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Abstract

This thesis investigates the theoretically properties of commonly used
optimization methods on the saddle point problem of the form

min
θ∈Rn

max
ϕ∈Rm

f (θ,ϕ),

where f is neither convex in θ nor concave in ϕ. We show that gradient-
based optimization schemes have undesired stable stationary points;
hence, even if convergent, they are not guaranteed to yield a solution
to the problem. To remedy this issue, we propose a novel optimizer
that exploits extreme curvatures to escape from non-optimal station-
ary points. We theoretically and empirically prove the advantage of
extreme curvature exploitation on the saddle point problem.
Moreover, we explore the idea of using curvature information even fur-
ther and investigate the properties of second-order methods in saddle
point optimization. In this vein, we theoretically analyze the issues that
arise in this context and propose a novel approach that uses second-
order information to find a structured saddle point.
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Chapter 1

Introduction

1.1 Saddle Point Problem

Throughout the thesis, we consider the problem of finding a structured sad-
dle point on a smooth objective, namely the saddle point problem (SPP). The
optimization is done over the function f : Rn+m → R, parameterized with
θ ∈ Rn,ϕ ∈ Rm, and the goal is to find a pair of arguments such that f is
minimized with respect to the former and maximized with respect to the
latter, i.e.,

min
θ

max
ϕ

f (θ,ϕ). (1.1)

Here, we assume that f is smooth in θ and ϕ but not necessarily convex in
θ or concave in ϕ. As we will see in the upcoming chapter, this problem
arises in many applications: e.g., probability density estimation [10], robust
optimization [21], and game theory [15].

Solving the saddle point problem of Eq. (1.1) is equivalent to finding a point
(θ∗,ϕ∗) such that

f (θ∗,ϕ) ≤ f (θ∗,ϕ∗) ≤ f (θ,ϕ∗). (1.2)

holds for all θ ∈ Rn and ϕ ∈ Rm. For a non convex-concave function
f , finding such a saddle point is computationally infeasible. For example,
even if the parameter vector ϕ∗ is given, finding θ∗ is a global non-convex
minimization problem that is generally known as being NP-hard.

Local Optima of Saddle Point Optimization Instead of optimizing for a
global saddle point, we consider a more modest goal: finding a locally op-
timal saddle point, i.e., a point (θ∗,ϕ∗) for which the condition of Eq. (1.2)

1



1. Introduction

holds true in a local neighborhood

K∗γ = {(θ,ϕ)
∣∣ ‖θ− θ∗‖ ≤ γ, ‖ϕ−ϕ∗‖ ≤ γ} (1.3)

around (θ∗,ϕ∗), with a sufficiently small γ > 0. We will call such points
locally optimal saddle points1.

Definition 1.1 The point (θ∗,ϕ∗) is a locally optimal saddle point of the prob-
lem in Eq. (1.1) if

f (θ∗,ϕ) ≤ f (θ∗,ϕ∗) ≤ f (θ,ϕ∗) (1.4)

holds for ∀(θ,ϕ) ∈ K∗γ.

Let S f ⊂ Rn ×Rm be the set of all locally optimal saddle points; then the
problem reduces to finding a point (θ∗,ϕ∗) ∈ S f . Here, we do not consider
any partial ordering on members of S f . We assume that all elements in S f
are equally good solutions to our saddle point problem.

1.2 Structure of the Thesis and Contributions

The thesis starts by introducing the reader to the saddle point problem and
by stating the issues that arise for non convex-concave functions. By show-
ing, in chapter 2, that multiple practical learning scenarios give rise to such
a problem, we emphasize the relevance of our following analysis. In chapter
3, we lay out the mathematical foundation for the thesis by introducing the
notation, basic definitions, and assumptions. We define the most important
gradient-based optimization methods for the saddle point problem in chap-
ter 4 and try to build an intuition for their properties by investigating their
behavior on a simple example. Chapter 5 analyzes the dynamics of gradient-
based optimization in terms of stability. Through this analysis, we discover
a severe issue of gradient-based methods that is unique to saddle point op-
timization, namely that it introduces stable points that are no solution to
the problem we are trying to solve. This is in clear contrast to GD for min-
imization tasks. Our observation leads to the design of a novel optimizer
in chapter 6. With the use of curvature exploitation, we can remedy the
identified issue. Moreover, we establish theoretical guarantees for the new
method and provide an efficient implementation. We empirically support
our arguments with multiple experiments on artificial and real-world data.
In chapter 7, we extend our idea of using curvature information in saddle
point optimization: instead of considering only the extreme curvature, we ex-
plore the advantages of using a full second-order method. We theoretically

1In the context of game theory or Generative Adversarial Networks [10] these points are
called local Nash-equilibria. We will formalize this expression and the relationship to locally
optimal saddle points in section 3.1.
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identify the problems that arise in this context and propose a novel second-
order optimizer, that empirically outperforms gradient-based optimization
on the saddle point problem.

The contribution of this thesis is fivefold:

1. We show that the Stable-Center manifold theorem [14] also applies to
the gradient-based method for the saddle point problem. This implies
that a convergent series will almost surely yield a solution that is in
the stable set of the method.

2. We provide evidence that gradient-based optimization on the saddle
point problem introduces stable points that are not optimal and there-
fore not a solution to Eq. 1.1.

3. We propose a novel optimizer, called CESP, that uses extreme curva-
ture exploitation [7] to remedy the identified issues. We theoretically
prove that – if convergent – this method will yield a solution to the
saddle point problem.

4. We prove that optimization methods with a linear-transformed gradi-
ent step, such as Adagrad, can’t solve the issue of GD as they also
introduce non-optimal stable points. For this class of optimizers, we
propose a modified variant of CESP.

5. We use the theoretical framework of the generalized trust region method
[8] to design a second-order optimizer for saddle point problems.

3





Chapter 2

Examples of Saddle Point Problems

The problem of finding a structured saddle point arises in varying forms
in many different applications. We start this chapter by introducing exam-
ples that give rise to a classical saddle point problem with a convex-concave
structure. This case has been studied extensively and provides rich theoreti-
cal guarantees for conventional optimization methods. In the next step, we
motivate the need for local saddle point optimization by providing promi-
nent examples of applications where the objective does not have a convex-
concave structure.

2.1 Convex-Concave Saddle Point Problems

In many practical learning scenarios the saddle point function f – in Eq. (1.1)
– is convex in θ and concave in ϕ. Optimization on such problems has
been studied in great depth and, therefore, we only mention one example
here for completeness. A detailed list of different applications of convex-
concave saddle point problems, ranging from fluid dynamics to economics,
is presented in [4].

Constrained Optimization To solve a constrained minimization problem,
we need to construct the Lagrangian and minimize it with respect to the
model parameters, while maximizing with respect to its Lagrangian multi-
pliers. For example, let’s consider the following quadratic problem

min
x∈Rn

x>Ax− b>x (2.1)

where A ∈ Rn×n and b ∈ Rn. The minimization is with subject to the
constraint

Bx = g (2.2)

5



2. Examples of Saddle Point Problems

where B ∈ Rm×n (m < n). By introducing the Lagrangian multiplier y, we
can re-formulate it as an unconstrained problem.

min
x∈Rn

max
y∈Rm

x>Ax− b>x + y>(Bx− g) (2.3)

Hence, transforming a constrained problem of the form (2.1) into the equiva-
lent unconstrained problem in Eq. (2.3), gives rise to a saddle point problem
of the general form (1.1). In many applications of computer science and en-
gineering, the Lagrangian multiplier y has a physical interpretation and its
computation is also of interest.

2.2 Generative Adversarial Network

In recent years, we have seen a great rise of interest in the (non convex-
concave) saddle point problem, mostly due to the invention of Generative
Adversarial Networks (GAN) by Goodfellow et al. [10]. The introduction
of GANs in 2014 was a significant improvement in the field of generative
models. The principal problem in previous generative models was the diffi-
cult approximation of intractable probabilistic computations. The goal of a
generative model is to capture the underlying data distribution. Observing
that most interesting distributions, as for examples images, are high dimen-
sional and potentially very complicated, we intuitively realize that modeling
the distribution explicitly may be intractable. GANs overcome this problem
by modeling the data distribution in an implicit form. Instead of computing
the distribution itself, it models a device called generator which can draw
samples from the distribution. The breakthrough idea of GANs is embed-
ded in the training procedure of this generator. Inspired by game theory, the
generator is faced with an opponent, the discriminator, during the training
process. The two networks compete in a minimax game where the genera-
tor tries to minimize the same objective the discriminator seeks to maximize.
Iteratively optimizing this objective with respect to both networks leads to
more realistic generated samples over time. Intuitively, this procedure can
be described with the simple game where the generator wants to fool the
discriminator into believing the generated samples are real. Initially, the
generator achieves this goal with very low quality samples. But over time,
as the discriminator gets stronger, the generator needs to generate more re-
alistic samples. Eventually, the generator is able to fool any discriminator
once it can perfectly imitate the data distribution.

2.2.1 Framework

During the learning process the generator is adjusted such that the genera-
tive distribution pg gets closer to the data distribution pd. The distribution
pg is implicitly represented by a neural network G from which we can draw

6
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Figure 2.1: High-level sketch of the GAN structure and the interaction of the
generator and discriminator networks with an MNIST image as input.

instances. The network is parameterized with θ and takes as input a latent
variable vector z that we sample from a noise prior pz. The goal of the
training is to learn a parameterization θ of the network such that its implicit
sample distribution mimics the data distribution, i.e., G(z; θ) ∼ pd.
In order to achieve this goal, GANs use a discriminator network D : X →
[0, 1] – parameterized by ϕ – that distinguishes real samples from generated
samples by assigning each a probability (0: generated; 1: real). The discrim-
inator is trained in parallel with the generator with real samples x ∈ X and
generated samples x̂ ∈ G(z; θ). Through the simultaneous updates, both
networks advance in their task concurrently, inducing the need for their op-
ponent to further improve. A high-level view of the network structure with
MNIST images as data source is shown in figure 2.1.

Objective The two networks are optimized over the same objective f (θ,ϕ).
While the generator tries to minimize the expression, the discriminator tries
to maximize it. Mathematically, this is described with the following saddle
point problem:

min
θ∈Rn

max
ϕ∈Rm

f (θ,ϕ) (2.4)

=min
θ

max
ϕ

Ex∼pd log D(x;ϕ) + Ez∼pz log(1− D(G(z; θ);ϕ))

7



2. Examples of Saddle Point Problems

The original GAN training, proposed by Goodfellow et al. [10], uses an alter-
nating stochastic gradient descent/ ascent approach as shown in Algorithm
1.

