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Abstract

Understanding how the individuals from a certain city or region plan their activities is very useful
for many applications, such as travel demand modelling, land use planning and redevelopment, or
market research and analysis. Accurate multi-activity scheduling is a non-trivial problem for its
number of dimensions, and the amount of information involved in human decisions. The concept
of fixed and flexible activities allows to study this problem at two levels. It can be assumed
that mandatory activities like rest, work or study, are already prearranged, and non-mandatory
activities like shopping, eating or running errands are planned on-the-fly. This paper proposes
an algorithm that emulates personalized multi-activity scheduling of flexible activities within
well defined time windows. The algorithm uses a mental map composed by an Activity agenda
and a Set of known places obtained from real data. It calculates the maximum utility activity-trip
chain according to temporal and spatial conditions of the decision. It solves the number of the
activities to be performed, the sequence, the locations, the start times and the activity durations.
Transportation modes of the trips between consecutive activities are also predicted. This method
(i) doesn’t prioritize or fix any scheduling dimension, (ii) uses common available data (i.e. travel
surveys and land use datasets) as its input, (iii) generates personalized solutions, and (iv) can
be configured to schedule flexible activities of a full population in tractable times. In order to
show the efficiency of this approach flexible activity patterns from Singapore were extracted
from a travel survey carried out in 2012, and the method was tested with a fraction of the
survey observations which were not used for the estimation of the models. Five types of flexible
activities were included. Similar shapes of general travel time and activity duration distributions
between real and predicted activity-trip validate the potential of the proposed algorithm. Finally,
the method was used for within day re-planning of a synthetic population using MATSim,
a well known agent-based transport simulation platform. Results show that the algorithm is
computationally feasible for large-scale scenarios.
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1 Introduction

Understanding how the individuals from a certain city or region plan their activities is very useful
for many applications, such as travel demand modelling, land use planning and redevelopment,
or market research and analysis. These models become a powerful tool when they can be
used to perform thousands or millions of predictions leading to macroscopic insights from
microscopic changes. Accurate multi-activity scheduling is a non-trivial problem for its number
of dimensions, and the amount of information involved in human decisions. These decisions
depend on intrinsic variables related to the behaviour of the person who is planning, and on
extrinsic variables related to the state of the rest of the world where the decision is taken. As
mentioned by (Feil, 2010) the fundamental problem of activity scheduling is its combinatorial
complexity due to its number of dimensions (activity durations, locations, number of activities,
activity types, activity sequence, etc.). The modeller needs to develop solutions which allow
solving the problem in tractable time.

Complex methods and algorithms have been proposed to model these multi-activity scheduling
decisions with spatio-temporal restrictions (Arentze and Timmermans (2000), Doherty et al.
(2002), Miller and Roorda (2003), Arentze and Timmermans (2004), Feil (2010)). Other methods
are based on addressing only the next activity (Kuhnimhof and Gringmuth (2009), Arentze and
Timmermans (2009)) or performing continuous planning without taking into account activity
locations (Märki et al. (2014)). Many of these models are based on strong assumptions, such as
a fixed number of the activities to be scheduled, or fixed activity durations, producing restricted
results. One of the most common assumptions imposed in some heuristic or probabilistic models,
such as Miller and Roorda (2003), Arentze et al. (2010), Kuhnimhof and Gringmuth (2009), is
the prioritization of some scheduling dimensions during the decision process. That means, the
scheduling process is carried out in a predefined and fixed order e.g. activity type -> location ->
duration -> activity type -> etc. With this restriction, decisions in which for example a location
is a priority cannot be modelled.

The concept of fixed and flexible activities has been used in several activity-based modelling
studies (Arentze and Timmermans (2000), Miller (2005), Chen and Kwan (2012), Doherty et al.
(2002)). These concepts allow studying activity scheduling at two levels. The first level is
focused on the activity skeleton, which is composed of mandatory or fixed activities. The most
important or primary human activities, like Home, Work and Study activities, belong to this level.
Primary activities have been extensively studied by transportation modellers and urban planners
(Hansen (1959), Small (1982), Vovsha and Gupta (2013), Ordóñez Medina and Erath (2013)).
They try to find spatial patterns within geographical regions like cities, and temporal patterns
during one day or longer periods of time, for example weeks. The second level is focused on





