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Legged robots rely on an accurate calibration of the system’s kinematics for

reliable motion tracking of dynamic gaits and for precise foot placement when

moving in rough terrain. In our automatic foot-eye calibration approach, a
monocular camera is attached to the robot and observes the robot’s moving

feet, which are equipped with Augmented Reality (AR) markers. The mea-

surements are used to formulate a non-linear least squares problem over a
fixed time window in order to estimate the 33 unknown parameters. This is

efficiently solved with the Levenberg-Marquardt algorithm and we get esti-

mates for both the kinematic and the camera parameters. The approach is
successfully evaluated on a real quadruped robot.

Keywords: Calibration, Kinematics, Robot vision, Legged robotics

1. Introduction

Legged locomotion heavily depends on a good knowledge of the robot’s

kinematic parameters. These include body measures, segment lengths and

joint angle offsets. Small errors propagate through the kinematic chain and

significantly affect the pose of the foot. It is desirable to reduce these sys-

tematic errors, which can be achieved through geometric calibration of the

robot’s kinematics.1 In order to avoid tedious and error-prone manual cal-

ibration, we can employ an automatic calibration procedure. To this end,

a redundant measure of the robot’s foot location is required which is then

compared to the kinematic model. The resulting discrepancy depends on

the calibration parameters which can be optimized such that the associated

errors become minimal. An elegant and inexpensive way to get measure-

ments of the robot’s foot is a camera which is rigidly attached to the robot’s
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Fig. 1. Overview of the foot-eye calibration problem. By minimizing the discrepancy
between the two models and the visual observations, the corresponding calibration pa-

rameters can be estimated (in brackets).

main body. For industrial robot arms and for humanoid robots, this is com-

monly referred to as hand-eye calibration.2,3 Because it is often difficult to

directly extract the 3D pose information of the end-effector,4 a common

practice is to attach checkerboard patterns to the end-effector.5 Recent ap-

proaches of visual calibration procedures do not only consider geometric

parameters, but aim to provide a more general calibration framework with

the inclusion of different sensor modalities.6,7

In this paper, we seek to contribute to the calibration of legged robots

by adapting the method of Birbach et al.8 to a quadruped robot. Our

framework allows to include an arbitrary number of legs simultaneously

in a single calibration run. We include all segment lengths as well as a

constant measurement time offset in the calibration process, which we show

to significantly improve the result. We achieve a fast optimization runtime

(10–20 seconds) by the use of efficient transformation descriptions and a

highly optimized solver library.

2. Modeling

Figure 1 shows the basic components of our investigated foot-eye calibra-

tion: The kinematic model describes the leg’s forward kinematics with re-

spect to the robot’s base frame. The camera model is used to express the

relation between the detected 3D marker locations and their projections

onto the image plane. The parameters of the estimation process are sum-

marized in Table 1. We distinguish between kinematic parameters pkin and

camera parameters pcam. Additionally, we obtain the joint encoder data

zj(t) at time t (positions and velocities) and the 2D image marker po-
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Table 1. Summary of the calibration parameters. The locomotion relevant kinematic
calibration parameters are printed in bold.

Kinematic parameters pkin

Body measures bx, by

Segment lengths∗ lh, lt, ls

Joint offsets∗ θh,offset, θt,offset, θs,offset

Shank-to-foot angle∗ θf

Foot-to-pattern angle∗ θp

Time offset toffset

Camera parameters pcam

Position tBC
Orientation qBC
Camera matrix K

Distortion coeff. D

Note: ∗ Estimated separately for each leg.

sitions zm(t). We assume that all measurements are affected by additive

Gaussian noise. A constant time delay toffset can be observed between the

joint encoder data and the marker measurements, which is therefore also

included in the calibration. By linking kinematic and camera model, we

obtain an estimate of the marker location in the image plane.

