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METHODOLOGY ARTICLE Open Access

MLTreeMap - accurate Maximum Likelihood
placement of environmental DNA sequences into
taxonomic and functional reference phylogenies
Manuel Stark1,2, Simon A Berger3, Alexandros Stamatakis3, Christian von Mering1*

Abstract

Background: Shotgun sequencing of environmental DNA is an essential technique for characterizing uncultivated
microbes in situ. However, the taxonomic and functional assignment of the obtained sequence fragments remains
a pressing problem.

Results: Existing algorithms are largely optimized for speed and coverage; in contrast, we present here a software
framework that focuses on a restricted set of informative gene families, using Maximum Likelihood to assign these
with the best possible accuracy. This framework (’MLTreeMap’; http://mltreemap.org/) uses raw nucleotide
sequences as input, and includes hand-curated, extensible reference information.

Conclusions: We discuss how we validated our pipeline using complete genomes as well as simulated and actual
environmental sequences.

Background
In the field of microbial genomics, successful laboratory
cultivation of naturally occurring microbes has become
a major bottleneck [1-3]; this limits and biases our
understanding of the biochemical capabilities and ecolo-
gical roles of microbes in their habitats. Since cultivation
is a prerequisite for standard genome sequencing
approaches, we are still lacking genomic information for
many important microbial lineages (including entire
phylum-level groups [4,5]). In addition, there is a
sequencing backlog even for those strains that have
been cultivated successfully; this however is being
addressed now by directed sequencing efforts that are
underway [6,7]. Nevertheless, the severe biases and the
large gaps in the worldwide collection of cultivated iso-
lates make it difficult to fully appreciate evolutionary
processes and microbial ecology, or to exploit the large
repertoire of microbial genes that might be relevant to
medicine and biotechnology. While techniques that ana-
lyze single cells, such as multiplexed microfluidics PCR
[8] or single-cell genome sequencing [9,10], can provide

unequivocal genomic data in the absence of cultivation,
these methods are still limited in terms of throughput
and usability. Thus, the approach that presently gener-
ates the largest amount of unbiased microbial genome
sequence data is ‘metagenomics’ ([11]; also termed
‘environmental sequencing’).
More than 200 metagenomics projects are currently

registered [5] at various stages of completion; these
address a wide variety of habitats and microbial lifestyles
[12-16]. Typically, in such projects, an environmental
sample is processed by lysing cells and indiscriminately
isolating genomic DNA; the latter is then fragmented
and shotgun-sequenced to a desired depth. However,
even when employing the latest next-generation, high-
throughput DNA sequencing technologies, the large
complexity and genomic heterogeneity of natural micro-
bial communities often preclude de novo assembly of
complete genomes from the data - instead, a large num-
ber of short to medium-sized sequence fragments are
obtained. From these, quantitative inferences can already
be made regarding genome sizes [17,18], recombination
rates [19], and functional repertoires [20,21], among
others. However, many of the perhaps more important
ecological questions require the assignment of the
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sequence fragments to the microbial lineage they origi-
nate from, a process called ‘binning’ [12,22].
An increasing number of algorithms have been

devised for this task; these can largely be divided into
two groups. The first consists of ‘unsupervised’
approaches [23-27], in which sequences are binned
using signature-based algorithms that focus on nucleo-
tide compositional signals (reflected in the relative fre-
quencies of short nucleotide ‘words’). These approaches
require no external reference information a priori;
instead, they learn to distinguish the major taxonomic
groups from the data itself (although subsequent assign-
ment to known taxonomic entities is often done). In
contrast, ‘supervised’ approaches [28-34] require exten-
sive, annotated, external reference information. For the
most part, these approaches interpret the results of
large-scale homology searches against sequence data-
bases, sometimes followed by phylogeny reconstruction;
the external reference information is usually derived
from the available fully sequenced microbial genomes.
For both types of approaches, the various implementa-
tions differ greatly in their speed, accuracy, coverage,
ease of installation and use, and in the interpretation
and visualization of the results. Owing to the size and
nature of the input data, formal phylogenetics algo-
rithms are relatively rarely used in these pipelines, with
three exceptions: Maximum Parsimony in [33], Neigh-
bor Joining in [29], and an approximate Maximum Like-
lihood approach in [34]. That the Maximum Likelihood
approach has not been applied more frequently is some-
what surprising, since it is arguably among the most
accurate and best-described techniques in phylogenetics
[35-38]. One reason for this is presumably the high
computational cost of this approach, which makes it dif-
ficult to execute for very large numbers of sequence
fragments.
Here, we describe a software framework ("MLTree-

