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Abstract

The quest to create superconductors with higher transition temperatures is as old as
superconductivity itself. One strategy, popular after the realization that (conventional)
superconductivity is mediated by phonons, is to chemically combine different elements
within the crystalline unit cell to maximize the electron-phonon coupling. This led to
the discovery of NbTi and Nb3Sn, to name just the most technologically relevant exam-
ples. Here, we propose a radically different approach to transform a ‘pristine’ material
into a better (meta-) superconductor by making use of modern fabrication techniques:
designing and engineering the electronic properties of thin films via periodic patterning
on the nanoscale. We present a model calculation to explore the key effects of different
supercells that could be fabricated using nanofabrication or deliberate lattice mismatch,
and demonstrate that specific pattern will enhance the coupling and the transition tem-
perature. We also discuss how numerical methods could predict the correct design pa-
rameters to improve superconductivity in materials including Al, NbTi, and MgB2.
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Conventional — i.e., phonon-mediated — superconductors include many elemental metals
with transition temperatures between 1K and 10K, simple alloys like NbTi and Nb3Sn with tran-
sition temperatures up to ∼20K, and MgB2 with a record transition temperature of 39K at am-
bient pressure [1]. Mainly because of superior material properties that make fabrication and
handling easy, these materials have widespread technological applications, ranging from med-
ical magnetic resonance imaging to quantum information technologies. The effort to improve
the quality of these conventional superconductors for applications has all but stopped with the
discovery of high-temperature superconductors [2–4] (with notable exceptions [5–7]). Yet,
any improvement of the quality of conventional superconductors has immediate and wide-
ranging technological impact.

Here, we present a new method for such improvement using modern nanofabrication that
allows for the creation of new materials with specially designed electronic (and phononic)
structures that maximize the pairing interaction (Fig. 1). In short, the idea is to engineer the
phononic and electronic structure of a given material by introducing specific nanofabricated
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Figure 1: Electron-phonon interaction and the electron-phonon coupling parameter λ. a, Di-
agrammatic representation of the coupling between electrons with momentum k, k′ through
the exchange of a phonon with momentum q and interaction matrix element g0

kq (here depen-

dent only on q, g0
kq = g0

q). b, Due to the kinematic constraint (Eq. (1)), only scattering vectors
connecting the Fermi surface points are relevant (red arrow). c, Kinematic constraint along a
high-symmetry direction. d, The structure of the interaction matrix element determines what
kinematic constraints lead to a high electron-phonon interaction λ; in the example here a large
Fermi surface is beneficial.

Figure 2: Fabrication methods. a, Modern nanofabrication tools allow one to make nano-
patterned shapes with supercell periodicities of ®5 to 50 lattice constants. b, Different shapes
have different effects on the resulting electron-phonon coupling parameter λ. c, Different
layers of (insulating) materials on top of the thin films will influence the phonon and elec-
tron dispersions individually and can increase the phonon energies. d, Stacking allows for
3D materials. e,f, Smaller patterning are possible using Moiré engineering or single atom
manipulation.

periodic supercell structures on thin films. In many ways, the strategy we propose here is
similar to creating new superconductors by chemically changing their unit cell as it has been
done mainly in the middle of the 20th century [3], but approaching instead from the long-range
limit, as current nanofabrication already allows structures of roughly 5 to 50 unit cells [8–15].

Before elaborating on the model calculation, we sketch methods to fabricate the nanofab-
ricated patterns (Fig. 2). The starting point is a ‘pristine’ material which is generally a thin
film of a known superconductor (or any other material). One can pattern the film using stan-
dard cleanroom tools such as electron beam lithography [8], photolithography, or focused
ion beam lithography with He or Gd ions [9], to make a supercell of a given size and shape
(Fig. 2b-d). Using these methods it is possible to make periodic supercell structures down
to a few nanometers in size, and even smaller patterns are possible using Moiré engineering
(Fig. 2e) [11–13], self-assembly [16], or atomic scale manipulation with scanning probe mi-
croscopy (Fig. 2f) [14,15]. The choice of material, periodicity and supercell shape will allow
for considerable freedom to design the desired electronic and phononic structure, together or
individually.
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The transition temperature of a conventional superconductor depends on the electronic
and phononic structure as well as the coupling matrix elements in between them; the effect of
all three is conveniently summarized in the dimensionless electron-phonon coupling parameter
λ. In Bardeen-Cooper-Schrieffer theory [17, 18], the critical temperature depends exponen-
tially on λ, Tc ∝ωDe−1/λ, where ωD is the Debye frequency. λ thus represent an ideal figure
of merit. We can calculate λ of the pristine material from the interaction matrix element g0

kq
for the scattering of an electron with momentum k to momentum k+ q and the electron (εk)
and phonon dispersions (ωq), by integrating over all possible scattering processes shown in
Fig. 1a [3,18–20]. In the adiabatic limit it is given by

