Doctoral Thesis

PECVD of Silicon-Containing Coating Onto Graphite Powder

Author[s]:
Giampietro, Vito Roberto

Publication Date:
2018

Permanent Link:
https://doi.org/10.3929/ethz-b-000253964

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
PECVD OF SILICON-CONTAINING
COATING ONTO GRAPHITE POWDER

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
VITO ROBERTO GIAMPIETRO
M.sc., Università degli Studi di Bari Aldo Moro
born on 31.03.1986
citizen of Italy

accepted on the recommendation of
Prof. Dr. P. Rudolf von Rohr (ETH Zurich), examiner
Prof. Dr. V. Wood (ETH Zurich), co-examiner
Prof. Dr. A. Rossi (UniCa and ETH Zurich), co-examiner

2018
Abstract

In the present work, experiments of plasma-enhanced chemical vapour deposition of Si-containing coating onto TIMREX® synthetic graphite micropowders were performed in order to improve both the powder flow behaviour and the galvanometric performance of the material.

The flow behaviour is one of the most important properties for the storage, transport and manufacturing of micropowders of industrial use, since well flowing powders can be handled and treated in an easier and cost-effective way compared to cohesive and sticking powder, minimizing the risk of pipe and hopper clogging as well as complicated mixing and sieving. However, the conventional techniques for improving the powder flow behaviour, involving the admixtures of flow-regulating nanoparticles, are inherently time-consuming and poorly effective. An example of cohesive micropowder of great industrial interest is synthetic graphite, which finds application as an electrochemically active material for negative electrodes of Li-ion batteries, the most common battery type for portable electronic devices. Since the electrochemical capacity delivered by pure graphite (~372 mAh/g) is too low for boosting the use thereof as an active material for high-capacity (>1000 mAh/g) battery, suitable for electric-vehicle propulsion, functional Si-based coatings can be applied to graphite surface in order to increase the delivered capacity. However, the conventional techniques for coating graphite, requiring harmful precursors and high-temperature processing make them cost-wise unfavourable and environmentally unsustainable.

Plasma-enhanced chemical vapor deposition implemented in a downstream, tubular, glow-discharge-plasma reactor fed by orga-
nosilicon monomers and Ar can be a valid alternative technique for processing graphite micropowder for both purposes with high throughput at low temperature.

In fact, the flow behavior of TIMREX® graphite was improved by depositing a non-continuous coating on the micropowder surface, consisting of nanoparticles on the order of 10 nm in size, which reduces the interparticle van der Waals forces causing cohesion of the native powder. Thereby, the originally cohesive graphite became completely free-flowing after plasma processing with minimized total gas flow rate and less than 1% of deposited-Si weight percentage. A quasi-Arrhenius relation between flow-behavior increase and energy delivered per mass of monomer \(W/FM \) was found, properly corrected for the Ar/monomer flow-rate ratio at high energy levels, which enables to use flow-behavior measurements to study the deposition process and as a proxy metric to evaluate surface coatings of powders that are otherwise complicated to characterize by standard metrologies.

In order to increase the Si weight percentage of the processed graphite above 5%, graphite was repeatedly plasma processed in a multiple experiment, which allowed to attain a continuous coating, on the order of 100 nm in thickness, and reach a deposited-Si weight percentage of 7.9% after 6 process runs, with no deterioration of the acquired flow behavior. The continuous coating was imaged with focused ion-beam scanning electron microscopy and chemically characterized with Raman spectroscopy and X-ray photoelectron spectroscopy, which revealed a material consisting of amorphous hydrogenated silicon carbide with a little O contamination. However, testing electrodes prepared with TIMREX® graphite coated by such a material showed drawbacks, in terms of delivered capacity and cycling stability, when cycled in Li-ion battery. The reason for this is the unfavorable chemistry of the plasma coating, which makes the Si electrochemically inactive and does also quench the activity of the graphite substrate, and is mainly attributed to the C excess in the coating. Therefore, while being already optimal for improving the graphite flow behavior, the plasma process in a downstream tubular reactor requires further enhancements and
investigations to be effective in improving the galvanometric performance of graphite for the next generation of Li-ion batteries.
Riassunto

Nel presente lavoro sono stati effettuati esperimenti di deposizione chimica di film contenenti Si da fase vapore, stimolata da plasma, su micropolveri di grafite sintetica TIMREX®, al fine di migliorare sia le proprietà di flusso che le prestazioni galvanometriche del materiale.