Map”) that does employ full Maximum Likelihood, and
which is specifically designed for metagenomics
sequences. We significantly reduced the computational
costs through algorithmic improvements, as well as
through a focus on a restricted (but user-extensible) set
of informative gene families. The aim of the framework
is to cover the high-accuracy end of the tool spectrum,
with a particular focus on consistency across different
sources of input data. To achieve this, the package, a)
starts from raw nucleotide sequences to avoid inconsis-
tencies arising from different gene-calling strategies, b)
corrects for frame-shifts and other errors on the fly to
optimally extract marker genes, c) includes searches
against ‘off-target’ reference sequences to avoid the
detection of undesired deep paralogs, d) concatenates
marker genes when several of them are observed in a
given sequence fragment, and e) offers intuitive

visualization features, both via the command-line as well
as via the web-server. The framework contains hand-
curated reference phylogenies and alignments; in the
first full release that we describe here (MLTreeMap ver-
sion 2.011), these references encompass a total of 44
distinct gene families that have been selected to address
both taxonomic as well as functional aspects of micro-
bial assemblages.

Results and Discussion
We have previously outlined [31] and used [39,40] a
preliminary version of the MLTreeMap pipeline; how-
ever, this initial implementation was not designed for
deployment, only focused on phylogenetic information,
and was computationally very inefficient (it required up
to several hours of CPU time to assign a single nucleo-
tide sequence fragment). We have since achieved a
more than 100-fold speed-up, mainly by using more effi-
cient pipeline code, and by switching the employed
Maximum Likelihood phylogenetics engine from TREE-
PUZZLE [41] to RAxML [42,43]. This switch also
enabled us to deploy recent optimizations inside
RAxML that were specifically devised for this purpose
[Berger et al., submitted; preprint available at http://
arxiv.org/abs/0911.2852v1]. The basic work-flow of a
fully automated MLTreeMap run proceeds as follows
(Figure 1): First, a batch of input sequences (i.e., un-
annotated nucleotide sequences) are searched for the
presence of marker genes, by running BLASTX against
a curated collection of reference proteins (including ‘off-
target’ proteins where necessary). In a next step, all
detected instances of these marker genes are extracted
using GeneWise [44], based on Hidden Markov Models
(HMMs) that are provided as part of the MLTreeMap
pipeline; this establishes protein-coding open reading
frames and exhibits some tolerance to sequencing errors
such as frame-shifts or gaps. The query proteins are
then aligned to the corresponding reference proteins
using hmmalign [45], and the resulting alignments are
concatenated in case more than one marker gene is
located on a given fragment (this latter step only applies
to phylogenetic markers). Next, alignments are subjected
to mild gap-removal [46]; and subsequently they are
submitted to RAxML. There, the sequences are placed
in their most likely position within the corresponding
reference phylogeny. Importantly, RAxML is instructed
to fully maintain the input topology of the reference
phylogeny and to keep it fixed during the computations.
Upon launching, RAxML initially optimizes the Maxi-
mum Likelihood model parameters and computes all
branch-lengths of the reference tree, based on the align-
ment provided. Next, RAxML will insert (and subse-
quently remove again) the query sequence(s) one at a
time into every possible branch of the reference tree, re-
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optimizing the three branch lengths at the insertion
position for each attempt. The best-scoring position
(branch) for each query sequence is then reported.
Optionally, RAxML can use non-parametric bootstrap
to account for placement uncertainty. For the bootstrap
replicates, heuristics are deployed that only assess the
top 10% most promising placement branches as com-
puted on the original (non-bootstrapped) alignment and
thereby reduce run times for bootstrap placements by
one order of magnitude. Note that, under the settings
chosen for MLTreeMap, the actual likelihood computa-
tions in RAxML follow the standard Maximum Likeli-
hood approach under a standard protein evolution
model, for maximum accuracy. Finally, the results are
aggregated, reported in human-readable form and visua-
lized graphically in the context of the reference trees
(Figure 1). Currently, 40 of the reference protein families
that we provide are collectively used to assess the taxo-
nomic composition of the input sequences (these 40
families were selected based on universal occurrence in
all three domains of life, as near-perfect single-copy