      

non-mandatory or flexible activities. Most of the secondary human activities belong to this
level. The challenge at this level is the combinatorial variability of these activities, which makes
it more difficult to find a small number of patterns that can explain flexible activity decision
making. For example, when analysing a travel survey containing daily activity chains of 1% of
the population of a city, there are more than 900 combinations of activities. By contrast, there
are just 40 combinations of primary activities after removing secondary activities. If primary
activities in this dataset are just categorized as Home and Work (i.e. Studying is a type of work),
only 10 combinations can be found. Thus, it seems a good strategy to study separately fixed and
flexible activities to face this problem. This study is focused on flexible activities scheduling,
assuming that fixed activities are already scheduled.

This work proposes a multi-activity scheduling method for flexible activities which (i) doesn’t
prioritize or fix any scheduling dimension, (ii) uses common available data (i.e. travel surveys and
land use datasets) as its input, (iii) generates personalized solutions, and (iv) can be configured
to schedule flexible activities of a full population in tractable times (although its complexity
grows with the length of the time window).

Each prediction is personalized, i.e. it uses socio-demographic characteristics and matched
behavioural parameters of the decision maker. In the first step of the prediction, this information
is used to estimate an Activity agenda of flexible activities and a set of possible activity locations
for them (choice set). An Activity agenda is a collection of possible activities to be performed
with a range of possible durations and frequencies as proposed by (Axhausen, 2006). These
two elements model a simple mental map of the decision maker. This first step won’t be fully
described in this paper, but details can by found in Ordóñez Medina (2015). In the second step
a graph-based utility maximization algorithm takes the Activity agenda, and the Set of known
locations, the locations where the decision maker plans to start and end his/her activities, and the
available time budget, to find an optimal flexible activity-trip chain (the prediction). This utility
maximization algorithm is based on (i) the time geography concepts introduced by (Hägerstrand,
1970) and developed by (Wilson, 2008), and (ii) the idea of using spatio-temporal graphs for
activity-trip chain optimization proposed by (Arentze and Timmermans, 2004). This algorithm
also uses the functions described by (Charypar and Nagel, 2005) to measure activity utilities and
trip disutilities. Information about car-availability and dynamic travel times can be included in
this algorithm, as they would affect the choices of location and transportation mode. In simple
words, if the method is told who the decision maker is, where he/she is, how much free time
he/she has and where he/she has to be after that time, the model predicts a possible and detailed
flexible activity-trip chain which on average corresponds to the patterns of the city or region,
and maximizes his/her utility.

Next section describes the multi-activity scheduling algorithm in detail, and results of basic tests





      

with controlled inputs are presented. Then, to show the applicability and efficacy of this approach
with real data, flexible activity patterns for Singapore were extracted from the household interview
travel survey carried out in 2012 (HITS 2012). This survey contains reported motorized trips
of 1% of the population during one day. A dataset with information of more than one hundred
thousand activity locations, and estimated dynamic travel times from a large-scale agent-based
transport model implemented for Singapore (Erath et al. (2012)) were also used for more realistic
calculations. Five flexible activity type (eating, shopping, social activities, running errands,
recreation) were included in the model. Activity duration and travel time distributions were also
extracted from the travel survey. Thus, in the third section results of testing the method with a
fraction of the survey observations which were not used for the estimation of the models, are
presented and analyzed. In the section four, to assess the computation feasibility and efficiency
of the approach, the method was used for within day re-planning of a synthetic population using
MATSim, a well known agent-based transport simulation platform for large-scale scenarios.
Finally some conclusions and future work are discussed in the last section.





      

2 Spatio-temporal network algorithm to calculate optimal
activity-trip chains

In this paper a multi-activity scheduling algorithm is proposed. It finds an approximately optimal
activity-trip chain for a given time window, according to its activity perform utilities and its
traveling dis-utilities. If a person has more than one free time period during one day, this process
must be run more than once. Next, the proposed algorithm is explained in detail and tests with
controlled inputs are presented.

2.1 Input information

The inputs include the origin o and destination d, start time st and latest end time et, an Activity
agenda and a Set of known places.