λpristine =
∑

k,q

2
ωqN(0)

|g0
kq|

2δ(εk)δ(εk+q). (1)

The delta functions ensure that only states at the Fermi level participate. The main ingredients
for λ are thus (i) the interaction matrix element of each process, (ii) the electronic density of
states at the Fermi level N(0)∝

∑

kδ(εk), which determines the number of allowed processes,
and (iii) the kinematic constraints from the Fermi surface and the coupling matrix element,
given by the two delta functions and their matching with the momentum-space structure of the
interaction matrix element (Fig. 1b,c). (Note that all sums are understood to be conventionally
normalized by the number of lattice sites.) In the following, we discuss how to exploit these
ingredients.

We use a model calculation that contains the key knobs of the method to explore the
opportunities of designed electron dispersions for enhancing Tc of a pristine material with a
given coupling strength g0

kq, and to demonstrate the feasibility of the concept. Our starting
point is a two-dimensional pristine material defined on a square lattice. The electrons and
phonons are coupled through the local shift of the chemical potential an electron feels due to
the deformation of the positively charged lattice background from a phonon. The resulting
interaction Hamiltonian reads [21]

Hint = D
∑

r

(∇·ur)c
†
r cr ,

where c†
r creates an electron on lattice site r and ur is the phonon displacement field. The

proportionality D indicates the change of the chemical potential per volume change and is
commonly called displacement potential. Note that in general D is not a constant, but reflects
the shape of the atomic potential. We further describe the electrons by a nearest-neighbor
tight-binding model and use harmonic potentials for the phonons. The details of the model
are described in the Appendix.

Next, we take the effect of the nano-patterned supercell into account and investigate how
this allows to increase the coupling. We concentrate on the electronic structure, as in Bardeen-
Cooper-Schrieffer theory, the details of the phonon dispersion have little effect on the critical
temperature. We use a supercell of L × L lattice sites and a hole in the center (Fig. 3a) as
a model of the realization shown in Fig. 2a, both because it is theoretically accessible and
because it appears most promising. Note, however, that within the model, we can include
different forms of supercells. For the electrons, the new supercell periodicity is reflected in a
reduction of the Brillouin zone area by a factor of L2 (Fig. 3b) and L2 back-folded bands (ξνK)
with band gaps at the reduced Brillouin zone boundary (ν is the band index). Fig. 3b shows
the resulting bands for a 6×6 supercell. These back-folded bands (“shadow bands”) can thus
in principle help to overcome the kinematic constraints discussed above or in Eq. (1). The
scattering between the back-folded bands corresponds to umklapp scattering between differ-
ent reduced Brillouin zones. The strength of these umklapp processes that connect different
states is determined by a ‘weighting’ related to the transformation between old and new basis,
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Figure 3: Increased electron-phonon coupling parameter λ. a, Illustration of our model with
a square lattice and a 6×6 supercell with a 2×2 hole; results for different supercell sizes and
shapes are in Fig. 4. b, The supercell periodicity reduces the size of the Brillouin zone by a
factor L (black line). The extended Brillouin zone is plotted as we consider umklapp scattering
between different zones. The bands ξνk are shown in gray, the blue color marks the ‘weight’.
c, Density of states of the pristine material (red) and the material with supercell (blue). d,
The phase space for scattering. The darkness indicates how much phase space is available,
the red-blue indicates the strength of the interaction matrix element g0

kq = g0
q . In the pristine

material, only small scattering vectors are allowed due to the kinematic constraints; in the
modified material, larger q, where the interaction is stronger (red) are possible. e, f, λq as an
indication of how much different modes couple, as a color plot (e) and along a high-symmetry
direction (f) where the width of the line indicates the contribution of a phonon with that wave
vector.

