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Abstract

In this thesis, we prove analyticity of the K-theoretic Nekrasov partition function on a
suitable domain. To this end, we estimate the growth of its coefficients. We perform this
estimate for a parameter range for which the expression of the coefficients as sums over
partitions is badly behaved. We employ an integral representation of the coefficients.
We prove the validity of an explicit contour description, necessary for the estimate. The
estimate itself uses techniques from potential theory. We comment on the consequences
of our results, via the AGT relation, for the norm of deformed Gaiotto states.
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Kurzfassung

In dieser Arbeit beweisen wir die Analytizität der K-theoretischen Nekrasov Partitions-
funktion auf einem geeigneten Gebiet. Zu diesem Zweck schätzen wir das Wachstum ih-
rer Koeffizienten ab. Wir führen diese Abschätzung für einen Parameterbereich durch, in
dem sich die Darstellung der Koeffizienten als Summe über Partitionen schlecht verhält.
Wir nutzen eine Integraldarstellung der Koeffizienten. Wir beweisen die Gültigkeit einer
expliziten Beschreibung der Integrationskontour, die für die Abschätzung notwendig ist.
Die Abschätzung selbst beruht auf Techniken aus der Potentialtheorie. Wir kommentie-
ren die Konsequenzen unserer Ergebnisse für die Norm deformierter Gaiotto-Zustände,
welche auf Grund der AGT Beziehung bestehen.
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1. Introduction and Motivation

In this thesis, we estimate the radius of convergence of certain formal power series. In
physics, those series appear in conformal field theory and supersymmetric gauge theory.
In those theories, they represent so-called conformal blocks and Nekrasov partition func-
tions, respectively. They are linked by a relation which goes under the name of AGT
relation. They have numerous applications in mathematics. In this chapter, we will in-
formally introduce those power series. We will try to describe a part of their meaning in
physics and mathematics. We will motivate our studies of their convergence properties.

In section 1.1, we will introduce the notion of conformal blocks in two dimensional
conformal field theory. They are defined in terms of the representation theory of the
Virasoro algebra. Afterwards, in section 1.2, we will relate them to certain instanton
partition functions defined for four-dimensional supersymmetric gauge theories via the
AGT relation. Afterwards, in section 1.3, we describe a certain degeneration of conformal
blocks. These are defined by certain states called Gaiotto states. Those states are
motivated by their relation to different instanton partition functions via an extension of
the AGT relation. In section 1.4, we then describe a deformation of the Virasoro algebra
and of the notion of deformed Gaiotto states. On the gauge theory side, we also describe
a certain deformation in section 1.5 and an extension of the AGT relation to this setting.
In all those sections, the main objects of interest will be defined as formal power series.
We motivate the study of their convergence properties. For the conformal blocks of
section 1.1, this motivation partly comes from physics. For the various forms of Gaiotto
states, this motivation partly comes from the study of isomonodromic deformations of
ordinary differential equations in mathematics. We describe this application in section
1.6.

The discussion in this chapter is completely informal. None of its content is original
work of the author. Most of the statements contained in this chapter are true only in
an approximate sense or under additional assumptions we do not mention. Moreover,
we do not present the theories in this chapter in their full generality. The sole purpose
of this chapter is to tell a story that motivates the discussion in the following chapters.
In those following chapters, we will then work with full mathematical rigor.

1.1. Conformal Blocks in Virasoro Conformal Field Theory

A map preserving angles and lengths is called conformal. A classical field theory is
called conformal if the conformal maps are among the symmetries of the theory. A
corresponding quantum field theory is then required to have among its symmetries a
projective representation of the conformal maps. We consider such conformal field the-
ories in two dimensions. On the level of Lie algebras this implies [9] an action of the
Virasoro algebra on the Hilbert space of the quantum field theory. A typical example of

1



1. Introduction and Motivation

such a theory would be bosonic string theory [41].
The Virasoro algebra is an infinite dimensional Lie algebra, whose generators Ln, n ∈ Z

and C satisfy

[Lm, Ln] = (m− n)Lm+n +
1

12
(n− 1)n(n+ 1)δm+n,0C, (1.1)

and C is central. In a conformal field theory, one requires that C acts on the Hil-
bert space by multiplication with a complex number c ∈ C. This number is called the
central charge of the theory. A quantum field is an endomorphism of the Hilbert space,
parametrized by a coordinate. The symmetry property of a quantum field φ(z) is then
expressed by the property

[Ln, φ(z)] = (zn+1∂z + (n+ 1)hzn)φ(z). (1.2)

Here, the parameter h ∈ C is called the conformal dimension of the field φ(z).
The aim of quantum field theory is the computation of all possible correlation functions

of the fields. In conformal field theory, these correlation functions can be constructed
from special kinds of correlation functions called conformal blocks [9, 16, 52, 29]. These
are fixed by properties of the Virasoro algebra. In order to define them, we introduce
the notion of Verma modules for the Virasoro algebra.

Given two complex numbers h, c ∈ C, the corresponding Verma module Vh,c is de-
fined to be the representation of the Virasoro algebra generated by a vector |h 〉 ∈ Vh,c
satisfying

Ln|h 〉 = 0 (n > 0) L0|h 〉 = h|h 〉 C|h 〉 = c|h 〉 . (1.3)

A basis of Vh,c is given by

L−λ|h 〉 = L−λ(1) · · ·L−λ(l)|h 〉 (1.4)

where λ is a partition of an integer. See section A in the appendix for our conventions
on partitions. We also set, for such a partition λ

Lλ = Lλ(l) · · ·Lλ(1). (1.5)

The module Vh,c is non-negatively graded, where we assign the degree −n to Ln. Its
degree zero component is one dimensional and spanned by the vector |h 〉. Denote by
〈h| the projection onto |h 〉 along all components of positive degree. The expression

〈L−λh|L−µh 〉 = 〈h|LλL−µh 〉 〈h|h 〉 = 1 (1.6)

defines a bilinear form on the Verma module Vh,c. For each degree n ≥ 0, the Gram
matrix K(n)(h) is defined by its entries

K(n)(h)λ,µ = 〈h|LλL−µ|h 〉 (|λ| = |µ| = n). (1.7)

Fix a complex number c ∈ C. For a triple (h1, h2, h
′) of complex numbers, an inter-

twiner φh2h′h1(z) between Vh1,c and Vh2,c is defined as a formal power series

φh2h′h1(z) =
∑
n∈Z

φnz
n+a a = h2 − h1 − h (1.8)

2



1.1. Conformal Blocks in Virasoro Conformal Field Theory

whose coefficients are linear maps φn : Vh1,c → Vh2,c. Moreover, one requires the inter-
twining property

[Ln, φ
h2
h′h1

(z)] = (zn+1∂z + (n+ 1)h′zn)φh2h′h1(z). (1.9)

We also use the suggestive notation

φh2h′h1(z) : Vh1,c → Vh2,c. (1.10)

For generic parameters c, h1, h2 and h′, the intertwining property characterizes an inter-
twiner uniquely up to normalization.

We consider conformal field theory on the Riemann sphere CP1. We think of the
formal variable z as an element of CP1. The linear hull of the three elements L−1,
L0, and L1 realizes a copy of sl2(C) inside the Virasoro algebra. From the intertwining
property, it follows, by exponentiating L−1, L0 and L1, that the intertwiners φh2h′,h1(z)
transform under Möbius transformations

f(z) =
a11z + a12

a21z + a22

(
a11 a12

a21 a22

)
∈ SL(2,C) (1.11)

as

φh2h′,h1(f(z)) = f ′(z)−h
′
φh2h′,h1(z). (1.12)

Let n ≥ 0 be an integer. Fix complex numbers

h1, . . . , hn+1 ∈ C h′1, . . . , h
′
n ∈ C (1.13)

and set

ak = hk+1 − hk − h′k (k = 1, . . . , n). (1.14)

The corresponding conformal block is defined as

〈hn+1|φhn+1

h′n,hn
(zn)φhn

h′n−1,hn−1
(zn−1) · · ·φh2

h′1,h1
(z1)|h1 〉 ∈ C[[z±1

1 , . . . , z±1
n ]]za1+···+an .

(1.15)

It is conjectured that this formal power series converges for

z1, . . . , zn ∈ C |z1| < · · · < |zn|. (1.16)

Consider an intertwiner

φhh,0(z) : V0,c → Vh,c. (1.17)

From the intertwining property, we obtain

φhh,0(0)|0 〉 = 〈h|φhh,0(1)|0 〉 |h 〉 . (1.18)

3



1. Introduction and Motivation

Here, 〈h|φhh,0(1)|0 〉 refers to the matrix element 〈h|φhh,0(z)|0 〉 evaluated at z = 1, which

is well-defined in contrast to the expression φhh,0(1). Similarly, for an intertwiner

φ0
h,h(z) : Vh,c → V0,c, (1.19)

we have

lim
z→∞

z2h 〈 0|φ0
h,h(z) = 〈 0|φ0

h,h(1)|h 〉 〈h|. (1.20)

Hence, it suffices to consider hn+1 = 0 = h1 in (1.15).
By insertion of a complete set of states∑

n≥0

∑
|λ|=|µ|=n

(
K(n)(hk)

−1
)
λµ
L−λ|hk 〉 〈hk|Lµ (1.21)

in one of the intermediate Verma modules Vhk,c, k = 2, . . . , n, one can reduce the compu-
tation of the conformal block (1.15) to the computation of conformal blocks with fewer
intertwiners.

By using the Möbius invariance (1.12) of intertwiners, one can assume z1 = 0, zn−1 =
1, zn = ∞. In particular, the general three point conformal block is determined by the
constant

〈 0|φ0
−h2,h2(∞)φh2h,h1(1)φh1h1,0(0)|0 〉 = 〈h2|φh2h,h1(1)|h1 〉 (1.22)

which can be computed explicitly. It determines all other conformal blocks.
We illustrate this statement with the four point conformal block. It is given by

〈h3|φh3h′2h2(1)φh2
h′1h1

(z)|h1 〉 . (1.23)

We insert a complete set of states to obtain∑
n≥0

∑
|λ|=|µ|=n

(
K(n)(h2)−1

)
λµ
〈h3|φh3h′2h2(1)|L−λh2 〉 〈h2|Lµφh2h′1h1(z)|h1 〉 . (1.24)

Next, we want to determine the z dependence of the last factor. Fix a partition µ. We
look at

〈h2|LµL0φ
h2
h′1h1

(z)|h1 〉 . (1.25)

On the one hand, by commuting L0 to the left, we obtain

(h2 + |µ|) 〈h2|Lµφh2h′1h1(z)|h1 〉 . (1.26)

On the other hand, by commuting L0 to the right, we obtain

(z∂z + h′1 + h1) 〈h2|Lµφh2h′1h1(z)|h1 〉 . (1.27)

Equating both calculations, we obtain

〈h2|Lµφh2h′1h1(z)|h1 〉 = 〈h2|Lµφh2h′1h1(1)|h1 〉 z|µ|+h2−h1−h
′
1 . (1.28)

4



1.2. Four-Dimensional Nekrasov Partition Functions and AGT Relation

Note that this also justifies the exponents in the formal power series (1.8). Our four
point conformal block becomes the formal power series

〈h3|φh3h′2h2(1)φh2
h′1h1

(z)|h1 〉 =
∑
n≥0

zn+h2−h1−h′1

( ∑
|λ|=|µ|=n

(
K(n)(h2)−1

)
λµ

(1.29)

× 〈h3|φh3h′2h2(1)|L−λh2 〉 〈h2|Lµφh2h′1h1(1)|h1 〉

)
. (1.30)

It is an element of C[[z]]zh2−h1−h
′
1 whose coefficients are determined by the three point

conformal blocks. It is conjectured to converge for |z| < 1. It is desirable to prove this
convergence, since in the end the correlation functions in conformal field theory, which
are composed of such conformal blocks, should yield well-defined functions.

1.2. Four-Dimensional Nekrasov Partition Functions and
AGT Relation

The conformal blocks of Virasoro conformal field theory are related to supersymmetric
Yang Mills theory. In this section, we sketch this relation. In part 1.2.1, we introduce
the four-dimensional Nekrasov partition function and explain its meaning for supersym-
metric gauge theory. In part 1.2.2 we relate it to the four point conformal block on
CP1.

1.2.1. Four-Dimensional Nekrasov Partition Functions

Fix integers r ≥ 1 and Nf ≥ 0. Consider N = 2 supersymmetric Yang Mills theory with
gauge group G = U(r) or G = SU(r) on Euclidean R4 with Nf matter hypermultiplets
in the fundamental representation. Let a = (a1, . . . , ar) denote the vacuum expectation
value of the massless vector multiplet and m = (m1, . . . ,mNf ) the masses of the funda-
mental matter. If the gauge group is SU(r), the parameter a satisfies

∑r
α=1 aα = 0. In

N = 2 theory, the Lagrangian can be expressed in terms of a function F(a,m,Λ), the
prepotential. Seiberg and Witten proposed [43, 44] an exact low energy effective action
via the prepotential

F(a,m,Λ) = Fpert(a,m,Λ) + Finst(a,m,Λ). (1.31)

The prepotential also depends on a dynamically generated scale Λ. It consists of per-
turbative and instanton corrections.

Nekrasov found [39] a new expression for the instanton corrections Finst(a,m,Λ). The
supersymmetric Yang Mills theory on R4 can be realized from dimensional reduction of
a theory on the flat six dimensional space

R4 ×T2, (1.32)

where T2 denotes the torus. Using this approach, Nekrasov introduced a deformation
of the Yang Mills theory, parametrized by two parameters ε1 and ε2. He then sends

5



1. Introduction and Motivation

the area of the torus to zero and performs instanton calculations for this deformation
of Yang Mills theory. For an integer n ≥ 0, let Mn denote a certain compactification of
the moduli space of instantons with instanton number n. Both the gauge group G and
a maximal torus T of the rotation group of R4 = R2 ×R2 act on those moduli spaces.
Nekrasov considers G× T -equivariant cohomology. For n ≥ 0, let

pn∗ : H∗G×T (Mn)→ H∗G×T (pt) (1.33)

denote the pushforward in equivariant cohomology defined by the map collapsing Mn to
a point. Nekrasov constructs the generating series∑

n≥0

Λ2rnpn∗(1) (1.34)

of the classes 1 ∈ H∗G×T (Mn) for n ≥ 0. It is a formal power series. He expresses the
Euclidean path integral of the deformed gauge theory as a product of perturbative and
instanton contributions. He then identifies the instanton factor with the generating series
(1.34). Nekrasov computes the coefficients of that generating series using localization
techniques [34, 33]. In the limit ε1, ε2 → 0, the deformation of the theory vanishes and we
get the ordinary supersymmetric gauge theory on the flat space-time R4, which Seiberg
and Witten considered. Nekrasov claims [39]

Finst(a,m = ∅,Λ) = lim
ε1,ε2→0

ε1ε2 log
∑
n≥0

Λ2rnpn∗(1) (1.35)

for Nf = 0. In the presence of fundamental matter, a similar claim holds. One has
to replace the pushforward of 1 ∈ H∗G×T (Mn) by the pushforward a certain equivariant
Euler class E(Nf ). This representation of the prepotential was proved independently in
[40] and [35].

1.2.2. Four-Dimensional AGT Relation

Many examples of four dimensional supersymmetric Yang Mills theory can be obtained
[21] from dimensional reduction of products

R4 × Σ (1.36)

of space-time with a punctured Riemann surface Σ. This type of reduction is different
from the one Nekrasov performed to deform ordinary Yang Mills theory. In the present
case, one obtains a class of N = 2 superconformal gauge theories on R4 which are
indexed by two integers g and n, the genus g of the Riemann surface Σ and its number
of punctures n. The parameter space of gauge couplings is given by the complex structure
moduli spaceMg,n of genus g Riemann surfaces with n punctures. Each decomposition
of the Riemann surface Σ into 2g − 2 + n pairs of pants corresponds to a different
Lagrangian description of the gauge theory.

On the Riemann surface Σ, one can consider two dimensional conformal field theory.
When calculating vacuum expectation values, the punctures of the Riemann surface
correspond to fields inserted at those points.

6



1.2. Four-Dimensional Nekrasov Partition Functions and AGT Relation

Consider, for example, the case n = 4, g = 0. Here, the Riemann surface Σ is a
sphere with four punctures. The moduli spaceM0,4 is parametrized by their cross ratio
z ∈ CP1. We can consider the punctures to be located at

z1 = 0 z2 = z ∈ C \ {0, 1} z3 = 1 z4 =∞. (1.37)

On the one hand, we have already defined the four point conformal block (1.29) for
the conformal field theory described by this punctured Riemann surface. On the other
hand, dimensional reduction as in [21] produces from this Riemann surface a N =
2 supersymmetric gauge theory with gauge group SU(2) with Nf = 4 fundamental
matter hypermultiplets. The parameter z is related to the ultraviolet coupling τ in the
Lagrangian description of the gauge theory via

z = exp(2πiτ). (1.38)

Alday, Gaiotto and Tachikawa conjectured [2] that the instanton part of the Nekrasov
partition function (1.34), defined for the corresponding supersymmetric gauge theory,
is proportional to the four point conformal block (1.29) under a suitable identification
of parameters: The central charge c of the conformal field theory is parametrized in
Liouville fashion as

c = 1 + 6Q2 Q = b+ b−1. (1.39)

The new parameter b is related to the gauge theory side via

ε1 = b ε2 = b−1 (1.40)

The conformal dimensions h1, h2, h3, h
′
1, h
′
2 in the four point block (1.29)

〈h3|φh3h′2h2(1)φh2
h′1h1

(z)|h1 〉 (1.41)

are related1 to the masses m1,m2,m3,m4 and the parameter a on the gauge theory side
as

h1 =
Q2

4
− 1

4
(m3 −m4)2 h′1 =

1

2
(m3 +m4)

(
Q− 1

2
(m3 +m4)

)
(1.42)

h2 =
Q2

4
− a2 h′2 =

1

2
(m1 +m2)

(
Q− 1

2
(m1 +m2)

)
(1.43)

h3 =
Q2

4
− 1

4
(m2 −m1)2. (1.44)

Then the authors of [2] claimed∑
n≥0

znpn∗(E(Nf = 4)) =(1− z)
(
Q− 1

2
(m1+m2)

)(
Q− 1

2
(m3+m4)

)
(1.45)

〈h3|φh3h′2h2(1)φh2
h′1h1

(z)|h1 〉 (1.46)

1In [2], two of the masses are considered in the anti-fundamental representation, hence there are some
differences in the parameters.

7



1. Introduction and Motivation

as formal power series. This observation, and various extensions of it, are called the
AGT conjecture. Certain instances of it, including the one described here, are proved
[1].

From a practical perspective, this particular AGT relation defines new expressions for
the coefficients of the conformal block (1.29). Fix n ≥ 0 and set

(a1, a2) = (a,−a). (1.47)

The application of the localization technique to the pushforwards pn∗(E(Nf = 4)) ex-

presses [39] the respective coefficient of (1.34) as sums over pairs ~Y = (Y1, Y2) of Young
diagrams of total size n. For α, β ∈ {1, 2} and a box � in some Young diagram, define

Eαβ(�) = aα − aβ − lYβ (�)ε1 + (aYα(�) + 1)ε2. (1.48)

We then have

pn∗(E(Nf = 4)) =
∑

|Y1|+|Y2|=n

∏2
α=1

∏
�∈Yα

∏4
j=1

(
xα� + µj

)∏2
α,β=1

∏
�∈Yα Eαβ(�)

∏
�∈Yβ

(
ε1 + ε2 − Eβα(�)

) . (1.49)

Here, for a box � = (x, y) ∈ Yα one sets

xα� = aα + (x− 1)ε1 + (y − 1)ε2. (1.50)

1.3. Gaiotto States and AGT Relation

The original AGT observation [2] only considers super-conformal gauge theories on R4.
But, for example, N = 2 supersymmetric SU(2) Yang Mills theory with Nf = 0 matter
hypermultiplets is not super-conformal but asymptotically free. Gaiotto extended [22]
the AGT observation to such asymptotically free theories. To describe this extension,
we have to express the original AGT relation in terms of Seiberg Witten curves.

The generating function

T (q) =
∑
n∈Z

Lnq
−n−2 (1.51)

of the subset Ln, n ∈ Z of generators of the Virasoro algebra acting on the Hilbert space
of a conformal field theory is called the energy momentum tensor of the theory. Consider
the conformal field theory side of the four dimensional AGT relation. The conformal field
theory is defined on the Riemann sphere. The central object is the four point conformal
block

〈h3|φh3h′2h2(1)φh2
h′1h1

(z)|h1 〉 (1.52)

Consider the insertion of −T (q) into the four point conformal block. The resulting
expression defines a function φ2(q) on the Riemann surface Σz given by the Riemann
sphere with four punctures located at 0, z, 1 and ∞. This function defines a quadratic
differential

φ2(q)dq ⊗ dq (1.53)
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on the Riemann surface Σz. It has double poles at each of the punctures.

Now consider the gauge theory side. The central object is the Seiberg Witten prepo-
tential F(a,m,Λ) from section 1.2. It is related [43, 44] to periods of a differential, the
Seiberg Witten differential, on a Riemann surface, the Seiberg Witten curve as follows:
Let Σz denote the Riemann sphere with four punctures located at 0, z, 1, and ∞. The
Seiberg Witten curve C can be thought of as the double cover

C → Σz x2 = φSW
2 (q), (1.54)

defined by the component φSW
2 (a) of the Seiberg Witten differential. One can now

compute the Seiberg Witten prepotential from the set of equations

∂F
∂al

= aDl l = 1, 2, (1.55)

where a1, a2, a
D
1 , and aD2 are defined as periods

1

2πi

∮
xdq (1.56)

around certain cycles on the Seiberg Witten curve C.

In this description, the AGT relation claims [2] that the differential φ2(q) obtained
from the insertion of −T (q), in the limit of small ε1, ε2, yields the Seiberg Witten differ-
ential φSW

2 (q) from the gauge theory side of the AGT correspondence. Next, we consider
Gaiotto’s extension of this relation.

For the class of super-conformal field theories, which the original AGT paper considers,
the corresponding quadratic differentials have poles of order≤ 2. The asymptotically free
gauge theories, to which Gaiotto extended the AGT correspondence, are still associated
to Riemann surfaces Σ. However, the associated differentials are now allowed to have
poles of higher order. Consider, for example, again the case of N = 2 supersymmetric
SU(2) Yang Mills theory with Nf = 0. In this example, the Riemann surface Σ is a
sphere with two punctures at zero and infinity. In the global coordinate q, the Seiberg
Witten differential for this Riemann surface is defined by its component

φSW
2 (q) =

Λ2

q3
+

2u

q2
+

Λ2

q
. (1.57)

Here Λ is again the scale of the gauge theory and u is some parameter. Gaiotto now
proposes [22], in analogy to the original AGT relation, to construct a state |G 〉 on the
conformal field theory side such that the expectation value of the energy momentum
tensor reproduces the poles of the Seiberg Witten differential:

〈G|T (q)|G 〉
〈G|G 〉

= φSW
2 (q). (1.58)

Parametrize the central charge c again in Liouville manner as

c = 1 + 6Q2 Q = b+ b−1 (1.59)

9



1. Introduction and Motivation

with

ε1 = b ε2 = b−1. (1.60)

Also set

h =
Q2

4
− a2, (1.61)

where ±a are the eigenvalues of the vector multiplet in the Nekrasov instanton partition
function. The condition (1.58) is fulfilled if |G 〉 is an element |h,Λ2 〉 of the Verma
module Vh,c satisfying

L1|h,Λ2 〉 = Λ2|h,Λ2 〉 Ln|h,Λ2 〉 = 0 (n ≥ 2). (1.62)

Such elements of the Verma modules Vh,c are now called Gaiotto states. They are
characterized by the above property up to scalar multiplication. One commonly requires
that its coefficient in front of |h 〉 equals one. We assume this in the following. Strictly
speaking, the Gaiotto state |h,Λ2 〉 is an element of a certain completion of the Verma
module Vh,c. Hence, after fixing the component along |h 〉, its norm

〈h,Λ2|h,Λ2 〉 (1.63)

is defined only as a formal power series in Λ2. We state the precise definition in chapter
2. Gaiotto’s extension of the AGT conjecture now reads

〈h,Λ2|h,Λ2 〉 =
∑
n≥0

Λ2rnpn∗(1) (r = 2) (1.64)

as an equality between formal power series in Λ2. A proof is proposed in [17]. It again
yields expressions for the expansion coefficients of the norm of the Gaiotto states. The
explicit form of the coefficients on the right hand side is [39]

pn∗(1) =
∑

|Y1|+|Y2|=n

2∏
α,β=1

∏
�∈Yα

1

Eαβ(�)

∏
�∈Yβ

1(
ε1 + ε2 − Eβα(�)

) . (1.65)

Again, it would be desirable to know whether the Gaiotto state has a finite norm. In
other words whether the formal power series on the left hand side of equation (1.64) is
a well-defined function of Λ2, i.e. whether it converges.

1.4. Deformed Virasoro Algebra and Gaiotto States

We have described how the Virasoro algebra acts as a symmetry algebra in two di-
mensional conformal field theory. It can be considered universal since it appears as a
symmetry in all such theories. Conformal field theories are, for example, applied to the
critical phenomena of two-dimensional statistical mechanics. The symmetry properties
of off-critical models have also been studied in many examples [30, 32, 31, 3]. In par-
ticular, in analogy to the critical case, one is interested in finding a universal symmetry
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algebra which is present in all those models. In [45] a candidate for a universal sym-
metry algebra for off-critical models was discovered. It is called the deformed Virasoro
algebra Virq,t and depends on two parameters q and t. It is universal in the sense that
the symmetries of the off-critical models can be obtained as suitable limits for those
parameters, see [6] for a review. The deformed Virasoro algebra is an associative algebra
with generators Tn, n ∈ Z and relations

[Tm, Tn] =−
∑
l≥1

fl(Tm−lTn+l − Tn−lTm+l) (1.66)

− (1− q)(1− t−1)

1− q/t

(
(q/t)m − (q/t)−m

)
δm+n,0, (1.67)

for m,n ∈ Z. Here, the coefficients fl, l ≥ 0 are determined by the expansion

∑
l≥0

flz
l = exp

(∑
n≥0

1

n

(1− qn)(1− t−n)

1 + (q/t)n
zn
)
. (1.68)

The infinite sum in the defining relations appears to be problematic. We defer the
precise definition to chapter 2. There, we also explain the relation of the deformed
Virasoro algebra to the ordinary Virasoro algebra.

