
ETH Library

Short-term UAV Path-Planning
with Monocular-Inertial SLAM in
the Loop

Conference Paper

Author(s):
Alzugaray, Ignacio ; Teixeira, Lucas ; Chli, Margarita

Publication date:
2017-07-21

Permanent link:
https://doi.org/10.3929/ethz-a-010862339

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2017.7989319

Funding acknowledgement:
644128 - Collaborative Aerial Robotic Workers (SBFI)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-7121-0000
https://orcid.org/0000-0002-3192-827X
https://doi.org/10.3929/ethz-a-010862339
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2017.7989319
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Short-term UAV Path-Planning
with Monocular-Inertial SLAM in the Loop

Ignacio Alzugaray, Lucas Teixeira and Margarita Chli
Vision for Robotics Lab, ETH Zurich, Switzerland

Abstract— Small Unmanned Aerial Vehicles (UAVs) are
some of the most promising robotic platforms in a variety
of applications due to their high mobility. Their restricted
computational and payload capabilities, however, translate
into significant challenges in automating their navigation. With
Simultaneous Localization And Mapping (SLAM) systems
recently demonstrated to be employable onboard UAVs,
the focus fall on path-planning on the quest of achieving
autonomous navigation. With the vast body of path-planning
literature often assuming perfect maps or maps known a
priori, the biggest challenge lies in dealing with the robustness
and accuracy limitations of onboard SLAM in real missions.
In this spirit, this paper proposes a path-planning algorithm
designed to work in the loop of the SLAM estimation of
a monocular-inertial system. This point-to-point planner is
demonstrated to navigate in an unknown environment using
the incrementally generated SLAM map, while dictating the
navigation strategy for preferable acquisition of sensor data for
better estimations within SLAM. A thorough evaluation testbed
of both simulated and real data is presented, demonstrating the
robustness of the proposed pipeline against the state-of-the-art
and its dramatically lower computational complexity, revealing
its suitability to UAV navigation.

Video—https://youtu.be/Izn_vVb_M-E

I. INTRODUCTION

With the potential of revolutionizing tasks, such as search-
and-rescue, 3D modeling and industrial inspection, small
Unmanned Aerial Vehicles (UAVs) have recently drawn
great attention from both academia and industry. Multi-rotor
UAVs are particularly interesting due to their high mobility
and light weight, promising swift access to remote areas
without requiring any particular infrastructure (e.g. paved
roads). Nonetheless, their properties come at the cost of
limited payload, restricting the number, total weight and
power consumption of the sensors and processors that can
be carried onboard and thus, limiting the onboard computa-
tional capacity and sensing capabilities. Some of the most
promising sensors for UAVs for these robotics platforms are
cameras due to their relatively low weight, small size and
low cost for the rich information that they provide about
their surroundings.

With seminal advancements in vision-based Simultaneous
Localization and Mapping (SLAM) techniques (e.g. [1])
demonstrating that ego-motion scene estimation are possible
using visual cues, their employment onboard UAVs (e.g.
[2]) has been key in the research towards automating UAV
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Fig. 1. The proposed pipeline on the task of navigating a UAV around a
building. The map is estimated on the fly using monocular-inertial SLAM
resulting to sparse 3D points (in magenta), in contrast to the dense grey
point cloud on the building’s facades, which would be obtained from a depth
sensor. The SLAM map provides information about obstacles (white boxes),
which is used to generate potential UAV pose samples (green spheres).
The planner computes a path (red line) through these samples from the
current pose (cyan sphere) to an arbitrary goal (in orange, here set inside
the building). The obtained path is collision-free according to the current
map and, in our approach, it can be efficiently re-planned in cases of map
changes as new areas are explored.

navigation. With path-planning constituting the last piece
of the puzzle in completing the loop of robot navigation,
the community has recently been turning to the vast body
of theoretical path-planning works to devise computation-
ally feasible approaches, albeit, traditionally assuming the
availability of a known or pre-acquired map. While some
powerful systems have emerged, it is the restricting com-
putational complexity onboard a UAV and the perceptual
uncertainties arising in a real mission that pose the greatest
challenges prohibiting the practical employment of these
methods in reality. Exploiting sensing cues processed in a
SLAM system in real-time for the purpose of developing a
feasible and preferable navigation strategy, as advocated in
this paper, opens up a great envelope of potential benefits
in both robustifying UAV navigation as well as pushing the
platform’s capabilities towards greater navigation autonomy.

