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Loop-Closure Detection in Urban Scenes for Autonomous Robot Navigation

Fabiola Maffra, Lucas Teixeira, Zetao Chen and Margarita Chli

Vision for Robotics Lab, ETH Zurich, Switzerland

Abstract

Relocalization is a vital process for autonomous robot
navigation, typically running in the background of sequen-
tial localization and mapping to detect loops in the robot’s
trajectory. Such loop-closure detections enable corrections
for drift accumulated during the estimation processes and
even recovery from complete localization failures. In this
work, we present a novel approach loosely integrated with
a keyframe-based SLAM system to perform loop-closure de-
tection in urban scenarios for autonomous robot naviga-
tion. Generating a mesh of the current robot’s surround-
ings in real-time using monocular and inertial cues, the pro-
posed method estimates the most salient plane in the current
view, enabling the creation of the corresponding orthophoto
for this plane. Evaluating image similarity on orthophotos
forms a much better conditioned problem for relocalization,
minimizing effects from viewpoint changes. Employing bi-
nary image descriptors and tests on their relative constel-
lation in the image, the proposed approach exhibits robust-
ness also to illumination and situational variations common
in real scenes, overall resulting to significant improvement
in loop-closure detection performance in urban scenes with
respect to the state of the art.

Video – https://www.youtube.com/c/V4RLteam

1. Introduction
The emergence of powerful techniques for robotic ego-

motion estimation and map building that follow the SLAM
(Simultaneous Localization And Mapping) paradigm has
been drawing research and industrial interest in recent
years, as this is the core ability of spatial understanding for
autonomous robot navigation. With the aim of developing
general and practical systems, the use of external tracking
or unreliable positioning systems (e.g. GPS) is typically
avoided, albeit restricting the scalability of approaches for
robot navigation as drift inevitably accumulates over time
during sequential processing (especially during exploratory
trajectories). Detecting when a robot returns to a previ-
ously visited place has long been known to offer useful
cues for diminishing the effects of drift and similarly, de-

tecting when one robot returns to a place already visited by
another robot can also form the basis of any collaboration
amongst them [17]. In both cases, it is the problem of Place
Recognition that needs to be addressed, aka Loop-Closure
detection. Following such a loop detection, new pose-to-
pose and pose-to-features constraints are established in the
SLAM graph, subject to non-linear optimization, such that
the loop closure is enforced and the effects of the drift cor-
rection are propagated back to the rest of the SLAM graph.

Primarily addressed using visual cues, place recognition
is a challenging task, due to the large appearance variations
that the same physical place in the world can exhibit. Il-
lumination and situational variations in the scene’s appear-
ance become an issue even at different times of the same day
and are certainly caused by weather or seasonal changes,
while viewpoint changes or dynamic objects add on to the
challenge of identifying place similarity. While impressive
works exist in the literature addressing some of these vari-
ations in isolation, it is still very challenging to simultane-
ously address them all together, which is key in enabling
robust robot navigation in real tasks. In this spirit, this
paper proposes a new orthophoto-based approach for loop-
closure detection in the presence of viewpoint, illumination
and situational variations. With the rationale that comparing
orthophotos instead of perspective images poses a far bet-
ter conditioned query for place recognition, the proposed
approach achieves high recall, while filtering out ill posed
queries effectively, and thus, minimizing the probability of
false positives.

In this paper, we specifically study the problem of ur-
ban robot navigation with the outlook of employing such a
system for automating the navigation of small Unmanned
Aerial Vehicles (UAVs), which are restricted to small pay-
load and limited computational capacity. Moreover, exhibit-
ing great agility, they highlight the need for viewpoint tol-
erant place recognition techniques. In urban scenarios, we
assume the presence of a high density of structures that are
largely planar and are common in man-made environments.
This assumption allows us to utilize a planarity prior on the
scene and harvest the robustness it can bring to place recog-
nition in this scenery. As a result, the main contribution of
this work are:
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• a new approach to generate orthophotos in real-time
from sparse features provided by a visual-inertial
SLAM algorithm, and

• a novel loop-closure detection framework for robot
navigation in urban scenes, which does not require any
previous knowledge of the environment nor does it im-
pose unrealistic assumptions (e.g. Manhattan world).