Algorithm 1 GAN Training
1: for number of training iterations do
2: Sample {z(1), . . . , z(m)} from noise prior pz.
3: Sample {x(1), . . . , x(m)} from data distribution pd.
4: Update discriminator by ascending its stochastic gradient:

1
m

m

∑
i=1
∇ϕ[log D(x(i);ϕ) + log(1− D(G(z(i); θ);ϕ))]

5: Update generator by descending its stochastic gradient:

1
m

m

∑
i=1
∇θ log(1− D(G(z(i); θ);ϕ))

6: end for

Mathematical evidence on why GANs work In this paragraph, we want to
formalize our intuitive understanding of the GAN training. The following
argument relies on the assumption that for any fixed generator we have
access to an optimal discriminator, which is given by:

D∗G(x; θ) =
pd(x)

pd(x) + pg(x; θ)
, (2.5)

where pg is the modeled distribution that is implicitly defined through the
generator network G [10]. Using the expression for the optimal discrimina-
tor, the training objective in Eq. (2.4) can be re-written as:

min
θ

max
ϕ

f (θ,ϕ) = min
θ

c(θ) (2.6)

=min
θ

Ex∼pd log
(

pd(x)
pd(x) + pg(x; θ)

)
+ Ex∼pg log

(
pg(x; θ)

pd(x) + pg(x; θ)

)
(2.7)

=min
θ
− log(4) + KL

(
pd‖

pd + pg

2

)
+ KL

(
pg‖

pd + pg

2

)
(2.8)

=min
θ
− log(4) + JSD(pd‖pg) (2.9)

Note that the Jensen-Shannon Divergence (JSD) has a single minimum at
pd = pg, which is the global minimum of c(θ). Hence, for an optimal dis-
criminator the minimization of the objective results in a perfectly replicated
data generating distribution.

8



2.2. Generative Adversarial Network

Problems of GANs Generative Adversarial Networks have massively im-
proved state-of-the-art performance in learning complicated probability dis-
tributions. Like no other model, they are able to generate impressive re-
sults, even on very high-dimensional image data [24, 5, 26]. Despite all their
success, GANs are also known to be notoriously hard to train [18]. Many
theoretical and practical adjustments to the training procedure have been
proposed in order to stabilize it [25, 1, 18]. While most of the modifications
are out of the scope of this thesis, we will cover the earliest and probably
most popular fix to GAN training: the use of individual loss functions.

From the Saddle Point Problem to the Zero-Sum Game Already in the ini-
tial GAN paper [10], Goodfellow pointed out that the saddle point objective
of Eq. (2.4) does not work well in practice. He argues that early in learn-
ing the discriminator network is able to reject generated samples really well,
leading to a saturation of the generator’s objective log(1 − D(G(z; θ);ϕ)).
To remedy this issue, he proposes to minimize the generator’s parameters
over the non-saturating loss − log D(G(z; θ);ϕ). This results in the following
optimization objective:

min
θ

f1(θ,ϕ), max
ϕ

f2(θ,ϕ) (2.10)

f1(θ,ϕ) = −Ez∼pz log D(G(z; θ);ϕ) (2.11)
f2(θ,ϕ) = Ex∼pd log D(x;ϕ) + Ez∼pz log(1− D(G(z; θ);ϕ)). (2.12)

Note that this change preserves the fixed points of the training dynamics,
but adjusts the generator’s objective to be convex in D(G(z; θ);ϕ), instead
of concave. Even though this modification leads to serious improvement in
practice, it can theoretically no longer be described as a saddle point prob-
lem. Instead, the new objective gives rise to a Zero-Sum game [15]. How-
ever, since the fixed points of the dynamics are preserved, we can further
generalize our optimization goal in Eq. (1.2) to handle the new objective.
In particular, we do this generalization by defining a local Nash-equilibrium,
which is a well known notion in game theory [15], and the GAN community
[19, 18, 17].

Definition 2.1 (Local Nash-Equilibrium) The point (θ∗,ϕ∗) is a local Nash-
equilibrium to the adapted saddle point problem of the form{

minθ f1(θ,ϕ)
maxϕ f2(θ,ϕ)

(2.13)

9



2. Examples of Saddle Point Problems

if for ∀(θ,ϕ) ∈ K∗γ

f1(θ
∗,ϕ∗) ≤ f1(θ,ϕ∗) (2.14)

f2(θ
∗,ϕ∗) ≥ f2(θ

∗,ϕ) (2.15)

holds.

Note that for f1 = f2 the definition of the local Nash-equilibrium reduces to
definition 1.1 of the locally optimal saddle point.

2.3 Robust Optimization for Empirical Risk Minimiza-
tion

The idea of robust optimization [3] is to adapt the optimization procedure
such that it becomes more robust against uncertainty which is usually rep-
resented by variability in the data. For a loss function l : Θ× X → R, we
consider the typical problem of finding a parameter vector θ ∈ Θ to mini-
mize the risk

R(X; θ) = EP[l(X; θ)], (2.16)

where P denotes the distribution of the data X ∈ X . Since the true distribu-
tion is unknown, the problem is usually reduced to empirical risk minimiza-
tion. Instead of taking the expected value over the true distribution, the
empirical distribution P̂n =

{ 1
n

}n
i=1 over the training data {X1, . . . , Xn} ∈ X

is used.

Rerm(X; θ) = EP̂n
[l(X; θ)] =

1
n

n

∑
i=1

l(Xi; θ) (2.17)

Robust optimization aims to minimize this quantity while simultaneously
being robust against variation in the data, i.e., discrepancy between P̂n and
P. The approach it hereby takes is to consider the worst possible distribution
P̂n, within the limit of some distance constraint, at training time. It, therefore,
becomes more resilient against problems caused by a training set that does
not represent the true distribution appropriately. Putting this idea into an
objective yields

min
θ

sup
P∈P

[
Rr(X; θ,P) =

{
EP[l(X; θ)] : D(P‖P̂n) ≤

ρ

n

}]
(2.18)

where D(P‖P̂n) is a divergence measure between the distribution P and the
empirical distribution of the training data P̂n. Hence, we arrive at an ob-
jective that is minimized over the model parameter θ and maximized with
respect to the parameters of the distribution P. This is the standard form of

10



2.3. Robust Optimization for Empirical Risk Minimization

a saddle point problem as defined in 1.1. Contrary to the GAN objective, it
has the additional divergence constraint that needs to be fulfilled.

Particularly interesting is the connection between robust optimization and
the bias-variance tradeoff in statistical learning. Recent work by Namkoong
et al. [21] showed that robust optimization is a good surrogate for the
variance-regularized empirical risk

Rerm(X; θ) + c

√
1
n

VarP̂n
(l(X; θ)). (2.19)

Being a good approximation to this particular quantity is very desirable
because it has been shown by [2] that, under appropriate assumptions, the
true error is upper bounded with high probability by

R(X; θ) ≤ Rerm(X; θ) + c1

√
1
n

Var(l(X; θ)) +
c2

n
. (2.20)

Therefore, robust optimization is a good surrogate for an upper bound on
the true error and holds great promises for reliable risk minimization.

11





Chapter 3

Preliminaries

3.1 Notation and Definitions

Throughout the thesis, vectors are denoted by lower case bold symbols,
scalars by roman symbols and matrices by bold upper case letters. For a
vector v, we use ‖v‖ to denote the `2-norm, whereas for a matrix M, we
use ‖M‖ to denote the spectral norm. We regularly use the short notation
z := (θ,ϕ) to refer to the parameter vector and H := ∇2 f (θ,ϕ) for the Hes-
sian. We use A � B for two symmetric matrices A and B to express that
A− B is positive semi-definite.

3.1.1 Stability

Major parts of our theoretical analysis of the saddle point problem rely on
the notion of stability. It is a well-known concept and tool from non-linear
systems theory. In the following, we present a definition of the most impor-
tant types of stability of dynamic systems [12].

Consider a system with parameters x ∈ Rn, whose gradient with respect to
the time is given by the function g(x), i.e.,

ẋ = g(x) (3.1)

Assume, without loss of generality, that the origin is a critical point (equilib-
rium) of the system. Hence, it holds that g(0) = 0.

Definition 3.1 Stability (Definition 4.1 from [12]): The equilibrium point
x = 0 of 3.1 is

• stable, if for each ε > 0, there is δ = δ(ε) > 0 such that

‖x0‖ < δ⇒ ‖xt‖ < ε, ∀t ≥ 0 (3.2)

13



3. Preliminaries

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x0‖ < δ⇒ lim
t→∞
‖xt‖ = 0 (3.3)

• exponentially stable if it is asymptotically stable and δ, k, λ > 0 can be
chosen such that

‖x0‖ < δ⇒ ‖xt‖ ≤ k‖x0‖e−λt (3.4)

The system is called stable if we can be sure that it stays within a ball of
radius ε when it is initialized within a ball of radius δ(ε). This notion alone
does not guarantee convergence to the equilibrium point. It might as well
orbit around the point as long as it stays within the ε-ball. The stronger
concept of asymptotic stability, on the other hand, doesn’t allow infinite
orbiting around the equilibrium, but requires convergence in the limit of
t→ ∞.

3.1.2 Critical Points

Definition 3.2 A critical point (θ̄,ϕ̄) of the function f (θ,ϕ) is a point where
the gradient of the function is zero, i.e.

∇ f (θ̄,ϕ̄) = 0. (3.5)

Critical points can be further analyzed by the curvature of the function, i.e.,
the Hessian of f . The structure of the function f , with its two different input
vectors, gives rise to the following block structure of the Hessian.

H =

[
∇2

θ f (θ,ϕ) ∇θϕ f (θ,ϕ)
∇ϕθ f (θ,ϕ) ∇2

ϕ f (θ,ϕ)

]
(3.6)

Note that the Hessian is a symmetric matrix and, thus, all its eigenvalues
are real numbers.
There are four important types of critical points that can be categorized
through the eigenvalues of the Hessian and its individual blocks:

• If all eigenvalues of H are strictly positive, then the critical point is a
local minimum.

• If all eigenvalues of H are strictly negative, then the critical point is a
local maximum.

• If H has both positive and negative eigenvalues, then the critical point
is a saddle point.

14



3.1. Notation and Definitions

• If all eigenvalues of ∇2
θ f (θ,ϕ) are strictly positive and all eigenvalues

of ∇2
ϕ f (θ,ϕ) are strictly negative, then the critical point is a locally op-

timal saddle point (local Nash-equilibrium). This claim is formalized
in lemma 3.3. Note that the set of locally optimal saddle points is a
subset of the general saddle points defined before.