which is closely related to the overlap of the new states with the states of the pristine material
(denoted by blue lines in 3b). It is this weight that ensures that in the limit of large supercells,
the enhancement of λ must vanish. Choosing the shape and size of the supercell allows to
influence the weight and have the new scattering vectors align with the interaction matrix
element of the pristine material at specific q points. Here, we absorb the weighting into a new
interaction matrix element gνν

′

Kq . The electron-phonon coupling constant of Eq. (1) now takes
the form

λnew =
∑

K,q,ν,ν′

2
ωqN(0)

|gνν
′

Kq |
2δ(ξνK)δ(ξ

ν′

K+q). (2)
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The sum runs over all momenta K inside the reduced Brillouin zone, and all q vectors in the
Brillouin zone of the pristine material. This is equivalent to allowing umklapp scattering, but
only within the first Brillouin zone of the pristine material, and allows to make a meaningful
comparison with the pristine material.

Qualitatively, to achieve the highest coupling constant λ, we need to move weight from
the original Fermi surface to match with the points of strongest electron-phonon coupling.
For example, in many materials the interaction matrix element favors certain large scattering
vectors [6]. It is then beneficial to allow many processes, where these wave vectors can scatter.
In our example, we achieve precisely that: because the shadow bands cover much more area
in the Brillouin zone, more phase space is available where it matters. This is relevant for
materials like MgB2, where the coupling is strong for a small region in q space only, and
giving more space in k space would be beneficial. In such a situation, the nanopatterning
also weakens the Kohn anomaly and thus increases the phonon energy, further benefitting the
superconductivity [5].

Figure 4: Enhancement of λ and Tc . a, Dependence of the coupling constant λ on the supercell
size L and shape, normalized by the change in N(0) (see Appendix for details). The labels
are for all markers with the same color. All values are relative to the pristine material and
normalized for density of states effects. The filling in both pristine and meta-superconductor is
0.5% for all supercell sizes, to ensure that we are below the first band gap and thus concentrate
on the kinematic constraints. b Dependence of the coupling constant λ on the filling. Here,
the resulting change is a combination of density of states effects and kinematic effects.

Figure 4a summarizes our results for different supercell shapes and sizes. Even for larger
supercell sizes, coinciding with what is presently possible with nanofabrication, one can im-
prove the electron-phonon coupling by ‘aligning’ the kinematic constraints. Further, there is
a clear dependence on the shape of the supercell. Finally, a strong effect stems from the in-
creased density of states at certain energies due to the opening of band gaps. Fig. 4b shows
the total coupling as a function of filling. The enhancements/suppressions at different fillings
stem from density of states effects and from alterations of the phase space.

The electronic structure is not the only driver of the coupling. The periodic supercell struc-
ture can have a strong effect on the phonons as well. Designing phonons is well studied in
opto-mechanics [22] and sonic engineering [23], but in the Eliashberg approximation they
do not significantly influence the overall coupling [3]. More accurate calculations that take
the retardation effects better into account go beyond the scope of this paper, but we note that
recent Monte Carlo simulations revealed a strong dependence of the phonon energy on the
superconducting transition temperature [24], showing the additional potential of phonon en-
gineering. We further mention that important effects such as the suppression of competing
orders (e.g., charge density waves), or the improvement of screening [25] similar to recently
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proposed colloid arrays [26,27] could yield further opportunities for improved superconduc-
tors.

While a model calculation as presented here allows to make educated guesses for a nano-
patterning strategy on real materials, more sophisticated approaches can be used for specific
materials. Local density approximation calculations can determine the exact phononic and
electronic structure of simple materials, with supercell sizes in the range of several tens of
lattice sites, and even take into account effects from dangling bonds. Second, finite-element
calculations in combination with a tight-binding approach have proven to be a powerful tool to
calculate the phononic structures at very low frequencies [22,23]. For materials, where these
branches are known to dominate electron-phonon coupling, this approach, generalized also
for the electronic structure, will be useful. Third, new theoretical models that directly connect
available parameters like ultrasonic attenuation with the coupling parameter λmight be useful
for materials, where less is known about the underlying microscopic structure. Importantly,
these methods should allow searches in a wide parameter space for specific materials.

