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ON THE TOPOLOGICAL 4-GENUS OF TORUS KNOTS

S. BAADER, P. FELLER, L. LEWARK, L. LIECHTI

Abstract. We prove that the topological locally flat slice genus of
large torus knots takes up less than three quarters of the ordinary
genus. As an application, we derive the best possible linear estimate
of the topological slice genus for torus knots with non-maximal
signature invariant.

1. Introduction

The Thom conjecture asserts that algebraic curves in CP2 are genus-
minimising within their homology class [KM94]. More precisely, no
smooth embedded surface in CP2 has smaller genus than an algebraic
curve homologous to that surface. Regularity plays an important role
here. In fact, Rudolph proved the existence of topological locally flat
surfaces with strictly smaller genus than all algebraic curves homologous
to it [Rud84]. A precise quantitative measure of the drop in genus for
locally flat surfaces was given in [LW97]. The knot theoretic version of
the Thom conjecture asserts that the smooth slice genus of a positive
braid knot coincides with the ordinary genus [Rud93]. Much less is
known about the topological locally flat slice genus g4 of positive braid
knots, or even torus knots. Positive braid knots have non-zero signature
invariant σ [Rud82], whence g4 > 0, by the following signature bound:
|σ| ≤ 2g4. This bound was proven smoothly in [Mur65], and for the
locally flat slice genus in [KT76]. Using the existence of quasipositive
knots with Alexander polynomial 1, Rudolph showed that the torus
knot T (5, 6) has g4 < g, where g is the classical minimal genus of
knots [Rud84]. The main purpose of this paper is to show that the
genus defect ∆g = g− g4 takes up a large portion of the genus for most
torus knots.

Theorem 1. Let K = T (p, q) be a torus knot with non-maximal signa-
ture invariant, i.e. K 6= T (2, n), T (3, 4), T (3, 5). Then

g4(K) ≤ 6

7
g(K).

This result is sharp, since the torus knot T (3, 8) has g4 = 6 and
g = 7. However, a larger genus defect is attained for torus knots with

The second author and the third and fourth author gratefully acknowledge support
by the SNSF grants 155477 and 159208, respectively. The third author thanks the
EPSRC grant EP/K00591X/1 for providing computing facilities.

1



2 S. BAADER, P. FELLER, L. LEWARK, L. LIECHTI

large parameters p, q ∈ N. The classical genus formula g(T (p, q)) =
1
2
(p− 1)(q − 1) yields

lim
p,q→∞

2

pq
g(T (p, q)) = 1.

Here the limit is understood as lim min{p, q} → ∞ (i.e. both parameters
must be taken to infinity). As we will see, the corresponding limit for g4

drops by at least one quarter. The existence of this limit follows from
the subadditivity of the function g4(T (p, q)) in both parameters (see the
proof of Proposition 9 in the Appendix of [Liv10] for the one-variable
case known as Fekete’s Lemma; the two-variable case follows from an

analogous estimate between the ratios g4(T (p,q))
pq

and g4(T (N,N))
N2 , where

p = aN + b and q = cN + d).

Theorem 2.

lim
p,q→∞

2

pq
g4(T (p, q)) <

3

4
.

To the best of our knowledge, no attempt at determining the actual
limit has been made so far. The signature bound |σ| ≤ 2g4 potentially
allows a drop down to one-half, since

lim
p,q→∞

1

pq
σ(T (p, q)) =

1

2
.

The latter is an easy consequence of the signature formula for torus
knots by Gordon, Litherland and Murasugi [GLM81].

We will prove Theorems 1 and 2 in Sections 4 and 3, respectively. The
reason for the reverse order is simple: Theorem 2 implies Theorem 1,
up to finitely many values of the braid index min{p, q}, since 3

4
< 6

7
.

The main tool for proving Theorem 2 is a homological improvement of
Rudolph’s method, which we will explain in Section 2.

The strength of this method is demonstrated in Proposition 7, which
provides a sharp estimate of the topological slice genus for positive
fibred arborescent links. In particular, we find prime positive braid
links of arbitrarily large genus with g4

g
= 1

2
.

Acknowledgements: We warmly thank Maciej Borodzik and Filip Misev
for helpful comments and inspiring discussions.

2. Construction of locally flat surfaces

Let us first briefly fix notation and conventions. We assume all Seifert
surfaces to be connected. The genus g(L) and Betti number b1(L) of
a link L are the minimal genus and Betti number of a Seifert surface
of L, respectively. Homology groups are considered over the integers.
The topological slice genus g4(L) is the minimal genus of a slice surface
of L, i.e. of a connected oriented compact surface, properly and locally
flatly embedded into the 4-ball, whose boundary is L. For any surface
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Σ, a subsurface Σ′ ⊂ Σ is simply a surface contained in Σ, assuming
neither that Σ′ is connected, nor that it is embedded properly into Σ.
We write a1, . . . , an−1 for the standard generators of the braid group

on n strands. If a braid is given by a braid word β, we write β̂ for its
closure. A non-split braid word β yields a canonical Seifert surface for

β̂, which we denote by Σ(β). If, in addition, β is positive, Σ(β) is in fact

the fibre surface of β̂ [Sta78]. The Alexander polynomial of a bilinear
integral form represented by a matrix M is det(t ·M −M>) ∈ Z[t±];
this does not depend on the chosen matrix, and is considered up to
multiplication with a unit.

