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Abstract Constitutive models based on non-associated
flow rule enable the accurate description of complex
anisotropy phenomena by using distinct, but relatively sim-
ple, mathematical description for yield function and plastic
potential. The computational complexity of stress integra-
tion procedure may thus be significantly reduced. The
amount by which this advantage is reflected to the total
computation time is, however, a function of the nonlinear-
ity of the problem at hand. The present work aims to make
a systematic comparison of two different stress integra-
tion algorithms, used in conjunction to non-associated flow
rule. A fully explicit and semi-implicit integration scheme
are analyzed in terms of accuracy and speed. The imple-
mented yield model is Yld2000-2d with isotropic hardening.
The validity of the stress-integration approaches is assessed
based on the ability to reproduce stress-ratios, r-values and
tensile test results. Additionally, measured earing profiles in
cup drawing experiments are compared. The fully explicit
implementation shows significant advantages in terms of
speed.
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Introduction

Phenomenological constitutive models require the simulta-
neous satisfaction of the yield condition, consistency condi-
tion and the flow rule. A flow rule describes the relationship
for an increment in plastic strain and thus possesses an
important role in the accuracy of plastic deformation. For
metallic materials, which are essentially isochoric under
plastic deformation, the plastic strain increment is tradition-
ally assumed to be dependent on (or normal to) the yield
surface. This is mainly motivated by the postulation that
plastic flow follows the normal to the yield locus and that
the yield locus also represents the plastic potential. Further-
more the research as by [9, 15–17] and others, showed that
associated flow rule (AFR) guarantees a unique solution
of the constitutive equations. The acceptance of AFR has
been further strengthened by the work of [8] who derived
the associated flow rule from a polycrystalline model
under the assumption that Schmidt’s law governs plastic
deformation.

Many anisotropic yield functions have been proposed
and successfully used together with an associated flow rule.
An early proposal by [18] is still one of the most widely
used models in describing anisotropy for mild steel. Later
the research by [19] extended the original formulation for
a higher order flow exponent. Barlat and Lian [6] and [3,
5] introduced non-quadratic yield loci based on one lin-
ear transformation. Later the Yld2000-2d formulation was
introduced by [4], based on two linear transformations. A
similar formulation was proposed by [1]. Cazacu et al.
[13] introduced an orthotropic asymmetric yield criterion
without pressure sensitivity, which was further extended to
a strain-rate potential by [14]. Yoon et al. [35] recently
sugge sted a pressure sensitive asymmetric yield function
formulation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-017-1347-6&domain=pdf
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Non-associated flow rule (non-AFR) based models,
which define yield function and plastic potential indepen-
dently, have been widely used for geotechnical, granular
and pressure sensitive materials for decades. Spitzig and
Richmond [25] who demonstrated a pressure sensitivity of
some steel and aluminum alloys inspired further investiga-
tions in this field by [10–12, 27]. Li and Richmond [20]
addressed the issue of stability under non-AFR, [28, 29]
established the necessary and sufficient conditions to ensure
the stability. One of the most important benefits of non-AFR
is the additional freedom provided by distinct yield locus
and plastic potential. This enables reproducing a complex
material behavior using simpler mathematical expressions
as proposed by [36] or by the combination of two different
functions, as discussed by [26] and [23]. The advantages of
non-AFR in predicting earing profiles in cup drawing was
thoroughly investigated by [22, 23, 30, 31, 33, 34].

In the scope of this work, an Euler-forward stress inte-
gration algorithm [21] and the Euler-backward stress inte-
gration method [32] will be systematically investigated for
their performances within the framework of non-AFR based
models. While Euler-backward formulation is more com-
plicated to be implemented, it remains stable with a larger
time step, potentially leading to overall performance gain.
On the other hand, Euler-forward integration scheme is
stable only for small strain increments an thus more ade-
quate for use in explicit codes with no or limited mass/time
scaling. The comparisons have been made using two alu-
minum alloys. AA5042 whose data was taken from [22]
and AA6016, which was characterized at IVP, ETH Zurich.
One element tests in different directions are used to validate
the efficiency of the integration algorithms, in the absence
of external sources of non-linearity. The analysis is then
extended to more complex geometries of tensile test and cup
drawing tests.