To conclude this paper we would like to note that ‘natural’ nanoscale patterning has been
seen in many quantum materials [28–33]. (The effects described in this Letter are weaker but
present in structures with clear spatial correlation length.) It is known that, depending on the
lenghtscale, granular aluminum [32,33] can have enhanced Tc compared to the constituents,
but the cause for this is still debated. In high-temperature superconductors, a granular struc-
ture seems to be native to the material [29, 30]. Further, some interface superconductors
can show superstructures due to Moiré effects. Finally, in fullerene superconductors, the C60
molecules form native supercells [28]. Some of these superconductors might not be driven by
phonons, but most of our calculations are rather independent of the character of the mediat-
ing bosons. Whether there is a connection between these materials and the method presented
here, and whether artificially designed granularity can be superior to the current state in these
materials remains to be seen.
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A Appendix: Model calculation

In this Appendix, we describe in more detail our model calculation for a square lattice with a
nano-patterned supercell. We use the following strategy:

1. For illustration and for comparison, we first consider the model for the pristine mate-
rial with the coupling matrix element g0

kq, the resulting coupling constant λ, and the
transition temperature Tc .

2. We model the supercell by setting the electron hopping to zero to the sites that are part of
the hole, and find the new basis in which the electron Hamiltonian is diagonal. Further,
we find the eigenvalues and transformation matrices.
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3. We take the pristine interaction Hamiltonian, but replace the original electron operators
by the new basis. This allows us to obtain the new interaction matrix element gνν

′

Kq
between the new eigenstates. Here, we ignore the folding of the phonons because the
details of their dispersion is not crucial in BCS theory.

4. We calculate the coupling constants λ from the new interaction matrix elements and
electron dispersions.

A.1 Model for the pristine material

We start by describing the model for the pristine material (before the nano-patterning), a
two-dimensional square lattice with N × N sites and Hamiltonian

H =Hel +Hph +Hel−ph, (3)

whereHel,Hph,Hel−ph are the electronic, phononic, and interaction parts of the Hamiltonian,
respectively.

For the electronic part, we use a tight-binding description on the ions’ equilibrium positions
assuming nearest-neighbour hopping only with hopping element t,

Hel = −t
∑

(r,r′)

c†
r cr′ −µ

∑

r

c†
r cr , (4)

where c†
r (cr ) is the electron creation (annihilation) operator, µ is the chemical potential and

r denote the lattice sites. The electron creation operators in momentum space are

c†
k =

1
N

∑

r

e−ik·rc†
r , (5)

with
kx , ky ∈ {−

π

a
,−
π

a
N − 1

N
, . . .

π

a
N − 1

N
}, (6)

where a is the lattice constant (in the following, we set a = 1). These operators diagonalize
the electronic Hamiltonian Eq. (4),

Hel =
∑

k

εkc†
kck, (7)

with εk = −2t(cos kx + cos ky)−µ the electron dispersion.
We consider acoustic phonons stemming from nearest-neighbor (κ) and next-nearest-

neighbor (κ′) springs on a square lattice,

Hph =
∑

r

p2
r

2m
+
κ

2

∑

(r,r′)

�

enn · (ur − ur′))
�2
+
κ′

2

∑

[r,r′]

�

ennn · (ur − ur′)
�2
+
κ′′

2

∑

r

u2
r , (8)

where pr are the ion momenta, ur are the deviations from equilibrium of the ions at site r, m
is the ion mass, and κ, κ′ are the spring constants. enn and ennn denote the unit vectors in
the direction of nearest and next-nearest neighbours, respectively. To facilitate numerics, we
added a “mass-term” κ′′ that removes the modes with zero energy. In the above sum, (r, r′)
denotes nearest neighbours and [r, r′] denotes next-nearest neighbours. It is convenient to
write the potential part of the phonon Hamiltonian in matrix form,

Hph =
∑

q

�

ux
q uy

q
�

H

�

ux
−q

uy
−q

�

, (9)
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with the matrix

H=

�

2κ sin2( qx
2 ) + κ

′(1− cos qx cos qy) + κ′′ κ′ sin qx sin qy

κ′ sin qx sin qy 2κ sin2(
qy
2 ) + κ

′(1− cos qx cos qy) + κ′′

�

.

(10)
Diagonalizing this matrix leads to the phonon spectrum

ω±q =
2
m

�

κ sin2
�qx

2

�

+κ sin2
�qy

2

�

+κ′
�

1− cos qx cos qy

�

+ κ′′
�

±
2
m

√

√κ2

4
(cos qy − cos qx)2 +κ′2 sin2(qx) sin2(qy).