Our main tool uses Freedman’s celebrated result [Fre82, FQ90] to
construct slice surfaces of lower genus from Seifert surfaces by ambient
surgery. See [Fel16, BL15, FM16] for other applications of this method.
Here we prove a version for multi-component links.

Proposition 3. Let L be a link with a Seifert surface Σ. Let V ⊂ H1(Σ)
be a subgroup. If the Seifert form of Σ restricted to V has Alexander
polynomial 1, then L has a slice surface of genus g(Σ)− rkV/2.

We will call such a subgroup V Alexander-trivial. Before the proof,
let us show a sample application.

Example 4. The link L given as the closure of the positive 4-braid
a1a3a

2
2a1a3a

3
2 has topological slice genus one. Calculating the signature

yields 1 = |σ(L)|−2
2

≤ g4(L) by the bound provided in [KT76]. We

now show that L has a genus one slice surface. For this, let X̃ be the

canonical fibre surface Σ(a1a3a
2
2a1a3a

3
2). Observe that X̃ is a plumbing

of six positive Hopf bands along an X-shaped tree, as shown in Figure 1.
Here we use the fact that fibre surfaces with the same boundary link are
isotopic. The two additional simple closed curves in the figure (red and

dashed blue) represent homology classes [γ1] and [γ2] in H1(X̃). We
claim that the subspace V generated by [γ1] and [γ2] is Alexander-trivial.
A matrix for the Seifert form of the boundary link is given by the 6× 6
matrix A, where

Aii = A12 = A23 = A43 = A53 = A63 = 1

and Aij = 0 otherwise. In the chosen basis, [γ1] and [γ2] are represented
by the vectors (0, 1,−2, 1, 1, 1)> and (1, 0, 0, 0, 0, 0)>, respectively. A
direct computation yields

[γ1]>A[γ1] = [γ1]>A[γ2] = 0,

[γ2]>A[γ2] = [γ2]>A[γ1] = 1,

so a matrix B of the Seifert form restricted to V is given by

B =

(
0 0
1 1

)
.
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Figure 1. The surface X̃, which is a plumbing of six
positive Hopf bands. For simplicity, the twists of the
individual Hopf bands are not drawn. Two curves repre-
senting homology classes of interest are drawn in red and
dashed blue – see Example 4 for details.

Indeed, we now have det(t ·B−B>) = t, which is a unit in Z[t±1]. Thus,

by Proposition 3, the boundary link ∂X̃ possesses a slice surface of genus

g(X̃)− 1 = 1. Geometrically, what happens if we apply Proposition 3

is the following: starting from X̃ we cut out the punctured torus T
defined by the union of the thickened red and dashed blue curves. Then,
using Freedman’s disc theorem, we reglue a disc whose interior lies in
the 4-dimensional unit ball along ∂T , obtaining a slice surface with

smaller genus than X̃. For this we use that ∂T is a knot with Alexander
polynomial 1.

Let us now turn to the proof of Proposition 3. A crucial ingredient
is the following fact about the mapping class group of surfaces, which
is well-known for surfaces with at most one boundary component (see
e.g. [FM12]).

Lemma 5. Let Σ be a connected oriented compact surface of genus g
with n boundary components. An automorphism ϕ of H1(Σ) is induced
by an orientation-preserving diffeomorphism ϕ̃ of Σ if and only if ϕ
preserves the intersection form of Σ and permutes the homology classes
of the boundary curves.
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Proof. Clearly every orientation-preserving diffeomorphism preserves
the intersection form and maps boundary curves to boundary curves
(preserving the orientations), which induces a permutation of the corre-
sponding homology classes.

Now let us prove that the conditions are sufficient. Let

γ1,1, γ2,1, . . . , γg,1, γ1,2, . . . , γg,2, δ1, . . . , δn−1

be a geometric basis on Σ (a term taken from [GT04]); that is, the
δi are boundary curves, γi,j intersects γi,3−j once (geometrically), and
there are no other geometric intersections between any of these curves.
The homology classes of these curves then form a basis of H1(Σ).

One easily finds a simple closed curve ζ ⊂ Σ with the following
properties: it intersects γ1,1 once, does not intersect any other curve
in the geometric basis, and [ζ] = [γ1,2] + [δ1]. So the only basis curve
affected by a Dehn twist along ζ is γ1,1, whose homology class is sent to
[γ1,1] + [γ1,2] + [δ1]. Composing with another Dehn twist along γ1,2, one
finds a diffeomorphism that sends [γ1,1] 7→ [γ1,1] + [δ1]. Similarly, for all
i ∈ {1, . . . , g}, j ∈ {1, 2}, k ∈ {1, . . . , n− 1}, there is a diffeomorphism
sending [γi,j ] 7→ [γi,j ] + [δk]. Composing these diffeomorphisms, one may
realise automorphisms of H1(Σ) with a matrix of the following kind:(

1 0
M 1

)
,

where M is an arbitrary (n− 1)× 2g matrix. Next we make use of the
fact that for a surface Σ′ of genus g with one boundary component, the
mapping class group surjects onto the symplectic group; see e.g. [FM12],
where this is established for closed surfaces, which essentially implies
the result for surfaces with one boundary component. Since Σ contains
Σ′ as a subsurface, the following matrices may be realised as orientation-
preserving diffeomorphisms: (