An Activity agenda G is a set of n activities intended to be performed by a person. However,
these activities are not set in time (start time and duration) or space (location). The information
related to each activity ai is a typical duration d and a typical frequency f . These two attributes
can be modeled as random variables, estimating probability distributions from observations.
Introduced by (Axhausen, 2006), an Activity agenda provides a level of abstraction to model
flexible activity decisions. It restricts the combinatorial problem from a universal set of possible
activities to a controlled set of activities included in the agenda. Given an activity skeleton
with fixed activities planned during a defined time period and time windows without planned
activities, the agenda can be used to plan flexible activities during these free times. Models by
(Nurul Habib and Miller, 2009) and (Nijland et al., 2012) also aim to generate personalized
activity agendas with an econometric and a Bayesian approach respectively. In TASHA, an
activity-based model proposed by (Miller and Roorda, 2003), they developed similar procedures
for the proposed activity generation step.

As this work also aims to resolve the locations where these flexible activities are performed,
another concept must be introduced, that is the Set of known places. When a person plans
flexible activities, it can be assumed that he/she only takes into consideration a limited number
of activity locations. Known places is not the best name for this set, as a decision maker can
know many places which he doesn’t take into consideration or even is reluctant to travel to.
Regarding the set of alternatives in a general choice, (Narayana and Markin, 1975) introduce 5
subsets: Unawareness set, Awareness set, Inept set, Inert set and Evoked set. Unawareness set
and Awareness set are exclusive and, as the names imply, if the decision maker is aware of the





      

alternative, it belongs to the Awareness set, or otherwise to the Unawareness set. Inept set, Inert
set and Evoked set are subsets of the Awareness set. If the decision maker has a negative image of
an alternative it belongs to the inept set, if the image is neutral to the Inert set and if it’s positive
to the Evoked set. It is therefore necessary to point out that in this paper the term known places
only refers to the locations where the decision maker is willing to travel to, i.e. locations that
belong to the evoked set in the decision maker mental map. Thus, a small set of m known places
P is the second piece of input information given to this multi-activity scheduling method.

2.2 Spatio-temporal network definition

The main algorithm consists of recursively constructing a spatio-temporal network or directed
graph (V, E) inside the space-time prism defined by the initial and final states (see Hägerstrand
(1970)). Each node is defined by a geographic location and a time stamp. Nodes are
only created at known places and at specific times according to a defined time bin δt, i.e.
∀(p, t) ∈ V, p ∈ P ∧ t = st + k ∗ δt with k ∈ Z. This controls the size of the network. Trips and
activities are represented by links of the network, i.e. V = A∪T where A is the set of activity-links
and T is the set of trip-links. The nodes of an activity-link must have the same geographical
location (∀l ∈ A| f romNode(l) = (pF, tF) ∧ toNode(l) = (pT, tT ), pF = pT ∧ tF < tT) and
the nodes of a trip-link must have different geographical locations (∀l ∈ T | f romNode(l) =
(pF, tF) ∧ toNode(l) = (pT, tT ), pF <> pT ∧ tF < tT). Each activity-link has also an
activity type or purpose associated type(l), and trip-links have a transportation mode associated
mode(l).

Utilities of the activity links are calculated using an extension of the activity utility function
presented in Charypar and Nagel (2005). This version, presented in Equation 1 and illustrated in
Figure 1, incurs a penalty if the same activity is performed more than once during a period of
time T . Hence, the utility of an activity-link within an activity-trip-path depends on previous
activity-links of the path from the origin. This restricts the information sharing between paths
with common nodes and the Dijkstra algorithm cannot be applied to simplify the network
construction. Travel disutility functions from (Charypar and Nagel, 2005) were also employed





      

Figure 1: Activity performing utility as a function of the its duration and the time lapsed since
the last time the same activity activity was performed.

for the travel link costs, and using travel times between known places.

U (td, tl ) = βTx

(
td + g(tl )
T0 + g(tl )

)

g(tl ) =



αeγ(T−tl ) − α, with tl < T

0, with tl ≥ T

γ =
1
T

ln
(
T + α
α

)

Thus: g(tl )tl =




0, when tl = T

T, when tl = 0

(1)

Where td is the duration of the activity, Tx is the typical duration, T0 is the minimal duration, β
is the marginal utility of performing the activity, tl is the time lapsed since the last time that
activity was performed, g(tl ) is its penalty function, α is a parameter to determine how strong is
the applied penalty (see Figure 1), and γ is just a function of α.