Note that for a function f (θ,ϕ) that is convex in θ and concave in ϕ, all
its saddle points are locally optimal and according to the Minimax Theorem
(Sion-Kakutani) it holds that.

min
θ

max
ϕ

f (θ,ϕ) = max
ϕ

min
θ

f (θ,ϕ). (3.7)

Since we are considering a more general saddle point problem, where f (θ,ϕ)
is neither convex in θ nor concave in ϕ, these guarantees don’t hold and a
more complex analysis of the saddle points is necessary.

Characterization of locally optimal saddle points With the use of the non-
degenerate assumption on the Hessian matrices (Assumption 3.5), we are
able to establish sufficient conditions on (θ∗,ϕ∗) to be a locally optimal sad-
dle point.

Lemma 3.3 Suppose that f satisfies Assumption 3.5; then, z∗ := (θ∗,ϕ∗) is
a locally optimal saddle point on K∗γ if and only if the gradient with respect to
the parameters is zero, i.e.

∇ f (θ∗,ϕ∗) = 0, (3.8)

and the second derivative at (θ∗,ϕ∗) is positive definite in θ and negative
definite in ϕ, i.e. there exist µθ, µϕ > 0 such that

∇2
θ f (θ∗,ϕ∗) � µθI, ∇2

ϕ f (θ∗,ϕ∗) ≺ −µϕI. (3.9)

Proof From definition 1.1 follows that a locally optimal saddle point (θ∗,ϕ∗) ∈
K∗γ is a point for which the following two conditions hold:

f (θ∗,ϕ) ≤ f (θ,ϕ) and f (θ,ϕ∗) ≥ f (θ,ϕ) ∀(x, y) ∈ K∗γ (3.10)

Hence, θ is a local minimizer of f and ϕ is a local maximizer. We therefore,
without loss of generality, prove the statement of the lemma only for the
minimizer θ, namely that

1. ∇θ f (θ∗,ϕ) = 0 ∀ϕ s.t. ‖ϕ−ϕ∗‖ ≤ γ

2. ∇2
θ f (θ∗,ϕ) � µθI ∀ϕ s.t. ‖ϕ−ϕ∗‖ ≤ γ, µθ > 0.

The proof for the maximizer ϕ directly follows from this.
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3. Preliminaries

1. If we assume that ∇θ f (θ∗,ϕ) 6= 0, then there exists a feasible direction
d ∈ Rn such that∇>θ f (θ∗,ϕ)d < 0 and we can find a step size α > 0 for
θ(α) = θ∗ + αd s.t. α‖d‖ ≤ γ. Now with the use of Taylor’s theorem,
we arrive at the following inequality

f (θ(α),ϕ) = f (θ∗,ϕ) + α∇>θ f (θ∗,ϕ)d︸ ︷︷ ︸
<0

+ O(α2)︸ ︷︷ ︸
→0 for sufficiently small α

(3.11)

< f (θ∗,ϕ) (3.12)

which contradicts that f (θ∗,ϕ) is a local minimizer. Hence,∇θ f (θ∗,ϕ) =
0 is a necessary condition for a local minimizer.

2. To prove the second statement, we again make use of Taylor’s theorem
with α > 0, d ∈ Rn for θ(α) = θ∗ + αd s.t. α‖d‖ ≤ γ.

f (θ(α),ϕ) = f (θ∗,ϕ) +
1
2

α2d>∇2
θ f (θ∗,ϕ)d + O(α3)︸ ︷︷ ︸

→0 for sufficiently small α

(3.13)

The inequality f (θ(α),ϕ) ≥ f (θ∗,ϕ) holds if and only if d>∇2
θ f (θ∗,ϕ)d ≥

0, which means that ∇2
θ f (θ∗,ϕ) needs to be positive semi-definite. Be-

cause we assume that the second derivative is non-degenerate (As-
sumption 3.5), we arrive at the sufficient condition that

∇2
θ f (θ∗,ϕ) � µθI , with µθ > 0 (3.14)

which concludes the proof. �

3.2 Assumptions

For the upcoming theoretical analysis of different optimization procedures
on the saddle point problem, we need to make several assumptions on the
function f (θ,ϕ).

Smoothness We assume that the function f (θ,ϕ) is smooth, which is for-
malized in the following assumption.

Assumption 3.4 (Smoothness) We assume that f (z) := f (θ,ϕ) is a C2

function, and that its gradient and Hessian are Lipschitz with respect to the
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parameters θ and ϕ, i.e., we assume that the following inequalities hold:

‖∇ f (z)−∇ f (z̃)‖ ≤ Lz‖z− z̃‖ (3.15)

‖∇2 f (z)−∇2 f (z̃)‖ ≤ ρz‖z− z̃‖ (3.16)

‖∇ f (θ,ϕ)−∇ f (θ̃,ϕ)‖ ≤ Lθ‖θ− θ̃‖ (3.17)

‖∇2
θ f (θ,ϕ)−∇2

θ f (θ̃,ϕ)‖ ≤ ρθ‖θ− θ̃‖ (3.18)
‖∇ f (θ,ϕ)−∇ f (θ,ϕ̃)‖ ≤ Lϕ‖ϕ− ϕ̃‖ (3.19)

‖∇2
ϕ f (θ,ϕ)−∇2

θ f (θ,ϕ̃)‖ ≤ ρϕ‖ϕ− ϕ̃‖ (3.20)

‖∇θ f (z)‖ ≤ `θ, ‖∇ϕ f (z)‖ ≤ `ϕ, ‖∇z f (z)‖ ≤ `z (3.21)

Non-Degenerate For our theoretical guarantees, we require a non-degenerate
assumption on the Hessian matrix of f .

Assumption 3.5 (Non-degenerate Hessian) We assume that the matrices
∇2

θ f (θ,ϕ) and ∇2
ϕ f (θ,ϕ) are non-degenerate for all (θ ∈ Rn,ϕ ∈ Rm).
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Chapter 4

Saddle Point Optimization

4.1 Gradient-Based Optimization

The saddle point problem of Eq. (1.1) is usually solved by a gradient-based
optimization method. In particular, the problem is split into two individ-
ual optimization problems that can be solved simultaneously with gradient
steps in different directions, i.e.,[

θt+1
ϕt+1

]
=

[
θt
ϕt

]
+ η

[
−∇θ f (θt,ϕt)
∇ϕ f (θt,ϕt)

]
. (4.1)

This method is used in various applications of saddle point optimization, as
explained in chapter 2. Stationary points of the above dynamics are critical
points of the function f (cf. 3.1.2). More precisely, the point z∗ := (θ∗,ϕ∗)
is a stationary point of the above iterates if the mapping function, implicitly
defined through the recursion, maps z∗ to itself, i.e., if ∇z f (z∗) = 0. With
FG ⊂ Rn × Rm we denote the set of all stationary points of the gradient
iterates, i.e.,

FG := {z ∈ Rn ×Rm|∇z f (z∗) = 0} . (4.2)

4.2 Linear transformed Gradient Steps

Linear transformation of the gradient updates has been shown to acceler-
ate optimization for various types of problems, including the saddle point
problem. Such methods can be expressed by the following recursion[

θt+1
ϕt+1

]
=

[
θt
ϕt

]
+ ηAθ,ϕ

[
−∇θ f (θt,ϕt)
∇ϕ f (θt,ϕt)

]
(4.3)

where Aθ,ϕ is a symmetric ((n + m)× (n + m))-matrix. Different optimiza-
tion methods use a different linear transformation Aθ,ϕ. Most common op-
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4. Saddle Point Optimization

timization schemes use a block diagonal matrix Aθ,ϕ =

[
A 0
0 B

]
. Table 4.1

illustrates the choice of Aθ,ϕ for different optimizer.

Table 4.1: Update matrices for commonly used optimization schemes.

Formula positive definite?

Gradient Descent
At = I

Yes.Bt = I

Adagrad [9]
At,ii =

(√
∑t

τ=1 (∇θi f (θτ,ϕτ))
2 + ε

)−1

Yes.

Bt,ii =

(√
∑t

τ=1
(
∇ϕi f (θτ,ϕτ)

)2
+ ε

)−1

Newton
At =

(
∇2

θ f (θt,ϕt)
)−1 Around local min of f (θ,ϕ).

Bt =
(
∇2

ϕ− f (θt,ϕt)
)−1

Around local max of f (θ,ϕ).

Saddle-Free Newton [8]
At =

∣∣∇2
θ f (θt,ϕt)

∣∣−1

Yes.
Bt =

∣∣∣∇2
ϕ f (θt,ϕt)

∣∣∣−1

4.3 Asymptotic Behavior of Gradient Iterations

There are three different asymptotic scenarios for the gradient iterations in
Eq. (4.1):

1. Divergence, i.e., limt→∞ ‖∇ f (θt,ϕt)‖ → ∞.

2. Being trapped in a loop, i.e., limt→∞ ‖∇ f (θt,ϕt)‖ > 0.

3. Convergence to a stationary point of the gradient updates, i.e.,
limt→∞ ‖∇ f (θt,ϕt)‖ = 0.

Up to the best of our knowledge, there is no global convergence guaran-
tee for general saddle point optimization. Typical convergence guarantees
require convex-concavity or somehow quasiconvex-quasiconcavity of f [6].
Instead of global convergence, we consider the rather modest analysis of
convergent iterations for the upcoming chapters of the thesis. Hence, we fo-
cus on the third outlined case where we are sure that the method converges
to some stationary point (θ,ϕ) for which holds ∇ f (θ,ϕ) = 0. The question
of interest for the upcoming chapters is whether such a sequence always
yields a locally optimal saddle point as defined in 1.1?
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4.4. Convergence Analysis on a Convex-Concave Objective

4.4 Convergence Analysis on a Convex-Concave Objec-
tive

In this section, we want to analyze the differences between common opti-
mization methods for the saddle point problem in Eq. (1.1). As described
before, it is very difficult to make any global argument for a non convex-
concave function f . In order to still get an intuition about the different
optimization schemes on the saddle point problem, we consider (in this sec-
tion) a function f (θ,ϕ) that is convex in θ and concave in ϕ, i.e., we assume
that

∇2
θ f (θ,ϕ) � αI and ∇2

ϕ f (θ,ϕ) � −αI α > 0 (4.4)

for all (θ,ϕ) ∈ Rn × Rm. Moreover, we assume that the function f has
a unique critical point (θ∗,ϕ∗), which is the solution to the saddle point
problem (1.1). In this simplified setting, we want to obtain insights to the
convergence behavior of commonly used optimization methods. In partic-
ular, we are interested in the convergence rate to the optimal saddle point
(θ∗,ϕ∗).