(11)

The (normalized) eigenvectors of the matrix, e±q , indicate the polarisations of the normal
modes. Along the high-symmetry axes (the nearest and next-nearest neighbour directions),
as well as in the limit q = |q| � 1, e+q points exactly along the longitudinal direction, and e−q
along the transversal direction. For the parameters considered here, the deviation of e+q from
the longitudinal direction is small: e+q · q/q ≥ 0.95 throughout the Brillouin zone. We thus

approximate e+q ≈ elong
q = q/q.

The phonon Hamiltonian can be written in second-quantized form by introducing the
phonon creation and annihilation operators aq,±, a†

q,±. The displacement of the ion at site
r is then

ur =
1
N

∑

q,±
e±q eiq·ru±q

=
1
N

∑

q,±
e±q eiq·r

� ħh
2mω±q

�
1
2 �aq,± + a†

−q,±
�

.
(12)

We introduce the coupling of the electrons to the lattice by considering the energy change
of the electronic states when the background (ion) density changes as the crystal expands/con-
tracts, analogous to the dependence of the chemical potential on the density for a free electron
gas. This leads to the interaction Hamiltonian

Hel−ph = D
∑

r

∆Vr

V
c†
r cr . (13)

The constant D indicates the proportionality between change of the chemical potential and
volume change ∆V/V ; it is commonly called displacement potential. For acoustic phonons,
the volume change is approximately given by the divergence of the displacement field,

∆Vr

V
≈∇ · ur. (14)

Using the expression in Eq. (12), we can write

∇ · ur =
1
N

∑

q,±
∇ · e±q eiq·r

� ħh
2mω±q

�
1
2 �aq,± + a†

−q,±
�

=
i
N

∑

q,±
q · e±q eiq·r

� ħh
2mω±q

�
1
2 �aq,± + a†

−q,±
�

≈
i
N

∑

q

qeiq·r
� ħh

2mω+q

�
1
2 �aq,+ + a†

−q,+

�

,

(15)

where we approximated q · e+q ≈ q and q · e−q ≈ 0 as described above, i.e. only the phonons
with energy ω+q , which are approximately the longitudinal phonons, couple to electrons, in
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accordance to Adler’s theorem. For simplicity of notation, we will drop the ‘+’ in the following.
Note that there are different models that lead to a similar coupling Hamiltonian; overviews
can be found in Refs [21,34–36]. We also note that in the case of the lattice considered there,
the divergence is of the form ∇·ur ≈ [sin2 qxux

q + sin2 qyuy
q ], however, as this will not change

the ratios displayed in Fig. 4 of the main text, we continue with the continuum approximation
above. Inserting Eq. (15) into Eq. (13) and using q= k− k′ yields

Hel−ph = D
∑

r

∆Vr

V
c†
r cr

=
i

N3

∑

r

∑

kq

ei(q+k−k′)·rDq

� ħh
2mωq

�
1
2 �aq + a†

−q

�

c†
k′ ck

=
i
N

∑

kq

g0
kq

�

aq + a†
−q

�

c†
k+qck,

(16)

with the coupling matrix element

g0
kq = g0

q = Dq
� ħh

2mωq

�
1
2 = Dq

� ħh
2mωq

�
1
2
, (17)

where we also introduced the momentum dependent proportionality Dq. In the simple ap-
proximation above, it is given by the expression above with D being a constant, but more
generally it is related to the Fourier transform of the atomic potential, leading to different,
material-specific expressions.

Given the interaction matrix element in Eq. (16), the dimensionless coupling parameter λ
can be expressed as

λ=
1

N4

∑

kq

2
ωqN(0)

|g0
q|

2δ(εk)δ(εk+q). (18)

The product of delta functions δ(εk)δ(εk+q) ensures that only electrons at the Fermi level
contribute (we assume that phonon energies are much smaller than the Fermi energy), yielding
a kinematic constraint. It is often instructive to calculate the q or k dependence of the coupling
constant, λq and λk, by summing over all other variables. This yields the contributions of a
given phonon mode q or the contributions of a given electronic state k to the coupling constant
λ.