2.3 Network construction and optimal path detection algorithm

The process starts at the initial node (o, st), and the objective is to find the path to the final node
(d, et) with the maximum utility. From a node all possible activity links and trip links can be
created. When a new node is created during the recursive algorithm, the path from the initial





      

node is saved. When any previously created node is reached again through a new path from the
origin, just the path with the maximum utility is maintained. The simplified pseudocode of this
recursive algorithm is presented in Algorithm 1 and Algorithm 2.

Algorithm 1 Maximum utility path
1: constants:
2: time_bin ← Fixed time bin
3: procedure getMaximumUtilityPath
4: parameters:
5: startTime ← Start time
6: startPlace ← Origin
7: endTime ← End time
8: endPlace ← Destination
9: agenda ← Activity agenda
10: places ← Set of known places
11: modes ← Transportation modes
12: begin:
13: global path ← null.
14: currentPath ← empty.
15: f ir stNode ← createNode(startPlace, round(startTime, time_bin)).
16: addNodePath(currentPath, f ir stNode).
17: addLinkNode(currentPath,round(endTime,time_bin),endPlace,agenda,places,modes).
18: return path.

Algorithm 1 prepares the input data, the output variable (path) and calls the recursive Algorithm
2 at line 17. Algorithm 2 checks firstly if the current node is the final node (same time and
geographic position) and checks if this complete path (currentPath) has a better utility than the
current maximum utility path (path). If so, the maximum current path is updated at line 13. If
the current node is not the final node, the network can grow in two ways: (i) staying at the same
location creating activity links and (ii) moving to another location creating trip links.The loop
starting at line 17 creates all possible activity links and continue the process recursively at line
24. The loop starting at line 27 creates all possible trip links and continue the process recursively
at line 34. The Activity agenda controls the type of the activities and their duration at line 21
while the Set of known places controls the destinations at line 27. Another key point in the
algorithm is the time discretization using the constant time_bin. Continuous times are rounded
according to this value at the line 15 of Algorithm 1 and at lines 16, 30 of Algorithm 2.

The implemented recursive algorithm is more restrictive than the presented pseudocode. It cuts
out a branch when the utility of the current path plus an expected utility according to the available
time and current location doesn’t exceed the current maximum utility. Transportation modes are





      

Algorithm 2 Add next link and node
1: procedure addLinkNode
2: parameters:
3: currentPath ← Path from the origin to the current node
4: endTime ← End time
5: endPlace ← Final destination
6: agenda ← Activity agenda
7: places ← Set of known places
8: modes ← Transportation modes
9: begin:
10: currentNode ← lastNode(currentPath).
11: if currentNode.place == endPlace AND currentNode.time == endTime then
12: if path == null OR utility(currentPath) > utility(path) then
13: path = currentPath.

14: else
15: lastTravelTime ← bestTravelTime(currentNode.place, endPlace,modes).
16: time ← round(endTime − lastTravelTime, time_bin).
17: while time > currentNode.time do
18: node ← createNode(currentNode.place, time).
19: duration ← time − currentNode.time.
20: for activity ∈ currentNode.place.activities do
21: if possibleActivityDuration(agenda, activity, duration) then
22: createActivityLink (currentNode, node, activity.type).
23: addNodePath(currentPath, node).
24: addLinkNode(currentPath,endTime,endPlace,agenda,places,modes).
25: removeNodePath(currentPath, node).
26: time ← time − time_bin.
27: for place ∈ places do
28: for mode ∈ modes do
29: travelTime ← travelTime(currentNode.place, place,mode).
30: time ← round(currentNode.time + travelTime, time_bin).
31: node ← createNode(place, time).
32: createTripLink (currentNode, node,mode).
33: addNodePath(currentPath, node).
34: addLinkNode(currentPath,endTime,endPlace,agenda,places,modes).
35: removeNodePath(currentPath, node).





      

Figure 2: Sensitivity of the highest utility activity-travel path to the marginal utility of performing
the home activity (βhome). Time window from 17:00 to 23:00.

also better modeled, saving the location of the car (if it was available in the beginning). When
the mode of a trip link is not car, the last car location is saved. Thus, the car mode is not available
for the next locations till the saved car location is reached again. The implemented algorithm
also ensures that no path has two consecutive trip links. Maximum number of activities, or
minimum activity duration can also be defined.