4.4.1 Gradient-Based Optimizer

The following Lemma shows that the convergence rate of gradient descent
is independent of cross-dependencies between the parameters θ and ϕ in
the strictly convex-concave setting. By choosing a proper step size γ we are
guaranteed to converge to the saddle point (θ∗,ϕ∗).

Lemma 4.1 Suppose that∇2
θ f (θ,ϕ) � αI and∇2

ϕ f (θ,ϕ) � −αI with α > 0,
and assumptions 3.4 and 3.5 hold. Let (θ∗,ϕ∗) be the unique solution of the
saddle point problem, then t gradient steps obtain

‖
[

θ(t) − θ∗

ϕ(t) −ϕ∗

]
‖2 ≤ (1 + γ(Lzγ− 2α))t‖

[
θ(0) − θ∗

ϕ(0) −ϕ∗

]
‖2 (4.5)

Proof See appendix 7.5. �

4.4.2 Gradient-Based Optimizer with Preconditioning Matrix

In non-convex minimization it is common practice to use a gradient-based
optimizer with a preconditioning matrix, such as for example Adagrad [9].
Usually this matrix is diagonal and positive definite. These methods have
been adapted to be used in the saddle point problem, which yields the si-
multaneous update step of Eq. (4.3). In this section, we try to understand
the convergence behavior of this more general update step on the convex-
concave objective. The following lemma establishes an expression for the dis-
tance to the unique saddle point after one iteration of the update in Eq. (4.3).
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4. Saddle Point Optimization

An interesting observation is that, as opposed to gradient descent before, the
convergence depends on the cross-dependencies between the parameters θ
and ϕ.

Lemma 4.2 Suppose that ∇2
θ f � ηI and ∇2

ϕ f � −γI with γ > 0, and
assumptions 3.4 and 3.5 hold. The step size matrices A and B are diagonal,
positive semi-definite matrices with

αminI � A � αmaxI (4.6)
βminI � B � βmaxI (4.7)

with a constant

R :=
min(αmin, βmin)

max(αmax, βmax)
. (4.8)

Let (θ∗,ϕ∗) be the unique solution of the saddle point problem, then one modi-
fied gradient step of Eq. (4.3) with step size

η =
γR

Lz max(αmax, βmax)
(4.9)

leads to

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 = (1− γ2

Lz
R2)‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

− 2γ
|θ|

∑
i=1

|ϕ|

∑
j=1

(Aii − Bjj)(θi − θ∗i )(ϕj −ϕ∗j )∇θiϕj f (θ̄,ϕ̄) (4.10)

Proof See appendix 7.5. �

The Lemma provides an upper bound for the convergence of a general opti-
mization scheme that uses diagonal step-matrices, as for example Adagrad.
As we can see, the right-hand-side of inequality 4.10 consists of a summa-
tion of two terms. First, one that, depending on the problem and the chosen

step size, is smaller than ‖
[

θ− θ∗

ϕ−ϕ∗

]
‖2. It therefore drives the new param-

eters closer to the optimum. The value of the second summand is rather
unclear. In general we can not make any statement about the sign of the
products (Aii − Bjj)(θi − θ∗i )(ϕi −ϕ∗i )∇θiϕj f (θ̄,ϕ̄). Hence, from this form it
is not possible to tell whether this cross-dependency term increases or de-
creases the upper bound. What we can see, however, is that the product of
any ij-combination vanishes, if either θi or ϕj gets close to its optimum value.
This ensures that for θ, ϕ close enough around the optimum the algorithm
converges to θ∗, ϕ∗, respectively.
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4.4. Convergence Analysis on a Convex-Concave Objective

4.4.3 Experiment

Let’s consider a simple convex-concave saddle point problem of the form

min
θ∈Rn

max
ϕ∈Rn

( f (θ,ϕ) =
α

2
‖θ‖2 − β

2
‖ϕ‖2 + θ>Mϕ) (4.11)

where M ∈ Rn×n is a diagonal matrix. The Jacobian and Hessian of the
objective are given, respectively, by

∇ f (θ,ϕ) =
[

αθ+ Mϕ
−βϕ+ M>θ

]
∇2 f (θ,ϕ) =

[
αI M

M> −βI

]
(4.12)

Experimentally, we want to compare the convergence to the saddle point of
Eq. (4.11) for gradient descent of Eq. (4.1) (GD) and Adagrad (special form
of Eq. (4.3)).
Lemma 4.1 indicates that with a sufficiently small step size GD always con-
verges to the saddle point. Since Adagrad, however, is part of the class of
algorithms that use a more general update step matrix, we need to use the
convergence upper bound given by Lemma 4.2 - which, in general, does not
provide the same guarantees. The problematic part about this bound is the
additive cross-dependency term given by

γ
n

∑
i=1

(Bii −Aii)(θi − θ∗i )(ϕi −ϕ∗i )Mii. (4.13)

In general, it is not possible to make a statement about the sign of this term.

To experimentally show that the cross-dependency term can either improve
or worsen the convergence rate of Adagrad, we design specific problems
based on the knowledge about the factors in expression 4.13. Since it is an
additive term, we are interested in its sign to determine whether it increases
or decreases the bound. It consists of four different factors, with each of
it being either positive or negative. Therefore, we need to make some as-
sumptions in order to investigate the sign change behavior of the whole
term. In particular, we would like to fix the sign of (θi − θ∗i )(ϕi −ϕ∗i )Mii
for all i ∈ 1, . . . , n such that by varying the diagonal values of the step ma-
trices A and B we can achieve a change in the sign of the term. While this
is trivial to achieve for the cross-dependency matrix M (we can choose its
values arbitrarily), it is not obvious how to fix the sign of the other two fac-
tors. However, we can approximately make them positive by initializing all
parameters, such that

θ
(0)
i � θ∗i and ϕ

(0)
i � ϕ∗i i ∈ 1, . . . , n. (4.14)

Hence, by choosing all diagonal values of M to be greater than zero, we can
see that the cross-term dependency improves the algorithm when Aii > Bii
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4. Saddle Point Optimization

Figure 4.1: L2 Distance to the saddle-point over iterations of the optimiza-
tion procedure of the problem formulation in equation 4.11 with θ,ϕ ∈ R30.
The different plots show varying values for α = a and β = b while the
diagonal cross-dependency matrix M has fixed values coming from N (5, 1).

for all i ∈ 1, . . . , n. The preconditioning matrices A and B for Adagrad
depend on the history of the optimization process (cf. table 4.1). Their diag-
onal values are approximately inversely proportional to the sum of squared
past gradients. Therefore, extreme parameter updates get dampened while
parameters that get few or small updates receive higher learning rates. By
using the knowledge about the Jacobian of the objective from equation 4.12,
we can influence the values of the step matrices A and B by varying the
parameters α and β. Intuitively, a large value of α together with a small β
should lead to a positive sign of the cross-dependency term and, therefore,
worsen Adagrad compared to GD.
The results of the experiment, shown in figure 4.1, are in accordance with
this intuition. The parameters of this experiment are chosen based on the
argumentation above, i.e., large positive initial values for θ and ϕ and pos-
itive values for the matrix M. The variation of the α and β parameteri-
zation shows the anticipated behavior. If α � β (plot top right), the cross-
dependency term hinders Adagrad to find the optimal parameters, and thus
it is outperformed by GD. Conversely, if β � α (plot bottom left), the addi-
tive term becomes negative and improves the performance of Adagrad.
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The designed experiment provides evidence to the argument arising from
Lemma 4.2, namely that Adagrad can either benefit or be hurt by the cross-
dependency term, depending on the specific parameterization of the convex-
concave saddle point problem.
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Chapter 5

Stability Analysis

5.1 Local Stability

In general, a stationary point of the gradient iterates in Eq. (4.1) can be ei-
ther stable or unstable, where the notion of stability is defined as in Def. 3.1.
Stability characterizes the behavior of the optimization dynamics in a local
region around a stationary point. Within an epsilon-ball around a stable
stationary point, successive iterates of the method are not able to escape the
region. Conversely, for unstable points, successive iterates can escape this
region.

Let’s consider the gradient iterations of Eq. (4.1) as a dynamical system with
the following mapping function

G(θt,ϕt) =

[
θt
ϕt

]
+ η

[
−∇θ f (θt,ϕt)
∇ϕ f (θt,ϕt)

]
(5.1)

and assume that it has a stationary point at z∗ := (θ∗,ϕ∗). Then, we can
linearize the system by a first-order Taylor approximation around this point,
i.e.,

G(z) ≈ G(z∗) +∇>G(z∗)(z− z∗) (5.2)

= z∗ +∇>G(z∗)(z− z∗). (5.3)

Obviously, this approximation is only valid for points z in a small neighbor-
hood around the critical point z∗. To quantify the previously stated intuition
about stability, we can say that a fixed-point z∗ is unstable if successive iter-
ates of (4.1) increase the distance to the point z∗. Conversely, a fixed point
z∗ is stable if ∥∥∥∥ zt − z∗

zt−1 − z∗

∥∥∥∥ ≤ 1 (5.4)
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which, with the help of the linearization (5.2), leads to the following expres-
sion: ∥∥∥∥ zt − z∗

zt−1 − z∗

∥∥∥∥ =

∥∥∥∥G(zt−1)− z∗

zt−1 − z∗

∥∥∥∥ (5.5)

≈
∥∥∥∥∇G(z∗)(zt−1 − z∗)

zt−1 − z∗

∥∥∥∥ = ‖∇G(z∗)‖ ≤ 1. (5.6)

Hence, we can analyze the stability of a stationary point of the gradient iter-
ates by the absolute value of its Jacobian ∇G(z∗). In particular, a stationary
point z∗ is locally stable if all the eigenvalues of the corresponding Jacobian
∇G(z∗) lie inside the unit sphere.

5.2 Convergence to Non-Stable Stationary Points

With the notion of stability, we are able to analyze the asymptotic behavior
of the gradient method. It has been shown by [14] that for a non-convex
minimization problem of the form

min
θ∈Rn

f (θ) (5.7)

gradient descent with random initialization almost surely converges to a
stable stationary point of its dynamics. The next lemma extends this result
to gradient iterations of Eq. (4.1) for saddle point problems.