In analogy to the Verma modules Vh,c in the undeformed case, there exist modules Mh

for the deformed Virasoro algebra with h ∈ C being the analog of the highest weight.
They are generated by a vector |h 〉 ∈Mh which satisfies

Tn|h 〉 = 0 (n > 0) T0|h 〉 = h|h 〉 . (1.69)

The central charge is related to the parameters q and t of the deformed Virasoro algebra.
They also carry a bilinear pairing

〈T−λh|hT−µ 〉 = 〈h|TλT−µh 〉 〈h|h 〉 = 1 (1.70)

as in the undeformed case. However, to the best of our knowledge, today there does
not exist the notion of an intertwining property analogous to (1.2) in the undeformed
case. However, the notion of a Gaiotto state has been generalized [7]. In analogy to the
condition (1.62), one requires the deformed Gaiotto state |h, ξ 〉 ∈Mh to satisfy

T1|h, ξ 〉 = ξ|h, ξ 〉 Tn|h, ξ 〉 = 0 (n ≥ 2). (1.71)

We can again, after fixing the degree zero component, define its norm

〈h, ξ|h, ξ 〉 (1.72)

as a formal power series in ξ. We defer the precise definition to chapter 2. Two questions
naturally arise: Is this formal power series convergent? Is there a deformed AGT relation
analogous to (1.64)?

11



1. Introduction and Motivation

1.5. Five-Dimensional Nekrasov Partition Function and
AGT Relation

In section 1.1, we have introduced the notion of conformal blocks for the Virasoro alge-
bra. We have seen in section 1.2, that those objects are related to an instanton partition
functions in supersymmetric gauge theory on R4. In section 1.3, we have seen an anal-
ogous relation between the norm of the Gaiotto states in the Verma modules of the
Virasoro algebra and another instanton partition function in supersymmetric gauge the-
ory on R4. In section 1.4, we have discussed a deformation of the notion of Gaiotto
states. In this chapter, we describe an extension of the AGT relation to the deformed
setting. In section 1.5.1, we discuss a deformed version of the four-dimension Nekrasov
partition version. In section 1.5.2, we relate this partition function and the deformed
Gaiotto states.

1.5.1. Five-Dimensional Nekrasov Partition Function

In section 1.2.1, we have introduced the Nekrasov partition function, which is defined
for N = 2 supersymmetric Yang Mills theory with gauge group U(r) on R4 with Nf

fundamental matter hypermultiplets. This gauge theory admits a deformation [38],
where one compactifies the corresponding five-dimensional theory on a circle S1

λ with
circumference λ. More precisely, one replaces Euclidean R4 with a fiber bundle over S1

λ

whose typical fiber is R4. The resulting gauge theory is only N = 1 supersymmetric.
The coefficients of the Nekrasov partition function, for this deformed theory, are com-

puted using equivariant K-theory instead of equivariant cohomology. We refer to chapter
3 for the details. It can be computed [39] using localization techniques in equivariant
K-theory. In the case of Nf = 0, and r = 2, the result is

∑
n≥0

bn
∑

|Y1|+|Y2|=n

2∏
α,β=1

∏
�∈Yα

λ/2

sinh
(
λ
2Eαβ(�)

) ∏
�∈Yβ

λ/2

sinh
(
λ
2 (ε1 + ε2 − Eβα(�))

) . (1.73)

When one shrinks the circumference λ of the circle S1
λ to zero, one obtains the

N = 2 supersymmetric gauge theory on R4 described in section 1.2.1. On the level
of the coefficients of the respective partition functions, this corresponds to the property
sinh(λx)/λ→ x as λ→ 0.

1.5.2. Five-Dimensional AGT Relation

Now that we have discussed a deformed version of the Nekrasov partition function and a
deformed version of the notion of a Gaiotto state, we can look for an analogue of relation
(1.64). First, we have to relate the coefficients. We require

t = e−λε1 q = eλε2 h = e−λa + eλa ξ2 = λ4 b . (1.74)

Awata and Yamada conjectured that under those identifications, the norm [7]

〈h, ξ|h, ξ 〉 (1.75)
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of the deformed Gaiotto state equals (1.73) as formal power series in ξ2. This relation
was proved in [50, 51]. We sketch this proof in section 4. It gives a practical definition of
the coefficients of the expansion of the norm of the deformed Gaiotto state, with degree
zero component scaled to one, in the parameter ξ in terms of the known coefficients of
the Nekrasov partition function.

Again, it would be desirable to know if these objects define honest functions, i.e. if
those formal power series converge. We prove this for a suitable range of parameters
in this thesis. From a physical point of view, this problem is probably less interesting
compared to the well-definedness of conformal blocks in ordinary Virasoro conformal
field theory. Currently, we are not aware of a physical interpretation of the deformed
Gaiotto states. However, those states and their well-definedness do play a role in the
mathematics of isomonodromic deformations of ordinary differential equations. We will
sketch this application in section 1.6

1.6. Monodromy Preserving Transformations

Let N,n ≥ 1 be integers. Consider the ordinary differential equation

∂zΦ(z) = A(z)Φ(z) (1.76)

of rank N on the Riemann sphere with n regular singular points a1, . . . , an ∈ CP1:

A(z) =
n∑
ν=1

Aν
z − aν

. (1.77)

Here A1, . . . ,An are traceless N ×N matrices. Let

z0 ∈ CP1 \{a1, . . . , an} (1.78)

be a point and Φ(z) be the fundamental solution to this differential equation with Φ(z0) =
1N . The problem of isomonodromic deformation asks how one can deform the parameters

z0, a1, . . . , an, A1, . . . ,An (1.79)

such that the monodromy of the differential equation remains constant. This requirement
translates [42] to the Schlesinger equations

∂aµ Aν =
z0 − aν
z0 − aµ

[Aµ,Aν ]

aµ − aν
, (µ 6= ν) (1.80)

∂aν Aν = −
∑
µ 6=ν

[Aµ,Aν ]

aµ − aν
, (1.81)

∂z0 Aν = −
∑
µ 6=ν

[Aµ,Aν ]

z0 − aµ
, . (1.82)

One then defines the isomonodromic tau function τ(a1, . . . , an) by

d log τ(a1, . . . , an) =
∑
µ<ν

TrAµAν d log(aµ − aν). (1.83)
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1. Introduction and Motivation

It does not depend on the base point z0. It was argued in [23] that this tau function can
be expressed as a correlation function in Virasoro conformal field theory.

Consider the special case N = 2 and n = 4, i.e. second order ordinary differential
equations with four regular singular points. By Möbius invariance, we can suppose that
those points are located at 0, z, 1 and ∞. The corresponding tau function is now a
function of z ∈ CP1 and satisfies

z(z − 1)
d

dz
log τ(z) = (z − 1) TrA0Az +zTrAz A1 . (1.84)

An ordinary differential equation on the Riemann sphere of second order is said to have
the Painlevé property if the location of the essential singularities of its solutions do not
depend on the initial conditions. Such differential equations have been classified into six
Painlevé equations. Among those is the sixth Painlevé equation. It is equivalent to the
Schlesinger equations in this special case. It is solved by both sides of equation (1.84).
The tau function τ(z) can be expressed [23, 25] as the correlation function of four fields
in Virasoro conformal field theory of central charge c = 1. More precisely, there are local
coordinates (p, t) on the Riemann sphere such that the n-th Fourier coefficient of τ(z),
as a function of the coordinate t, is given2 by the four point conformal block (1.29) with
conformal dimensions

h1 =
1

2
TrA2

0 h2 = p+ n h3 =
1

2
TrA2

∞ (1.85)

h′1 =
1

2
TrA2

t h′2 =
1

2
TrA2

1 . (1.86)

This application of conformal blocks to isomonodromy problems does have an exten-
sion to Gaiotto states. One can also associate a tau function to the third Painlevé equa-
tion. Similar to the case of Painlevé VI, described above, the tau function of Painlevé III
has a Fourier expansion, whose coefficients are given [26] by the norm (1.64) of Gaiotto
states for the Virasoro algebra with central charge

c = 1, (1.87)

whose conformal dimension varies over the coefficients. The degree zero components of
the Gaiotto states have to be fixed appropriately. In [26], the convergence of the formal
power series for the norm of the Gaiotto state is also proved in the special case c = 1
using the representation (1.64) via Nekrasov coefficients.

There also exists a deformation of the Painlevé equations turning them into q-difference
equations. For the q-difference equation of Painlevé III, one can construct a tau function
[12] and express it as an infinite sum of norms of appropriately scaled deformed Gaiotto
states (1.72) corresponding to varying conformal dimensions. The parameters q and t of
the deformed Virasoro algebra are assumed to be equal. This corresponds to a central
charge c = 1 in the limit, where the deformed Virasoro algebra reproduces the ordinary
Virasoro algebra. In [12] convergence of the expansion (1.73) is proved for ε1 + ε2 = 0,
which corresponds to q = t. This implies finiteness of the norm of deformed Gaiotto
states via the AGT relation in that special case.

2Equation (6.27) in [25] has a different convention for the index placement on conformal blocks.
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Very recently, this correspondence between deformed Gaiotto states and q-difference
Painlevé equations has formally been extended [11, Conjecture 4.1] to a quantum version
with arbitrary values of the parameters q and t. So it would be desirable to prove an
extension of the analyticity of the norm of deformed Gaiotto states for q = t to more
general parameters. We will perform such an extension in this thesis.

1.7. Outline of the Thesis

In chapter 2, we will define the norm of deformed Gaiotto states as formal power series.
In chapter 3, we then define the five dimensional Nekrasov partition function, defined
for the five dimensional gauge theory compactified on the circle S1

λ. In the subsequent
chapter 4 we sketch a proof of the relevant AGT relation, which relates the norm of
deformed Gaiotto states to a particular instance of the five-dimensional Nekrasov par-
tition function. In chapter 5, we define an integral representation for the coefficients
of the Nekrasov partition function, prove the validity of an explicit description of the
integration contours, and use it to estimate their growth. Our main tool is a theorem in
potential theory, which we formulate and prove in chapter 6. In chapter 7, we apply our
estimate from chapter 5 to bound the radius of convergence of the Nekrasov partition
function from below. We will also prove analyticity in other parameters on a suitable
domain. Using the AGT relation from chapter 4, we obtain convergence of the norm
of deformed Gaiotto states as a special case of our analysis of the Nekrasov partition
function. We close chapter 7 with a discussion of our results. We discuss shortcomings
and possible extensions. In the following chapters we will work with full mathematical
rigor. Our original contribution is contained in chapters 5, 6, and 7. Most of our findings
here have been published electronically in

G. Felder and M. Müller-Lennert. Analyticity
of Nekrasov Partition Functions. ArXiv e-prints
math-ph/1709.05232, September 2017.
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2. Deformed Gaiotto States

In this chapter, we define the notion of deformed Gaiotto states. Those states are
elements of the completion of a certain representation of the deformed Virasoro algebra.
In order to introduce them in section 2.3, we will first discuss the representation theory
of the deformed Virasoro algebra in section 2.2. It is formulated using terms from the
representation theory of Lie algebras. However, the deformed Virasoro algebra is not a
Lie algebra. Hence standard techniques from the representation theory of Lie algebras
have to be adapted to discuss its representations. We introduce those techniques in
section 2.1 when we discuss the representation theory of the Virasoro algebra. The
material in this chapter is standard material.

2.1. Representation Theory of the Virasoro Algebra

In this section, we will first introduce the Virasoro algebra in section 2.1.1. Then we
will define positive energy representations in section 2.1.2, followed by Verma modules
in section 2.1.3. We will close the discussion of the representation theory of the Virasoro
algebra by defining the Shapovalov form and explaining its relation to irreducibility of
Verma modules in section 2.1.4.

2.1.1. The Virasoro Algebra

The Virasoro algebra is a complex Lie algebra Vir with basis consisting of Ln, n ∈ Z
and C satisfying the commutation relations

[Lm, Ln] = (m− n)Lm+n +
1

12
m(m− 1)(m+ 1)δm+n,0C (m,n ∈ Z), (2.1)

[C,Lm] = 0 (m ∈ Z). (2.2)

It is the unique central extension of the Witt algebra. The Witt algebra is a Lie algebra
with basis consisting of ln, n ∈ Z and commutation relations

[lm, ln] = (m− n)lm+n (m,n ∈ Z). (2.3)

The normalization constant 1
12 in equation (2.1) is due to historic reasons. The cocycle

defining the central extension was discovered by Gelfand and Fuks [24].

2.1.2. Positive Energy Representations

In this section, we define positive energy representations of the Virasoro algebra. Fix a
complex number c ∈ C. We will consider so-called positive energy representations with
central charge c ∈ C. We define Oc to be the full subcategory of the category of complex
representations of Vir, consisting of those representations for which
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2. Deformed Gaiotto States

• L0 is diagonizable with finite-dimensional eigenspaces,

• the real part of the spectrum of L0 is bounded from below, and

• the element C ∈ Vir acts by multiplication with c ∈ C.

This definition is motivated by the observation that the Hamiltonian of a conformal field
theory contains L0.

Let V ∈ Oc be such a positive energy representation. Since

[L0, Ln] = −nLn (n ∈ Z), (2.4)

the elements Ln, n ∈ Z, map eigenvectors of L0 of eigenvalue λ in V to either zero or
eigenvectors of L0 of eigenvalue λ − n. Since the real part of the spectrum of L0 is
bounded below, we are led to consider nonzero vectors v ∈ V , such that

L0v = hv (for some h ∈ C), (2.5)

Lnv = 0 (n ≥ 1). (2.6)

Such vectors are called singular vectors of weight h ∈ C. Since the spectrum of L0

is bounded from below, each V ∈ Oc contains at least one singular vector. Moreover,
any irreducible V ∈ Oc is generated by any singular vector. To see this, consider the
sub-representation generated by a singular vector v ∈ V .

A positive energy representation V ∈ Oc is called a highest weight representation of
highest weight h ∈ C and central charge c ∈ C, if it is generated by a singular vector v
of weight h. Each of those representations is spanned by the elements

L−λv := L−λ(1) · · ·L−λ(l)v (2.7)

for which l ≥ 0 is an integer and λ(1) ≥ · · · ≥ λ(l) ≥ 1 defines a partition λ of length l.
If those vectors are linearly independent, the highest weight representation V is called a
Verma module. In the next paragraph, we are going to construct all irreducible Verma
modules corresponding to the highest weight h and central charge c.

2.1.3. Verma Modules

Consider the subspace Vir≥ ⊂ Vir spanned by all elements Ln with n ≥ 0 and C. From
the commutation relations (2.1), it follows that Vir≥ is a Lie sub-algebra. For a pair
(h, c) ∈ C2 of complex numbers, let Ch,c denote the one-dimensional complex Vir≥0

module where L0 acts by multiplication with h, C acts by multiplication with c, and the
other Ln, n ≥ 1, act as zero. The module Vh,c of Vir, associated to the pair (h, c) ∈ C2,
is defined as the corresponding induced representation:

Vh,c = U(Vir)⊗U(Vir≥) Ch,c. (2.8)

Here U(X) denotes the universal enveloping algebra of a Lie algebra X.
From the Poincaré-Birkhoff-Witt theorem, we know that the elements

Ln1 · · ·LnlC
s ∈ U(Vir) (n1 ≤ · · · ≤ nl, l ≥ 0, s ≥ 0) (2.9)
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2.1. Representation Theory of the Virasoro Algebra

form a basis of U(Vir). It follows that, for v = 1 ⊗ 1 ∈ U(Vir) ⊗U(Vir≥) Ch,c, the
elements

L−λv = L−λ(1) · · ·L−λ(l)v ∈ Vh,c (λ a partition) (2.10)

form a basis of Vh,c. From L0v = hv and equation (2.4), it follows that L−λv is an
eigenvector of L0 with eigenvalue h+ n. We obtain the decomposition

Vh,c =
⊕
n≥0

V
(n)
h,c (2.11)

into finite-dimensional eigenspaces

V
(n)
h,c = span{L−λv : |λ| = n} (2.12)

of L0, corresponding to eigenvalue h + n. Evidently, Vh,c belongs to the category Oc
of finite energy representations with central charge c. Moreover, v ∈ Vh,c is a singular
vector of weight h, rendering Vh,c a Verma module. Note that the quotient

U(Vir)/Wh,c (2.13)

of U(Vir) by the left ideal Wh,c generated by the elements L0 − h, C − c, Ln, n ≥ 1 of
U(Vir) is isomorphic to Vh,c.

The representations Vh,c have the following property: If v ∈ V is a singular vector
of weight h belonging to a representation V ∈ Oc, then the map U(Vir) → V sending
x 7→ xv, defines a homomorphism

Vh,c → V (2.14)

sending the generator of Vh,c to v. This homomorphism is the unique homomorphism
with that property. If now V is irreducible, the map φ in (2.14) defines an isomorphism
Vh,c/ kerφ → V by Schur’s lemma. Since kerφ is a sub-representation of Vh,c and V is
irreducible, kerφ has to be a maximal proper sub-representation. By using the grading
(2.11), one can show that Vh,c has at most one maximal proper sub-representation Nh,c.

We have seen that for each (h, c) ∈ C2, there exists, up to isomorphism, a unique
irreducible highest weight representation Lh,c of highest weight h and central charge c
in Oc given by Vh,c/Nh,c. Moreover, each irreducible representation in Oc is of this type.

In case the representation Vh,c contains, besides vh,c, another singular vector, e.g. in

V
(n)
h,c , we obtain a homomorphism Vh+n,c → Vh,c. The structure of these mappings

between different Vh,c was explained by Feigin and Fuks, see [19] for a reference.

2.1.4. The Shapovalov Form

Consider the Verma module Vh,c ∈ Oc. We want to consider its degree-wise dual

V ∗h,c :=
⊕
n≥0

Hom(V
(n)
h,c ,C) (2.15)

19



2. Deformed Gaiotto States

as an element of Oc. To do so, we consider the map

A : Vir→ Vir (2.16)

mapping AC 7→ C and ALn 7→ L−n, n ∈ Z. It is a Lie algebra anti-homomorphism.
For λ ∈ V ∗h,c and L ∈ Vir, the formula (Lλ)(x) = λ(A(L)(x)), x ∈ Vh,c, defines V ∗h,c as a

module of the Virasoro algebra. Since L0 acts as h+ n on Hom(V
(n)
h,c ,C), we obtain the

decomposition

V ∗h,c =
⊕
n≥0

(V ∗h,c)
(n) (V ∗h,c)

(n) = Hom(V
(n)
h,c ,C) (2.17)

into L0-eigenspaces. Hence V ∗h,c is an object in Oc. Pick the element v∗h,c in (V ∗h,c)
(0) =

Hom(span vh,c,C) sending vh,c to one. For degree reasons, v∗h,c is a singular vector of
V ∗h,c of weight h. By the universal property of Vh,c, there exists a unique homomorphism

Vh,c → V ∗h,c (2.18)

of Virasoro modules sending vh,c to v∗h,c. This map defines a symmetric bilinear form on
Vh,c, the Shapovalov form

S : Vh,c ⊗ Vh,c → C. (2.19)

It is contra-variant with respect to A, meaning S(Lx, y) = S(x,A(L)y) for all x, y ∈ Vh,c
and all L ∈ Vir.

Next, we will explain the relation between irreducibility of Vh,c and the Shapovalov
form. The kernel of S defines a sub-representation in Vh,c, which is maximal. Hence
kerS = Nh,c. Since Vh,c is irreducible if and only if Nh,c = {0}, Vh,c is irreducible if and
only if the Shapovalov form is non-degenerate. For degree reasons, the decomposition
(2.11) of Vh,c is orthogonal with respect to S. Hence S decomposes as the sum of the
restricted forms

Sn :V
(n)
h,c ⊗ V

(n)
h,c → C (n ≥ 0). (2.20)

In particular, Vh,c is irreducible if and only if all Sn are non-degenerate. Since each V
(n)
h,c

is finite-dimensional, one can express this property as the regularity of matrices. For
each n ≥ 0, the Gram matrix K(n) is defined by its entries

K
(n)
λµ = Sn(L−λvh,c, L−µvh,c) (|λ| = |µ| = n). (2.21)

It is symmetric. Moreover, it is regular if and only if Sn is non-degenerate. Its determi-
nant is given by the Kac determinant formula [28]

det
(
K(n)

)2
= const

n∏
k=1

∏
j|k

Φj,k/j(h, c)
p(n−k), (2.22)

where p(j) = dimV
(j)
h,c is the number of partitions of size j and

Φj1,j2(h, c) =
∏
i=1,2

(
h+

1

24
(j2
i − 1)(c− 13) +

1

2
(j1j2 − 1)

)
+

1

16
(j2

1 − j2
2)2. (2.23)

A proof of this formula can be found in [18].
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2.2. Representation Theory of the Deformed Virasoro Algebra

2.2. Representation Theory of the Deformed Virasoro
Algebra

Now that we have an overview of the representation theory of the Virasoro algebra, we
can develop the representation theory of the deformed Virasoro algebra. We proceed
analogously to section 2.1. We follow the exposition in [51] and the original reference
[45].

2.2.1. The Deformed Virasoro Algebra

Let F = Q(q, t) denote the field of rational functions in the variables q and t. Define the
elements fl ∈ F by the expansion coefficients in the relation∑

l≥0

flz
l = exp

(∑
n≥0

1

n

(1− qn)(1− t−n)

1 + (q/t)n
zn
)

(2.24)

between formal power series in z with coefficients in F. Let F0 = F 〈Tn, n ∈ Z 〉 denote
the free associative algebra over F in the symbols Tn, n ∈ Z. We associate the degree
0 to the element 1 ∈ F0 and the degree −n to the element Tn ∈ F0, where n ∈ Z. We
obtain a decomposition

F0 =
⊕
n∈Z

F
(n)
0 , F

(n)
0 = {x ∈ F0 : deg x = n} (2.25)

turning F0 into a graded algebra. Let F (n) denote the completion of F
(n)
0 along the

filtration of F0 defined by the homogeneous, two-sided ideals Fj generated by all elements
x ∈ F0 of degree deg x ≥ j. Set

F =
⊕
n∈Z

F (n) (2.26)

It is a graded algebra over F, whose homogeneous elements are infinite series
∑

k pk in

expressions pk ∈ F
(n)
0 , which contain elements Tn of higher and higher degree n.

Let Iq,t ⊂ F be the two-sided ideal generated by the relations

[Tm, Tn] =−
∑
l≥1

fl(Tm−lTn+l − Tn−lTm+l) (2.27)

− (1− q)(1− t−1)

1− q/t

(
(q/t)m − (q/t)−m

)
δm+n,0 (2.28)

where m,n ∈ Z. Since those relations are homogeneous, Iq,t is a homogeneous ideal.
Define1 the deformed Virasoro algebra as

Virq,t = F/Iq,t. (2.29)

1In the existing literature, the deformed Virasoro algebra is introduced without constructing a comple-
tion. We have introduced the completion to make the defining relations rigorous.
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2. Deformed Gaiotto States

Since the ideal I is homogeneous, the degree map is still well defined, and we obtain the
degree decomposition

Virq,t =
⊕
n∈Z

Vir
(n)
q,t (2.30)

Next, we clarify the relation to the (undeformed) Virasoro algebra. Note that in
contrast to U(Vir), the deformed Virasoro algebra Virq,t is not the universal enveloping
algebra of a Lie algebra. When we write

q = e~κ1 , t = e~κ2 , (2.31)

the element Tn ∈ Virq,t has [51, Lemma 1.2] the formal expansion

Tn = κ1κ2Ln~2 +O(~4) (n 6= 0) (2.32)

T0 = 2 + κ1κ2

(
L0 +

1

4
(κ1 − κ2)2

)
~2 +O(~4) (2.33)

in ~, where the elements Ln share the same commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m− 1)(m+ 1)δm+n,0 (m,n ∈ Z) (2.34)

as the images of the generators of the Virasoro algebra in U(Vir)/(C − c), where

c = 13− 6(β + β−1), β =
κ2

κ1
. (2.35)

2.2.2. Verma Modules for the Deformed Virasoro Algebra

Note that in contrast to the relation (2.4) in the undeformed case, we now only have

[T0, Tn] = −
∑
l≥1

fl(T−lTn+l − Tn−lTl). (2.36)

In particular, we cannot directly relate the T0 eigenvalue and the grading of Virq,t.
Hence, we do not define positive energy representations as in the undeformed case. To
develop the representation theory of Virq,t, we follow [51].

We consider modules of the Virq,t over the field Q. We say that a Virq,t module M
is graded, if

M =
⊕
z∈Z

M (n) (2.37)

as Q vector spaces and

Vir
(n)
q,t M

(m) ⊂M (n+m) (m,n ∈ Z) (2.38)

Let C denote the category whose objects are graded Virq,t modules and the morphisms
are homomorphisms of Virq,t modules that respect the grading (2.37).

22



2.2. Representation Theory of the Deformed Virasoro Algebra

In analogy to the undeformed case, we call a representation M ∈ C a highest weight
module with highest weight h ∈ Q, if there exists a nonzero vector v ∈ M such that
T0v = hv, Tnv = 0 for all n ≥ 1 and the set

{T−λv = T−λ(1) · · ·T−λ(l)v : λ a partition} (2.39)

spans M . If this set is linearly independent, we call M a Verma module.

Next, we want to define an analogue of the Verma modules Lh,c for the deformed
Virasoro algebra. Since the commutation relations (2.27) do not map the commutator
of two elements Tn, Tm with m,n ≥ 0 to an element of Virq,t defined by only Tk with
k ≥ 0, we cannot directly adapt definition (2.8). However, we can adapt the description
in equation (2.13): For h ∈ Q, we define the Verma module M(h) as the quotient

Mh = Virq,t /Kh (2.40)

of Virq,t by the left ideal generated by all elements T0−h ∈ Virq,t and Tn ∈ Virq,t, n ≥ 1.

Since the associative algebra Virq,t is not the universal enveloping algebra of a Lie
algebra, the Poincaré-Birkhoff-Witt theorem does not apply. However, the action of
[Tn, Tm] in Mh is expressed as a finite sum by (2.27), since the degree of Mh is bounded
below. One can show [51, Lemma 1.1] that the elements

Tn1 · · ·Tnl n1 ≤ · · · ≤ nl, l ≥ 0,
l∑

i=1

nl = n (2.41)

are linearly independent and each element of Vir
(n)
q,t can be written as a series

∑
k αkpk

with αk ∈ F and pk as in 2.41. Hence we obtain the decomposition

Mh =
⊕
n≥0

M
(n)
h M

(n)
h = span{T−λ1h : |λ| = n}, (2.42)

where 1h is the image of 1 ∈ Virq,t in Mh. This grading establishes Mh as a highest
weight module of Virq,t of highest weight h.

