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 1 

ABSTRACT 2 

 3 

One expected effect of climate change will be an increase in intra- and inter-seasonal weather variations, 4 

including substantially more frequent and more severe weather extremes in several parts of Europe. A 5 

substantial part of the short term total economic costs caused by extreme weather events occur through an 6 

impaired transport system. This paper applies an innovative model-based analysis of the impact of weather 7 

extremes, taking the perspective of disruptions of the urban transport system. This analysis was performed 8 

with an agent-based micro-simulation model (MatSim), applied for the city of Zurich, Switzerland.  9 

 10 

The focus of the paper is on the response(s) of agents to extreme events that can help to reduce the cost of 11 

weather extremes on the basis of timely weather prediction. Concretely we simulate a series of major traffic 12 

disturbances on the road network, as well as a public transit disruption in Zurich, possibly (but not 13 

necessarily) caused by weather extremes. For each scenario, we differentiate agent responses between 14 

nothing (worst case), rerouting, switching between transport modes, rescheduling activities as well as 15 

relocating activitie.  16 

 17 

When extreme events occur, we find that adaptive response of travellers play an essential role in mitigating 18 

the cost of extreme events, reducing the cost of ‘worst case’ scenarios with more than two thirds. The most 19 

effective strategies in our model being: rerouting (avoiding congested areas) as well as making modal 20 

changes (switching to non-congested modes).   21 

 22 

 23 

 24 

 25 

 26 

Keywords: Extreme weather, Climate Change, Urban, Adaptation 27 

  28 
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1. ADAPTIVE RESPONSES TO EXTREME WEATHER EVENTS 1 

1.1. Introduction 2 

To assess the impact of extreme events, a deeper understanding is necessary on how people behave when 3 

weather conditions change. Having a better insight in how travellers can alleviate negative effects on the 4 

road network can help us to understand adaptation to extreme events and the role of information to 5 

travellers. The provision of traffic & weather information can induce a broad range of adaptation behaviour 6 

in travellers. [1], [2] discuss a number of changes that can be induced with extreme weather events: 7 

 8 

1. Trip cancellations  9 

2. Changes in the location where the activity is performed (for example work at home) 10 

3. Rescheduling activities, changing time and duration [3]–[5] 11 

4. Modal change (transport mode) [6] 12 

5. Changes in trip routing   13 

The existing literature shows a rather mixed picture on how important weather forecasts are for 14 

travel-behaviour. Going from relative limited [5] to very relevant [7]. [1], [2] confirm the older study of [5] 15 

that (for Flanders) the impact of weather forecasts (by either source of information) is limited and even 16 

insignificant. The authors state that weather forecasts should be directly linked to road weather information, 17 

as most travellers are not able to assess the impact of adverse weather information on the road 18 

infrastructure. When such services are available [7] the degree of trip rescheduling increases. There is a 19 

clear indication from literature that the extent to which a traveller can adapt to changes in weather 20 

conditions depends strongly on the circumstances and can widely vary even for the same individual. 21 

Adapative behaviour depends to a large degree on the type of trip (commuting, leisure, education, work, 22 

business), the trip chaining (for example bringing children to daycare), the time of day (commuters during 23 

peak hours in the morning or evening, may be less flexibile than during evening peak hours [8]) and work 24 

regime (flexible vs. non-flexible work hours [9]). Comparing the type of reactions that are observed within 25 

their base of travellers [1] find that cancellation (33%) was the most prominent type of reaction in the case 26 

of leisure or shopping trips, followed by change of location (9.5%). For work /education trips, no change 27 

was significantly higher (60% vs 45%). A diffuse pattern of changes in mode, time-of-day, cancellation and 28 

route change (all around 10%) is stated. Change in location was almost insignificant (though it is not clear if 29 

this includes a change to teleworking or telestudy). In all cases the reaction to snow was the most important, 30 

which is confirmed throughout literature [10]. 31 

 32 

Surveys, econometrics and transport economic modelling can help us to extend our knowledge on the 33 

adaptive response of travellers. In this particular paper we will use the MatSim model [11], which is a traffic 34 

microsimulation model with detailed information on people’s activities and traffic behaviour during a 35 

representative day in Zurich. Our analysis imposes two types of extreme events: reductions in network 36 