X 0
0 1

)
,

where X is symplectic. Finally, it is easy to see that boundary curves
may be permuted (though by diffeomorphisms not coming from Dehn
twists). So, composing, one may realise any matrix of the form(

X 0
M P

)
,

where X is symplectic, M is arbitrary, and P is a permutation matrix.
This completes the proof since such matrices are precisely those which
represent an automorphism of H1(Σ) that preserves the intersection
form and permutes the homology classes of the boundary. �

A Seifert surface Σ may inherit genus defect from an incompressible
subsurface, i.e. a subsurface Σ′ ⊂ Σ such that the induced map on the
first homology group is injective.
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Lemma 6. Let Σ be a Seifert surface of a link L, and let Σ′ ⊂ Σ be
an incompressible subsurface with boundary link L′. If L′ bounds a slice
surface S ′, then L bounds a slice surface S of genus g(Σ)−g(Σ′)+g(S ′).
In particular, if g(Σ) = g(L), then ∆g(L) ≥ ∆g(L′).

Proof. To construct S, simply cut out Σ′ and glue in S ′. �

Proof of Proposition 3. Let B be a matrix of the Seifert form of Σ re-
stricted to V , with respect to an arbitrary basis of V . Setting t = 1 gives
det(B −B>) = ±1 and, in fact, +1: indeed, B −B> is antisymmetric,
so det(B −B>) is the square of its Pfaffian. It also follows that V is of
even rank. Because B −B> is antisymmetric and unimodular, we may
assume the basis x1,1, . . . , xk,1, x1,2, . . . , xk,2 of V has been chosen such
that B −B> is the 2k × 2k matrix

Jk =

(
0 1

−1 0

)
.

Let δ1, . . . , δn be the boundary curves of Σ. Note that the intersection
form of Σ is unimodular on V (in fact it is represented by the matrix
B − B> = Jk), and identically zero on 〈[δ1], . . . , [δn−1]〉. This implies
that one can extend the basis of V to a basis of H1(Σ) of the form

x1,1, . . . , xk,1, x1,2, . . . , xk,2,

y1,1, . . . , yg−k,1, y1,2, . . . , yg−k,2, [δ1], . . . , [δn−1].

Let A be the matrix of the Seifert form of Σ with respect to this basis.
Then A− A> has the form Jk ∗ 0

∗ ∗ 0
0 0 0

 .

Since A−A> restricted to the span of the xi,j and yi,j is antisymmetric
and unimodular, one may assume w.l.o.g. that the yi were chosen such
that A− A> is in fact  Jk 0 0

0 Jg−k 0
0 0 0

 .

Now let

γ1,1, γ2,1, . . . , γg,1, γ1,2, . . . , γg,2, δ1, . . . , δn−1

be a geometric basis on Σ as in Lemma 5. Let ϕ be the automorphism
of H1(Σ) given by

[γi,j] 7→ xi,j for 1 ≤ i ≤ k,

[γi,j] 7→ yi−k,j for k < i ≤ g,

[δi] 7→ [δi].
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As the computation of A−A> shows, ϕ preserves the intersection form.
It also acts by permutation (in fact, as the identity) on the homology
classes of boundary curves, and is therefore realised by a diffeomorphism
ϕ̃ (see Lemma 5). Take a simple closed curve ζ that separates the curves
γ1,∗, . . . , γk,∗ from the curves γk+1,∗, . . . , γg,∗, δ1, . . . , δn. Then ϕ̃(ζ) is
a separating simple closed curve, which bounds an incompressible
subsurface Σ′ of Σ of genus k. By construction, H1(Σ′) = V ⊂ H1(Σ),
and hence the boundary knot ϕ̃(ζ) of Σ′ has Alexander polynomial 1.
Thus, Freedman’s theorem implies that it bounds a slice disc. Using
Lemma 6, this concludes the proof. �

Let us come back to Example 4. So far we have proved that ∂X̃
has topological slice genus equal to one, while its classical genus equals
two. Lemma 8 will show how this example can be used to build larger
examples with ∆g = g4 = g/2. As a sample application, we calculate
the topological slice genus of the infinite family provided in the proof
of Proposition 7. These examples are of particular interest since they
maximise the ratio

2∆g(L)

b1(L)

of genus defect and first Betti number among tree-like plumbings of
positive Hopf bands. Indeed, for any plumbing of positive Hopf bands
along a tree, this ratio is at most 1/3 by a theorem of the fourth
author [Lie16]. Therefore, an infinite family of examples that attain
this ratio is sufficient to prove the following proposition.

Proposition 7. For the class of links arising as plumbings of positive
Hopf bands along a finite tree, we have

lim sup
b1(L)→∞

2∆g(L)

b1(L)
=

1

3
.

Lemma 8. Let Σ be a Seifert surface. Let Σ′ be a plumbing of Σ and

X̃ along a square on the right-most Hopf band of X̃ (see Figure 1). If
there is an Alexander-trivial subgroup V ⊂ H1(Σ), then there is also an
Alexander-trivial subgroup V ′ ⊂ H1(Σ′) of rank rkV ′ = 2 + rkV .

Proof. Let γ1, γ2 be the red and dashed blue curves on X̃ as in Example 4.