Evaluated on challenging datasets, the proposed approach
achieves higher precision and recall with respect to the state
of the art, exhibiting unprecedented robustness to view-
point, illumination and situational changes.

2. Related Work

Place recognition is most often addressed using
appearance-based cues and as a result, draws inspiration
from Image Retrieval from the Computer Vision literature.
Identifying whether a query image is present in the database
(i.e. containing all past experiences of the robot in the robot
navigation paradigm) can be a very inefficient process, so
for this purpose, visual dictionaries have been devised to
retrieve matching images with high probability. Inspired by
text retrieval techniques, the pioneering work in [18] gave
rise to what is widely known as the Bag Of Words (BOW)
approach. This technique relies on building a dictionary of
visual words by clustering locally invariant feature descrip-
tors, such as SIFT [12], appearing in a set of model images
and then representing each image as the set of visual words
it contains. The use of this representation, permits the anal-
ogous application of many theoretical developments such as
TF-IDF (Term Frequency - Inverse Document Frequency)
and probabilistic naive Bayes [13] from the fields of text
retrieval and classification on images [5, 18]. Such tech-
niques, naturally, apply well to place recognition for mo-
bile robots, and are generally well-established in the field,
including extended generative models for location observa-
tions [1, 6].

The success of BOW approaches in searching for sim-
ilar images in a database has led to their wide use, how-
ever, it was soon realised that their performance decreases
with the size of the vocabulary, not only affecting complex-
ity, but also encouraging misclassification. The FABMAP
framework [6], partially alleviating the latter by learning
the dependencies between visual words, in a framework
that is currently considered one of the highest perform-
ing pipelines for loop-closure detection in robot navigation
scenarios. Its reliance on computationally expensive im-
age features (i.e. SURF [3]) and intolerance to even small
viewpoint changes restricts the applicability of FABMAP to
scenarios targeting ground robots with large computational
capabilities. As with FABMAP, a common source of er-
ror in the vast majority of place recognition systems is that

they discard most of the geometric information in the im-
age/scene when comparing feature sets. As a consequence,
the discriminative nature of the model is reduced, typically
resulting in either perceptual aliasing or reduced recall. Full
feature-based comparisons can be computationally expen-
sive, and therefore most of the underlying structure and ge-
ometry between features is generally ignored, such as in [5].
Following this realization, a handful of works [8, 14] have
investigated ways of incorporating some geometric infor-
mation into the location models. A common approach is to
perform RANSAC [7] to compute a transformation between
a query and match candidate images [14].

Probably the most relevant work to this paper is the
work in [8], who employ the binary features ORB [16] in
a BOW approach and demonstrate its successful applica-
bility to ground robot navigation. As binary features are
computationally drastically more efficient than their float-
ing point counterparts (e.g. SURF), they are most com-
monly used during SLAM [11, 14]. As a result, re-using
them for place recognition promises to eliminate unneces-
sary computational effort, however, the robustness of place
recognition systems based on binary features to common
scene variations is limited. Inspired by these limitations, in
this work we propose to make use of SLAM’s 3D estimation
to recover a mesh of the local workspace of the robot, which
in turn enables the estimation of an orthophoto of the cur-
rent view. By forming place recognition queries employing
binary features in orthophotos, the problem of assessing im-
age similarity using binary descriptors is shown to become
more stable and achieve improved performance.

The underlying assumption of largely planar scenery
made in this work has also been used to generate orthomo-
saics from aerial imaging. Orthorectification, essentially fa-
cilitates the alignment of images taken from different view-
points to form a larger mosaic, and as shown in Baatz et
al. [2] the overlapping part of two orthophotos of the same
place is typically very similar resulting to their straightfor-
ward alignment. Testing on imagery of buildings facades,
[2] factorize the rotation out of the recognition problem
by generating gravity-aligned orthophotos outperforming
purely 2D-based methods. In a similar spirit, Chen et al. [4]
demonstrate a gain in place recognition by combining both
unmodified perspective images and their corresponding or-
thophotos. However, both works assume the existence of
a prior 3D environment model, which can be unrealistic in
some applications.