capacity by extreme precipitation (rainfall & snow) and disruptions in the transport network. We study how 37 

the activities of the travellers change on the basis of these events and vary the level of informedness in each 38 

of the separate cases. The output of this model is used as input for economic modelling of the costs 39 

associated with the extreme event. We make our calculations starting from a utility-based framework to 40 

calculate the opportunity cost of the incurred time losses. This approach uses value of time estimates for 41 

monetizing time losses, and is in general considered as a standard approach for calculating the economic 42 

benefits for transport projects.  43 

 44 

Apart from assessing the economic costs of extreme wheather events, we focus on understanding the effects 45 

of better levels of (prior) informedness of (potential) travellers. The assessment we present here ties closelty 46 

to the significance of innovations in adaptation to climate change, more specifically improved weather and 47 

climate information and services. These will be criticial in the next decades to help investment decisions 48 

and make operational decision making. Our case-study develops a test case of this model linkage, using 49 

heavy precipitation in Switzerland as a test-case. Heavy precipitation and flooding are and will be serious 50 
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problem for Switzerland in the next decades [12], [13] and extreme events such as flooding are very likely 1 

to increase by 2050 [14].  2 

2. METHODOLOGY 3 

2.1. MATSim 4 

General structure of MatSim 5 

MATSim is an activity-based multi-agent transport simulation. The basic idea of MATSim is that travel 6 

demand can be predicted by simulating daily life of persons and particularly the spatiotemporal occurrence 7 

of out-of-home activities [15]. The agents represent the actual individuals traveling or carrying out 8 

activities in a specific region. At the start of the simulation, each agent has a list of activities to perform (a 9 

plan); for example, s/he has to go to work, then shopping and finally to a leisure activity before coming back 10 

home. All these plans correspond to the initial transportation demand, which, in the case of Switzerland, has 11 

been created based on the Swiss Microcensus. During a simulation run, in which a day is repeatedly 12 

simulated, each agent tries to optimize its plan, through a trial and error process. At each iteration, it is 13 

possible for example to change route, means of transportation (car, public transportation, walk and bike), 14 

activity scheduling and location of leisure and shopping activities. This is done through a score, which is 15 

assigned to each executed plan according to the utility provided to the agent. The agent will try to keep the 16 

plans with the better scores and discard the worse during the process. It should be noted that transportation 17 

duration takes into account interactions with other agents, which can lead to a high density of traffic and 18 

even traffic jams. The behaviour of the system “emerges” from the simulation as a consequence of 19 

individual agents’ behaviour. A schematic representation of the process is displayed in Figure 2. 20 

 21 

 22 

Figure 1: Co-evolutionary simulation process of MATSim 23 

The iterative process described, will come to a point where agents are not able anymore to increase their 24 

score by changing their plans. This point, called relaxed demand in the MATSim context, corresponds to 25 

user equilibrium.  26 

Modelling the impact of weather conditions with MATSim 27 

The impact of precipitation on the driving behavior is well studied and therefore fairly easy to model. In this 28 

study it has been modelled reducing capacity and free-flow speed on the links in the area hit by the weather 29 

event modelled. It is worthwhile to note here that MATSim does not allow for a very detailed modelling of 30 

individual driving behaviour (e.g. lane changing, driver’s aggressiveness) as common micro-simulations do 31 

(VISSIM, Paramics, etc.), but is able to model complex systems based on the behaviour of the individual 32 

actors involved and, most importantly in the context of the work presented here, large-scale scenarios (more 33 

than 10
6
 agents) can be simulated.  34 

Modeling the impact of weather events on activity scheduling and mode/route choice, is more challenging. 35 

This type of modeling requires assumptions on the level of informedness of the agents, and the time at 36 

which he receives this information: is there still an opportunity to deviate from the original activity schedule 37 
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or chosen mode/route? One of the challenges is the deviation from the classical user equilibrium approach, 1 

where in each iteration people have knowledge of the traffic situation in the previous iteration(s). This 2 

assumption of informedness is not always realistic: when an unforeseen event takes place, or if the 3 

information on the event is available too late, people will not have the opportunity to deviate from their 4 

initial activity schedule, or even from their initial route. So in case of a less predicable event, an assumption 5 

is required on the replanning behavior of the travelers. For example in [11], a flexible within-day replanning 6 

approach, based on performing only a single iteration, is introduced in MatSim.  7 