Lemma 5.1 (Random Initialization) Suppose that assumptions 3.4 and 3.5
hold. Consider gradient iterations of Eq. (4.1) starting from a random initial
point. If the iterations converge to a stationary point, then the stationary point
is almost surely stable.

Proof The following Lemma 5.2 proves that the gradient update from Eq. (4.1)
for the saddle point problem is a diffeomorphism. The remaining part of the
proof follows directly from theorem 4.1 from [14]. �

Lemma 5.2 The gradient mapping for the saddle point problem

G(θ,ϕ) = (θ,ϕ) + η(−∇θ f (θ,ϕ),∇ϕ f (θ,ϕ)) (5.8)

with step size η < min
(

1
Lx

, 1
Ly

, 1√
2Lz

)
is a diffeomorphism.

Proof The following proof is very much based on the proof of proposition
4.5 from [14].
A necessary condition for a diffeomorphism is bijectivity. Hence, we need
to check that G is 1. injective, and 2. surjective for η < min

(
1

Lx
, 1

Ly
, 1√

2Lz

)
.
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1. Consider two points z := (θ,ϕ), z̃ := (θ̃,ϕ̃) ∈ Kγ for which

G(z) = G(z̃) (5.9)

holds. Then, we have that

z− z̃ = η

[
−∇θ f (z)
∇ϕ f (z)

]
− η

[
−∇θ f (z̃)
∇ϕ f (z̃)

]
(5.10)

= η

[
−∇θ f (z) +∇θ f (z̃)
∇ϕ f (z)−∇ϕ f (z̃)

]
. (5.11)

Note that

‖∇θ f (z)−∇θ f (z̃)‖ ≤ ‖∇ f (z)−∇ f (z̃)‖ ≤ Lz‖z− z̃‖ (5.12)
‖∇ϕ f (z)−∇ϕ f (z̃)‖ ≤ ‖∇ f (z)−∇ f (z̃)‖ ≤ Lz‖z− z̃‖, (5.13)

from which follows that

‖z− z̃‖ ≤ η
√

L2
z‖z− z̃‖2 + L2

z‖z− z̃‖2 (5.14)

=
√

2ηLz‖z− z̃‖. (5.15)

For 0 < η < 1√
2Lz

this means z = z̃, and therefore g is injective.

2. We’re going to show that G is surjective by constructing an explicit
inverse function for both optimization problems individually. As sug-
gested by [14], we make use of the proximal point algorithm on the
function − f for the parameters θ,ϕ, individually.
For the parameter θ the proximal point mapping of − f centered at θ̃
is given by

θ(θ̃) = arg min
θ

1
2
‖θ− θ̃‖2 − η f (θ,ϕ)︸ ︷︷ ︸

h(θ)

(5.16)

Moreover, note that h(θ) is strongly convex in θ if η < 1
Lx

:

(∇θh(θ)−∇θh(θ̂))>(θ− θ̂) (5.17)

= (θ− η∇θ f (θ,ϕ)− θ̂+ η∇θ f (θ̂,ϕ))>(θ− θ̂) (5.18)

= ‖θ− θ̂‖2 − η(∇θ f (θ,ϕ)−∇θ f (θ̃,ϕ))>(θ− θ̂) (5.19)

≥ (1− ηLx)‖θ− θ̂‖2 (5.20)

Hence, the function h(θ) has a unique minimizer, given by

0 !
= ∇θh(θ) = θ− θ̃− η∇θ f (θ,ϕ) (5.21)

⇒ θ̃ = θ− η∇θ f (θ,ϕ) (5.22)
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which means that there is a unique mapping from θ to θ̃ under the
gradient mapping G if η < 1

Lx
.

The same line of reasoning can be applied to the parameter ϕ with the
negative proximal point mapping of − f centered at ϕ̃, i.e.

ϕ(ϕ̃) = arg max
ϕ
−1

2
‖ϕ− ϕ̃‖2 − η f (θ,ϕ)︸ ︷︷ ︸

h(ϕ)

(5.23)

Similarly as before, we can observe that h(ϕ) is strictly concave for
η < 1

Ly
and that the unique minimizer of h(ϕ) yields the ϕ update step

of G. From this, we conclude that the mapping G is surjective for (θ,ϕ)
if η < min

(
1

Lx
, 1

Ly

)
Observing that under assumption 3.5, G−1 is continuously differentiable con-
cludes the proof that G is a diffeomorphism. �

Conclusion The result of lemma 5.1 implies that a convergent sequence of
the gradient iterates almost surely yields a stable stationary point of its dy-
namics. Remembering that our analysis is solely concerned with convergent
sequences (cf. section 4.3), the result suggests that we only need to consider
stable stationary points of the gradient dynamics. In a minimization prob-
lem, as in Eq. (5.7), this result implies that if the gradient dynamics of the
form

θt+1 = θt − η∇θ f (θt) (5.24)

converge to a solution θ∗, this solution is not just a stable stationary point but
also a minimizer of the function f . This is due to the fact that the Jacobian
of the update in Eq. (5.24) is given by:

J(θt) = I− η∇2
θ f (θt) (5.25)

As mentioned earlier, a point is stable for a certain dynamic only if the
eigenvalues of its Jacobian lie within the unit-sphere. From the above equa-
tion, we see that this is only possible - with a sufficiently small step size -
if ∇2

θ f (θt) is a Hurwitz matrix. Since any Hessian matrix is symmetric, the
eigenvalues of ∇2

θ f (θt) are real numbers. Therefore, the stability condition
reduces to ∇2

θ f (θt) being a positive definite matrix. As defined in 3.1.2, this
implies that θt is a minimum of the function f .
Based on the intuition from the minimization problem, one can jump to a
quick conclusion and claim that since we do simultaneous minimization/
maximization on two individual problems, the gradient iterates of the sad-
dle point problem yield a locally optimal saddle point. We will show in
the upcoming sections that this claim is not true, and outline the need of
a more complex analysis of the dynamics of the gradient iterates for the
saddle point problem.
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5.3. Undesired Stable Points

5.3 Undesired Stable Points

As explained in the previous section, a convergent sequence of gradient iter-
ations on the minimization problem (Eq. 5.24) yields – almost surely – a so-
lution that locally minimizes the function value. This is a desirable property
of the optimizer, because (with random initialization) we are guaranteed to
obtain a solution to the posed minimization problem. However, this section
will show that the gradient dynamics for the saddle point problem do not
share the same property, and therefore, we can not be certain that a conver-
gent series yields a solution to the problem.

It is already known that every locally optimal saddle point is a stable station-
ary point of the gradient dynamics in Eq. (4.1) [18, 20]. However, the gra-
dient dynamic might introduce additional stable points that are not locally
optimal saddle points. This fact is in a clear contrast to GD for minimization
where the set of stable stationary points of GD is the same as the set of local
minima. In the next example we use an example to illustrate our claim.

Example Consider the function

f (x, y) = 2x2 + y2 + 4xy +
4
3

y3 − 1
4

y4 (5.26)

with x, y ∈ R1. The saddle point problem defined with this function is given
by

min
x∈R

max
y∈R

f (x, y) (5.27)

The critical points of the function, i.e., points for which ∇ f (x, y) = 0, are

z0 =

[
0
0

]
z1 =

[
−2−

√
2

2 +
√

2

]
z2 =

[
−2 +

√
2

2−
√

2

]
(5.28)

Evaluating the Hessian at the three critical points gives rise to the following
three matrices:

H(z0) =

[
4 4
4 2

]
H(z1) =

[
4 4
4 −4

√
2

]
H(z2) =

[
4 4
4 4
√

2

]
. (5.29)

We see that only z1 is a locally optimal saddle point, because ∇2
x f (z1) = 4 >

0 and ∇2
y f (z1) = −4

√
2 < 0 (cf. lemma 3.3), whereas the two other points

are both a local minimum in the parameter y, rather than a maximum. Fig-
ure 5.1 (a) illustrates gradient steps converging to the undesired stationary
point z0. Due to the stability of this point, even a small perturbation of the
gradient in each step can not avoid convergence to it (see Figure 5.1 (b)).

1To guarantee smoothness, one can restrict the domain of f to a bounded set.
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5. Stability Analysis

(a) The background shows a contour plot of the norm of gra-
dient ‖∇ f (x, y)‖.

(b) Optimization trajectory when adding gaussian noise from
N (0, σ) to the gradient in every step.

Figure 5.1: Optimization trajectory of the gradient method (4.1) on the func-
tion in Eq. (5.26) with a step size of η = 0.001. The method converges to the
critical point (0,0), even though it’s not a locally optimal saddle point and,
therefore, not a solution to the problem defined in (5.27).
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Chapter 6

Curvature Exploitation

A recent approach for solving non-convex minimization problems, such as
(5.7), involves curvature exploitation [7, 27]. The main idea behind this
method is to follow – if possible – the negative curvature of the function.
To get an intuition on why this might be a useful direction, consider first
an ordinary gradient-based minimization. It ensures convergence to a first-
order stationary point, i.e., a point for which the gradient vanishes. However,
to find a solution to the minimization problem (5.7), we require second-order
stationarity, i.e., the Hessian of the function is positive definite (cf. section
3.1.2 about critical points). By following the negative curvature, on the other
hand, it is possible to escape from stationary points that are no local minima.
Interestingly, we will show in this chapter how we can use the approach of
extreme curvature exploitation not to escape from saddle points, but to find
locally optimal saddle points.

6.1 Curvature Exploitation for the Saddle Point Prob-
lem

The example in section 5.3 has shown that gradient iterations on the saddle
point problem introduce undesired stable points. In this section, we propose
a strategy to escape from these stationary points. Our approach is based on
extreme curvature exploitation [7].

Extreme curvature direction Let (λθ, vθ) be the minimum eigenvalue of
∇2

θ f (z) with its associated eigenvector, and (λϕ, vϕ) be the maximum eigen-
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6. Curvature Exploitation

value of ∇2
ϕ f (z) with its associated eigenvector. Then, we define

v(−)
z =

{
λθ
2ρθ

sgn(v>θ∇θ f (z))vθ if λθ < 0

0 otherwise
(6.1)

v(+)
z =

{
λϕ

2ρϕ
sgn(v>ϕ∇ϕ f (z))vϕ if λϕ > 0

0 otherwise
(6.2)

vz = (v(−)
z , v(+)

z ) (6.3)

where sgn : R→ {−1, 1} is the sign function. We call the vector vz extreme
curvature direction at z.