As in the undeformed case, the Verma module Mh has [51, Lemma 2.7] the following
universal property: For any highest weight module M with highest weight h, there exists
a homomorphism Mh → M sending 1h to the generating vector of M . Moreover, the
Verma module Mh has a unique maximal proper graded submodule Nh, which is also
maximal among the proper submodules. The quotient Mh/Nh is an irreducible highest
weight module of highest weight h.

For a graded Virq,t module M =
⊕

nM
(n), we call a nonzero vector v ∈ M singular

vector of weight d, if v ∈M (d) and Tnv = 0 for all n ≥ 1. The relation to highest weight
modules is more subtle as in the undeformed case, since T0 is not related to the grading.
We say that the singular vector v has energy h if T0v = hv.

Let M be a graded Virq,t module with singular vector v of weight d and energy h.
Consider the homomorphism

Virq,t →M (2.43)
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2. Deformed Gaiotto States

sending 1 ∈ Virq,t to v. Since v is a singular vector and T0v = hv, its kernel contains
the left ideal Kh. Hence we obtain a homomorphism

Mh →M (2.44)

sending 1h to v.

2.2.3. The Shapovalov Form in the Deformed Case

In this section, we define the Shapovalov form for the deformed Virasoro algebra. Fix
h ∈ Q and consider the Verma module Mh. First, we want to consider the degree wise
dual

M∗h =
⊕
n≥0

Hom(M
(n)
h ,F) (2.45)

as a Virq,t module. Following the undeformed case, consider the anti-homomorphism

B : Virq,t → Virq,t (2.46)

induced by the map

F → F (2.47)

Tm1 · · ·Tml 7→ T−ml · · ·T−m1 (m1, . . . ,ml ∈ Z, l ∈ N). (2.48)

The formula Tλ(x) = λ(B(T )x), x ∈Mh, λ ∈M∗h , T ∈ Virq,t defines an action of Virq,t
on M∗h . By construction, it respects the grading and establishes M∗h ∈ C with grading

given by the decomposition (2.45). Since 1h ∈Mh spans M
(0)
h , we can pick

1∗h ∈ Hom(M
(0)
h ,F) (2.49)

mapping 1h to 1. For degree reasons, it is a singular vector of degree 0. Since BT0 = T0

it has energy h. We obtain a homomorphism

Mh →M∗h (2.50)

mapping 1h to 1∗h. We obtain a bilinear form

〈−,−〉 : Mh ⊗Mh → F. (2.51)

In analogy to the undeformed case, it is called the Shapovalov form. It is symmetric
and contra-variant with respect to B. For degree reasons, the decomposition (2.42) is
orthogonal and the Shapovalov form decomposes as the sum of its restrictions

〈−,−〉n :M
(n)
h ⊗M (n)

h → F (n ≥ 0). (2.52)

Since its kernel is a maximal submodule of Mh [51, Lemma 2.12], the non-degeneracy
of all those restrictions 〈−,−〉n is a characterization of irreducibility of Mh. The Gram
matrix W (n) is defined by its entries

W
(n)
λµ = 〈T−λ1h, T−µ1h 〉 (|λ| = |µ| = n) (2.53)
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2.3. Deformed Gaiotto States

as in the undeformed case. The analog of the Kac determinant formula is given by

detW (n) = const
∏

1≤rs≤n
(h2 − h2

r,s)
p(n−rs)

(
(1− qr)(1− tr)

qr + tr

)p(n−rs)
. (2.54)

Here p(j) = dimM
(j)
h again denotes the number of partitions of the integer j and

hr,s = tr/2q−s/2 + t−r/2qs/2. (2.55)

Formula (2.54) was conjectured in [45] and proved in [14].

2.3. Deformed Gaiotto States

We now define the notion of Gaiotto states. First we describe the construction in the
undeformed case in section 2.3.1. Then we define the Gaiotto states for the deformed
Virasoro algebra in section 2.3.2.

2.3.1. Gaiotto States for the Virasoro Algebra

In this section, we will describe the notion of Gaiotto states in the Verma module Vh,c
of the undeformed Virasoro algebra Vir.

For a finite-dimensional Lie algebra g, let χ : n→ C be a character of some maximal
nilpotent Lie sub-algebra n ⊂ g. An element v ∈ V of a representation V of g is called
a Whittaker vector for χ if xv = χ(x)v for all x ∈ n.

Gaiotto states [22] are an analogue of this concept. The Virasoro algebra is not finite-
dimensional. However, the linear hull Vir> ⊂ Vir of all Ln, with n ≥ 1 forms a Lie
sub-algebra. Since the elements L1 and L2 generate Vir>, any character χ : Vir> → C
is determined by the images χ(L1) and χ(L2) of L1 and L1, and satisfies χ(Ln) = 0 for

n ≥ 3. A Whittaker vector v for the Verma module Vh,c =
⊕

n≥0 V
(n)
h,c is then defined to

be an element of the completion

V̂h,c =
∏
n≥0

V
(n)
h,c (2.56)

satisfying

L1v = χ(L1)v L2v = χ(L2)v Lnv = 0 (n ≥ 3). (2.57)

We call v a Gaiotto state from now on.

2.3.2. Gaiotto States for the Deformed Virasoro Algebra

In the section, we define Gaiotto states for the deformed Virasoro algebra Virq,t, which
are called deformed Gaiotto states. Let ξ be an indeterminate. In analogy to equations
(2.57), we consider elements w(ξ) of the completion

M̂h :=
∏
n≥0

(
M

(n)
h ⊗Q Q(ξ)

)
(2.58)

25



2. Deformed Gaiotto States

of the Verma module Mh for which

T1w(ξ) = ξw(ξ) Tnw(ξ) = 0 (n ≥ 2). (2.59)

When we expand

w(ξ) =
∑
n≥0

ξnwn(ξ) ∈
∏
n≥0

(
M

(h)
h ⊗Q Q(ξ)

)
, (2.60)

the conditions (2.59) are equivalent to

T1wn+1(ξ) = wn(ξ) (n ≥ 0), Tkwn(ξ) = 0 (k ≥ 2, n ≥ 0). (2.61)

We assume the following normalization: wn(ξ) = wn ∈ M
(n)
h and w0 = 1h ∈ M

(0)
h .

Following [7], we denote an element

w(ξ) =
∑
n≥0

ξnwn ∈
∏
n≥0

(
M

(n)
h ⊗Q Q(ξ)

)
(2.62)

a deformed Gaiotto state if the expansion coefficients wn ∈M (n)
h satisfy

T1wn+1 = wn (n ≥ 0), Tkwn = 0 (n ≥ 0, k ≥ 2), w0 = 1h. (2.63)

Let (1n) denote the partition (1, . . . , 1) of length n. Expanding the homogeneous
components of a deformed Gaiotto state as

wn =
∑
|µ|=n

c(n)
µ T−µ1h, (2.64)

the relations (2.63) imply∑
|µ|=n

W
(n)
λµ c

(n)
µ = δλ,(1n) (|λ| = n). (2.65)

Hence for generic parameters q and t the deformed Gaiotto state exists uniquely, since
the Kac determinant is invertible in F = Q(q, t). Its norm is given by

〈w(ξ)|w(ξ) 〉 =
∑
n≥0

ξ2n
(
W−1

(n)

)
(1n)(1n)

(2.66)

as a formal power series in F[[ξ2]], where W−1
(n) ∈ Fn×n is the inverse of the Gram matrix

W (n) ∈ Fn×n. It is customary to call 〈w(ξ), w(ξ) 〉 a norm, although the Shapovalov
form is just a bilinear form over the field of rational functions with rational coefficients.
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3. Nekrasov Partition Functions

In this part, we will define the Nekrasov partition function as the generating function of
the weighted Euler characteristics of certain K-theory classes. Those classes live in the
equivariant K-theory of a particular example of so-called Nakajima quiver varieties. We
will introduce those varieties in section 3.1 and define weighted Euler characteristics.
Afterwards, in section 3.2, we will then define the Nekrasov partition function. This
chapter is largely based on the treatment in [35] and [36].

3.1. A Nakajima Quiver Variety and its Equivariant
K-Theory

In section 3.1.1, we define a particular type of Nakajima quiver varieties. Then, in
section 3.1.2 we will discuss their K-theory. Afterwards, we will introduce the notion of
a weighted Euler characteristic in section 3.1.3.

3.1.1. A Nakajima Quiver Variety

A quiver consists of a set of vertices and a set of directed edges. One can associate
vector spaces to the vertices of a quiver. Fix two integers r and n with r ≥ 1 and
n ≥ 0. An example would be the quiver consisting of two vertices, to which we associate
the vector spaces V := Cn and W := Cr, respectively, and one edge from W to V .
Schematically, the quiver is depicted in figure 3.1, where the edge is depicted as a dashed
arrow. Consider the space

End(V )⊕Hom(W,V ). (3.1)

With respect to the standard bases on V and W , it parametrizes pairs of linear maps
V → V and W → V . The cotangent bundle to the linear space (3.1) is given by the
space

N(r, n) = End(V )⊕ End(V )⊕Hom(W,V )⊕Hom(V,W ). (3.2)

V W

j
B1

B2

i

Figure 3.1.: The linear maps parametrized by the
space N(r, n).
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3. Nekrasov Partition Functions

The quadruples of linear maps it parametrizes are also depicted in figure 3.1 as solid
arrows.

The group GLn(C) acts on the space N(r, n) by changing the basis in V . For an
invertible matrix g ∈ GLn(C) and an element (B1, B2, i, j) ∈ N(r, n) we have

g · (B1, B2, i, j) = (gB1g
−1, gB2g

−1, gi, jg−1). (3.3)

Being a cotangent bundle, the space N(r, n) carries a canonical symplectic form. The
action (3.3) turns out to be Hamiltonian, with moment map given by

µ(B1, B2, i, j) = [B1, B2] + ij ∈ End(V ) ∼= Lie(GLn(C)). (3.4)

We want to perform a Hamiltonian reduction, i.e. we want to quotient the zero set
µ−1(0) by the GLn(C) action in an appropriate way. The naive quotient is not a smooth
algebraic variety. Various conditions are commonly introduced to deal with this. We
say, that an element (B1, B2, i, j) ∈ N(r, n) is stable, if

6 ∃ S ⊂ V proper subspace with B1(S) ⊂ S,B2(S) ⊂ S, i(W ) ⊂ S. (3.5)

Both the condition µ(B1, B2, i, j) = 0 and the stability condition are compatible with
the GLn(C) action. We define

M(r, n) = {X ∈ N(r, n) : µ(X) = 0 and X is stable}/GLn(C). (3.6)

This space is an example of a GIT quotient. It is a smooth algebraic variety of dimension
2rn. Smoothness follows from the fact that the differential of µ is surjective and the
action of GLn(C) on set of stable points is free. The variety M(r, n) is an example what
is called a Nakajima quiver variety.

There are different approaches to performing the Hamiltonian reduction. One can for
example also consider the quotient

M reg
0 (r, n) (3.7)

= {X ∈ N(r, n) : µ(X) = 0 and both X and XT are stable}/GLn(C). (3.8)

Here, (B1, B2, i, j)
T = (BT

2 , B
T
1 , j

T , iT ) is obtained by transposition. By the ADHM con-
struction [4], the space M reg

0 (r, n) parametrizes anti-self-dual connections of instanton
number n in SU(r) gauge theory. One also considers its Uhlenbeck partial compactifi-
cation M0(r, n). As a set, we have

M0(r, n) =

n⊔
n′=0

M reg
0 (r, n′)× Sn−n′C2. (3.9)

Here SkC2 denotes the k-fold symmetric product of C2. The algebraic structure of
M0(r, n) is given by its definition as an algebro-geometric quotient

M0(r, n) = Spec
(
C[µ−1(0)]GLn(C)

)
. (3.10)

For us, the main object of interest is M(r, n). The space M0(r, n) will serve as a tool to
define the Nekrasov partition function.
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3.1. A Nakajima Quiver Variety and its Equivariant K-Theory

3.1.2. Equivariant K-Theory

Let T denote the torus

T = C∗ ×C∗ ×
(
C∗
)r
. (3.11)

It acts on the space N(r, n) from the right1 For an element (t1, t2, e1, . . . , er) ∈ T and
an element (B1, B2, i, j) ∈ N(r, n), we set

(B1, B2, i, j) · (t1, t2, e1, . . . , er) = (t1B1, t2B2, ie, t1t2e
−1j), (3.12)

where e denotes the diagonal matrix with diagonal entries e1, . . . , er. This torus action
N(r, n) commutes with the action of GLn(C). Moreover, it is compatible with the
moment map and the stability condition. Hence it defines a right T action on the spaces
M(r, n) and M0(r, n).

Let CohT (M(r, n)) denote the category of T -equivariant, coherent sheaves on M(r, n).
Let

KT (M(r, n)) (3.13)

denote the Grothendieck group of CohT (M(r, n)). It is called the equivariant K-theory
group of M(r, n). Its elements are called equivariant K-theory classes. Introduce the
same objects CohT (M0(r, n)) and KT (M0(r, n)) for M0(r, n). In case of a single point,
we obtain

KT (pt) = R(T ), (3.14)

the representation ring of the torus T . Equivariant K-theory groups are modules over
the ring R(T ). Since M(r, n) is nonsingular, we can say more: It is also given by
the Grothendieck group of equivariant, locally free sheaves on M(r, n). Moreover, it
is generated by the isomorphism classes of equivariant vector bundles over M(r, n). It
carries a ring structure. On the level of equivariant vector bundles, the multiplication is
given by the tensor product of vector bundles. In particular, the R(T ) module structure
is given by the tensor product with trivial vector bundles that carry the appropriate
representation of T .

In equivariant K-theory, it is important to understand the fixed points of the torus
action. In our case the fixed points

M(r, n)T = {I~Y : |~Y | = n} (3.15)

of M(r, n) are indexed [35] by r-tuples ~Y of partitions with total size n. Let

ι : M(r, n)T →M(r, n), ι~Y : {I~Y } →M(r, n) (|~Y | = n) (3.16)

denote the corresponding inclusion maps. The space M0(r, n) has only one fixed point

M0(r, n)T = {p0}. (3.17)

Again denote its inclusion map by

ι0 : {p0} →M0(r, n). (3.18)
1Here, we use a different convention compared to [35, 36].
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3. Nekrasov Partition Functions

3.1.3. Weighted Euler Characteristic

First, we are going to recall the notion of a character of a not necessarily finite dimen-
sional representation. Let X be a complex representation of some torus G. Let

X =
⊕

Xχ (3.19)

be the corresponding weight space decomposition. Here χ runs over the (multiplicative)
character group

Homalg(T,C∗) (3.20)

of X. For a character χ ∈ Homalg(T,C∗), the weight space is given by

Xχ = {x ∈ X : gx = χ(g)x ∀ g ∈ G}. (3.21)

In case all weight spaces are finite dimensional, one defines the character of X as the
formal sum

chX =
∑
χ

dimXχ χ (3.22)

in the completed group algebra of the character group of G. Note that the group algebra
of the character group equals

Z[Homalg(T,C∗)] = R(T ). (3.23)

In case V is finite dimensional itself, we thus have chX ∈ R(T ).
Let

E ∈ CohT (M(r, n)) (3.24)

be an equivariant, coherent sheaf on M(r, n). We want to define the weighted Euler
characteristic of E as

Zn(E) =

2rn∑
i=0

(−1)i chH i(M(r, n), E). (3.25)

It will later be used in the definition of the Nekrasov partition function. Since the
cohomology groups H i(M(r, n), E) need not be finite-dimensional as complex vector
spaces, we have to show that the definition makes sense and determine in which space
is is supposed to live. Let

R(T ) = Quot(R(T )) (3.26)

denote the field of fractions of the ring R(T ). We want to establish [35, Proposition 4.1]

Zn(E) =
∑
|~Y |=n

ι∗~Y
E

Λ−1T ∗~Y
M(r, n)

∈ R(T ). (3.27)
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Some comments are in order: On the right hand side, E is considered as an element of
KT (M(r, n)). In the numerator, the pullback ι∗~Y

(E) of E ∈ KT (M(r, n)) to KT (I~Y ) =

R(T ) uses the description of KT (M(r, n)) via locally free sheaves. In the denominator,
Λ−1T

∗
~Y
M(r, n) denotes the character, as a T -module, of the alternating exterior power

of the cotangent space to M(r, n) at the fixed point I~Y . It is an element of R(T ).
The reader in a hurry can take equation (3.27) as a practical definition and proceed

to the next section. In the rest of this section, we will relate the practical definition to
the conceptual definition in equation (3.25). We sketch the argument given in [35]. It
uses the space M0(r, n).

From the respective descriptions of M(r, n) and M0(r, n) as quotients, we obtain a
projective morphism

π : M(r, n)→M0(r, n). (3.28)

It is equivariant with respect to the torus action. Any proper, equivariant morphism
f : M →M ′ between algebraic varieties M and M ′ induces a homomorphism

f∗ : KT (M)→ KT (M ′) (3.29)

between the corresponding equivariant K-theory groups by the formula

f∗F =
∑
i≥0

(−1)iRif∗F ∈ KT (M ′) (F ∈ CohT (M)). (3.30)

Here, Rif∗F ∈ CohT (M ′), i ≥ 0, denote the higher direct image sheaves. We call f∗ the
pushforward in K-theory corresponding to f . In particular, we have a homomorphism

π∗ : KT (M(r, n))→ KT (M0(r, n)). (3.31)

Since, for the coherent sheaf E ∈ Coh(M(r, n)) and i ≥ 0, the sheaf Riπ∗E on M0(r, n)
is associated to the pre-sheaf U 7→ H i(π−1(U), E), we obtain for U = M0(r, n),

H i(M(r, n), E) = H0(M0(r, n), Riπ∗E). (3.32)

Now, by [35, Lemma 4.2], the right hand side of this equation is a representation of T
with weight spaces of finite complex dimension. So

chRiπ∗E := chH0(M0(r, n), Riπ∗E) (3.33)

is well-defined. We extend this definition from coherent sheafs to K-theory elements by
setting

chπ∗E :=
∑
i≥0

(−1)i chRiπ∗E. (3.34)

We obtain

Zn(E) = chπ∗E. (3.35)
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3. Nekrasov Partition Functions

The inclusion map ι0, defined in equation (3.18), yields the pushforward homomorphism

ι0∗ : KT (M0(r, n)T )→ KT (M0(r, n)). (3.36)

Since M0(r, n) only has one fixed point, the space on the left hand side is given by R(T ).
If now r ∈ R(T ) is a finite dimensional representation of T , its pushforward ι0∗r is a
skyscraper sheaf located at the fixed point ι0(p0) ∈ M0(r, n). Moreover, its space of
global sections is a T module with character r ∈ R(T ). In other words,

ch ι0∗r = chH0(M0(r, n), ι0∗r) = r. (3.37)

Analogously to the inclusion map ι0, the inclusion map ι, defined in equation (3.16),
yields the pushforward homomorphism

ι∗ : KT (M(r, n)T )→ KT (M(r, n)). (3.38)

Since the fixed points are indexed by r-tuples of partitions with total size n, the space
on the right hand side is given by

⊕
|~Y |=nR(T ). The Thomason localization theorem

[48] says, that both inclusion maps define isomorphisms after tensoring with R(T ). We
obtain the following commutative diagram

KT (M(r, n))⊗R(T ) R(T )
⊕
|~Y |=nR(T )

KT (M0(r, n))⊗R(T ) R(T ) R(T ).

ι−1
∗

π∗
∑
|~Y |=n

ι−1
0∗

By equation (3.37), the bottom arrow equals ch. If we apply the commutativity of the
diagram to Zn(E) = chπ∗E, we obtain equation (3.27).

In the next section, we are going to apply the definition Zn(E) to a special class of
equivariant, coherent sheaves E to define the Nekrasov partition function.

3.2. The Nekrasov Partition Function as a Generating
Function

In this section, we define the Nekrasov partition function. It computes the weighted
Euler characteristic of certain K-theory classes, called tautological classes. In section
3.2.1, we define those classes. In the subsequent section 3.2.2, we define the Nekrasov
partition function as a generating function of tautological classes. We describe an explicit
description of its coefficients in terms of a generating set of the representation ring R(T ).

3.2.1. The Weighted Euler Characteristic of Tautological Classes

In the last section, we have established formula (3.27) for the weighted Euler charac-
teristic Zn(E) of a equivariant, coherent sheaf on M(r, n). The right hand side makes
sense for K-theory classes as well. Hence we extend the construction to KT (M(r, n)):

Zn(E) =
∑
|~Y |=n

ι∗~Y
E

Λ−1T ∗~Y
M(r, n)

∈ R(T ) (E ∈ KT (M(r, n))). (3.39)
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3.2. The Nekrasov Partition Function as a Generating Function

We now want to construct certain K-theory classes which are called tautological
classes. We follow the description in [37]. They are constructed using the tautologi-
cal bundle V →M(r, n) on M(r, n). It is constructed as an associated bundle:

V = {X ∈ N(r, n) : µ(X) = 0, X stable} ×GLn(C) V, (3.40)

with respect to the standard action of GLn(C) on V = Cn. By construction its typical
fiber is V . The vector bundle V and all its exterior powers Λi V, i = 0, . . . , n define classes
in KT (M(r, n)). More generally a polynomial in such classes is called a tautological class.
They can also be constructed from the map

τ : KT (pt)[x±1
1 , . . . , x±1

n ]Sym → KT (M(r, n)) (3.41)

which takes a symmetric polynomial with coefficients in KT (pt) = R(T ) and evaluates
it at the K-theoretic Chern roots of the tautological bundle V. It is conjectured [37] that
this map is surjective. In the next section, we will use this map to define the Nekrasov
partition function.

3.2.2. The Nekrasov Partition Function

Fix two monic polynomials

f(x), g(x) ∈ KT (pt)[x] (3.42)

with coefficients in KT (pt) = R(T ). Fix a positive integer r. For each nonnegative
integer n, construct the K-theory class

En = τ

( n∏
j=1

f(xj)g(x−1
j )

)
∈ KT (M(r, n)). (3.43)

The Nekrasov partition function is the generating function of the weighted Euler char-
acteristics Zn(En) of the classes En ∈ KT (M(r, n)), n ≥ 0. It is a formal power series
with coefficients Zn(En) ∈ R(T ).

For the choice f = g = 1 and each n, the class En is given by the K-theory class defined
by the structure sheaf on M(r, n). The corresponding Nekrasov partition function agrees
with the one studied in [35, 36]. Physically, it corresponds to pure SU(r) Yang Mills
theory. More general polynomials f, g allow for the inclusion of matter fields.

In the remainder of the chapter, we make the coefficient Zn(En) ∈ R(T ) more explicit.
Recall that an element of the torus T is given by

(t1, t2, e1, . . . , er) ∈ C∗ ×C∗ × (C∗)r. (3.44)

We use the same symbols t1, t2, e1, . . . , er for the corresponding T characters:

ti : (t1, t2, e1, . . . , er) 7→ ti ∈ C∗ (i = 1, 2) (3.45)

eα : (t1, t2, e1, . . . , er) 7→ eα ∈ C∗ (α = 1, . . . , r). (3.46)
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3. Nekrasov Partition Functions

Hence

R(T ) = Z[t±1
1 , t±1

2 , e±1
1 , . . . , e±1

r ] (3.47)

and

R(T ) = Q(t1, t2, e1, . . . , er). (3.48)

We will now describe Zn(En) as an element of this field.
First, we turn to the denominators in (3.39). Fix an r tuple ~Y of partitions with total

size n. Suppose the tangent space T~YM(r, n) to M(r, n) at the fixed point I~Y is given,
as a T module, by

T~YM(r, n) = t1 + · · ·+ td ∈ R(T ). (3.49)

Then the alternating sum of exterior powers of its dual is given by

Λ−1T
∗
~Y
M(r, n) = (1− t−1

1 ) · · · (1− t−1
d ) ∈ R(T ) (3.50)

as a T module. The T module structure of T~YM(r, n) is given [35, Theorem 2.11] by

T~YM(r, n) =
r∑

α,β=1

eαe
−1
β

( ∑
�∈Yα

t
−lYβ (�)

1 t
aYα (�)+1
2 +

∑
�∈Yβ

t
lYα (�)+1
1 t

−aYβ (�)

2

)
. (3.51)

Hence the denominator in (3.39) is given by

Λ−1T
∗
~Y
M(r, n) =

r∏
α,β=1

( ∏
�∈Yα

(
1− e−1

α eβ t
lYβ (�)

1 t
−aYα (�)−1
2

)
(3.52)

∏
�∈Yβ

(
1− e−1

α eβ t
−lYα (�)−1
1 t

aYβ (�)

2

))
. (3.53)

Next, we turn to the numerators in (3.39). Fix a r tuple of partitions ~Y of total size
n. The pullback ι∗~Y

(En) of the tautological class

En = τ

( n∏
j=1

f(xj)g(x−1
j )

)
(3.54)

is given [37] by

ι∗~Y (En) =

r∏
α=1

∏
(x,y)∈Yα

f
(
eαt

x−1
1 ty−1

2

)
g
(
e−1
α t−x+1

1 t−y+1
2

)
. (3.55)

All together, we obtain the coefficient Zn(En) as an element of

Q(t1, t2, e1, . . . , er) (3.56)
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3.2. The Nekrasov Partition Function as a Generating Function

from the expression

Zn(t1, t2, e1, . . . , er; f, g) (3.57)

=
∑
|~Y |=n

∏r
α=1

∏
(x,y)∈Yα f

(
eαt

x−1
1 ty−1

2

)
g
(
e−1
α t−x+1

1 t−y+1
2

)
∏r
α,β=1K

~Y
α,β(t1, t2, e1, . . . , er)

, (3.58)

where

K
~Y
α,β(t1, t2, e1, . . . , er) =

∏
�∈Yα

(
1− e−1

α eβ t
lYβ (�)

1 t
−aYα (�)−1
2

)
(3.59)

∏
�∈Yβ

(
1− e−1

α eβ t
−lYα (�)−1
1 t

aYβ (�)

2

)
. (3.60)

We write the Nekrasov partition function as the formal power series

Z(t1, t2, e1, . . . , er; f, g; q) =
∑
n≥0

(
q (t1t2)−r/2

)n
(3.61)

× Zn(t1, t2, e1, . . . , er; f, g) (3.62)

in the variable q. The additional scaling factor will be convenient for the AGT relation,
described in chapter 4. It is not essential in any sense. For r odd, the square root is
purely formal.

