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The Smart Takes from the Strong 
3D printing stay-in-place formwork for concrete slab construction  

 
Research Aim and Objective 
The wider aim of this research is to explore the architectural potential of additive manufacturing 
(AM) for prefabricating large-scale building components. It investigates the use of AM for 
producing building components with highly detailed and complex geometry, reducing material 
use and facilitating the integration of technical infrastructure. 

In order to achieve this aim, the concept of stay-in-place 3D-printed formwork is introduced 
(Fig. 01).  AM is employed to produce sandstone formworks for casting concrete in any shape, 
regardless of geometric complexity (Fig. 02). This approach explores the synergy between the 
geometric flexibility of 3D printing sand formworks and the structural capacity of concrete. It 
allows the production of composite components with properties superior to either individual 
material.  

 

Figure 1. Stay-in-place 3D-printed sandstone formwork for high-performance fibre-reinforced concrete. 

This new fabrication method is demonstrated and evaluated with two large-scale 1:1 ceiling 
slab prototypes (Figs. 03 and 04), which are described in this paper.  
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Figure 2. Casting of ultra-high-performance fibre-reinforced concrete in 3D printed sandstone formwork. 

Large-Scale Binder Jetting Technology in Architecture 
3D printing, or additive manufacturing, refers to the process of producing artefacts by 
successively adding material using a Computer Numeric Control (CNC) system. A digital 3D 
model of an artefact is created and is sliced along a vertical axis. The data about each slice is 
then translated and fed to a 3D printing machine, and the machine creates the artefact by 
building up material, layer by layer. 

There are a few different types of AM technological processes. In the context of architecture, 
the interest lies in those AM processes that enable the production of large artefacts on-site 
and prefabricated components off-site. This research focuses on binder jetting for 
prefabrication (Fig. 05). Binder jetting is an AM process in which a liquid bonding agent is 
selectively dropped on thin layers of powder material to bind it. 

Several characteristics of binder jetting make it interesting for prefabrication in architecture. 
Due to the nature of the process, binder jetting can theoretically be used with any powder 
material that can be bonded (cement, plastics, ceramic, metals, sand, sugar, plaster, etc.; 
Rael and San Fratello, 2011). Moreover, this process has the advantage that within a set 
bounding box, increasing geometric complexity results neither in longer production time nor in 
higher cost. Complex cantilevering forms and even interior structures can be 3D printed 
without auxiliary support, because the powder bed itself performs this function. Lastly, there 
are a number of larger-scale facilities that use binder-jetting technology to produce large-scale 
artefacts. An example is the D-shape system by Enrico Dini (Dini, 2009). This is one of the 
largest 3D printers in the world, but unfortunately this system only reaches a limited resolution. 
This resolution depends on the grain size of the powder, the layer-height, and the resolution 
of the printhead. In contrast, there are industrial 3D sand printers that can produce parts that 
are both large and highly detailed. Currently, they are used by the foundry industry for 
producing moulds for metal casting. These moulds can be printed at a very high resolution, in 
the range of a tenth of a millimetre, and at a maximum volume of 8 m3. 
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Figure 3. Prototype A: material is efficiently 
distributed in a ribbed substructure to reduce weight. 

 

Figure 4. Prototype B: material is efficiently 
distributed in a porous, tubular structure to reduce 

weight.   

The project Digital Grotesque by Dillenburger and Hansmeyer (2013) demonstrated the 
potential of 3D printing sand for the fabrication of highly detailed freeform components in 
architecture, yet the use of 3D sand printing in architecture has barely begun to reach its 
potential. A reason for this is that large-scale 3D-printed sand parts are too weak to operate 
as a building material—the bending strength of 3D-printed sandstone is very low. As a result, 
the current applications are limited to building components which are mostly under 
compression. 

 

Figure 5. Industrial binder-jet 3D printer fabricating the formwork for Prototype A. 
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Research Questions 
The central question of this research is how to use the unique advantages of 3D-printed 
sandstone and overcome its limitations in order to enable the fabrication of large-scale building 
components. The research introduces and examines the concept of stay-in-place 3D-printed 
sandstone formworks as a solution that combines the geometric flexibility of 3D printing 
sandstone and the structural capacity of concrete (Figs. 06). Specifically, the following 
questions are investigated: 

● How do concrete and 3D-printed sandstone interface? To answer this question, the 
fabrication constraints of 3D-printed formwork and the performance and efficiency 
(functional, structural, material) of the resulting load-bearing building components are 
investigated. 

● What is the impact of this new fabrication process and geometric freedom on the 
design of architectural components? Can this approach facilitate the fabrication of fully 
integrative building components with reduced material? 

 

Figure 6. Prototype B: structural slab element with load-bearing capacity.  

Research 
One reason to search for new ways to fabricate complex forms with fewer constraints is that 
doing so allows us to reduce material use through the optimized design of components: wall 
thickness can be adapted, and undercuts, microstructures, and complex branching topologies 
can be fabricated.  