Algorithm Using the extreme curvature direction, we modify gradient steps
to obtain our new update as[

θt+1
ϕt+1

]
=

[
θt
ϕt

]
+ vzt + η

[
−∇θ f (θt,ϕt)
∇ϕ f (θt,ϕt)

]
(6.4)

The new update is constructed by adding the extreme curvature direction
to the gradient method of Eq. (4.1). From now on we will refer to this
modified update as the CESP method (curvature exploitation for the saddle
point problem).

6.2 Theoretical Analysis

6.2.1 Stability

Extreme curvature exploitation has already been used for escaping from
unstable stationary points (i.e., saddle points) of gradient descent for min-
imization problems. In saddle point problems, curvature exploitation is
advantageous not only for escaping from unstable stationary points but also
for escaping from undesired stable stationary points. In the next lemma,
we prove that all stationary points of the CESP method are locally optimal
saddle points.

Lemma 6.1 The point z := (θ,ϕ) is a stationary point of the iterates in
Eq. (6.4) if and only if z is a locally optimal saddle point.

Proof The point z∗ := (θ,ϕ) is a stationary point of the iterates if and only if
vz∗ + η(−∇θ f (z∗),∇ϕ f (z∗)) = 0. Let’s consider w.l.o.g. only the stationary
point condition with respect to θ, i.e.

vz∗ = η∇θ f (z∗) (6.5)
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6.2. Theoretical Analysis

We prove that the above equation holds only if ∇θ f (z∗) = vz∗ = 0. This
can be proven by a simple contradiction: suppose that ∇θ f (z∗) 6= 0, then
multiplying the both sides of the above equation by ∇θ f (z∗) yields

λθ∗/(2ρθ)︸ ︷︷ ︸
<0

sgn(v>θ∗∇θ f (z∗))v>θ∗∇θ f (z∗)︸ ︷︷ ︸
≥0

= η‖∇θ f (z∗)‖2 (6.6)

Since the left-hand side is negative and the right-hand side is positive, the
above equation leads to a contradiction. Therefore, ∇ f (z∗) = 0 and vz∗ = 0.
This means that λθ∗ ≥ 0 and λϕ∗ ≤ 0 and therefore, according to lemma 3.3,
z∗ is a locally optimal saddle point. �

From lemma 6.1, we know that every stationary point of the CESP dynamics
is a locally optimal saddle point. The next lemma establishes a stability
condition for the gradient iterates, namely that every locally optimal saddle
point is a stable point.

Lemma 6.2 Suppose that assumptions 3.4 and 3.5 hold. Let z∗ := (θ∗,ϕ∗)
be a locally optimal saddle point, i.e.,

∇ f (z) = 0, ∇2
θ f (z∗) � µθI, ∇2

ϕ f (z∗) � −µϕI, (µθ, µϕ > 0) (6.7)

Then iterates of Eq. (6.4) are stable in K∗γ as long as

γ ≤ min{µθ/(
√

2ρθ), µϕ/(
√

2ρϕ)} (6.8)

Proof The proof is based on a simple idea: In a K∗γ neighbourhood of a
locally optimal saddle point f can not have extreme curvature, i.e., vz = 0.
Hence, within K∗γ the update of Eq. (6.4) reduces to the gradient update in
Eq. (4.1), which is stable according to [20, 18].
To prove our claim that negative curvature does not exist in K∗γ, we make
use of the smoothness assumption. Suppose that z := (θ,ϕ) ∈ K∗γ, then the
smoothness assumption 3.4 implies

∇2
θ f (z) = ∇2

θ f (z∗)−
(
∇2

θ f (z∗)−∇2
θ f (z)

)
(6.9)

� ∇2
θ f (z∗)− ρθ‖z− z∗‖I (6.10)

� ∇2
θ f (z∗)−

√
2ρθγI (6.11)

� (µθ−
√

2ρθγ)I (6.12)

� 0 [γ < µθ/(
√

2ρθ)] (6.13)

Similarly, one can show that

∇2
ϕ f (z) ≺ 0 [γ < µϕ/(

√
2ρϕ)]. (6.14)

Therefore, the extreme curvature direction is zero according to the definition
in Eq. (6.1). �
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6. Curvature Exploitation

Guarantees for a convergent series Combining the statements of the pre-
vious two lemmas, we conclude that the set of locally optimal saddle points
and the set of stable stationary points of our new method are the same. As a
consequence, we prove that a convergent series of our method is guaranteed
to reach a locally optimal saddle point.

Corollary 6.3 Suppose that assumptions 3.4 and 3.5 hold. Then, a convergent
series of the iterates of Eq. 6.4 yields a locally optimal saddle point.

Proof It is a direct consequence of lemma 6.1 and 6.2. �

6.2.2 Guaranteed Improvement

The gradient update step of Eq. (4.1) has the property that an update with
respect to θ (ϕ) decreases (increases) the function value. The next lemma
proves that the modified method of Eq. (6.4) shares the same desirable prop-
erty.

Lemma 6.4 In each iteration of Eq. (6.4) f decreases in θ with

f (θt+1,ϕt) ≤ f (θt,ϕt)− (η/2)‖∇θ f (zt)‖2 + λ3
θ/(24ρθ2), (6.15)

and increases in ϕ with

f (θt,ϕt+1) ≥ f (θt,ϕt) + (η/2)‖∇ϕ f (zt)‖2 + λ3
ϕ/(24ρϕ2). (6.16)

as long as the step size is chosen as

η ≤ min{ 1
2Lθ`θρθ

,
1

2Lϕ`ϕρϕ
} (6.17)

Proof The Lipschitzness of the Hessian (Assumption 3.4) implies that for
∆ ∈ Rn

‖ f (θ+ ∆,ϕ)− f (θ,ϕ)− ∆>∇θ f (θ,ϕ)− 1
2

∆>∇2
θ f (θ,ϕ)∆‖ ≤ ρx

6
‖∆‖3

(6.18)

holds. The update in Eq. (6.4) for θ is given by ∆ = αv− η∇θ f (θ,ϕ), where
α = −λ/(2ρθ) (where we assume w.l.o.g. that v>∇θ f (θ,ϕ) < 0) and v is
the eigenvector associated with the minimum eigenvalue λ of the Hessian
matrix ∇2

θ f (θt,ϕt). In the following, we use the shorter notation: ∇ f :=
∇θ f (θ,ϕ) and H := ∇2

θ f (θ,ϕ). We can construct a lower bound on the left
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6.2. Theoretical Analysis

hand side of Eq. (6.18) as

‖ f (θ+ ∆,ϕ)− f (θ,ϕ)− ∆>∇ f − 1
2

∆>H∆‖ (6.19)

≥ f (θ+ ∆,ϕ)− f (θ,ϕ)− ∆>∇ f − 1
2

∆>H∆ (6.20)

≥ f (θ+ ∆,ϕ)− f (θ,ϕ)− αv>∇ f + (η − η2

2
Lθ)‖∇ f ‖2 − 1

2
α2λ + αηλv>∇ f

(6.21)

which leads to the following inequality

f (θ+ ∆,ϕ)− f (θ,ϕ) (6.22)

≤ αv>∇ f − (η − η2

2
Lθ)‖∇ f ‖2 +

1
2

α2λ− αηλv>∇ f +
ρx

6
‖∆‖3 (6.23)

≤ 1
2

α2λ− (η − η2

2
Lθ)‖∇ f ‖2 +

ρx

6
‖∆‖3 (6.24)

By using the triangular inequality we obtain the following bound on the
cubic term

‖∆‖3 ≤ (η‖∇ f ‖+ α‖v‖)3 (6.25)

≤ 4η3‖∇ f ‖3 + 4α3‖v‖3 (6.26)

= 4η3‖∇ f ‖3 + 4α3. (6.27)

Replacing this bound into the upper bound of Eq. (6.22) yields

f (θ+ ∆,ϕ)− f (θ,ϕ) ≤ 1
2

α2λ− (η − η2

2
Lθ)‖∇ f ‖2 +

ρx

6
(
4η3‖∇ f ‖3 + 4α3)

(6.28)

The choice of α = −λ/(2ρθ) leads to further simplification of the above
bound:

f (θ+ ∆,ϕ)− f (θ,ϕ) ≤ λ3

24ρ2
θ

− η(1− η

2
Lθ−

2
3

ρθη2`x)‖∇ f ‖2 (6.29)

Now, we choose step size η such that

1− η

2
Lθ−

2
3

ρθη2`θ ≥ 1/2 (6.30)

For η ≤ 1/(2Lρθ`θ), the above inequality holds. Therefore, the following
decrease in the function value is guaranteed

f (θ+ ∆,ϕ)− f (θ,ϕ) ≤ λ3/(24ρθ2)− (η/2)‖∇ f ‖2 (6.31)

Similarly, one can derive the lower-bound for the function increase in ϕ. �
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6. Curvature Exploitation

6.3 Efficient Implementation

6.3.1 Hessian-Vector Product

Storing and computing the Hessian in high dimensions is very costly; there-
fore, we need to find a way to efficiently extract the extreme curvature di-
rection. The most prominent approach for obtaining the eigenvector, corre-
sponding to the largest absolute eigenvalue, (and the eigenvalue itself) of
∇2

θ f (z) is power iterations on I− β∇2
θ f (z) as

vt+1 = (I− β∇2
θ f (z))vt (6.32)

where vt+1 is normalized after every iteration and β > 0 is chosen such that
I− β∇2

θ f (z) � 0. Since this method only requires implicit Hessian compu-
tation through a Hessian-vector product, it can be implemented about as
efficiently as gradient evaluations [23]. The results of [13] imply that for the
case of λmin(∇2

θ f (z)) ≤ −γ, we need at most 1
γ log(k/δ2)Lx iterations of the

power method to find a vector v̂ such that v̂>∇2
θ f (z)v̂ ≤ −γ

2 with probabil-
ity 1− δ (cf. [14]).

The pseudo code in algorithm 2 shows an efficient realization of the CESP
method by using the Hessian-vector product1.

6.3.2 Implicit Curvature Exploitation

Recent results on the non-convex minimization problem have shown that
perturbed gradient steps with an isotropic noise can approximately move
along the extreme curvature direction [11]. Suppose that ∇θ f (θ0,ϕ) = 0,
∇2

θ f (θ0,ϕ) � 0. Perturbed gradient steps can be written as

θ1 = θ0 + rξ (6.33)
θt+1 = θt − η∇θ f (θt,ϕ). (6.34)

where ξ is drawn uniformly from the unit sphere. There is a choice for r, the
noise term ξ, and the step size η such that θT exploits the negative curvature
of ∇2

θ f (θ0,ϕ). In other words, one can naturally exploit the negative curva-
ture by perturbation of parameters and gradient steps on θ and ϕ. Nonethe-
less, this approach requires a very careful adjustment of hyperparameters
and number of iterations. In our experiments, we only use Hessian-vector
products to approximate the extreme curvature direction.

