. Then Γ acts on its
Cayley graph, which is T2n−1. This action is transitive and clearly not parabolic.
Thus the induced action on the boundary is extremely proximal. Therefore �Fn�

′
is

nine-uniformly simple by Theorem 5.1.

Example 6.8 ([28, Section 5], [19, p. 232]). We apply our results to trees con-
structed by Tits. Any connected graph (G,E) of finite valence, with at least one
edge, can appear as a quotient of a (finite valence) tree.

Assume that c is a function from oriented edges of G into the set of positive
integers. By a result of Tits, there is a tree T and a group Γ acting on T such that
G = Γ\T and, for any v and w ∈ T such that (Γv,Γw) is an edge in G, there are
exactly c(Γv,Γw) vertices in Γw adjacent to v (or none if it is not an edge of G).

If c is such that the sum over edges starting at a given vertex is at least three
(but finite), then the boundary of T is a Cantor set.
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If values of c are at least two, the group action of Γ on T is minimal and not
parabolic [28, 5.7], i.e., the action of Γ on ∂T is extremely proximal due to Theorem
6.4, and �Γ� is nine-uniformly simple due to Theorem 5.1.

Corollary 6.9. The groups of quasi-isometries and almost-isometries of a regular
tree Tq are five-uniformly simple.

Proof. This follows from Lazarovich’s results from the appendix. Let Γ be one
of those groups. By Theorem 7.4, Γ = Γ′. Since Aut(Tq) is a subgroup of Γ, it
acts extremely proximally on ∂Tq (see Lemma 7.1) as a topological full group (see
Lemma 7.2). This already proves nine-uniform simplicity.

Let 1 �= g and f be two elements of Γ. By Lemma 5.2 there exists g1, a conjugate
of g, such that f1 = g−1

1 f fixes a clopen in ∂Tq. By Lemma 7.3, f1 is a commutator
of two elements fixing an open set in ∂Tq. Thus, by Lemma 2.1, f1 is a product of
two g-commutators. �

7. Appendix by Nir Lazarovich: Simplicity of AI(Tq) and QI(Tq)

We begin by recalling the following definitions.
For λ ≥ 1 and K ≥ 0, a (λ,K)-quasi-isometry between two metric spaces

(X, dX) and (Y, dY ) is a map f : X → Y such that for all x, x′ ∈ X,

λ−1dX(x, x′)−K ≤ dY (f(x), f(x
′)) ≤ λdX(x, x′) +K,

and for all y ∈ Y there exists x ∈ X such that dY (y, f(x)) ≤ K.
A K-almost-isometry is a (1,K)-quasi-isometry.
A map f is a quasi-isometry (resp., almost-isometry) if there exist K and

λ (resp., K) for which it is a (λ,K)-quasi-isometry (resp., K-almost-isometry).
Two quasi-isometries f1, f2 : X → Y are equivalent if they are at bounded

distance (with respect to the supremum metric).
The group of all quasi-isometries (resp., almost-isometries) from a metric space

X to itself, up to equivalence, is denoted by QI(X) (resp., AI(X)). Thus, for q ≥ 2,
we have the following containments:

Aut(Tq) ⊂ Nq ⊂ AI(Tq) ⊂ QI(Tq) ⊂ Homeo(∂Tq),

where the last containment follows from the following lemma.

Lemma 7.1. The group QI(Tq) acts faithfully on ∂Tq.

Proof. Let g ∈ QI(Tq) be a quasi-isometry. Let v ∈ Tq, and let x1, x2, x3 ∈ ∂Tq

be three distinct points such that v is the median of x1, x2, x3, that is, v is the
unique intersection of all three (bi-infinite) geodesics x1x2, x1x3, x2x3. Then, by
the stability of quasi-geodesics in Gromov hyperbolic spaces [4, Theorem 1.7], gv
is at bounded distance (which does not depend on the vertex v) from the midpoint
of gx1, gx2, gx3. This implies that if g induces the identity map at the boundary,
then g ∼ id. �

In fact, the proof above is valid whenever the space X is a proper geodesic
Gromov hyperbolic space X which has a Gromov boundary of cardinality at least
three whose convex hull is at bounded distance from X (e.g., any nonelementary
hyperbolic group).