In this paper we adapted the framework of MATSim described above to allow the impact of weather on 8 

transport, in particular on transport infrastructure and on travel behaviour, focusing on extreme 9 

precipitation.We will explore multiple situations, distinguishing situations of different levels of ‘travel 10 

information’ that would allow travelers to adapt either their activity schedulue, mode, destination and route 11 

choice (see section 3.1). In practice we may imagine situations where travelers are informed only when 12 

traveling (e.g by radio broadcast or gps), some time before leaving (by smartphone apps) or even the day 13 

before (weather forecast). Theoretically this would vary the level of adjustment agents can make to their 14 

route choice, mode choice, destination & activity schedule (more or less in that order).  15 

 16 

2.2. Calculating value of time losses  17 

The value of time losses is an essential component to gain understanding in adaptative behaviour of 18 

travellers. The pioneer model in transport economics was developed by Vickrey that describes the 19 

scheduling behaviour of travellers that are faced with one congested link and face a combination of time 20 

value costs and scheduled delay costs. This leads to a unique equilibrium, where the cost for each traveller 21 

is the same, but varies with respect to the time of departure. Travellers leaving early face a larger scheduling 22 

cost, but face only a limited loss on the transport network. Travellers facing a minimum of scheduling costs, 23 

face high congestion costs.  24 

 25 

[5] start from this model and focus on 2 particular aspects: 1) change in departure time & 2) mode change. 26 

They find significant impact of weather on both aspects, but only a limited impact of weather forecasts. 27 

About half of the car users changed their travel patterns, those who didn’t had factors contributing to a 28 

lower flexibility (small children, no car available or car pooling, inflexible work hours). 29 

[16] develop a departure time choice model that is activity focussed. Unlike former authors focussing on 30 

departure time alone, they formalize a model where agents maximize overall utility from activities 31 

performed during the day. This explicitly takes into account a simple set of activitiest for travellers (‘home’ 32 

– ‘work’ – ‘home/leisure’) as can be encountered in activity based models. Each activity has a marginal 33 

utility, which reaches an optimum (‘maximum’) during a certain period and then reduces, leading to 34 

bell-shaped curves. The authors claim that their formulation is potentially different from the traditional 35 

formulation of travel time losses, as this takes into account utility losses explicitly. The authors mention as 36 

well, that this should not necessarily bias existing values of time estimates, as many travellers take into 37 

account some degree of unreliability of the transport system (cfr. [17]).  38 

 39 

[18] extend this idea and apply it to the estimation of traveller delay costs, value of time with trip chains and 40 

flexible activity rescheduling. They indicate how the traditional models only consider a trip in isolation and 41 

abstract from the impact of disturbances. They particularly distinguish informed and uninformed delay, as 42 

well as the impact of overprediction of disturbances. Their calculations (p.13) show how the average delay 43 

cost (in €/hour) varies with the total journey delay. Fully (and correctly) informed informed travellers 44 

experience delay costs as well, but it is approximately half of the cost of non-informed travellers. This 45 

difference is lower in the case of flexible working schedules. [19] refers to a similar framework and shows 46 

graphically how different models for scheduling compare the lost time. The bottleneck model is referred to 47 

as a ‘step model’ and is compared to a model with varying marginal utility of time for activities called the 48 

‘slope model’. This last model is found to fit the data better.  49 

[20] calculate the impact of traffic disturbances on the social cost of time distinguishing ‘good days’ and 50 
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‘bad days’ on the network. Bad days are signinficantly more costly (more than double) and reliability of 1 

travel times is found relevenant for trip scheduling. 2 

 3 

In practice, this case will use the activity based output generated from the MatSim model and calculate cost 4 

in terms of opportunity (‘utility’ losses) on different activities from increased travel time, using the 5 

theoretical papers referred to above as basis. We use the balance between lost ‘utility’ in activity and 6 

increased travel time explicitly in the analysis for understanding the impact of disturbances and disruptions 7 

in the network.   8 

3. RESULTS FROM THE MATSIM MODEL 9 

3.1. Set-up of the Zurich case study 10 

Scenarios for Zurich 11 

There is clear evidence that heavy precipitation has a large impact on road capacity and flow [22]. We 12 

simulate increasingly tough conditions on the road network, applying 2 particular scenarios, with increasing 13 