1The source code for an implementation of this algorithm in tensorflow is available on
GitHub.
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6.4. Curvature Exploitation for linear-transformed Gradient Steps

Algorithm 2 Efficient CESP implementation
Require: Smooth f , (θ, ϕ), β, ρθ, ρϕ

1: function MinimumEigenvalue(function: f , parameters: x)
2: v0 ← random vector ∈ R|x| with unit length.
3: for i in 1, . . . , k do
4: vi ← (I− β∇2

x f )vi−1
5: vi ← vi/‖vi‖
6: end for
7: v← −vk × sgn(v>k ∇x f )
8: λ← v>∇2

x f v
9: if λ ≥ 0 then

10: λ← 0
11: v← 0
12: end if
13: return v, λ
14: end function
15: for t in 1, . . . , T do
16: vθ, λθ ←MinimumEigenvalue( f (θt,ϕt),θt)
17: vϕ,−λϕ←MinimumEigenvalue(− f (θt,ϕt),ϕt)
18: θt ← θt +

λθ
2ρθ

vθ− η∇θ f (θt,ϕt)

19: ϕt ← ϕt +
λϕ

2ρϕ
vϕ + η∇ϕ f (θt,ϕt)

20: end for

6.4 Curvature Exploitation for linear-transformed Gra-
dient Steps

As described in section 4.2, it is common practice to use linear-transformed
gradient update steps as an optimization procedure on the saddle point
problem. This gives rise to optimization methods like Adagrad that have
been shown to accelerate learning. In this section, we propose a modi-
fied CESP method that adds the extreme curvature direction to the linear-
transformed gradient update of Eq. (4.3), and prove that it keeps the same
desirable properties concerning its stable points.

We can adapt our CESP method to a linear-transformed variant as[
θt+1
ϕt+1

]
=

[
θt
ϕt

]
+ vzt + ηAθt,ϕt

[
−∇θ f (θt,ϕt)
∇ϕ f (θt,ϕt)

]
(6.35)

where we choose the linear transformation matrix Aθt,ϕt to be positive defi-
nite. Even for this adapted method we can show that it is able to filter out
the undesired stable stationary points of the gradient method for the saddle
point problem. Moreover, we can show that for a convergent series it holds
the same guarantees as its non-transformed counterpart, namely that the set
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6. Curvature Exploitation

of its stable stationary points and the set of locally optimal saddle points are
the same.

Lemma 6.5 A point z∗ is a stationary point of the linear-transformed CESP
update in Eq. (6.35) if and only if z∗ is a locally optimal saddle point.

Proof As a direct consequence of lemma 6.1 and the positive definiteness
property of the linear transformation matrix follows that all stationary points
of the linear-transformed CESP update in Eq. (6.35) are locally optimal sad-
dle points. �

Lemma 6.6 Every locally optimal saddle point is a stable stationary point of
the linear-transformed CESP update in Eq. (6.35).

Proof Let’s consider some locally optimal saddle point z∗ := (θ∗,ϕ∗) in the
sense of definition 1.1. From lemma 3.3 follows that

∇2
θ f (θ∗,ϕ∗) � µθI, ∇2

ϕ f (θ∗,ϕ∗) � −µϕI. (6.36)

for µθ, µϕ > 0. As a direct consequence, the extreme curvature direction is
zero, i.e., vz = 0. Hence, the Jacobian of the update in Eq. (6.35) is given by

I + ηAz∗

[
−∇2

θ f (z∗) −∇θ,ϕ f (z∗)
∇ϕ,θ f (z∗) ∇2

ϕ f (z∗)

]
. (6.37)

The point z∗ is a stable point of the dynamic if all eigenvalues of its Jacobian
lie within the unit-sphere. This condition can be fulfilled, with a sufficiently
small step size, if and only if all the real parts of the eigenvalues of J(z∗) are
negative.
Hence, to prove stability of the update for a locally optimal saddle point z∗,
we have to show that the following expression is a Hurwitz matrix:

J(z∗) = Az∗︸︷︷︸
:=A

[
−∇2

θ f (z∗) −∇θ,ϕ f (z∗)
∇ϕ,θ f (z∗) ∇2

ϕ f (z∗)

]
︸ ︷︷ ︸

:=H

:= J (6.38)

Since A is a positive definite matrix, we can construct its square root A
1
2

such that A = A
1
2 A

1
2 . The matrix product AH can be re-written as

AH = A
1
2 (A

1
2 HA

1
2 )A−

1
2 . (6.39)

Since we are multiplying the matrix J̃ := A
1
2 HA

1
2 from the left with the

inverse of the matrix from which we are multiplying from the right side, we
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can observe that J has the same eigenvalues as J̃. The symmetric part of
J̃(z∗) is given by

1
2

(
J̃ + J̃>

)
=

1
2
(A

1
2 HA

1
2 + A

1
2 H>A

1
2 ) = A

1
2 (H + H>)A

1
2 (6.40)

= A
1
2

[
−∇2

θ f (z∗) 0
0 ∇2

ϕ f (z∗)

]
A

1
2 (6.41)

From assumption 6.36 follows that the block diagonal matrix (H + H>) is
a symmetric, negative definite matrix for which, therefore, holds x>(J̃ +
J̃>)x ≤ 0 for any x ∈ Rn+m. The remaining part of the proof follows the
argument from [4] Theorem 3.6.

Let (λ, v) be an eigenpair of J̃. Then, the following two equalities hold:

v∗J̃v = λ (6.42)

(v∗J̃v)∗ = v∗J̃>v = λ̄ (6.43)

Therefore, we can re-write the real part of the eigenvalue λ as:

Re(λ) =
λ + λ̄

2
=

1
2

v∗(J̃ + J̃>)v. (6.44)

By observing that

v∗(J̃ + J̃>)v = Re(v)>(J̃ + J̃>)Re(v) + Im(v)>(J̃ + J̃>)Im(v) (6.45)

is a real, negative quantity, we can be sure that the real part of any eigen-
value of J is negative. Therefore it directly follows that, with a sufficiently
small step size η > 0, any locally optimal saddle point z∗ is a stable sta-
toinary point of the linear-transformed update method in Eq. (6.35). �

Corollary 6.7 The set of locally optimal saddle points as defined in 1.1 and the
set of stable points of the linear-transformed CESP update method in Eq. (6.35)
are the same.

Proof It is a direct consequence of lemma 6.5 and 6.6. �

6.5 Experiments

6.5.1 Escaping from Undesired Stationary Points of the Toy-Example

Previously, we saw that for the two-dimensional saddle point problem on
the function of Eq. (5.26), gradient iterates might converge to an undesired
stationary point that is not locally optimal. Figure 6.1 illustrates that CESP
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6. Curvature Exploitation

(a) (b) The background shows the vector
field of the extreme curvature, as de-
fined in Eq. (6.1). Note that for the
function in Eq. (5.26) the curvature in
x-dimension is constant positive and
therefore v(−)

z is always zero.

(c) (d)

Figure 6.1: Comparison of GD and the new CESP method on the function
in Eq. (5.26). While plots (a) and (b) show the two trajectories from the fixed
starting point (−3,−1), the plots in (c) and (d) show the basin of attraction
of the locally optimal saddle point (green area) and the undesired saddle
point (red area).

solves this issues. In this example simultaneous gradient iterates converge
to the undesired stationary point z0 = (0, 0) for many different initialization
parameters, whereas our method always converges to the locally optimal
saddle point. The source code of this experiment is available on github.
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6.5.2 Generative Adversarial Networks

This experiment evaluates the performance of the CESP method on a Gener-
ative Adversarial Network (GAN), which reduces to the saddle point prob-
lem

min
θ

max
ϕ

(
f (θ,ϕ) = Ex∼pd log(Dθ(x)) + Ez∼pz log(1− Dθ(Gϕ(z)))

)
(6.46)

where the functions D : R|x| → [0, 1] and G : R|z| → R|x| are neural net-
works, parameterized with the variables θ and ϕ, respectively. We use the
MNIST data set and a simple GAN architecture, that is described in table 6.1.
To accelerate training we use the linear transformed CESP method, where
the transformation matrix corresponds to the Adagrad update.

Table 6.1: Parameters of the GAN model.

Discriminator Generator
Input Dimension 784 10
Hidden Layers 1 1
Hidden Units / Layer 100 100
Activation Function Leaky ReLU Leaky ReLU
Output Dimension 1 784
Batch Size 1000
Learning Rate η 0.05
Learning Rate α := 1

2ρθ
= 1

2ρϕ
0.01

On this objective, we evaluate the influence of the negative curvature step
of our new method. In particular, we compare the plain Adagrad optimizer
(GD) with the newly proposed linear transformed CESP method regarding
the spectrum of f at a convergent solution z∗. Note that we are interested
in any solution that gives rise to a locally optimal saddle point, as defined
in 1.1. In this regard, we track the smallest eigenvalue of ∇2

θ f (z∗) and the
largest eigenvalue of ∇2

ϕ f (z∗) through the optimization. If the former is
positive and the latter negative, the optimization procedure has achieved its
goal and found a locally optimal saddle point.

The results are shown in figure 6.2. The decrease in the squared norm of
gradient indicates that both methods converge to a solution. Moreover, both
fulfill the condition for a locally optimal saddle point for the parameter ϕ,
i.e., the maximum eigenvalue of ∇2

ϕ f (z∗) is negative. However, the graph of
the minimum eigenvalue of∇2

θ f (z∗) shows that the CESP method converges
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(a) (b)

(c)

Figure 6.2: The first two plots show the minimum eigenvalue of ∇2
θ f (θ,ϕ)

and the maximum eigenvalue of ∇2
ϕ f (θ,ϕ), respectively. The third plot

shows ‖∇ f (zt)‖. The transparent graph shows original values, whereas
the solid graph is smoothed with a Gaussian filter.

faster, and with less frequent and severe spikes, to a solution where the
minimum eigenvalue is zero. Hence, the negative curvature step seems
to be able to drive the optimization procedure to regions that yield points
closer to a locally optimal saddle point.