In this paper, we employ a nominal keyframe-based SLAM
system that fuses sensing cues from a monocular camera
and an Inertial Measurement Unit (IMU) featuring onboard
the UAV’s sensor-suite. Since the SLAM map is generated
incrementally throughout the flight, we develop a path-
planner that can handle changes in the plan on the fly as
new unexplored areas of the environment are discovered. Ex-
hibiting such replanning capabilities is particularly important



in real missions, as one can never assume that a even a pre-
acquired map of the environment will not change. As a result,
this property of the proposed system is key in ensuring the
applicability and the robustness of this framework. While the
proposed approach is agnostic to the particular Monocular-
Inertial SLAM (MIS) system used, in this paper, we present
experiments using the open source1 keyframe-based SLAM
system of [3] and [4]. A snapshot of the proposed pipeline
in action is visible in Fig. 1.

Traditionally, SLAM approaches rely on tracking features
across the robot’s trajectory, resulting in the construction
sparse SLAM maps of the robot’s workspace. When us-
ing a single camera as the only exteroceptive sensor, this
SLAM map is considerably noisier when using additional
sensors, such as stereo cameras, as the depth estimation
of features becomes particularly sensitive to the parallax
across consecutive images. As a result, the trajectory of the
camera, as well as the distribution of these features in space
(e.g. to sufficiently cover an obstacle) have a great impact
on the fidelity of the acquired SLAM map. While these
factors pose great challenges in both SLAM and thus, in
any path-planner that aims to use the SLAM map in real-
time, the proposed approach explicitly exploits potentially
uneven distribution of features around obstacles to guide the
path-planning decisions, while favouring beneficial camera
motions for robust SLAM performance.

A. UAV Path-Planning for real missions

One of the most important aspects of planning without
a map known a priori, and thus planning on a map that
is constructed on the fly, is to consider a plan to follow a
point-to-point path may become outdated as new areas of
the environment are being explored and new obstacles are
discovered. Therefore, for an algorithm aiming to incorporate
such a map providing only partial knowledge of the immedi-
ate surroundings of the UAV, the ability to re-plan the UAV’s
path according to map changes within a reasonable amount
of time (onboard CPU present on small UAVs, such as the
AscTec Neo2), is imperative. One of the most used path-
planning algorithms with re-planning capabilities is ADA*
[5], successfully employed for UAV navigation in [6]. As
ADA* relies on densely connected graphs, usually generated
by a cell-grid decomposition of the map, its scalability is
severely limited by the considered map size and the grid
resolution.

Alternative to grid based methods are random sampling
approaches, which have become increasingly popular in the
Robotics community, especially since the development of
Rapidly-exploring Random Trees (RRT) [7]. The recently
developed RRTX approach [8], allows the planned path
to be adapted to changes in the map, while guaranteeing
asymptomatic optimality with respect to a cost function, as
it is based on the successful RRT* [9] method. The quick re-
planning capability of this algorithm is mainly achieved by

1https://github.com/ethz-asl/okvis
2http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-neo/

keeping record of alternative connections between different
samples of the tree, which are used in case a newly perceived
obstacle triggers the modification of the planned path. One
major drawback of this approach in the scenario targeted in
this paper, is that the tree generated by RRTX is rooted to
a fixed goal position, meaning that if the mission goal is
modified during the execution of the mission it is necessary
to re-run the complete pipeline from scratch. Additionally,
although it might be interesting to embed some valuable
information for the MIS in the cost function optimized by the
RRTX, the inclusion of any such metric in the cost function
would increase significantly the already high computational
cost of this algorithm making it infeasible to be executed
onboard the UAV’s CPU.

It is only very recently that approaches explicitly integrat-
ing SLAM information into path-planning started emerging,
leading to only a handful of relevant works in the literature.
In [10] the proposed approach was applied to UAV naviga-
tion, using visual cues and Rapidly-exploring Random Belief
Trees (RRBT) [11], which consider the uncertainty of the
robot along the generated paths predicted by means of robot
and measurement models. These information-rich paths are
planned according to an already known map, in order to
predict future sensor measurements along the estimated path
and, as a result, the selected plan can never be adapted in the
case of map changes. Another major drawback of [10] is the
high computational complexity of the algorithm, rendering
it computationally feasible only on a powerful workstation.