genes [47]). Another four families serve as indicators for
the presence of crucial metabolic pathways (nitrogen
fixation, photosynthesis and methane assimilation). In
the current implementation, the processing of an
amount of DNA sequences that is equivalent to an aver-
age microbial genome takes about three to four hours
on a single CPU (more when bootstrapping is requested;
for example, the above runtime changes to 7 hours
when 10 bootstraps are done in each RAxML run). The
performance scales roughly linearly with the amount of
DNA to be processed; for example, a medium sized
metagenome (C1-oxidisers in lake water [48], at 37 Mb)
requires about 30 hours to compute on a single CPU; a
larger metagenome (220 Mb from a hot spring) requires
close to 200 hours. Since the individual DNA fragments
can be assessed independently, the pipeline can seam-
lessly be deployed onto a compute cluster (by splitting
the input, and aggregating the results afterwards).
To validate the performance of the MLTreeMap pipe-

line, we first tested its accuracy on short sequences of
known origin. These were generated by artificially

Figure 1 MLTreeMap: Placing anonymous sequence fragments into reference phylogenies. Top: overview of the procedure. Informative
marker genes (or fragments thereof) are automatically extracted from raw, un-annotated nucleotide sequence fragments, aligned to reference
sequences and then placed into externally provided gene trees using RAxML. Below: Overview of reference phylogenies that are currently
available in MLTreeMap.
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fragmenting fully sequenced genomes into non-
overlapping stretches of 1’000 base pairs each (this
length corresponds to current read lengths of the Sanger
sequencing technology, and it also matches the pro-
jected length of the upcoming next release of the 454
pyrosequencing technology). To avoid circularity, we
removed the corresponding genomes from our reference
alignments and pruned them from the trees. Thus, our
testing amounts to leave-one-out cross-validation. Note
that our phylogenetic reference tree is already non-
redundant at the genus level (with a few exceptions),
meaning that removal of the query genome usually
results in the next best relative to be available only at
the phylogenetic rank of ‘family’ or higher. The perfor-
mance of our approach was compared to that of two
widely used, previously published approaches, MEGAN
[28] and AMPHORA [33], which are based on BLAST
searches or Maximum Parsimony insertions, respec-
tively. The algorithmic challenge of our test varies from
query genome to query genome, depending on its phylo-
genetic position (depth) in the reference phylogeny. This
is illustrated, for two exemplary genomes, in Figure 2:
all three approaches deliver a good accuracy when the
query genome remains in the reference (i.e., 95% to
100% of correct placements, see top of Figure 2). How-
ever, when removing the query genome from the refer-
ence, together with increasingly distant relatives, the
accuracy of all three approaches decreases, as expected.
This is relevant, because actual environmental sequence
fragments will often be fairly unrelated to any fully
sequenced genome. Since in our test each query genome
is represented by 40 independent reference genes, the
resulting placements are spread out over the tree; this is
a good visual indication of the nature and extent of the
placement error (Figure 2). For the two arbitrary gen-
omes that we chose as examples in Figure 2, Maximum
Likelihood and Maximum Parsimony were both per-
forming significantly better than the BLAST-based heur-
istics implemented in MEGAN. Between the two,
Maximum Likelihood performed better in three
instances, whereas Parsimony insertion performed better
in one instance (note that all pre-processing steps and
reference sequences were kept exactly the same for the
latter two approaches, in order to facilitate their direct
comparison).
We next performed this test systematically, based on

