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Abstract

Being of great importance for transportation policy appraisals, we investigate mode and user-type effects1

in the value of travel time savings (VTTS) using a pooled RP/SP Mixed Logit modeling approach for mode,2

route and destination choice data. For a representative sample of Austrian workers, our analysis reveals3

population-weighted median VTTS estimates for car (12.3 Euro/h), public transportation (PT; 8.1 Euro/h),4

bike (11.7 Euro/h) and walk (10.2 Euro/h).5

Considering only those respondents who have used car and PT in the observation period (and thus are6

familiar with both modes), we find that four user characteristics are able to decompose this substantial7

difference in median VTTS between car and PT (i.e. the total mode effect) of about 4.9 Euro/h: Posterior8

means of individual and mode-specific VTTS distributions reveal a reduced mode effect for high income (4.69

Euro/h), female (4.5 Euro/h), low educated (4.3 Euro/h) and urban (3.0 Euro/h) user groups.10

Our results indicate that in the case of Austrian workers, characteristics of the mode are more important11

than characteristics of the users, and that the travel time spent in PT is valued less than in a car for all12

investigated user groups.13

Keywords: Value of travel time savings, Austrian workers, mode effects, user-type effects, discrete choice
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1. Introduction and motivation

Mode choice models have been used extensively to evaluate policy implications and level-of-service1

changes, providing a powerful transportation planning tool for developing effective travel demand fore-2

casts (e.g. Ben-Akiva and Lerman, 1985; Bhat, 1998; Jara-Diaz, 2007; Ortúzar and Willumsen, 2011). As a3

key valuation indicator, the value of travel time savings (VTTS) has always been subject to extensive debate4

in both academia and practice, because savings in travel time account for the biggest share of user benefits5

in most cost-benefit analyses (e.g. Jara-Diaz, 1990; Wardman and Lyons, 2016; Hensher et al., 2016).6

Recent research has shown a trend towards a potentially more insightful way to decomposing the VTTS -7

typically derived from mode, route and/or destination choice models - into two separate elements. Following8

Jara-Diaz and Guevara (2003), Jara-Diaz et al. (2008) and others1, the subjective value of travel time savings9

(VTTS) represents the willingness to pay to reduce travel time by one unit, and is the sum of two components:10

(1) the value of time as a resource (VoL; also referred to as the value of leisure) representing the monetary11

equivalent of the willingness to reduce travel time in favor of other activities that generate more utility,12

and (2) the monetary value of the reduction in direct (dis)-utility derived from the time assigned to travel13

(VTAT). The VoL is always positive and depends on the time assigned by the individual to all activities14

including travel, and on their trade-offs. The VTAT depends on the conditions/comfort of travel and can be15

positive or negative; if negative, it contributes to increase the VTTS above the VoL2. If positive, the VTTS16

is lower than the VoL. A shift of focus from the VTTS to the two components, i.e. the VoL and the VTAT,17

in cost-benefit analyses would help assessing the options under a budget constraint (for example, investing18

in average speed or improving the conditions of in-vehicle travel).19

It is a common finding in the relevant literature that the VTTS is lower for bus, tram and underground20

compared to car and rail, while car and rail tend to be valued similarly. This finding has not only been21

confirmed in large-scale meta-analyses (e.g. Wardman, 2004; Shires and de Jong, 2009), but also in recent22

national valuation studies, as reported in Table 1 for Sweden and the Netherlands. The valuation pattern is23

thus reversed to what one would expect based on the comfort typically associated with each of these modes.24

It implies that car and train travelers are willing to pay more for reducing travel time than users of buses,25

trams and underground, and hence, that an equal increase in travel time in all modes would increase the26

mode share of bus, tram and underground. To a large extent, this counterintuitive finding can be attributed27

to two confounding effects: On the one hand, the mode effect3 describes differences in the VTTS across28

modes that are due to differences in the direct utility derived from in-vehicle travel time. This utility is in29

turn driven by (latent) mode-specific characteristics that affect comfort and how well in-vehicle time can be30

used for activities such as working, reading, relaxing, etc. On the other hand, differences in user-types may31

be due to observables such as socio-economic characteristics (e.g. people with higher income may exhibit32

a lower travel cost sensitivity, leading to a higher VTTS), or may also be attributed to self-selection in33

terms of VTTS heterogeneity (e.g. Mabit and Fosgerau, 2009; Fosgerau et al., 2010): Travelers with a high34

opportunity value of time are likely to choose (and have access to) faster modes such as car, train or plane.435

∗Corresponding author
Email addresses: basil.schmid@ivt.baug.ethz.ch (Basil Schmid), simona.jokubauskaite@boku.ac.at (Simona

Jokubauskaite), florian.aschauer@boku.ac.at (Florian Aschauer), stefanie.peer@wu.ac.at (Stefanie Peer),
reinhard.hössinger@boku.ac.at (Reinhard Hössinger), regine.gerike@tu-dresden.de (Regine Gerike),
jaradiaz@ing.uchile.cl (Sergio R. Jara-Diaz), axhausen@ivt.baug.ethz.ch (Kay W. Axhausen)

1See also the work of DeSerpa (1971), Truong and Hensher (1985), Bates (1987) and, for a good theoretical overview of
time use models, Jara-Diaz (2007).

2This shows that for the VTTS to be negative (i.e. individuals are willing to pay to increase their travel time) the VTAT has
to be larger than the VoL. For example, if the conditions of travel permits to read while traveling and the individual chooses
to read in the vehicle, the value of reading while traveling should be larger than the value of reading at home for VTTS to be
negative. Failure to have this clear has provoked confusion.

3Other terms present in the literature are ”comfort effect” (Fosgerau et al., 2010), ”pleasantness effect” (Mackie et al., 2001)
and ”mode valued effect” (Wardman, 2004). We mainly follow the terminology used by Flügel (2014).

4For instance, Börjesson and Eliasson (2014) find that some differences in the VTTS across modes can be attributed to
differences in socio-economic characteristics between user groups. However, a large part of the variation is due to idiosyncratic
variation across trips.
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Table 1: VTTS [Euro/h] for other European countries. Sweden: Börjesson and Eliasson (2014); Netherlands: Kouwenhoven
et al. (2014); Germany: Axhausen et al. (2014); Switzerland: 2010: Fröhlich et al. (2012); 2015: Weis et al. (2017)

Country Sweden Netherlands Germany Switzerland Switzerland
Date of study 2008 2010 2012 2010 2015

Car 12.6 9.8 4.8 12.0 11.0
Bus∗ 4.1 7.3 5.0 8.8 10.2
Train∗ 7.9 10.1 5.0 8.8 10.2

Inflation-adjusted values in 2015 prices. Source: http://ec.europa.eu/eurostat
∗In the German and Swiss studies, bus and train were just one category
”public transportation”.

Table 2: Distinction between mode, user-type and trip characteristics.

Mode User-type Trip

Car driver/car passenger Income (low/high) Distance
Public transportation (PT; Urban resid. location (yes/no) Purpose (work/education,
heavy rail, light rail, bus, tram) Kids (yes/no) shopping, leisure, other)
Walk Single-worker household (yes/no) Weekend vs. weekday
Bike Age (low/high) Peak vs. non-peak hours

Female (yes/no)
High education (yes/no)

Table 2 gives an overview on the indicators that are used in subsequent analyses to investigate mode and1

user-type effects.2

Our formal definition of mode and user-type effects is presented in Section 4.2. We define the term user-3

type such that is allows us to distinguish between different socio-economic characteristics for respondents4

who have used (i.e. chosen) a specific mode at least once. Others (e.g. Fosgerau et al. (2010) and Flügel5

(2014)) define user-types as current users of a specific mode, which, given their data structure - resulting6

from the stated preference (SP) survey design - was clearly the most coherent approach in their applications.7

Given our data structure including all revealed trips over a whole work-leisure cycle (i.e. one week) for a8

given respondent, defining a ”current” user makes not much sense as respondents typically switch between9

several modes.10

Mainly due to data limitations, only few studies have so far been able to disentangle these mode and11

user-type effects (e.g. Fosgerau et al., 2010; Mabit and Fosgerau, 2010; Ramjerdi et al., 2010; Flügel, 2014).12

Typically, mode effects can best be identified if for the same group of users, the VTTS is measured for13

different modes, whereas user-type effects can best be identified if the VTTS is observed for different user14

groups for the same mode. This, however, requires not only a large cross-sectional set of different users,15

but also multiple observations for one and the same individual over a longer time period (or for different16

hypothetical choice tasks; see e.g. Fosgerau et al. (2010)) choosing differently among a set of travel modes17

for different kinds of trips. These existing studies typically find that both mode and user-type effects are18

present and that the user-type effects prevail (e.g. Wardman, 2004).519

If the user-type effect is removed (i.e. controlled for in the model), the remaining mode-specific VTTS20

may indicate that time spent in the train or the car is valued less than on the bus, hence, reversing the21

ordering that tends to emerge if the mode and user-type effects are confounded. However, recent technological22

innovations (smartphones etc.) enable public transportation (PT) passengers to use in-vehicle time more23

productively, which may in turn lead to a lower value attached to travel time savings in PT (e.g. Mokhtarian24

and Salomon, 2001; Litman, 2008; Hensher et al., 2016; Wardman and Lyons, 2016; Weis et al., 2017). In25

particular, train travel time - especially for longer distances - can be used for engaging in all kinds of26

activities (Lyons et al., 2013). Additional explanations for the VTTS being lower for PT than for car travel27

are brought forward by Guevara (2017), suggesting that the higher VTTS for car may result from the28

5An exception is the study of Gunn et al. (1996), in which the mode effect prevails. However, is has been argued that this
is probably due to excluding bus users and air passengers (Wardman, 2004).
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marginal consumption being dependent on car travel time (including expenses for fuel, oil, maintenance,1

etc.) but not for PT trips, and that car use may induce more complex schedules in which time as a resource2

is valued higher. Fosgerau et al. (2010) speculate that strategic answers in SP surveys may drive apart the3

VTTS for car vs. PT. However, they also argue that their mode effects might be underestimated due to4

some anchoring with respect to VTTS preferences in different SP experiments.5

Differences in the VTTS across modes have important implications for policy appraisals: The outcome of6

costs-benefit analyses may strongly depend on whether user-type and/or mode effects are removed from the7

VTTS (Flügel, 2014). It has been suggested that mode effects should not be removed as otherwise resources8

may be allocated inefficiently, while - for equity reasons - the removal of user-type effects seems advisable.9

In any case, a good understanding of the sources of differences in the VTTS across modes is crucial (see10

Mackie et al. (2001), Börjesson and Eliasson (2014) and Flügel (2014) for further discussions).11

This paper presents the first representative VTTS estimates for Austrian workers, with the focus to12

investigate mode and user-type effects for a detailed dataset with both stated preference (SP) and revealed13

preference (RP) choice observations, and to independently provide VTTS estimates to calculate all compo-14

nents of the complete Jara-Diaz and Guevara (2003) model formulation for different user-types. Therefore,15

in a separate effort (not included in this paper), our results are combined with the corresponding VoL esti-16

mates from a continuous time use and expenditure allocation choice model for the same set of respondents17

(Hössinger et al., 2017, 2018).18

While the RP dataset - based on a one-week reporting period - allows to investigate travel behavior for19

multiple trips and different modes chosen by the same individual, the SP dataset allows a better analysis of20

trade-off behavior, e.g. between travel time and cost, which is often problematic in ”pure” RP data due to21

the high correlations between attributes (e.g. Train, 2009). Given the large heterogeneity of our respondents22

and trips in our data set, we derive VTTS estimates capturing mode and user-type effects after controlling23

for a wide range of trip characteristics (see also Table 2), applying a joint RP/SP modeling approach. This24

ensures robustness and efficiency in parameter estimation and overcomes the limitations of pure RP or SP25

models (i.e. the former typically providing only limited trade-off information, and the latter suffering from26

a hypothetical bias, anchoring effects and strategic behavior).27

The structure of this paper is as follows: Section 2 describes the survey methods used to collect this28

rich data set, compares the sample characteristics to the Austrian census data and explains the different29

data sources and attributes used to model choice behavior. Section 3 presents the pooled Mixed Logit30

modeling and estimation approach. Section 4 shows the estimation results of four models, serving as a basis31

to calculate the posterior means of individual VTTS distributions. Furthermore, a formal definition of mode32

and user-type effects is presented and the mode-specific VTTS and mode effects (in particular, the VTTS33

difference between car drivers and PT users) are investigated, followed by an analytical investigation on34

the importance of different user characteristics in disentangling the mode effect. Section 5 summarizes and35

discusses the main findings and limitations, and gives an outlook on future work and the synthesis of results36

with the continuous time use and expenditure allocation choice model.37

2. Survey methods and data38

Data were collected for a representative sample of 748 working respondents in Austria between 2015 and39

2016 to obtain detailed information concerning time use, expenditure allocation and travel behavior. The40

travel diaries resulted in 17’392 RP mode choice observations. In addition, a subset of respondents responded41

to SP experiments, which were designed around a person-specific reference trip, leading to additional 5’71842

SP choice observations. Finally, six different data sets were combined: Mode choice RP, mode choice SP,43

car and public transportation (PT) route choice SP, car and PT shopping destination choice SP.44

The Mobility-Activity-Expenditure-Diary survey design (MAED) was developed to integrate three dif-45

ferent survey traditions (travel, time use and expenditure surveys) to accommodate the data requirements46

of detailed travel, non-travel activities and consumer expenditures from the same individual over a one-week47

reporting period (Jara-Diaz and Guevara, 2003). A detailed discussion about the methods used, field work48

experiences and response behavior can be found in Aschauer et al. (forthcoming, 2018). The focus here is49
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to give an overview of the RP and SP data, starting with a description of the survey administration and1

response rates, the routing of chosen, the construction of the unchosen alternatives and cost calculations of2

RP trips, the selection of reference values for the SP experiments, and the assignment of choice experiments3

based on individual characteristics, such as mobility tool ownership and RP mode choice.4

2.1. Survey administration and response rates5

The paper-based MAED survey design has an unusually high response burden caused by the large6

amount of information, degree of detail and the long reporting period (Aschauer et al., forthcoming, 2018).7

Several actions were considered to achieve high response rates and data quality. The responses from stage8

I (MAED) also served as a basis for creating the personalized SP experiments in stage II of the survey.9

First, respondents were a random selection of Austrian households according to 18 pre-defined strata, which10

where arranged by region and level of urbanization. It comprises only working respondents, which was a11

key eligibility criterion given the requirements to estimate the different value of time components (see also12

e.g. Jara-Diaz and Guevara, 2003; Jara-Diaz et al., 2008). Second, from 4’997 households that were invited13

to participate in the survey, 17% agreed to participate, of which 63% returned complete stage I responses14

after validation6, leading to a sample size of 490 households (748 respondents; four erroneous/incomplete15

respondents had to be excluded from the sample, leading to a final sample size of 744 respondents in the16

RP data set). Third, once the stage I questionnaires were returned and found valid, respondents were paid17

the incentive (each respondent received 40 Euro for completion of the stage I questionnaires) and invited to18

conduct the follow-up stage II SP survey. 81% (399 households) agreed to participate, of which 91% (36219

households) returned complete responses, leading to a response rate of the SP survey conditional on the20

stage I sample of 74%.21

2.2. Descriptive analysis of the sample22

Descriptive statistics are shown in Table 3 and compared with data from the Statistics Austria National23