Finally, we can calculate the transition temperature Tc using the standard Bardeen-Cooper-
Schrieffer (BCS) theory or using the Allen-Dynes approximation in Eliashberg theory. In BCS,
we have the standard exponential dependence,

Tc = 1.13ωDe−
1
λ , (19)

where ωD is a measure of the phonon energy, usually taken to be the Debey energy. In Eliash-
berg theory we can approximate the transition temperature by

kB Tc =
ħhωln

1.2
exp

� 1.04(1+λ)
λ−µ∗(1+ 0.62λ)

�

, (20)

where µ∗ is the Coulomb pseudopotential. ωln is referred to as ‘logarithmic average’ of the
phonon energy, defined by

ωln = exp
�2
λ

∫ ∞

0

dν ln(ν)
α2F(ν)
ν

�

, (21)

with
α2F(ν) =

1
N4

1
N(0)

∑

kq

δ(ν−ωq)|g0
kq|

2δ(εk)δ(εk+q). (22)
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A.2 Electron part of the Hamiltonian with a supercell

We now consider a supercell with L× L sites as discussed in the main text. First, we introduce
some nomenclature: We denote the number of supercells with M2 = (N/L)2, each containing
L2 ions, giving the same total number of atomic sites as our pristine model, N2. We indicate
the equilibrium position of each ion with r = R+ τ, where R is the position of the supercell
and τ is the position within the supercell. As before, the deviation of the ions from their
equilibrium position is denoted by ur and the electron creation (annihilation) operators by
c†
r (cr ). To introduce the supercell, we now allow for arbitrary chemical potentials µτ at site
τ inside the supercell and arbitrary hopping constants tτ,τ′ for neighbouring sites τ and τ′

within the supercell, all preserving the L-periodicity,

Hel = −
∑

(r,r′)

tτ,τ′ c
†
r cr′ −

∑

r

µτc†
r cr . (23)

We can bring this Hamiltonian in block-diagonal form by introducing a Fourier transform
of the electron operators with respect to the new periodicity,

c{r=R+τ} =
1
M

∑

K

eiK·RcτK . (24)

Note that here and in the following, we use capital letters K= (Kx , Ky) to denote the reciprocal
wave vectors with respect to the supercell periodicity L, i.e.,

Kx , Ky ∈ {−
π

La
,−
π

La
M − 1

M
, . . .

π

La
M − 1

M
}.

This leads to the block diagonal Hamiltonian

Hel =
∑

K

c†
K[HK]cK, (25)

where we introduced the vectors of operators cK = (c1
K, c2

K, . . . cL×L
K ). For simplicity, when used

as an index, we write τ instead of a vector τ for the position within the supercell.
Each block Hamiltonian [HK] is an L2× L2 matrix. It contains diagonal elements with the

chemical potentials of all L2 sites, all the hopping elements, as well as the phase factors for
connections between sites in adjacent supercells. Specifically, its elements are

[HK]
ττ′ = −µτδττ′ − tτ,τ′δ(τ,τ′) − tτ,upδ(τ,up)e

−i LKy − tτ,downδ(τ,down)e
i LKy

− tτ,rightδ(τ,right)e
−i LKx − tτ,leftδ(τ,left)e

i LKx , (26)

where again we use a single index to denote the position in the supercell, and δττ′ = 1
only when τ and τ′ are the same while δ(ττ′) = 1 when τ and τ′ are nearest neighbours.
δ(τ,right) = 1 when τ is nearest neighbour to a site in the next supercell to the right, and sim-
ilar for left, up and down. It is instructive to look at this in one dimension, in which case the
block Hamiltonian [HK] is an L × L matrix:

[HK] =













−µ1 −t12 −t1,Le−i(La)K

−t21 −µ2
. . .

−µL−1 −tL−1,L

−tL,1ei(La)K −tL,L−1 −µL













. (27)
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Finally, diagonalizing the matrices [HK] for each K yields the eigenstates with operators

γνK =
∑

τ

[UK]
ντcτK , (28)

with transformation matrices [UK]ντ and the corresponding eigenenergies ξνK such that

Hel =
∑

K

∑

ν

ξνK(γ
ν
K)

†γνK. (29)

It is possible to implement any kind of supercell with different chemical potentials µτ and
hopping tττ′ in our calculation. To model the specific hole that we describe in the main text,
we first designate some sites as part of the hole. These sites have zero hopping probability to
all neighbours, leaving the states completely non-dispersive. Then, we increase the chemical
potential at all hole sites to move the non-dispersive states above the relevant bands and thus
ensure that only the latter contribute to superconductivity.