Constitutive model

The constitutive models as well as numerical implemen-
tations are discussed in this section. The materials are
assumed to be orthotropic, with no strength differential in
tension and compression and obeying isotropic hardening.

The yield condition can be written as follows:

φy(σ ) − σy(ε̄p) = 0 (1)

where φy is the yield function depending on the Cauchy
stress tensor σ and σy is the yield stress as the function of
effective plastic strain ε̄p. The flow rule under non-AFR is
defined using a plastic potential function φp independent of
φy and thus reads

dεp = γ
∂φp

∂σ
(2)

where γ is the plastic multiplier and dεp is the incremen-
tal plastic strain tensor. If associated flow is assumed and
the yield locus/potential function is homogeneous, the plas-
tic multiplier corresponds to the increment of equivalent
plastic strain dε̄p. The derivation of the plastic multiplier
for non-AFR, has been treated in detail by [24], where dif-
ferent strategies were proposed for an appropriate scaling
of the incremental plastic strain tensor. The theoretically
required scaling factor can be derived based on the principle
of plastic work equivalence:

φydε̄p = σ : dεp (3)

using Euler’s theorem

σ : ∂φp

∂σ
= φp (4)

and substituting Eq. 2 into Eq. 3, γ becomes

γ = dε̄p

φy

φp

(5)

This simplifies to γ = dε̄p in case of associated flow rule.

Inverting the equation the scaling factor is found as φp

φy

dε̄p = γ
φp

φy

(6)

Explicit numerical formulation

The implemented stress integration algorithm is based on
the forward-Euler tangent cutting plane algorithm (TCPA)
proposed by [21]. Following [24], the implementation uses
the scaled simplified method, where the yield locus and
potential are only scaled to intersect for uniaxial tension
along the rolling direction. Safaei et al. [24] have shown

Table 1 Experimental
stress-ratios and r-values for
AA5042 by [22] and for
AA6016 determined at IVP

Angle from rolling direction 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Biaxial

AA5042

Stress-ratio 1.0000 1.0000 1.0174 1.0149 1.0174 1.0373 1.0448 1.1090

r-value 0.3840 0.1920 0.6500 1.0700 1.2990 1.2240 1.4360 0.9910

AA6016

Stress-ratio 1.000 − − 0.965 − − 0.973 0.986

r-value 0.686 − − 0.500 − − 0.666 1.000
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Table 2 Parameters for
associated and non-associated
flow rule for AA5042 and
AA6016

a α1 α2 α3 α4 α5 α6 α7 α8

AA5042

Yield φy 8 −0.8052 1.6285 0.1199 0.7976 1.0216 0.8131 0.7547 1.3230

Potential φp 14 −1.2243 1.8246 −1.0709 0.3568 1.0023 0.9091 0.9997 1.8108

AFR 8 0.5667 1.2335 0.9908 0.8969 0.9741 0.6567 0.9745 1.0808

AA6016

Yield φy 6 0.9629 1.0656 0.9904 1.0168 1.0111 1.0360 1.0317 1.0682

Potential φp 4.5 0.9793 0.8937 0.9255 1.0271 1.0243 0.9712 0.8765 1.1713

AFR 4.5 0.9936 0.9023 0.8855 1.0448 1.0351 1.0376 0.8930 1.2502

with a number of tests, that this method has almost the same
precision as the full scaled method shown in Eq. 6. The yield
locus used in this work is Yld2000-2d as proposed by [4]
The steps of the TCPA implementation are discussed in the
following.