Inspired by [2], in this paper, instead of searching for
a perfect alignment between images, we aim to verify
whether the configuration of features shared by two or-
thophotos presents a consistent layout. This step is known
as a geometrical check in loop-closure algorithms. More-
over, in this work, the orthophoto plane is directly extracted
from the 3D landmarks used for the robot visual navigation



system without the need of computing lines and extracting
vanishing points, as in [2].

3. Methodology
As visual-inertial (VI) SLAM is typical in robot naviga-

tion, and UAV navigation in particular, the proposed sys-
tem is interfaced with a nominal VI SLAM system process-
ing cues from a single camera and an Inertial Measurement
Unit (IMU). The pipeline, however, is largely agnostic to
the type of vision-based SLAM used, with the only require-
ments of knowledge of the gravity direction and the metric
scale. Generating a mesh in 3D out of the local SLAM
landmarks, the predominant plane in the scene is identi-
fied and the orthophoto corresponding to the current view
(i.e. Q in Figure 1) is generated. Extracting binary fea-
tures on this orthophoto, the pipeline queries the orthopho-
tos database for an appearance based map identifying pos-
sible loop-closure candidates. These are then subjected to a
geometric check seeking candidates with matching relative
constellation of features in the orthophoto space. Consid-
ering the robot navigation paradigm, in the following, we
assume that the robotic platform at hand has a monocular-
inertial sensor suite onboard.

Figure 1. The proposed pipeline for place recognition employing
mesh-based orthophoto generation with appearance and geomet-
ric checks to determine whether the current image Q forms a loop
closure with an image in the database containing past robot expe-
riences.

3.1. Real-Time Visual-Inertial Scene Estimation

In this work, we use the open-source keyframe-based
VI SLAM algorithm OKVIS [11], which estimates the tra-
jectory of the robot considering a limited window of past
poses, and as a result has no loop-closure detection or cor-
rection scheme. OKVIS provides in real-time, the current
robot pose P and a 3D map comprising of the estimated
locations of 3D visual landmarks extracted from the im-
age feed. These are fed into the open-source mesh gen-
eration pipeline of [19], which was demonstrated to ro-
bustly compute the 3D mesh of the landmarks visible from
P in a computationally very lightweight manner, provid-
ing a denser scene representation. Filtering out inconsistent
landmark measurements from SLAM, the mesh generation
algorithm applies a local Laplace filter, implicitly enforcing
local smoothness. This is crucial for robust orthophoto gen-
eration, as it has a direct effect on the detection of the most

salient plane in the scene.

3.2. Orthophotos Generation

An orthophoto of a largely planar scene is the orthogonal
projection of this scene onto the most dominant plane of the
scene; so in essence, the orthophoto of a perspective image
corrects for the camera tilt and the terrain relief. Figure 4
illustrates an example of an orthophoto generated by the al-
gorithm from the Old City dataset introduced in Section 4.1.
Although the environment is usually not planar in general,
in urban scenes structures are largely planar and aligned to
the gravity direction. In this work, we select the biggest
gravity-aligned plane in the image as the orthophoto plane.
The rationale behind this is that when viewing the same
place at different times, from different viewpoints, most of
times, the same orthophoto-plane can be extracted, and as a
result, place recognition can be effectively performed.

The generation of orthophotos first requires the estima-
tion of the most predominant plane in the image, that will
serve as the orthophoto plane. This estimation is facilitated
by the 3D mesh provided by the VI-SLAM and the Mesh
generation module. Aligning the mesh’s coordinate frame
with gravity (OKVIS already provides a gravity aligned
map), we project the 3D mesh to the 2D top view of the
scene. The longest line in this view corresponds to the
largest vertical plane in the 3D scene. In order to recover
this line, we use an iterative Huber M-Estimator to fit a line
to the 2D SLAM points (i.e. the mesh’s vertices) consid-
ering any point within a pre-specified distance to the esti-
mated line (here 40cm) as inliers. Upon discovering the
longest line in the top view of the scene, we set the mid-
dle of it to correspond to the center of the orthophoto-plane.
The normal of this plane is selected as the normal of the
line that points to the direction of the camera in the gravity
aligned SLAM coordinate frame.