Thus, when the construction process finishes, the path with the maximum utility to the final node
is found automatically. This path models an optimal and fully characterized activity chain of
flexible activities, including the number of the activities, the order, the start times, the duration
of the activities and the places where these are performed. Optimal transportation modes of the
trips between the locations are also part of the solution.

2.4 Initial tests with controlled inputs

Figure 2 illustrates an initial test of shortest paths of activities and trips found by this algorithm.
Random known places of two types of flexible activities (shopping and practicing sports) are
represented by colored dots on the map. After varying the marginal utility of performing the
home activity, utility locations, number of activities and sequence remain the same, but activity
durations vary according to how valuable is to go back home.





      

Figure 3: Activity-trip chain scheduled by the proposed algorithm, with a high price for car mode
and working facilities located near home. Time window from 17:00 to 23:00.

Figure 3 shows another characteristic of the proposed algorithm mentioned before. In this test
the utility of an activity-trip path is penalized if the car mode is available but the vehicle doesn’t
end in the final destination. The algorithm tracks the location of the vehicle. Besides, working
facilities are intentionally located near home, and the car trips are modeled 250% more expensive
than public transport trips. For these reasons the algorithm returns an activity-trip path in which
the decision maker prefers to travel by public transport to perform activities near his/her work
location, return to his/her work location for the car and perform a short trip from there to home.





      

3 Application of the algorithm using real data from Singapore

To apply the proposed multi-activity scheduling algorithm in real scenarios it’s necessary to
estimate Sets of known places and Activity agendas (Mental maps) from real data. Figure 4
summarizes the processes developed (bright boxes), and data used (dark boxes) for this purpose
in the Singapore scenario. The multi-activity scheduler is represented by the light box on the
bottom-left corner. This method uses commonly available datasets represented by the two dark
boxes on the top: (i) the spatial information (transportation network or travel times, and activity
facilities information) on the left and (ii) a travel or activity survey on the right. Specialized
surveys could also be carried out for better estimations.

The boxes with a thick border on the upper half of Figure 4 represent data and processes applied
to a population dataset. Then, to extract temporal and spatial activity patterns of the population,
these processes only need to be executed once. In contrast, the boxes at the bottom half represent
the data and processes which must be applied for every activity scheduling, using the results from
the population processes. The "Go to place of type X" models are binary logistic models to predict
how likely it is for a person to visit a certain type of place based on his/her socio-demographic
characteristics. The "Perform activity X" models are similar binary logistic models, but to predict
how likely it is for a certain decision maker to perform a certain activity. These two sets of
models, along with the extraction of activity duration and travel time distributions, generate the
input parameters for the Selection of known places and the Activity agenda estimation. Next,
these models design to extract Sets of known places and Activity agendas (Mental maps) are
summarized; for more details please check Ordóñez Medina (2015).

3.1 Mental map extraction models

The binary logistic models are estimated with 90% of the respondents from a travel survey
(training set), a database of activity facilities, and estimated multi-modal travel times between
these facilities. The remaining 10% of the observations are used for validation in the next section.
The following personal attributes from the Singaporean (Household interview travel survey)
carried out in 2012 (HITS 2012) were included:

• Age
• Gender
• Car availability
• Ethnicity: The reported ethnicities are Chinese, Indian, Malay and others.
• Accessibilities: For each type of place, a measurement of accessibility was calculated





      

Figure 4: Processes for multi-activity scheduling using common datasets.
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from each primary activity locations of every person (i.e. residence, workplace, school,
university, etc). The general accessibility of a person to a place type is the maximum
accessibility among all his/her primary locations. Thus if for example, the workplace
of a person is very accessible to shopping places, but the home residence is not, the
shop-accessibility measurement for that person is still high. Each measurement was
calculated with the following formula: Acc(pi, t) =

∑
pj∈P(t) (A(p j ) β)eαT (pi,pj ). In this

equation t is a type of place, P(t) is the set of facilities of type t, T (pi, p j ) is the travel
time between the facilities pi and p j , and A(p j ) is the attraction level of the jth facility.
Finally, α and β are parameters calibrated to optimize the linear relation of the accessibility
measurement with the duration of activities performed at each place type.