A.3 Phonon part of the Hamiltonian with a supercell

Structures with periodic patterning made to alter phonon dispersions have been created in the
context of opto-mechanics, where they are known as ‘phononic crystals’ [22], or in the context
of sound insulation and engineering, where they are known as ‘sonic crystals’ or ‘acoustic
metamaterials” [23].)

While the periodically patterned films we propose influence both phononic and electronic
structure, the fabrication method allows us to chose which one we influence strongest. In this
Letter, we concentrate on the electronic structure, as in general the critical temperature within
the BCS framework is not influenced by the momentum dependence of the phonon energies;
models that correctly take phonon folding into account go beyond the scope of this paper.

The calculations of the folding of phonons using distributed mass-spring elements is similar
to what we describe for electrons, and it has been done in the context described above. For
detailed description of the formalism see e.g. Refs [23, 37, 38]. (One can also calculate the
phonon dispersions in the elastic approximation [22].) For the model in the main text we
require a hole in the pristine material. The spring constants to the sites that are part of the
hole are set to be small compared to the spring constant of the pristine material, to avoid
coupling, and the masses to be heavy to suppress movements.

A.4 The electron-phonon coupling in a system with supercells

We now want to write the new interaction matrix element gνν
′

Kq of our meta-material as a

function of the folded electronic structure and interaction matrix element g0
q of the pristine

material.
Our starting point is again the interaction Hamiltonian of the form

Hel−ph =
∑

r

D∇ · ur
︸ ︷︷ ︸

(I)

c†
r cr
︸︷︷︸

(II)

. (30)

As in the pristine case, we write for the phonon part

(I) = D∇ · ur

≈
i
N

∑

q

g0
qeiq·r�aq + a†

−q

�

. (31)
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However, we now replace the electron operators of the pristine material with the operators of
the new eigenstates. The real space electron operators are then given by

c{r=R+τ} =
1
M

∑

K

∑

ν

eiK·R[U†
K]
τνγνK. (32)

This yields an electron part

(II) = c†
r cr

=
1

M2

∑

KK′

∑

νν′

�

eiK·R(γνK)
†UντK

��

e−iK′·R[U†
K′]
τν′γν

′

K′

�

=
1

M2

∑

KK′

∑

νν′

ei(K−K′)·R[UK]
ντ[U†

K′]
τν′(γνK)

†γν
′

K′ .

(33)

Putting both together and using

1
M2

∑

R

ei(q−K+K′)·R =
∑

l

δK,K′+Q+ 2π
La l, (34)

(introducing q= Q+ 2π
La l) we obtain

Hel−ph =
∑

r

D (∇ · ur)c
†
r cr

=
i

M2N

∑

R,τ

∑

KK′

∑

Q,l

∑

νν′

ei(K−K′−Q)·R[UK]
ντ[U†

K′]
τν′(γνK)

†γν
′

K′ g
0
qeiq·τ�aq + a†

−q

�

=
i
N

∑

KQ

∑

l

∑

τ

∑

νν′

g0
qeiq·τ[UK+Q]

ντ[U†
K]
τν′(γνK+Q)

†γν
′

K

�

aq + a†
−q

�

.

(35)

Note that the sum runs over all K inside the reduced Brillouin zone, and all q vectors in the
Brillouin zone of the pristine material. This is equivalent to allowing umklapp scattering, but
only within the Brillouin zone of the pristine material, to make a meaningful comparison with
the pristine material.

Finally, we rewrite the interaction Hamiltonian as

Hel−ph =
i
N

∑

KQ,l

∑

νν′

gνν
′

Kq (γ
ν
K+Q)

†γν
′

K

�

aq + a†
−q

�

, (36)

with the coupling vertex for the new eigenstates

gνν
′

Kq = g0
q

∑

τ

eiq·τ[UK+Q]
ντ[U†

K]
τν′ . (37)

Again, the displacement potential proportionality can have a complex, material-specific q de-
pendence, i.e. D does not need to be constant. This stems from the spatial dependence of the
deformation potential, and reflects the interaction matrix element in real materials such as
MgB2.