It is customary [36] to formally write

t1 = eλε1 t2 = eλε2 eα = eλaα (α = 1, . . . , r). (3.63)

Using these symbols, the Nekrasov partition function is written [36] as the formal power
series

Z(ε1, ε2,~a, λ; f, g; b) =
∑
n≥0

(
b λ2r−deg f+deg ge−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; f, g), (3.64)

in the variable b. The coefficients are given by

Zn(ε1, ε2,~a, λ; f, g) (3.65)

=
∑
|~Y |=n

∏r
α=1

∏
(x,y)∈Yα f

(
eαt

x−1
1 ty−1

2

)
g
(
e−1
α t−x+1

1 t−y+1
2

)
∏r
α,β=1K

~Y
α,β(ε1, ε2,~a;λ)

(n ≥ 0), (3.66)

where

K
~Y
α,β(ε1, ε2,~a;λ) =

∏
�∈Yα

(
1− e−λ

(
−lYβ (�)ε1+(aYα (�)+1)ε2+aα−aβ

))
(3.67)

∏
�∈Yβ

(
1− e−λ

(
(lYα (�)+1)ε1−aYβ (�)ε2+aα−aβ

))
. (3.68)
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3. Nekrasov Partition Functions

The variable q in the expression (3.64) is scaled by two factors. The factor

λ2r−deg f+deg g (3.69)

ensures that the coefficients have a limit for λ → 0. We will comment on this limit in
the discussion of our results in chapter 7. The other factor

e−rλ(ε1+ε2)/2 (3.70)

is related to the fact that the coefficients in (3.67) are sometimes defined using hyper-
bolic functions instead of exponentials, c.f. formula (1.73) in chapter 1 or the original
reference [39]. We have included this second factor also in the definition (3.61) without
the exponentials since it is the correct scaling for the AGT relation.
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4. Five-dimensional AGT Relation

In this chapter, we discuss a particular instance of the AGT relation. It is a relation
between the Nekrasov partition function defined in chapter 3 and the deformed Gaiotto
states defined in chapter 2. More precisely, it relates the generating function of the
weighted Euler characteristics of the structure sheaves of the Nakajima quiver varieties
M(2, n), n ≥ 0, to the norm of the deformed Gaiotto state under a certain identification
of parameters. In section 4.1, we recall the definition of those objects, relate their
parameters and state the AGT relation. In the subsequent section 4.2, we sketch a proof
of the equality of both objects due to Yanagida [50, 51].

4.1. Nekrasov Partition Functions and Deformed Gaiotto
States

4.1.1. The Norm of the Deformed Gaiotto State

Recall that we have defined the norm of the deformed Gaiotto state as a formal power
series in equation (2.66). The deformed Gaiotto state is an element of the completion
(2.58) of the Verma module Mh, defined for a rational number h ∈ Q. Suppose h is of
the form

h = Q1/2 +Q−1/2. (4.1)

By the Kac determinant formula (2.54), the expansion (2.66) defines 〈w(ξ)|w(ξ) 〉 as an
element

〈w(ξ)|w(ξ) 〉 =
∑
n≥0

(ξ2t/q)nFn(q, t,Q) ∈ Q(q, t,Q)[[ξ2]], (4.2)

where

Fn(q, t,Q) = qnt−n
(
W−1

(n)

)
(1n)(1n)

∈ Q(q, t,Q) (n ≥ 0). (4.3)

Recall that W−1
(n) is simply the inverse of the Gram matrix W (n) with entries

W
(n)
λµ = 〈T−λ1h, T−µ1h 〉 (|λ| = |µ| = n). (4.4)

4.1.2. A Special Case of the Nekrasov partition function

In section 3.2.2, we have defined, for n ≥ 0, the n-th coefficient Zn(En) ∈ R(T ) of
the Nekrasov partition function corresponding to the K-theory class En ∈ KT (M(r, n))
defined by two symmetric polynomials f, g in n variables with coefficients in R(T ). In
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4. Five-dimensional AGT Relation

this section, we specialize to the case r = 2 and f = g = 1. In this case, En is the
K-theory class defined by the structure sheaf O on M(r, n) and the explicit description
in (3.57) yields

Zn(O) =
∑

|Y1|+|Y2|=n

1∏2
α,β=1Nα,β(t1, t2, e1, e2)

∈ Q(t1, t2, e1, e2), (4.5)

where

Nα,β(t1, t2, e1, e2) =
∏

�∈Yα

(
1− e−1

α eβ t
lYβ (�)

1 t
−aYα (�)−1
2

)
(4.6)

∏
�∈Yβ

(
1− e−1

α eβ t
−lYα (�)−1
1 t

aYβ (�)

2

)
. (4.7)

Note that the rational function Zn(O), only depends on t1, t2 and the ratio e2/e1 and
hence defines an element in Q(t1, t2, e2/e1). We want to relate these coefficients to the
expansion coefficients of the norm of the deformed Gaiotto state given in equation (4.2).
We identify

t = t−1
1 q = t2 Q = e2/e1 q = ξ2. (4.8)

Hence the definition of the Nekrasov partition function in equation (3.61) defines the
formal power series

Z(ξ) =
∑
n≥0

(ξ2t/q)nZn(q, t,Q) ∈ Q(q, t,Q)[[ξ2]], (4.9)

where we can express Zn(q, t,Q) = Zn(O) as

Zn(q, t,Q) =
∑

|Y |+|W |=n

1

NY,Y (1)NY,W (Q)NW,Y (Q−1)NW,W (1).
(4.10)

Here, for two Young diagrams Y and W ,

NY,W (Q) =
∏
�∈W

(1−QqaW (�)tlY (�)+1)
∏
�∈Y

(1−Qq−aY (�)−1t−lW (�)). (4.11)

The scaling factor t/q in the definition of the power series is again due to the fact
that one often defines the coefficients using hyperbolic functions. It corresponds to the
exponential scaling factor in (3.64).

One of the relations that are known under the name of AGT relations states that
the two formal power series (4.2) and (4.9), defining the norm of the deformed Gaiotto
state and the Nekrasov partition function respectively, agree. This version of the AGT
relation was conjectured in [7] and proved in [50, 51]. We will sketch the argument in
the next section.
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4.2. Proof of the five-dimensional AGT Relation

4.2. Proof of the five-dimensional AGT Relation

Zamolodchikov has observed [53] that the expansion coefficients of conformal blocks of
the Virasoro algebra satisfy a recursion relation, which is derived from the poles of those
coefficients as a function of the central charge and conformal dimensions. One strategy
to prove the AGT relations is to derive similar recursion relations for both the norm
of the deformed Gaiotto state (4.2) and the Nekrasov partition function (4.9). We will
sketch the argument in this section.

4.2.1. Recursion Relation for the Nekrasov Partition Function

In order to derive a recursion relations for the coefficients Zn(q, t,Q), given in equation
(4.10), Yanagida proposes an integral representation for Zn(q, t,Q) in [50]. This integral
representation is similar to the one we discuss in chapter 5. The main difference is, that
in [50], no explicit description of the integration contour is given.

With the help of the integral representation, Yanagida describes the pole structure of
Zn(q, t,Q) as a rational function of Q. Yanagida finds [50, Proposition 4.2] that there
is one pole at Q = qrt−t for each pair (r, s) of integers r, s ∈ Z with 1 ≤ rs ≤ n and
no others. Moreover, all poles are simple. He then proceeds with the calculation of the
residues of Zn(q, t,Q) at each of those simple poles. The integral representation is used
again. The result is

ResQ=qrt−s Zn(q, t,Q) = Ar,s(q, t)Zn−rs(q
rts, q, t), (4.12)

where r, s ∈ Z, 1 ≤ rs ≤ n. The coefficient Ar,s(q, t) is given by

Ar,s(q, t) = −sign(r)qrt−s
∏
ij

1

1− qit−j
, (4.13)

where the product runs over all pairs (i, j) ∈ Z2 with (i, j) 6= (0, 0), −|r| ≤ i ≤ |r| − 1,
and −|s| ≤ j ≤ |s| − 1.

Yanagida concludes [50, Theorem 4.1]

Zn(Q, q, t) = δn,0 +
∑
r,s∈Z

1≤rs≤n

Ar,s(q, t)Zn−rs(q
rts, q, t)

Q− qrt−s
(n ≥ 0). (4.14)

Indeed, the difference of both sides define an entire function in Q. It is bounded in Q
since Zn(Q, q, t) is invariant under inversion of Q. Moreover, for Q→∞ it converges to
zero.

4.2.2. Recursion Relation for Deformed Gaiotto States

In a subsequent paper [51], Yanagida analyzes the coefficients Fn(q, t,Q) in the expansion
(4.2) of the norm of the deformed Gaiotto state. By analyzing the poles and zeros of
the Kac determinant, Yanagida proves [51, Theorem 4.3] that the expansion coefficients
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4. Five-dimensional AGT Relation

Fn(Q, q, t) ∈ Q(Q, q, t) satisfy the recursive relation

Fn(Q, q, t) = δn,0 +
∑
r,s∈Z

1≤rs≤n

Ar,s(q, t)Fn−rs(q
rts, q, t)

Q− qrt−s
(n ≥ 0). (4.15)

Here, the coefficient Ar,s(q, t) is also given by equation (4.13).

4.2.3. Comparison and Conclusion

Comparing the two recursion relations (4.14) and (4.15) for the coefficients in the formal
power series (4.2) and (4.10) for the norm of the deformed Gaiotto state and the Nekrasov
partition function, we obtain

〈w(ξ)|w(ξ) 〉 = Z(t1, t2, e1, e2; f, g, q) ∈ Q(q, t,Q)[[ξ2]]. (4.16)

under the identifications

t1 = t−1 t2 = q e2/e1 = Q f = 1 g = 1 q = ξ2. (4.17)
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5. Integral Representation

In this chapter, we will define an integral representation for the coefficients of the
Nekrasov partition function defined in chapter 3. It is a sequence of multiple contour
integrals, depending on complex parameters in a certain range. We define it in section
5.1. The integrand and the contour description are known. However, to the best of
our knowledge, a rigorous proof for the validity of the contour description has not been
published. We provide it in section 5.2. In the subsequent section 5.3, we estimate the
growth of the sequence of integrals.

5.1. Definition of the Integral and Parameter Ranges

In this section, we define a sequence of multiple contour integrals. Let q1 and q2 denote
two complex numbers with

|q1| < 1 |q2| < 1. (5.1)

Assume they are complex conjugate or both positive, i.e.

q1 = q2 or q1, q2 ∈ (0, 1). (5.2)

These two complex numbers will be related to the formal parameters t1, t2 from chapter
3. Note that in either case q1q2 = |q1q2| ∈ (0, 1).

Fix an integer r ≥ 1. Let ~u = (u1, . . . , ur) be an r-tuple of complex numbers. Assume

|qi| max
α=1,...,r

|uα| < min
α=1,...,r

|uα|, ∀ i = 1, 2. (5.3)

The complex numbers u1, . . . , ur will be related to the formal parameters e1, . . . , er from
chapter 3.

Fix two integers s, s′ ≥ 0. Let ~F = (F1, . . . , Fs) and ~G = (G1, . . . , Gs′) denote two
tuples of complex numbers. They define the two monic polynomials

F (z) =
s∏

k=1

(z − Fk) G(z) =
s′∏
k=1

(z −Gk). (5.4)

They will be related to the polynomials f(z), g(z) from chapter 3. Assume that the
degree of G is bounded as

s′ = degG(z) ≤ r − 1. (5.5)

By condition (5.3), we can pick a positive real number ρ > 0 with

|uα| < ρ < |qi|−1|uα| ∀ α = 1, . . . , r, ∀ i = 1, 2. (5.6)
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5. Integral Representation

For each integer n ≥ 0, we now define the symmetric function

I(z1, . . . , zn; q1, q2, ~u) =

n∏
j=1

r∏
α=1

−uαzj
(zj − uα)(q1q2zj − uα)

(5.7)

∏
1≤j 6=k≤n

(zj − zk)(zj − q1q2zk)

(zj − q1zk)(zj − q2zk)
. (5.8)

Also define the symmetric function

J (z1, . . . , zn; ~F , ~G) =

n∏
j=1

F (zj)G(z−1
j ). (5.9)

Again, for each integer n ≥ 0, we construct the integral

Zn(q1, q2, ~u; ~F , ~G) =
1

n!

(
1− q1q2

(1− q1)(1− q2)

)n
(5.10)∫

Cn(ρ)

n∏
j=1

dzj
2πizj

J (z1, . . . , zn; ~F , ~G) (5.11)

I(z1, . . . , zn; q1, q2, ~u) (5.12)

over the multiple contour

Cn(ρ) = {(z1, . . . , zn) ∈ Cn : |zj | = ρ, j = 1, . . . , n}. (5.13)

The assumption (5.5) ensures that the integrand is regular at zero. The factorial in the
definition is related to the permutation invariance of the integrand. The other pre-factor
corresponds to the absent diagonal product in line (5.8). Similar integrals appeared in
the literature [50, 37].

In the subsequent section 5.2, we will evaluate the integral using iterated residues.
Afterwards, in section 5.3, we will estimate the large n behavior of the coefficients
Zn(q1, q2, ~u; ~F , ~G).

5.2. Evaluation of the Integral

Fix an integer n ≥ 0. We evaluate the integral (5.10) using iterated residues. The
residues will be indexed by r-tuples ~Y of Young diagrams with total size |~Y | = n. For a
box

� = (x, y) ∈ Yα (5.14)

in some Young diagram Yα, we define

zα� = zαx,y = uαq
x−1
1 qy−2

2 . (5.15)
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5.2. Evaluation of the Integral

Theorem 5.2.1. Assume the complex numbers q1 and q2 satisfy

qx1 6= qy+1
2 , qx+1

1 6= qy2 , ∀x, y ∈ {0, . . . , n− 1}. (5.16)

Moreover, assume the complex numbers u1, . . . , uα satisfy

uαu
−1
β 6= qx1q

y
2 , ∀x, y ∈ {−n, . . . , n}, ∀α 6= β ∈ {1, . . . , r}. (5.17)

The value of Zn(q1, q2, ~u; ~F , ~G) is given as a sum over r-tuples of partitions of total size
n in two equivalent ways:

Zn(q1, q2, ~u; ~F , ~G) =
∑
|~Y |=n

∏r
α=1

∏
(x,y)∈Yα F

(
uαq

x−1
1 qy−1

2

)
G
(
u−1
α q−x+1

1 q−y+1
2

)
∏r
α,β=1N

~Y
α,β(q1, q2, ~u)

, (5.18)

where, for α, β ∈ {1, . . . , r},

N
~Y
α,β(q1, q2, ~u) =

∏
�∈Yα

(
1− uα

uβ
q
lYα (�)+1
1 q

−aYβ (�)

2

)
(5.19)

∏
�∈Yβ

(
1− uα

uβ
q
−lYβ (�)

1 q
aYα (�)+1
2

)
. (5.20)

Alternatively,

Zn(q1, q2, ~u; ~F , ~G) =
∑
|~Y |=n

∏r
α=1

∏
(x,y)∈Yα F

(
uαq

x−1
1 qy−1

2

)
G
(
u−1
α q−x+1

1 q−y+1
2

)
∏r
α,β=1M

~Y
α,β(q1, q2, ~u)

, (5.21)

where, for α, β ∈ {1, . . . , r},

M
~Y
α,β(q1, q2, ~u) =

∏
�∈Yα

(
1− uα

uβ
q
−lYβ (�)

1 q
aYα (�)+1
2

)
(5.22)

∏
�∈Yβ

(
1− uα

uβ
q
lYα (�)+1
1 q

−aYβ (�)

2

)
. (5.23)

The assumptions (5.16) on q1, q2 and (5.17) on u1, . . . , ur are in addition to the stand-
ing assumptions (5.1), (5.2) and (5.3). They are necessary to ensure that all terms in
(5.18) and (5.21) are well-defined. If they are violated, some residues might not be sim-
ple residues anymore and consequently some of those terms might be infinite. However,
their sum Zn(q1, q2, ~u; ~F , ~G) is still well-defined, as the integral in equation (5.10) is.

Proof of Theorem 5.2.1. We evaluate the integral defined in (5.10) by iteratively taking
residues. In a first step, we show that the iterated residues appearing in the evaluation
of the n fold integral are parametrized, up to permutation of the variables, by r tuples ~Y
of Young diagrams with total size n. In a second step, we calculate the iterated residues.

In order to avoid collisions of the integration contour and poles of the integrand, we
perturb the modulus of q1 and q2 to

|q1| = |q2|+ δ < 1 (5.24)
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5. Integral Representation

where δ > 0 is small enough such that

|q1| > |q2| > |q1|2 > |q1|3 > · · · . (5.25)

The general case follows from analytic continuation.
We start with a slightly more general integral. Let U and W be two finite sets of

complex numbers. Fix n ≥ 0. Let

f(x1, . . . , xn) (5.26)

denote an arbitrary meromorphic, symmetric function, whose poles in each variable zj
do not depend on the other variables and lie outside the integration contour |zj | = ρ.
Define the symmetric function

I(z1, . . . , zn) = f(z1, . . . , zn) (5.27)

×
n∏
j=1

(∏
w∈W (zj − w)∏
u∈U (zj − u)

∏
j<k

D(zj , zk)

)
, (5.28)

where

D(zj , zk) =
(zj − zk)2(zj − q1q2zk)(zj − q−1

1 q−1
2 zk)

(zj − q1zk)(zj − q2zk)(zj − q−1
1 zk)(zj − q−1

2 zk)
. (5.29)

Our integral is of the form∫
|zn|=ρ

dzn
2πi
· · ·
∫
|z1|=ρ

dz1

2πi
I(z1, . . . , zn). (5.30)

The evaluation happens by iteratively taking residues. In particular the integral equals∑
(ẑn,...,ẑ1)∈R

Reszn=ẑn · · ·Resz1=ẑ1 I(z1, . . . , zn), (5.31)

for a suitable finite set R ⊂ Cn.
From line (5.28), we see that we can either pick up residues at poles determined by

the set U or at poles of D(zj , zk) determined by variables we have not yet integrated
over. In the first case, we say that we pick up a residue at the front. In the second case,
we say that we pick up a residue at the back.

The evaluation of the integral (5.30) happens in stages. Our first claim is

Claim 1. We can assume each element of the residue set R is partitioned as

(ẑn, . . . , ẑ1) = (ẑJ1+···+Jk , . . . , ẑJ1+···+Jk−1+1, (5.32)

. . . , (5.33)

ẑJ1+J2 , . . . , ẑJ1+1, (5.34)

ẑJ1 , . . . , ẑ1), (5.35)

defining k stages of the evaluation procedure with respective sizes Jl, l = 1, . . . , k, such
that the following holds:
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5.2. Evaluation of the Integral

After each stage, the remaining integrand is of the same form (5.30) as the original
integral, with different sets U, V and different symmetric function f .

Let

Ul,Wl, fl (l ∈ {1, . . . , k}) (5.36)

denote the sets Ul,Wl and symmetric function fl before evaluation of the l-th stage. In
particular, U1 = U , W1 = W , and f1 = f .

For each stage

ẑJ1+···+Jl , . . . , ẑJ1+···+Jl−1+1 (l ∈ {1, . . . , k}) (5.37)

there exist indices

{il, sl} = {1, 2} dl ∈ {0, . . . , Jl − 1}, (5.38)

such that

1. The first Jl − 1 residues are picked at the back at the poles

ẑj = qilzj+1 (j = J1 + · · ·+ Jl−1 + 1, . . . , J1 + · · ·+ Jl). (5.39)

2. The last residue is picked up at the front:

ẑJ1+···+Jl = q−dlil
ul (ul ∈ Ul, dl ∈ {0, . . . , Jl − 1}). (5.40)

3. The residues are all simple.

4. The sets change as

Ul+1 = Ul ∪ {q−1
il
ẑbl , qsl ẑbl , q

−1
sl
ẑal , qil ẑal} (5.41)

Wl+1 = Wl ∪ {ẑbl , q
−1
il
q−1
sl
ẑbl , ẑal , qilqsl ẑal}, (5.42)

where

al = J1 + · · ·+ Jl−1 + 1 bl = J1 + · · ·+ Jl (5.43)

are the first and the last index in stage l.

5. The symmetric function changes as

fl+1(zbl+1, . . . , zn) =fl(q
Jl−1
il

q−dlil
ul, . . . , q

−dl
il

ul, zbl+1, . . . , zn) (5.44)

×
Jl−1∏
j=0

∏
w∈Wl

(qj−dlil
ul − w)∏

u∈U\{ul}(q
j−dl
il

ul − u)

Jl−1∏
j=0
j 6=dl

1

(qj−dlil
− 1)

(5.45)

× (qil − 1)Jl(1− qsl)Jl−1

(qil − q
−1
sl )Jl−1(qJlil − 1)

Jl−1∏
j=1

(qjil − q
−1
il
q−1
sl

)

(qjil − qsl)
(5.46)

× q
1
2

(Jl+2)(Jl−1)−dlJl
il

. (5.47)
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5. Integral Representation

We think of the positions of the residues (5.37) in stage l as a strip. For il = 2, we
draw the strip horizontally:

ẑbl · · · · · · ul· · · · · · ẑal
(5.48)

The positive qil direction goes from west to east. The order of evaluation of the residues
(5.39) and (5.40) goes from east to west over the residue strip. Here we have also
indicated the poles in red and zeros in blue the strip adds according to (5.41) to the
sets Ul and Wl to obtain Ul+1 and Wl+1. For il = 1 the strip is drawn vertically, with
positive qil direction from north to south.

Let us prove claim 1. We write the integral (5.30) as∫
|zn|=1

dzn
2πi

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏
n<k

D(zn, zk) (5.49)

... (5.50)∫
|z2|=1

dz2

2πi

∏
w∈W (z2 − w)∏
u∈U (z2 − u)

∏
2<k

D(z2, zk) (5.51)∫
|z1|=1

dz1

2πi

∏
w∈W (z1 − w)∏
u∈U (z1 − u)

∏
1<k

D(z1, zk) f(z1, . . . , zn). (5.52)

When integrating over z1, we can either pick up residues at the back at q1zj or q2zj for
some j ∈ {2, . . . , n}. Or we can pick up a residue at the front at some u ∈ U inside the
integration contour. Assume, we pick a residue at the back at

ẑ1 = qizj (5.53)

for some i ∈ {1, 2} and some j ∈ {2, . . . , n}. Denote by s the other index, i.e. {i, s} =
{1, 2}. The residue is simple. The evaluation of the residue yields∫

|zn|=1

dzn
2πi

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏
n<k

D(zn, zk) (5.54)

... (5.55)∫
|z2|=1

dz2

2πi

∏
w∈W (z2 − w)∏
u∈U (z2 − u)

∏
2<k

D(z2, zk) (5.56)∏
w∈W (qizj − w)∏
u∈U (qizj − u)

Resz1=qizj

∏
1<k

(D(z1, zk)) f(qizj , z2, . . . , zn). (5.57)

We now use Fubini’s theorem to permute the integration over z2 and zj . This is possible
due to our perturbation (5.24). Additionally, we rename zj ↔ z2. Using the symmetry
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5.2. Evaluation of the Integral

of the function f , we obtain∫
|zn|=1

dzn
2πi

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏
n<k

D1(zn, zk) (5.58)

... (5.59)∫
|z3|=1

dz3

2πi

∏
w∈W (z3 − w)∏
u∈U (z3 − u)

∏
3<k

D1(z3, zk) (5.60)∫
|z2|=1

dz2

2πi

∏
w∈W (z2 − w)(qiz2 − w)∏
u∈U (z2 − u)(qiz2 − u)

∏
2<k

D2(z2, zk)f(qiz2, z2, . . . , zn) (5.61)

× qiz2
(qi − 1)2(1− qs)(qi − q−1

i q−1
s )

(qi − qs)(qi − q−1
i )(qi − q−1

s )
. (5.62)

where we have extended the definition of D(zj , zk) to

Dm(zj , zk) =
(zj − zk)(zj − qiqszk)(zjqm−1

i − zk)(zjqm−1
i − q−1

i q−1
s zk)

(zj − qizk)(zj − q−1
s zk)(zjq

m−1
i − qszk)(zjqm−1

i − q−1
i zk)

(5.63)

for m ≥ 1. Note that D1(zj , zk) = D(zj , zk). Moreover, we could have supposed j = 2
in (5.53).