• Size of household: Number of people in the household
• Role in the household: Four roles were defined. A main role is assigned to the person
with highest income in the household. A partner role is assigned to the person with most
similar age to the person with the main role. Members younger and older than the main





      

Place type Purpose Age Gender ... Outcome Description
Park rec 40 Female ... 0 Rec is related to

community centre
Community centre work 35 Male ... N/A Work is not a flexible

activity
Shopping place shop 45 Male ... N/A Shop is not related with

community centre
Community centre social 35 Male ... 1 Social is related with

community centre

Table 1: Some examples of the classification of trips for the "Go to community centre" model.

and partner persons are assigned to the younger and older roles respectively.
• Income: Net income of the person
• Main income: The income of the person with highest income within the household
• Home time: The time the person stays at home during the day
• Work time: The time the person spends working or studying during the day

The place types included in the method are recreational facilities, parks, community centres,
homes of others, high-demand shopping places, low-demand shopping places, high-demand
eating places, and low-demand eating places. The categorization of a place as high demanded or
low demanded is determined by its size and/or the number of trips reaching that place according
to the travel survey. One place (location or building) can be classified into multiple types.
Flexible activities included are eating, shopping, social meetings, recreational activities, and
running errands. A binary logistic model was developed for each type of place, as well as for each
flexible activity. With 8 place types and 5 activities, a total of 13 models were estimated. Each
trip to a flexible activity in the travel survey can represent an observation (a set of input variables
and an outcome) for these models. For each reported trip the activity purpose and the place type
of his/her destination are known. The table 1 shows some examples of the classification of trips
for the "Go to community centre" model. Binary choices for the "Perform activity X" models are
much simpler, if a person travels to perform a certain flexible activity during the reported period
(e.g. one day), that person is counted as a positive observation for the corresponding activity
model and vice versa.

3.1.1 "Go to place of type X" models

Figure 5 shows some of the dependencies of socio-demographic characteristics on travelling to or
not to certain place types. Using these figures, 8 linear utility functions were formulated. They
represent the influence of some of the mentioned personal attributes on travelling or not to each





      

Figure 5: Some dependencies on the willingness to travel or not to travel to places of different
types, based on socio-demographic attributes. The height of each bar represents the
fraction of the number of observations which the person goes to the corresponding
place type, over the total number of observations in the corresponding category. The
color of each bar represents the absolute number of observations in the corresponding
category, wither color means more observations.
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place type. logistic regressions were used to estimate the coefficients of these functions. For the
sake of brevity table 2 summarizes the significance of the 11 socio-demographic attributes in the
8 "Go to place of type X" models. For the coefficient estimation, dummy variables were created
for categorical variables while linear scaling was applied to continuous variables to limit their
ranges to the interval [0, 1].
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Table 2: Summary of the "Go to place of type X" choice models absolute impact. In this table,
green represents a positive dependency while red refers to a negative one. Blue color
means that the relation between the parameter and the outcome is not always increasing
or decreasing. Deeper shades represent higher impact or higher absolute value of the
utility parameter. The letter "s" means that the variable is significant according to
the t-test. Yellow cells are significant categorical variables. The text in these cells
represents the order from the most to the least significant category. For ethnicity
"c" means Chinese, "i" refers to Indian, "m" is for Malay and "o" means other. For
household role "m" is for the main role, "p" means the partner role, "o" stands for the
older role and "y" is the younger role.

3.1.2 "Perform activity X" models

In a similar way to the "Go to place of type X" models, linear utility functions were modelled
for each of the 5 "Perform activity" models to represent dependencies. Figure 6 presents some
of the dependencies found in the travel survey. Table 3 summarises the priorities of the 11
attributes in the performance or non-performance of these 5 flexible activities. For the coefficient
estimation, dummy variables were created for categorical variables and linear scaling was applied
for continuous variables to fix their ranges to the interval [0, 1].





      

Share of performing eating activities
 by accessibility to eating places
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Figure 6: Some dependencies on the performance or non-performance of flexible activities based
on socio-demographic attributes. The height of each bar represents the fraction of the
number of observations which the person performs the corresponding activity, over
the total number of observations in the corresponding category. The color of each bar
represents the absolute number of observations in the corresponding category, wither
color means more observations.