Let V ′ = V + 〈[γ1], [γ2]〉, where we understand H1(Σ) ⊕ H1(X̃) as a

subgroup of H1(Σ′), because Σ and X̃ are incompressible subsurfaces

of Σ′, and H1(Σ) ∩ H1(X̃) = {0}. The crucial observation is that,
algebraically, γ1 does not pass through the plumbing location on the

right-most Hopf band of X̃. Therefore, γ1 algebraically does not intersect
curves on Σ; and so, using that Σ′ is a plumbing, any small push-off of
γ1 along a normal direction of Σ′ has linking number 0 with curves on
Σ. Thus the Seifert form of Σ′ restricted to V ′ is represented by the
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following matrix:

M ′ =


0 ∗

M
...

...
0 ∗

0 · · · 0 0 0
∗ · · · ∗ 1 1

 .

Here, M is a matrix of the Seifert form restricted to V . It has Alexander
polynomial 1, hence so does M ′. �

Figure 2. How to stick together three copies of the tree

corresponding to X̃ in order to obtain a link with b1 = 18.

Proof of Proposition 7. In Example 4, we considered such a link L with
b1 = 6. In order to obtain an example Ln with b1 = 6n, we simply stick

together n distinct copies of the tree corresponding to X̃ and take the
corresponding positive tree-like Hopf plumbing; compare Remark 9 for
an explicit braid description. This is shown in Figure 2 for the case
n = 3. By Lemma 8, the corresponding fibre surface has defect ∆g ≥ n,
which establishes the proposition. �

Remark 9. For all n ≥ 1, the link Ln used in the proof of Proposition 7
can also be obtained as the closure of the (3n+ 1)-braid

a1(a1a3a
2
2a4a1a3a

2
2)(a4a6a

2
5a7a4a6a

2
5) · · ·

(a3k−2a3ka
2
3k−1a3k+1a3k−2a3ka

2
3k−1) · · · (a3n−2a3na

2
3n−1a3n−2a3na

2
3n−1).

Furthermore, if we compare the topological slice genus with the classical
genus (instead of the first Betti number), the quotient becomes even
larger: since the links Ln have topological slice genus n and genus 2n,
they form an infinite family of examples of positive braid links with
∆g = g4 = g/2.

Next, let us focus on braids. Incompressible subsurfaces of canonical
Seifert surfaces of positive braids will typically be constructed as in the
following lemma, whose proof we leave to the reader. We call a braid
word β′ a subword of a braid word β if the former arises from the latter
by deleting some occurrences of generators.

Lemma 10. If β′ is a subword of β, then Σ(β′) is an incompressible
subsurface of Σ(β). �
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Figure 3. A fence diagram (obtained from a braid di-
agram by replacing the crossings by horizontal line seg-
ments) of the braid a1(a

2
2a

2
1)

2. The tree induced by the

distinguished homology generators exhibits X̃ as incom-
pressible subsurface of the fibre surface Σ(a1(a2

2a
2
1)2).

Example 11. Consider the torus knot T (4, 5). It is obtained as the
closure of the positive braid (a1a2a3)

5, which contains the subword
a1a

2
2a3a1a

3
2a3, whose closure equals the closure of a1a3a

2
2a1a3a

3
2. In

particular, the fibre surface Σ(T (4, 5)) contains X̃ as an incompressible
subsurface. Together with the bound coming from the signature function
σeπit(T (4, 5)) = 10 for 7/10 < t < 9/10, this yields g4(T (4, 5)) = 5.

Remark 12. In Example 11, we used half the absolute value of a Levine-
Tristram signature as a lower bound for the topological slice genus of a
knot. While well-known to experts, until recently this lower bound had
not been explicitly stated in the literature in the topological setting
(compare [Tri69] for the smooth setting). This gap in the literature was
closed by Powell with a new proof [Pow16].

Example 13. Consider the torus knot T (3, 7). It is obtained as the closure
of the positive braid (a1a2)

7, which contains a1(a
2
2a

2
1)

2 as a subword.

On the other hand, Σ(a1(a
2
2a

2
1)

2) contains X̃ as an incompressible
subsurface. This is schematically depicted in Figure 3. Together with
the bound coming from the signature function σeπit(T (3, 7)) = 10 for
16/21 < t < 20/21, this yields g4(T (3, 7)) = 5.

Suppose α and β are braid words for non-split n-braids. Then Σ(αβ)
contains Σ(α) t Σ(β) as incompressible subsurface. So if Proposition 3
produces genus defects d1 and d2 in Σ(α) and Σ(β), respectively, this
will yield a defect of d1 + d2 in Σ(αβ). The following lemma is a
refinement of this strategy for constructing genus defect in the product
of two braids. See Examples 15 and 17 for applications.

Lemma 14. Let α, β be two braid words representing non-split n-braids.
Let β′ be the braid word of length n− 1 obtained from β by deleting for
all i ∈ {1, . . . , n − 1} all but the first occurrences of the generator ai.
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Let V ⊂ H1(Σ(αβ′)) and V ′ ⊂ H1(Σ(β)) be Alexander-trivial subgroups.
Let a basis of V be given with respect to which the Seifert form of Σ(αβ′)
has a matrix of the following kind, built from four square blocks:∗

0
1 ∗. . .
0 1

0 0. . .
∗ 0

∗

 .

Suppose moreover that the first half of that basis is supported in H1(Σ(α)),
which can be seen as a subgroup of H1(Σ(αβ′)) by Lemma 10. Then there
is an Alexander-trivial subgroup V ′′ ⊂ H1(Σ(αβ)) of rank rkV + rkV ′.