Census 2011, a weighted, representative sample of the population. Although the MAED sample size is too24

small to draw clear conclusions about representativeness, it highlights potential sampling biases, which are25

taken into account by re-weighting the VTTS estimates to correctly compute the population level valuation26

indicators. Women and respondents living in rural areas are slightly overrepresented in the MAED sample27

and the age distribution is left-skewed with younger employed persons being underrepresented (Aschauer28

et al., forthcoming). While the ratio of employed and self-employed persons corresponds well to the popu-29

lation, higher educated people seem to be overrepresented in the MAED survey, a pattern that has often30

been observed in other transportation surveys (e.g. Axhausen et al., 2015; Gerike et al., 2015; Schmid et al.,31

2018).32

The group of single-person households is underrepresented in the MAED, while the group of households33

with ≥ 2 members is overrepresented. Regarding the level of urbanization, response rates were higher in34

rural areas. This explains to some extent the low number of single-person households, because they are35

found more often in urban areas. In small municipalities, only every fourth household is a single-person36

household, whereas in cities this applies for almost every second household (Aschauer et al., forthcoming,37

2018). The average monthly labor net income of full-time employees is 1’836 Euro in the Statistics Austria38

sample, whereas MAED respondents (who work at least 37.5 hours per week) reported 2’292 Euro. This39

difference in income can probably be explained by the higher level of education among MAED respondents,40

as discussed in Aschauer et al. (forthcoming, 2018). Note that the average wage rate in the MAED sample41

is 12.1 Euro/h.42

Fig. 1 gives a first overview on how sample characteristics, i.e. RP mode choice behavior, trip and43

socio-economic characteristics are linked to each other, and also provides some intuition about potential44

collinearity issues (e.g. between gender and income). Important for model estimation and the interpretation45

of results, however, it indicates that all correlations of user characteristics are small to moderate and never46

6Response rates correspond to the COOP4 cooperation rate according to the The American Association for Public Opinion
Research (2015) definition.
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exceed +/− 0.45. The variables in Fig. 1 were selected given the set of possible characteristics that are1

typically assumed to affect user-type heterogeneity in mode choice behavior, and that were also investigated2

in the continuous time use and expenditure allocation choice models:3

• High age: Median split in age; > 45 years (dummy)4

• Female (dummy)5

• Urban: Urban residential location area (dummy)6

• High education: High-school degree or higher (dummy)7

• High income: Median split in personal net income; > 1’727 Euro per month (dummy)8

• Kids: Children (< 18 years) living in the household (dummy)9

• Single-worker HH: Only one working household member (dummy)10

• Car always available (dummy)11

• Season ticket: Any kind of PT season ticket in possession (dummy)12

In addition, the following trip characteristics were considered to be important variables to explain choice13

behavior:14

• Distance: Shortest path street distance (continuous)15

• Work/education: Trip purpose (dummy)16

• Shopping: Trip purpose (dummy)17

• Leisure: Trip purpose (dummy)18

• Other: Trip purpose (dummy)19

• Weekend: If the trip was conducted at the weekend (dummy; RP data only)20

• Peak: If the trip was conducted during peak hours (morning 6.30-8.15 or afternoon 16.00-18.30;21

dummy; RP data only)22

• Bus: If bus was the PT main mode (dummy; RP data only)23

• Tram: If tram was the PT main mode (dummy; RP data only)24

• Light rail: If light rail was the PT main mode (dummy; RP data only)25

• Heavy rail: If heavy rail was the PT main mode (dummy; RP data only)26

Not surprisingly, Fig. 1 shows that faster modes are preferred for longer trips. Work/education trips27

are usually longer, while shopping trips and trips conducted by women living in urban areas are shorter,28

showing moderate correlation patterns between each other. Also, light rail as a PT main mode (i.e. the PT29

mode with the highest share of in-vehicle travel time) is positively correlated with urban residential location30

(resulting from the frequently used subway in Vienna), while heavy rail is not used for shorter trips.31

Of great importance is the correlation between mobility tool ownership/availability (car and season32

ticket) and urban residential location: People in urban areas are more likely to own a PT season ticket,33

but have a lower level of car accessibility, which is typical for European cities (e.g. Becker et al., 2017).34

Except for mobility tool ownership (given their endogenous nature and correlation with urban residential35

location) and trip characteristics (which are included as control variables in subsequent models), the above36

listed characteristics are used to disentangle mode and user-type effects. These include the following seven37

dummy variables: Female, high age, high education, high income, urban, kids and single-worker household.38
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Table 3: Descriptive statistics: MAED survey vs. Statistics Austria National Census 2011.

Variable Value MAED Stat. Aust.

Households with employed HH head [#] 490 2’006’004
Employed persons [#] 744 4’019’408

Household members [%] 1 14.5 30.2
2 29.4 23.1
3 22.0 19.0
≥ 4 34.0 27.8

Households with kids < 15 years [%] No 64.7 66.7
Yes 35.3 33.3

Household residential location area [%] City center 24.1 33.5
Agglomeration 28.2 29.9
Rural 47.8 36.7

Household target region [%] Eastern region 33.9 50.4
Upper Austria 23.1 16.9
Styria 18.2 13.8
Salzburg 6.9 6.4
Carinthia 5.1 6.2
Tyrol, Vorarlberg 12.9 12.7

Gender [%] Female 50.0 53.3
Male 50.0 46.7

Age [%] 15 - 29 years 9.1 24.5
30 - 39 years 18.7 22.6
40 - 49 years 35.7 29.1
50+ years 36.5 23.8

Working status [%] Employed 88.7 88.8
Self-employed 11.3 11.2

Average personal net income [EURO/month] 2’292 1’836

Education [%] Compulsory 2.7 17.8
Apprenticeship, vocational 36.0 50.9
High-school 24.3 15.9
College, university 37.0 15.4
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Figure 1: Correlation patterns of mode choice, trip and socio-economic characteristics.
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2.3. Revealed preference (RP) mode choice and stated preference (SP) mode, route and shopping location1

choice data2

A rich set of RP mode choice data (MC RP) was collected as part of the travel and activity diary,3

where respondents were asked to give information on start time, start and end location addresses, cho-4

sen travel modes and trip/activity purposes. For each trip, the attributes of all mode alternatives were5

obtained using an XML interface provided by the Austrian website Verkehrsauskunft Österreich (VAO;6

http://www.verkehrsauskunft.at/). These include the shortest path street distance, walk travel time, bike7

travel time, car travel time, in-vehicle public transportation (PT) travel time including transfer time, PT8

ticket costs, PT access and egress time, PT headway, the number of transfers and the PT main mode (bus,9

tram, light or heavy rail).10

Once these attributes were obtained, a major concern was the appropriate calculation of travel costs11

for the car and PT alternatives, as shown in Table 4. Car travel costs of individual n for RP trip t12

were calculated using fuel consumption information based on vehicle data provided by the respondents and13

average fuel prices for different engine types. An approximation of the parking cost was added based on the14

parking management system (i.e. the fee structure and allowed maximal parking duration on public parking15

spaces, which were obtained as shape files from the Österreichischer Automobil-, Motorrad und Touring16

Club; https://www.oeamtc.at/) and the activity duration at the trip destination.17

PT travel costs of individual n for trip t were calculated based on VAO ticket price data priceV AO,n,t for18

adults, traveled distance distn,t, information on season ticket ownership (regional travel pass RTP ; discount19

card DC), regional travel pass price priceRTP,n, distance covered by the regional travel pass distRTPn
7 and20

a global km-rate of 0.3 Euro/km globalrate.21

7For respondents owning a regional travel pass RTP , we assumed that for trips within the covered region, marginal travel
costs are zero. If the trip destination lies beyond the out-of-region distance, the resulting difference is multiplied by the global
km-rate.
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Table 4: Car driver and PT travel cost structures.

Car: If ... Travel cost tccar,n,t = ...

Regular car (driver) fuelpricen · fuelconsn · distancen,t + parkingcostn,t

Carsharing (driver) 3 · fuelpricen · fuelconsn · distancen,t + parkingcostn,t

Fuel consumption/car not reported (driver) fuelpricen · 8 Liters/km · distancen,t + parkingcostn,t

Public transportation (PT): If ... Travel cost tcPT,n,t = ...

No RTP ; no DC priceV AO,n,t

No RTP ; with DC 1/2 · priceV AO,n,t
No RTP ; no DC; missing priceV AO,n,t distn,t · globalrate

No RTP ; with DC; missing priceV AO,n,t 1/2 · distn,t · globalrate

With RTP ; distn,t ≤ distRTP,n 0

With RTP ; no DC; distn,t > distRTP,n (distn,t − distRTP,n) · globalrate

With RTP ; with DC; distn,t > distRTP,n 1/2 · (distn,t − distRTP,n) · globalrate

Table A.1 in the appendix presents the summary statistics of all RP attributes included in subsequent1

analyses. The full RP data set comprises 17’392 observations, in which not all alternatives are always2

available (availability conditions are similar to those used by Pinjari et al. (2007), Fröhlich et al. (2012) or3

Weis et al. (2017)):4

• Car driver: Available if a respondent has a driving license and stated that he/she often or always5

has access to a car6

• Car passenger: Always available, as no information was obtained on car passenger mode availability8
7

• PT: Available if a PT route was identified in the network level-of-service files8

• Walk: Always available9

• Bike: Available if a respondent owns ≥ 1 roadworthy bikes10

Besides the typical right-skewed pattern of many attributes due to the relatively high number of short11

distance trips, it also shows that, on average, car clearly dominates PT e.g. in terms of travel time and cost.12

This was a special concern when creating the SP mode choice experiments in order to present realistic, but13

not too dominant trade-offs in favor of car.14

Three different types of SP experiments requested participants to trade-off attributes related to mode15

choice (MC SP), route choice car/PT (RC CAR; RC PT) and shopping location choice car/PT (SC CAR;16

SC PT). The aim of the experiments is to reveal how sensitive individuals react to changes in attributes17

for a given trip purpose. We use a pivot design approach to calculate the personalized attribute levels based18

on revealed preference (RP) data from stage I of the survey (Rose et al., 2008). To reduce response burden,19

each respondent was assigned to two experiment types only, based on revealed travel/shopping behavior20

and mobility tool ownership. The goal was that the share of different SP tasks are more or less equally21

distributed within the sample. Given the large share of respondents who have a car available and are in22

possession of a driving license, we used the following rules to assign the questionnaires: If a respondent ...23

• has a driving license and a car available, and had no PT trips during the reporting period: Random24

assignment to MC SP and RC CAR or SC CAR25

8Besides the difficulties of defining the availability conditions, the appropriate calculation of travel costs and how/if they
were shared with the driver is also problematic. Therefore, this alternative is excluded from the main analysis. These issues
are further discussed in Section 4.1.2.
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• has a driving license and a car available, and has more than one PT trip during the reporting period:1

Random assignment to MC SP, RC CAR, RC PT, SC CAR or SC PT, assigning more weight to PT2

experiments given the relatively low share of respondents using PT3

• has no driving license: Assignment to RC PT and SC PT only4

The experiments were introduced to frame the choice environment to the respondents and place them5

in a coherent choice situation, describing the task and choice attributes and for which activity purpose and6

distance the choice should be made. The attributes and attribute levels presented in the appendix9 were7

included in the RP data and SP choice experiments, as listed below:8

• Travel cost: Out-ouf-pocket (variable) travel cost (car and PT; attribute included in all data/experiment9

types)10

• Travel time: In-vehicle travel time (all modes; attribute included in all data/experiment types)11

• Access and egress time: Walking time to and from the parking space/PT stop to the destination12

(car and PT; attribute included in MC RP, MC SP, RC CAR and RC PT)13

• Congestion time: The time spent in a congested road network (car only; attribute included in14

MC SP and RC CAR)15

• Number of transfers (PT only; attribute included in MC RP, MC SP, RC PT and SC PT)16

• Headway: PT service interval (PT only; attribute included in MC RP, MC SP and RC PT)17

• Parking management in force: Indicates if or not a parking management is in operation at the18

trip destination for the reported arrival time (car only; attribute included in MC RP)19

• Price of goods basket: Goods basket price for weekly grocery shopping (attribute included in20

SC CAR and SC PT)21

• Supermarket quality: Describing the quality characteristics of the shopping location in three cate-22

gories by presenting brand-unrelated, but quality-associated Austrian store jargons (attribute included23

in SC CAR and SC PT)24

• Waiting time at the checkout: Waiting time in the supermarket to pay the cashier (attribute25

included in SC CAR and SC PT)26

To generate the attribute levels for the SP experiments, we followed a comparable approach to the Swiss27

national SP travel surveys as described in Fröhlich et al. (2012) and Weis et al. (2017): For each respondent,28

a reference trip was selected from the stage I of the survey for four trip purposes (work/education, shopping,29

leisure and other purpose) and preferably with a medium or larger distance to get large enough variation30

in the attributes. For each SP type, a D-efficient design with 24 choice situations blocked in three parts31

was calculated using Ngene (ChoiceMetrics, 2014), including weak parameter priors (mainly to conveniently32

exclude dominant choice situations in the unlabeled route and destination choice experiments) and assigning33

eight choice situations of two randomly assigned experiment types to each participant (i.e. 16 in total). For34

the MC SP experiment, depending on bike availability and distance traveled, respondents with trip distances35

exceeding a certain threshold (i.e. 5 or 15 km) were not facing a walk or bike choice alternative, respectively.36

To account for a better attribute level balance between car and PT attributes in the labeled MC SP37

experiments, instead of directly taking the reference values from the RP trip (as was done in the pre-38

test), travel time, cost and access time values were modified to increase the trade-off information given the39

9Experimental designs and attribute levels are presented in Table A.2 - Table A.4, including summary statistics for each
attribute as shown in Table A.5 - Table A.9, and example choice situations as presented to the respondents in Fig. A.1.
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otherwise often superior car alternative. As a result, the MC SP data from the pre-test are excluded in1

subsequent analyses due to a very bad performance regarding parameter estimates and scale, where a large2

share of respondents always chose the same alternative (more than 80% always chose car; see Fig. A.2a),3

also referred to as non-traders (Hess et al., 2010). The modification of RP reference values for the main4

survey wave mainly included the increase in car travel time, cost and access time, substantially decreasing5

the share of non-trading respondents by more than 20 percentage points, as illustrated in Fig. A.2b. This is6

an indication that respondents were neither truly captive nor lexicographic (i.e. car is still, in most cases,7

faster, cheaper and has a lower access time than PT), but that the presented trade-offs were limited (Hess8

et al., 2010), being still consistent with random utility theory. In contrast to the work of e.g. Campbell9

et al. (2006), we do not observe if a respondent has truly lexicographic preferences, or if he/she just appears10

to behave so, which, especially in a labeled choice experiment with numerous attributes, is hard to detect11

from the data (Sælensminde, 2002, 2006; Hess et al., 2010). Note that the modification of reference values12

made the design less realistic as the choice set became less familiar to the respondents, eventually shifting13

the reference point of the hypothetical value function of the car alternative towards the loss domain, which14

then may change behavior in a more extreme way compared to what would be observed in reality (Tversky15

and Kahneman, 1981).16

2.4. Habitual mode choice behavior17

Inertia effects and the influence of habits in the context of mode choice have been extensively debated18

in the literature, referring to the tendency that previous choices may affect the present choice (e.g. Cantillo19

et al., 2007; Cherchi and Manca, 2011; Cherchi et al., 2013; Cherchi and Cirillo, 2014). Austria can be20

seen as a very car-oriented country, exhibiting a high share of respondents often or even always choosing21

car. Fig. A.2c in the appendix shows that in the MC RP data, the share of respondents always choosing22

the same mode is almost 20%, which is most pronounced for car drivers (i.e. almost 30% of respondents23

choosing car at least once, chose it always), while in the SP MC experiment discussed in Section 2.3, this24

share is even higher (i.e. 60%; see Fig. A.2b). This non-trading behavior is assumed to be mainly related25

to inertia patterns (e.g. Hess et al., 2010).26

After evaluating different approaches of how to account for inertia, for the MC RP data we decided to27

follow a similar approach as first described in Börjesson et al. (2013)10: The tendency to stick with the same28

mode is captured by lagged variables that relate the current choice with the previous tour(s) (a new tour29

starts when leaving home and ends when arriving at home) made with the same mode and for the same tour30

purpose, which, for simplicity, is the purpose for the first trip starting from home (Börjesson et al., 2013;31