In order to project the current perspective image to the
estimated orthophoto plane, we first find where the four
corners of the frustum of the camera intersects with this
plane (i.e. points P1, P2, P3 and P4 in Figure 2). With
this information, we form a homography to transform this
plane from image coordinates to metric coordinates and use
this to project the perspective image onto the orthophoto
plane, forming the orthophoto. In order to restrict the size
of this orthophoto, we rescale it to the maximum of twice
of the original resolution. We impose this restriction be-
cause robot cameras have very low resolution, in our case
752x480. So a higher rescaling factor in addition with the
orthogonalization of the image creates a very distorted im-
age.

3.3. Image Retrieval

In order to detect revisited places we make use of a hi-
erarchical Bag of Binary Words (BoBW) visual vocabulary,



Figure 2. The intersection of the camera frustum with the esti-
mated orthophoto-plane Θ to be used in order to form the homog-
raphy to be applied on the perspective image for the generation of
the corresponding orthophoto.

Figure 3. An example of an orthophoto (on the right) generated
automatically by the proposed framework for the corresponding
original image shown on the left, by estimating a local mesh illus-
trated in Figure 4.

Figure 4. The mesh of the scene of Figure 3 in cyan and the main
plane extracted from it in grey. The side view can be seen on the
left and the top view on the right.

describing an image as a collection of visual words com-
bined with an inverted file index. In this work, the visual
database consists of orthophotos generated from perspec-
tive images captured using a traditional perspective camera.
Each entry in the database comprises an appearance signa-
ture of the corresponding image, namely its BoBW descrip-
tor. Following the approach suggested by Galvez and Tar-
dos [8], we adapt for the binary features used in OKVIS,
namely the BRISK features [10]. Namely, we build a visual
vocabulary by discretizing the 48-byte BRISK descriptors’
space. In order to train this vocabulary, we used about 6000
images comprising both indoor and outdoor environments,
different from the ones used for testing. The vocabulary
tree built has 10 branches and 6 depth levels, resulting to a
vocabulary of one million visual words.

In order to query the orthophoto of the current view
Q for appearance matches in the orthophotos database,

BRISK features are detected and the BoBW descriptor for
Q is formed. The vocabulary tree is used to score the
L1-distance of this descriptor against the entries in the or-
thophotos database using a TF-IDF weighting scheme [6]
to suppress commonly occurring words and form the set of
matching image candidates.

3.4. Geometric Check

The BOW approach discards all spatial information of
visual words by definition, effectively accepting as any
match two images having the similar visual features regard-
less of their relative constellation in the image space. A
geometric check based on a RANSAC scheme is usually
applied after appearance matching to improve loop closure
detection by verifying whether the configuration of features
belonging to these two images presents a consistent layout.
When matching gravity-compatible orthophotos, Baatz et
al. [2] reduce the 6 DOF perspective recognition problem to
a homothetic problem involving only scale and a translation
in a 2D plane. By exploiting the fact that they are solving
a homothetic problem, [2] suggests to replace the computa-
tionally expensive RANSAC-based geometric check by an
efficient 1D voting scheme, where scale as well as a hori-
zontal and a vertical offset are estimated separately.

The proposed approach conducts geometric verification
to every query-candidate orthophotos pair that is shortlisted
by the image retrieval module. By making use of the met-
ric scale provided for each orthophoto during their creation,
we first convert both images to a common scale, which al-
lows us to use the 1D voting scheme for both horizontal
and vertical displacement. With both the query and the
candidate matching orthophotos in the same scale, we es-
tablish BRISK correspondences across features detected in
both images.