cost and capacity reductions belonging to three categories: 14 

 15 

 Disturbance: Reduced capacity and free-flow speed on the entire network due to unfavourable weather 16 

conditions. We consider a medium disturbance case with 30% reduction, and a high disturbance case 17 

with 50% reduction in capacity and free-flow speed on main roads. 18 

 Disruption: disruption of certain roads on the network, causing links to be temporary unavailable to 19 

travellers. The disruption occurs on specific parts of the network. We consider a medium disruption 20 

case, in which alle roads in a radius of 500m of the city centre are unavailable; and a high disruption 21 

case, in which alle roads in a radius of 1000m of the city centre are unavailable. This also affects public 22 

transit strongly, as it restricts access to the Zurich central station. 23 

 24 

Both scenarios have 2 variants: a ‘whole day’ and a ‘evening peak’ variant. In the evening peak scenarios, 25 

the capacity and free speed of several arterial roads in the Zurich city center is reduced between 17:00 p.m. 26 

and 0:00 a.m. as a result of incidents due to bad wheather conditions. The whole day scenario assumes a 24 27 

hour break in capacity. 28 

 29 

Modeling of the adaptive response of the agents 30 

Each scenario features a variety of five adaptive responses.  31 

1) Worst case: this extreme scenario assumes a total lack of adaptive response 32 

2) Rerouting: choosing a different route than the standard route by car or bus, avoiding the obstruction 33 

3) Modal change: changing to a different transport mode  34 

4) Rescheduling: leaving home / work at a different time than the usual routine, to avoid traffic 35 

5) Relocating secondary activities: agents change to different (more preferred) locations for shopping 36 

/ leisure  37 

Adaptive responses are modeled in an additive scheme. We start with the mitigating impact of ‘rerouting 38 

only’ and progressively add modal change, rescheduling and relocation of activities. As such, in the final 39 

‘best response’ scenario all agents had the opportunity to adjust their activity schedule, mode, destination 40 

and route choice. This fits within adaptation strategies of providing easily accessible longer-term road 41 

weather information. We compare the results from these scenarios with earlier results from ([11] on the 42 

same network. Within-day replanning (rescheduling and relocating) is enabled when the incidents occur. 43 

These additional hours give agents the opportunity to realize that capacities have been reset. It is further 44 

assumed that only agents that would travel over the affected links in the time window in which the link 45 
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capacities are reduced will use within-day replanning. Moreover, those agents will react only by adapting 1 

their routes if they are within 5 km of the affected links.  2 

3.2. Climate change and weather extremes in Switzerland 3 

Recent observations and climate change 4 

Recent information on climate change shows that, Zurich is expected to become warmer and drier [13]. 5 

However, this does not say anything about the level of ‘extremeness’ of the precipitation events. In fact, 6 

current observations show that extreme precipitation events and flooding become more frequent, even with 7 

overall lower levels of precipitation. Recent indicators from MeteoSwiss show an upward trend in the 8 

frequency of heavy rainfall, as well as in total amount of rainfall on a day of heavy precipitation. Other 9 

indicators for heavy rainfall, as well as duration of wet periods show similar upward trends. The combined 10 

total rainfall, falling on wet days during summer (days above 95% percentile) has doubled from 100 mm to 11 

around 200 mm in the last 50 years at the same time the incidence of snow has almost halved. 12 

Match with weather events 13 

We attempt to match our scenarios from section 3.3 with a particular precipitation event, basing our 14 

assumptions on the actual trends of weather info around Zurich. Empirical literature due to extreme rainfall 15 

find reductions in speed between 3-13% and 6-17% for light rain and heavy rain, as well as reduction in 16 

capacity between 4-10% and 10-30% [24], [25]. Light rain is generally defined between 0.2 and 6 mm/hour 17 

and heavy rain over 6 mm/hour. In a more recent study for London ([26] find similar values and add the 18 

impact of temperature on capacity. Snow, by the same sources is found to reduce capacity and speed by 30% 19 

to 50%. In practice, we use thresholds that can be defined as a compromise between the values of different 20 

authors. 21 

 22 

MeteoSwiss has studied values of extreme precipitation around Switzerland, using the data from 27 NCBN 23 

stations for return periods of 2, 10, 20, 50 and 100 years. For Zurich, the 1-day ‘extreme precipitation’ 24 

return values
1
 were extracted

2
 and are shown in the table below ( 25 

 26 

Table 1). Incidence of extreme precipitation was somewhat above expectations in the last decades. Based on  27 