The nth increment of the algorithm is initialized by
updating the trial stress with an elastic increment:

σ n
trial = σ n−1 + C : dεn (7)

Here C is the fourth order elasticity tensor according to
Hooke’s law and dε is the total strain increment. The latter
is received from the main LS-DYNA-3D code as an input
for the user-subroutine and is externally computed using the
rate of deformation tensor Dn as follows:

dεn = dtn · Dn (8)

where dt is the current time step. The trial stress is used to
evaluate yield locus, plastic potential and yield stress

φn
y = φy

(
σ n

trial

)

φn
p = φp

(
σ n

trial

)

σn
y = σn

y

(
ε̄n
p

) (9)

and the yield condition is checked

gn = φn
y − σn

y (10)

If gn is less than zero, the step was indeed elastic and no
plastic correction is necessary. Otherwise, an increment for
the plastic multiplier �γ is evaluated

�γ = gn

∂φn
y

∂σ
C

∂φn
p

∂σ
− ∂σn

y

∂ε̄n
p

(11)

and the total plastic corrector is updated: γ = γ +�γ . This,
in turn, is used to update the effective plastic strain and the
total stress tensor as follows:

ε̄n+1
p = ε̄n

p + γ

σ n+1
trial = σ n

trial − γC
∂φn

p

∂σn
trial

(12)

Yield function, potential and hardening are updated using
this new trial stress state and then the yield condition is
checked again:

gn+1 = φn+1
y − σn+1

y ≤ T OL (13)

The tolerance used in the implementation is T OL = 1.0E−
5. If the condition is satisfied, all variables are updated
for the next state. Otherwise, the process is repeated from

Fig. 1 Yield locus and potential
shapes for (a) AA5042 and (b)
AA6016
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Table 3 Hardening curve parameters for AA5042 (Voce) and AA6016
(Hockett-Sherby)

A B m q

Voce 375.08 107.28 17.859 −
Hocket-Sherby 352.355 228.655 5.62 0.865

Eq. 11. Usually, no more than two sub-increments are
needed due to small time steps in explicit FEM. The reader
is referred to [21] for the derivation of the intermediate
steps.

Implicit numerical formulation

The multi-stage return mapping algorithm, proposed by [32]
has been chosen as the implicit numerical method. The
algorithm executes a stepwise return mapping of the ini-
tially selected elastic trial stress σ T onto the evolving yield
locus and simultaneously satisfying normality and consis-
tency conditions. The consistency condition for the kth step
during iteration n can be written as:

g1(γk) = φy(σ k) − σy

(
ε̄n
p + γk

)
− Fk = 0 (14)

where Fk is constant to limit the current step and is ulti-
mately set to zero at the end of the increment. The stress

Fig. 3 Mesh for tensile test specimen

tensor at the kth step is obtained by projecting the trial
stress in the direction of the estimated normal of the plastic
potential:

σ k = σ n
trial − γkC

(
∂φp

∂σ

)

k

(15)

This can be rewritten as a second vector function to be
satisfied

g2(γk, σ k) = C−1 (
σ k − σ n

trial

) + γk

(
∂φp

∂σ

)

k

= 0 (16)

Linearizing the functions g1 and g2 delivers the following
conditions:

g1 + �g1 = g1 + ∂φy

∂σ k

�σ k + ∂σy

∂ε̄p

�γk = 0 (17)

g2 + �g2 = g2 + ∂g2

∂σ k

�σ k + ∂g2

∂ε̄p

�γk = 0 (18)

Solving Eq. 18 for �σ k gives

�σ k = −E−1
(

g2 + �γk

∂φp

∂σ

)
(19)

Fig. 2 Stress-ratio (a) and
r-value (b) comparison for both
AA5042 and AA6016 with
YLD2000, AFR and non-AFR
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Fig. 4 Simulated tensile test
result of AA6016 (a) and
AA5042 (b)
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with

E = C−1 + γk

∂2φp

∂σ∂σ
(20)

Substituting Eq. 19 into Eq. 17 and rearranging an explicit
expression for the subincrement size �γk is obtained:

�γk =
g1 − ∂φp

∂σ
E−1g2

∂φy

∂σ
E−1 ∂φp

∂σ
+ ∂σy

∂ε̄p

(21)

The newly estimated equivalent plastic strain sub-increment
is used to successively solve for the current equivalent
strain, stress tensor and normal of the potential function.
Iteration is then repeated until both g1 and g2 are satis-
fied for the current substep, within a predefined tolerance
(T OL).