Most relevant to this paper, is probably the most recently
proposed receding horizon Next-Best-View Planner (NBVP)
[12]. Designed for exploration and inspection tasks, this
approach based on RRT considers inside the planning loop
the visual information retrieved from a depth sensor in
each of the nodes of the tree. Adopting a receding horizon
methodology, according to which, in each planning iteration
only a small segment of the trajectory towards the next best-
view is executed at a time, allowing it to adapt the plan
between iterations as new parts of the map are explored.
However, the evaluation of the view in order to obtain the
best-view from the RRT is a costly step applied to all the
nodes in the RRT and therefore, it may poorly scale with
the tree size. Inspired by the re-planning capabilities of
NBVP, here, we employ a receding horizon methodology,
while employing the far more applicable, albeit more noise-
prone monocular visual-inertial sensor-setup. Despite this,
our experimental results, demonstrate superior performance
of the proposed methodology to NBVP in an inspection task.

II. PROPOSED APPROACH

Let us define Ξ as the set of all possible state configura-
tions ξ ∈ Ξ of the navigating robot. The robot’s i-th state
defined as ξi = {xi, θi}, where xi ∈ R3 is its position vector
and θi ∈ R its heading angle or yaw. The aim here is to
generate a point-to-point collision-free path Γ connecting a
sequence of n discrete states from the current robot state ξ0
to the goal state ξn. Let us define the application σ : R→ ξ
so that σji (s), s ∈ [0, 1] is the linearly interpolated trajectory
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Fig. 2. The algorithm pipeline is fed with the sparse and noisy map generated by a nominal Monocular-Inertial SLAM (MIS) system. This MIS map is
converted into processable obstacles and later used in the generation of samples distributed around them. The position of these samples are relevant since
we assume most of the visual features that can be used by the MIS are located in the map obstacles. A graph is built connecting these samples as well as
the current and goal positions. The graph is then searched for the global plan towards the goal. Lastly, we use the positions right after the current state to
assign the best orientation of the next state and compute the next trajectory segment. Before the algorithm executes the next trajectory segment, it detects
if it entails any collision risk. If so, a new trajectory segment to a recovery state is computed and executed, instead.

that connects the states ξi and ξj , i.e. σji (0) = ξi and
σji (1) = ξj . Adopting a receding horizon methodology as in
[12], we compute the next best move for our robot in each
planning iteration, which corresponds to the first trajectory
segment σ1

0 obtained from the complete plan Γ. After the
execution of the first trajectory segment, a new planning
iteration is called until the robot reaches the goal state.
The steps of the proposed pipeline are illustrated in Fig.
2. Although the algorithm presented here is agnostic to the
robotic platform employed, it has been designed with high-
mobility robots in mind that have severely limited onboard
computational capacity, such as UAVs.

III. MAP MANAGEMENT

Assuming that a nominal MIS system is running in parallel
to the proposed pipeline, the input to our system is the sparse
and noisy map generated by MIS, in the form of a collection
of 3D points detected along the executed path of the camera.
In order to convert this input into obstacles that we can
process, we also run a probabilistic 3D occupancy map repre-
sentation [13] in parallel, so that the noisy measurements get
filtered out as they are acquired. The following subsections
we describe how this map data is pre-processed to generate
new position samples around the obstacles perceived in the
MIS map.

A. Obstacle detection

At the beginning of the planning iteration, we process
the current probabilistic occupancy grid at that moment to
retrieve the probability of all the cells being occupied. The
cells with a probability higher than a threshold will be trans-
ferred into a regular occupancy grid map and considered as
obstacle cells later on in our algorithm. This occupancy grid
is maintained during different planning iterations and only
updated according to changes in the probabilistic occupancy
map.

When transferring the occupied cells considered, we can
also apply different strategies to boost the performance of the
algorithm. For instance, we can use a different resolutions
for the probabilistic occupancy map and the actual occu-
pancy grid map we employ in the algorithm, allowing us to
subsample the environment.