Cherchi et al., 2013). Thus, for each RP mode alternative, a lagged variable is included in the model that32

has a value of one if the mode chosen by individual n for RP trip t at the beginning of a given tour is the33

same as that chosen in the previous tour made with the same purpose, and zero otherwise.34

For the MC SP data, we followed one approach discussed in Cherchi and Manca (2011), whereby inertia35

in the SP mode choice is measured by the mode chosen in the RP reference trip, which was used to construct36

the SP experiment (see also e.g. Weis et al., 2010). Thus, for each SP mode alternative, a variable is included37

in the model that has a value of one if the mode chosen by individual n for SP choice t is the same as in38

MC RP.39

An additional form of inertia that may not be measured by these two variables is hypothesized to be40

captured by the random error components (e.g. Yáñez et al., 2011; Cherchi and Manca, 2011), allowing for41

correlations in individual preferences for each mode (see Section 3). E.g. Cherchi and Manca (2011) also42

show that when considering random heterogeneity, the size and significance of fixed inertia effects decrease43

substantially, strengthening our confidence of a sufficient treatment of potential inertia patterns.44

2.5. Description of the pooled RP/SP data set45

The data used in subsequent analyses is based on a combination of all data/experiment types into one46

pooled data set, which is presented in Table 5. The total number of choice observations per respondent ranges47

10In contrast to Börjesson et al. (2013), we did not include inertia effects with respect to a trip departure time window.
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Table 5: Pooled data set: Overview.

Data/experiment type # choices # respondents Available alternatives

SP mode choice (MC SP) 1’350 171 Walk, bike, car driver, PT
SP route choice car (RC CAR) 1’579 244 Unlabeled; 3 alternatives
SP route choice PT (RC PT) 867 135 Unlabeled; 3 alternatives
SP shopping loc. choice car (SC CAR) 1’606 256 Unlabeled; 2 alternatives
SP shopping loc. choice PT (SC PT) 316 49 Unlabeled; 2 alternatives
RP mode choice (MC RP) 17’392 744 Walk, bike, car driver, car pass., PT

Figure 2: Choice rates by experiment type and observations per individual.
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between 7 and 72, thus having a highly unbalanced panel with an average of 31.1 observations per respondent,1

as illustrated in Fig. 2a. For each data/experiment type, denoted by q, availability conditions (dummy2

variables) for each choice alternative were defined and pre-multiplied with the respective contribution to the3

Logit choice probability. This data structure allows for the estimation of scale parameters for each different4

data/experiment type to control for differences in error variance (e.g. Train, 2009).5

Fig. 2b shows the choice frequency by alternative in each data/experiment type. It shows that in the6

RP data set, which includes about 75% of all observations, the market share of car drivers is 61%, while for7

PT users it is only 11%. The market share of car passengers of about 8% is slightly lower, but still higher8

than for bike, which is about 6%. Except for walk (higher relative market share in the RP data set), the9

relative market shares are similar between the RP and SP mode choice tasks.10

3. Modeling framework11

The utility equations for individual n ∈ {1, 2, ..., N} and choice alternative i ∈ {1, 2, ..., 18} (defined over12

the respective availability conditions) in choice scenario t ∈ {1, 2, ..., Tn} are, in case of the most exhaustive13

model with random parameters (MIXL), given by14

U1,n,t = σMC SP · (αwalk − ψ̃n,t · ttwalk,n,t · ˜V TTSwalk,n,t + Pn,tγwalk + Znλwalk+
ISP,walk,n,tωSP,walk + ηwalk,n) + ε1,n,t

(1)

15

U2,n,t = σMC SP · (αbike − ψ̃n,t · ttbike,n,t · ˜V TTSbike,n,t + Pn,tγbike + Znλbike+
ISP,bike,n,tωSP,bike + ηbike,n) + ε2,n,t

(2)

16

U3,n,t = σMC SP · (αcar − ψ̃n,t · (ttcar,n,t · ˜V TTScar,n,t + tccar,n,t +Xcar,n,tWTPLOS)+
Pn,tγcar + Znλcar + ISP,car,n,tωSP,car + ηcar,n) + ε3,n,t

(3)

12



1

U4,n,t = σMC SP · (−ψ̃n,t · (ttPT,n,t · ˜V TTSPT,n,t + tcPT,n,t +XPT,n,tWTPLOS)+
ISP,PT,n,tωSP,PT + ηPT,n) + ε4,n,t

(4)

2

U5,6,7,n,t = σRC CAR · (−ψ̃n,t · (ttcar,n,t · ˜V TTScar,n,t + tccar,n,t +Xcar,n,tWTPLOS)) + ε5,6,7,n,t (5)

3

U8,9,10,n,t = σRC PT · (−ψ̃n,t · (ttPT,n,t · ˜V TTSPT,n,t + tcPT,n,t +XPT,n,tWTPLOS)) + ε8,9,10,n,t (6)

4

U11,12,n,t = σSC CAR · (− ψ̃n,t · (ttcar,n,t · ˜V TTScar,n,t + tccar,n,t +Xcar,n,tWTPLOS)+
βprice · (Scar,n,tWTPSHOP + pricecar,n,t)) + ε11,12,n,t

(7)

5

U13,14,n,t = σSC PT · (− ψ̃n,t · (ttPT,n,t · ˜V TTSPT,n,t + tcPT,n,t +XPT,n,tWTPLOS)+
βprice · (SPT,n,tWTPSHOP + pricePT,n,t)) + ε13,14,n,t

(8)

6

U15,n,t = αwalk − ψ̃n,t · ttwalk,n,t · ˜V TTSwalk,n,t + Pn,tγwalk + Znλwalk+
IRP,walk,n,tωRP,walk + ηwalk,n + ε15,n,t

(9)

7

U16,n,t = αbike − ψ̃n,t · ttbike,n,t · ˜V TTSbike,n,t + Pn,tγbike + Znλbike + IRP,bike,n,tωRP,bike + ηbike,n + ε16,n,t (10)

8

U17,n,t = αcar − ψ̃n,t · (ttcar,n,t · ˜V TTScar,n,t + tccar,n,t +Xcar,n,tWTPLOS)+
Pn,tγcar + Znλcar + IRP,car,n,tωRP,car + ηcar,n + ε17,n,t

(11)

9

U18,n,t = − ψ̃n,t · (ttPT,n,t · ˜V TTSPT,n,t + tcPT,n,t +XPT,n,tWTPLOS) + IRP,PT,n,tωRP,PT + ηPT,n + ε18,n,t

(12)

where Equation (1)-Equation (4) correspond to the mode choice SP experiment (MC SP), Equation (5)10

to the car route choice SP experiment (RC CAR), Equation (6) to the PT route choice SP experiment11

(RC PT), Equation (7) to the car shopping location choice SP experiment (SC CAR), Equation (8) to the12

PT shopping location choice SP experiment (SC PT) and Equation (9)-Equation (12) to the RP mode13

choice data (MC RP), with the latter as the reference for estimating the five scale parameters σq for each14

data/experiment type q.15

Models are parametrized in the willingness-to-pay (WTP) space, which is defined as the ratio between16

travel time (tti,n,t) and other level-of-service (LOS; Xi,n,t) coefficients and the travel cost (tci,n,t) coefficient17

(e.g. Sillano and Ortúzar, 2005; Train and Weeks, 2005; Train, 2009), mainly to estimate the distribution of18

WTPs directly11 and to avoid the ex-post division by a distributed cost coefficient (Hess and Train, 2017),19

often leading to more unreasonable WTP distributions (Daly et al., 2012).20

The (negative of the) travel cost parameter is defined as21

ψ̃n,t = exp (βcost + Znκcost + ηcost,n)
(
distn,t

distn,t

)θcost

> 0 ∀ n, t (13)

11Using travel cost as the numeraire and the fact that the (negative of the) travel cost coefficient incorporates scale leads to
a facilitated interpretation of results, as the scale-free terms can be directly interpreted as WTPs (Train and Weeks, 2005).
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and accounts for scale heterogeneity in all LOS-related attributes (see Equation (1)-Equation (12))12. Im-1

portantly, in WTP space the heterogeneity in travel cost sensitivity and scale are perfectly confounded (for2

more information, see also e.g. Train and Weeks (2005), Scarpa et al. (2008) and Hess and Rose (2012)).3

From the traditional microeconomic framework of consumer behavior (see e.g. Jara-Diaz, 2007) follows4

that ψ̃n,t is the marginal utility of income. Because income enters the conditional indirect utility function5

as incomen − tci,n,t, increasing travel cost is like diminishing income, and the derivative with respect to6

income is equal to minus the derivative with respect to cost (we use the term travel cost sensitivity).7

In order to obtain meaningful WTP estimates, the travel cost parameter is restricted to be negative, such8

that ψ̃n,t is strictly positive (see e.g. Hess and Rose (2012)): It follows a log-normal mixture distribution9

according to a fixed parameter βcost, a vector of socio-economic characteristics Zn as well as a random10

component ηcost,n. The non-linear interaction term with trip distance distn,t (distn,t represents the sample11

mean; see also e.g. Mackie et al. (2003)) additionally allows for heterogeneity with respect to the trip length:12

If the distance elasticity of travel cost, θcost, is negative, ψ̃n,t decreases for increasing distance, implying (1)13

lower travel cost sensitivity and (2) higher error variance for longer trips13. For an estimate of θcost = 0 or the14

mean trip distance, the interaction disappears. Importantly - in contrast to the traditional microeconomic15

theory - we thus allow that the marginal utility of income is not only individual-, but also context-dependent16

(see also e.g. Tversky and Kahneman (1986); Hensher and Rose (2009); Schmid and Axhausen (2017)).17

Obtaining a special treatment in subsequent analyses, the parameters of mode-specific travel time are18

denoted by ˜V TTSi,n,t [Euro/h], and travel costs are included as the numeraire for all LOS related attributes.19

VTTS parameters are defined as20

˜V TTSi,n,t =
(
V TTSi + Pn,tρV TTS,i + ZnκV TTS,i +MPT,n,tζV TTS,PT + ηV TTS,i,n

)(distn,t
distn,t

)θV T T S,i

(14)

which are distributed with sample mean V TTSi, according to a vector of trip characteristics Pn,t, socio-21

economic characteristics Zn, the four PT main modes MPT,n,t, trip distance distn,t (same functional form as22

for the travel cost parameter) and random components ηV TTS,i,n. Importantly, for all discrete interaction23

terms we used weighted effects coding for unbalanced data (e.g. Daly et al., 2016; Te Grotenhuis et al.,24

2017), leaving the VTTS sample mean unaffected. This specification was useful in the case where attributes25

are only available in the RP mode choice data (i.e. weekend, peak hour and PT main mode variables), while26

in the SP experiments no such data were collected, thus only contributing to the VTTS sample mean.27

Furthermore, Xi,n,t is a (1 × J) vector of LOS attributes (excluding travel time) related to alternative28

i, and WTPLOS is a (Ji × 1) coefficient vector (i.e. mode-specific for car congestion time [Euro/h], PT29

headway [Euro/h] and transfers [Euro/#]; generic for access time [Euro/h]). Si,n,t is a (1 × 3) vector of30

shopping location attributes excluding the price of the goods basket pricei,n,t, which is used as the second31

numeraire for the shopping location related WTP domain, and WTPSHOP is a (3 × 1) generic parameter32

vector (i.e. medium and high quality of the supermarket [Euro/quality level] and waiting time at the33

checkout [Euro/h]). Pn,t is a (1 × Q) vector of trip characteristics that are mode-invariant, including trip34

purpose, weekend and peak hour variables, and γ is a (Qi × 1) alternative-specific parameter vector, shifting35

the intercepts relative to the reference alternative PT in the mode choice domains. Similarly, Zn is a (136

× L) vector of socio-economic characteristics and λ is a (Li × 1) alternative-specific parameter vector. Ii,n,t37

is a mode-specific inertia variable for RP or SP mode choice and ωi is the corresponding parameter.38

12Using different WTP specifications, previous analyses indicated that (1) combining travel and shopping cost into one single
WTP numeraire substantially worsened the model fit and (2) for interpretation issues, shopping location related attributes
were treated independently of the travel cost parameter. And as shopping location related attributes are not the main focus of
this paper, they do not receive special treatment in subsequent analyses.

13This has been observed in other valuation studies (see e.g. Fröhlich et al., 2012; Axhausen et al., 2014; Weis et al., 2017):
While these authors estimated the models in preference space, the same non-linear interaction terms of trip distance with travel
cost and time revealed a significant decrease in both parameters (with the former often dominating the latter, ceteris paribus,
leading to increasing VTTS for larger distances), indirectly implying higher error variances in relative attribute sensitivities
such as VTTS. One explanation might be that for larger distances, potentially relevant but unobservable factors may gain in
importance, which are not included in the utility function.
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To account for correlations across choices and unobserved heterogeneity, and to reduce the risk of omitted1

variable bias (e.g. Hensher, 2001; Sillano and Ortúzar, 2005; Greene et al., 2006), additional components2

were added to the utility function that vary across individuals but are constant over choice situations.3

ηASC,i,n ∼ N(0, σ2
ASC,i) is an individual- and mode-specific random error component with mean zero and4

standard deviation σASC,i, accounting for alternative-specific error variances and agent effects (e.g. Bhat,5

1995; Greene and Hensher, 2007; Walker et al., 2007). ηV TTS,i,n ∼ N(0, σ2
V TTS,i) is an individual- and mode-6

specific random component capturing unobserved VTTS heterogeneity.14 Similarly, ηcost,n ∼ N(0, σ2
cost) is7

an individual-specific random component capturing unobserved scale heterogeneity (see e.g. Greene and8

Hensher (2010); Hess and Rose (2012)).9

The choice of alternative i is modeled by maximizing the utility Ui,n,t for each individual n and choice10

scenario t:11

ci,n,t =
{

1 if Ui,n,t > Uj,n,t

0 if Ui,n,t ≤ Uj,n,t
(15)

Assuming that the random components ηi,n are mutually independent and εi,n,t is IID extreme value type I,12

the unconditional joint probability Ln(·) - the expected value over all possible values of ηi,n that individual n13

chooses alternative i among a sequence of choices Tn is defined by the 9-dimensional integral of the product14

of conditional choice over the distributions of ηi,n (e.g. Walker and Ben-Akiva, 2002; Train, 2009):15

Ln(·) =
∫
ηi,n

Tn∏
t=1

P (ci,n,t = 1|Xi,n,t, Si,n,t, Pn,t, Zn, Ii,n,t,MPT,n,t,Ω, ηi,n) × h(ηi,n|R) dηi,n (16)

where Ω is the set of parameter vectors to be estimated,16

P (ci,n,t = 1|Xi,n,t, Si,n,t, Pn,t, Zn, Ii,n,t,MPT,n,t,Ω, ηi,n) =
exp(Ui,n,t)

exp(Ui,n,t) +
∑

j
ajexp(Uj,n,t) (17)

is the conditional choice probability, where aj is a dummy variable defining the availability of alternative j17

in each choice situation.18

Using maximum simulated likelihood methods, Equation (16) is approximated by calculating the joint19

probability for any given value of the random components using a smooth simulator that is consistent and20

asymptotically normal (e.g. Train, 2009). This is done by drawing values from the h(ηi,n|R) distributions,21

with superscript r referring to draw r ∈ R: L̃n(·) shown in Equation (19) is the simulated likelihood for22

individual n, and the maximum simulated likelihood estimator is the value of Ω̂ that maximizes L̃L(Ω).23

max L̃L(Ω) =
N∑
n=1

log
(
L̃n(·)

)
(18)

24

L̃n(·) = 1
R

R∑
r=1

Tn∏
t=1

P (ci,n,t = 1|Xi,n,t, Si,n,t, Pn,t, Zn, Ii,n,t,MPT,n,t,Ω, ηri,n) (19)

Models were estimated in R 3.4.1. The R-code builds on the maxLik package using the BFGS algorithm25

(Molloy et al., 2019). The main criteria regarding identifiability and simulation bias were investigated:26

With R = 1000 Halton draws, the estimates were considered to be robust and stable. Cluster-robust (at the27

individual-level) standard errors were calculated using the Eicker-Huber-White sandwich estimator (Zeileis,28

2006).29

14Among different distributional assumptions tested, the normal distribution always exhibited the highest log-likelihood.

