Vine copula modeling of high-dimensional inputs in uncertainty quantification problems

Author(s):
Torre, Emiliano; Marelli, Stefano; Embrechts, Paul; Sudret, Bruno

Publication Date:
2017-06

Permanent Link:
https://doi.org/10.3929/ethz-b-000237493

Rights / License:
In Copyright - Non-Commercial Use Permitted
First Order Reliability Method (FORM), generalized

Goal: Find (small) failure probability P_f, i.e. probability of failure domain D_f.

Steps:
1. **New:** Model F_X by marginals + vine copula: $F_X = C(F_1(X_1), \ldots, F_M(X_M))$.
2. **New:** Map $X \rightarrow X'$ is $T(X)$ with independent components and marginals F_i.
 Bring to classical FORM settings.
3. Transform marginally $X_i \rightarrow U_i$ standard normal: $U_i = \Phi^{-1}(F_i(X_i))$.
4. Find numerically the design point $U^* \in D_f$ closest to 0.
 By successive runs (few, usually $O(100)$) of the computational model M.
5. Approximate D_f by hyperplane tangent to it in U^*.
 Easy to extend to second order approximation: SORM.
 Correction factor by importance sampling.

Reliability analysis of a truss structure with generalized FORM

Truss structure (e.g. bridge):
- Subject to uncertain loads (e.g. traffic, snow, ...) P_1, \ldots, P_6.
- Works well for close-to-linear responses.
- Vine of X known (solid purple) or fitted to $(\hat{X}^j)_{j=1}^M$.

<table>
<thead>
<tr>
<th>Copula assumed</th>
<th>Method (# runs)</th>
<th>P_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Vine</td>
<td>MC (10^4)</td>
<td>4.8×10^{-4}</td>
</tr>
<tr>
<td>Gaussian</td>
<td>MC (10^4)</td>
<td>3.1×10^{-5}</td>
</tr>
<tr>
<td>Indep</td>
<td>MC (10^4)</td>
<td>1.3×10^{-5}</td>
</tr>
<tr>
<td>True Vine</td>
<td>FORM (108)</td>
<td>4.9×10^{-4}</td>
</tr>
<tr>
<td>Fitted Vine</td>
<td>FORM (148)</td>
<td>2.5×10^{-4}</td>
</tr>
</tbody>
</table>

Conclusions:
- Tail dependence matters (the independent and jointly Gaussian models fail).
- The vine representation captures such complex dependence, and ...
- It combines well with UQ techniques such as FORM.
- The vine is properly inferred from observations, yielding a close estimate P_f.

Outlook:
We are now ready to:
- Apply the novel analysis framework to real world engineering problems.
- Integrate the code in a Vine Copulas module for UQLab, the Matlab-based software for Uncertainty Quantification (www.uqlab.com)

Conclusions:
We developed a framework suitable for the use of vine copulas in UQ:
- Enables the use of advanced UQ methods when input X exhibits complex dependencies.
- Works well in combination with inference.
- Demonstrated application on reliability analysis of a truss structure.
- Not shown: used vine representations in combination with metamodeling techniques (polynomial chaos expansions).