Proof. The idea is similar to the proof of Lemma 8. The surface
Σ(αβ) has incompressible subsurfaces Σ(αβ′) and Σ(β), so we may
treat H1(Σ(αβ′)) and H1(Σ(β)) as subgroups of H1(Σ(αβ)). Their
intersection is in fact trivial, and so we have V ∩ V ′ = {0} as well.
Extend the given basis of V to a basis of V + V ′. With respect to
this basis, the restriction of the Seifert form of Σ(αβ) to V + V ′ is
represented by the following matrix:

M ′ =


0

1 ∗. . .
0 1

0

0 0. . .
∗ 0

∗ ∗

0 ∗ M

 .

Here, M is the matrix of the Seifert form restricted to V ′, which has
Alexander polynomial 1. After some basis changes, one sees that M ′

has Alexander polynomial 1 as well. �

Example 15. We have seen in Example 13 how the closure of

β = a1(a2
2a

2
1)2

has defect at least one, which comes from two vectors v, w restricted to
which the Seifert form has the matrix(

0 1
0 ∗

)
.

The vectors v and w are the homology classes of the red and blue curves
drawn in Figure 1. As already discussed in the proof of Lemma 8,
v ∈ H1(Σ(α)) ⊂ H1(Σ(β)), where α = a1a

2
2a

2
1a

2
2a1. Let β′ = a1a2 as

in the previous lemma. Then αβ′ contains β as a subword, and so
Σ(αβ′) also has defect at least 1. So the previous lemma implies that

∗For example, all trivial Alexander bases [GT04] are of this kind (but not vice
versa). In fact, one can prove that every Alexander-trivial subgroup V has such a
basis; but we will not need this fact here.
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αβ = a1(a2
2a

2
1)4 has defect at least 2. Continuing inductively, one finds

a defect of at least i in the closure of the braid

αi−1β = a1(a2
2a

2
1)2i.

The same result may be obtained using Lemma 8, since X̃ ⊂ Σ(β), as
shown in Figure 3.

Remark 16. Proposition 3 shows how to construct slice surfaces using
nothing but linear algebra. The following randomised algorithm exploits
this. As input, it takes an arbitrary integral square matrix A, and
returns as output the basis of a subgroup V ⊂ Z2g with respect to
which A|V has a matrix of the following kind:

0
1 0. . .
0 1

0 ∗. . .
0 0

∗

 .

Note that such a matrix has Alexander polynomial 1. Here is a brief
description of the algorithm:

(1) Randomly pick a primitive vector v with v>Av = 0, if such a
vector exists. Otherwise, return the empty basis.

(2) Randomly pick a solution w of the following system of linear
equations, if it is solvable:

v>Aw = 1, w>Av = 0.

Otherwise, go back to (1), or eventually give up and return the
empty basis.

(3) Let U be the subgroup of solutions of the following system of
homogeneous linear equations:

v>Au = 0, u>Av = 0, u>Aw = 0.

Let (v1, . . . , vk, w1, . . . , wk) be the result of the recursive appli-
cation of the algorithm to A|U . Return

(v, v1, . . . , vk, w, w1, . . . , wk).

Implemented in pari/gp [PAR15], the algorithm performs quite well for
small knots. See Table 1 for the results thus obtained for small torus
knots, and Example 17 for the application to another positive braid.
The bases of the respective subgroups V are available from ancillary
files with the arXiv-version of this paper, which enables anybody to
independently verify their correctness.

Example 17. Consider the positive braids ω = a1a2a3a4, ω̃ = a4a3a2a1.
The algorithm described in Remark 16 returns an Alexander-trivial
subgroup V ⊂ H1(Σ((ωω̃)4)) of rank eight (we used [Col15] to obtain
Seifert matrices). Moreover, the first half of the basis of V is supported in
H1(Σ((ωω̃)3ω)). Similarly, there is an Alexander-trivial subgroup V ′ ⊂
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H1(Σ((ω̃ω)4)) of rank eight with a basis whose first half is supported
in H1(Σ((ω̃ω)3ω̃)). Applying Lemma 14 to (ωω̃)3ω and (ω̃ω)4 gives a
defect of eight in Σ((ωω̃)7ω). We may continue applying the lemma
inductively, first to (ωω̃)7 and (ωω̃)4, producing a defect of twelve in
Σ((ωω̃)11), then to (ωω̃)10ω and (ω̃ω)4 etc. In summary, we find for all
i ≥ 0 a defect of 4 + 8i for Σ((ωω̃)4+7i), and of 8i for Σ((ωω̃)7iω).

3. Slice genus of large torus knots

The aim of this section is to prove the asymptotic bound for the
genus defect of torus knots given by Theorem 2. As a start, we establish
a weaker version of Theorem 2 with the benefit that its proof, unlike
the proof of Theorem 2, does not require computer calculations. The
strategies of both proofs are very much alike.

Proposition 18.

lim
n,m→∞

g4(T (n,m))

g(T (n,m))
≤ 4

5
.