For the integration over z2, we again can either pick up a residue at the front at u or
uq−1

i for some u ∈ U such that the pole lies inside the integration contour. Or we can
pick up a residue at the back from a pole of

D2(z2, zk) =
(z2 − zk)(z2 − qiqszk)(z2qi − zk)(z2qi − q−1

i q−1
s zk)

(z2 − qizk)(z2 − q−1
s zk)(z2qi − qszk)(z2qi − q−1

i zk)
. (5.64)

The poles inside the integration contour are located at ẑ2 = qizj with j ∈ {3, . . . , n}.
Note that the index i is one we fixed by choosing the residue of the previous integration.
If i = 1, we have

|qs|/|qi| = |q2|/|q1| < 1 (5.65)

by (5.25) and it appears that there is also a residue coming from the factor

(z2qi − qszk). (5.66)

However, the residues coming from these poles cancel in the sum of all residues. By
direct calculation,

lim
zk→q−1

1 q2zl

(zk − q−1
1 q2zl)

∑
i=1,2

n∑
j=2

Resẑ1=qizj I(z1, . . . , zn) = 0. (5.67)

Assume, we again pick a residue at the back at

ẑ2 = qizj (5.68)
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5. Integral Representation

where j ∈ {3, . . . , n}. By the same argument as above, we may suppose without loss of
generality j = 3. The residue is simple and we obtain∫

|zn|=1

dzn
2πi

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏
n<k

D1(zn, zk) (5.69)

... (5.70)∫
|z4|=1

dz4

2πi

∏
w∈W (z4 − w)∏
u∈U (z4 − u)

∏
4<k

D1(z4, zk) (5.71)

∫
|z3|=1

dz3

2πi

∏
w∈W (z3 − w)(qiz3 − w)(q2

i z3 − w)∏
u∈U (z3 − u)(qiz3 − u)(q2

i z3 − u)

∏
3<k

D3(z3, zk) (5.72)

×q3
i z

2
3

(qi − 1)3(1− qs)2(q2
i − q−1

s )(q3
i − q−1

s )

(qi − qs)(qi − q−1
s )2(q2

i − qs)(q3
i − 1)

f(q2
i z3, qiz3, z3, . . . , zn). (5.73)

In the next step, we can again pick up residues at the front at u, uq−1
i , uq−2

i with u ∈ U
such that the residues are located inside the integration contour. Or we can pick up a
residue at the back at qizj for some j ∈ {4, . . . , n}, for which we may suppose j = 4.
From the definition (5.63) of Dm(z3, zk) and condition (5.25) we see that the poles from
the factor

(z2q
m−1
i − qszk) (5.74)

lie outside the integration contour for all m ≥ 2.
We continue this evaluation procedure. At some point, we have to pick up a residue

at the front. Assume that we have picked and evaluated simple residues at

ẑ1, . . . , ẑJ−1 (5.75)

during the first J − 1 integrations with

ẑj = qizj+1 j = 1, . . . , J − 1. (5.76)

Here, the choice of indices {i, s} = {1, 2} is necessarily the same for all residues. The
remaining integral equals∫

|zn|=1

dzn
2πi

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏
n<k

D1(zn, zk) (5.77)

... (5.78)∫
|zJ+1|=1

dzJ+1

2πi

∏
w∈W (zJ+1 − w)∏
u∈U (zJ+1 − u)

∏
J+1<k

D1(zJ+1, zk) (5.79)

∫
|zJ |=1

dzJ
2πi

J−1∏
l=0

∏
w∈W (zJq

l
i − w)∏

u∈U (zJqli − u)

∏
J<k

DJ(zJ , zk) (5.80)

×zJ−1
J q

1
2

(J+2)(J−1)

i

(qi − 1)J(1− qs)J−1

(qi − q−1
s )J−1(qJi − 1)

J−1∏
j=1

(qji − q
−1
i q−1

s )

(qji − qs)
(5.81)

×f(qJ−1
i zJ , . . . , zJ , . . . , zn), (5.82)
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5.2. Evaluation of the Integral

Now pick up a pole at the front at

ẑJ = q−di u0 (5.83)

for some d ∈ {0, . . . , J−1} and some u0 ∈ U such that the pole lies inside the integration
contour. We obtain the integral∫

|zn|=1

dzn
2πi

∏
w∈W∪{ẑJ ,q−1

i q−1
s ẑJ ,ẑ1,qiqsẑa}(zn − w)∏

u∈U∪{q−1
i ẑJ ,qsẑJ ,q

−1
s ẑ1,qiẑ1}(zn − u)

∏
n<k

D1(zn, zk) (5.84)

... (5.85)∫
|zJ+1|=1

dzJ+1

2πi

∏
w∈W∪{ẑJ ,q−1

i q−1
s ẑJ ,ẑ1,qiqsẑa}(zJ+1 − w)∏

u∈U∪{q−1
i ẑJ ,qsẑJ ,q

−1
s ẑ1,qiẑ1}(zJ+1 − u)

∏
J+1<k

D1(zJ+1, zk) (5.86)

×
J−1∏
j=0

∏
w∈W (qj−di u0 − w)∏

u∈U\{u}(q
j−d
i u0 − u)

J−1∏
j=0
j 6=d

1

(qj−di − 1)
q

1
2

(J+2)(J−1)−dJ
i (5.87)

× (qi − 1)J(1− qs)J−1

(qi − q−1
s )J−1(qJi − 1)

J−1∏
j=1

(qji − q
−1
i q−1

s )

(qji − qs)
(5.88)

f(qJ−1
i q−di u0, . . . , q

−d
i u0, zJ+1, . . . , zn). (5.89)

This integral is of the same form as the one (5.30) we started with. Hence Claim 1 is
proved.

In a next step we show

Claim 2. In the evaluation process described in Claim 1, only residue strips (5.37) with
dl = 0 as in (5.40) contribute in the sum of all residues.

In order to prove this claim, we fix a stage l0 as described in Claim 1. In stage l0, we
have to pick residues for the variables

zal0 , . . . , zbl0 . (5.90)

We suppose il0 = 2. The other case is treated identically. The procedure (5.39), (5.40) in
our stage l0 yields the residue strip (5.48) with l = l0. After the evaluation, the residues
lie at

q
−dl0
il0

(q
Jl0−1

il0
ul0 , . . . , ul0). (5.91)

We have to compare different procedures to pick residues that yield the same final
positions 5.91. We can, for example, achieve this by iteratively picking residues at the
front, i.e. we choose J = 1 in the above calculation and repeat it. We call a residue strip
of length 1 a residue box. We draw a residue box as

(5.92)
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5. Integral Representation

The green color signifies a zero of order two. Graphically, we want to compare, for
instance,

ul0

(5.93)

to

ul0

(5.94)

All formulas in Claim 1 remain valid for evaluating residue boxes. Applying the formulas
repeatedly, we see that, regardless of the order in which we pick residues on the west
or on the east in (5.94), the two procedures (5.93) and (5.94) yield the same final sets
Ul0+1, Wl0+1. This can also be seen from the two pictures using the graphical rule

+ = + = (5.95)

However, the respective final symmetric functions, which the two procedures yield, only
agree up to a factor of

(−1)dl0 . (5.96)

Graphically, the integer dl0 equals the number of boxes westwards of ul0 . In other words,
there are cancellations possible between the different procedures in which one can pick
residues that produce the same final residues (5.91) as the procedure defined by the strip
(5.93).

Up to now, we can conclude the following:

Claim 3. In the case dl0 = 0, the procedure (5.39), (5.40) leads to the same result
compared to evaluating residues at the front repeatedly. Graphically, in this case, the
whole residue strip lies to the east of ul0.

In the other extreme case dl0 = Jl0 − 1, both procedures lead to the same result up to
a factor of (−1)Jl0+1. Graphically, in this case, the whole residue strip lies to the west
of ul0. It has the length Jl0.

Of course, there are more procedures, by which we can obtain the final residues (5.91)
for the variables (5.90). For instance, compared to the procedure (5.93) there is also the
diagram

ul0

. (5.97)

Moreover, to characterize a procedure uniquely, we have to add to a diagram like (5.97)
the specification of the order, in which to add the pieces to the west or east. This order
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5.2. Evaluation of the Integral

was irrelevant in the above examples (5.93) (because there was only one piece) and (5.94)
(because the result was independent of the order). From Claim 3 we see that the relative
sign of the final symmetric function does only depend on the diagram associated to a
procedure to pick residues, and not on the order in which we place pieces to the east or
west. By what we have shown, the relative sign is equal to the product∏

L
(−1)L−1 (5.98)

where L runs over the lengths of the sub-strips in the diagram to the west of ul0 , after
cutting the sub-strip containing ul0 directly to the east of u0. For instance, the relative
sign corresponding to any procedure associated to the diagram (5.97) is given by

(−1)1−1(−1)2−1(−1)(3−1)−1 = 1. (5.99)

We want to show that the sum of all the final symmetric functions produced by the
procedures of picking residues for the variables (5.90) yielding the final residues (5.91)
equals zero if dl0 > 0. So suppose dl0 > 0. We want to show∑

x

sign(x) = 0 (5.100)

where the sum goes over all procedures and the sign is the relative sign of the final
function, computed in equation (5.98). To formalize the treatment of the cancellations,
we introduce the set

Γ(Jl0) = {(γ1, . . . , γN ) : N ∈ N, γ1, . . . , γN ∈ N, γ0 + · · ·+ γN = Jl0} (5.101)

of ordered partitions of the integer Jl0 . The integer Jl0 equals the length of the residue
strip (5.93) and each element ~γ ∈ Γ(Jl0) corresponds to a unique way to cut the strip
(5.93) into sub-strips: The N sub-strips have length γ1, . . . , γN , from west to east. For
instance, the cutting (5.97) corresponds to the element

~γ = (1, 2, 3, 1) ∈ Γ(7). (5.102)

Since the sign (5.98) only depends on the cutting of the residue strip, we obtain∑
x

sign(x) =
∑

~γ∈Γ(Jl0 )

wgt(~γ) sign(~γ). (5.103)

Here, the sign sign(~γ) can be calculated from equation (5.98) and the weight wgt(~γ) is
derived from the number of procedures corresponding to the diagram defined by ~γ. We
are going to formalize both now.

Firstly, we formalize the sign. Define the cutting map

cut : Γ(Jl0)→ Γ(d0 + 1) (5.104)

by demanding that, for each

~γ = (γ1, . . . , γN ) ∈ Γ(Jl0), (5.105)
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5. Integral Representation

the element

cut(~γ) = (γ′1, . . . , γ
′
N ′) ∈ Γ(d0 + 1) (5.106)

satisfies

γ′a = γa (a = 1, . . . , N ′ − 1). (5.107)

Hence cut(~γ) contains the lengths of the sub-strips to the west of ul0 after cutting directly
to the east of ul0 . The sign corresponding to the cutting ~γ, calculated via equation (5.98),
is given by ∏

a

(−1)

(
cut(~γ)

)
a
−1
. (5.108)

Hence we have formalized the sign in (5.103).
It remains to formalize the weight appearing in (5.103). A procedure to pick residues

associated to a diagram ~γ is fixed by specifying an order in which we place the sub-
strips. The sub-strip containing ul0 has to be placed first. Then one can alternate
between placing sub-strips westwards or eastwards. We define the reordering bijection

reo : Γ(Jl0)→ Γ(Jl0) (5.109)

by the following condition. Fix a cutting

~γ ∈ Γ(Jl0). (5.110)

Let b = b(~γ) denote the number of sub-strips strictly westwards of the one containing
ul0 . Let c = c(~γ) denote the number of sub-strips strictly eastwards of the one containing
ul0 . We demand

reo(~γ) = (B0, B1, . . . , Bb, C1, . . . , Cc), (5.111)

where B0 is the length of the sub-strip containing ul0 . The integers B1, . . . , Bb are equal
to the respective lengths of the sub-strips strictly westwards of the one containing ul0 ,
with increasing index in westward direction. The integers C1, . . . , Cc are equal to the
respective lengths of the sub-strips strictly eastwards of the one containing ul0 , with
increasing index in eastward direction. For example, the element

~γ = (1, 2, 3, 1), (5.112)

corresponding to the cutting depicted in (5.97), yields

reo(~γ) = (3, 2, 1, 1) b = 2 c = 1. (5.113)

The order of the components will be interpreted as the order in which we place the
residue strips. All possible such orderings are given by permutations of the components
of reo(~γ) such that B0 remains fixed and also the respective orderings of the elements
in (B1, . . . , Bb) and (C1, . . . , Cc) remain fixed. Define the set of all (b, c)-shuffles by

Sb,c = {σ ∈ Sb+c : σ(1) < · · · < σ(b), σ(b+ 1) < · · · < σ(b+ c)}. (5.114)
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5.2. Evaluation of the Integral

An element σ ∈ Sb,c acts on

reo(~γ) = (B0, B1, . . . , Bb, C1, . . . , Cc) (5.115)

by

σ reo(~γ) =
(
B0, σ(B1, . . . , Bb, C1, . . . , Cc)

)
, (5.116)

where the action on the right is the usual one of the permutation σ ∈ Sb+c. The set

{σ reo(~γ) : σ ∈ Sb,c} (5.117)

parametrizes all possible procedures to pick residues that lead to a diagram specified by
~γ ∈ Γ(Jl0).

We still have to account for the fact that we can pick any of the remaining variables
in (5.90), when picking up residues at the back as done in (5.39). When we place the
k-th sub-strip with length (

σ reo(~γ)
)
k
> 1 (5.118)

out of a tuple σ reo(~γ) of N sub-strips, we have to choose(
σ reo(~γ)

)
k
− 1 (5.119)

times a variable at the back (5.39). The pole can come from any of the variables we
have not integrated out so far. The remaining sub-strips, that have not yet been placed,
correspond to a number of (

σ reo(~γ)
)
k+1

+ · · ·+
(
σ reo(~γ)

)
N

(5.120)

variables from (5.90). Hence we have to account for

σ(reo~γ)k−1∏
h=1

( N∑
j=k+1

σ(reo~γ)j + σ(reo~γ)k − h
)

(5.121)

choices when placing the sub-strip corresponding to (5.118). This formula extends to
the case (

σ reo(~γ)
)
k

= 1, (5.122)

in which we pick up a residue at the front, which does not involve an additional choice.
We obtain the formula

wgt(~γ) =
∑
σ∈Sb,c

N∏
k=1

( σ(reo~γ)k−1∏
h=1

( N∑
j=k

σ(reo~γ)j − h
))

, (5.123)

where b = b(~γ), c = c(~γ) and ~γ ∈ Γ(Jl0) consists of N = N(~γ) components.
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5. Integral Representation

We have formalized both the weight and the relative sign of a diagram ~γ ∈ Γ(Jl0). In
order to prove Claim 2, we thus have to show that

∑
~γ∈Γ(Jl0 )

wgt(~γ) sign(~γ) =
∑

~γ∈Γ(Jl0 )

(∏
a

(−1)

(
cut(~γ)

)
a
−1

(5.124)

∑
σ∈Sb,c

N∏
k=1

( σ(reo~γ)k−1∏
h=1

( N∑
j=k

σ(reo~γ)j − h
)))

(5.125)

vanishes. We do so, by splitting the sum in pairs of terms that cancel each other. Fix
one ~γ ∈ Γ(Jl0) with γ1 > 1. Define ~γ′ ∈ Γ(Jl0) by

γ′1 = 1 γ′2 = γ1 − 1 γ′k = γk (k ≥ 2) (5.126)

The map

{~γ ∈ ΓJl0 : γ1 > 1} → {~γ ∈ ΓJl0 : γ1 = 1} (5.127)

~γ 7→ ~γ′ (5.128)

is a bijection. Its inverse sums the two first components. The sub-strips described by ~γ′

are obtained from the sub-strips described by ~γ by cutting off the westernmost box. To
prove that (5.124) vanishes, it suffices to show

wgt(~γ) sign(~γ) = −wgt(~γ′) sign(~γ′). (5.129)

By our assumption dl0 > 0, the westernmost box, we cut away, lies to the west of ul0 .
From formula (5.108), we thus see that the sign of ~γ and ~γ′ are opposite. We are left to
show that

wgt(~γ) = wgt(~γ′). (5.130)

This equation reads

∑
σ∈Sb,c

N∏
k=1

( σ(reo~γ)k−1∏
h=1

( N∑
j=k

σ(reo~γ)j − h
))

(5.131)

=
∑

σ∈Sb+1,c

N+1∏
k=1

( σ(reo~γ′)k−1∏
h=1

(N+1∑
j=k

σ(reo~γ′)j − h
))

, (5.132)

We want to split the sum on the right hand side. Write

reo(~γ) = (B0, B1, . . . , Bb, C1, . . . , Cc) b+ c+ 1 = N (5.133)

We decompose

Sb+1,c =
⋃

σ∈Sb,c

{σλ : λ = 1, . . . , N + 1− σ(r)}, (5.134)
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5.2. Evaluation of the Integral

where, for j = 1, . . . , N + 1,

σλ(j) =


σ(j), j = 1, . . . , b

σ(b) + λ, j = b+ 1

σ(j − 1), j = b+ 2, . . . , σ(b) + λ

σ(j − 1) + 1, j > σ(b) + λ+ 1.

(5.135)

Fix σ ∈ Sb,c. It suffices to show

N∏
k=1

( σ(reo~γ)k−1∏
h=1

( N∑
j=k

σ(reo~γ)j − h
))

(5.136)

=

N+1−σ(r)∑
λ=1

N+1∏
k=1

( σλ(reo~γ′)k−1∏
h=1

(N+1∑
j=k

σλ(reo~γ′)j − h
))

, (5.137)

In (5.133), we have Bb > 1 and

reo(~γ′) = (B′0, B
′
1, . . . , B

′
b+1, C

′
1, . . . , C

′
c) (5.138)

= (B0, B1, . . . , Bb−1, Bb − 1, 1, C1, . . . , Cc). (5.139)

Set B = σ(b), which is the step in which we place the strip B′b. From the explicit
description of σλ in equation (5.135), we obtain that the right hand side of equation
(5.136) is given by

N+1−B∑
λ=1

B−1∏
k=1

( σ(reo(~γ))k−1∏
h=1

( N∑
j=k

σ(reo(~γ))j − h
))

(5.140)

( σ(reo(~γ))B−2∏
h=1

( N∑
j=B

σ(reo(~γ))j − h
))

(5.141)

B+λ−1∏
k=B+1

( σ(reo(~γ))k−2∏
h=0

( N∑
j=k

σ(reo(~γ))j − h
))

(5.142)

N∏
k=B+λ

( σ(reo(~γ))k−1∏
h=1

( N∑
j=k

σ(reo(~γ))j − h
))

. (5.143)

This equals the left hand side of equation (5.136) up to a factor of(
N∑
j=B

σ(reo(~γ))j − σ(reo(~γ))B + 1

)−1

(5.144)

×
N+1−B∑
λ=1

B+λ−1∏
k=B+1

∑N
j=k σ(reo(~γ))j∑N

j=k σ(reo(~γ))j − σ(reo(~γ))k + 1
. (5.145)
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5. Integral Representation

We are left to show that this factor equals 1. Define

xj = σ(reo(~γ))j (j = 1, . . . ,M) M = N −B. (5.146)

We have to show

M∑
j=1

xj =
M∑
λ=1

λ∏
k=1

∑M
j=k xj∑M

j=k+1 xj + 1
. (5.147)

This equation is true. Its right hand side equals

x1 + · · ·+ xM
x2 + · · ·+ xM + 1

(
1 +

x2 + · · ·+ xM
x3 + · · ·+ xM + 1

(
· · ·
(

1 +
xM−1 + xM
xM + 1

(
1 +

xM
1

))))
(5.148)

which equals the left hand side. We have proved Claim 2.

So far, we can conclude the following: All the iterated residues appearing in (5.31) can
be taken as described in Claim 1. Moreover, we can always suppose dl = 0 in equation
(5.40). In combination with the first part of Claim 3, we see that we also may suppose
Jl = 1, i.e. it suffices to consider residues picked up at the front. Graphically, we obtain
all relevant residues by iteratively placing boxes.

(5.149)

Moreover, we can discard any residues coming from poles of the form q−1
i u0 since they

either lie outside the integration contour, or are part of a zero sum (for Jl = 2 and dl = 1)
described above. Accordingly, we have colored the corresponding boxes in (5.149) in gray.

Now we prove by induction, that all residues

(ẑn, . . . , ẑ1) ∈ R (5.150)

in equation (5.31) are simple residues and can be taken of the form

{ẑn, . . . , ẑ1} = {zα� : � ∈ Yα, α = 1, . . . , r} (5.151)

where ~Y is an r-tuple of Young diagrams of total size n. Here, zα� was defined in equation
5.15. We start our residue evaluation with the sets

U = {u1, . . . , ur} W = ∅. (5.152)

We start with the symmetric function

f(z1, . . . , zn) =
n∏
j=1

(
1

zj
F (zj)G(z−1

j )
r∏

α=1

−uαzj
q1q2zj − uα

)
(5.153)
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5.2. Evaluation of the Integral

By condition (5.5), it is regular at zero. Its poles in zj lie outside the integration contour
for the zj integration and do not depend on the other variables. Because of condition
(5.17), the poles from U do not interact and we may suppose r = 1. Depict the pole at
u1 as

u1 (5.154)

By what we have proved so far, we obtain all iterated residues, by placing boxes (5.149)
at poles of the diagram we have obtained so far. All the possibilities for the next two
steps are for instance

u1

u1

(5.155)

The double zero at the center of a box (5.149) cancels with the pole we place the box
at to give a simple zero. It is clear, that the resulting diagram has the form of a Young
diagram. Indeed, if we have for example evaluated residues according to

u1

(5.156)

then placing a box (5.149) at one of the red poles in (5.156) yields again a Young diagram
with the same structure of the poles and zeros as the one in (5.156).

We have shown that all residues appearing in the sum (5.31) are of the form (5.151).
By permutation invariance of the integrand, all possible assignments of variables to boxes
in a given Young diagram appear. This cancels the factorial in front of the integral. By
condition (5.17), all residues are simple.

We obtain that Zn(q1, q2, ~u; ~F , ~G) is a sum

Zn(q1, q2, ~u; ~F , ~G) =
∑
|~Y |=n

Z ~Y (q1, q2, ~u; ~F , ~G), (5.157)

of iterated, simple residues

Z ~Y (q1, q2, ~u; ~F , ~G) :=

(
1− q1q2

(1− q1)(1− q2)

)n
J (ẑ1, . . . , ẑn; ~F , ~G) (5.158)

lim
zj→ẑj
j=1,...,n

(
n∏
j=1

(zj − ẑj)
I(z1, . . . , zn; ~u)

z1 · · · zn

)
, (5.159)
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5. Integral Representation

where

{ẑ1, . . . , ẑn} = {zα� : � ∈ Yα, α = 1, . . . , r}, (5.160)

in any order. The evaluation of these simple residues is performed in chapter B in the
appendix. There, we show that line (5.159) equals

r∏
α,β=1

( ∏
�∈Yα

1

1− uαu−1
β q

lYα (�)+1
1 q

−aYβ (�)

2

(5.161)

∏
�∈Yβ

1

1− uαu−1
β q
−lYβ (�)

1 q
aYα (�)+1
2

)
. (5.162)

This proves equation (5.18) in Theorem 5.2.1.
The integral (5.10) remains invariant under exchange of q1 and q2. The set of residues

(5.160) remains invariant, if we exchange q1 and q2 and transpose all diagrams Yα,
α = 1, . . . , r. We obtain∑

|~Y |=n

ZY1,...,Yr(q1, q2, ~u; ~F , ~G) =
∑
|~Y |=n

ZY T1 ,...Y Tr
(q2, q1, ~u; ~F , ~G). (5.163)

We have aY (x, y) = lY T (y, x) for all x, y ∈ N and hence equation (5.21) follows from
equation (5.18). The proof of Theorem 5.2.1 is complete.

5.3. Estimate of the Integral

In this section, we want to analyze the growth of the coefficients Zn(q1, q2, ~u; ~F , ~G),
defined in equation (5.10), in the limit n→∞.

Note that the double product in line (5.8) is nonnegative. This motivates the language
of probability theory. Set T = R/2πZ. Define

f : T→ R ∪ {∞} f(θ) = − log
|eiθ − 1| |eiθ − q1q2|
|eiθ − q1| |eiθ − q2|

. (5.164)

For each integer n ≥ 1, let Tn = Rn/(2πZ)n denote the torus. We want to change
variables in the integral (5.10) as

zj = ρeiθj (j ∈ {1, . . . , n}) θ = (θ1, . . . , θn) ∈ Tn. (5.165)

In the new variables, the double product in line (5.8) can be written as

e−
∑
j 6=k f(θk−θj). (5.166)

Hence, for each n ∈ N, we define a probability measure Pn on Tn by its density

pn(θ) =
1

Zn
e−

∑
j 6=k f(θk−θj), (5.167)
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5.3. Estimate of the Integral

with respect to the Lebesgue measure. Here the normalization factor Zn is given by

Zn =

∫
Tn
dθe−

∑
j 6=k f(θk−θj). (5.168)

Denote, for each n ≥ 1, the expectation functional of the probability measure Pn by En.
Moreover, define

g(q1, q2, ~u; ~F , ~G; ρ, θ) = F (ρeiθ)G(ρ−1e−iθ)
r∏

α=1

−uαρeiθ

(ρeiθ − uα)(q1q2ρeiθ − uα)
. (5.169)

We can now write the integral (5.10) as

Zn(q1, q2, ~u; ~F , ~G) = En

[
n∏
j=1

g(q1, q2, ~u; ~F , ~G; ρ, θj)

]
(5.170)

× 1

n!

(
1− q1q2

(1− q1)(1− q2)

)n Zn
(2π)n

. (5.171)

The factor in line 5.171 is positive. Denote it by

an =
1

n!

(
1− q1q2

(1− q1)(1− q2)

)n Zn
(2π)n

. (5.172)

By the triangle inequality,

| Zn(q1, q2, ~u; ~F , ~G)| ≤ an En

[
n∏
j=1

∣∣∣g(q1, q2, ~u; ~F , ~G; ρ, θj)
∣∣∣]. (5.173)

By changing variables from θ ∈ T to

wj = eiθj (j ∈ {1, . . . , n}) θ = (θ1, . . . , θn) ∈ Tn (5.174)

in the integral in the definition (5.168) of Zn, the last line (5.171) can be written as

an =
1

n!

