

Presentation

Author(s):

Jacob, Romain (D)

Publication date:

2018-01-31

Permanent link:

https://doi.org/10.3929/ethz-b-000238145

Rights / license:

In Copyright - Non-Commercial Use Permitted

Romain Jacob

ETH Zurich

Prof. Langendoen Group's Seminar

January 31, 2018

Prof. Langendoen Group's Seminar

January 31, 2018 | TU Delft | The Netherlands

[URGENT] Feedback on SenSys paper draft (deadline next week!!!)

Cyber-Physical Systems are made of distributed, heterogeneous components which *interact*

Performant systems require *performant parts*

Performant systems require *performant parts* and a performant *system design*!

Something went wrong...

Performant systems require *performant parts* and a performant *system design*!

In other words

Combining components must be done carefully

Relying on well-defined interfaces

To be trusted, the system design must provide guarantees on its behavior

System design methodology

- Like user guide
- Must guarantee to work!

Predictability

Execution

Timing

Predictability

Reliability

Fault-tolerant

Predictability

Reliability

Adaptability

Reactive to events

Predictability

Reliability

Adaptability

Performance

Latency

Bandwidth

Energy

Relevant guarantees can be provided

for Cyber-Physical Systems

built on low-power wireless networks

Using well-defined interfaces

Glossy and Bolt

Implementing complex functions

Real-time scheduler

Providing guarantees in Wireless CPS

DRP – The loose coupling approach

Using well-defined interfaces Glossy and Bolt

Implementing complex functions Real-time scheduler

Providing guarantees in Wireless CPS DRP – The loose coupling approach

Luckily, some very good interfaces for Wireless CPS are available

Glossy

Network interface

between all devices

Local interface between application and communication

January 31, 2018 | TU Delft | The Netherlands

January 31, 2018 | TU Delft | The Netherlands

January 31, 2018 | TU Delft | The Netherlands

The wireless network can be scheduled like a shared bus

- Round-based design
- A central node (host) computes the schedules
- Dynamic traffic and round intervals
- Time triggered

Luckily, some very good interfaces for Wireless CPS are available

Glossy

Network interface between all devices

Local interface between application and communication

January 31, 2018 | TU Delft | The Netherlands

Predictability

Reliability

Adaptability

Performance

Tight bounds on the API execution time

Predictability

Reliability

Non-volatile memory

Adaptability

Performance

Predictability

Reliability

Adaptability

Performance

Supports interrupt-driven communication AP <-> CP

Predictability

Reliability

Adaptability

Performance

Fast Low-power Mbps μW to mW

Sutton et al.

Bolt: A stateful processor interconnect

Proc. of ACM SenSys, 2015

Using well-defined interfaces Glossy and Bolt

Implementing complex functions Real-time scheduler

Providing guarantees in Wireless CPS DRP – The loose coupling approach

Prof. Langendoen Group's Seminar

Prof. Langendoen Group's Seminar

Prof. Langendoen Group's Seminar

Parallelization of computation enables performance improvements of the communication

If the two processors are decoupled, a control mechanism is needed to guarantee a timely response

Providing Guarantees in Wireless Cyber-Physical Systems

Using well-defined interfaces Glossy and Bolt

Implementing complex functions Real-time scheduler

Providing guarantees in Wireless CPS DRP – The loose coupling approach

Prof. Langendoen Group's Seminar January 31, 2018 | TU Delft | The Netherlands

Distributed Real-time Protocol

Couple the applications as loosely as possible

Objective Maximize the adaptability

Approach

1. Synchronous communication

Glossy-based

2. Asynchronous applications Based on within some bounds contracts

Predictable interfaces

Predictable application behavior bounded by the contracts

Jacob et al.

End-to-end Real-time Guarantees in Wireless Cyber-physical Systems

Proc. of the IEEE RTSS, 2016

- Analyzable system
- End-to-end guarantees can be provided

Simulation correlates closely with the analysis

Percentage of packets [%]

- All deadlines are satisfied
- Analytic bound is tight

DRP has been implemented and tested on a real-network

For more generic test cases the pessimism increases

For more generic test cases the pessimism increases which means most packets are received quickly!

Utilization		High (92 %)	Medium (60 %)	Low (41 %)
Maximum latency	[% of bound]	41 %	65 %	58 %
	[s]	24 s	39 s	35 s
Medium latency	[% of bound]	4 %	7 %	15 %
	[s]	2 s	4 s	9 s

50% of packets!

Parameters |

Period 15 s

End-to-end deadline 60 s

Prof. Langendoen Group's Seminar January 31, 2018 | TU Delft | The Netherlands

Relevant guarantees can be provided

for Cyber-Physical Systems

built *on low-power wireless* networks

Another example

Jacob et al.

TTW: A Time-Triggered-Wireless Design for CPS

Proc. of DATE, 2018

... and you can do it too!

Most software is open source, tools and hardware are available and more is coming!

Glossy and Low-power Wireless Bus

- sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/
- github.com/ETHZ-TEC/LWB/

Bolt

- www.bolt.ethz.ch
- github.com/ETHZ-TEC/Bolt/

Flocklab

www.flocklab.ethz.ch

Coming soon

- DRP
- 'Glossy Middleware'

Providing Guarantees in Wireless Cyber-Physical Systems

Romain Jacob

ETH Zurich

Let's keep in touch! jacobr@ethz.ch

The Netherlands

Prof. Lothar Thiele

Jan Beutel

Andreas Biri Master student ETH Zurich

Fabian Walter Master student ETH Zurich

Marco Zimmerling Research group leader TU Dresden

Pengcheng Huang Former colleague ETH Zurich

Icons from

thenounproject.com