 28 

Table 1 and the figures above, we estimate that the medium and high extreme ‘evening peak’ disturbances to 29 

match with about a 1 in 5 and 1 in 10 year precipitation event.  30 

 31 
Table 1: Results from extreme value estimation of precipitation in Zurich (MeteoSwiss, 2014) 32 

Precipitation 

(mm/day) 48.2 63.2 75.8 90.4 100.0 113.6 135.1 

Return Period 
3
(years) 2 5 10 20 30 50 100 

 33 

The match with even more extreme events that would cause major and longer term (whole day or longer) 34 

disturbances and transit disruptions is hard to make. Since these events are rare and when occurring are 35 

generally caused by heavy snowfall, flooding or ice (which are even harder to predict) a definite conclusion 36 

cannot be made. This issue also relates to what we define as ‘extreme events’, which is related to the degree 37 

of expectation one can have for a certain event to produce itself, as well as the intensity (crossing a certain 38 

threshold) of the event. In fact, for Zurich and the most of Switzerland occasional heavy snowfall as well as 39 

                                                     
1
 Return periods indicate the likelihood of a certain event as the inverse of the probability that a threshold will be exceed in a 

particular time period. This results in a classification of events according to their level of extremeness.  
2 http://www.meteoswiss.admin.ch/web/en/climate/swiss_climate/return_values.html 
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snow cover on the road is not unexpected and can therefore not (always) be treated as extreme. Heavy 1 

precipitation, possibly followed by flooding, can be events that will become more frequent and fall 2 

unexpectedly on the city. In the year 2003, this was already the case for Central Switzerland.  3 

 4 

3.3. Results and analysis of individual simulations 5 

In this section we present the results of the disturbance and disruption scenarios. Our approach incorporates 6 

some essential ideas of the theoretical insights discussed in section 2.2. We start from the idea the transport 7 

is a disutility. As such an increase in transport time, leads to a less time for activities that generate utility. In 8 

the simulations presented below, MatSim presents a fully optimized user response. This means the agents in 9 

the model reach their minimum cost and are fully informed. This is comparable with the minimum user cost 10 

in full information showed by [16] 11 

We present the results from the baseline simulation of MatSim. In Table 2 we display the total time use 12 

(using a 30 hour period as a baseline
4
) of a representative number of 1,459,810 agents on a representative 13 

day in Zurich. We show the total amount of times, each activity or trip (car, public transit or active modes 14 

(walking & cycling)). On the basis of this, we can develop a consistent baseline of the average time use of a 15 

representative agent in Zurich. This table summarizes the joint behaviour and time use of all agents in the 16 

model. 17 

 18 
Table 2: Baseline for time use in Zurich (Source: Matsim model – Zurich) 19 

 TRANSPORT  ACTIVITIES 

 
car PT Active Total Edu House Leis Shop Work Total 

Average numer of  
trips / activies  

2.26 1.35 1.25  0.21 2.87 1.07 0.50 0.82  

Average duration 0.32 0.87 0.31  4.14 6.30 2.54 2.00 5.18  

Baseline [hr] 0.72 1.18 0.39 2.29 0.87 18.07 2.72 1.00 4.22 26.88 

Baseline [%] 2.41% 3.93% 1.30% 7.63% 2.90% 60.25% 9.06% 3.32% 14.08% 89.60% 

 20 

The figures below show the total and proportional changes in the use of time compared to the baseline in the 21 

different (severe) scenarios. Changes in transport time (car, public transit & active mode) and activities 22 

(work, shopping, leisure, house, education) are shown in additive form. We distinguish the disruption and 23 

disturbance scenarios specifically. Positive and negative values on the axis balance out, more time spent on 24 

transport is compensated by similar reductions in time spent on activities.  25 

 26 

 27 

 28 

 29 

 30 

  31 

                                                     
4 From 00.00 hours to 6.00 a.m in the next day 
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Figure 2: Time use versus baseline in severe disturbance & disruption scenario - evening peak 1 

 2 

Figure 3: Time use versus baseline in severe disturbance & disruption scenario – whole day 3 