15



4. Results1

4.1. Estimation results2

In order to limit subsequent analyses and before starting with the discussion of the main results, a3

set of prior investigations are presented that help to better understand the motivation for the final model4

specifications.5

4.1.1. Models comparing the different data/experiment types6

Table A.10 in the appendix presents the results of five simple MNL models (including alternative-specific7

attributes and scale heterogeneity with respect to trip distance and data/experiment type) comparing the8

different data/experiment types. The first column shows the results for RP mode choice (MC RP), the9

second for SP mode choice (MC SP), the third for unlabeled SP route and shopping location choice (RC SC ),10

the fourth for pooled SP (SP), and the last for pooled RP/SP (RP SP). MC RP exhibits the best goodness11

of fit (GOF; ρ2 = 0.59), improving the corresponding constant-only model ρ2 of 0.33 by 26 percentage12

points, and all parameters are significant except for some alternative-specific constants (ASCs of walk and13

car) and the PT main mode effects. All ASCs are not significantly different from the MC SP ones, clearly14

justifying their pooled estimation in the RP SP model. Mode-specific VTTS and WTPs, however, differ.15

Comparing MC RP and SP, the VTTS for car and especially PT are higher in SP, and both differences16

are significant at the 5% level. Importantly, the VTTS difference between car and PT almost vanishes in17

SP. Furthermore, slow mode VTTS are insignificant in SP, and not significantly different from MC RP. PT18

transfers exhibit a negative WTP in MC RP15, and differs significantly from SP (p < 0.01), where it has19

the expected positive sign.20

Despite of these differences, the usual aim of pooling SP and RP is that each data type (partially) relieves21

the problems of the other type. If the VTTS were identical, there would be no need in collecting and pooling22

both data types. In the pooled RP SP model, all coefficients are significant (again with some exceptions for23

the ASCs and the PT main mode effects for tram and light rail, with heavy rail as the reference). If the PT24

main mode is bus, VTTS for PT increases (which is expected, given by typically lower level of in-vehicle25

comfort in buses compared to other PT modes), by roughly 1 Euro/h (p < 0.05). This model is considered26

as the starting point for the final model specifications, revealing an average VTTS for car drivers of about27

10.1 Euro/h, for PT 5.5 Euro/h, for walk 12.4 Euro/h and for bike 7.5 Euro/h.28

The scale parameters in the RP SP model indicate that the unlabeled RC SC data exhibits a lower error29

variance compared to MC RP, with the car route choice data showing the best performance (p < 0.01), while30

the error variance of the MC SP is significantly higher than in MC RP (p < 0.01; see also Section 2.3). Also,31

RP mode choice can be seen as the dominant data type: In the RP SP model, the mode-specific VTTS32

pattern found in the MC RP model is roughly maintained, and only marginally influenced (i.e. the VTTS33

for car and PT increase by about 1 Euro/h) compared to the MC RP results.34

4.1.2. Car passenger as a separate choice alternative35

The explicit treatment of car passengers in mode choice models is a difficult task. As discussed in36

Miller et al. (2005), ”inter-household car-pooling is an extremely difficult process to represent”. Modeling37

joint decisions between drivers and passengers would not only require the consideration of inter-personal38

household schedules and constraints (Miller et al., 2005; Roorda et al., 2009), but also ride sharing options39

with non-household members and an appropriate consideration of the nesting structure, which would go40

beyond the scope of this work.41

Several problems arise when considering car passenger as a separate alternative: First, the availability is42

unclear and has not been established in the survey. The choice seems mainly driven by opportunity, as the43

total RP market share is only about 8%, but 47% of respondents have chosen this mode at least once and44

without any clear pattern with respect to other covariates. Therefore, the best we could do, similar as e.g.45

in Pinjari et al. (2007), is to assume that this mode was always available.46

15This results from a confounding effect with the network density in urban areas, which could not be sufficiently disentangled:
Urban PT trips tend to have more stops but are still more attractive for other (unobserved) reasons.
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Second, a proper calculation of travel costs associated with the car passenger mode remains unclear. E.g.1

sharing the cost between driver and passenger, as e.g. discussed in De Jong and Gunn (2001), seems to be2

somewhat less realistic than assuming a cost of zero for the passenger, as carpooling in Austria is assumed3

to occur mostly between friends and/or household members and in an irregular pattern.4

To provide a rough estimate of car passenger VTTS, Table A.11 in the appendix presents the results of5

three simple MNL models, adding car passenger as a separate alternative. Note that car passengers are only6

distinguishable in the RP data, while the SP experiments - by design - only include the car driver option.7

Results show that under plausible assumptions regarding cost sharing (i.e. zero or half of car travel costs8

for passengers), the VTTS of drivers and passengers are not significantly different (both around 10 Euro/h),9

and other results are only marginally affected.10

Importantly, while no issue in these simple models, adding an additional alternative substantially in-11

creases the estimation complexity in case of the MIXL (i.e. two additional random components) and/or12

when including numerous other covariates which affect the additional ASC as well as VTTS heterogeneity.13

Therefore, all car passenger choice observations were excluded in the final model specifications.14

4.1.3. Models excluding non-trading respondents15

In cases where an analyst knows for sure if certain respondents were indeed captive and had no choice,16

they should be excluded from the estimation sample (e.g. Ortúzar and Willumsen, 2011). Swait and Ben-17

Akiva (1987) argue that - apart from biased ASCs - slope effects might become weakened in the presence18

of captivity. In the current case (as discussed in Section 2.3), however, the circumstances are not that19

clear. Hess et al. (2010) argue that if non-trading is a result of utility maximizing behavior with extreme20

preferences, such respondents should not be excluded, and in absence of further information on respondents’21

consideration set, the best one can do is a dedicated treatment of such preferences. Furthermore, in our22

case mode choice non-traders may still have completed route and shopping location choice tasks, revealing23

trade-off information to estimate VTTS for their ”preferred” mode.24

For sensitivity analysis of VTTS with respect to non-trading/captive behavior, Table A.12 in the ap-25

pendix presents the results of two simple MNL models, where the first model (EMNL1; N = 692) excludes26

respondents always choosing the same mode in the MC RP and MC SP tasks, while the second model27

(EMNL2; N = 232) excludes respondents never choosing car and PT. Importantly, VTTS estimates in both28

models are not significantly different from each other and from the base model (RP SP; Table A.10), but29

they are consistently higher for all modes (by 2 to 6 Euro/h; most pronounced for walk) in the EMNL230

model, where both modes that involve monetary costs have been chosen by all respondents at least once.31

Therefore, we may argue that if some respondents were indeed captive, results only change marginally if32

they are excluded, but excluding respondents never choosing car and PT (which does not imply that they33

did not consider both modes) increases the average VTTS.34

4.1.4. Results of final model specifications35

Four models with increasing complexity are presented in Table 6, which were found to represent choice36

behavior in our sample appropriately. The base model (BMNL) is a simple MNL model that includes all37

alternative-specific attributes presented in Section 2.3 and accounts for scale heterogeneity with respect38

to trip distance and the different data/experiment types. The second model (TMNL) adds all the trip39

characteristics, the third model adds all the user characteristics (UMNL) and the fourth model adds the40

random components (MIXL). After each increase in complexity, all parameters with a |t-value| < 1 are41

removed for the final model specifications (except for the ASCs and PT main mode effects).42

In all model specifications, coefficients of choice attributes show the expected signs, are statistically43

significant at the 5% level and are consistent (same signs) between the different models. Also, LOS and44

attributes related to the shopping location are similar between all models and are not significantly different:45

The WTPs for a reduction in access time range between 10.5 Euro/h and 12.5 Euro/h, for car congestion46

time between 13.5 and 15.7 Euro/h, for PT headway between 3.8 Euro/h and 4.8 Euro/h and for PT47

transfers between 0.5 Euro/transfer and 0.9 Euro/transfer. Results are in line with the expectation and, in48

relative magnitude, comparable to the Swiss and German valuation studies (see e.g. Fröhlich et al., 2012;49

Axhausen et al., 2014; Weis et al., 2017).50
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Table 6: Estimation results: 1) Base MNL model (BMNL), 2) MNL model including trip characteristics (TMNL), 3) MNL model
including user characteristics (UMNL) and 4) MIXL model including random intercepts, travel cost and VTTS coefficients.

BMNL TMNL UMNL MIXL
Base category: Public transportation (PT) Coef./(SE) Coef./(SE) Coef./(SE) Coef./(SE)

ASC walk: αwalk n.r. 0.71∗ 1.03∗∗∗ 1.34∗∗∗

(0.41) (0.39) (0.48)
ASC bike: αbike −2.02∗∗∗ −2.22∗∗∗ −0.83∗ −3.62∗∗∗

(0.27) (0.39) (0.45) (0.41)
ASC car driver: αcar n.r. n.r. n.r. n.r.

Travel cost/scale coefficient: βcost (travel cost = numeraire) −0.54∗∗∗ −0.40∗∗∗ −0.96∗∗∗ −0.47∗∗∗

(0.03) (0.03) (0.09) (0.11)
Distance elasticity of travel cost/scale: θcost −0.26∗∗∗ −0.36∗∗∗ −0.34∗∗∗ −0.26∗∗∗

(0.03) (0.04) (0.04) (0.06)

VTTS walk: V TTSwalk 12.42∗∗∗ 18.34∗∗∗ 20.80∗∗∗ 50.16∗∗∗

(1.08) (2.17) (2.48) (8.95)
VTTS bike: V TTSbike 7.52∗∗∗ 6.91∗∗∗ 11.10∗∗∗ 12.08∗∗∗

(0.55) (0.94) (1.44) (1.33)
VTTS car driver: V TTScar 10.13∗∗∗ 12.01∗∗∗ 11.42∗∗∗ 12.21∗∗∗

(0.66) (0.80) (0.80) (0.99)
VTTS PT: V TTSPT 5.59∗∗∗ 7.06∗∗∗ 7.07∗∗∗ 8.83∗∗∗

(0.63) (0.90) (0.81) (0.88)
Heavy rail x VTTS PT: ζV TTSP T ,heavyrail Base Base Base Base
Bus x VTTS PT: ζV TTSP T ,bus 0.94∗∗ 1.52∗∗∗ 1.69∗∗∗ 2.35∗∗∗

(0.37) (0.44) (0.48) (0.43)
Tram x VTTS PT: ζV TTSP T ,tram n.r. −1.03 −1.00 n.r.

(0.81) (0.90)
Light rail x VTTS PT: ζV TTSP T ,lightrail −0.74 −1.80∗∗ −2.49∗∗ −4.06∗∗∗

(0.64) (0.89) (0.99) (0.43)

Access time (car driver and PT): WTPLOS,acc.time 10.51∗∗∗ 12.48∗∗∗ 11.10∗∗∗ 12.03∗∗∗

(0.93) (1.16) (1.07) (1.34)
Congestion time (car driver): WTPLOS,cong.time 13.53∗∗∗ 15.01∗∗∗ 14.16∗∗∗ 15.71∗∗∗

(1.23) (1.43) (1.36) (1.73)
Headway (PT): WTPLOS,headway 3.83∗∗∗ 4.50∗∗∗ 4.83∗∗∗ 3.39∗∗∗

(0.60) (0.77) (0.86) (0.71)
Transfers (PT): WTPLOS,transfers 0.47∗∗∗ 0.66∗∗∗ 0.72∗∗∗ 0.92∗∗∗

(0.10) (0.11) (0.12) (0.15)

Price of goods basket: βprice −0.07∗∗∗ −0.06∗∗∗ −0.06∗∗∗ −0.12∗∗∗

(0.01) (0.01) (0.01) (0.03)
Low supermarket quality: WTPSHOP,low Base Base Base Base
Medium supermarket quality: WTPSHOP,medium −3.11∗∗ −3.24∗∗ −3.28∗∗ −3.49∗∗

(1.40) (1.43) (1.42) (1.47)
High supermarket quality: WTPSHOP,high −6.62∗∗∗ −6.72∗∗∗ −6.70∗∗∗ −7.08∗∗∗

(1.66) (1.68) (1.67) (1.76)
Waiting time at checkout: WTPSHOP,waiting 63.45∗∗∗ 64.54∗∗∗ 63.88∗∗∗ 64.96∗∗∗

(12.63) (12.90) (12.70) (13.40)

Scale parameter MC RP: σMC RP Base Base Base Base
Scale parameter MC SP: σMC SP 0.32∗∗∗ 0.50∗∗∗ 0.40∗∗∗ n.r.

(0.08) (0.10) (0.09)
Scale parameter RC CAR: σRC CAR 2.23∗∗∗ 2.70∗∗∗ 2.88∗∗∗ 1.70∗∗∗

(0.22) (0.27) (0.30) (0.23)
Scale parameter RC PT: σRC PT 1.37∗∗ 1.51∗∗∗ 1.56∗∗∗ n.r.

(0.17) (0.19) (0.21)
Scale parameter SC CAR: σSC CAR 1.28 1.47∗∗ 1.57∗∗ 0.75∗∗

(0.19) (0.21) (0.23) (0.12)
Scale parameter SC PT: σSC PT n.r. 1.49∗ 1.53∗ 0.74

(0.30) (0.31) (0.16)

Distance elasticity of VTTS walk: θV TTS,walk − 0.17∗∗ 0.18∗∗ 0.51∗∗∗

(0.07) (0.07) (0.10)

Continued on next page
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Table 6 – Continued from previous page

Base category: Public transportation (PT) BMNL TMNL UMNL MIXL
Coef./(SE) Coef./(SE) Coef./(SE) Coef./(SE)

Distance elasticity of VTTS bike: θV TTS,bike − 0.39∗∗ 0.04 n.r.
(0.15) (0.04)

Distance elasticity of VTTS car driver: θV TTS,car − 0.06 0.06 0.09∗∗

(0.04) (0.04) (0.04)
Distance elasticity of VTTS PT: θV TTS,PT − 0.20∗∗ 0.20∗∗∗ n.r.