While the proposed approach can perform in 3D space
using holonomic robots, multi-rotors UAVs are usually re-

Fig. 3. Map segmentation for 2D navigation. The occupied cells forming
the probabilistic occupancy map (grey boxes) are segmented according to
a fixed navigation altitude (yellow plane). The relevant cells (green boxes)
that may collide with the robot are then projected onto a 2D occupancy grid
representing the map obstacles considered in the algorithm.

stricted to a single rotational degree of freedom in the space
during normal navigation, i.e. changes in roll and pitch angles
are usually employed to generate motion, whereas the yaw
angle determines the robot orientation. Therefore, in this
paper we focus on the 2D navigation planning at given
altitude. In this case, the we only consider the obstacles that
may lie in the robot’s path when navigating at this altitude
and project them onton a 2D occupancy grid as illustrated
in Fig. 3.

B. Samples generation

The obstacles represented by the occupied cells of the
occupancy grid are used to generate position samples around
them. These obstacles are sources of visual features in a MIS
setup and therefore, navigating close to them can lead to a
more robust overall performance.

The generation of samples around the obstacles is done
using part of the Sparse Tangential Network (SPARTAN)
approach [14]. Inspired by the low-complexity of SPARTAN,
here we adopt an implementation of its methodology for
sampling. Based on an occupancy grid map representing the
obstacles of the environment, the distance from each cell
to the closest occupied cell is computed, up to a maximum
distance dmax. Samples are generated at a given clearance
distance ρ from the closest obstacle, but no closer than a
distance dmin to another sample.

The main motivation behind employing this method is
that the samples are generated using a so-called wavefront
propagation, triggered when a cell of the occupancy grid
representing the obstacles changes its status from occupied
to free or vice versa. Since the maximum number of cells,
whose status may change between planning iterations is
limited according to the number of image frames retrieved



by the visual sensor in the meantime, the computation time
of the sample generation step is also bounded in time.

Additionally, sampling around the obstacles at a given
constant distance ρ away from them, also improves the MIS
performance as most of the visual features are tracked using
similar scale during the navigation.

IV. GRAPH MANAGEMENT

Based on the position of the samples computed in the
previous section we build then a graph structure and maintain
it during the subsequent planning iterations. Lastly, in each
iteration we search in the graph for the best sequence of n
positions that connects the current robot position x0 to the
final goal position xn.

A. Graph generation

Let G denote an undirected graph defined as G = {V,E},
where V is the set of vertices v ∈ V and E is the set of
edges e ∈ E. Each vertex vi essentially represents a sample
in free space located in position xi, whereas each edge evivj
represents the collision free connection between the vertices
vi and vj , i.e. the positions xi and xj .

We establish edges connecting different vertices within a
sphere of radius dconn, if there exists a direct collision-free
connection between them in the map. Formally, the set of
edges E is defined as follows:

E =

 evivj
∀ vi, vj ∈ V, i 6= j

∣∣∣∣∣∣
‖xi − xj‖ ≤ dconn

∧
fconn(xi,xj) = Free

 ,

(1)
where fconn(xi,xj) is the function that evaluates whether
the direct connection between the positions xi and xj is
collision-free according to the current map. This function
may take into consideration other parameters for collision
detection, such as the dimensions of the robot.

Note that, in our approach, the set vertices V in G matches
the set of samples generated in the previous section. Since
the samples are only distributed around map obstacles, the
sparsity and density of connections are lower than using, for
instance, random sampling. This has a direct impact in the
computation time of the several operations, such as graph
search or graph mutation.

In addition to the samples generated around obstacles,
the current robot position x0 and goal position xn are also
included in the set of vertices V ; these are the vertices v0
and vn, respectively. The connectivity of v0 is set according
to (1), whereas the goal vertex vn is connected ignoring
the distance limitation dconn. Since the area surrounding
the goal position may be initially unexplored, there may not
be samples nearby to be connected if its connections were
limited to dconn. Instead, we use the current set of vertices
to advance towards the goal assuming that new samples will
be generated as the exploration advances.

B. Graph update

The generation of a new graph from scratch, and partic-
ularly the collision detection in the evaluation of possible

Fig. 5. Best path search connecting the current robot position (cyan) and
goal position (orange) in the graph using Euclidean distance (yellow) and
quadratic Euclidean distance (red). The vertices of the graph are depicted
as spheres (green) and the edges as lines (light blue).

edges, is a costly operation. In our approach, the method
described in Section III-B only modifies the sample set
according to local map changes, while the other samples
remain in the same position. Therefore, we can reuse the
same graph between different planning iterations, if we
modify the set of vertices V according these changes.