2.1. Kinematic model

The kinematic chain from the base frame B to the foot frame F is shown

in Fig. 2. The transform TBF is obtained by concatenating subsequent

transforms between the intermediate leg coordinate frames, which are lo-

cated at the hip (H), the thigh (T ) and the shank (S). Each trans-

form is parametrized by a translation vector t and a subsequent rota-

tion q (unit quaternion). Taking the transform TBH (left leg) as an exam-

ple, this is a translation by tBH = (bx, by, 0)T and a rotation by qBH =

(cos(θh(t)/2), sin(θh(t)/2) · [1, 0, 0])T . In the following, we will only indicate

the dependence on model parameters for each transform. The resulting

transform from the base frame to the foot frame is

TBF (pkin, zj(t)) = TBH(θh(t), bx, by)THT (θt(t), lh)T TS (θs(t), lt)T
S
F (θf , ls), (1)

where an estimate of the j-th joint angle is given by

θj(t) = θj,measured(t) + toffsetθ̇j,measured(t) + θj,offset. (2)

This includes two correction terms, taking into account the time offset toffset

and the joint angle offset θj,offset. We rigidly attach circularly symmetric

marker patterns to the robot to get visual observations of its feet (see

Fig. 2). The transform TFP describes the rotation of the circular pattern

around the foot’s z-axis, and the translation vector tPM is the center of
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Fig. 2. The coordinate frames of the legged robot and of the circular marker pattern
(red: x-axis, green: y-axis, blue: z-axis). The location of a specific marker m is determined

by its known rotation θm and the radial offset dp relative to the circular marker pattern
center. The circular marker pattern is not required to be aligned with the foot coordinate

frame since the angular offset θp is co-estimated.

a specific marker frame M with respect to the circular pattern frame P.

Finally, with respect to the robot’s base frame, this translation vector is

tBM(pkin, zj(t)) = TBF (pkin, zj(t))T
F
P (θp)tPM(θm, dp). (3)

2.2. Camera model

In order to describe the location of a marker in the image plane, we first

express the translation vector from (3) in the camera frame C, using the

extrinsic camera parameters. This gives us

tCM(pkin,pcam, zj(t)) = TBC (tBC ,q
B
C )−1tBM(pkin, zj(t)). (4)

We use the radial-tangential distortion model with three radial distortion

parameters to simulate the distortion of the lens, and the pinhole camera

model for the projection of the marker center location onto the image plane.

The normalized image projection coordinates of tCM are

xn =

(
un

vn

)
=

(
tCM,x/t

C
M,z

tCM,y/t
C
M,z

)
, (5)

and applying the distortion vector D = (k1, k2, p1, p2, k3) yields

xd =

(
ud

vd

)
= (1+k1r

2 +k2r
4 +k3r

6)xn +

(
2p1unvn + p2(r2 + 2u2

n)

p1(r2 + 2v2
n) + 2p2unvn

)
, (6)



May 31, 2016 19:24 WSPC - Proceedings Trim Size: 9in x 6in clawar2016

5

with r2 = u2
n +v2

n. Finally, we obtain the modeled pixel position of a marker

on the image plane as

M(pkin,pcam, zj(t)) =

(
fxud + cx
fyvd + cy

)
, (7)

with the principal point coordinates (cx, cy)T and the focal lengths (includ-

ing the pixel spacings) fx and fy from the camera matrix K.

3. Calibration

The whole calibration framework is implemented within ROS (Robotic Op-

erating System). We perform the calibration by moving the feet of the robot

within the field of view of the camera. For the image acquisition, we use

a Point Grey Chameleon 3 camera with a wide-angle lens. The ARToolKit

marker detector9 finds a certain marker m in the image. Due to the unique

ID of this marker, the foot allocation is trivial. We get the corresponding

joint encoder data according to the marker’s time stamp and ID and es-

timate the modeled marker position according to (7). The calibration is

done by finding the model parameters which maximize the likeliness of the

observations, i.e. we try to minimize the error between the modeled and

measured image marker position. To this end, the residual

fm,k(pkin,pcam) = zm(tk)−M(pkin,pcam, zj(tk)), (8)

describes the difference between the detected and the modeled position of

marker m at time tk. After collecting the residuals for all detected markers

over a finite time horizon, we get the calibrated parameters (p∗kin,p
∗
cam) as

the minimum argument of the cost function

(p∗kin,p
∗
cam) = arg min

(pkin,pcam)

1

2

∑
m,k

ρ
(
‖fm,k(pkin,pcam)‖2

) . (9)