With its excellent geometric flexibility—recesses, undercuts, internal voids, and tubular 
structures are possible—3D-printed sandstone formwork lends itself well to the production of 
such complex architectural elements. The main means of demonstrating the feasibility of this 
construction method in this research is the production of two large-scale 1:1 slab prototypes. 
The two prototypes investigated forms which were found by computational strategies (e.g. 
topology optimization). The target objective of the optimization was to reduce material use and 
efficiently distribute the remaining material in order to maximize the slab’s strength. 
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Figure 7. Detail of prototype A, showing the precise details of the finely ribbed substructure. 

Prototype A (Figs. 04 and 07) is a slab designed for a load-case with three supports in the 
centre. This slab folds into a hierarchy of ribs that give stability to the large cantilevering areas. 
Prototype B addresses a load case of four perimetral support points (Figs. 03 and 06). It 
features a sophisticated topology of tubular elements branching in three dimensions (Figs. 08 
and 09). The amount of concrete contained within (50 litres) corresponds to a solid slab a 
mere 3 centimetres thick. 

 

Figure 8. Tubular structures of prototype B. 

 

Figure 9. Intricate network of channels with 
undercuts in prototype B. 

To produce the large prototypes, the following steps were taken: 

● compression and bending tests of combinations of different types of powders and 
binders; 

● structural tests of different concrete mixtures considered for the potential combination 
with sand-print; 

● rheology studies of casting concrete in sand-printed formworks of different geometries 
to derive a formal vocabulary as a design guideline (Fig. 10); 

● exploration of various computational design strategies to optimize the use of the 
chosen fabrication method with respect to the structural limitations of the material. 
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Figure 10. Development of a lexicon of formal constraints from rheology studies. 

Because its main use is casting moulds for metal, relatively little was known about the 
structural properties of 3D-printed sandstone. A series of tests was therefore initiated to 
measure its resistance to compression and bending forces. The tests showed that 3D-printed 
sandstone has reasonably good resistance to compression, but is brittle when exposed to 
bending forces. Below is the list of parameters involve in the compression and bending tests:  

● Parameters of the compression tests: 
o size of the specimens: 50 x 50 x 50 mm; 
o binders used: phenolic and furanic resin, with and without epoxy surface 

infiltration; 
o spatial orientation in the printer bed: X, Y, and Z; 
o number of specimens per combination: 3; 
o total number of specimens: 36; 

● Parameters of bending tests: 
o size of the specimens: 250 x 50 x 50 mm; 
o 3-point bending, supports at 200 mm distance, central point load; 
o same binders, orientation, and number of specimens as the compression tests 

(36 specimens in total); 
The compression and bending test was also applied for parts with different types and binders; 
as Table 1 shows, the difference between binder types is only marginal, apart from the bending 
strength of infiltrated parts. This is because the sand is less densified during printing, and heat 
curing vaporizes more of the liquid. As a result, more resin infiltrates the part. As expected, 
additional infiltration hardens the parts significantly and increases their strength. 

 Phenolic binder (PDB) Furanic binder 

 without infiltration with infiltration without infiltration with infiltration 

Compression strength [MPa] 8.56 12.32 8.46 12.80 

Bending strength [MPa] 2.95 8.85 2.96 6.49 

Table 1. Experimentally determined load-bearing capacities of 3D printed sandstone. 

The behaviour of 3D-printed sandstone in combination with ultra-high performance fibre-
reinforced concrete (UHPFRC) was investigated together with the group for Physical 
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Chemistry of Building Materials (PCBM, D-BAUG, ETH Zurich), with the following four main 
intentions (Fig. 11): 

● develop a concrete recipe with adequate admixtures that has the desired rheological 
properties; 

● adjust the length and content of the steel fibre reinforcement to achieve ductile 
behaviour while maintaining ability to cast in narrow channels; 

● understand the impact of the porosity and sorptivity of the 3D-printed sandstone 
formwork (how do the capillary absorption and transmission of water of the 3D-printed 
sandstone influence the hardening of the concrete?); 

● mechanically test the bond between the two materials as a composite. 
The details and results of the study are documented in “3D Sand-Printed High Performance 
Fibre-Reinforced Concrete Hybrid Structures” (Stutz, Montague de Taisne, 2016). 

 

Figure 11. Slicing a sample to investigate the quality of the casting process. 

From a design perspective, an important finding of this thesis project is a series of formal 
guidelines. According to these, cavities and tubular structures in the formwork can be 
dimensioned in relation both to the length and volumetric content of the fibres in the concrete 
mixture. These guidelines informed the design of the two prototypes in terms of dimensioning 
and controlling rheological aspects with regard to the concrete casting process. Moreover, 
both prototypes exploit the entire size (180 x 100 cm) of the Ex-One S-MAX 3D printer bed. 
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Research Evaluation 
Production of formworks with a high degree of detailing and precise geometric features for 
large concrete components is very challenging—and sometimes impossible—if using other 
formwork fabrication methods such as robotic wire cutting, three- and five-axis CNC milling, 
and fabric formworks. The described 1:1 slab prototypes show how 3D printing can facilitate 
the fabrication of such formworks. 