(
1− q1q2

(1− q1)(1− q2)

)n ∫
Cn(1)

n∏
j=1

dwj
2πiwj

∏
j 6=k

(wj − wk)(wj − q1q2wk)

(wj − q1wk)(wj − q2wk)
. (5.175)

The growth of those coefficients is known. By [10] the coefficients an, n ≥ 0, are the
coefficients of the power series

∑
n≥0

anz
n = exp

(∑
n≥1

1− qn1 qn2
(1− qn1 )(1− qn2 )

zn

n

)
. (5.176)

By our assumptions (5.1) and (5.2) on q1 and q2, we have

0 ≤ 1− qn1 qn2
(1− qn1 )(1− qn2 )

→ 1 (n→∞). (5.177)
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5. Integral Representation

Hence the power series (5.176) has radius of convergence equal to one and

lim sup
n→∞

|an|
1
n = 1. (5.178)

It remains to study the large n behavior of the expectation values

En

[
n∏
j=1

∣∣∣g(q1, q2, ~u; ~F , ~G; ρ, θj)
∣∣∣]. (5.179)

To this end, we claim

Theorem 5.3.1. Let h be a continuous, real-valued function on the torus T. We have

1

n
logEn

[
e
∑
j h(θj)

]
→ 1

2π

∫
T
h(θ)dθ (n→∞). (5.180)

The proof of this theorem uses ideas from potential theory and is postponed to chapter
6. If we apply this theorem to the continuous, real-valued function

h(q1, q2, ~u; ~F , ~G; ρ, θ) = log |g(q1, q2, ~u; ~F , ~G; ρ, θ)| (θ ∈ T), (5.181)

we obtain from (5.173), with the help of (5.178), the estimate

lim sup
n→∞

| Zn(q1, q2, ~u; ~F , ~G)|
1
n ≤ exp

(
1

2π

∫
T
h(q1, q2, ~u; ~F , ~G; ρ, θ)dθ

)
. (5.182)

The integral on the right hand side can be evaluated explicitly. By equation (6.19) in
chapter 6, we have

1

2π

∫
T
h(q1, q2, ~u; ~F , ~G; ρ, θ)dθ =

degF∑
k=1

max{log ρ, log |Fk|} (5.183)

+

degG∑
k=1

max{log ρ−1, log |Gk|} (5.184)

+
r∑

α=1

(
log |uα|+ log ρ−max{log ρ, log |uα|} (5.185)

−max{log q1q2ρ, log |uα|}
)
. (5.186)

By conditions (5.6) on ρ and (5.1) on q1, q2, we have

|uα| < ρ |uα| > ρq1q2 (α ∈ {1, . . . , r}). (5.187)

Hence the sum over α = 1, . . . , r in lines (5.185) and (5.186) equals zero. We have proved
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5.3. Estimate of the Integral

Theorem 5.3.2. Let

ρ− = max
α=1,...,r

|uα| ρ+ = min{|q1|−1, |q2|−1} min
α=1,...,r

|uα|. (5.188)

denote the bounds in condition (5.6). We have

lim sup
n→∞

| Zn(q1, q2, ~u; ~F , ~G)|
1
n (5.189)

≤ inf
ρ∈(ρ−,ρ+)

(
s∏

k=1

max{ρ, |Fk|}
s′∏
k=1

max{ρ−1, |Gk|}

)
(5.190)

In case one of the polynomials F or G is constant, one can make the optimization in
ρ more explicit by letting ρ tend to the bounds ρ+ or ρ−, respectively: The bound in
equation (5.190) specializes to

∏s′

k=1 max{|q1||u1|−1, . . . , |q1||ur|−1, |q2||u1|−1, . . . , |q2||ur|−1, |Gk|} if F = 1∏s
k=1 max{|u1|, . . . , |ur|, |Fk|} if G = 1

1 if F = G = 1

(5.191)

We conclude this section, by applying our results to the power series

Z(q1, q2, ~u; ~F , ~G; z) =
∑
n≥0

Zn(q1, q2, ~u; ~F , ~G)zn. (5.192)

We have

Theorem 5.3.3. Let q1 and q2 be two complex numbers with |q1| < 1 and |q2| < 1.
Assume either q1 = q2 or q1, q2 ∈ (0, 1). Fix three integers r, s, s′ with

1 ≤ r 0 ≤ s 0 ≤ s′ ≤ r − 1. (5.193)

Define the functions

ρ−(~u) = max
α=1,...,r

|uα| (5.194)

ρ+(~u) = min{|q1|−1, |q2|−1} min
α=1,...,r

|uα| (~u ∈ Cr). (5.195)

The power series

Z(q1, q2, ~u; ~F , ~G; z) =
∑
n≥0

Zn(q1, q2, ~u; ~F , ~G)zn (5.196)

with coefficients defined in equation (5.10) converges to an analytic function in the vari-
ables (~u, ~F , ~G, z) ∈ Cr ×Cs ×Cs′ ×C on the domain

D ⊂ Cr ×Cs ×Cs′ ×C (5.197)
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5. Integral Representation

defined by the conditions

ρ−(~u) < ρ+(~u) (5.198)

|z| < sup
ρ∈(ρ−(~u),ρ+(~u))

(
s∏

k=1

min{ρ−1, |Fk|−1}
s′∏
k=1

min{ρ, |Gk|−1}

)
(5.199)

The latter bound on |z| has the three special cases
∏s′

k=1 min{|q1|−1|u1|, . . . , |q1|−1|ur|, |q2|−1|u1|, . . . , |q2|−1|ur|, |Gk|−1} if s = 0∏s
k=1 min{|u1|−1, . . . , |ur|−1, |Fk|−1} if s′ = 0

1 if s = s′ = 0.

(5.200)

Proof. For fixed ~u such that condition (5.198) holds, and fixed (~F , ~G) ∈ Cs × Cs′ ,
convergence and analyticity in z on (5.199) follows from Theorem 5.3.2.

Now fix (~u0, ~F0, ~G0) ∈ Cr ×Cs × Cs′ with

ρ−(~u0) < ρ+(~u0). (5.201)

Fix an open set U and a compact set K with

(~u0, ~F0, ~G0) ∈ U ⊂ K ⊂ {(~u, ~F , ~G) ∈ Cr ×Cs ×Cs′ : ρ−(~u) < ρ+(~u)} (5.202)

By continuity of the functions ρ−(~u) and ρ+(~u), we can shrink the sets U ⊂ K until
there is a ρ > 0 for which

ρ−(~u) < ρ < ρ+(~u) ∀ (~u, ~F , ~G) ∈ K. (5.203)

Fix such a ρ. Recall the function g(q1, q2, ~u; ~F , ~G; ρ, θ) defined in equation (5.169). We
estimate

|g(q1, q2, ~u; ~F , ~G; ρ, θ)| ≤ C(K) := sup
(~u, ~F , ~G,θ)∈K×T

|g(q1, q2, ~u; ~F , ~G; ρ, θ)|. (5.204)

By continuity of g and compactness of K ×T, the bound C(K) is finite. Starting again
from equation (5.173), we can estimate

| Zn(q1, q2, ~u; ~F , ~G)| ≤ anC(K)n (n ≥ 0) (5.205)

uniformly in (~u, ~F , ~G) ∈ K. By (5.178), the power series (5.196) now converges for

|z| < λ := C(K)−1 (5.206)

uniformly in the neighborhood U of (~u0, ~F0, ~G0). Hence

(~u, ~F , ~G, z) 7→ Z(q1, q2, ~u; ~F , ~G; z) (5.207)
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is analytic on

U × {z ∈ C : |z| < λ}. (5.208)

Set

Λ = inf
(~u, ~F , ~G)∈U

sup
ρ∈(ρ−(~u),ρ+(~u))

(
s∏

k=1

min{ρ−1, |Fk|−1}
s′∏
k=1

min{ρ, |Gk|−1}

)
. (5.209)

We already know, that for each fixed (~u, ~F , ~G) ∈ U , the map

z → Z(q1, q2; ~u; ~F , ~G; z) (5.210)

is analytic for |z| < Λ. By Hartog’s Lemma [13, Theorem 2], the map (5.207) is analytic
on

U × {z ∈ C : |z| < Λ}. (5.211)

The maps ρ−(~u) and ρ+(~u) are both continuous. We have

Λ→ sup
ρ∈(ρ−(~u0),ρ+(~u0))

(
s∏

k=1

min{ρ−1, |(~F0)k|−1}
s′∏
k=1

min{ρ, |(~G0)k|−1}

)
(5.212)

as we shrink the neighborhood U of (~u0, ~F0, ~G0). Hence analyticity on the whole domain
D follows.

63





6. Random Matrices and Potential
Theory

In this chapter, we prove Theorem 5.3.1 using methods from potential theory. In section
6.1, we describe the historical context of random matrix theory. In section 6.2, we pose a
problem from potential theory. In section 6.3, we solve the problem from the preceding
section. Finally, in section 6.4, we apply our findings to prove Theorem 6.2.1.

In this chapter, the variables we consider are not related to the variables of the pre-
ceding body of the text.

6.1. Random Matrices and Toeplitz Determinants

In this section, we provide the historical context of our analysis. We follow the exposition
in [27].

Consider the set U(n) of unitary n × n matrices. The normalized Haar measure dU
on U(n) allows one to consider random unitary matrices. Let Tn = Rn/(2πZ)n denote
the torus. The eigenvalues of a unitary matrix are of the form (eiθ1 , . . . , eiθn), where
θ ∈ Tn. Let h : T → C be a continuous function on T = R/2πZ. The Weyl integral
formula says [49]∫

U(n)
eTrh(U)dU =

1

n!

∫
Tn

n∏
j=1

dθj
2π

e
∑n
j=1 h(θj)

∏
j 6=k
|eiθj − eiθk |. (6.1)

A similar integral appears in the theory of Toeplitz determinants. Let f ∈ L1(T) be
an integrable function on the torus. Let

fk =
1

2π

∫
T
f(θ)e−ikθdθ (k ∈ Z) (6.2)

denote its Fourier coefficients. The corresponding Toeplitz determinant Dn(f) is given
by [46]

Dn(f) = det(fj−k)0≤j,k≤n−1 (6.3)

=
1

n!

∫
Tn

n∏
j=1

dθj
2π

n∏
j=1

f(θj)
∏
j 6=k
|eiθj − eiθk |. (6.4)

For f(θ) = eh(θ), where h : T → R is a continuous, real-valued function, whose Fourier
coefficients hk, k ∈ Z satisfy ∑

k∈Z
|k| |hk|2 <∞, (6.5)
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6. Random Matrices and Potential Theory

Szegö proved [47] the asymptotic formula

logDn(f) = n

∫
T
h(θ)

dθ

2π
+

∞∑
k=1

khkh−k + o(1) (n→∞). (6.6)

This result looks like an improved version of our Theorem 6.2.1. However, the double
product in line (6.4) is different from ours. In the following sections, we will use tech-
niques from potential theory to prove our result. We adapt methods from [27], where
random Hermitian matrices were considered.

6.2. Potential Theory

Let q1 and q2 be two complex numbers with

|q1| < 1 |q2| < 1. (6.7)

Assume either that q1 and q2 are complex conjugate or that both are real numbers in
(0, 1). In either case q1q2 = |q1q2| ∈ (0, 1). Define the function

f : T→ R ∪ {∞} f(θ) = − log
|eiθ − 1| |eiθ − q1q2|
|eiθ − q1| |eiθ − q2|

. (6.8)

For n ≥ 0, define

Zn =

∫
Tn
dθ e−

∑
j 6=k f(θk−θj). (6.9)

On the torus Tn, we define a probability measure Pn by its density function pn with
respect to the Lebesgue measure:

pn(θ) =
1

Zn
e−

∑
j 6=k f(θk−θj) (θ ∈ Tn). (6.10)

Denote the corresponding expectation functional by En. We claim the following.

Theorem 6.2.1. Let

h : T→ R (6.11)

be a continuous, real-valued function on the torus T = R/2πZ. We have

1

n
logEn

[
e
∑n
j=1 h(θj)

]
→ 1

2π

∫
T
h(θ)dθ (n→∞). (6.12)

Before we prove this theorem, we discuss its interpretation. The measure defined by

pn(θ) =
1

Zn
e−2

∑
j<k f(θk−θj) (θ ∈ Tn) (6.13)

is the canonical measure, at inverse temperature β = 2, of an ensemble of n particles
living on T and interacting through the logarithmic potential given by the function

66



6.3. Equilibrium Measures

-3 -2 -1 1 2 3
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Figure 6.1.: The function f(θ) for θ ∈ [−π, π] and the choices |q1| = |q2| = 0.9 and
arg q1 = π/2. The energetically favorable distance θ0 corresponds to the
position of the local minimum on the right.

f . For some parameters q1 and q2 which are complex conjugate, it is plotted in figure
6.2. For the case q1, q2 ∈ (0, 1), the function looks similar. We see that the interaction
potential is repulsive at short distances and defines an energetically preferred distance
θ0 between the particles. Hence, we expect the particles to align with that distance
when the number of particles is small. For large number n of particles, however, the
torus T does not offer enough space and the particles move closer together. Then, the
repulsive part dominates and forces the particles to equidistribute in the limit n → ∞.
The leading contribution to the integral on the left hand side of statement (6.12) will
then, in the limit n → ∞, come from equidistributed (θ1, . . . , θn) ∈ Tn. Evaluation of
the left hand side at those equidistributed points defines a Riemann sum, approximating
the integral on the right hand side of (6.12).

In the next section 6.3, we make the minimization of the potential energy between the
particles a rigorous statement. We use this statement in section 6.4 to prove Theorem
6.2.1. In both those chapters, we adapt strategies used in [27].

6.3. Equilibrium Measures

The function f is continuous and has a single pole at θ = 0. It is bounded from below.
Let M(T) denote the set of all Borel probability measures on T = R/2πZ. Since f is
continuous and bounded from below, we can define a functional

I : M(T)→ R ∪ {∞} (6.14)

by

I[µ] =

∫∫
θ 6=φ

f(θ − φ)dµ(θ)dµ(φ) (µ ∈M(T)). (6.15)

67



6. Random Matrices and Potential Theory

Since f is bounded from below, I is bounded from below. We set

I0 = inf I[µ] (6.16)

where the infimum is taken over the subset M0(T) ⊂M(T) of Borel probability measures
which do not contain point masses. We have I0 > −∞. A measure µ ∈ M0(T) that
realizes the infimum in (6.16) is called an equilibrium measure.

For the analysis of equilibrium measures, we utilize the representation of f by Fourier
series. Let

fk =
1

2π

∫
T
f(θ)e−ikθdθ (k ∈ Z) (6.17)

denote the Fourier coefficients of f . The Fourier coefficients of

gσ(θ) = log |eiθ − σ| = 1

2
log(1− 2σ cos θ + σ2) (θ ∈ T), (6.18)

where σ > 0, are well-known [15] to be

gk(σ) =

{
− 1

2|k| min{σ|k|, σ−|k|}, if k 6= 0

max{0, log σ}, if k = 0
(k ∈ Z). (6.19)

A direct calculation now shows f0 = 0 and, for k 6= 0,

fk =
1

2|k|

(
1 + |q1q2||k| − |q1||k|e−ik arg q1 − |q2||k|e−ik arg q2

)
. (6.20)

We obtain the estimate, for k 6= 0,

fk ≥

 1
2|k|

(
1− |q1q2||k|/2

)2
, if q1 = q2

1
2|k|

(
1− |q1||k|

)(
1− |q2|k

)
, if q1, q2 ∈ (0, 1).

(6.21)

Hence we have established

Lemma 6.3.1. The Fourier coefficients (fk)k∈Z of the function f defined in (6.8) satisfy
f0 = 0 and fk > 0 for k 6= 0.

Let λ ∈ M0(T) denote the normalized Lebesgue measure on T. From f0 = 0, we
directly obtain I[λ] = 0. We have

Theorem 6.3.2. The normalized Lebesgue measure λ is the unique equilibrium measure
for the functional I[µ] defined in (6.15). In particular, I0 = 0.

Proof. We first prove I0 = 0. From I[λ] = 0 we obtain I0 ≤ 0. Let µ ∈M0(T). Since µ
does not contain point masses, we obtain

I[µ] =

∫∫
f(θ − µ)dµ(θ)dµ(φ). (6.22)
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6.3. Equilibrium Measures

We apply Tonelli’s theorem to obtain

I[µ] =
∑
k 6=0

fk

∫∫
eik(θ−φ)dµ(θ)dµ(φ). (6.23)

Now, for each k 6= 0, the double integral gives the squared absolute value of the k-th
Fourier coefficient

µk =
1

2π

∫
T
e−ikθdµ(θ) (6.24)

of the measure µ. In particular, each double integral is nonnegative. Together with
Lemma 6.3.1, we obtain I[µ] ≥ 0. We have established I0 = 0.

Next, we let µ, ν ∈ M0(T) be two Borel probability measures without point masses
realizing the infimum, i.e. I[µ] = I0 = I[ν]. We claim µ = ν. The signed measure µ− ν
is not in M0(T). However,

I[µ− ν] :=

∫∫
f(θ − φ)dµ(θ)dµ(φ)−

∫∫
f(θ − φ)dν(θ)dµ(φ) (6.25)

−
∫∫

f(θ − φ)dµ(θ)dν(φ) +

∫∫
f(θ − φ)dν(θ)dν(φ) (6.26)

makes sense in [−∞,∞), since I[µ] = I[ν] = 0 is a finite number. We apply Tonelli’s
theorem to each of the four double integrals to obtain

I[µ− ν] =
∑
k 6=0

fk|µk − νk|2 ≥ 0. (6.27)

In particular, I[µ−ν] and all four double integrals in its definition are finite real numbers.
Next, consider the convex combination ν + t(µ− ν) ∈M0(T), where t ∈ [0, 1]. We have

I[ν + t(µ− ν)] = I[ν] + tA+ t2B, (6.28)

where both terms

A =

∫∫
f(θ − φ)dν(θ)dµ(φ)−

∫∫
f(θ − φ)dν(θ)dν(φ) (6.29)

+

∫∫
f(θ − φ)dµ(θ)dν(φ)−

∫∫
f(θ − φ)dν(θ)dν(φ) (6.30)

and B = I[µ− ν] are finite. We obtain

0 = I0 ≤ I[ν + t(µ− ν)] = I[ν] + tA+ t2B = tA+ t2B (6.31)

for all t ∈ [0, 1]. Hence the right hand side of the inequality defines a polynomial
in t, which is nonnegative on [0, 1] and vanishes at both t = 0 and t = 1. Hence
I[µ− ν] = B ≤ 0. Together with equation (6.27), we obtain∑

k 6=0

fk|µk − νk|2 = 0. (6.32)

By Lemma (6.3.1), we obtain µk = νk for all k 6= 0. Since µ and ν are both probability
measures, we also have µ0 = 1 = ν0. Since all Fourier coefficients of the measures µ and
ν agree, we have µ = ν. This finishes the proof of uniqueness.
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6. Random Matrices and Potential Theory

6.4. Limit of Large Number of Particles

For a point θ ∈ Tn we define

δθ =
1

n

n∑
j=1

δθj ∈M(T) (6.33)

as a convex combination of Dirac measures. Set

Tn
0 = {θ ∈ Tn : θj 6= θk (j 6= k)}. (6.34)

For θ ∈ Tn
0 , we have

I[δθ] =
1

n2

∑
j 6=k

f(θj − θk), (6.35)

which relates the functional I to the interpretation of Theorem 6.2.1 given at the end of
section 6.2.

We now prove that the integral on the left hand side of equation (6.12) will, for large
n, be dominated by those θ ∈ Tn for which I[δθ] is close to I0 = 0. To this end, we
define, for η > 0,

An,η ={θ ∈ Tn
0 : I0 ≤ I[δθ] ≤ I0 + η} (6.36)

={θ ∈ Tn :
∑
j 6=k

f(θk − θj) ≤ η n2}. (6.37)

We have

Lemma 6.4.1. For any integer n ≥ 2 and real number η > 0, we have

Pn[An,η] ≥ 1− e−η n2
. (6.38)

Proof. By construction of the set An,η, we have

Pn[Tn \An,η] =
1

Zn

∫
Tn\An,η

e−
∑
j 6=k f(θj−θk)dθ ≤ (2π)n

Zn
e−η n

2
. (6.39)

By Jensen’s inequality,

Zn
(2π)n

=

∫
Tn0

dθ

(2π)n
e−

∑
j 6=k f(θj−θk) (6.40)

≥ exp

(
−
∑
j 6=k

∫
Tn0

dθ

(2π)n
f(θj − θk)

)
(6.41)

= exp

(
− n(n− 1)

∫∫
f(θ1 − θ2)

dθ1

2π

dθ2

2π

)
= 1. (6.42)

In the last step, we have used that the normalized Lebesgue measure is the equilibrium
measure.
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6.4. Limit of Large Number of Particles

Next we show, that those points θ ∈ An,η that dominate our integral equidistribute
in the large n limit. To describe the equidistribution process, we use the notion of weak
convergence of measures. A sequence (µn) of measures µn ∈ M(T) is said to converge
weakly to a measure µ ∈M(T) if∫

T
gdµn →

∫
T
gdµ (n→∞) (6.43)

for all continuous, bounded functions g : T → C. The space M(T) with the notion of
weak convergence is sequentially compact.

Lemma 6.4.2. 1. Fix η > 0 and consider any sequence (θn,η)n of points θn,η ∈ An,η.
Let νn,η ∈M(T) define the corresponding sequence of Dirac measures. Let (nk)k∈N
define a convergent subsequence

νnk,η → νη ∈M(T) (k →∞). (6.44)

Then, νη ∈M0(T), i.e. it does not contain point masses. Moreover,

I[νη] ≤ η. (6.45)

2. Consider, for each η > 0, the limit measures νη ∈ M0(T) with I[νη] ≤ η from the
first part of the lemma. If (ηk)k∈N defines a convergent sequence

νηk → ν (k →∞) (6.46)

with

ηk → 0 (k →∞) (6.47)

then ν is the normalized Lebesgue measure.

Proof. 1. We introduce a cutoff L ∈ R to make the function f bounded and contin-
uous. We estimate, for each n,

η ≥ I[νn,η] ≥
∫∫

θ 6=φ
min{f(θ − φ), L}dνn,η(θ)dνn,η(φ) (6.48)

Next, we separate the part with θ = φ. Since τn,η ∈ Tn
0 , it corresponds to the

j 6= k term in the following sum:∫∫
θ 6=φ

min{f(θ − φ), L}dνn,η(θ)dνn,η(φ) (6.49)

=
1

n2

∑
j 6=k

min{f(τn,ηj − τn,ηk ), L}+
L

n
− L

n
(6.50)

=

∫∫
min{f(θ − φ), L}dνn,η(θ)dνn,η(φ)− L

n
. (6.51)
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6. Random Matrices and Potential Theory

Next, we want to factorize the integrand to take the limit of the subsequence
defined by (nk)k∈N. Fix ε > 0. By the Weierstrass approximation theorem, there
exists a polynomial p(θ, φ) such that

sup
(θ,φ)∈T2

|p(θ, φ)−min{f(θ − φ), L}| ≤ ε. (6.52)

So far, we obtain

η ≥
∫∫

p(θ, φ)dνn,η(θ)dνn,η(φ)− ε− L

n
. (6.53)

The integrand is a sum of functions that are factorized in functions depending on
θ and functions depending on φ. Hence, we can look at the inequality at n = nk
and take the limit k →∞:

η ≥
∫∫

p(θ, φ)dνη(θ)dνη(φ)− ε (6.54)

≥
∫∫

min{f(θ, φ), L}dνη(θ)dνη(φ)− 2ε. (6.55)

We send ε→ 0 and obtain

η ≥
∫∫

min{f(θ, φ), L}dνη(θ)dνη(φ). (6.56)

The integrand is monotone in L. Hence we can remove the cutoff by taking the
limit L→∞ and obtain

η ≥
∫∫

f(θ, φ)dνη(θ)dνη(φ). (6.57)

In particular, νη ∈ M0(T) and thus we may introduce the condition θ 6= φ to
obtain

η ≥
∫∫

θ 6=φ
f(θ, φ)dνη(θ)dνη(φ) = I[νη]. (6.58)

2. The first part of the lemma is proved. For the second part, use νηk ∈ M0(T) to
write

ηk ≥ I[νηk ] =

∫∫
f(θ − φ)dνηk(θ)dνηk(φ). (6.59)

We again introduce a cutoff L ∈ R to estimate

ηk ≥
∫∫

min{f(θ − φ), L}dνηk(θ)dνηk(φ). (6.60)

As in the proof of the first part of the lemma, given ε > 0, we estimate the
continuous integrand by a polynomial p(θ, φ) and get

ηk ≥
∫∫

p(θ, φ)dνηk(θ)dνηk(φ)− ε. (6.61)
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6.4. Limit of Large Number of Particles

Now, we can take the limit k →∞ to get

0 ≥
∫∫

p(θ, φ)dν(θ)dν(φ)− ε (6.62)

≥
∫∫

min{f(θ − φ), L}dν(θ)dν(φ)− 2ε. (6.63)

Sending first ε→ 0 and then L→∞, we obtain

0 ≥
∫∫

f(θ − φ)dν(θ)dν(φ). (6.64)

In particular, ν ∈M0(T) and thus we can introduce the condition θ 6= φ to obtain
I[ν] ≤ 0. By Theorem 6.3.2, we find that ν is the normalized Lebesgue measure.

We are now in a position to prove Theorem 6.2.1. Let h : T → R be a real-valued,
continuous function. We are going to estimate the limes inferior and the limes superior
of the sequence defined by

1

n
logEn

[
e
∑n
j=1 h(θj)

]
(n ≥ 0) (6.65)

separately. Fix η > 0. By Lemma 6.4.1, we have

lim sup
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
= lim sup

n→∞

1

n
log

∫
An,η

e
∑n
j=1 h(θj)pn(θ)dθ (6.66)

lim inf
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
= lim inf

n→∞

1

n
log

∫
An,η

e
∑n
j=1 h(θj)pn(θ)dθ (6.67)

(6.68)

For each n, the set An,η is compact. Hence the continuous function e
∑n
j=1 h(θj) attains

both its maximum and its minimum on An,η. Let τn,η,+ and τn,η,− denote the respective
points in An,η. Denote the corresponding Dirac measures by ν+

n,η and ν−n,η. We have

1

n
log

∫
An,η

e
∑n
j=1 h(θj)pn(θ)dθ ≤ 1

n
logPn[An,η]e

∑n
j=1 h(τn,η,+j ) (6.69)

≤ 1

n

n∑
j=1

h(τn,η,+j ) =

∫
T
h(θ)dνn,η,+(θ). (6.70)

On the other hand

1

n
log

∫
An,η

e
∑n
j=1 h(θj)pn(θ)dθ ≥ 1

n
logPn[An,η]e

∑n
j=1 h(τn,η,−j ) (6.71)

=
1

n
logPn[An,η] +

∫
T
h(θ)dνn,η,−(θ). (6.72)

By Lemma 6.4.1, we have

1

n
logPn[An,η] ≥

1

n
log(1− e−η n2

)→ 1 (n→∞). (6.73)
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6. Random Matrices and Potential Theory

We have isolated the dominant contribution to the integrals. Now we want to apply our
equidistribution property in Lemma 6.4.2.

Let (nk,+)k∈N and (nk,−)k∈N define subsequences which realize the respective limit
points on the respective right hand sides in equation (6.66). We get

lim sup
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
= lim

k→∞

1

nk,+
log

∫
Ank,+,η

e
∑nk,+
j=1 h(θj)pnk,+(θ)dθ (6.74)

lim inf
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
= lim

k→∞

1

nk,−
log

∫
Ank,−,η

e
∑nk,−
j=1 h(θj)pnk,−(θ)dθ. (6.75)

By passing to respective subsequences, we may suppose that the

νnk,+,η,+ → νη,+ νnk,−,η,− → νη,− (k →∞) (6.76)

since the space M(T) is sequentially compact. We obtain∫
T
h(θ)dνη,−(θ) ≤ lim inf

n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
(6.77)

≤ lim sup
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
≤
∫
T
h(θ)dνη,+(θ). (6.78)

We use sequential compactness again: Let (ηk,+)k∈N and (ηk,−)k∈N define sequences
(νηk,+)k∈N and (νηk,−)k∈N with ηk,+ → 0 and ηk,− → 0 for k →∞ such that

νηk,+ → ν+ νηk,− → ν−(k →∞) (6.79)

for ν+, ν− ∈ M(T). By the second part of Lemma 6.4.2, we know that both measures
ν+ and ν− are given by the normalized Lebesgue measure. Hence

1

2π

∫
T
h(θ)dθ ≤ lim inf

n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
(6.80)

≤ lim sup
n→∞

1

n
logEn

[
e
∑n
j=1 h(θj)

]
≤ 1

2π

∫
T
h(θ)dθ. (6.81)

The proof of Theorem 6.2.1 is complete.
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7. Conclusion and Discussion

In this chapter, we conclude this thesis. In section 7.1, we summarize our setup from
chapters 2, 3 and 4. We apply our findings from chapter 5. Afterwards, we discuss our
results in section 7.2.