Note that, using this methodology, the connectivity be-
tween vertices added in previous planning iterations is not
updated according to map changes as their connections have
been already established. Since keeping the connectivity up-
to-date in each iteration would be a costly operation, we
delay the evaluation of each vertex’s connectivity until it is
required to be executed by the robot. This is explained in
detail in the following section.

C. Best path search

In this step, we search the graph G for the best sequence
of vertices, and therefore positions, that connect the starting
vertex v0 to the goal vertex vn. We search in the graph using
the Dijkstra’s algorithm [15] that computes the minimum
accumulated cost to all vertices of the graph from vn. The
lowest cost path from v0 to vn is then retrieved as the best
path. We define the cost c of the edge evivj with the following
expression:

c(evivj ) = ‖xi − xj‖γ , γ ≥ 2 , (2)

where we use γ = 2 here in order to simplify the approach.
The use of the quadratic Euclidean distance (i.e. γ = 2)
instead of the usual Euclidean distance (i.e. γ = 1) is
motivated by the type of path we want to generate; using
the Euclidean distance, the resulting path is the shortest one,
whereas using the quadratic version of it, the sum of small
edges is preferred to long edges, as depicted in Fig. 5. As
the vertices are evenly distributed around the map obstacles,
we bias the path of the robot to be close to them. These
positions are particularly relevant as the obstacles represent
the main source of visual features used in MIS.

As mentioned in Section IV-B, the connectivity of the
edges in the best path have to be evaluated again with
the fconn function. If a potential collision is detected, the
relevant edge is deleted and the graph search is restarted
until a collision-free best path is obtained. The best path,
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Fig. 4. Next trajectory segment generation. The next state orientation θ1 computation in (a) using the current position x0 and orientation θ0, following
positions x1 and x2 and next orientation reference θ∗1 obtained from the angle α. The safe zone and the safe direction recovery behaviours in (b) and (c)
are applied when the robot moves from the previous state (blue marker and grey arrow) to the current state ξ0 = {x0, θ0} (red marker and black arrow)
and generate a new recover state ξrec = {xrec, θrec} (blue marker and black arrow) if a newly acquired obstacle (red box) is added to the current map
(grey boxes) and endangers the navigation. The nominal navigation clearance ρ from obstacles modifies the safe zone defined by ρsafe (light green area)
when the new obstacle is added. When we are detecting if the next position x1 (magenta marker) is safely reachable following the direction nnav , we
check if the angle navigation θnav lie within the θsafe margin (yellow arc).

obtained as a sequence of vertices, is then processed to
obtain a sequence of the equivalent 3D positions X =
{x0,x1, . . . ,xn}.

V. TRAJECTORY GENERATION

Even though we obtain the complete sequence X , we only
execute the first segment in each iteration, such that we
can adapt the path as new unexplored areas are discovered,
changing the map. In this last step, the next state and the next
trajectory segment are computed. Finally, we also describe
some manoeuvres that allow the robot to overcome some
situations, where it is unsafe to execute the planned trajectory
segment.

A. Next state orientation assignment

In order to compute the next trajectory segment σ1
0 we

first need to define ξ1. As we can obtain the next position
x1 from X , we only need to assign the next state orientation
θ1. For this purpose, we consider up to the two following
positions along the best path sequence X ; i.e. x0, x1 and
x2. The process to obtain the next state orientation θ1 is
depicted in Fig. 4a.

Let us define the direction vectors n0,1 = x1 − x0 and
n1,2 = x2 − x1. Let α denote the smallest angle between
n1,0 = −n0,1 and n1,2. Then the next state orientation
reference θ∗1 can be obtained by geometrically bisecting the
angle α and heading towards the closest obstacle.