85 complete genomes (11 Archaea, 64 Bacteria and 10
single-celled Eukaryotes (fungi); see Figure 3). This
involved testing 406’900 sequence fragments, of which
4’186 were found to contain at least one of our phyloge-
netic marker genes (i.e., our pipeline typically addresses
only about 1% of the sequences in any given sample, by
focusing on the most informative parts). We observed
that, overall, Maximum Likelihood placed 47.2% of the

query sequences at precisely the correct position in the
tree, and another 21.3% in close vicinity (i.e., at most
two nodes away in the tree). This compares favorably to
Maximum Parsimony insertion, using the exact same
sequence input (44.8% and 22.0%, respectively). This can
also be described in taxonomic terms: Maximum Likeli-
hood places 86.0% of the query sequences within the
correct phylum, and 61.2% even within the correct
order; these numbers are 83.8% and 55.6% for Maxi-
mum Parsimony, respectively. The gain in accuracy over
Maximum Parsimony is not dramatic, but it is statisti-
cally significant: when re-testing the fragmented bacter-
ial genomes in 1000 bootstrap runs (i.e., randomly
sampling genome fragments with replacement), the dis-
tributions of accuracy scores for the two approaches
were at least four standard deviations apart - testing
each of the levels ‘phylum’, ‘order’ and ‘family’. Overall,
there are notable differences with respect to the three
kingdoms of life: Bacteria are currently placed with the
highest accuracy, with Archaea being a close second,
whereas Eukaryotes are assigned with comparatively low
accuracy. The difficulties with Eukaryotes can be partly
attributed to the presence of more paralogs, and introns
(the latter can fragment marker genes), but presumably
also to mitochondria and other organelles, which intro-
duce non-eukaryotic versions of the marker genes we
employ.
We also assessed our procedure by applying it to

entire metagenomics datasets, both simulated [49] and
real [50]. For the latter, independent taxonomic infor-
mation is available, which is based on 16 S ribosomal
RNA genes that have been PCR-amplified and
sequenced from the very same sample [50]. As is sum-
marized in Figure 4, the results for both datasets are in
good quantitative agreement with the known (or mea-
sured) composition of the input data. In the case of the
simulated dataset [49], the task is necessarily somewhat
easier, since this set has been assembled by fragmenting
known genomes, and many of these genomes are also
contained in our reference phylogeny. Nevertheless, of
the 113 genomes that contributed to the ‘simMC’ data-
set [49], more than half (59) are not contained in our
reference; and of these, 7 are not even represented at
the genus level. In addition, the simulated set contains
genomes at widely differing levels of sequence coverage,
and the genome sizes are also quite variable (spanning
almost one order of magnitude). In spite of this, the
overall taxonomic composition is reliably recovered by
MLTreeMap, and none of the phyla known to be pre-
sent in the sample have been missed. For the real meta-
genomics dataset [50], the actual ‘target’ composition is
not known with much certainty, since the PCR-based
assessment that has been reported together with the
sample could itself exhibit intrinsic quantitative error.
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Figure 2 Leave-one-out validation: examples. Individual query genomes were fragmented (1’000 bp fragments) and then placed into
reference trees from which the corresponding genomes (or entire clades) had been removed. The assignments are shown graphically (small
circles). Note how the placements become increasingly scattered and imprecise upon removal of increasingly deep reference information.
MLTreeMap is shown compared to two popular approaches (note that MEGAN, while the least accurate, applies to a much larger fraction of
reads in a given sample and thus achieves the best coverage). Definitions of test success: *assignments are designated as correct when they are
no more than two nodes away from the target position in the tree. **for MEGAN, assignments are designated as correct when they are
mapping to the target phylum.
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Indeed, we observe that the MLTreeMap classification
appears somewhat more ‘balanced’ than the PCR-based
classification (see Figure 3C: the two most abundant
groups make up 88% in the PCR data, but only 67% in
the MLTreeMap data). This observation is of course not
conclusive: the actual composition of the original sample
could well be more biased than reflected in the meta-
genome. We do note that the distribution of 16 S genes
in the metagenome (not PCR-amplified) agrees some-
what better with the MLTreeMap classification than
with the PCR-amplified 16 S genes (data not shown), so
the observed discrepancy might at least partially be due
to the known amplification biases of PCR reactions on
mixed templates [51-53], or due to biases in cloning effi-
ciency [54].
Finally, we tested the MLTreeMap pipeline not only