7.1. Summary and Conclusion

Fix an integer r ≥ 1. In chapter 3, we have defined the Nekrasov partition function
as the generating function of the weighted Euler characteristic of certain equivariant
K-theory classes for a sequence of certain Nakajima quiver varieties M(r, n), n ∈ N.
Equivariance has been defined with respect to a torus action, whose representation ring
in a certain set of characters is given by

R(T ) = Z[t±1
1 , t±1

2 , e±1
1 , . . . , e±1

r ] (7.1)

The equivariant K-theory classes have been defined by monic polynomials f and g with
coefficients in R(T ). The Nekrasov partition function is a formal power series whose
coefficients live in the field of fractions of R(T ). In equation (3.61), we have defined it
as the formal power series

Z(t1, t2, e1, . . . , er; f, g; q) =
∑
n≥0

(
q (t1t2)−r/2

)n
(7.2)

× Zn(t1, t2, e1, . . . , er; f, g) (7.3)

The coefficients are given by (3.57):

Zn(t1, t2, e1, . . . , er; f, g) (7.4)

=
∑
|~Y |=n

∏r
α=1

∏
(x,y)∈Yα f

(
eαt

x−1
1 ty−1

2

)
g
(
e−1
α t−x+1

1 t−y+1
2

)
∏r
α,β=1K

~Y
α,β(t1, t2, e1, . . . , er)

, (7.5)

where

K
~Y
α,β(t1, t2, e1, . . . , er) =

∏
�∈Yα

(
1− e−1

α eβ t
lYβ (�)

1 t
−aYα (�)−1
2

)
(7.6)

∏
�∈Yβ

(
1− e−1

α eβ t
−lYα (�)−1
1 t

aYβ (�)

2

)
. (7.7)

We now evaluate the formal parameters at complex numbers. We want to apply our
integral estimate from chapter 5. We identify

q1 = t−1
1 q2 = t−1

2 uα = e−1
α (α = 1, . . . , r) (7.8)

75



7. Conclusion and Discussion

and assume equation (5.1), (5.2), and (5.3). Hence t1, t2 are two complex numbers
outside the closed unit disc which are either complex conjugate or real numbers strictly
bigger than 1. In particular, the scaling factor in the definition of the Nekrasov partition
function is well-defined. Next, we allow arbitrary complex coefficients for the monic
polynomials f and g. We parametrize them via their roots as

f(z) =
s∏

k=1

(z − Fk) g(z) =
s′∏
k=1

(z −Gk) (7.9)

and identify them with the polynomials F (z) and G(z) from chapter 5. According to
equation (5.5), we assume that the degree s′ of g(z) is bounded by r − 1. Instead of
the polynomials f and g, we refer to the respective tuples ~F , ~G in the definition of the
Nekrasov partition function from now on. We obtain, for each n ≥ 0 the integral

Zn(q1, q2, ~u; ~F , ~G) =
1

n!

(
1− q1q2

(1− q1)(1− q2)

)n
(7.10)∫

Cn(ρ)

n∏
j=1

dzj
2πizj

J (z1, . . . , zn; ~F , ~G) (7.11)

I(z1, . . . , zn; q1, q2, ~u) (7.12)

from chapter 5.
Fix n ≥ 0. Theorem 5.2.1 now states that we can express the n-th coefficient of the

Nekrasov partition function as an integral

Zn(t1, t2, e1, . . . , er; ~F , ~G) = Zn(q1, q2, ~u; ~F , ~G), (7.13)

provided

tx1 6= ty+1
2 , tx+1

1 6= ty2, ∀x, y ∈ {0, . . . , n− 1}. (7.14)

eαe
−1
β 6= tx1t

y
2, ∀x, y ∈ {−n, . . . , n}, ∀α 6= β ∈ {1, . . . , r}. (7.15)

If this condition fails, some terms in the sum (7.5) are infinite. However, since the integral
(7.10) is still well-defined, we see that the whole sum (7.4) remains well-defined and is
given by our integral formula. Higher order residues now appear in the integration
process, rendering individual terms in the sum (7.5) infinite since they correspond to
simple residues. The infinite terms combine to higher order derivatives of the integrand
and the infinites cancel. A simple analogue is the computation

f ′(0) =

∮
dz

2πi

f(z)

z2
= lim

δ→0

∮
dz

2πi

f(z)

(z − δ)z
= lim

δ→0

(
f(δ)

δ
+
f(0)

−δ

)
. (7.16)

Hence we do not have to impose conditions (7.14). Note that in the case t1, t2 > 1,
the denominators in the sum (7.5) can get arbitrarily small, even if the above condition
holds. Nevertheless, we can estimate the growth of the coefficients of the Nekrasov
partition function in any case using the integral representation and Theorem 5.3.2. This
allows us to determine the analyticity properties of the Nekrasov partition function.
From Theorem 5.3.3, we obtain our main result:
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Theorem 7.1.1. Let t1 and t2 be two complex numbers with |t1| > 1 and |t2| > 1.
Assume either t1 = t2 or t1, t2 > 1. Fix three integers r, s, s′ with

1 ≤ r 0 ≤ s 0 ≤ s′ ≤ r − 1. (7.17)

Define the functions

ρ−(~e) = max
α=1,...,r

|eα|−1 (7.18)

ρ+(~e) = min{|t1|, |t2|} min
α=1,...,r

|eα|−1 (~e ∈ Cr). (7.19)

The Nekrasov partition function

Z(t1, t2, e1, . . . , er; ~F , ~G; q) =
∑
n≥0

(
q(t1t2)−r/2

)n
Zn(t1, t2, e1, . . . , er; ~F , ~G) (7.20)

is an analytic function in the variables

(~e, ~F , ~G, q) ∈ Cr ×Cs ×Cs′ ×C (7.21)

on the domain defined by the conditions

ρ−(~e) < ρ+(~e) (7.22)

| q | < (t1t2)r/2 sup
ρ∈(ρ−(~e),ρ+(~e))

(
s∏

k=1

min{ρ−1, |Fk|−1}
s′∏
k=1

min{ρ, |Gk|−1}

)
(7.23)

The supremum in the last equation can be simplified to
∏s′

k=1 min{|t1||e1|−1, . . . , |t1||er|−1, |t2||e1|−1, . . . , |t2||er|−1, |Gk|−1} if s = 0∏s
k=1 min{|e1|, . . . , |er|, |Fk|−1} if s′ = 0

1 if s = s′ = 0.

(7.24)

From the definition of the coefficients (3.57) of the Nekrasov partition function, we
immediately obtain

Z(t1, t2, e1, . . . , er; f, g; q) = Z(t−1
1 , t−1

2 , e−1
1 , . . . , e−1

r ; g, f ; q) (7.25)

as formal power series. Hence we also have

Theorem 7.1.2. Let t1 and t2 be two complex numbers with |t1| < 1 and |t2| < 1.
Assume either t1 = t2 or t1, t2 ∈ (0, 1). Fix three integers r, s, s′ with

1 ≤ r 0 ≤ s ≤ r − 1 0 ≤ s′. (7.26)

Define the functions

ρ′−(~e) = max{|t1|, |t2|} max
α=1,...,r

|eα|−1 (7.27)

ρ′+(~e) = min
α=1,...,r

|eα|−1 (~e ∈ Cr). (7.28)
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The Nekrasov partition function

Z(t1, t2, e1, . . . , er; ~F , ~G; q) =
∑
n≥0

(
q(t1t2)−r/2

)n
Zn(t1, t2, e1, . . . , er; ~F , ~G) (7.29)

is an analytic function in the variables

(~e, ~F , ~G, q) ∈ Cr ×Cs ×Cs′ ×C (7.30)

on the domain defined by the conditions

ρ′−(~e) < ρ′+(~e) (7.31)

| q | < (t1t2)−r/2 sup
ρ∈(ρ′−(~e),ρ′+(~e))

(
s∏

k=1

min{ρ−1, |Fk|−1}
s′∏
k=1

min{ρ, |Gk|−1}

)
(7.32)

The supremum in the last equation can be simplified to
∏s′

k=1 min{|e1|−1, . . . , |er|−1, |Gk|−1} if s = 0∏s
k=1 min{|t1|−1|e1|, . . . , |t1|−1|er|, |t2|−1|e1|, . . . , |t2|−1|er|, |Fk|−1} if s′ = 0

1 if s = s′ = 0.

(7.33)

For completeness, we also translate this result for the Nekrasov partition function
(3.64) defined for the formal symbols

t1 = eλε1 t2 = eλε2 eα = eλaα (α = 1, . . . , r). (7.34)

We have defined it as

Z(ε1, ε2,~a, λ; f, g; b) =
∑
n≥0

(
b λ2r−deg f+deg ge−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; f, g), (7.35)

where the coefficients are given in equation (3.65). We now evaluate the formal param-
eters at complex numbers. We assume λ to be a positive real number and set

q1 = t−1
1 = e−λε1 q2 = t−1

2 = e−λε2 uα = e−1
α = e−λaα (α = 1, . . . , r). (7.36)

We therefore assume that the complex numbers ε1 and ε2 have positive real part and are
either complex conjugate or both real and positive. Hence assumptions (5.1) and (5.2)
are satisfied. Moreover, we assume

max
α=1,...,r

Re(aα)− min
α=1,...,r

Re(aα) < min
i=1,2

Re(εi). (7.37)

Hence also assumption (5.3) is satisfied. We again allow general complex coefficients in
the polynomials f and g. We identify them with the respective polynomials F and G
from chapter 5 and parametrize their roots ~F and ~G as

Fk = e−λφk (k = 1, . . . , s) (7.38)

Gk = e−λψk (k = 1, . . . , s′) (7.39)
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for tuples of complex numbers ~φ and ~ψ. We refer to those tuples in the arguments of the
Nekrasov partition function rather than to the polynomials f and g. We again assume
the degree bound (5.5). For n ≥ 0, Theorem 5.2.1 now states that we can express the
n-th coefficient of the Nekrasov partition function as an integral

Zn(q1, q2,~a; ~φ, ~ψ) = Zn(q1, q2, ~u; ~F , ~G), (7.40)

provided

aα − aβ 6≡ xε1 + yε2, ∀α 6= β ∈ {1, . . . , r} ∀x, y ∈ {−n, . . . , n}, (7.41)

xε1 6≡ (y + 1)ε2, (x+ 1)ε1 6≡ yε2, ∀x, y ∈ {0, . . . , n− 1}, (7.42)

where the inequalities are modulo 2πi
λ Z. As in the above case, we do not have to impose

those inequalities since the integral expression takes care of the cancellations of infinities
in the sum (3.65). Theorem 7.1.1 now translates to

Theorem 7.1.3. Let λ > 0 be a positive real number. Let ε1 and ε2 be complex numbers
with Re ε1 > 0 and Re ε2 > 0. Assume either ε1 = ε2 or both ε1 > 0 and ε2 > 0. Let
r, s, s′ be three integers with

1 ≤ r 0 ≤ s 0 ≤ s′ ≤ r − 1. (7.43)

Define the functions

A(~a) = max
α=1,...,r

Re aα − min
i=1,2

Re εi (a ∈ Cr) (7.44)

B(~a) = min
α=1,...,r

Re aα (a ∈ Cr) (7.45)

and set

C(~φ, ~ψ, P ) =

s∑
k=1

min{P,Reφk}+
s′∑
k=1

min{−P,Reψk} (7.46)

for ~φ ∈ Cs, ~ψ ∈ Cs′ and P ∈ R. The Nekrasov partition function

Z(ε1, ε2,~a, λ; ~φ, ~ψ; b) =
∑
n≥0

(
b λ2r−s+s′e−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; ~φ, ~ψ) (7.47)

is an analytic function in the variables

(~a, ~φ, ~ψ, b) ∈ Cr ×Cs ×Cs′ ×C (7.48)

on the domain defined by the conditions

A(~a) < B(~a) (7.49)

| b | < λ−2r+s−s′ expλ

(
r

2

(
Re ε1 + Re ε2

)
+ sup
A(~a)<P<B(~a)

C(~φ, ~ψ, P )

)
. (7.50)
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The supremum in the last equation can be simplified to

∑s′

k=1 min{Re ε1 − Re a1, . . . ,Re ε1 − Re ar,

Re ε2 − Re a1, . . . ,Re ε2 − Re ar,Reψk} if s = 0∑s
k=1 min{Re a1, . . . ,Re ar,Reφk} if s′ = 0

0 if s = s′ = 0.

(7.51)

Analogous to the symmetry relation (7.25), we have

Z(ε1, ε2, a1, . . . , ar; f, g; b) = Z(−ε1,−ε2,−a1, . . . ,−ar; g, f ; b) (7.52)

as formal power series. We obtain

Theorem 7.1.4. Let λ > 0 be a positive real number. Let ε1 and ε2 be complex numbers
with Re ε1 < 0 and Re ε2 < 0. Assume either ε1 = ε2 or both ε1 < 0 and ε2 < 0. Let
r, s, s′ be three integers with

1 ≤ r 0 ≤ s ≤ r − 1 0 ≤ s′. (7.53)

Define the functions

A′(~a) = max
α=1,...,r

Re aα (a ∈ Cr) (7.54)

B′(~a) = min
α=1,...,r

Re aα + min
i=1,2

|Re εi| (a ∈ Cr) (7.55)

and set

C(~φ, ~ψ, P ) =

s∑
k=1

min{P,Reφk}+

s′∑
k=1

min{−P,Reψk} (7.56)

for ~φ ∈ Cs, ~ψ ∈ Cs′ and P ∈ R. The Nekrasov partition function

Z(ε1, ε2,~a, λ; ~φ, ~ψ; b) =
∑
n≥0

(
b λ2r−s+s′e−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; ~φ, ~ψ) (7.57)

is an analytic function in the variables

(~a, ~φ, ~ψ, b) ∈ Cr ×Cs ×Cs′ ×C (7.58)

on the domain defined by the conditions

A′(~a) < B′(~a) (7.59)

| b | < λ−2r+s−s′ expλ

(
r

2

∣∣Re ε1 + Re ε2
∣∣+ sup

A′(~a)<P<B′(~a)
C(~φ, ~ψ, P )

)
. (7.60)

The supremum in the last equation can be simplified to

∑s′

k=1 min{−Re a1, . . . ,−Re ar,Reψk} if s = 0∑s
k=1 min{Re a1 + |Re ε2|, . . . ,Re ar + |Re ε2|,

Re a1 + |Re ε2|, . . . ,Re ar + |Re ε2|,Reφk} if s′ = 0

0 if s = s′ = 0.

(7.61)
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In chapter 2, we have defined the norm of the deformed Gaiotto state, with degree
zero component equal to one, as a formal power series, whose coefficients are determined
by the Gram matrix of the deformed Virasoro algebra. Given two formal parameters t, q
and a rational number h, we have obtained this norm via the expression

〈w(ξ)|w(ξ) 〉 =
∑
n≥0

ξ2n
(
W−1

(n)

)
(1n)(1n)

(7.62)

as a formal power series in ξ2 with coefficients in Q(q, t). In chapter 4, we have introduced
the relation

h = Q
1
2 +Q−

1
2 (7.63)

and reinterpreted these coefficients as elements of the field Q(q, t,Q). Under the identi-
fications

t1 = t−1 t2 = q e2/e1 = Q f = 1 g = 1 q = ξ2. (7.64)

we have obtained the norm of the deformed Gaiotto state as a Nekrasov partition func-
tion:

〈w(ξ)|w(ξ) 〉 = Z(t1, t2, e1, e2; f, g; q). (7.65)

We again want to evaluate q, t,Q and ξ at complex numbers. From the defining relations
(2.27) of the deformed Virasoro algebra, we see that we have to assume that q and t are
nonzero and q/t is not a root of −1. Moreover, the existence of the deformed Gaiotto
state depends on the non-degeneracy of the Gram matrix. For formal parameters q, t
and Q, the inverse of the Gram matrix exists in the sense of rational functions in those
parameters. For complex values, we have to look at the Kac determinant formula (2.54).
From it, we see that the deformed Gaiotto state is well-defined as long as

{Q,−Q} ∩ {qxty : x, y ∈ Z} = ∅. (7.66)

Note the similarity to condition (5.17) from Theorem (5.2.1). Given this assumption for
complex numbers q, t and Q, the norm of the deformed Gaiotto state is a well-defined
formal power series with complex coefficients.

From Theorem 7.1.1, we immediately obtain

Corollary 7.1.5. Let q and t be two complex numbers with |q| > 1 and |t| < 1. Assume
either qt = 1 or both q > 1 and t ∈ (0, 1). The norm

〈w(ξ)|w(ξ) 〉 (7.67)

of the deformed Gaiotto state, with degree zero component equal to one, is an analytic
function in the variables

(Q, ξ) ∈ C×C (7.68)
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on the domain defined by the four conditions

{Q,−Q} ∩ {qxty : x, y ∈ Z} = ∅ (7.69)

|t| < |Q| < |t|−1 (7.70)

|q|−1 < |Q| < |q| (7.71)

|ξ| < (q/t)1/2. (7.72)

From Theorem 7.1.2 we get the following analog:

Corollary 7.1.6. Let q and t be two complex numbers with |q| < 1 and |t| > 1. Assume
either qt = 1 or both q ∈ (0, 1) and t > 1. The norm

〈w(ξ)|w(ξ) 〉 (7.73)

of the deformed Gaiotto state, with degree zero component equal to one, is an analytic
function in the variables

(Q, ξ) ∈ C×C (7.74)

on the domain defined by the four conditions

{Q,−Q} ∩ {qxty : x, y ∈ Z} = ∅ (7.75)

|t|−1 < |Q| < |t| (7.76)

|q| < |Q| < |q|−1 (7.77)

|ξ| < (t/q)1/2. (7.78)

7.2. Discussion

In the previous section, we have summarized our estimates for the radius of convergence
of Nekrasov partition functions and the related norm of Gaiotto states. In this section,
we discuss our findings. In section 7.2.1, we discuss the sharpness of our estimates. In
section 7.2.2, we discuss the bound on one of the polynomials appearing in the integral
representation. In section 7.2.3, we discuss the relation of our findings to the convergence
of four-dimensional Nekrasov partition functions. In the final section 7.2.4, we discuss
generalization to partition functions of other types of supersymmetric Yang Mills theory.

7.2.1. Sharpness of Estimate

In this thesis we have estimated the radius of convergence of the Nekrasov partition
function. One can further ask whether our estimate is sharp. The only place where we
have used an inequality in our estimate is in equation (5.173) in chapter 5 where we have
used the triangle inequality for integrals. Our motivation was to obtain a real-valued
function h in equation (5.181) to which we can apply our Theorem 6.2.1 from potential
theory. The real-valuedness of the function h was used in the proof of Theorem 6.2.1 on
page 73, where we have estimated the integrand by its maximum and minimum value
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on a compact set. However, the physical intuition behind Theorem 6.2.1, which we
have formulated right after the statement of the theorem on page 66, also holds true
for complex valued h. We therefore believe that Theorem 6.2.1 also holds for complex
valued, continuous functions h. Consequently, we believe that our estimate is sharp:
Indeed, assume Theorem 6.2.1 is true for complex valued, continuous h : T → C and
reconsider the argument in section 5.3. Write each of the s+ s′ + 3r factors

ρ±1e±iθ − gk (k = 1, . . . , s+ s′ + 3r) (7.79)

appearing in the function g in equation (5.169) as the exponential of a complex valued
function hk. The real parts of the functions hk are continuous and given by

Rehk(θ) = log |ρ±1e±iθ − gk| (θ ∈ T, k = 1, . . . , s+ s′ + 3r). (7.80)

The imaginary parts may have jumps of height 2πi. We can now write

g(q1, q2, ~u; ~F , ~G; ρ, θ) = eh(θ) h(θ) =

s+s′+3r∑
k=1

hk(θ). (7.81)

We want to apply Theorem 6.2.1 with our new assumptions to conclude

lim
n→∞

1

n
logEn[g(q1, q2, ~u; ~F , ~G; ρ, θ)] =

1

2π

∫
T
h(θ)dθ. (7.82)

The coefficients Zn(q1, q2, ~u, ~F , ~G) are all real valued, as can be seen from taking their
complex conjugate. Hence for large n, if our intuition about the physics behind Theorem
6.2.1 is true, their sign will be either positive or negative. In the latter case, one has
to multiply all coefficients and hence the expectation value in equation (7.82) by minus
one to get a well-defined logarithm. Hence we may assume that the sign in the large n
case is positive. The possible jumps in the imaginary part of the function h play no role:
We use the continuity of h twice in the proof of Theorem 6.2.1. First, when we take
maxima and minima on a compact set. Here the function we extremize is eh(θ) which
is continuous in our case. Then, we use continuity when taking limits of measures in
equations (6.76) and (6.79). However, we are already in the large n case, where we have
a positive sign of the integral and therefore no jumps in the imaginary part of h(θ) play
a role. Moreover, the right hand side of equation (7.82) will be real valued since the left
hand side is. Hence one can calculate the limit as

Re

s+s′+3r∑
k=1

1

2π

∫
T
hk(θ)dθ =

1

2π

∫
T

log |g(q1, q2, ~u; ~F , ~G; ρ, θ)|dθ (7.83)

which yields exactly the same limit as in our analysis in section 5.3.
An apparent contradiction to our believe that our estimate is sharp is [12, Proposition

3.1], where the norm of the deformed Gaiotto state is proved to be an entire function
for the choice of parameters q = t, which is different from our setting. Moreover, this
is a very special case in the following sense: The coefficients of the Nekrasov partition
function (3.57) contain a double product in the denominator of each summand indexed
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by a tuple ~Y of Young diagrams. Each diagonal factor α = β in the double product
yields, for t1 = t−1

2 , a product of all hook lengths in the Young diagram Yα. The hook
length formula leads to the appearance of the Plancherel measure on partitions times
an additional factor of 1/|Yα|!. See [12] for the details. This additional factor ensures
the convergence of the power series on the whole complex plane. The appearance of the
Plancherel measure was already noted in [40] and the same technique was applied to
prove convergence of the norm of the (undeformed) Gaiotto state in [26, Proposition 1]
for the corresponding special case ε1 = −ε2. Also note that in the case where t1 and t2
lie on opposite sides of the unit circle in C, which includes the special case t1 = t−1

2 , all
the individual summands in all the coefficients (3.57) of the Nekrasov partition function
are well-defined for complex values of the parameters as soon as we require

eαe
−1
β /∈ {tx1t

y
2 : x, y ∈ Z} ∀ α 6= β ∈ {1, . . . , r}. (7.84)

In order to achieve the same well-definedness of all summands for all coefficients in our
case, where the parameters t1 and t2 lie on the same side of the unit circle in C, we had
to additionally assume

tx1 6= ty2, ∀ (x, y) ∈ N2 \ {(0, 0)}, (7.85)

see equation (7.14). This is a strong condition if t1 and t2 lie on the same side of the
unit circle and are, for example, both positive real numbers. However, it is automatically
satisfied if t1, t2 lie on opposite sides of the unit circle. We see, in particular, that the
coefficients of the Nekrasov partition function are much better behaved in the case
t1 = t−1

2 considered in [12].

7.2.2. General Polynomials

In our integral representation from chapter 5, we have assumed a bound (5.5) on the
degree of the polynomial G(z) which we evaluate at the variables z−1

j , j = 1, . . . , n. We
have required

degG(z) ≤ r − 1. (7.86)

We have done so, to ensure regularity of the integrand at zero. This was necessary to
ensure we pick up the right poles in our residue calculation in Theorem 5.2.1 to obtain
the coefficients of the Nekrasov partition function. These coefficients are defined for
arbitrary polynomials g, see chapter 3. If one wants to allow arbitrary inverse powers of
the integration variables in the integrand, one has to add a prescription to the integral
which tells one to disregard all residues coming from poles at zero, see for example
[37, Proposition II.7]. Such kind of prescriptions are common in the field but spoil any
attempt at estimating the integral. Such an estimate requires precise knowledge of the
location of the integration contours.

It would still be desirable to find a way to be able to perform an estimate of the integral
in the presence of arbitrary polynomials G(z), evaluated at the inverses of the integration
variables. A motivation for this comes from conjectures [5, 8] about a generalization of
the notion of deformed Gaiotto states and a generalization of the AGT relation relating
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the norm of those states to the five-dimensional Nekrasov partition functions for gauge
groups SU(r) with r ≥ 3. However, the relevant Nekrasov partition functions are defined
[8] for polynomials f and g with

deg f = deg g = r. (7.87)

Hence our technique does not apply.

7.2.3. Four-Dimensional Nekrasov Partition Function

In this thesis, we have considered the K-theoretic Nekrasov partition function. We have
described its mathematical definition in chapter 3. Physically, it corresponds to the
partition function of the five-dimensional super Yang Mills theory described in section
1.5. The partition function of its four-dimensional counterpart, described in section
1.2, also has a precise mathematical definition [35]. One has to replace equivariant K-
theory with equivariant cohomology [39, 35]. Localization techniques, similar to the one
described in chapter 3, apply defining the four-dimensional Nekrasov partition function
as a formal power series. The relation between the coefficients of the K-theoretic version
and the four-dimensional version is simple: One takes definition (3.64) of the K-theoretic
Nekrasov partition function, which reads

Z(ε1, ε2,~a, λ; f, g; b) =
∑
n≥0

(
b λ2r−deg f+deg ge−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; f, g), (7.88)

and sends [36], in each term separately, λ → 0. The roots of the polynomials f and
g have to be formally expressed as exponentials as the other parameters (3.63). One
obtains a formal power series in the variable b. The scaling factor λ2r−deg f+deg g ensures
that this coefficient-wise limit exists. Assume the real part of the parameters ε1 and ε2
have the same sign. If we take the naive limit λ → 0 in our bounds of the radius of
convergence formulated in Theorems 7.1.3 and 7.1.4, we then expect the four-dimensional
Nekrasov partition function to have radius of convergence bounded from below by one.
This expectation agrees with the conjecture that the four-point conformal block (1.29)
is analytic in the open unit ball in the complex plane: The four-dimensional Nekrasov
partition function is related to this conformal block via the AGT relation [1], as described
in chapter 1. The necessary identification of parameters implies, via equation (1.40), that
the sign of the real part of both ε1 and ε2 agree, which is what we have assumed in our
estimate. However, the convergence of the limits

lim
λ→0

(
λ2r−deg f+deg ge−rλ(ε1+ε2)/2

)n
Zn(ε1, ε2,~a, λ; f, g) n ≥ 0 (7.89)

is not uniform in n. In case one considers the representation of Zn(ε1, ε2,~a, λ; f, g) as
a sum over partitions, the situation is even worse: One has to impose the inequalities
formulated in equation (7.41), which are supposed to hold modulo 2πi

λ . Hence the limit
λ → 0 is ill-defined for those individual terms. Moreover, the estimate in Theorem
5.3.2 of the growth of the integral representation relies on our Theorem 5.3.1 from
potential theory. The limit statement in this latter statement is not evidently uniform
in the parameter λ, since the function f(θ) in equation (5.164), defining the probability
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measures (5.167), depends on this parameter. Hence our estimate of the growth of
the coefficients of the five-dimensional Nekrasov partition function is not uniform in the
parameter λ. Hence we cannot conclude from our estimate that the radius of convergence
of the four-dimensional Nekrasov partition function is bounded from below by one.