The assignment of the next state orientation θ1 with next
state orientation reference θ∗1 may result in an excessive
turn according to the travelled distance. This is a pseudo-
stationary rotation, leading to poor estimation of the depth
of the visual features when using a MIS, which can severely
affect the performance or even lead to a critical failure of
the complete system. To prevent this situation, we limit the
variation of the orientation according to a maximum turn-
distance ratio ω̂. The final next state orientation θ1 is then

obtained with the following expression:

θ1 = θ0 +

(
min

{
(θ∗1 + θext)− θ0

d
, ω̂

})
d , (3)

where d is defined as the distance d = ‖n0,1‖ and θext is
a small angle increment in the navigation direction n0,1. If
θext is set to zero, the robot navigates heading perpendic-
ularly to the surface of the obstacles, which improves the
performance of the MIS as the robot moves laterally to the
scene, increasing the parallax of the visual features tracked.
However, moving completely laterally entails additional risks
during the navigation as detailed in the following section.

Finally, the next state is defined as ξ1 = {x1, θ1} and the
next trajectory segment σ1

0 from the current state ξ0 to the
next best state ξ1 can be obtained and executed by the robot.

B. Recovery behaviours

Due to the limited view frustum of the camera onboard the
robot, the planned path aiming to keep the closest obstacle
in the field of view instead of heading towards the direction
of motion, may lead to dangerous flights close to other,
yet unexplored obstacles. Although this effect is minimized
by re-orienting the robot’s heading towards the navigation
direction with θext, significant changes in the environmental
structure could still endanger the robot. If the robot detects
that is facing such dangerous situations, a so-called recovery
behaviour is triggered in order to overcome it.

When a recovery behaviour is triggered, the planned tra-
jectory segment σ1

0 is not executed. Instead, a new trajectory
segment σrec0 is defined to reach a recovery state ξrec. Let
us define x−1 as the position of the robot in the previous
iteration and then set the position of recovery state to xrec =
x−1. Since we have executed the trajectory from x−1 to x0 in
the previous iteration, we assume it is also safe to execute it
in the opposite direction. The orientation of the recovery state
θrec will be computed according to the type of dangerous
situation that has triggered the recovery behavior.



(a) Simulated scenario (b) Dense SLAM map (c) Sparse SLAM map

Fig. 6. The model of the building used for facade inspection in the simulated environment is shown in (a). Figure (b) shows the map retrieved using a
depth sensor as in the NBVP, whereas figure (c) shows the sparse and noisy map obtained from the MIS system as in the MISP. The latter, represents a
far more challenging scenario for robot navigation.

1) Safe Zone: The robot navigation is meant to occur at a
nominal clearance distance ρ, following the samples around
the obstacles. However, due to changes in the map in the
vicinity of the robot, it may happen that the robot is unsafely
close to the map obstacles, triggering this recovery behaviour.

Let dobs(x) denote the distance to the closest obstacle
in the map from the position x. This recovery behaviour
is triggered if dobs(x0) < ρsafe, where distance ρsafe is
defined, so that ρsafe < ρ. The parameter ρsafe denotes a
threshold in which the robot can handle map irregularities
without triggering the recovery behaviour. The orientation
θrec is computed so that the robot heads towards the new
obstacles that caused this unsafe situation (See Fig. 4b).

2) Safe Direction: Since we are navigating heading to-
wards the closest obstacles in order to improve the perfor-
mance of the MIS instead of heading towards the navigation
direction, we cannot assure that the trajectory to reach the
next best state is collision-free. Instead, we rely on the
assumption that map is structured and presents a continuous
surface and thus we can anticipate upcoming the obstacles
following the surface. Nonetheless, this assumption is not
valid when navigating, for instance, backwards as we can
still collide with unexplored obstacles.

We obtain the navigation direction vector nnav = x1−x0

and compute the navigation angle θnav from the difference
between the current robot orientation θ0 and the orientation
of the navigation direction nnav . This recovery behavior is
triggered if |θnav| > θsafe, where θsafe is a threshold within
the range π/2 ≤ θsafe ≤ π. If it is triggered, the orientation
of the recovery state θrec is computed so that the execution
of the future trajectory segment from ξrec to ξ1 does not
trigger again this recovery behaviour (See Fig. 4c).

VI. EXPERIMENTS

In order to evaluate the performance of the proposed
algorithm, we present two experiments: the first experiment
simulates facade inspection from monocular and inertial data
captured from a UAV, while in the second experiment real
data is recorded using a monocular-inertial sensor in an urban
environment. For both experiments, OKVIS [3][4] is used for
the MIS system of the proposed pipeline.