(0.08) (0.08)

Trip purpose: Other: γother,PT − Base Base Base
Work (walk): γwork,walk − 0.53∗∗ 0.48∗∗ n.r.

(0.27) (0.23)
Leisure (walk): γleisre,walk − −0.90∗∗∗ −0.75∗∗∗ n.r.

(0.34) (0.26)
Work (bike): γwork,bike − 0.22 − −

(0.15)
Leisure (bike): γleisure,bike − −1.13∗∗∗ −0.71∗∗∗ −0.77∗∗∗

(0.34) (0.19) (0.28)
Work (car driver): γwork,car − −0.39∗∗∗ −0.50∗∗∗ −0.48∗∗∗

(0.14) (0.09) (0.13)
Leisure (car driver): γleisure,car − −0.96∗∗∗ −0.77∗∗∗ −0.98∗∗∗

(0.33) (0.21) (0.28)
Shop (car driver): γshop,car − 0.60∗∗∗ 0.60∗∗∗ 0.77∗∗∗

(0.08) (0.09) (0.12)

Work x VTTS walk: ρwork,V TTSwalk
− 3.44∗ 4.23∗∗ 4.21∗∗

(2.06) (2.14) (2.80)
Leisure x VTTS walk: ρleisure,V TTSwalk

− −3.02∗∗ −3.29∗∗ n.r.
(1.42) (1.44)

Work x VTTS bike: ρwork,V TTSbike
− 0.67 − −

(0.62)
Leisure x VTTS bike: ρleisure,V TTSbike

− −1.94 − −
(1.38)

Leisure x VTTS car driver: ρleisure,V TTScar − −4.49∗∗ −2.94∗∗ −2.19∗∗

(1.80) (1.40) (1.02)
Work x VTTS PT: ρwork,V TTSP T

− 0.87∗ 1.07∗∗∗ n.r.
(0.52) (0.36)

Leisure x VTTS PT: ρleisure,V TTSP T
− 3.01∗ 3.25∗∗ 2.19∗

(1.66) (1.33) (1.21)

Weekend (walk): γweekend,walk − −1.07∗∗∗ −0.95∗∗∗ −0.35
(0.26) (0.22) (0.25)

Weekend (bike): γweekend,bike − −0.57∗∗ −0.98∗∗∗ −1.22∗∗∗

(0.25) (0.36) (0.42)
Weekend (car driver): γweekend,car − −0.69∗∗∗ −0.62∗∗∗ −0.66∗

(0.25) (0.24) (0.34)

Weekend x VTTS walk: ρweekend,V TTSwalk
− −7.54∗∗∗ −8.00∗∗∗ −6.24∗∗∗

(1.62) (1.75) (1.63)
Weekend x VTTS bike: ρweekend,V TTSbike

− −1.41 −2.82∗∗ −2.44∗∗

(0.94) (1.33) (0.89)
Weekend x VTTS car driver: ρweekend,V TTScar − −6.09∗∗∗ −6.32∗∗∗ −5.56∗∗

(2.17) (2.18) (2.40)

Inertia RP (walk): ωRP,walk − −2.85∗∗∗ −2.64∗∗∗ −2.13∗∗∗

(0.32) (0.30) (0.36)
Inertia RP (bike): ωRP,bike − −4.32∗∗∗ −4.46∗∗∗ −3.48∗∗∗

(0.99) (0.97) (1.09)
Inertia RP (car driver): ωRP,car − 2.93∗∗∗ 2.77∗∗∗ 3.12∗∗∗

(0.15) (0.15) (0.19)
Inertia RP (PT): ωRP,PT − 2.40∗∗∗ 2.34∗∗∗ 2.04∗∗∗

(0.19) (0.18) (0.24)

Parking space at work place (car): λparking,car − − 0.23∗∗∗ 0.56∗∗∗

(0.05) (0.10)

Continued on next page
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Table 6 – Continued from previous page

Base category: Public transportation (PT) BMNL TMNL UMNL MIXL
Coef./(SE) Coef./(SE) Coef./(SE) Coef./(SE)

Urban (bike): λurban,bike − − 1.98∗∗∗ 2.68∗∗∗

(0.44) (0.40)
Urban (car): λurban,car − − −0.32∗ −0.48

(0.17) (0.30)
Kids (walk): λkids,walk − − 0.40∗∗ 0.40∗

(0.16) (0.21)

Female x travel cost/scale: κsex,cost − − 0.04 n.r.
(0.03)

High age x travel cost/scale: κage,cost − − −0.05 n.r.
(0.03)

High education x travel cost/scale: κeduc.,cost − − −0.07∗∗∗ n.r.
(0.03)

High income x travel cost/scale: κincome,cost − − 0.04 n.r.
(0.04)

Female x VTTS car driver: κsex,V TTScar − − −0.75 −1.04∗∗

(0.50) (0.48)
High education x VTTS car driver: κeduc.,V TTScar − − 0.53 0.39

(0.37) (0.36)
High income x VTTS PT: κincome,V TTSP T

− − 1.40∗∗∗ 1.15∗∗

(0.40) (0.49)
Urban x VTTS bike: κurban,V TTSbike

− − 4.61∗∗ 3.93∗∗∗

(1.82) (1.26)
Urban x VTTS car driver: κurban,V TTScar − − −1.73 −2.36∗

(1.33) (1.23)
Kids x VTTS walk: κkids,V TTSwalk

− − 3.12∗∗ 6.04∗∗

(1.27) (2.56)

σASC,walk − − − 0.56∗∗∗

(0.16)
σASC,bike − − − 3.77∗∗∗

(0.26)
σASC,car − − − 2.11∗∗∗

(0.16)
σASC,PT − − − 1.64∗∗∗

(0.24)
σcost − − − 0.68∗∗∗

(0.04)
σV TTS,walk − − − 18.75∗∗∗

(3.28)
σV TTS,bike − − − 4.07∗∗∗

(0.58)
σV TTS,car − − − 5.02∗∗∗

(0.76)
σV TTS,PT − − − 4.57∗∗∗

(0.64)

# estimated parameters 25 53 64 73
# respondents 744 744 744 744
# choice observations 21681 21681 21681 21681
# Halton draws − − − 1000
LLnull −24391.98 −24391.98 −24391.98 −24391.98
LLmodel −12344.74 −10692.97 −10401.51 −8487.56
ρ2 0.49 0.56 0.57 0.65
AICc 24741.30 21500.24 20943.52 16975.62

Note: In the MIXL, to increase readability, coefficients with |t-value| < 1 were excluded after estimation.
− : Not included in the model. n.r. : Not reported in the table because |t-value| < 1.
Robust standard errors (clustered by ID): ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

1
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An important finding that is inconsistent with the traditional microeconomic theory (e.g. Jara-Diaz,1

2007) is the, on average, substantially less negative valuation of the goods basket price relative to travel2

costs by a factor of about 5.2 in the MIXL (≈ −exp(−0.47)/ − 0.12), indicating that the dis-utility of3

spending money is not context-independent (see also e.g. Tversky and Kahneman (1986); Hensher and4

Rose (2009); Schmid and Axhausen (2017)). In terms of shopping costs, an increase in the supermarket5

quality by one unit exhibits a WTP of more than 3 Euro, and a reduction of waiting time at the checkout6

of about 60 Euro/h (which would be much smaller - for waiting time around 12 Euro/h - with travel cost7

as the numeraire). Also, remember that for the LOS-related WTPs, we only use travel cost as the base,8

as shopping costs were only included for a small subset of respondents (i.e. in the SC CAR and SC PT9

experiments; thus only contributing very little to the weighted average; see also Hensher (2011) for a related10

discussion). Although interesting on their own, these findings are not the main focus of this paper, and thus11

are not discussed in further detail.12

Adding trip characteristics (TMNL) and the random components (MIXL) substantially increase the13

model fit, while the user characteristics (UMNL) do not add substantial explanatory power. Including the14

full set of 56 additional parameters in the UMNL compared to the TMNL (21 effects for the ASCs, 7 effects15

for the cost/scale parameter and 28 effects for mode-specific VTTS), only 13 exhibited a |t-value| > 1; a16

likelihood ratio test with 43 degrees of freedom did not reject the null in favor of the more parsimonious17

model. However, one should note that although the correlations between trip and user characteristics are18

small to moderate (see Fig. 1; e.g. the correlations between urban residential location, trip distance and PT19

main modes), at least some explanatory power of the user characteristics is already captured by the trip20

characteristics.21

Interesting patterns were found for the trip purpose and weekend variables, while none of the coefficients22

of the peak hour variable had any noteworthy effects (thus are not included in the final model specifica-23

tions). Focusing on car and PT in the MIXL, in Austria many of the longer distance commuting (i.e.24

work/education) and leisure trips are conducted by PT, while especially for shopping, car can be seen as25

more convenient (p < 0.01). Leisure trips exhibit a lower VTTS point estimate for car (p < 0.05), but26

tend to be associated with a higher VTTS for PT (p < 0.1), almost offsetting the VTTS difference between27

these two modes. Weekend trips show a lower choice probability for bike relative to PT, while all VTTS28

point estimates except for PT exhibit a substantially lower value relative to weekdays (p < 0.05), especially29

for walk (p < 0.01) of more than 6 Euro/h (offsetting the longer walk distances at weekends; see also the30

discussion below). These findings can be explained by more relaxed time constraints for leisure (in case of31

car) and weekend trips, making the choice less dependent on travel time. Similar to other valuation studies,32

mode-specific VTTS tend to increase for larger distances, as indicated by the positive distance elasticities33

(e.g. p < 0.01 for PT in the TMNL and UMNL), but which - except for car and walk - disappear when34

accounting for unobserved heterogeneity. The distance elasticity of the VTTS for walk more than doubles in35

the MIXL, indicating a very strong increase for larger distances. This is partly offsetting the very large point36

estimate of 50.2 Euro/h, which is related to the sample mean of 9.8 km for all trips. For an average walk37

distance of 0.8 km (see also Table A.1), the VTTS for walk adjusts to about 14 Euro/h (≈ 50.2·(0.8/9.8)0.51).38

Inertia effects in the RP data show the expected habitual patterns (all p < 0.01). Keeping in mind our39

definition of inertia, the results indicate that the strongest habitual choice behavior on a tour-purpose level40

occurs for car followed by PT, while the opposite is found for both slow modes (similar as in Cherchi et al.41

(2013)). Interestingly, inertia effects for the SP data were not significant (and thus are not included in the42

final model specifications), which can be explained by the larger trade-offs respondents were facing in the43

main survey wave, often not choosing the same mode as in the RP reference trip.44

Regarding the user characteristics, the typical candidates such as income only partially affect preference45

heterogeneity: In the MIXL, high income respondents exhibit a higher VTTS point estimate for PT of about46

1.2 Euro/h (p < 0.01; note that several other specifications were tested, such as continuous interactions, but47

did not show any significant effects, which may be explained by the rather homogeneous sample with respect48

to income and education). Focusing on the MIXL, apart from income the strongest effects occur for urban49

residential location and kids in the household: The former is associated with a higher choice probability50

and VTTS of bike (both p < 0.01) and a lower VTTS for car (p < 0.1), while the latter is associated with a51

higher choice probability (p < 0.1) and VTTS for walk (p < 0.05).52
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The power of user characteristics in explaining travel cost sensitivity/scale heterogeneity is small and1

different across models: While high education is associated with a higher cost sensitivity in the UMNL (p <2

0.01), this is not the case in the MIXL. However, as expected, in all models the cost/scale parameter defined3

in Equation (13) decreases for increasing trip distance (p < 0.01), implying a decreasing cost sensitivity and4

precision in estimating relative attribute sensitivities such as VTTS. This again underpins our findings from5

above that cost sensitivity is not context-independent. One explanation might be that for larger distances,6

potentially relevant but unobservable factors may come into play, which are not included in the utility7

function.8

Finally, the estimated standard deviations of the random components are all highly significant (p < 0.01)9

and substantial: Unobserved preference heterogeneity is largest for bike, while VTTS heterogeneity is most10

pronounced for walk. Importantly, including them does not contradict previous results regarding signs of11

other coefficients: In most cases, UMNL and MIXL coefficients are not significantly different, except for the12

ASC of bike, the fixed cost coefficient, the VTTS for walk, and the distance elasticity of VTTS for walk13

and PT. Importantly, our results indicate a consistent (i.e. for all modes) increase in VTTS point estimates14

when adding the trip, user and the random components, implying that when omitting them, VTTS tend to15

be underestimated (for a related discussion, see also e.g. Hensher, 2001).16

4.2. VTTS heterogeneity in modes and user-types17

Results indicate that a substantial amount of VTTS heterogeneity is present, following distributions18

according to trip (distance, trip purpose and weekday vs. weekend trips), observed (residential location19

area, income, gender, education and kids in the household) and unobserved (random) user characteristics.20

Especially the latter are important from an econometric point of view, reducing the risk of omitted variable21

bias when investigating mode and user-type effects: Potentially important variables directly related to com-22

fort in a given mode, for example seat occupancy rates or WiFi availability in PT, were not available in the23

data, not to mention truly latent characteristics such as the ability for productive time use or ”comfort” in24

a broader sense (see also e.g. the discussion in Bhat, 1995).25

To correctly predict mode and user-type specific VTTS distributions, the calculation of individual-level26

VTTS is seen as the most coherent method of valuation inference (Sillano and Ortúzar, 2005). This is27

done by calculating the most likely mean values from simulated posterior distributions for each respondent28

(using R = 1000 draws), conditional on the observed sequence of choices and fitted VTTS distributions, by29

applying Bayes’ rule (Equation (20); see e.g. Revelt and Train, 2000; Hess et al., 2005; Sillano and Ortúzar,30

2005; Train, 2009; Schmid and Axhausen, 2017):31

̂V TTSi,n =
∑R

r=1

∏Tn

t=1 P (ci,n,t = 1|Xi,n,t, Si,n,t, Pn,t,, Zn, Ii,n,t,MPT,n,t, Ω̂, ˜V TTSri,n,t) · ˜V TTSri,n,t∑R

r=1

∏Tn

t=1 P (ci,n,t = 1|Xi,n,t, Si,n,t, Pn,t,, Zn, Ii,n,t,MPT,n,t, Ω̂, ˜V TTSri,n,t) (20)

Furthermore, a restriction is included, which is important from a behavioral perspective: For subsequent32

analyses, mode-specific VTTS values are only considered for those respondents who have chosen the corre-33

sponding mode at least once. Inferring a VTTS for an individual who has never used a certain mode during34

the observation period (and for whom we do not know, if he/she has even considered it) cannot be justified.35

Although this restriction does, in most cases, not affect results substantially, it still has some noticeable36

effects on reported VTTS distributions.37

Descriptive statistics of ̂V TTSi,n are presented for each model16, mode and user characteristic as well38

as for population-weighted VTTS in Table 7, where VTTS were re-weighted ex-post according to the user39

characteristics also included in the UMNL and MIXL specifications with respect to the Statistics Austria40

National Census 2011 data (see also Table 3). However, re-weighting does not affect results substantially,41

also given the relatively low power of user characteristics in explaining VTTS heterogeneity. The sample42