with respect to taxonomic assignment, but also with
respect to the functional characterization of samples.

Currently, the pipeline covers four important enzyme
families (RuBisCO, Nitrogenase/NifD, Nitrogenase/NifH,
and Methane Monooxygenase). These families are repre-
sented by hand-curated alignments, and visualized in the
form of annotated protein trees. Future versions of
MLTreeMap will extend this set in order to cover a sig-
nificantly larger number of important diagnostic pro-
tein/enzyme families that are indicative of core
functions (metabolic and otherwise [55-59]). Figure 4A
shows a typical result of MLTreeMap for the functional
classification of a set of environmental sequence
samples. Three datasets are shown, that each contain
representatives of the RuBisCO enzyme family (Ribu-
lose-1,5-bisphosphate carboxylase oxygenase). The mere
presence of these genes in the sample could also have
been deduced from simple BLAST searches on the data;
however, the summary shown in Figure 4A reveals cru-
cial, additional information: first, the mapped sequences

Figure 3 Systematic validation. MLTreeMap is tested on three different types of input (fragmented genomes, as well as simulated and real
metagenomes). In all cases, the pipeline has been run with default settings, using the extended reference phylogeny based on Ciccarelli et al.
[47].
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show a clear separation into distinct sub-families of
RuBisCO. The surface seawater sample is dominated by
subfamily #1, the plant surface sample by subfamily #4b,
and the distal human gut by subfamily #4a and other
unclassified parts of the tree (subfamilies are designated
according to [60]). Second, the functional placements
tend to corroborate the taxonomic assignments that
MLTreeMaps reports for the same samples (not shown);
this enables checks for consistency and/or unexpected
horizontal transfers. And third, the placements can be
seen to differ dramatically in their distance from the
root, that is, in their evolutionary ‘depth’ with respect to
previously known members of the family. For example,
in the case of the surface seawater, virtually all
sequences were very close to the tips of the tree, in
other words closely related to known examples of
RuBisCO (mainly from Cyanobacteria and alpha-
Proteobacteria). In contrast, instances of RuBisCO-like
proteins in the human gut were observed much closer
to the root, i.e., at a greater evolutionary distance from
previously known sequences and in non-canonical sub-
families. From this, it would be much harder to predict
their functions, and it is indeed conceivable that they

are not functioning in CO2 fixation, but rather in other,
possibly sulfur-related metabolic pathways (methionine
salvage or yet other, uncharacterized pathways [60-62]).
The standardization and ease of use provided by
MLTreeMap allow for consistent, semi-quantitative
analysis of the functional coding potential of entire
collections of metagenomics samples - as an example,
Figure 4B shows combined data for 11 distinct metagen-
omes. In this case, the coding capacities for nitrogen
fixation and CO2 fixation have been compared across
samples and sites. Large differences become apparent,
including the known paucity of nitrogen fixation genes
in some environments [63], but also surprises such as
nitrogenase-like genes in the distal human gut. Here
again, the availability of the annotated reference trees in
the MLTreeMap output is crucial: the sequences are
likely of a non-canonical, archaeal type, related to genes
in Methanobrevibacter smithii, and are thought to func-
tion in a process other than nitrogen fixation [64,65].
For both, functional as well as taxonomic assignments,

MLTreeMap offers a number of user-definable para-
meter settings. Users can chose which of two phyloge-
netic reference trees to use (modified from [7] or [47]),