Following the approach of [2], we estimate the hori-
zontal x and vertical y components of the relative transla-
tion between the query Q and the candidate C, indepen-
dently. Every pair of corresponding points (xC , yC) and
(xQ, yQ) contributes with one vote for the x-displacement
(x(i) = xC(i)−xQ(i)) and one vote for the y-displacement
(y(i) = yC(i)− yQ(i)). The global displacement of the x-
coordinate is determined by fitting a probabilistic density
function to all the votes computed along the axis x. To this
end we use a Kernel density estimation (KDE) supported by
a Gaussian kernel, where each offset in x contributes with
a Gaussian probability density function with mean centered
at x(i) and a standard deviation defined by a translation tol-
erance in meters. The probability density function is then
computed by summing up all these contributions and the
global maximum of this distribution is used as the global
displacement in this direction. The corresponding points
whose coordinate differences are within a certain distance
from the global displacement in x are considered inliers.



Since all the coordinates are expressed in meters it is easy
to define a distance tolerance to compute the inliers set. The
same procedure is then applied to compute the displacement
in y. The intersection of the two resulting inlier sets consti-
tutes the final inliers of the geometric check. The number
of inliers is then used as a metric to decide whether a can-
didate should be accepted as a loop closure to match the
query image. The different thresholds applied are analysed
in section 4 by means of precision-recall curves.

4. Experiments and Results

While there do not exist directly comparable methods
for place recognition using orthophotos, as a baseline algo-
rithm, we form a variant of the proposed pipeline adapted to
use perspective images as done traditionally in robot navi-
gation scenarios, as the monocular-based ORB-SLAM [14].
This enables fairness of comparisons as we ensure that all
tests use the same features and are subject to the same qual-
ity of SLAM estimation. As the geometric verification vot-
ing scheme is not suitable when using perspective images
for the variant pipeline that we refer to as PerspFM , we
implemented the strategy used in the BoBW approach in
[8]. This consists in computing a spatial transformation be-
tween the matched images by estimating the fundamental
matrix using RANSAC for the variant algorithm. The pro-
posed method from here onwards is referred to as OrthoTR

to denote the use of Orthophotos with the voting scheme
used to estimate translation.

4.1. Datasets

Existing place recognition datasets normally only con-
tain visual information, however, in order to put our pro-
posed approach to the test, we need visual and inertial sens-
ing information, as well as ground truth. Outdoor visual-
inertial datasets, such as KITTI [9] are designed for motion
estimation and are not well suited for testing place recogni-
tion as they exhibit mainly forward camera motion with a
front-looking camera, rendering it very difficult to label the
images for ground truth in loop closures.

All the datasets used in this paper were recorded us-
ing a visual-inertial sensor [15] providing grayscale global-
shutter images at 20 Hz synchronized with inertial measure-
ments. For our experiments, we use information from only
one of the two cameras of the sensor to conduct monocular-
inertial estimation. The datasets were recorded using a
hand-held setup with the camera facing perpendicular to the
direction of motion (i.e. side-looking). All imagery was
labelled for ground-truth loop closures, by first using any
priors on GPS information whenever available to suggest
potential loops and then manually correcting these sugges-
tions. Below, we describe in detail all the datasets used in
this paper.

4.1.1 Shopping Street sequences 1 & 2

Two datasets were recorded when walking down a busy
shopping street with many pedestrians. Examples are
shown in Figures 9 and 10. Shopping Street 1 was
recorded with the sensor held at eye-level height and ex-
hibits loops with small viewpoint changes, perceptual alias-
ing and changes in the scene appearance. Shopping Street 2
was recorded along the same street a few months later with
the sensor mounted at the top of a 4m-long rod held verti-
cally in order to capture the scenery captured in Shopping
Street 1, at least partially, but from different viewpoints. By
combining these two sequences, a very challenging place
recognition dataset is created, where the scene is not only
revisited from very different viewpoints, but due to the large
time interval between recordings, strong appearance vari-
ations can also be observed with most of the restaurants
and shop windows in different configurations; e.g. shut-
ters closed, window displays and even store logos changed.
Moreover, parts of Shopping Street 2 exhibit large variance
in illumination conditions, making it hard even for humans
to detect whether it is the same place visited in the first
sequence. These sequences have a total of approximately
1200 meters and 26 mins.