A.4.1 Coupling parameter λ and transition temperature Tc

We calculate the coupling parameter λ similar to the case of the pristine material, where we
used

λpristine =
1

N4

∑

kq

2
ωqN(0)

|g0
q|

2δ(εk)δ(εk+q), (38)
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but now replacing the interaction matrix element from the pristine material, g0
q , with the

one calculated above, gνν
′

Kq , and summing over momenta q in the ‘large’ Brillouin zone of the
pristine material. As mentioned, one can interpret this as including an amplitude for umklapp
scattering in between the new, ‘small’ Brillouin zones. This yields

λSC =
1

N4

∑

Kqνν′

2
ωqN(0)

|gνν
′

Kq |
2δ(ξνK)δ(ξ

ν′

K+q), (39)

with gνν
′

Kq defined above. Note that this is now a multi-band superconductor. Throughout this
work, we use the coupling parameter λ as a figure of merit. We emphazise that it is directly
related to the transition temperature Tc according to Eqs 19-22.

A.4.2 Numerical implementation

We use the commercial Matlab package for all calculations, and we will now briefly outline
how all calculations can be expressed as combinations of matrix operation and matrix diag-
onalization. We start with the interaction matrix element from Eq. (37) and insert it into
Eq. (39):

λSC =
1

N4

∑

Kqνν′

2
ωqN(0)

|gνν
′

Kq |
2δ(ξνK)δ(ξ

ν′

K+q)

=
1

N4

∑

Kqνν′

2
ωqN(0)

�

�

�

�

g0
q

∑

τ

eiq·τ[UK+q]
ντ[U†

K]
τν′
�

�

�

�

2

δ(ξνK)δ(ξ
ν′

K+q)

=
1

N4

∑

Kq

2
ωqN(0)

|g0
q|

2
∑

νν′

�

�

�

�

∑

τ

eiq·τ[UK+q]
ντ[U†

K]
τν′δ(ξνK)

�

�

�

�

2

δ(ξν
′

K+q)

=
1

N4

∑

Kq

Fq

∑

νν′

�

�

�

∑

τ

eiq·τ[UK+q]
ντ[U†

K]
τν′
�

�

�

2
δ(ξνK)δ(ξ

ν′

K+q),

(40)

with

Fq =
2

ωqN(0)

D2
qħh

2mωq
= |g0

q|
2 2
ωqN(0)

. (41)

In the last two steps we used the fact that the terms we took outside the sum are positive
and independent of νν′. We further define λKq such that λSC = 1/(N2M2)

∑

KqλKq.
Now we can rewrite this into a form convenient for numerical matrix operations:

λKq =
Fq

L2

∑

νν′

�

�

�

∑

τ

eiq·τ[UK+q]
ντ[U†

K]
τν′
�

�

�

2
δ(ξνK)δ(ξ

ν′

K+q)

=
Fq

L2

∑

νν′

�

�

�

∑

ττ′

[UK+q]
ντ[δττ′e

iq·τ]ττ
′
[U†

K]
τ′ν′
�

�

�

2
δ(ξνK)δ(ξ

ν′

K+q)

=
Fq

L2

∑

νν′

�

�

�

�

[UK+q] ∗ [diag(eiq·τ)] ∗ [U†
K]
�νν′

�

�

�

2
δ(ξνK)δ(ξ

ν′

K+q)

=
Fq

L2

∑

νν′

�

�

�

�

[UK+q] ∗ [diag(eiq·τ)] ∗ [U†
K]
�νν′

�

�

�

2
?
�

δ(ξν
′

K+q) ∗δ(ξ
ν
K)
�

,

(42)

where ∗ indicates a matrix multiplication, ? indicates element-wise multiplication, and
[diag(eiq·τ)] is a L2 × L2 diagonal matrix with diagonal elements (eiq·τ). The sum over νν′

is then the sum over matrix elements after taking the absolute square. The multiplication
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δ(ξν
′

K+q) ∗ δ(ξ
ν
K) is a multiplication of a L2 × 1 vector with a 1× L2 vector yielding a L2 × L2

matrix.
For Figure 4a in the main text, we want to concentrate on kinematic effects only. We take

care of a normalisation in the following way. First, we always compare to the pristine material
at the same filling. Second, for the results shown in Fig. 4a, we normalize by the density of
states to concentrate on the kinematic effects only.
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