Parameter Value Value
(Simulation) (Real data)

Nominal Clearance ρ 3.25m 6m
Max. explored distance dmax 3.75m 6.5m
Min. dist between samples dmin 0.5m 1.5m
Graph connection range dconn 2m 2m
Extra heading angle θext 20◦ -
Turn-ratio limit ω̂ 45◦/m -
Safe zone threshold ρsafe 1.95m -
Safe direction threshold θsafe 135◦ -

TABLE I
TUNING PARAMETERS OF THE MISP.
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Fig. 7. The percentage of completion of the facade inspection task (mean
and st. devation) with respect to time required for the MISP and the NBVP
over 10 runs, sampled every 30s. The NBVP spends 291s±107s on average
to complete the task, whereas the MISP spends an equivalent of 170s±12s.
Note that MISP’s rate of the task’s completion is faster, as it explicitly
exploits the scene’s structure to guide the navigation.

A. Facade inspection in a simulation environment

Employing the Gazebo-based simulation RotorS [16]
framework, we use an AscTec Firefly hexacopter UAV
model equipped with a Visual-Inertial Sensor3 (VI-Sensor),
providing monocular-inertial information for the inspection
of the facades of a building (see Fig. 6a). For this purpose,
we limit the functionality of the proposed pipeline to 2D
planning at the constant UAV altitude of 2m. To complete the
inspection task with our planner, and select the goal position
of the planner inside the building. In this setup, the proposed
Monocular-Inertial SLAM based Planner (MISP) will inspect
the facades of the building, while trying to find an opening.

In order to compare the MISP with the NBVP [12], we
adapt the NBVP to plan in 2D. We compute the gain of
each randomly sampled state as the amount of unexplored
facade area that is retrieved from such robot pose and thus
focusing the algorithm in the completion of the inspection

3http://wiki.ros.org/vi sensor
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Fig. 8. The top figure shows the position error (i.e. global drift) of the
robot’s pose against the travelled distance, as estimated by the nominal
monocular-inertial SLAM system used, which is the same for both MISP
and NBVP. Results are averaged over 10 runs. The global drift at the end
of the mission is 1.09m ± 0.58m for NBVP and 0.30m ± 0.22m for
MISP. The bottom figures illustrate the complete path travelled to complete
the mission. Although the NBVP is able to generate more excitation of the
IMU, as evident in the growth of the global drift, MISP’s more structured
exploration results to smaller estimation errors.

task. Such feature is already considered in the original NBVP
implementation4 by providing the mesh model of the surface
to inspect.

The simulated environment enclosing the building is an
area of 16 × 27m2. Limiting the UAV’s maximum linear
and angular velocities to vmax = 0.3 [m/s] and ψ̇max =
0.75 [rad/s], respectively, we set the dimensions of the UAV
to 0.9m × 0.9m × 0.3m. The NBVP parameters are tuned,
such that the minimum and maximum iterations per planner-
call are set to 15 and 5000, respectively and the maximum
length of the RRT edges is set to 2m. The maximum distance
of the UAV to the perceived scene-depth is set to 5.75m and
the map resolution is set to 0.25m. These two parameters
are tuned to the same values in the MISP for the sake of
fairness, while the rest of the tuning parameters of the MISP
are in Table I.

In the first part of this experiment, the effectiveness of both
methods in completion of the inspection task is evaluated,
employing a dense sensor in the NBVP, while using OKVIS
in the MISP to retrieve the map. The difference in the quality
of the map is notable, as illustrated in Figures 6b and 6c. The
different sensor setup is mainly motivated by the original
conception of the NBVP, which requires to plan in known
free space and therefore relies on dense sensor to retrieve this
volumetric information from the robot’s surroundings. Using
a MIS setup, the retrieval of such free space depends on the
visual scene as well as the relative camera motion. Therefore,
the MISP plans in unknown space, exploiting the structure
of the environment and relying on the recovery behaviours
to prevent collisions with unexpected obstacles. Fig. 7 shows

4https://github.com/ethz-asl/nbvplanner

Fig. 9. The left figure shows an image frame of the real urban scene
dataset and the visual features (circles) tracked by the MIS and represented
by an octomap in the right figure. The MIS system processes the visual and
inertial data estimating the sensor’s position (cyan sphere), while generating
a noisy and sparse map. This map is then used in the MISP to compute the
best next trajectory segment (red arrow).

the time that each planner takes to complete the task on the
same standard laptop (CPU only), while Fig. 1 illustrates the
information inside the MISP at one of the final iterations of
the facade inspection task.