4.1.2 Old City sequences

Two sequences were recorded at the end of the day in an
old city area, exhibiting similar characteristics as the Shop-
ping Street datasets, albeit with more challenging viewpoint
variations. This dataset comprises two traverses along the
same route, each one covering a distance of approximately
230 meters. In total, 10 minutes of data were recorded for
this dataset. Example images are shown in Figure 5.

4.2. Orthophotos versus Perspective Images

Aiming to verify whether using the orthophotos gener-
ated by OrthoTR can perform better than their perspec-
tive counterparts in a place recognition scenario, we test for
loop closures within Shopping Street 1, which comprises
two different traverses one the same day, along the same
route. Images from the first traverse are used to populate
the database of images, and using images from the second
traverse this database is queried for loop closures. Parts of
these trajectories does not overlap and in that case loop clo-
sures should not be detected.

Each of OrthoTR and PerspFM builds their own, sep-
arate database of images for retrieval; OrthoTR builds a
database of orthophotos, while PerspFM ’s database com-
prises of the perspective images. It is important to note that
only the perspective images with more than 30% of inliers
have their corresponding orthophotos computed. If an im-
age does not meet this requirement, it is is not considered
neither OrthoTR nor PerspFM during this test. For both



Figure 5. Example loop-closuring pairs from the Old City dataset
identified using with the proposed approach. Each group of four
images shows the original perspective views in the top row and the
respective orthophotos in the bottom row.

pipelines the image retrieval step considers the top 10 best
images recovered from the database, while the correspond-
ing geometric check is run for every pair of query-candidate
images. Their performances are illustrated by the dashed
lines plotted in Figure 6, demonstrating that OrthoTR per-
forms consistently better than PerspFM in this scenario.
This attests to our earlier claim that using orthophotos,
place recognition can be more robust and accurate, com-
pared to employing perspective images for the same tests.
The performance of the two systems in a more general sce-
nario is recorded, in which all the images in the Shopping
Street 1 sequence images are considered, shown in the solid
lines in Figure 6. As expected, in this case the recall for
OrthoTR decreases, but still performs systematically better
than PerspFM .

We also compute precision-recall curves for Shopping
Street 1 + 2 and Old City using both OrthoTR and
PerspFM algorithms as can be seen in Figure 7 and Fig-
ure 8, respectively. As previously done, the first sequence
of each dataset is inserted into the database of images, while
the second one is used to form image queries. For Shopping
Street 1 + 2, we insert the first loop of Shopping Street 1
into the database and form queries from the Shopping Street
2 sequence. OrthoTR is evidently able to maintain higher
precision than PerspFM , essentially attesting to better con-
sistency of performance, rendering it more trustworthy in

Figure 6. Precision-recall curves on Shopping Street 1 compar-
ing the performance of using orthophoto (green) and perspective
(blue) images for place recognition. Dashed lines indicate the
respective performances when considering only the images with
enough inliers to generate orthophotos, while solid lines illustrate
performances when all the images of the sequence are considered.

closing loops during autonomous robot navigation. Exam-
ple loop closures for Shopping Street 1 + 2 and Old City
are shown in Figures 5 and 9, respectively. As evident in
Figures 6-8, the proposed method achieves superior preci-
sion as long as orthophotos can be successfully generated,
but exhibits a sharp decline in precision when no domi-
nant plane can be detected (e.g. due to a tree occupying
most of the image space) or no corresponding orthophotos
can be generated. In the latter case, loop closures cannot
be detected. However, in urban scenes planes are ubiqui-
tous and as shown in Figure 10 even if there are multiple
planes present it is still possible to generate corresponding
orthophotos.

4.3. Viewpoint Changes and System Scalability

In order to test different extents of viewpoint variations
using both perspective images and orthophotos, we imple-
mented three different spacing policies between consecu-
tive images when populating our database. In the first set-
ting, all the keyframes used by OKVIS are inserted into our
database of images, resulting in a big overlap between con-
secutive images in our sequence. In the second setting, an
image is only inserted if it is at least 2 meters away from the
previously inserted image. In the last setting, a distance of
5 meters between consecutive images is considered, lead-
ing to a much more challenging place recognition scenario
as illustrated in Figure 12.