Material characterization

Two aluminum alloys AA6016 and AA5042 have been con-
sidered in the scope of this work. R-values and stress ratios,

Table 4 Calculation times for the total of directional tests [min:sec]

Explicit Implicit Difference Difference [%]

AA5042 non-AFR 0:22 0:38 0:16 42.11

AA6016 non-AFR 0:27 0:34 0:07 20.59

have been measured for 0, 45, 90 degrees as well as the
equi-biaxial stress ratio for AA6016. For AA5042, the same
parameters measured at every 15 degrees from the rolling
direction and equi-biaxial loading have been taken from
[22]. All values are summarized in Table 1.

The Yld2000-2d model

The Yld2000-2d function, as proposed by [4], has been
used for both yield function and plastic potential. The yield
function 	 is defined as follows:

	 = 	′ + 	′′ = 2σa
y (22)

with

	′ = ∣∣X′
1 − X′

2

∣∣a (23)

	′′ = ∣∣2X′′
2 + X′′

1

∣∣a + ∣∣2X′′
1 + X′′

2

∣∣a (24)

where X′
i and X′′

i are the principal values of the transformed
stress tensors X′ and X′′ which are in turn defined as

X′ = C′T σ and X′′ = C′′T σ (25)

Table 5 Calculation times for tensile tests in [min:sec]

Explicit Implicit Difference Difference [%]

AA5042 non-AFR 05:21 12:38 07:17 57.65

AA6016 non-AFR 05:50 09:10 03:20 34.55
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Fig. 5 (a) Schematics of tools
for cup drawing for AA5042
and (b) corresponding mesh size

where C′, C′′ and T represent transformation matrices in
the function of the anisotropy parameters αi . For a full
description of the model, please refer to [4]. The derivative
of this yield function is given by

∂	

∂σ
= ∂	′

∂X′
∂X′

∂σ
+ ∂	′′

∂X′′
∂X′′

∂σ
(26)

The Yld2000-2d yield function and potential were fitted
using eight stress-ratios for the yield locus and eight r-values
for the potential with AA5042. For AA6016, four stress-
ratios were used for the yield locus (r-values assumed to be
1.0) and four r-values for the potential (stress ratios assumed
to be 1.0). For the purpose of comparison, the AFR case is
fitted additionally, using stress-ratios and r-values along 0,
45, 90 degrees from the rolling direction and biaxial state.
The resulting αi values and the exponents a are shown in
Table 2. The non-integer exponent of a = 4.5 was found
to give the best agreement with the experimental results
for AA6016. The resulting yield locus and potential shapes
are shown in Fig. 1. Note that for AA5042 yield locus and
plastic potential differ significantly, whereas for AA6016
the two surfaces are closer in shape. These two materials
are selected to test the numerical algorithms for different
degrees of non-linearity as represented by the two models.

Isotropic hardening models

The hardening data for AA5042 are taken from [22]. The
hardening curve for AA6016 is fitted using the Hockett-
Sherby model. The analytical derivatives for Voce (27)
and Hockett-Sherby (29) are given in the following. The
identified model parameters are provided in Table 3.

σy = A − Be−mε̄p (27)
∂σy

∂ε̄p

= mBe−mε̄p (28)

σy = A − Be−mε̄
q
p (29)

∂σy

∂ε̄p

= qmBe−mε̄
q
p · ε̄p

q−1 (30)

Tensile tests and directional testing

The accuracy and efficiency of the two stress integration
algorithms have been thoroughly tested under homogeneous
uniaxial loading with two series of simulations. Firstly the
ability of the models and implementations to properly cap-
ture anisotropy has been investigated using one-element
tests in the different directions to the rolling direction.
Secondly tensile test specimen has been meshed and simu-
lated to validate the ability of the models to reproduce the
stress-strain behavior properly.

The one-element test results for the explicit user-defined
Material Subroutine (UMAT) are shown in Fig. 2 as stress-
ratio or r-value vs. angle to the rolling direction for both
materials. The simulated tensile test results are shown in
Fig. 4. The mesh system used can be seen in Fig. 3. The
results show that both integration schemes preform equiv-
alently well under uniaxial loading for all tested models
(Fig. 4).