The strategy of the proof of Proposition 18 is to establish that the fibre
surface Σ(T (n, n)) of the torus link T (n, n) contains as incompressible
subsurface the split union of fibre surfaces of the form Σ(a1(a2

1a
2
2)2i) such

that this union takes up roughly four-fifths of the genus of Σ(T (n, n)).
This yields Proposition 18 since the genus defect of the closure of
a1(a2

1a
2
2)2i is at least i, which is about a quarter of the genus. Indeed, first

conjugating by a1 and then reading the braid word backwards (both of
these operations preserve the closure up to changing the orientation of all
components) turns a1(a2

1a
2
2)2i into a1(a2

2a
2
1)2i, whose defect is discussed

in Example 15. To make this strategy precise we use Lemma 19. Let
∆n be the half twist on n strands, i.e.

∆n = (a1a2 · · · an−1)(a1a2 · · · an−2) · · · (a1a2)(a1).

Furthermore, we define the positive braids Ωi and Γj by

Ωi = a1a2 · · · ai−2a
2
i−1ai−2 · · · a2a1,

Γj = a1a2 · · · aj−2aj−1aj−2 · · · a2a1.

Lemma 19. Let n ≥ 2` be natural numbers. Then Σ(∆n) contains

Σ(Γ2 · · ·Γ`Ωn−2`+1
` Γ` · · ·Γ2) t Σ(∆n−2`+1)

as an incompressible subsurface.

Proof. We proceed by showing that one can delete generators and apply
braid relations in the braid word ∆n such that the resulting positive
braid is the split union of the positive braids Γ2 · · ·Γ`Ωn−2`+1

` Γ` · · ·Γ2

and ∆n−2`+1. This suffices to establish Lemma 19 since deleting a gen-
erator in a positive braid word corresponds to taking an incompressible
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∆10 = −→ =

−→ = −→

Figure 4. By applying braid relations and deleting gen-
erators, the 10-strand braid word ∆10 is transformed into
Γ2Γ3Γ4a4a5a6a7Γ4a4a5a6Γ4a4a5Γ4a4Γ4Γ3Γ2. In the final
step, deleting generators produces the disjoint union of
Γ2Γ3Ω

5
3Γ3Γ2 and ∆5. Arrows indicate the deletion of

generators drawn red and dashed.

subsurface of the associated fibre surface (see Lemma 10). We start by
considering the positive braid word

∆n = Γ2(a2 · · · an−1)Γ2(a2 · · · an−2) · · ·Γ2(a2a3)Γ2(a2)Γ2.

We delete the single occurrence of the generator an−1 in ∆n and then
apply braid relations to obtain the positive braid word

Γ2Γ3(a3 · · · an−2)Γ3(a3 · · · an−3) · · ·Γ3(a3a4)Γ3(a3)Γ3Γ2.

This can be achieved by multiple substitutions of the form

(ai · · · aj)Γi(ai · · · aj)→ Γi+1(ai+1 · · · aj)(ai · · · aj−1)

for i ≤ j, which can in turn be realised by braid relations. To see the
realisation of this substitution by braid relations, commute generators
to rewrite the positive braid word

(ai · · · aj)Γi(ai · · · aj)

as

aiΓiai+1aiai+2ai+1 · · · aj−1aj−2ajaj−1aj.

Then, applying the braid relation

akak−1ak → ak−1akak−1
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once for each k starting at j and descending down to i yields the positive
braid word

Γi+1ai+1aiai+2 · · · aj−3aj−1aj−2ajaj−1,

for which generators can again be commuted to finally result in

Γi+1(ai+1 · · · aj)(ai · · · aj−1).

In the next step, we delete the single occurrence of the generator
an−2 in the positive braid word

Γ2Γ3(a3 · · · an−2)Γ3(a3 · · · an−3) · · ·Γ3(a3a4)Γ3(a3)Γ3Γ2

and, again using substitutions of the form

(ai · · · aj)Γi(ai · · · aj)→ Γi+1(ai+1 · · · aj)(ai · · · aj−1),

obtain the positive braid word

Γ2Γ3Γ4(a4 · · · an−3)Γ4(a4 · · · an−4) · · ·Γ4(a4a5)Γ4(a4)Γ4Γ3Γ2.

We continue in the same way until we arrive at the positive braid word

Γ2 · · ·Γ`+1(a`+1 · · · an−`)Γ`+1(a`+1 · · · an−`−1) · · ·
Γ`+1(a`+1a`+2)Γ`+1(a`+1)Γ`+1 · · ·Γ2.

Finally, we delete all occurrences of a`. The closure of the positive braid
obtained in this way is the split union of the closures of the braids
Γ2 · · ·Γ`Ωn−2`+1

` Γ` · · ·Γ2 and ∆n−2`+1. This procedure is illustrated in
Figure 4 for n = 10 and ` = 3. �

Proof of Proposition 18. Consider the positive braid word ∆5n. By
Lemma 19 with ` = 3, Σ(∆5n) contains

Σ(Γ2Γ3Ω5n−5
3 Γ3Γ2) t Σ(∆5n−5)

as an incompressible subsurface. Using Lemma 19 with ` = 3 inductively
on the last split summand, we obtain that Σ(∆5n) contains

Σ(Γ2Γ3Ω5n−5
3 Γ3Γ2) t · · · t Σ(Γ2Γ3Ω5

3Γ3Γ2)

as an incompressible subsurface. The same argument gives

Σ(Γ2Γ3Ω10n−10
3 Γ3Γ2) t · · · t Σ(Γ2Γ3Ω10

3 Γ3Γ2)

as an incompressible subsurface of the fibre surface Σ(∆2
5n). By the

definitions of Ω3, Γ2 and Γ3, the positive braid Γ2Γ3Ω
10i
3 Γ3Γ2 con-

tains a1(a
2
1a

2
2)