VTTS distributions are illustrated in Fig. 3a for car and Fig. 3b for PT. For a better comparability, VTTS43

16Note that in models without random coefficients (BMNL, TMNL and UMNL), ̂V TTSi,n corresponds to the predicted
mean VTTS of respondent n for mode i.
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are adjusted by the RP mean distances of the corresponding chosen modes (see also Table A.1) according1

to the non-linear interaction effects, primarily affecting reported VTTS for slow modes.2

The median VTTS for car ranges between 10.1 Euro/h (BMNL) and 12.8 Euro/h (MIXL), and for3

PT between 5.9 Euro/h (BMNL) and 8.1 Euro/h (MIXL). The median VTTS for bike ranges between 5.94

Euro/h (TMNL) and 11.7 Euro/h (MIXL), while for walk it ranges between 11.2 Euro/h (MIXL) and 13.25

Euro/h (UMNL). Importantly, the VTTS - especially for car and PT - does not differ substantially between6

the different models. Also, the distinction of PT main modes in Table 7 shows no substantial differences17:7

Light rail exhibits the lowest VTTS of about 7.9 Euro/h and bus the highest VTTS of about 9.6 Euro/h,8

supporting the hypothesis that a lower level of comfort in buses tends to increase the VTTS. However, given9

these relatively small differences and that this distinction was only made in the RP data, subsequent analyses10

focus on the VTTS for PT in general. The mode-specific ranking in the VTTS was similarly observed in11

other recent valuation studies in Switzerland and Germany (see e.g. Fröhlich et al., 2012; Axhausen et al.,12

2014; Weis et al., 2017), but is much more pronounced here for the difference between car and PT, which is13

the main subject of subsequent analyses, given by their substantially larger share of Austrian infrastructure14

expenditures compared to walk and bike.15

Table 7 indicates that the median of the VTTS difference between car and PT decreases when accounting16

for user characteristics from around 4.9 Euro/h (TMNL) to 3.8 Euro/h (UMNL), but then again increases17

up to 4.2 Euro/h when accounting for unobserved heterogeneity (MIXL). Importantly, this shows that on18

average, this VTTS difference is always prominent, no matter which mode/user characteristics the model19

controls for. In other words, removing the user-type effects (i.e. by controlling for user characteristics in20

the model) reduces the mode effect only by a small amount. The question remains, whether the mode effect21

can be explained by characteristics of the users, or if the mode-specific VTTS remains persistent across22

respondents.23

Table 7 shows how ̂V TTSi,n varies by user and trip characteristics in the MIXL (only reporting those24

categories with a |t-value| > 1 in Table 6; note that age, kids and single-worker households did not exhibit25

any substantial effects on the VTTS for car and/or PT), which are calculated by predicting the VTTS26

according to Equation (20) for a specific user or trip characteristic. Focusing on user characteristics, results27

show that the VTTS for car drivers is higher for men (1.7 Euro/h) with high education (0.8 Euro/h) living28

in rural areas (2.6 Euro/h), while the VTTS for PT is higher for high income respondents (1.3 Euro/h).29

Given that user characteristics only affect the VTTS of either one of each mode, this already indicates that30

the VTTS difference between car and PT is lowest for urban residents.31

While certainly interesting, we do not further investigate VTTS heterogeneity in trip characteristics as32

they vary within individuals, as the main goal of this paper is to provide VTTS estimates between different33

user-types for calculating the VTAT (as the VoL is presumably the same for individuals belonging to the34

same user group, and cannot vary within individuals (see also e.g. Jara-Diaz and Guevara, 2003). For the35

sake of completeness, VTTS estimates for different trip purposes and weekend vs. weekday trips are also36

reported in Table 7. For example, one can see that in the case of leisure trips, the VTTS difference between37

car and PT (0.3 Euro/h) almost vanishes, while in the case of trip purpose ”other”, the difference increases38

up to 5.1 Euro/h.39

Our definitions of mode and user-type effects are as follows: For a given user, the mode-specific part40

of utility is driven by characteristics specific to each mode that may affect comfort and how productively41

in-vehicle time can be used for other utility-generating activities (mode effect; i.e. the VTTS difference42

between car driver and PT; subsequently referred to as ∆V TTScar−PT ), while for a given mode, VTTS43

differences in user-types (user-type effect; i.e. the VTTS difference between two user groups a and b;44

subsequently referred to as ∆V TTSa−b) can be attributed to different socio-economic characteristics.45

Following the definition by Flügel (2014), the total mode effect (subsequently referred to as Total46

∆V TTScar−PT ) can be decomposed into the weighted average of two separate mode effects, one for each47

17The effects of PT main modes for bus and light rail in Table 6 are significant and substantial, affecting VTTS point
estimates for PT. However, the posterior VTTS calculation and exclusion of respondents who never chose PT at least once
substantially dampen these effects. Again, this exclusion is important from a behavioral point of view and in agreement with
our definition of mode and user-type effects.
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Table 7: Median VTTS [EUR/h] and interquartile range (IQR) by mode (reported for all models), user and trip characteristic
(only reported for the MIXL). Values are calculated based on the posterior means of VTTS distributions, only including
respondents who have chosen the corresponding mode at least once. The last column shows the number of respondents
observed (i.e. at least once, in the case of PT main modes and trip characteristics) in each category.

VTTS car dr. VTTS PT VTTS bike VTTS walk
N = 688 N = 304 N = 166 N = 412 # respon-

Median/(IQR) Median/(IQR) Median/(IQR) Median/(IQR) dents

BMNL 10.1 5.9 7.5 12.4 744
(0.0) (0.0) (0.0) (0.0)

TMNL 12.5 7.6 5.9 12.2 744
(1.7) (3.3) (2.6) (4.3)

UMNL (unweighted) 11.8 7.7 10.1 13.2 744
(2.8) (3.5) (6.3) (5.5)

UMNL (weighted) 11.3 7.5 10.4 13.0 744
(2.6) (3.4) (6.3) (4.9)

MIXL (unweighted) 12.8 8.1 11.7 11.2 744
(4.6) (4.5) (5.2) (9.8)

MIXL (weighted) 12.3 8.1 11.7 10.2 744
(4.4) (4.4) (5.9) (9.1)

PT main mode: Bus − 9.6 − − 239
(6.7)

PT main mode: Tram − 8.1 − − 148
(6.3)

PT main mode: Light rail − 7.9 − − 130
(7.0)

PT main mode: Heavy rail − 8.5 − − 191
(5.8)

Agglomeration/rural 13.1 8.1 9.7 11.2 572
(4.0) (4.4) (3.5) (9.8)

Urban 10.5 7.9 14.1 11.1 172
(4.0) (4.6) (2.6) (9.7)

Low income 12.7 7.6 11.6 11.8 430
(4.6) (4.2) (5.2) (10.3)

High income 12.9 8.9 11.7 11.9 314
(4.7) (4.5) (5.6) (10.1)

No kids 12.8 8.1 11.7 10.9 472
(4.6) (4.5) (5.4) (9.4)

With kids 12.7 8.0 11.7 12.8 272
(4.6) (4.5) (5.4) (11.2)

Female 11.9 7.9 11.6 11.8 371
(3.8) (4.4) (5.2) (10.3)

Male 13.6 8.2 11.9 12.0 373
(4.1) (4.3) (5.3) (10.5)

Low education 12.2 7.8 11.5 11.8 291
(4.4) (3.0) (5.5) (10.3)

High education 13.0 7.9 11.8 11.8 453
(4.4) (3.0) (5.2) (10.4)

Trip purpose: Leisure 10.1 9.8 14.3 12.7 575
(4.6) (6.5) (7.0) (12.5)

Trip purpose: Work/education 12.6 8.3 12.4 13.3 744
(4.0) (5.4) (7.6) (13.5)

Trip purpose: Other 13.4 8.3 14.3 12.0 743
(4.5) (6.5) (7.5) (12.2)

Weekday trip 12.6 9.1 14.3 12.5 744
(4.9) (6.5) (7.0) (12.9)

Weekend trip 10.7 8.9 13.5 12.5 644
(5.9) (6.9) (7.0) (13.0)
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user-type a and b (note that a user-type is defined as a specific segment of individuals using a specific mode;1

for example, user-type a might be low-income respondents using car, user-type b high-income respondents2

using car, etc.), where Na and Nb correspond to the number of respondents in each segment:3

Total ∆V TTScar−PT =
Na(V TTScar,a − V TTSPT,a) +Nb(V TTScar,b − V TTSPT,b)

Na +Nb

=
Na∆V TTScar−PT,a +Nb∆V TTScar−PT,b

Na +Nb

(21)

Furthermore, our definition of the total user-type effect (subsequently referred to as Total ∆V TTSa−b)4

corresponds to the difference in the two mode effects for user-types a and b, which is equal to the difference5

in the two user-type effects for car and PT.18 Thus, a higher - in absolute value - total user-type effect6

directly implies a stronger power in disentangling the total mode effect:7

Total ∆V TTSa−b = ∆V TTScar−PT,a −∆V TTScar−PT,b

= ∆V TTSa−b,car −∆V TTSa−b,PT
(23)

To properly disentangle the total mode effect, only those respondents (N = 232) are considered who8

have chosen both modes at least once, allowing for a fair comparison between users who are familiar with9

both modes. This accounts for some sort of self-selection at the individual level, as our main advantage is10

that individuals were observed choosing differently among a set of travel modes for different kinds of trips.11

The sample distribution of ∆V TTScar−PT is illustrated in Fig. 3c for the UMNL and the MIXL, showing12

comparable patterns (correlation = +0.42; p < 0.01). In both cases, some respondents exhibit a very small13

or even negative difference (i.e. VTTS for car < VTTS for PT) between the two modes.14

Results of ∆V TTScar−PT for the different user-types and ∆V TTSa−b for car and PT are shown in15

Table 8 for the UMNL and MIXL (the former is mainly reported for sensitivity analysis). Importantly, while16

the total mode effect is more pronounced in the MIXL (4.9 Euro/h vs. 3.7 Euro/h in the UMNL), results17

between the two models are consistent, but the importance of user characteristics in disentangling the total18

mode effect differ. For example, in the MIXL, the strongest power is evident for residential location area,19

decreasing the mode effect of urban residents to 3.0 Euro/h, while the mode effect of rural/agglomeration20

residents increases to 5.5 Euro/h. While in the UMNL, the mode effect is also smallest for urban residents21

(2.0 Euro/h), the strongest power in disentangling the total mode effect occurs for income. For urban22

residents, the more similar magnitude between the two modes could be explained by the higher flexibility in23

this user-group’s choices (i.e. higher PT accessibility and lower demand for car). Also, non-urban PT users24

are a small subgroup of non-urban residents. Under specific (unobserved) conditions, these respondents may25

have arranged themselves with the relatively poor service quality of PT, accepting the longer PT travel time26

relative to car. While rural residents use PT less frequently, regardless of its service quality, this does not27

directly affect the VTTS for PT, but indirectly for car, which in rural regions is, in most cases, also the28

fastest mode.29

The negative effect of high income on ∆V TTScar−PT - slightly reducing the mode effect in the MIXL30

to 4.6 Euro/h - results from a higher VTTS for PT, which can be explained by a higher opportunity value31

18While this definition of total user-type effect is directly related to the corresponding mode effects, following an earlier
version of this paper (Schmid et al., 2017) one could also define a weighted average user-type effect:

Weighted average ∆V TTSa−b =
Ncar(V TTScar,a − V TTScar,b) +NPT (V TTSPT,a − V TTSPT,b)

Ncar +NPT

=
Ncar∆V TTSa−b,car +NPT∆V TTSa−b,PT

Ncar +NPT

(22)

which is based on the VTTS differences between the two user-groups within each mode and weighted according to the total
number of observed RP and SP choices for either car or PT, denoted by Ncar and NPT (3861 and 2296, respectively; numbers
correspond to respondents who have chosen both modes at least once). Note, however, that the size of this weighted average
user-type effect is unrelated to the mode effect we are interested in, thus is not reported in Table 8.

25



Table 8: Median VTTS difference [EUR/h] and interquartile range (IQR) between car and PT by user characteristic (mode
effect; ∆V TTScar−PT ) for a given user-type and median VTTS difference [EUR/h] between different user-types (user-type
effect; ∆V TTSa−b) for a given mode (UMNL and MIXL). Values are calculated based on the posterior means of VTTS
distributions, only including respondents who have chosen both modes at least once. The last column shows the number of
respondents observed in each category.

UMNL MIXL # respon-
Median/(IQR) Median/(IQR) dents

Total ∆V TTScar−PT 3.7 4.9 232
(4.6) (5.9)

Low income ∆V TTScar−PT 4.6 5.6 120
(3.8) (5.8)

High income ∆V TTScar−PT 2.1 4.6 112
(4.3) (5.9)

Agglomeration/rural ∆V TTScar−PT 4.2 5.5 170
(4.6) (5.6)

Urban ∆V TTScar−PT 2.0 3.0 62
(4.7) (6.1)

Female ∆V TTScar−PT 2.9 4.5 109
(4.4) (5.7)

Male ∆V TTScar−PT 4.4 5.9 123
(4.4) (5.8)

Low education ∆V TTScar−PT 2.7 4.3 66
(4.2) (5.9)

High education ∆V TTScar−PT 4.1 5.1 166
(4.0) (6.2)

Car ∆V TTShigh income−low income 0.0 0.2 232
(0.0) (0.5)

PT ∆V TTShigh income−low income 2.7 1.4 232
(0.8) (0.7)

Total ∆V TTShigh income−low income −2.7 −1.2 232
(0.8) (1.2)

Car ∆V TTSurban−rural −2.3 −2.7 232
(0.2) (1.0)

PT ∆V TTSurban−rural 0.0 −0.2 232
(0.0) (0.6)

Total ∆V TTSurban−rural −2.3 −2.4 232
(0.2) (1.1)

Car ∆V TTSfemale−male −1.5 −1.8 232
(0.1) (0.6)

PT ∆V TTSfemale−male 0.0 −0.2 232
(0.0) (0.4)

Total ∆V TTSfemale−male −1.5 −1.5 232
(0.1) (0.8)

Car ∆V TTShigh educ.−low educ. 1.4 0.9 232
(0.1) (0.4)

PT ∆V TTShigh educ.−low educ. 0.0 0.1 232
(0.0) (0.3)

Total ∆V TTShigh educ.−low educ. 1.4 0.7 232
(0.1) (0.5)
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Figure 3: Sample distributions of VTTS posterior means for car driver (N = 688), PT (N = 304) and the difference between
car driver and PT (N = 232).
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of time for such respondents. Importantly, however, higher income is not associated with an increased1

VTTS for car drivers, which stands in contrast to the general expectations. Furthermore, the mode effect is2

slightly less pronounced for lower educated respondents (4.3 Euro/h), which could be explained by the lower3

opportunity costs and/or ability of productive time use in PT. Finally, women exhibit a smaller mode effect4

of about 4.5 Euro/h, which could be explained by more relaxed work-related time schedules (many female5

respondents are part-time workers), making the choice between car and PT less driven by travel time.6