Figure 4 Functional characterization of metagenomes. A) Three published environmental sequence datasets have been searched for
instances of the RuBisCo and RuBisCo-like enzyme families, using MLTreeMap. Colored spheres represent sequences mapping to a specific
position in the tree, whereby the area of each sphere indicates the relative amount of sequences. The resulting placements are largely non-
overlapping, suggesting distinct functional RuBisCo classes encountered/required at each of the environmental sites. B) Several datasets, as
available at [69] and [70], were assessed with respect to two metabolic functions (CO2 fixation, and nitrogen fixation, respectively). All counts
were normalized with respect to sampling depth, and are thus directly comparable.
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and whether to use Maximum Likelihood or Maximum
Parsimony (the latter works faster but is somewhat less
accurate; see Figures 2 and 3). When choosing Maxi-
mum Likelihood, users can also request bootstrap repli-
cates. However, bootstrapping will in most cases not be
necessary since the input data is already divided into
many independent sequence fragments (these constitute
‘bootstraps’ in some sense; the fragmentation is due to
the lack of assembly in most metagenomics projects).
Bootstrapping could of course be turned on for specific
cases of interest, but for assessing entire datasets it is
probably less advisable. This is because individual
RAxML runs using all the columns of a given sequence
alignment yield more accurate results than each indivi-
dual bootstrapping run in which columns have been re-
sampled [on average, only 65% of distinct input columns
are used in each bootstrap, Berger et al., submitted; this
becomes an issue particularly when input sequences are
rather short to begin with]. The overall accuracy of
MLTreeMap is fairly good already, but it could be
further enhanced by improving the coverage and even-
ness of the reference trees and also by optionally giving
deeply assembled contigs (i.e., those with high read cov-
erage) correspondingly more weight in the final aggrega-
tion step. Future versions of the pipeline could also
likely be optimized further with regards to computa-
tional speed - we note that currently much time is still
spent outside RAxML, in the pre-processing steps. If
further speed-ups can indeed be achieved, then the pipe-
line should cope well with further advances in sequen-
cing technology - perhaps even to a point in the future
when much of the raw data will be discarded immedi-
ately after sequencing, and only genes of interest (such
as the phylogenetically and functionally informative
genes assessed by MLTreeMap) will be kept.

Conclusions
MLTreeMap performs consistent and rapid placements
of metagenomics sequence fragments into high-quality,
manually curated reference phylogenies - with high
accuracy, albeit covering only a restricted fraction of any
given sample (around 1%). It focuses on phylogenetically
and functionally informative genes, thereby aiming to
capture and characterize core aspects of a microbial
community. MLTreeMap is one of only a few frame-
works that can address microbial eukaryotes on an
equal footing with prokaryotes, and it can easily be
extended by the user (with any specific gene family of
interest). The pipeline will likely be best put to use
when analyzing hundreds of samples in comparison: this
should ultimately reveal quantitative correlations
between certain taxonomic clades and certain functional
gene abundance profiles, thus helping to address the

classic question of ‘who does what’ in microbial
assemblages.

Materials and methods
Data Sources
Annotated protein-coding genes from fully sequenced
genomes were downloaded from STRING [66] and
RefSeq [67]. The phylogenetic ‘tree-of-life’ references
were obtained from [7] and [47], but were subsequently
modified: we removed genomes for which we were
unable to obtain sequences, at the time, and added
others. For the tree of [47], we made the representation
of organisms non-redundant at the genus level, with a
small number of exceptions for fast-evolving genera, and
recomputed the best Maximum Likelihood tree, while
keeping fixed the original topology of the published tree
(’constraints’ in RAxML). This computation was based
on concatenated alignments of the exact same 40 refer-
ence genes as used by MLTreeMap. Note that the pur-
pose of MLTreeMap is not to generate tree-of-life
phylogenies de novo; instead these trees are provided
externally [7,47], we therefore chose to maintain their
published topology. For the four functional reference
families, gene family information was obtained from
KEGG [68] (nifD: K02586, nifH: K02588, MMO:
K08684) and from STRING [66] (RuBisCO: COG1850).
In total, the current release 2.01 of MLTreeMap con-
tains 11,069 genes in the reference data; on average,
each gene family of interest is represented by 252 genes.