The loss function ρ(•) is used to reduce the influence of large residuals,

which are mainly caused by false marker detections. We model and solve

this non-linear least squares problem with the C++ library Google Ceres.10

Concerning the initial guesses for the solver iterations, we use the available

CAD values for the length measurements, and we set the angle offsets, the

shank-to-foot angle and the time offset to zero. For the camera intrinsics,

we use a calibration file obtained with the ROS camera calibrator. In order

to get initial values for the camera extrinsics and the foot-to-pattern an-

gle, we run a less expensive pre-calibration with only these values as free

parameters.
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4. Experimental Results

Three datasets were recorded and evaluated with the presented calibration

framework for the two front legs of the quadruped robot StarlETH.11 The

robot movements were chosen such that the markers would be appearing in

different areas of the image. The approximate duration of each dataset is 30

seconds, and the solver takes 10–20 seconds, including the pre-calibration

step. All parameters from Table 1 are included in the calibration, except

for the body measure bx, which is not observable if the camera extrinsics

are co-estimated while considering the front legs only. This gives a total of

33 jointly estimated parameters. Figure 3 shows snapshots from the record-

ing process and the visual result of the calibration. Including the camera

intrinsics significantly improved the results and lowered the optimization

residual. Even at the borders of the image, where higher radial distortions

occur, the calibrated model is able to convincingly depict the pose of all

markers.

The numerical results of the locomotion relevant kinematic parameters

are summarized in Table 2. The deviations of the calibrated length mea-

surements from their corresponding CAD values are around five millimeters

(except ls). The standard deviations are relatively low, indicating a good

accuracy and a low dataset dependency of the results. The obtained joint

angle offsets are around three degrees with a standard deviation of one de-

gree in average, which is certainly worth dealing with for a better robot

Fig. 3. Top: Examples of robot configurations during the dataset recording. Bottom:

Rectified camera images overlaid with the calibrated kinematic chains of the legs (the
calibrated intrinsics were employed). Modeled and observed marker poses fit well.
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Table 2. Estimated kinematic parameters of StarlETH. The calibration was run
for all three datasets separately, the table shows the means and the standard

deviations.

Segment Lengths∗ (mm)

left right
lh lt ls lh lt ls

71.5± 0.9 194± 2 251± 7 62.6± 2.6 205± 1.9 269± 2

Joint Offsets (deg)

left right

θh,offset θt,offset θs,offset θh,offset θt,offset θs,offset

−3.8± 0.4 −2.5± 1.5 1.1± 2.5 −2.2± 0.3 2.2± 0.6 −5.6± 0.9

Shank-to-Foot Angle θf (deg) Body Measure∗ (mm)
left right by

24.8± 1.4 30.3± 1.2 182± 1

Note: ∗ The corresponding CAD values are lh = 68.5 mm, lt = 200 mm, ls =

235 mm and by = 185 mm. The value for the shank length ls corresponds to an

earlier shorter shape of the shank segment.

performance. Also the camera calibration parameters yielded reasonable

results. The time offset between joint measurements and images is approx-

imately −0.05 s. The importance of including toffset in our calibration pro-

cedure can be seen in Fig. 4, where the pixel errors after the calibration are

plotted. If not considering the time offset, a motion dependent error can be

observed.
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Fig. 4. The resulting pixel errors for the first dataset. (a) Full 33 DOF calibration, RMS

error of 2.3. (b) Calibration without time offset (32 DOF), RMS error of 3.7.
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5. Conclusion

A fast and automatic foot-eye calibration framework has been presented,

which is versatile in the sense that a variable number of kinematic leg

chains can be calibrated concurrently. It was successfully evaluated for the

quadruped robot StarlETH with an overall runtime of only 40–50 seconds.

In order to get redundant measures of the robot’s feet, we temporarily

mounted a camera and AR marker patterns to the robot. Subsequently, we

estimated the most likely calibration parameters by minimizing the error

between the measured and the modeled marker positions. The accuracy of

our estimates is in the range of five millimeters for the length measurements

of the robot. Future work may include an evaluation of the lens distortion

model or a systematic observability analysis.
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