Regarding the user-type effects, again, one should note that the differences in user-type effects between7

car and PT coincide with the differences in mode effects between two user-types. The strongest total user-8

type effect in the MIXL occurs for residential location area, reducing the median VTTS difference between9

car and PT by 2.4 Euro/h, which is still substantially below the total mode effect of 4.9 Euro/h. To10

summarize, our results clearly indicate that the total mode effect always dominates the user-type effects,11

and that the mode effects remain more or less persistent for all user-types.12

More distinct mode and user-type effects could be obtained when user characteristics would have been13

combined to form more specific user groups. While one could be tempted to make inferences based on14

combined user characteristics, the validity of such a procedure is empirically questionable given the often15

very low actual number of corresponding respondents in the sample. For example, in the MIXL, high income,16

female and urban residents with low education would exhibit a mode effect of 2.1 Euro/h, while only four17

such respondents are actually included in the sample. Also note that no combination of user characteristics18

could be found for which the mode effect is reversed.19

5. Conclusions and discussion20

Presenting the first representative value of travel time savings (VTTS) estimates of mode and user-21

type effects for Austrian workers, this paper contributes empirical measures which are important for policy22

appraisals, e.g. for new transportation infrastructure investments. Using a state-of-the-art pooled RP/SP23

modeling approach by making use of the benefits of both data types, our discrete choice models reveal24

population-weighted, median VTTS estimates for car drivers (12.3 Euro/h), PT users (8.1 Euro/h), bike25

(11.7 Euro/h) and walk (10.2 Euro/h). Given that a large variation in the VTTS is attributed to the26

characteristics of the trip and individual, VTTS are adjusted by controlling for trip purpose, distance,27

weekend trips, PT main modes and habitual choice behavior as well as individual-specific (observed and28

unobserved) taste heterogeneity.29

Other mode-specific characteristics are latent and cannot be observed directly, e.g. the possibility to30

use travel time productively or comfort; those were therefore not included as explanatory variables but are31

reflected in the estimated VTTS parameters and error variances, which is the standard way of how these32

latent characteristics are taken into account in mode choice models. Apart from all observable mode-specific33

and trip related characteristics available to us, our modeling structure minimizes the risk of omitted variable34

bias by including random error components and taste parameters. Furthermore, besides the fact that we do35

not know e.g. WiFi availability or seat occupancy rates in PT, we also think that they do not reflect the36

possibility to use travel time productively in an appropriate way. Similar arguments can be made for other,37

even more latent characteristics such as ”comfort”.38

The substantial and persistent difference between the VTTS for car and PT is striking. This stands39

in contrast to other European studies, in which the average mode effects were much smaller, and/or were40

typically dominated by the user-type effects. Our results indicate that the main user characteristics being41

able to explain this large difference in mode-specific VTTS of about 4.9 Euro/h (when only considering42

respondents who have chosen both modes at least once, to partly account for self-selection at the individual43

level) are, in decreasing order, urban residential location, gender, income and education. While for neither44

of these groups, the mode effect vanishes, the substantially reduced mode effect of about 3.0 Euro/h for45

urban residents can probably be explained by the higher flexibility in this user-group’s choices.46

The MAED data were collected in a broader way (i.e. apart from travel, to obtain individuals’ time use47

and expenditure allocation data), which has the main disadvantage that (1) no information was obtained48

on individuals’ attitudes towards different travel modes, such as e.g. the perception of comfort in PT or49
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how productively in-vehicle time is used and (2) we do not know much about the context of a specific travel1

choice. It can always be argued that self-selection in terms of VTTS heterogeneity might not only occur at2

the individual, but also at the trip level (e.g. if one is in a hurry and/or has tighter scheduling constraints,3

more relative emphasis will be put on travel time attributes). Even though we control for different trip4

characteristics, especially this latter type of self-selection cannot be tackled sufficiently given our available5

data, which has to be seen as a limitation of this work. Either way, to perfectly disentangle mode and6

user-type effects, one would also need a ”perfect” instrument provided by the data, which was not available7

(see also e.g. the discussions in Mabit and Fosgerau (2009) on self-selection and instrument validity in the8

context of estimating VTTS, which - in practice - are very challenging issues).9

The user characteristics accounted for in this paper were previously defined to be in line with the corre-10

sponding continuous time use and expenditure allocation choice models being analyzed in an independent11

paper by the same authors: In a separate effort, the VTTS estimates presented here are used to calculate all12

components of the complete Jara-Diaz and Guevara (2003) model formulation, from which the value assigned13

to travel, V TATi,n, can be calculated (to our best knowledge, for the first time mode- and individual-specific;14

denoted by subscript i and n, respectively):15

̂V TTSi,n = V oLn − V TATi,n (24)

The investigation of mode and user-type effects is important for identifying and separating the idiosyncratic16

differences in VTTS across modes that (1) are due to differences in the direct utility derived from in-17

vehicle travel time (mode effect) and (2) can be attributed to the characteristics of the users (user-type18

effect). The former is driven by mode-specific characteristics that affect comfort (V TATi,n) and by how19

productively in-vehicle time can be used for other activities. Recent advances in technological innovations20

such as smartphones, and more possibilities for a productive and enjoyable in-vehicle time use in PT, may21

have further accentuated this effect. Our results indicate that in the case of Austrian workers, on average,22

characteristics of the mode are more important than characteristics of the users, and that - for a given value23

of time as resource (V oLn) - travel time is perceived as more pleasant in PT than in a car.24
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Table A.1: Summary statistics of mode choice RP attributes (for available alternatives).

Attributes Obs. µ σ ν min. max.

Shortest path street distance SPSD [km] 17’392 9.8 12.9 2.6 0.0 96.5
SPSD if choice = walk [km] 2’374 0.8 1.0 5.0 0.0 11.8
SPSD if choice = bike [km] 1’036 3.4 3.5 2.8 0.1 32.3
SPSD if choice = car driver [km] 10’673 11.3 13.1 2.4 0.0 94.3
SPSD if choice = car pass. [km] 1’429 13.6 16.6 2.5 0.1 96.5
SPSD if choice = PT [km] 1’880 12.9 13.5 2.0 0.2 93.7

Purpose = work/education [-] 17’392 0.2 0.4 1.3 0 1
Purpose = leisure [-] 17’392 0.1 0.3 2.4 0 1
Purpose = shopping [-] 17’392 0.1 0.3 2.2 0 1
Purpose = other [-] 17’392 0.5 0.5 -0.1 0 1
Weekend trip [-] 17’392 0.2 0.4 1.3 0 1
Trip during peak hours [-] 17’392 0.3 0.5 0.6 0 1

Travel time walk [min.] 17’392 107.0 140.5 2.8 1.0 1’241.0
Travel time bike [min.] 15’501 53.1 63.4 2.9 3.0 583.5

Travel time car (driver and pass.) [min.] 16’014 14.4 13.1 1.7 0.9 106.0
Travel cost car (driver and pass.) [Euro] 16’014 0.8 1.0 2.8 0.0 9.7
Parking cost car (driver and pass.) [Euro] 16’014 0.2 0.8 4.7 0.0 6.0
Access time + egress time (driver and pass.) [min.] 16’014 4.9 1.5 0.3 3.0 7.0
Parking management in force (driver and pass.) [-] 16’014 0.1 0.3 2.5 0 1
Parking space at home (driver and pass.) [-] 16’014 0.9 0.3 −2.7 0 1
Parking space at work place (driver and pass.) [-] 16’014 0.6 0.5 −0.6 0 1

Travel time PT [min.] 10’942 16.5 13.5 1.7 1.0 106.0
Travel cost PT [CHF] 10’942 2.9 3.0 1.7 0.0 18.5
Access + egress time PT [min.] 10’942 14.7 7.9 1.3 3.0 63.0
Headway PT [min.] 10’942 16.9 21.8 3.3 1.0 236.0
Transfers PT [#] 10’942 0.9 1.0 1.0 0 6
Main mode = heavy rail [-] 10’942 0.3 0.4 1.1 0 1
Main mode = bus [-] 10’942 0.5 0.5 0.0 0 1
Main mode = tram [-] 10’942 0.1 0.3 2.4 0 1
Main mode = light rail [-] 10’942 0.1 0.3 2.6 0 1

µ = mean, σ = standard deviation, ν = skewness.

Table A.2: Attribute levels of mode choice experiments (labeled).

Attributes Car PT Bike Walk Levels

Travel cost car √
−20%,+10%,+40%

Travel cost PT √
−30%,+0%,+30%

Travel time √ √
−25%,+0%,+25%

Travel time √ √ Fix
Access time car √ 7.5%,15%,22.5% of travel time
Access time PT √

−35%,−10%,+15%
Congestion time √ 5%,10%,20% of travel time
Number of transfers √

−1,+0,+1
Headway urban < 30km √ 5, 10, 15 min.
Headway urban ≥ 30km √ 10, 15, 20 min.
Headway intermediate √ 15, 20, 30 min.
Headway rural √ 30, 45, 60 min.
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Table A.3: Attribute levels of car and PT route choice experiments (unlabeled).

Attributes Route 1 Route 2 Route 3 Levels

Travel cost car √ √ √
−20%,+0%,+20%

Travel time car √ √ √
−20%,+0%,+20%

Access time car √ √ √ 7.5%,15%,22.5% of travel time
Congestion time √ √ √ 5%,10%,20% of travel time

Travel cost PT √ √ √
−25%,+0%,+25%

Travel time PT √ √ √
−25%,+0%,+25%

Access time PT √ √ √
−30%,−5%,+20%

Number of transfers √ √ √
−1,+0,+1

Headway urban < 30km √ √ √ 5, 10, 15 min.
Headway urban ≥ 30km √ √ √ 10, 15, 20 min.
Headway intermediate √ √ √ 15, 20, 30 min.
Headway rural √ √ √ 30, 45, 60 min.

Table A.4: Attribute levels of car and PT shopping location choice experiments (unlabeled).

Attributes Shop 1 Shop 2 Levels

Travel cost car √ √
−30%,+0%,+30%

Travel time car √ √
−25%,+0%,+25%

Price of shopping basket √ √
−5%,0%,+5% of travel time

Quality of the supermarket √ √ Low, medium, high
Waiting time at check out √ √ 0, 5, 10 min.

Travel cost PT √ √
−25%,+0%,+25%

Travel time PT √ √
−25%,+0%,+25%

Price of shopping basket √ √
−5%,0%,+5% of travel time

Quality of the supermarket √ √ Low, medium, high
Number of transfers √ √

−1,+0,+1
Waiting time at check out √ √ 0, 5, 10 min.

Table A.5: Summary statistics of mode choice SP attributes (for available alternatives).

Attributes Obs. µ σ ν min. max.

Distance [km] 1’350 17.3 16.6 1.8 1.1 93.1

Travel time walk [min.] 71 34.6 17.3 0.5 17.0 64.0
Travel time bike [min.] 583 48.5 26.6 0.6 6.0 123.0

Travel time car [min.] 1’350 29.2 30.8 5.8 2.0 368.0
Travel cost car [Euro] 1’350 5.0 10.7 9.9 0.8 155.8
Access time car [min.] 1’350 5.5 3.6 12.6 2.0 27.0
Congestion time [min.] 1’350 4.4 3.0 2.8 2.0 24.0

Travel time PT [min.] 1’350 37.7 33.1 3.3 2.0 348.0
Travel cost PT [CHF] 1’350 6.5 13.2 8.6 1.0 181.5
Access + egress time PT [min.] 1’350 10.4 4.0 0.1 3.0 17.0
Headway PT [min.] 1’350 16.9 21.8 3.3 1.0 236.0
Transfers PT [#] 1’350 1.2 1.1 0.74 0 4

µ = mean, σ = standard deviation, ν = skewness.
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Figure A.1: Example choice situations of mode, route and shopping location.

33



Table A.6: Summary statistics of car route choice SP attributes.

Attributes Obs. µ σ ν min. max.

Distance [km] 1’579 16.7 15.4 2.3 0.3 96.5

Travel time R1 [min.] 1’579 23.8 15.3 2.2 3.0 126.0
Travel cost R1 [Euro] 1’579 3.4 3.0 3.3 0.6 29.2
Access time R1 [min.] 1’579 5.7 3.5 1.3 1.0 24.0
Congestion time R1 [min.] 1’579 4.9 3.1 0.9 0.0 21.0

Travel time R2 [min.] 1’579 24.3 16.1 2.4 3.0 126.0
Travel cost R2 [Euro] 1’579 3.3 3.0 3.2 0.6 29.2
Access time R2 [min.] 1’579 6.0 3.2 1.0 1.0 24.0
Congestion time R2 [min.] 1’579 4.5 3.1 1.2 0.0 21.0

Travel time R3 [min.] 1’332 25.8 17.7 2.4 3.0 126.0
Travel cost R3 [Euro] 1’332 3.3 3.1 3.5 0.6 29.2
Access time R3 [min.] 1’332 5.6 2.7 1.3 1.0 24.0
Congestion time R3 [min.] 1’332 4.6 2.7 1.2 0.0 21.0

µ = mean, σ = standard deviation, ν = skewness.

Table A.7: Summary statistics of PT route choice SP attributes.

Attributes Obs. µ σ ν min. max.

Distance [km] 867 15.4 13.2 1.2 1.3 55.3

Travel time R1 [min.] 867 33.9 22.6 1.3 2.0 148.0
Travel cost R1 [Euro] 867 2.6 2.4 3.1 0.5 19.4
Access time R1 [min.] 867 11.4 5.4 1.1 2.0 32.0
Headway R1 [min.] 867 26.7 17.7 0.7 5.0 60.0
Transfers R1 [#] 867 1.1 1.1 0.7 0 4

Travel time R2 [min.] 867 34.6 23.6 1.4 2.0 148.0
Travel cost R2 [Euro] 867 2.7 2.5 3.3 0.5 19.4
Access time R2 [min.] 867 10.9 5.4 1.2 2.0 34.0
Headway R2 [min.] 867 28.0 18.5 0.6 5.0 60.0
Transfers R2 [#] 867 1.1 1.0 0.7 0 4

Travel time R3 [min.] 760 33.8 23.4 1.5 2.0 148.0
Travel cost R3 [Euro] 760 2.7 2.5 3.4 0.6 19.4
Access time R3 [min.] 760 10.2 5.0 1.0 2.0 32.0
Headway R3 [min.] 760 25.0 17.4 0.9 5.0 60.0
Transfers R3 [#] 760 1.0 1.0 0.8 0 4

µ = mean, σ = standard deviation, ν = skewness.

Table A.8: Summary statistics of car shopping location choice SP attributes.

Attributes Obs. µ σ ν min. max.

Distance [km] 1’606 9.6 8.8 1.4 0.1 47.6

Travel time S1 [min.] 1’606 16.3 11.0 1.4 2.0 64.0
Travel cost S1 [Euro] 1’606 2.1 1.9 5.7 0.6 27.6
Price of goods S1 [Euro] 1’606 67.2 60.5 2.3 19.0 315.0
Waiting time at checkout S1 [min.] 1’606 5.0 4.0 0.0 0.0 10.0

Travel time S2 [min.] 1’606 15.9 10.7 1.3 2.0 64.0
Travel cost S2 [Euro] 1’606 2.1 2.1 6.9 0.6 34.9
Price of goods S2 [Euro] 1’606 66.7 60.3 2.4 19.0 315.0
Waiting time at checkout S2 [min.] 1’606 5.0 4.1 0.0 0.0 10.0

µ = mean, σ = standard deviation, ν = skewness.
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Table A.9: Summary statistics of PT shopping location choice SP attributes.

Attributes Obs. µ σ ν min. max.