Implementation and Use
MLTreeMap is provided both online (albeit with input-
size limitations) as well as offline in form of a com-
mand-line executable. The latter is designed with as few
external runtime dependencies as possible: BLAST,
GeneWise, HMMER and RAxML. Visualization of the
results is optional, and a separate Perl-script (with addi-
tional dependencies) is provided for this purpose. When
using the pipeline, individual reports are generated for
each sequence fragment on which marker genes were
detected. Aggregated reports are also generated, but this
step may have to be repeated by the user (for example
when running the pipeline in parallel on separate
machines, or when re-weighting the fragments according
to additional, external information such as assembly
depth or sample size).
The MLTreeMap pipeline has only a few configurable

parameters (including: choice of phylogenetic placement
method, number of bootstraps, and choice of taxonomic
reference phylogeny); other settings are hardcoded with
the following default values: required significance of initial
BLASTX hits (e = 0.01; database size fixed at 1’000’000),
gap removal parameters for Gblocks (-t = p -s = y -u = n

Stark et al. BMC Genomics 2010, 11:461
http://www.biomedcentral.com/1471-2164/11/461

Page 8 of 11



-p = t -b3 = 15 -b4 = 3 -b5 = h -b2 = [0.55 · #alignmen-
t_rows]), and required sequence length of the marker
genes after alignment and gap removal (50 amino acids).
Due to this latter threshold, the pipeline will not yield
much useful information for samples with typical read
lengths below 300 base pairs (indeed, 500 bp or longer is
recommended). The Maximum Likelihood insertion in
RAxML is typically done under the following settings:
“-f v -m PROTGAMMAWAG” (the WAG substitution
model yields the best likelihood scores on the phylogenetic
reference trees, compared to all other amino acid substitu-
tion models available in RAxML; this was assessed using
the RAxML “-f e” option for tree evaluation). For only 7 of
the 44 protein families, a substitution model other
than WAG is used (RTREV for COG0049, COG0090,
COG0092, COG0093 and COG0100; CPREV for
COG0201 and BLOSUM62 for Methane Monooxygenase).
RAxML works with unrooted trees; however, the MLTree-
Map pipeline reports all results in the context of rooted
trees, for convenience (the re-rooting is hardcoded for
each reference tree). Note that the actual Maximum Like-
lihood insertion step in MLTreeMap is clearly defined and
fairly generic - it could in principle be performed also by
software other than RAxML (for example by the PPLA-
CER program; Matsen et al., personal communication;
preprint at http://arxiv.org/abs/1003.5943). MLTreeMap
can be compiled and executed locally, and previous ver-
sions are maintained at our website, for reference
(together with the corresponding reference alignments
and trees). We plan to update MLTreeMap yearly - each
time updating the reference alignments with data from
newly sequenced genomes, and extending the repertoire of
functional reference families.

Validation
For the validation tests based on whole genomes, the
query genomes were artificially fragmented into non-
overlapping, consecutive stretches of 1’000 base pairs
each. Prior to each test, the respective genome was
removed from the reference phylogeny to avoid circular-
ity, and MLTreeMap placements were made using either
Maximum Parsimony or Maximum Likelihood (all other
settings were identical; bootstrapping was not used).
The resulting placements were then compared to the
known positions of the query genomes in the reference
tree, either by assessing the node distance or the taxo-
nomic assignment. For the latter, the newly placed frag-
ment was assigned to the highest taxonomic rank for
which all genomes in the clade below the placement
branch were in agreement. For the tests based on simu-
lated metagenomes, we chose the Phrap assembly of the
‘medium complexity’ simulated dataset, available at
http://fames.jgi-psf.org/. The expected target composi-
tion of this set is not simply defined by the list of

constituent genomes [49]; instead, since the relative gen-
ome representation depends on the read coverage of
each genome in the simulated set, we weighted all gen-
omes accordingly.
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