3D printing is particularly suitable for producing stay-in-place formwork. This is because the 
bond between the sandstone formwork and UHPFRC is very durable. Mechanically removing 
a nine-millimetre-thick layer of 3D-printed sand completely requires pressures greater than 
3,000 atm with a water jet. Removable temporary formwork is possible (and was successfully 
tested in another project), but requires a coating treatment of the formwork which closes the 
pores to prevent the concrete from percolating through the sandstone formwork. 

The geometry of the formwork and the minimum dimensions of its hollow features were 
dictated by the constraints of the fabrication processes, post processing of the 3D-printed 
formwork, and rheological properties of the concrete mix. 

Parameters Related to 3D Printing Sand 
The post-processing involved removing loose sand from and infiltrating the outer surface of 
3D-printed formworks. Thus the geometry and diameter of the hollow features had to be 
designed in such a way as to facilitate removal of the loose sand (Fig. 12). 

 

Figure 12. Post-processing of a 3D-printed sandstone formwork for prototype A. 

The thinness of the 3D-printed formwork as it relates to the fabrication process was also 
studied. This dimension was tested from 6 to 10 mm, and thinner walls were found to be 
unstable during the removal of loose sand (due to erosion from compressed air jets or 
vacuuming) as well as during casting (as hydrostatic pressure built up in deeper channels and 
penetrated the thin formwork walls). 
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At 1.8 m2, the overall size of the components also approached a limit in terms of both the 
manipulation of the formwork and the stability of the 3D-printed piece. While smaller parts can 
increase the complexity of the assembly, they are easier to handle. Therefore, the 
dimensioning of the parts is always a trade-off between weight, number of connections, and 
logistical factors. 

The tests revealed the fact that the friable nature of the 3D-printed sandstone needs to be 
carefully considered, especially when scaling up the manufacturing process and fabricating 
components in larger volumes. A strategy to avoid damaging the formwork before casting by 
integrating a protective bed of unbonded sand contained within a closed 3D-printed box that 
also provided auxiliary support during casting was successfully tested (Fig. 13). 

 
Figure 13. Integration of an auxiliary bed of unconsolidated sand contained within a closed 3D-printed box under 

the prototype. 

Parameters Related to Concrete 
The specific post-processing operations of the 3D-printed parts (i.e. vacuuming loose sand, 
infiltrating the outer surface of the formworks) and the rheological properties of concrete 
dictate minimum dimensions for the hollow features (Fig. 09). UHPFRC mixes work well with 
3D-printed channels with diameters as low as 20 mm and bending radii of 10 mm. For features 
below these minimum dimensions, the stay-in-place sandstone formwork can take the role of 
an ornamental exposed surface that does not necessarily transfer all the details to the cast 
concrete inside. 

A full complement of structural tests is scheduled for the next stage of the research, but the 
empirical tests performed so far by applying a 2500 KN/m2 distributed load on a concrete 
component with an average concrete thickness of 30mm were encouraging. The indication is 
that material savings of up to 70% are achievable. 
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Conclusion 
The proposed method advances the idea of using 3D printing as an indirect fabrication method 
for producing composite building components with elaborate geometry. Potential applications 
are in the realm of one-of-a-kind, non-standard building components rather than that of mass-
production. While further tests are necessary to quantify conclusively the advantages of this 
fabrication process in comparison to others, the prototypes have shown that the method is 
feasible and has a significant potential for application in architecture at a larger scale. 

For applications of this method to larger-scale building components, such as entire ceilings, 
structures would need to be assembled from multiple parts prefabricated in the proposed way. 
To prove that large spans and cantilevers are achievable, further research has to address 
following challenges: 

● Reinforcement considerations: Steel-fibre reinforcement was enough for the smaller 
prototypes, but in order to increase the structural spanning capabilities, traditional 
reinforcement bars or pre-stressing strategies are considered. Again demonstrating its 
suitability, 3D printing can be used to fabricate guiding features for the precise 
integration of reinforcement. 

● Additional functionality: A consequence of the durability of the concrete-sandstone 
bond, the 3D-printed formwork is ideally suited to stay in place and host additional 
functions. Acoustic surface treatment, heat-transfer-regulating geometry, and detailed 
ornamentation are possible, as is the integration of enclosures for mechanical and 
electrical services. This opens up the possibility of fabricating smart, integrative 
building components. 

● Fabrication process development: Up to this point, the research has relied on 
commercially available generic 3D printers. Nevertheless, this research hints at certain 
improvements to the technology that would benefit this specific application, such as 
new powder and binder combinations and the integration of post-processing.  

● Digital design tool: The findings from all the experiments are to be compiled in a 
computational design tool specifically dedicated to the design for indirect binder-jetted 
fabrication. This application will incorporate relevant design constraints and 
optimization procedures. 

The results suggest that indirect fabrication approaches can be generalised to other types of 
3D printing technologies. The solution relies on a hybrid fabrication process in which a 
precious smart material is used minimally, only where necessary, and relies on another strong 
material to perform structurally. Digital fabrication is used to produce a minor proportion of the 
final product, but has a major impact on its performance and behaviour. 
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