10i as a subword. Furthermore the closure of the braid
a1(a2

1a
2
2)10i has genus defect at least 5i (see Example 15). In this way,

using all the surfaces of the split union, we can produce a genus defect
of at least

n−1∑
i=1

5i =
5n2 − 5n

2
.
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From this we obtain

∆g(T (5n, 5n))

g(T (5n, 5n))
≥ 5n2 − 5n

25n2 − 15n+ 2

n→∞−−−→ 1

5
,

which establishes Proposition 18. �

Proof of Theorem 2. We proceed as in the proof of Proposition 18.
However, instead of ` = 3 we use ` = 5 when applying Lemma 19 and
obtain that Σ(∆9n) contains

Σ(Ω
9(n−1)
5 ) t Σ(Ω

9(n−2)
5 ) t · · · t Σ(Ω9

5)

as an incompressible subsurface. As seen in Example 17, the closure
of the braid Ω4+7j

5 has genus defect at least 4 + 8j. For every split
summand Ω9i

5 , we consider the largest subword of the form Ω4+7j
5 and

produce genus defect accordingly. In this way, we produce at least
4 + 8

⌊
9i−4

7

⌋
≥ 72i

7
− 60

7
genus defect per summand. In total, this

amounts to a genus defect of at least

n−1∑
i=1

72

7
i− 60

7
=

72n2

14
+O(n).

On the other hand, we have

g(Σ(∆9n)) =
81n2

4
+O(n).

From this we obtain

g4(Σ(∆9n)) ≤ 81n2

4
+O(n)− 72n2

14
−O(n) =

423n2

28
+O(n),

which finally yields

g4(T (9n, 9n))

g(T (9n, 9n))
≤

423n2

28
+O(n)

81n2

4
+O(n)

n→∞−−−→ 47

63
<

3

4

and establishes Theorem 2. �

4. Slice genus of small torus knots

This section is devoted to the proof of Theorem 1. In fact, we will
prove a generalisation to links. For links, the topological slice genus is
bounded by the signature and nullity (denoted by µ) as follows [KT76]:

|σ(L)| −#L+ 1 + µ(L) ≤ 2g4(L).

Proposition 20. Let L = T (p, q) be a torus link with non-maximal
signature and nullity bound, i.e. L 6= T (2, n), T (3, 3), T (3, 4), T (3, 5),
T (3, 6), T (4, 4). Then

g4(L) ≤ 6

7
g(L).
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According to Theorem 2, most torus links satisfy g4
g
< 3

4
. The bulk

of the proof of Proposition 20 is thus an investigation of small torus
links. Their genus defects can often be found by computer calculation
(see Remark 16), or are inherited by incompressible subsurfaces, e.g.
using the following construction:

Lemma 21 ([Baa12, Proposition 1]). Let p, q, r ∈ N with p ≤ r. Then
Σ(T (pq, r)) contains Σ(T (p, qr)) as incompressible subsurface. �

The following lemma helps us dealing with the exceptional cases in
the proof of Proposition 20:

Lemma 22. The following lower bounds hold for the quotient 2∆g(T (p,q))
b1(T (p,q))

:

(i) For 3|p and q ≥ 10, the quotient is greater or equal to 8/51.
(ii) For 4|p and q ≥ 7, the quotient is greater or equal to 2/11.
(iii) For 5|p and q ≥ 6, the quotient is greater or equal to 1/5.

Proof. To prove (i), let p = 3a. By Lemma 21, we have

∆g(T (p, q)) ≥ ∆g(T (3, aq)).

Let aq = 17k + r with 0 ≤ r ≤ 16. Applying the computed defects
shown in Table 1 of the knots T (3, 7), T (3, 10), T (3, 13) and T (3, 17)
yields

∆g(T (3, aq)) ≥ 4k + s(r),

where s(r) = 0, 1, 2, 3 for r in [0, 6], [7, 9], [10, 12], [13, 16], respectively.
For

2∆g(T (3a, q))

b1(T (3a, q))
≥ 8

51
,

it suffices that

4k + s(r) ≥ 4

51
(3a− 1)(q − 1) ⇔

51k + 51s(r)/4 ≥ 3aq − 3a− q + 1 ⇔
51k + 51s(r)/4 ≥ 51k + 3r − 3a− q + 1 ⇔

3a+ q ≥ 1 + 3r − 51s(r)/4 ⇐

(to find the maximum of the right-hand side, which is at r = 6, it
suffices to check the cases r = 6, 9, 12, 16)

3a+ q ≥ 19 ⇔
(3a− 1) + (q − 1)

2
> 8.