 4 

In Figure 2 & Figure 3, we have a complete view of the changes in time use within the system. In the 5 

evening peak scenario about 3% of the baseline time use is affected, in the whole day scenario about 10%.  6 

Though the implied changes are rather complex, general conclusions can be made: 7 

 8 

1. Rerouting alone is already quite effective in reducing the impact of the events 9 

2. Rerouting in combination with mode choice implies the largest reduction in hours lost. 10 

3. In the disruption scenario there is a switch from car and public transit to active modes of transport. 11 

This is in line with the scenario assumptions, which implies a reduction in accessibility of the 12 

central station of Zurich. 13 

4. In the disturbance scenario, car and active modes of transport are most affected, which causes a 14 

shift to public transit. 15 
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5. If rescheduling is possible, the largest impact is that agents substitute work time for time at home 1 

and time spent on secondary activities (shopping & leisure). This is clearest in the disruption 2 

scenario. 3 

6. Adding relocation, this impact intensifies as secondary activities are relocated closer to home. 4 

 5 

The results in Table 3 represent the monetized impact (in €) on lost hours in traffic, using appropriate values 6 

of time based on [23].  7 

Table 3: Implied cost per scenario in euros, calculated as value of time lost per activity 8 

  

DISTURBANCE DISRUPTION 

Scenario Response Peak Whole day Peak Whole day 

Medium 

Worst case € 7,202,993 € 54,951,276 € 14,648,545 € 73,576,978 

Rerouting € 2,703,183 € 14,595,905 € 9,898,029 € 55,855,723 

Mode choice € 3,729,165 € 12,046,999 € 4,607,465 -€ 6,806,454 

Rescheduling € 3,939,434 € 12,159,195 € 2,697,087 -€ 8,503,033 

Relocation € 3,033,398 € 10,988,677 € 254,690 -€ 11,678,039 

Severe 

Worst case € 18,977,265 € 115,934,409 € 18,259,539 € 94,111,133 

Rerouting € 9,345,080 € 70,790,822 € 12,681,943 € 73,095,278 

Mode choice € 8,997,567 € 31,677,388 € 4,824,060 -€ 3,772,172 

Rescheduling € 8,435,426 € 30,679,785 € 3,307,113 -€ 4,745,290 

Relocation € 7,549,273 € 29,371,043 € 218,395 -€ 8,417,826 

 9 

From Table 3 we conclude that the adaptive responses modelled by MatSim have a large potential impact to 10 

reduce the cost of extreme events. Our estimate is that enabling the correct adaptive response can reduce 11 

these costs at least by two thirds, by offering correct route information and enabling passenger to switch to 12 

other modes of transport. Theoretically, rescheduling of activities may reduce the costs even more [20],[9] 13 

but this is not directly confirmed by the model. We do not find large additional benefits of rescheduling, 14 

except in the ‘evening peak disruption scenario’. To some extent this can be expected. Rescheduling may be 15 

more beneficial if only a relatively limited area is affected for a shorter period of time. Agents can then 16 

reschedule their activities in that area to a period when the event is over. In the ‘evening peak disturbance 17 

scenario’, we find that the model shows some bias on the results. 18 

The current version of MatSim does not allow the dropping or relocation of main activities (work, home, 19 

school), such that agents can only shorten or replan activities during the day. In addition, relocation only 20 

affects secondary activities (shopping, leisure), so that a switch to ‘home working’ is not possible. This 21 

means that the model may underestimate the benefits of rescheduling and relocation of activities.  22 

Additionally the disruption scenario unrealistically gives negative costs (‘benefits’) for whole day 23 

disruptions when including mode choice. In depth analysis of the results shows that this is caused by two 24 

remaining sources of bias in the model:  25 

 26 

1) Agents that are travelling from outside the modeled zone may avoid travelling (by public transit) to 27 

Zurich altogether. Since travel presents a disutility in Matsim and the ‘lost’ activity time of agents 28 

outside the zone is not counted, this biases the results in a way that is too favorable.  29 

2) Since main activities cannot be dropped and time in activities is always scored positively, this 30 

means that in case of (whole day) disruption, activities may go on for an unrealistically long time, 31 

leading again to a positive bias.  32 

 33 

Though the results present some bias, the general order of magnitude as well as the relative impact of each 34 