For what follows, let Γ be the group QI(Tq) or AI(Tq) for q ≥ 2.
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Lemma 7.2. The group Γ < Homeo(∂Tq) is a topological full group.

Proof. Fix g ∈ �Γ�, and let {∂T	e1 , . . . , ∂T	en} be a disjoint cover of ∂T such that
g|∂T�ei

= γi|∂T�ei
for some γi ∈ Γ. For each 1 ≤ i ≤ n let ei,1, . . . , ei,m be such that{

∂T	ei,1 , . . . , ∂T	ei,m
}
is a disjoint cover of gT	ei . We may assume, by changing each

γi on a bounded set, that γi(T	ei) =
⋃m

j=1 T	ei,j .
Let us define

γ(v) =

{
γi(v) for v ∈ T	ei ,

v otherwise.

It is clear that if γ is in Γ, then it induces the element g on the boundary.
Let λ,K be the maximal quasi-isometry constants of γi, and let M be the diam-

eter of the bounded set {e1, . . . , en, γe1, . . . , γen}.
We claim the following: for all v, w ∈ Tq, d(γv, γw) ≤ λd(v, w) + (2K + M).

Indeed, if v, w are both in some T	ei or in Tq\
⋃n

i=1 T	ei , then the inequality is obvious.
If v ∈ T	ei and w ∈ T	ej for some i �= j, then d(v, w) = d(v, ei) + d(ei, ej) + d(ej , w)
and therefore

d(γx, γy) = d(γix, γiei) + d(γiei, γjej) + d(γjej , γjw)

≤ λd(γv, γei) +K +M + λd(ej , w) +K

≤ λd(x, y) + 2K +M.

Similarly, one shows this inequality for v ∈ T	ei and w ∈ Tq \
⋃n

i=1 T	ei .
Furthermore, the element γ′, defined as

γ′(v) =

{
γ−1
i (v) if v ∈

⋃m
j=1 T	ei,j ,

v otherwise,

satisfies that for all v, w ∈ Tq, d(γ
′v, γ′w) ≤ λ′d(v, w) + (2K ′ +M ′) for the appro-

priate λ′, K ′, and M ′. Moreover, it is easy to see that γγ′ ∼ id ∼ γ′γ, from which
we deduce that γ is a quasi-isometry. �

Lemma 7.3. Every element g in Γ that fixes an open set at the boundary is a
commutator of two elements fixing a common set at the boundary.

Proof. Let supp g ⊂ T	e. Let {xn}n∈Z be a bi-infinite line geodesic contained in T−	e

and such that x0 is the starting point of e.
Let t ∈ Aut(Tq) be a translation along {xn}n∈Z, and let f be the function defined

by

f(v) =

{
tng−1(v) for v ∈ tn(T	e) and n ≥ 0,

v elsewhere.

The function f is in Γ since all the functions tng−1 have the same quasi-isometry
constants and [t, f ] = tff−1 = g.

Let s be a 1-almost-isometry defined as

s(v) =

⎧⎪⎨
⎪⎩
t(v) for v ∈ t−2T	e,

t−1(v) for v ∈ t−1T	e,

v otherwise.

Then we still have [ts, f ] = g as s commutes with f . However both st and f fix
t−1T	e. Thus the claim. �
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Theorem 7.4. The group Γ is perfect and has commutator width at most 2.

Proof. It suffices to show that each element of Γ can be written as a product of two
elements of Γ which fix an open set at the boundary, as both of them are single
commutators by Lemma 7.3.

Let 1 �= g ∈ Γ; there exists ω ∈ ∂T such that g(ω) �= ω. Let T	e be a halftree
whose boundary contains ω and for which g∂T	e and ∂T	e are disjoint, and do not
cover the whole of ∂T . Let h ∈ �Γ� = Γ be the map defined by

h(x) =

⎧⎪⎨
⎪⎩
g(x) if x ∈ ∂T	e,

g−1(x) if x ∈ g∂T	e,

x otherwise.

We see that hg fixes T	e, and thus the claim. �

Remark 7.5. Since, for all q1, q2 ≥ 2, the trees Tq1 and Tq2 are quasi-isometric, the
groups QI(Tq1) and QI(Tq2) are isomorphic.
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