When employing the MISP, the mean computation time
per iteration is 24ms (st. deviation of 14ms), whereas the
NBVP needs 179ms on average (st. deviation of 69ms).
The dramatic reduction in the computation time of MISP,
translates to a far better reaction time of response to changes
in the environment. To evaluate the performance of the
estimation accuracy of the MIS system during the mission,
we employ OKVIS in combination with both the MISP and
the NBVP. For the sake of fairness, we adapt the NBVP to
permit planning in unknown space, as the MISP does. Note
that we employ the MIS system only for map retrieval, while
we use the ground-truth to localize the robot. The results,
as illustrated in Fig. 8, illustrate that the MISP outperforms
the NBVP in maintaining lower global drift, as expected, by
design.

B. Real urban scene captured from a hand-held sensor

In this experiment, we evaluate the MISP using real
data obtained from a VI-sensor in an urban environment.
For safety reasons, the data is captured from a hand-held
setup instead of using a UAV to navigate autonomously in
this space. Therefore, the purpose here is to evaluate the
algorithm on processing real input data, as opposed to the
simulation experiment above. The human carrier of the VI-
sensor moves laterally to the scene for 35m along a street
(illustrated in Fig. 9) for about 30s, keeping a constant
clearance to obstacles. This trajectory is bound to be different
from the computed planned path, but also rather similar,
as the MISP is designed to generates paths that can are
suitable to be processed by a MIS system. In reality, a
planned path can anyway not always be followed by the UAV
accurately, due to wind gusts and drift in the estimation of
the internal sensors (e.g. measuring the rotational speed of
the propellers).

The map resolution during this experiment is set to 0.5m
and the other MISP parameters are set to the values il-
lustrated in Table I. As we are not actively navigating by
executing the best trajectory segment at each instant, we
do not need to set the parameters related to the trajectory
generation. The planner is called every 0.25s and compute
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Fig. 10. The top figure depicts the path estimated by OKVIS (blue) and
the predicted trajectory segments according to the proposed algorithm (red)
and illustrates the definition of the pose error derr as well as the angle
deviation θerr . The distribution of derr and θerr along the experiment
are represented by histograms in the bot left and the bot right figures,
respectively.

the best trajectory segment from the current sensor position,
so that the robot would advance in the street for the case that
the navigation was controllable. Note that, in contrast to the
previous experiment, we obtain the pose of the robot directly
from the OKVIS system as ground-truth is not available.

In order to evaluate our approach, we compare the planned
action that the MISP would command to robot, with actual
movement of the sensor. At each planning iteration, the next
position based on the planned trajectory segment is computed
using the MISP and adapted to the actual speed of the sensor.
Then we obtain the position error of the planning iteration, as
the distance between the planned next position and the actual
position estimated by OKVIS. We also compute the angular
deviation between the planned to the actual (i.e. measured
by OKVIS) trajectory direction. These results, illustrated
in Fig. 10, also embed other sources of error such as the
MIS system accuracy or the deviation of the walker from a
nominal clearance to the obstacles.

While in simulation we demonstrated the ability of the
planner to plan and navigate around obstacles to complete
a facade scanning task, the evaluations in this experiment
demonstrate that the ability of the proposed pipeline to cope
with real visual and inertial data, that give rise to a noisy
SLAM map, attesting to the potential of this method in real
navigation tasks.

VII. CONCLUSIONS

Following the relative maturity of SLAM pipelines and
their application to UAV navigation, in this paper we propose
a system to put monocular-inertial SLAM in the loop of
navigation to plan a trajectory for a small UAV in real-
time in a previously unknown environment. Dealing with
the traditionally noisy and sparse SLAM maps, the proposed

approach generates point-to-point paths, actively improv-
ing the SLAM estimates of the scene and the motion of
the UAV, by biasing paths towards feature-rich areas and
beneficial camera motions. Demonstrated to outperform the
state of the art in computing collision-free paths on the
fly onboard computationally constraint processors available
onboard small UAVs, the proposed pipeline is put to the test
in both simulation and real experiments.

Future directions will focus on the tighter integration of
SLAM into the path planning strategy, which would serve as
a basis for an integrated active SLAM framework.
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