ON THE TOPOLOGICAL 4-GENUS OF TORUS KNOTS 17

b1 (p, q) ∆g Lower bound b1 (p, q) ∆g Lower bound
4 (3,3) 0 40 (5,11) [5,6] Remark 16
6 (3,4) 0 40 (6,9) [4,6]
8 (3,5) 0 42 (3,22) [4,6]
9 (4,4) 0 42 (4,15) [4,6]
10 (3,6) 0 42 (7,8) [5,6] Remark 16
12 (3,7) 1 Example 13 44 (3,23) [5,6] Σ(3, 10) t Σ(3, 13)
12 (4,5) 1 Example 11 44 (5,12) [5,7]
14 (3,8) 1 45 (4,16) [5,6] Σ(4, 5) t Σ(4, 11)
15 (4,6) [1,2] 45 (6,10) [5,8] Σ(6 · 2, 5)
16 (3,9) 1 46 (3,24) [5,6]
16 (5,5) 1 48 (3,25) [5,7]
18 (3,10) 2 Remark 16 48 (4,17) [5,7]
18 (4,7) 2 Remark 16 48 (5,13) [5,8]
20 (3,11) 2 48 (7,9) [5,8]
20 (5,6) 2 Σ(5 · 2, 3) 49 (8,8) [5,6]
21 (4,8) 2 50 (3,26) [6,7] Σ(3, 13) t Σ(3, 13)
22 (3,12) 2 50 (6,11) [5,8]
24 (3,13) 3 Remark 16 51 (4,18) [6,8] Σ(4, 7) t Σ(4, 11)
24 (4,9) 3 Remark 16 52 (3,27) [6,7]
24 (5,7) 3 Remark 16 52 (5,14) [6,8] Σ(5, 6) t Σ(5, 8)
25 (6,6) 2 54 (3,28) [6,8]
26 (3,14) 3 54 (4,19) [6,8]
27 (4,10) [3,4] 54 (7,10) [6,9] Σ(4, 7) t Σ(6, 7)
28 (3,15) 3 55 (6,12) [6,8] Σ(5, 6) t Σ(6, 7)
28 (5,8) 4 Remark 16 56 (3,29) [6,8]
30 (3,16) [3,4] 56 (5,15) [7,10] Σ(5, 7) t Σ(5, 8)
30 (4,11) 4 Remark 16 56 (8,9) [6,9] Σ(4, 9) t Σ(4, 9)
30 (6,7) 4 Remark 16 57 (4,20) [7,8] Σ(4, 9) t Σ(4, 11)
32 (3,17) 4 Remark 16 58 (3,30) [7,8] Σ(3, 13) t Σ(3, 17)
32 (5,9) 4 60 (3,31) [7,9]
33 (4,12) 4 60 (4,21) [7,9]
34 (3,18) 4 60 (5,16) [8,10] Σ(5, 8) t Σ(5, 8)
35 (6,8) [4,6] 60 (6,13) [6,10] Σ(3, 13) t Σ(3, 13)
36 (3,19) [4,5] 60 (7,11) [7,10] Σ(5, 7) t Σ(6, 7)
36 (4,13) [4,5] 62 (3,32) [7,9]
36 (5,10) 4 63 (4,22) [8,10] Σ(4, 11) t Σ(4, 11)
36 (7,7) [4,6] 63 (8,10) [8,12] Σ(5, 8) t Σ(5, 8)
38 (3,20) [4,5] 64 (3,33) [7,9]
39 (4,14) [4,6] 64 (5,17) [8,11]
40 (3,21) [4,5] 64 (9,9) [7,9] Σ(4, 9) t Σ(5, 9)

Table 1. All (p, q)-torus links with p, q ≥ 3 up to Betti number b1 ≤ 64,
including all links of genus g ≤ 28. The upper bounds for the genus defect
∆g are induced by the signature and nullity functions. For the lower bounds,
there is either a reference given, or an incompressible subsurface from which
the defect is inherited (see Lemmas 6 and 21). Subsurfaces of the kind
Σ(p− r, q) ⊂ Σ(p, q) are left out.
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Since the arithmetic dominates the geometric mean, this is implied by√
(3a− 1)(q − 1) > 8 ⇔√

b1(T (3a, q)) > 8 ⇔
b1(T (3a, q)) > 64.

The case b1(T (3a, q)) ≤ 64 is dealt with by Table 1. The proofs of (ii)
and (iii) proceed in the same way. For (ii), let aq = 11k+ r, and use the
computed defects of T (4, 5), T (4, 7), T (4, 9) and T (4, 11). This covers
the case b1(T (4a, q)) > 49. For (iii), setting aq = 8k + r and using
T (5, 4), T (5, 6), T (5, 7), T (5, 8) covers the case b1(T (5a, q)) > 36. �

Proof of Proposition 20. The cases p, q ≤ 9 are all contained in Table 1.
So let us assume q ≥ 10. We will prove that in this case we even have
2∆g/b1 ≥ 1/7, which suffices since b1 ≥ 2g. If p is divisible by 3, 4 or 5,
then the statement follows from Lemma 22. All other p can be written
as p = 3a+ 4b with a, b ≥ 1. By Lemma 22,

2∆g(T (3a+ 4b, q)) ≥ 2∆g(T (3a, q)) + 2∆g(T (4b, q))

≥ 8(3a− 1)(q − 1)

51
+

2(4b− 1)(q − 1)

11
.

So now it suffices to show

8(3a− 1)(q − 1)

51
+

2(4b− 1)(q − 1)

11
≥ (3a+ 4b− 1)(q − 1)

7
⇔

616(3a− 1) + 714(4b− 1) ≥ 561(3a+ 4b− 1) ⇔
1848a− 616 + 2856b− 714 ≥ 1683a+ 2244b− 561 ⇔

165a+ 612b ≥ 769,

which follows from a, b ≥ 1. �
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