3.2 Validation

As mentioned before, 10% of the travel survey respondents were taken aside from the beginning
of the process for validation purposes (test set). To validate the efficiency of the proposed
methodology the multi-activity scheduling algorithm was executed for each respondent in the
test set (566 persons). These predictions took 31 seconds using a one-thread java program
running on a windows machine with a common processor (intel i7) and running one thread; the
full population of Singapore would take 8.6 hours with this rate. Furthermore, for each person
in the test set, other maximum utility activity schedules were calculated, but using different
selection methods for the known places and randomly constructed agendas. Figure 7 presents
the result of comparing these methods with the real schedules. For the chart at the top, flexible
activity durations were extracted from the reported trips, from random input predictions, and
from the developed systematic predictions. Systematic predictions were more accurate, with
very short activity durations for the random draws. Although the same activity utility function
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Table 3: Summary of the "Perform activity X" choice models absolute impact. In this table, green
represents a positive dependency while red refers to a negative one. Blue color means
that the relation between the parameter and the outcome is not always increasing or
decreasing. Deeper shades represent higher impact or higher absolute value of the utility
parameter. The letter "s" means that the variable is significant according to the t-test.
Yellow cells are significant categorical variables. The text in these cells represents the
order from the most to the least significant category. For ethnicity "c" means Chinese,
"i" refers to Indian, "m" is for Malay and "o" means other. For household role "m" is
for the main role, "p" means the partner role, "o" stands for the older role and "y" is the
younger role.

was used for both estimations, with the same duration distribution for each flexible activity, the
number of activities predicted with random inputs resulted higher. These results were expected
because the agendas were not restricted for the random input predictions and the utility raises
when many short activities are scheduled (due to the performing activity utility function). On
the other hand, restricted agendas and the extension of the performing activity utility function,
which penalizes continuous activities of the same type, generate shorter activity chains with
longer activity durations. The second bar chart shows that the number of predicted activities
were quite similar, except for running errands with 40% less observed activities.

Figure 8 presents a crucial issue in transportation studies, travel times. This figure shows
comparisons of travel time distributions of two flexible activities, on the top eating activities
and below shopping activities. These comparisons are directly related to the selection of known
places. The first method selects the known places randomly (i), the second selects places
according to travel time distributions (ii), the third randomly selects using the results from the
binary regressions described before (iii), and the fourth selects the 20 best locations according to
type and travel time distributions (iv)(deterministic). Full random selection (i) can not reproduce
the observed distributions at all (as expected), while optimal deterministic selections (iv) fails
reproducing the long tail of the observed distribution. In contrast using travel time distributions
(ii) and (iii) from the training data (5100 people) reproduces better the observed distributions of
the 566 testing records.





      

Figure 7: Comparison of maximum utility predictions made with socio-demographics and
geographical information against maximum utility predictions using random inputs.
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Figure 8: Travel time kernel densities of eating and shopping activities. Prediction capabilities
after using four different known place selection methods can be compared.
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Figure 9: Prediction comparison of the total number of recreational activities and activity
performance share by age. For each interval the share is obtained dividing the number
of people with a recreational activity scheduled over the total number of people in that
interval

Number of scheduled recreational activities by age

Age

N
um

be
r 

of
 a

ct
iv

iti
es

0
5

10
15

7 15 24 32 41 50 58 67 75

Observed
Random synthesis
Systematic synthesis

Recreational activity share by age

Age

S
ha

re

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

7 15 24 32 41 50 58 67 75

Finally to assess the correlation of socio-demographic characteristics on the predicted schedules,
Figure 9 compares the random input prediction with the systematic prediction at 10 different
age intervals. The systematic method resulted very accurate using the high correlation of age
in performing recreational activities and going to community centres. On the other hand, the
random input prediction is just related with the number of respondents at each age interval.
This can be appreciated comparing the total number of activities on the left with the activity
performance share on the right.