Le proprietà di flusso sono tra le più importanti per lo stoccaggio, il trasporto e la lavorazione di micropolveri di uso industriale, dato che polveri simil-fluide possono essere maneggiate e lavorate più facilmente e a costi più bassi rispetto a polveri coesive e coalescenti, con minimizzazione del rischio di intasamento di tubi e tramogge, di segregazione e di agglomerazione. Tuttavia, le tecniche convenzionali di miglioramento delle proprietà di flusso, basate sull’uso di nanoparticelle regolatrici di flusso additive, richiedono tempi lunghi e sono scarsamente efficaci. Un esempio di micropolvere coesiva di grande interesse industriale è la grafite sintetica, che trova applicazione come materiale elettrochimicamente attivo per gli elettrodi negativi delle batterie agli ioni di Li, comunemente usate nei dispositivi elettronici portatili. Poiché la capacità elettrochimica della grafite è troppo bassa (~ 372 mAh/g) per rendere conveniente l’uso di essa negli accumulatori ad alta capacità (> 1000 mAh/g) per veicoli elettrici, l’applicazione di film funzionali a base di Si sulla superficie delle particelle di grafite è una possibilità per ottenere un incremento di capacità del materiale. Tuttavia, le tecniche convenzionali di deposizione sono dispendiose ed ecologicamente insostenibili, poiché fanno uso di reagenti generalmente nocivi e di alte temperature di processo.

Per entrambi gli scopi, la deposizione chimica da fase vapore stimolata da plasma, implementata in un reattore tubolare al plasma
a bassa pressione alimentato con monomeri di organosilicio e con Ar, può essere una valida alternativa di modifica rapida della superficie della grafite a bassa temperatura.

Infatti, le proprietà di flusso della grafite TIMREX® sono state migliorate grazie alla deposizione di un film non continuo, costituito da una distribuzione di nanoparticelle dell’ordine di 10 nm, capace di ridurre l’intensità delle forze di van der Waals responsabili dell’attrazione tra le particelle di polvere. In questo modo, la grafite originariamente coesiva è stata resa simil-fluida con un flusso totale di gas di processo minimizzato e con meno dell’1 % in peso di Si depositato. Una relazione di tipo Arrhenius è stata individuata tra incremento di fluidità ed energia investita per massa di monomero W/FM, opportunamente corretta per il rapporto tra i flussi di Ar e monomero, che fa della misura di fluidità un valido mezzo sia di studio del processo di deposizione sia di caratterizzazione di polveri modificate estremamente difficili da caratterizzare in altro modo.

Al fine di aumentare la percentuale in peso del Si depositato oltre il 5 %, il processo al plasma è stato quindi ripetuto sulla stessa polvere, finché dopo 6 passaggi un film continuo dell’ordine di 100 nm di spessore non è stato individuato, corrispondente a una percentuale in peso di Si depositato di circa il 7.9 %, e senza compromissione delle proprietà di flusso. Il film è stato osservato con il microscopio elettronico a scansione e a fascio ionico e caratterizzato chimicamente con la spettroscopia Raman e la spettroscopia fotoelettronica a raggi X, che hanno rivelato un materiale costituito da carburo di silicio amorfo idrogenato con una piccola contaminazione da O. Tuttavia, elettrodi di prova preparati con grafite TIMREX® rivestita da un tale materiale hanno mostrato inconvenienti, in termini sia di erogazione che di ritenzione della capacità. La ragione di ciò è la composizione chimica sfavorevole del film, che rende il Si perlopiù elettricamente inattivo, compromettendo anche l’attività del substrato grafitico, ed è principalmente attribuibile all’eccesso di C nel film.

Di conseguenza, sebbene già ottimale nel miglioramento delle proprietà di flusso di micropolveri di grafite, futuri ulteriori miglioramenti e studi sono necessari affinché il processo di deposizione al plasma a bassa pressione in un reattore tubolare permetta di ot-
tenere la grafite ad alta capacità della prossima generazione di batterie agli ioni di Li.