Distance [km] 316 8.0 7.6 1.6 0.7 33.5

Travel time S1 [min.] 316 25.0 17.7 0.9 2.0 84.0
Travel cost S1 [Euro] 316 1.8 1.4 6.6 0.5 15.4
Transfers S1 [#] 316 1.0 0.9 0.6 0 3
Price of goods S1 [Euro] 316 50.1 57.2 2.6 19.0 315.0
Waiting time at checkout S1 [min.] 316 4.9 4.0 0.0 0.0 10.0

Travel time S2 [min.] 316 25.6 17.9 0.8 2.0 84.0
Travel cost S2 [Euro] 316 1.8 1.5 6.2 0.5 15.4
Transfers S2 [#] 316 1.0 0.9 0.6 0 3
Price of goods S2 [Euro] 316 50.0 57.8 2.6 19.0 315.0
Waiting time at checkout S2 [min.] 316 5.1 4.0 0.0 0.0 10.0

µ = mean, σ = standard deviation, ν = skewness.
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Figure A.2: Trading behavior of respondents in the mode choice SP (pre-test and main survey wave) and RP data sets.
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Table A.10: Estimation results: MNL models comparing the different data types. MC RP: Mode choice RP. MC SP: Mode
choice SP. RC SC: Route and shopping location choice for car and PT. SP: Only SP. RP SP: All together.

MC RP MC SP RC SC SP RP SP
Base category: PT Coef./(SE) Coef./(SE) Coef./(SE) Coef./(SE) Coef./(SE)

ASC walk 0.48 0.88 − 0.94 0.13
(0.37) (1.40) (1.60) (0.31)

ASC bike −1.68∗∗∗ −1.36∗ − −1.28∗ −2.02∗∗∗

(0.33) (0.81) (0.70) (0.27)
ASC car driver 0.23 −0.26 − −0.16 −0.05

(0.25) (0.48) (0.34) (0.19)

Travel cost/scale coefficient 0.60∗∗∗ 0.18∗∗∗ 1.06∗∗∗ 0.20∗∗∗ 0.54∗∗∗

(0.04) (0.06) (0.10) (0.05) (0.03)
Distance elasticity of travel cost/scale −0.23∗∗∗ 0.04 −0.25∗∗∗ −0.14∗∗ −0.26∗∗∗

(0.04) (0.16) (0.05) (0.06) (0.03)

VTTS walk 11.72∗∗∗ 14.78 − 11.24 12.42∗∗∗

(1.16) (14.96) (11.82) (1.08)
VTTS bike 6.93∗∗∗ 4.57 − 3.59 7.52∗∗∗

(0.60) (3.21) (2.84) (0.55)
VTTS car driver 8.48∗∗∗ 11.99∗∗ 12.25∗∗∗ 12.50∗∗∗ 10.13∗∗∗

(1.26) (5.32) (0.91) (1.12) (0.66)
VTTS PT 4.42∗∗∗ 14.33∗∗∗ 9.31∗∗∗ 11.45∗∗∗ 5.59∗∗∗

(0.77) (5.30) (1.30) (1.94) (0.63)
VTTS PT x heavy rail Base − − − Base
VTTS PT x bus 0.06 − − − 0.94∗∗

(0.27) (0.37)
VTTS PT x tram 0.20 − − − −0.46

(0.48) (0.59)
VTTS PT x light rail 0.67 − − − −0.74

(0.54) (0.64)

Access time (car driver and PT) 9.67∗∗∗ 27.83∗∗ 12.16∗∗∗ 13.95∗∗∗ 10.51∗∗∗

(1.25) (13.67) (1.40) (1.70) (0.93)
Headway (PT) 3.15∗∗∗ 2.98 3.19∗∗∗ 3.78∗∗∗ 3.83∗∗∗

(0.63) (3.58) (0.78) (1.01) (0.60)
Transfers (PT) −0.32∗ 1.01 1.18∗∗∗ 1.43∗∗∗ 0.47∗∗∗

(0.17) (0.77) (0.22) (0.29) (0.10)
Congestion time (car driver) − 34.19∗ 15.66∗∗∗ 17.06∗∗∗ 13.53∗∗∗

(17.66) (1.63) (1.93) (1.23)

Price of goods basket − − −0.18∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(0.04) (0.01) (0.01)
Supermarket quality: Low − − Base Base Base
Supermarket quality: Medium − − −3.69∗∗ −3.91∗∗∗ −3.11∗∗

(1.48) (1.50) (1.40)
Supermarket quality: High − − −6.84∗∗∗ −6.93∗∗∗ −6.62∗∗∗

(1.69) (1.69) (1.66)
Waiting time at checkout − − 64.82∗∗∗ 64.61∗∗∗ 63.45∗∗∗

(12.89) (12.79) (12.63)

Scale parameter MC RP − − − − Base
Scale parameter RC PT − − 0.56∗∗∗ 2.38∗∗ 1.37∗∗

(0.09) (0.62) (0.17)
Scale parameter SC CAR − − 0.53∗∗∗ 2.71∗∗ 1.28

(0.09) (0.77) (0.19)
Scale parameter SC PT − − 0.48∗∗∗ 2.37∗∗ 1.35

(0.10) (0.65) (0.27)
Scale parameter RC CAR − − Base 4.80∗∗∗ 2.23∗∗∗

(1.28) (0.22)
Scale parameter MC SP − − − Base 0.32∗∗∗

(0.08)

# estimated parameters 15 13 15 21 25
# respondents 744 171 499 504 744
# choice observations 15963 1350 4368 5718 21681
LLnull −19315 −1200 −3875 −5076 −24391
LLmodel −7982 −979 −3142 −4142 −12344
ρ2 0.59 0.18 0.19 0.18 0.49
AICc 15995 1986 6315 8328 24741

Robust standard errors (clustered by ID): ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1
− : Parameter not included.



Table A.11: Estimation results: MNL models including car passenger as a separate alternative. CPFC: Full travel costs for car
passengers. CPHC: Half of the travel costs for car passengers. CPNC: No travel costs for car passengers.

CPFC CPHC CPNC
Base category: PT Coef./(SE) Coef./(SE) Coef./(SE)

ASC walk 0.20 0.16 0.11
(0.29) (0.30) (0.30)

ASC bike −2.00∗∗∗ −2.03∗∗∗ −2.07∗∗∗

(0.27) (0.27) (0.27)
ASC car driver −0.07 −0.09 −0.13

(0.18) (0.19) (0.18)
ASC car passenger −2.53∗∗∗ −2.49∗∗∗ −2.52∗∗∗

(0.21) (0.21) (0.21)

Travel cost/scale coefficient 0.53∗∗∗ 0.54∗∗∗ 0.51∗∗∗

(0.03) (0.03) (0.03)
Distance elasticity of travel cost/scale −0.26∗∗∗ −0.27∗∗∗ −0.28∗∗∗

(0.03) (0.03) (0.02)

VTTS walk 12.48∗∗∗ 12.22∗∗∗ 12.55∗∗∗

(1.05) (1.04) (1.09)
VTTS bike 7.39∗∗∗ 7.29∗∗∗ 7.47∗∗∗

(0.52) (0.51) (0.54)
VTTS car driver 10.01∗∗∗ 9.89∗∗∗ 10.11∗∗∗

(0.64) (0.64) (0.66)
VTTS car passenger 7.64∗∗∗ 9.68∗∗∗ 11.92∗∗∗

(0.87) (0.89) (0.96)
VTTS PT 5.43∗∗∗ 5.38∗∗∗ 5.65∗∗∗

(0.61) (0.60) (0.62)
Heavy rail x VTTS PT Base Base Base
Bus x VTTS PT 0.79∗∗ 0.77∗∗ 0.87∗∗

(0.34) (0.34) (0.34)
Tram x VTTS PT −0.31 −0.31 −0.42

(0.54) (0.53) (0.54)
Light rail x VTTS PT −0.86 −0.80 −0.95

(0.59) (0.58) (0.60)

Access time (car and PT) 10.12∗∗∗ 10.02∗∗∗ 10.48∗∗∗

(0.91) (0.90) (0.92)
Congestion time (car driver) 13.28∗∗∗ 13.16∗∗∗ 13.45∗∗∗

(1.21) (1.21) (1.23)
Headway (PT) 3.84∗∗∗ 3.80∗∗∗ 3.97∗∗∗

(0.60) (0.59) (0.62)
Transfers (PT) 0.44∗∗∗ 0.44∗∗∗ 0.46∗∗∗

(0.10) (0.10) (0.10)

Price of goods basket −0.07∗∗∗ −0.07∗∗∗ −0.07∗∗∗

(0.01) (0.01) (0.01)
Supermarket quality: Low Base Base Base
Supermarket quality: Medium −3.09∗∗ −3.11∗∗ −3.16∗∗

(1.40) (1.40) (1.43)
Supermarket quality: High −6.61∗∗∗ −6.62∗∗∗ −6.67∗∗∗

(1.66) (1.66) (1.69)
Waiting time at checkout 63.30∗∗∗ 63.34∗∗∗ 64.47∗∗∗

(12.56) (12.57) (13.26)

Scale parameter MC RP Base Base Base
Scale parameter MC SP 0.32∗∗∗ 0.32∗∗∗ 0.33∗∗∗

(0.09) (0.08) (0.09)
Scale parameter RC CAR 2.27∗∗∗ 2.26∗∗∗ 2.36∗∗∗

(0.21) (0.21) (0.21)
Scale parameter RC PT 1.39∗∗ 1.38∗∗ 1.41∗∗

(0.18) (0.18) (0.18)
Scale parameter SC CAR 1.29 1.28 1.33∗

(0.19) (0.19) (0.19)
Scale parameter SC PT 1.36 1.34 1.40

(0.28) (0.28) (0.28)

# estimated parameters 27 27 27
# respondents 744 744 744
# choice observations 23110 23110 23110
LLnull −30797 −30797 −30797
LLmodel −17205 −17198 −17250
ρ2 0.44 0.44 0.44
AICc 34467 34452 34557

Robust standard errors (clustered by ID): ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1



Table A.12: Estimation results: MNL models excluding 1) respondents always choosing the same mode in the MC RP and
MC SP (EMNL1) and 2) respondents never choosing car and PT at least once in the MC RP and MC SP (EMNL2).

EMNL1 EMNL2
Base category: PT Coef./(SE) Coef./(SE)

ASC walk 0.40 0.55
(0.28) (0.47)

ASC bike −1.70∗∗∗ −1.90∗∗∗

(0.26) (0.40)
ASC car driver −0.01 −0.29

(0.17) (0.26)

Travel cost/scale coefficient 0.50∗∗∗ 0.37∗∗∗

(0.03) (0.04)
Distance elasticity of travel cost/scale −0.26∗∗∗ −0.29∗∗∗

(0.03) (0.05)

VTTS walk 13.17∗∗∗ 18.06∗∗∗

(1.16) (2.53)
VTTS bike 8.25∗∗∗ 9.63∗∗∗

(0.62) (1.18)
VTTS car driver 11.29∗∗∗ 13.92∗∗∗

(0.67) (1.41)
VTTS PT 5.29∗∗∗ 7.18∗∗∗

(0.56) (1.05)
Heavy rail x VTTS PT Base Base
Bus x VTTS PT 0.83∗∗ 1.46∗∗

(0.35) (0.68)
Tram x VTTS PT −0.81 −0.80

(0.58) (1.02)
Light rail x VTTS PT −0.59 −0.67

(0.64) (0.85)

Access time (car driver and PT) 10.89∗∗∗ 12.51∗∗∗

(0.96) (1.93)
Congestion time (car driver) 14.57∗∗∗ 21.03∗∗∗

(1.33) (3.82)
Headway (PT) 3.20∗∗∗ 3.98∗∗∗

(0.50) (0.85)
Transfers (PT) 0.51∗∗∗ 0.67∗∗∗

(0.09) (0.14)

Price of goods basket −0.07∗∗∗ −0.05∗∗∗

(0.01) (0.02)
Supermarket quality: Low Base Base
Supermarket quality: Medium −2.91∗∗ −7.99∗∗

(1.39) (3.75)
Supermarket quality: High −6.59∗∗∗ −10.66∗∗

(1.65) (4.49)
Waiting time at checkout 63.39∗∗∗ 76.61∗∗

(12.55) (30.34)

Scale parameter MC RP Base Base
Scale parameter MC SP 0.35∗∗∗ 0.31∗∗∗

(0.10) (0.12)
Scale parameter RC CAR 2.28∗∗∗ 2.44∗∗∗

(0.22) (0.47)
Scale parameter RC PT 1.59∗∗∗ 1.82∗∗∗

(0.18) (0.27)
Scale parameter SC CAR 1.32∗ 1.57

(0.19) (0.36)
Scale parameter SC PT 1.39 1.53

(0.28) (0.39)

# estimated parameters 25 25
# respondents 692 232
# choice observations 17729 7502
LLnull −19934 −8603
LLmodel −11076 −5314
ρ2 0.44 0.38
AICc 22204 10686

Robust standard errors (clustered by ID): ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1
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Sillano, M., Ortúzar, J. d. D., 2005. Willingness-to-pay estimation with mixed logit models: Some new evidence. Environment10

and Planning A 37 (3), 525–550.11

Swait, J., Ben-Akiva, M., 1987. Incorporating random constraints in discrete models of choice set generation. Transportation12

Research Part B: Methodological 21 (2), 91–102.13

Te Grotenhuis, M., Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-Catran, A., Konig, R., 2017. When size matters: Advan-14

tages of weighted effect coding in observational studies. International Journal of Public Health 62 (1), 163–167.15

The American Association for Public Opinion Research, 2015. Standard Definitions: Final Dispositions of Case Codes and16

Outcome Rates for Surveys. AAPOR.17

URL http://www.aapor.org18

Train, K., Weeks, M., 2005. Discrete choice models in preference space and willingness-to-pay space. in: R. Scarpa and A.19

Alberini (eds.) Applications of Simulation Methods in Environmental and Resource Economics, pp. 1–16, Springer.20

Train, K. E., 2009. Discrete Choice Methods with Simulation. Cambridge University Press.21

Truong, T. P., Hensher, D. A., 1985. Measurement of travel time values and opportunity cost from a discrete choice model.22

The Economic Journal, 438–451.23

Tversky, A., Kahneman, D., 1981. The framing of decisions and the psychology of choice. Science 211 (4481), 453–458.24

Tversky, A., Kahneman, D., 1986. Rational choice and the framing of decisions. Journal of Business 59 (4), 251–278.25

Walker, J. L., Ben-Akiva, M., 2002. Generalized random utility model. Mathematical Social Sciences 43 (3), 303–343.26

Walker, J. L., Ben-Akiva, M., Bolduc, D., 2007. Identification of parameters in normal error component logit-mixture (NECLM)27

models. Journal of Applied Econometrics 22 (6), 1095–1125.28

Wardman, M., 2004. Public transport values of time. Transport Policy 11 (4), 363–377.29

Wardman, M., Lyons, G., 2016. The digital revolution and worthwhile use of travel time: Implications for appraisal and30

forecasting. Transportation 43 (3), 507–530.31

Weis, C., Axhausen, K., Schlich, R., Zbinden, R., 2010. Models of mode choice and mobility tool ownership beyond 2008 fuel32

prices. Transportation Research Record (2157), 86–94.33

Weis, C., Vrtic, M., Schmid, B., Axhausen, K. W., 2017. Analyse der SP-Befragung 2015 zur Verkehrsmodus- und Routenwahl.34

Research report, Swiss Federal Office for Spatial Development (ARE), IVT, ETH Zurich, Berne.35
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