In order to prove convergence of the four-dimensional Nekrasov partition function, one
could try and use a corresponding integral representation. Such representations exist
[39]. However, a prerequisite for an estimate of the integral would be explicit integration
contours. As far as we know, one would have to close the contours for each integration
variable at infinity to be able to get the correct residues. Considering the explicit form
of the integrand [39, Equation (3.10)], one sees that the degrees of both the polynomials
f and g have to be bounded as

deg g(z) + deg f(z) ≤ 2(r − 1). (7.90)

7.2.4. Generalizations

In this thesis, we have considered the Nekrasov partition function computed for the
compactification of N = 2 supersymmetric Yang Mills theory on a circle. Other types
of gauge theory include N = 2∗ supersymmetric Yang Mills theory, i.e. with massive
matter in the adjoint representation. For this theory, we have to modify our integral
from chapter 5 in the following way: Let m > 0 denote the mass parameter of the adjoint
matter. Assume

m ∈ (0, q1q2) ∪ (1,∞). (7.91)

Firstly, we have to multiply the pre-factor in line 5.10 by(
(1− q1m

−1)(1− q2m
−1)

(1−m−1)(1− q1q2m−1)

)n
. (7.92)

Secondly, we have to multiply the double product in line (5.8) by the term∏
j 6=k

(zj − q1m
−1zk)(zj − q2m

−1zk)

(zj −m−1zk)(zj − q1q2m−1zk)
. (7.93)

Finally, one has to specialize the polynomials F (z) and G(z) in line (5.9) to

F (z) =
r∏

m=1

(z − uαm−1) G(z) =
r∏

m=1

(z − u−1
α q1q2m

−1). (7.94)

Now assume this integral representation is correct [39, equation (3.25)]. In particular,
we ignore the bounds on the coefficients of G(z). Provided that we can estimate the
normalization coefficients, analogous to the an from line (5.171), as in equation (5.178),
we can estimate the growth of the coefficients defined by our modified integral as in
chapter 5. Indeed, both the pre-factor (7.92) and the double product (7.93) are positive,
so we can use our language of potential theory. The double product (5.8), multiplied by
the double product (7.93), in coordinates zj = ρeiθj , is still of the form

exp

(
−
∑
j 6=k

f̃(θk − θk)
)
, (7.95)
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where f̃ : T→ R∪{+∞} is continuous, bounded from below, has a single pole at θ = 0.
Its Fourier coefficients f̃k are given by

f̃k =

{(
1− (mq−1

1 q−1
2 )|k|

)
fk if m ∈ (0, q1q2)(

1−m−|k|
)
fk if m > 1

(k ∈ Z), (7.96)

where fk are the Fourier coefficients of the original function f given in equation (6.20).
Hence f̃k > 0 for k 6= 0 and f̃0 = 0. Here, the condition (7.91) is necessary. The positivity
f̃k > 0 for k 6= 0 and f̃0 = 0 are the only requirements for the proof of Theorem 6.2.1
from chapter 6. Hence Theorem 5.3.3 is valid for our modified coefficients without any
modification of the bounds stated in equations (5.198) and (5.199), provided the integral
representation is correct and we can estimate the normalization coefficients analogous
to the an in line (5.171).
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A. Conventions for Partitions and
Young Diagrams

We use the following conventions regarding partitions of nonnegative integers n: A
partition Y = (Y (1), Y (2), . . . , Y (l)) of size n is an nonincreasing sequence of non-
negative integers that sum to n. We write l(Y ) = l for the length of the partition
Y = (Y (1), . . . , Y (l)) and |Y | for its size Y (1) + · · · + Y (l). To a partition Y one
associates its Young diagram

{(x, y) : 1 ≤ x ≤ l(Y ), 1 ≤ y ≤ Y (x)}. (A.1)

We use the English convention to draw the Young diagram corresponding to the par-
titions. For example the partition Y = (5, 3, 2) of size 10 has length l(Y ) = 3 and its
Young diagram is given by

. (A.2)

In the Young diagram, the row index x increases as we go south and the column index y
increases as we go east. We identify the partition Y = (Y (1), . . . , Y (l)) with its Young
diagram. In particular, we write

Y = {(x, y) : 1 ≤ x ≤ l(Y ), 1 ≤ y ≤ Y (x)}. (A.3)

We use the notation Y (j) to refer to the j-th element of a partition Y and not a subscript
since we often encounter tuples ~Y = (Y1, . . . , Yr) of partitions Y1, . . . , Yr. The total size
of such an r tuple of partitions is defined as |Y1|+ · · ·+ |Yr|.
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B. Evaluation of Iterated Residues

In this appendix, we conclude the proof of Theorem 5.2.1. Fix an r tuple ~Y of partitions
of total size n. Fix complex numbers ẑ1, . . . , ẑn such that

{ẑ1, . . . , ẑn} = {zα� : � ∈ Yα, α = 1, . . . , r}. (B.1)

We evaluate the iterated residues

R~Y (q1, q2, ~u) := lim
zj→ẑj
j=1,...,n

(
n∏
j=1

(zj − ẑj)
I(z1, . . . , zn; ~u)

z1 · · · zn

)
, (B.2)

where

I(z1, . . . , zn; q1, q2, ~u) =

n∏
j=1

r∏
α=1

−uαzj
(zj − uα)(q1q2zj − uα)

(B.3)

∏
1≤j 6=k≤n

(zj − zk)(zj − q1q2zk)

(zj − q1zk)(zj − q2zk)
. (B.4)

In particular, we claim they are given by

S ~Y (q1, q2, ~u) :=
r∏

α,β=1

( ∏
�∈Yα

1

1− uαu−1
β q

lYα (�)+1
1 q

−aYβ (�)

2

(B.5)

∏
�∈Yβ

1

1− uαu−1
β q
−lYβ (�)

1 q
aYα (�)+1
2

)
. (B.6)

The calculation in this appendix is adapted from [50], where it was performed for the
special case r = 2.

For any r-tuple ~Y of partitions with Yr 6= ∅, define the r-tuple ~Y ′ of partitions by
removing the last box from the last partition in ~Y , i.e., we set Y ′α = Yα for α = 1, . . . , r−1
and Y ′r = (Y1, . . . , Yl−1, Yl− 1), where l is the length of Yr. In terms of Young diagrams,
we go from ~Y to ~Y ′ by removing the box

(l, w) := (l(Yr), Yr(l)) (B.7)

from the last Young diagram Yr in ~Y . We will prove

R~Y (q1, q2, ~u)

R~Y ′(q1, q2, ~u)
=
S ~Y (q1, q2, ~u)

S ~Y ′(q1, q2, ~u)
. (B.8)
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B. Evaluation of Iterated Residues

This already suffices: Using equation (B.8), we can reduce the statement

R~Y (q1, q2, ~u) = S ~Y (q1, q2, ~u) (B.9)

to the case ~Y = (Y1, . . . , Yr−1, ∅). BothR~Y (q1, q2, ~u) and S ~Y (q1, q2, ~u) are invariant under

simultaneous permutation of the components of ~Y = (Y1, . . . , Yr) and u = (u1, . . . , ur).
This follows directly from the respective definitions. Hence, we can reduce the statement
of the theorem to the case ~Y = (Y1, . . . , Yr−2, ∅, Yr) and, again using equation (B.8), to
the case ~Y = (Y1, . . . , Yr−2, ∅, ∅). Continuing in this fashion, we can reduce the statement
to the case ~Y = (∅, . . . , ∅), in which it holds trivially.

In the calculation of both sides of equation (B.8) we have to evaluate telescopic prod-
ucts. In order to group the factors for such evaluations, we will have to keep track
when Yα(x) and Y T

α (y) remain constant as we vary the row and column indices. Fix
α ∈ {1, . . . , r}. We write

Yα = (Yα(1), . . . , Yα(l(Yα))) = (Fα(1), . . . , Fα(1)︸ ︷︷ ︸
Gα(1) times

, . . . , Fα(mα), . . . , Fα(mα)︸ ︷︷ ︸
Gα(mα) times

) (B.10)

We set Fα(mα + 1) = 0. Note that for any x, y ∈ N,

Yα(y) ∈ {Fα(j) : j = 1, . . . ,mα + 1} (B.11)

Y T
α (x) ∈ {Gα(1) + · · ·+Gα(j) : j = 0, . . . ,mα}. (B.12)

Recall that l denotes the length of the last Young diagram Yr. Define the index jα by

Gα(1) + · · ·+Gα(jα − 1) < l ≤ Gα(1) + · · ·Gα(jα) (B.13)

when this condition can be satisfied and jα = mα + 1 otherwise. We also introduce the
notation Hα(j) = Gα(1)+ · · ·+Gα(j). We will split certain products over rows of Young
diagrams as

l∏
x=1

(−) =

jα−1∏
j=1

Hα(j)∏
x=Hα(j−1)+1

(−)×
l∏

x=Hα(jα−1)+1

(−) (B.14)

When x comes from the product with index j ∈ {1, . . . , jα− 1}, we have Yα(y) = Fα(j).
In the remaining product, we have Yα(y) = Fα(jα). Products over columns of Young
diagrams will be grouped as

Yα(l)∏
y=1

(−) =

Fα(jα)∏
y=1

(−) =

mα∏
j=jα

Fα(j)∏
y=Fα(j+1)+1

(−), (B.15)

where we have Y T
α (y) = Hα(j) if y comes from the factor with value j.

The right hand side of equation (B.8) equals

S ~Y (q1, q2, ~u)

S ~Y ′(q1, q2, ~u)
(B.16)

=

r∏
α,β=1

∏
�∈Y ′α 1− uα

uβ
q
lY ′α

(�)+1

1 q
−aY ′

β
(�)

2

∏
�∈Y ′β

1− uα
uβ
q
−lY ′

β
(�)

1 q
aY ′α

(�)+1

2∏
�∈Yα 1− uα

uβ
q
lYα (�)+1
1 q

−aYβ (�)

2

∏
�∈Yβ 1− uα

uβ
q
−lYβ (�)

1 q
aYα (�)+1
2

. (B.17)
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We introduce a variable ξ to be able to ignore poles during the calculation. Regrouping
we get

S ~Y (q1, q2, ~u)

S ~Y ′(q1, q2, ~u)
= lim

ξ→1
S(ξ)

r−1∏
α=1

Tα(ξ)Uα(ξ), (B.18)

where

S(ξ) =
1

(ξ − q1)(ξ − q2)

∏
�∈Y ′r

(ξ − q
lY ′r

(�)+1

1 q
−aY ′r (�)

2 )(ξ − q
−lY ′r (�)

1 q
aY ′r

(�)+1

2 )

(ξ − qlYr (�)+1
1 q

−aYr (�)
2 )(ξ − q−lYr (�)

1 q
aYr (�)+1
2 )

(B.19)

and, for each α ∈ {1, . . . , r − 1},

Tα(ξ) =
1

ξ − uαu−1
r q1q

aYα (l,w)+1
2

∏
�∈Yr

ξ − uαu−1
r q
−lY ′r (�)

1 q
aYα (�)+1
2

ξ − uαu−1
r q
−lYr (�)
1 q

aYα (�)+1
2

(B.20)

×
∏

�∈Yα

ξ − uαu−1
r q

lYα (�)+1
1 q

−aY ′r (�)

2

ξ − uαu−1
r q

lYα (�)+1
1 q

−aYr (�)
2

(B.21)

Uα(ξ) =
1

ξ − uru−1
α q
−aYα (l,w)
2

∏
�∈Yr

ξ − uru−1
α q

lY ′r
(�)+1

1 q
−aYα (�)
2

ξ − uru−1
α q

lYr (�)+1
1 q

−aYα (�)
2

(B.22)

×
∏

�∈Yα

ξ − uru−1
α q
−lYα (�)
1 q

aY ′r
(�)+1

2

ξ − uru−1
α q
−lYα (�)
1 q

aYr (�)+1
2

. (B.23)

Using

aY ′α(x, y) =

{
Yα(x)− y − 1, x = l, α = r

Yα(x)− y, otherwise
, (B.24)

lY ′α(x, y) =

{
Y T
α (y)− x− 1, y = w,α = r

Y T
α (y)− x, otherwise

(α ∈ {1, . . . , r}) (B.25)

and the splitting described in equations (B.14) and (B.15) we get

S(ξ) =
1

(ξ − q1q
−w+1
2 )(ξ − qw2 )

(ξ − q1)(ξ − q2)

(ξ − 1)(ξ − q1q2)
(B.26)

mr∏
j=1

(ξ − ql−Hr(j)1 q
−Fr(j)+w
2 )(ξ − q−l+Hr(j)+1

1 q
Fr(j)−w+1
2 )

(ξ − ql−Hr(j−1)
1 q

−Fr(j)+w
2 )(ξ − q−l+Hr(j−1)+1

1 q
Fr(j)−w+1
2 )

, (B.27)

and, for each α ∈ {1, . . . , r − 1},

Tα(ξ) =
1

ξ − uαu−1
r q

l(Yα)−l+1
1 q−w+1

2

mα∏
j=1

ξ − uαu−1
r q
−l+Hα(j)+1
1 q

Fα(j)−w+1
2

ξ − uαu−1
r q
−l+Hα(j−1)+1
1 q

Fα(j)−w+1
2

, (B.28)

Uα(ξ) =
1

ξ − uru−1
α q
−l(Yα)+l
1 qw2

mα∏
j=1

ξ − uru−1
α q

l−Hα(j)
1 q

−Fα(j)+w
2

ξ − uru−1
α q

l−Hα(j−1)
1 q

−Fα(j)+w
2

. (B.29)
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Together

S ~Y (q1, q2, ~u)

S ~Y ′(q1, q2, ~u)
= lim

ξ→1

(ξ − q1)(ξ − q2)

(ξ − 1)(ξ − q1q2)
(B.30)

×
r∏

α=1

(
1

(ξ − uαu−1
r q

l(Yα)−l+1
1 q−w+1

2 )(ξ − uru−1
α q
−l(Yα)+l
1 qw2 )

(B.31)

×
mα∏
j=1

(ξ − uru−1
α q

l−Hα(j)
1 q

−Fα(j)+w
2 )(ξ − uαu−1

r q
−l+Hα(j)+1
1 q

Fα(j)−w+1
2 )

(ξ − uru−1
α q

l−Hα(j−1)
1 q

−Fα(j)+w
2 )(ξ − uαu−1

r q
−l+Hα(j−1)+1
1 q

Fα(j)−w+1
2 )

)
. (B.32)

For the residue calculation, fix the order of the variables such that the integration over
zn picks up the residue zrl,w coming from the box (l, w) ∈ Yr we remove from the last

partition in ~Y to get ~Y ′. The left hand side of equation (B.8) equals

R~Y (q1, q2, ~u)

R~Y ′(q1, q2, ~u)
= lim

zj→ẑj ,j=1,...,n
(1−

zrl,w
zn

)
I(z1, . . . , zn; q1, q2, ~u)

I(z1, . . . , zn−1; q1, q2, ~u)
. (B.33)

We take the first (n− 1) limits separately: The quotient I(z1,...,zn;q1,q2,~u)
I(z1,...,zn−1;q1,q2,~u) converges to

r∏
α=1

(
−uαzn

(zn − uα)(q1q2zn − uα)
(B.34)

×
∏

�∈Y ′α

(zn − zα�)2(zn − q1q2z
α
�)(zn − q−1

1 q−1
2 zα�)

(zn − q1zα�)(zn − q2zα�)(zn − q−1
1 zα�)(zn − q−1

2 zα�)

)
(B.35)

for zj → ẑj , j = 1, . . . , n − 1. The factors with α 6= r do not have poles for zn → zrl,w
since uα/ur /∈ {qx1q

y
2 : x, y ∈ Z}. We define ξ = zn

zrl,w
and set

Aα(ξ) :=
∏

�∈Yα

(ξ − zα�
zrl,w

)(ξ − q1q2
zα�
zrl,w

)(ξ − zα�
zrl,w

)(ξ − q−1
1 q−1

2
zα�
zrl,w

)

(ξ − q1
zα�
zrl,w

)(ξ − q2
zα�
zrl,w

)(ξ − q−1
1

zα�
zrl,w

)(ξ − q−1
2

zα�
zrl,w

)
. (B.36)

Hence, the remaining limit zn → zrl,w is given by

R~Y (q1, q2, ~u)

R~Y ′(q1, q2, ~u)
(B.37)

= lim
ξ→1

(ξ − q−1
1 )(ξ − q−1

2 )

(ξ − 1)(ξ − q−1
1 q−1

2 )

r∏
α=1

(
−ξuαzrl,w

(ξzrl,w − uα)(q1q2ξzrl,w − uα)
Aα(ξ)

)
, (B.38)

Using the splitting described in (B.14) and (B.15) we get

Aα(ξ) =
(ξ − uα

ur
q1−l

1 q1−w
2 )(ξ − uα

ur
q−l1 q−w2 )

(ξ − uα
ur
q
l(Yα)−l+1
1 q1−w

2 )(ξ − uα
ur
q
l(Yα)−l
1 q−w2 )

(B.39)

×
mα∏
j=1

(ξ − uα
ur
q
Hα(j)−l+1
1 q

Fα(j)−w+1
2 )(ξ − uα

ur
q
Hα(j)−l
1 q

Fα(j)−w
2 )

(ξ − uα
ur
q
Hα(j−1)−l+1
1 q

Fα(j)−w+1
2 )(ξ − uα

ur
q
Hα(j−1)−l
1 q

Fα(j)−w
2 )

. (B.40)
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Finally, we use the step

(ρ− σ) = −ρσ(ρ−1 − σ−1) (B.41)

repeatedly to conclude

R~Y (q1, q2, ~u)

R~Y ′(q1, q2, ~u)
(B.42)

= lim
ξ→1

(ξ − q−1
1 )(ξ − q−1

2 )

(ξ − 1)(ξ − q−1
1 q−1

2 )
(B.43)

r∏
α=1

(
−ξuαu−1

r q−l1 q−w2

(ξ − uα
ur
q
l(Yα)−l+1
1 q1−w

2 )(ξ − uα
ur
q
l(Yα)−l
1 q−w2 )

(B.44)

×
mα∏
j=1

(ξ − uα
ur
q
Hα(j)−l+1
1 q

Fα(j)−w+1
2 )(ξ − uα

ur
q
Hα(j)−l
1 q

Fα(j)−w
2 )

(ξ − uα
ur
q
Hα(j−1)−l+1
1 q

Fα(j)−w+1
2 )(ξ − uα

ur
q
Hα(j−1)−l
1 q

Fα(j)−w
2 )

)
(B.45)

= lim
ξ→1

(ξ−1 − q1)(ξ−1 − q2)

(ξ−1 − 1)(ξ−1 − q1q2)
(B.46)

r∏
α=1

(
1

(ξ − uα
ur
q
l(Yα)−l+1
1 q1−w

2 )(ξ−1 − ur
uα
q
−l(Yα)+l
1 qw2 )

(B.47)

×
mα∏
j=1

(ξ − uα
ur
q
Hα(j)−l+1
1 q

Fα(j)−w+1
2 )(ξ−1 − ur

uα
q
−Hα(j)+l
1 q

−Fα(j)+w
2 )

(ξ − uα
ur
q
Hα(j−1)−l+1
1 q

Fα(j)−w+1
2 )(ξ−1 − ur

uα
q
−Hα(j−1)+l
1 q

−Fα(j)+w
2 )

)
(B.48)

=
S ~Y (q1, q2, ~u)

S ~Y ′(q1, q2, ~u)
(B.49)

since no factor (ξ+1 − · · · ) vanishes in the limit.
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Gordon/Painlevé III Tau Function and Irregular Conformal Blocks. International
Mathematics Research Notices, 2015(18):8903–8924, 2015.

[27] K. Johansson. On Fluctuations of Eigenvalues of Random Hermitian Matrices. Duke
Mathematical Journal, 91(1):151–204, 01 1998.

[28] V. G. Kac. Contravariant Form for Infinite-Dimensional Lie Algebras and Super-
algebras, pages 441–445. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.

98



Bibliography

[29] A. Kupiainen, R. Rhodes, and V. Vargas. Integrability of Liouville theory: Proof
of the DOZZ Formula. ArXiv e-prints 1707.08785, July 2017.

[30] S. Lukyanov. A Note on the Deformed Virasoro Algebra. Physics Letters B, 367:121–
125, February 1996.

[31] S. Lukyanov and Y. Pugai. Bosonization of ZF Algebras: Direction Toward a De-
formed Virasoro Algebra. Soviet Journal of Experimental and Theoretical Physics,
82:1021–1045, June 1996.

[32] S. Lukyanov and Y. Pugai. Multi-point Local Height Probabilities in the Integrable
RSOS Model. Nuclear Physics B, 473:631–658, February 1996.

[33] G. Moore, N. Nekrasov, and S. Shatashvili. D-Particle Bound States and General-
ized Instantons. Communications in Mathematical Physics, 209:77–95, 2000.

[34] G. Moore, N. Nekrasov, and S. Shatashvili. Integrating over Higgs Branches. Com-
munications in Mathematical Physics, 209:97–121, 2000.

[35] H. Nakajima and K. Yoshioka. Instanton Counting on Blowup. I. 4-Dimensional
Pure Gauge Theory. Inventiones Mathematicae, 162:313–355, June 2005.

[36] H. Nakajima and K. Yoshioka. Instanton Counting on Blowup. II. K-Theoretic
Partition Function. ArXiv Mathematics e-prints math/0505553, May 2005.
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Duke Mathematical Journal, 68(3):447–462, 12 1992.

[49] H. Weyl. Theorie der Darstellung kontinuierlcher halb-einfacher Gruppen durch
lineare Transformationen. I. Mathematische Zeitschrift, 23:271–309, 1925.

[50] S. Yanagida. Five-dimensional SU(2) AGT Conjecture and Recursive Formula of
Deformed Gaiotto State. Journal of Mathematical Physics, 51(12):123506–123506,
December 2010.

[51] S. Yanagida. Norm of the Whittaker Vector of the Deformed Virasoro Algebra.
ArXiv e-prints 1411.0462, November 2014.

[52] A. Zamolodchikov and A. Zamolodchikov. Conformal Bootstrap in Liouville Field
Theory. Nuclear Physics B, 477:577–605, February 1996.

[53] Al. B. Zamolodchikov. Conformal Symmetry in Two Dimensions: an Explicit Re-
currence Formula for the Conformal Partial Wave Amplitude. Communications in
Mathematical Physics, 96(3):419–422, 1984.

100



Curriculum Vitae

Personal

Name: Martin Müller-Lennert
Nationality: German
Civil Status: Married

Education

12 December 1986 Born in Bad Mergentheim, Germany
1997–2006 High School, Esslingen am Neckar, Germany
2007–2010 Bachelor of Science ETH in Physics, Zurich, Switzerland
2010–2012 Bachelor of Science ETH in Mathematics, Zurich, Switzerland
2012–2013 Master of Science ETH in Mathematics, Zurich, Switzerland
2013–2018 Doctoral Studies in Mathematics at ETH, Zurich, Switzerland

101


	Introduction and Motivation
	Conformal Blocks in Virasoro Conformal Field Theory
	Four-Dimensional Nekrasov Partition Functions and AGT Relation
	Four-Dimensional Nekrasov Partition Functions
	Four-Dimensional AGT Relation

	Gaiotto States and AGT Relation
	Deformed Virasoro Algebra and Gaiotto States
	Five-Dimensional Nekrasov Partition Function and AGT Relation
	Five-Dimensional Nekrasov Partition Function
	Five-Dimensional AGT Relation

	Monodromy Preserving Transformations
	Outline of the Thesis

	Deformed Gaiotto States
	Representation Theory of the Virasoro Algebra
	The Virasoro Algebra
	Positive Energy Representations
	Verma Modules
	The Shapovalov Form

	Representation Theory of the Deformed Virasoro Algebra
	The Deformed Virasoro Algebra
	Verma Modules for the Deformed Virasoro Algebra
	The Shapovalov Form in the Deformed Case

	Deformed Gaiotto States
	Gaiotto States for the Virasoro Algebra
	Gaiotto States for the Deformed Virasoro Algebra


	Nekrasov Partition Functions
	A Nakajima Quiver Variety and its Equivariant K-Theory
	A Nakajima Quiver Variety
	Equivariant K-Theory
	Weighted Euler Characteristic

	The Nekrasov Partition Function as a Generating Function
	The Weighted Euler Characteristic of Tautological Classes
	The Nekrasov Partition Function


	Five-dimensional AGT Relation
	Nekrasov Partition Functions and Deformed Gaiotto States
	The Norm of the Deformed Gaiotto State
	A Special Case of the Nekrasov partition function

	Proof of the five-dimensional AGT Relation
	Recursion Relation for the Nekrasov Partition Function
	Recursion Relation for Deformed Gaiotto States
	Comparison and Conclusion


	Integral Representation
	Definition of the Integral and Parameter Ranges
	Evaluation of the Integral
	Estimate of the Integral

	Random Matrices and Potential Theory
	Random Matrices and Toeplitz Determinants
	Potential Theory
	Equilibrium Measures
	Limit of Large Number of Particles

	Conclusion and Discussion
	Summary and Conclusion
	Discussion
	Sharpness of Estimate
	General Polynomials
	Four-Dimensional Nekrasov Partition Function
	Generalizations


	Conventions for Partitions and Young Diagrams
	Evaluation of Iterated Residues