Both pipelines, OrthoTR and PerspFM , were tested
using these three different policies. Using the same strat-
egy as before, in a first step all relevant images from the
first traverse are used to populate the corresponding image
database and then all the images in the second traverse are



Figure 7. Precision-recall curves on the combined Shopping Street
1 + 2 dataset, comparing performances when using orthophoto
(green) and perspective (blue) images for place recognition. While
the reference traverse is the same as the one used in Figure 6, the
test traverse here is collected at the same route after four months,
thus exhibiting much stronger condition variations.

Figure 8. Precision-recall curves on the Old City dataset compar-
ing performances of using orthophoto (green) or perspective (blue)
images for place recognition. It is clear that orthophoto-based
place recognition achieves much higher precision at the same re-
call rate.

used to query that database. Figure 11 shows the respective
precision-recall curves for each case. PerspFM presents a
sharp drop in precision-recall rates when the gap between
images increases, while OrthoTR is still able to maintain
much better recall for perfect precision. This illustrates
that the orthophotos generated automatically are more ro-
bust against viewpoint variations than the perspective im-
ages, as expected. Based on these findings, it would be pos-
sible to augment the pipeline to select non-overlapping im-
ages in order to build a less confusing database of images
(i.e. places), while making the place recognition problem

(a)

(b)

(c)

Figure 9. Example loop-closures from the combined Shopping
Street 1 + 2 dataset shown in each row, using the proposed ap-
proach. In each group of images, the top row illustrates to the
original perspective images, while the respective orthophotos are
in the bottom row. In (a) and (b) we can observe large viewpoint
and situational changes, with pedestrians and a major occlusion by
a car, while (b) and (c) show difficult lighting conditions.

more scalable.

5. Timings
Table 1 shows timings of each individual component

in the proposed pipeline averaged over all the runs in the
experiments. As evident, the proposed approach is about
twice real-time, with the bottleneck on the feature detec-



Figure 10. Example loop-closures from Shopping Street 1 tested
with the proposed approach and their respective orthophotos. The
images show that it is possible to compute corresponding or-
thophotos even if more than one plane is present in the scene.

Figure 11. Precision-recall curves on the Shopping Street 1
dataset, comparing performances of using orthophoto (green) and
perspective (blue) images for place recognition with different sam-
pling spacings between consecutive images in the reference tra-
verse (solid lines: original spacing, dashed: 2m spacing, dotted:
5m spacing across the camera’s trajectory).

tion and matching. As loop-closure detection and correc-
tion usually runs on a background thread in most SLAM
systems, real-time is not a requirement. It is worth noting
that an adaptation to vote for the scale as in [2], the process-
ing time can be reduced, as it eliminates the need to rescale

Figure 12. Example illustration of two consecutive images for dif-
ferent spacing strategies. From top to bottom the figure depicts no
gap, 2 meters and 5 meters between the images.

the image and recompute features in it.

Step Average time per image
Image Rescaling 5 ms
Features Detection 40 ms
Features Matching 21 ms
KDE 0.2 ms
Total 66.2 ms

Table 1. Average timings for the online component of OrthoTR.

6. Conclusion

This paper presents an efficient and precise algorithm
to tackle the loop-closure detection problem based on
orthophotos automatically generated online. Evaluation
against a baseline approach employing perspective images
and combined appearance and geometric checks, shows
that the proposed approach achieves consistently better
precision-recall characteristics in challenging datasets ex-
hibiting viewpoint, illumination and situation changes si-
multaneously. Tailored for robot navigation in urban sce-
narios and aiming for low computational complexity, this
approach makes the most of a SLAM system that is typi-
cally already running in the background in such scenarios.

Further directions include interfacing this pipeline with
a global mapping algorithm to enable loop-closure correc-
tion within SLAM and harvest the benefits of a robust loop-
closure detection pipeline in robot navigation.
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