      

4 Agent-based simulation

In this section the proposed scheduler is incorporated to MATSim for within day re-planning of
secondary activities. MATSim is an agent-based transport simulation platform for large-scale
scenarios. Figure 10 summarizes the MATSim process. MATSim is basically an evolutionary
algorithm for the activity plans of the agents. This means the daily plans of the agents evolve
when many simulations of the same day are executed and scored. In the MATSim mobility
simulation (Mobsim) thousands or millions of agents representing a population interact in a
highly detailed transport supply. Then, re-planning modules mutate some of the plans in different
ways. The plans change in Time, Routes, Modes, Activities, etc. After many iterations the
general utility of the population converges obtaining a user-equilibrium.

To test the multi-activity scheduler the MATSim process was executed with a 1% sample of
the Singaporean agents (20,000). This extended version of MATSim allows agents to start
the process with incomplete activity plans (a plan with fixed activities or a skeleton as called
by (Doherty et al., 2002)). Each iteration, 10% of them were selected randomly to modify
their flexible activities i.e. to start the simulation with incomplete plans. With this, scheduling
events are highly heterogeneous due to the different conditions of the agents (agendas, known
places, experiences travel times). In other words, the decisions are personalized, as every
agent experiences the day in a different way (even if they live and work at the same locations).
Thus, when an agent finds free time during its plan the proposed algorithm schedules activities
on-the-fly. This process in MATSim is commonly called within-day re-planning.

Results of these initial experiments show firstly that the proposed scheduler is computationally
feasible using parallel processes in charge of several scheduling tasks. Each iteration took in
average 20 mins using a computer with 24 cores. Furthermore, the utility of agents increases
because their activity schedules complexity increases. Figure 11 shows the evolution of the
utilities after running 50 MATSim iterations with fixed agendas, fixed primary activities,
but sharing information of secondary activity locations and experienced travel times among
themselves. Future work is needed to include the mental map models of the previous section in
MATSim and validate those results.





      

Figure 10: MATSim process.

Figure 11: Evolution of the daily utilities of 20,000 agents within the MATSim evolutionary
algorithm, due to the increase of their activity schedules complexity.





      

5 Conclusions and outlook

In this paper, personalized flexible activity scheduling was studied. A recursive multi-activity
scheduling algorithm that doesn’t prioritize any scheduling dimension was design and imple-
mented. The utility-maximization algorithm returns the sequence of activities without imposing
any size and the trips between them. For each activity the method calculates start time, duration,
location and type; and for each trip the algorithm returns the travel time and the mode. Tests
with controlled inputs demonstrated the potential of the model. It is possible to calibrate the
number and durations of specific activities varying the corresponding utility parameters. Spatial,
temporal and tour restrictions can also be imposed.

One of the main goals was to use commonly available data to validate the approach. Flexible
activity patterns of the city of Singapore where extracted, estimating 13 Binary logistic regression
models from theHousehold interview travel survey carried out in 2012. Results successfully show
that using socio-demographic and geographical characteristics as an input of a maximum-utility
activity scheduler, improves prediction capabilities. The Activity agenda concept successfully
allowed to restrict the activity type and accurate activity durations were also achieved. The Set of
known places concept was employed to model destination choice. It is based on the assumption
that the type of places where people travel is related with their socio-demographic characteristics.
Accurate travel time distributions by activity type were predicted.

Initial tests using an activity-based multi-agent simulation platform (MATSim) were carried out.
The multi-activity scheduler were included in MATSim for within-day re-planning of flexible
activities. Results show that the process is computationally feasible (20 minutes for iteration of a
1% sample using 24 cores for parallel within-day replanning). Furthermore, MATSim agents
increase their utility just increasing the complexity of their activity chains.

The final goal of this work, which is not presented in this paper, is to use the proposed multi-
activity scheduler and the Mental map concepts together to model flexible activity demand
in MATSim. With this, longer time horizons can be simulated as fixed activities present
less variability. Furthermore, decisions such as change the order of activities to avoid traffic
congestion or a location choice based on future opportunities will be able to be modeled. On
the computation issue, a duration of 8 hours predicting flexible activities of a full population
is a tractable time. Furthermore, the method is fully parallelizable as the proposed activity
scheduling for one person doesn’t depend on other people. If shorter computation times are
needed the activity scheduling algorithm can be relaxed, assuming that the perform activity
utility doesn’t depend on previous activities. In this case dynamic programming can be applied to
find the optimal activity-trip chain, and the complexity would drop from O(2n) to O(nlog(n)).
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