‘adaptive response’ is robust in a large number of simulations. We should also stress the innovative nature 35 

of the scenarios as well as the set-up, which makes the results tentative in nature.  36 
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4. CONCLUSIONS AND FURTHER WORK 1 

This case-study develops a methodology to determine the cost of extreme weather events, using a 2 

micro-simulation model (MatSim). We focus on adaptive responses of the agents in the system, 3 

distinguishing different types of responses (rerouting, modal change, rescheduling and relocating activities) 4 

based on their respective need for ex-ante information. Simulating extreme weather with MatSim as a 5 

reduction in capacity on the urban road system, following the current literature on weather related cost for 6 

the transport system, we find that the estimated cost of a short-lived (‘evening peak’) extreme event on the 7 

level of Zurich varies between €0.2 and €18 million for a public transit disruption and €7 to €19 million for 8 

large scale traffic disturbances. Based on the available observation data on extreme precipitation in Zurich, 9 

weather events with this level of impact have a return value of only once in 5 years to once in 10 years. Long 10 

term losses in capacity or public transit connections are estimated to lead to losses between €10 and €30 11 

million, with upper scale ‘worst case’ scenarios with very little adaptive response from agents up to €70 and 12 

€100 million. This level of disruptions, though not unimaginable, have low return values and maybe not 13 

even occur more than once in 50 or 100 years. When extreme events occur, we find that adaptive response 14 

of travellers play an essential role in mitigating the cost of extreme events, reducing the cost of ‘worst case’ 15 

scenarios with more than two thirds. The most effective strategies in our model being: rerouting (avoiding 16 

congested areas) as well as making modal changes (switching to non-congested modes).  17 

 18 

The damages we find for extreme events in Switzerland are quite low with respect to (even quite recent) 19 

extreme events in Swizerland. For example, the capital damages from the flooding event in Switzerland in 20 

2003 were estimated to be CHF 3 billion or around €2.48 billion [27]. This flooding event had a lower than 21 

100 year occurrence and affected larger areas than only Zurich for multiple days. Moreover, the main 22 

damages of the 2003 event were related to infrastructure, while we take a particular look at the cost for the 23 

user of the transport network. Another difference is that we model events that could still leave some control 24 

to the user (rescheduling activities, rerouting, relocating activities). In the case of a mayor flooding, the only 25 

real option for a transport user would be to evacuate, therefore any adaptation could not be at the side of the 26 

user, but at the side of the infrastructure provider.  27 

 28 

The economic loss due to disrupted links or damaged infrastructure, which arguably would cause much 29 

larger indirect costs, was not taken into account. The choice was made to use the agent-based simulation in 30 

its standard form. This allowed keeping the modelling effort on the traffic micro-simulation side as low as 31 

possible. From this perspective, proofing the feasibility of the approach was a primary goal of the study and 32 

thus, it appeared of outmost importance to keep the scenarios as simple as possible. The somewhat limited 33 

magnitude of the impact indicates also that the upscaling from an intensive but short lived disturbance to an 34 

annual impact can be problematic and is possibly sensitive to the way (stage) of upscaling. One day 35 

disturbances have - normally - only minimal annual impacts if introduced by changes in annual averages. 36 

This is partly due to options for compensation later on. However, with increasing number and seriousness 37 

of disturbances the leeway for catching up reduces and thereby impacts should start to cumulate. In turn this 38 

may lead to changes in: mode, route, timing, destination and (residential or work) location. Not considering 39 

such aspects is a current limitation of the study presented. The agent-based approach, however, does offer 40 

the possibility to take such choice dimensions into account carrying out the same kind of exercise which has 41 

been made to create the demand for 2030. The process, shortly described in this paper, consisted in 42 

accounting for possible future evolution in preferences (i.e. teleworking, public transit use). The same can 43 

be made for changes due to climate change. The lack of clear indications on how the preferences would be 44 

changed by climate change made, for now, makes this additional step impossible. Therefore, an obvious 45 

topic for future work is indeed to address this problem. The analysis of travel behaviour empirical data, 46 

especially from countries, or regions, already heavily affected by climate change could provide a basis to 47 

overcome this limitation. Possibly, this would be developed into an additional model which should be 48 

added to the system proposed and would help quantifying such preferences changes according to climate 49 

change. 50 

 51 
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