As far as computational efficiency is concerned, the
calculation times for both simulation series are shown in
Tables 4 and 5. The One-element tests for every 5 degrees
to the rolling direction were executed on a machine with
Intel(R) Xeon(R) W3565 with 3.2GHz and 12 GB RAM.
All calculations were performed on a single CPU with an

Table 6 Tool dimensions for cup drawing experiment [mm]

Rp Rd Rh Rb rp rd H1 a1

AA5042 22.860 23.368 23.114 38.062 2.229 1.905 12.7 1.905
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Fig. 6 Results of cup drawing
experiment and simulation with
AFR and non-AFR for AA5042
with explicit and implicit UMAT
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enforced timestep of 1.5e − 5 using Belytschko-Tsay ele-
ments with seven integration points through the thickness.
The Table shows the sum of 19 simulations (every 5 degrees
to the rolling direction) for each case.

Table 5 compares the time needed for the explicit and
implicit UMAT to compute the tensile test experiment on
four CPUs (Intel(R) Xeon(R) W3565 3.20GHz with 12GB
RAM) and a timestep of 1e − 6.

Cup drawing test

For the purpose of verification, a simulation model with
higher complexity was chosen. For AA5042, a cup drawing
experiment is simulated and compared to the experimen-
tal data obtained from [22]. The tool geometry is shown in
Fig. 5a and the dimensions are listed in Table 6. For the
blank, coarser meshes than those of Park and Chung are
selected, as shown in Fig. 5b. The friction coefficient is
0.005, the blankholder force is 8.9kN . Belytschko-Wong-
Chiang shells as proposed by [7] are used with seven
integration points through the thickness. The shell thick-
ness is 0.21mm. These earing profiles at the end of forming
are compared for both the implicit and explicit imple-
mentation (see Fig. 6). The two algorithms do not deliver
identical results, but the differences are in the order of
magnitude of 0.15mm. With the same earing profiles com-
pared to experimental data on the other hand, AFR based
Yld2000-2d shows a noticeable difference compared to the
experimentally observed profile. In order obtain the com-
patible accuracy with AFR, more accurate yield functions,
e.g. Yld2004-16p ([2]) should be used. The calculation
times are shown in Table 7. These simulations ran with four

Table 7 Calculation times for cup drawing experiments in [h:min:sec]

Explicit Implicit Difference Difference [%]

AA5042 AFR 0:27:23 0:36:32 0:09:09 49.31

AA5042 non-AFR 0:21:08 1:10:38 0:49:30 70.21

CPUs, explicit with a timestep of 1.0E-6 using LS-DYNA-
3D-3D.

Conclusions

The aim of this study is to systematically assess the effi-
ciency of stress integration algorithms in the context of
the numerically challenging non-AFR based constitutive
models. Directional one-element tests, tensile tests as well
as deep drawing tests have been used to compare the
Euler-forward and Euler-backward algorithms in terms of
accuracy and speed. It can be said that Euler-forward algo-
rithm delivers comparable accuracy to the Euler-backward
method. The difference in earing height and plastic strain
remains generally low with only local peaks.

The directional tests carried out with different materi-
als show that both algorithms are able of capturing the
non-linearity presented by the models even if very differ-
ent surfaces are used for the yield function and potential.
It is noted that Euler forward integration scheme stays
convergent, requiring at most three sub-increments making
iterations expensive. This situation is also reflected by com-
putations with nearly homogeneous strain distribution, such
as tensile test experiments, even if to a lesser extent. The
more realistic conditions presented by a cup drawing exam-
ple, lead to an inhomogeneous distribution of the strains
and in this case Euler-backward integration scheme delivers
slower timings than Euler-forward scheme.

As far as the efficiency difference between AFR and non-
AFR is concerned, it is noted that Euler-backward remains
always slower for non-AFR calculations than AFR, whereas
Euler-forward computes non-AFR models faster than
AFR.
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