Using two individual loss functions It is common practice in GAN training
to not consider the saddle point problem as defined in Eq. (6.46), but rather
split the training in two individual optimization problems over different
functions (cf. section 2.2.1). In particular, one usually considers

min
θ

( f1(θ,ϕ) = −Ez∼pz log Dθ(Gϕ(z))) (6.47)

max
ϕ

( f2(θ,ϕ) = Ex∼pd log Dθ(x) + Ez∼pz log(1− Dθ(Gϕ(z)))) (6.48)

44



6.5. Experiments

(b) (b)

(c)

Figure 6.3: The first two plots show the minimum eigenvalue of ∇2
θ f1(θ,ϕ)

and the maximum eigenvalue of ∇2
ϕ f2(θ,ϕ), respectively. The third plot

shows ‖∇ f (zt)‖. The transparent graph shows the original values, whereas
the solid graph is smoothed with a Gaussian filter.

Our CESP optimization method is defined individually for the two param-
eter sets θ and ϕ and can therefore also be applied to a setting with two
individual objectives. Figure 6.3 shows the results on the GAN problem
trained with two individual losses. In this experiment, CESP decreases the
negative curvature of ∇2

θ f1, while the gradient method can not exploit the
negative curvature properly (the negative curvature is oscillating in all iter-
ations). More details on the parameters of the experiments are provided by
table 6.1.

6.5.3 Robust Optimization

Setup The approach of Robust Optimization [3], as defined in section 2.3,
gives rise to a general saddle point problem. Even though robust optimiza-
tion is often formulated as a convex-concave saddle point problem, we con-
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6. Curvature Exploitation

sider it on a neural network that does not fulfill this assumption. The opti-
mization problem that we target here is an application of robust optimiza-
tion in empirical risk minimization [21], namely solving

min
θ

sup
P∈P

[
f (X; θ,P) =

{
EP[l(X; θ)] : D(P‖P̂n) ≤

ρ

n

}]
(6.49)

where l(X; θ) denotes the cost function to minimize, X the data, and D(P‖P̂n)
a divergence measure between the true data distribution P and the empirical
data distribution P̂n.
We use this framework on the Wisconsin breast cancer data set [16], which
is a binary classification task with 30 attributes and 569 samples. Our clas-
sification model is chosen to be a Multilayer Perceptron with the following
prediction formula:

ŷ(x) = σ (W2 σ (W1x + b1) + b2) (6.50)

The non-convex sigmoid activation function σ : R → (0, 1) is applied ele-
mentwise. The weights and biases of the layers are the parameter of the
model, i.e.,

θ =
{

W1 ∈ R2×30, b1 ∈ R2, W2 ∈ R1×2, b2 ∈ R
}

. (6.51)

The robust loss function is given by

l(X; θ, P∗) = −
n

∑
i=1

p∗i [yi log(ŷ(xi)) + (1− yi) log(1− ŷ(xi))] (6.52)

where xi and yi correspond to the i-th datapoint and label, respectively. The
values of P∗ = {p∗i }

n
i=1 form a trainable, not-normalized distribution over

which we maximize the training loss. To enforce that the distance between
the normalized version of P∗ and the empirical distribution Pn =

{ 1
n

}n
i=1 is

bounded, we add the following regularization term:

r(P∗) =
n

∑
i=1

(p∗i −
1
n
)2. (6.53)

By subtracting the regularization r(P∗), scaled by λ > 0, from the robust
loss l(X; θ, P∗), we construct the optimization objective for this experiment
as

min
θ

max
P∗

l(X; θ, P∗)− λr(P∗). (6.54)

The subtraction comes from the fact that the regularization depends only on
P∗ and since we are maximizing over this parameter we need to subtract it
from the loss.
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(a) (b)

Figure 6.4: The left plot shows the minimum eigenvalue of ∇2
θ f (X; θ,P)

and the right plot the squared sum of gradients. The solid line shows the
mean value over 10 runs with different initialization, whereas the blurred
area indicates the 90th percentile.

Results Figure 6.4 shows the comparison of the gradient method (GD) and
our CESP optimizer on this problem in terms of the minimum eigenvalue of
∇2

θ f (X; θ,P). Note that f is concave with respect to P and therefore its Hes-
sian is constant negative. The results indicate the anticipated behavior that
CESP is able to more reliably drive a convergent series towards a solution
where the minimum eigenvalue of ∇2

θ f (X; θ,P) is positive.
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Chapter 7

Second-order Optimization

7.1 Introduction

In the previous chapter, we used extreme curvature exploitation to design an
optimizer that provably avoids undesired stable points of gradient-based op-
timization. Hence, with the information about the most extreme curvature
alone, we were already able to significantly improve the theoretical guaran-
tees and practical performance of an optimizer on the saddle point problem.
This naturally raises the question if an optimization procedure can be fur-
ther advanced by considering additional curvature information. Taking this
idea to the extreme means having access to the full Hessian, which leads
us to the field of second-order optimization. In this chapter, we explore the
properties of second-order methods for the saddle point problem, identify
issues that arise in this context, and propose a modified Newton method for
non convex-concave saddle point optimization.

Benefits of Second-order Optimization Second-order optimization meth-
ods, like the Newton method, hold great potential for accelerating training
in many learning tasks. Making use of the curvature information of the
function, these methods can often find optima in fewer steps than their first-
order counterparts. Even though the additional computational complexity,
these methods introduce, make them in-practical for most contemporary
Deep Learning tasks, the rapid growth of available computational power
may pave the way for them – enabling them to become the standard for
general optimization tasks. Currently, the family of quasi-Newton methods
is bridging the gap between first- and second-order methods. While techni-
cally still being an (efficient) first-order method, they approximate the curva-
ture information and try to imitate the update of the second-order method.
Hence, with the rise of quasi-Newton methods and the growing compu-
tational power of modern systems, the analysis of second-order methods
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7. Second-order Optimization

becomes an essential task.

For solving the saddle point problem in practice, it is the conventional
approach to change different optimization schemes like GD, Adagrad or
Adam in a modular way, assuming that they are all capable of optimizing
the function as intended. However, as already seen in previous chapters,
this assumption is not true in general and, therefore, optimizer need to be
analyzed carefully on their suitability for the saddle point problem. This
chapter shows that Newton’s method suffers from two major problems, that
can be circumvented by two individual modifications. The first problem is
closely related to the attraction issue of Newton’s method to saddle points
in non-convex minimization [8]. While this can be solved with the Saddle
Free Newton (SFN) approach from [8], the second problem is caused by the
simultaneous optimization procedure itself and, thus, yields a need for a
new problem formulation. Instead of splitting the problem into two individ-
ual minimization problems, we need to apply the Newton method on the
full objective to make sure that we obtain the best estimate of the update
directions.

7.2 Dynamics of Newton’s Method

We can apply Newton’s method on the saddle point problem in a straight-
forward manner by using the simultaneous optimization approach. The
particular update equations for this method are given in table 4.1. Stacking
the two equations together yields the optimization step in matrix form as:[

∆θ
∆ϕ

]
= η

[
∇2

θ f 0
0 −∇2

ϕ f

]−1 [−∇θ f
∇ϕ f

]
, (7.1)

where we used the equivalence between the inverse of a block diagonal
matrix with the inverse of all its elements. With the help of the following
lemma, we show that the simultaneous Newton update step shares a desir-
able property with Gradient Descent, namely that all locally optimal saddle
points are stable stationary points of its dynamics [18, 20].

Lemma 7.1 Consider a locally optimal saddle point z∗ := (θ,ϕ). This point
is a stable stationary point to the general update dynamics of Eq. (4.3) if At
and Bt are positive definite matrices.

Proof It is a direct consequence from lemma 6.6. �

As mentioned in table 4.1,
(
∇2

θ f
)−1 and (∇2

ϕ − f )−1 are positive definite
matrices around any locally optimal saddle point. Therefore, we can apply
the result of lemma 7.1 – that every locally optimal saddle point is a stable
stationary point – to the update dynamics in Eq. (7.1).

50



7.2. Dynamics of Newton’s Method

7.2.1 Avoiding Undesired Saddle Points

Minimizing non-convex functions with Newton’s method is known to be
problematic due to the prevalence of saddle points in high dimensional error
surfaces [8]. In this section, we establish a connection between this issue
in non-convex minimization and the problem of converging to non-optimal
saddle points in saddle point optimization. We follow the argument of [8] to
evaluate the optimization step direction of Newton’s method around critical
points. We analyze a critical point (θ̄,ϕ̄) locally by using a second-order
Taylor expansion, together with a re-parameterization coming from Moore’s
Lemma. Because we are optimizing two functions separately with respect
to different sets of parameters, the expansions are also done individually:

f (θ̄+ ∆θ,ϕ̄) = f (θ̄,ϕ̄) +
1
2

n

∑
i=1

λθ
i (∆vθ

i )
2 (7.2)

f (θ̄,ϕ̄+ ∆ϕ) = f (θ̄,ϕ̄) +
1
2

m

∑
i=1

λ
ϕ
i (∆vϕ

i )
2 (7.3)

where λθ
i and λ

ϕ
i are the eigenvalues from ∇2

θ f (θ̄,ϕ̄) and ∇2
ϕ f (θ̄,ϕ̄), respec-

tively. The values of ∆vθ
i and ∆vϕ

i are the updates of the parameters, corre-
sponding to motion along the eigenvectors of their respective Hessian, i.e.,

∆vθ
i = (eθ

i )
>∆θ (7.4)

∆vϕ
i = (eϕ

i )
>∆ϕ (7.5)

where eθ
i and eϕ

i are the eigenvectors from ∇2
θ f (θ̄,ϕ̄) and ∇2

ϕ f (θ̄,ϕ̄), respec-
tively.

The way we defined the simultaneous Newton method (Table 4.1) makes
the update of the parameters θ independent of the change in ϕ, and vice
versa. Therefore, both individual updates re-scale the step along their eigen-
vector with the inverse of the corresponding eigenvalue. Using the Taylor
expansions from above, this yields the following update steps along their
respective eigenvectors:

−
λθ

i

λθ
i

∆vθ
i and −

λ
ϕ
i

λ
ϕ
i

∆vϕ
i (7.6)

We can make two interesting observations from these updates, when com-
paring it to the corresponding Gradient Descent (GD) update. The GD steps
along the eigendirections of the two Hessians are given by

−λθ
i ∆vθ

i and λ
ϕ
i ∆vϕ

i . (7.7)
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The two differences between the methods are that (i) Newton’s method re-
scales the step length with the absolute value of the eigenvalue and (ii)
the direction of the step changes when λθ

i < 0 (λϕ
i > 0). While the re-

scaling of the step length avoids slowing down in directions with small
absolute eigenvalue, which gives Newton’s method an advantage over GD,
the change in direction can lead to a problem. Let’s consider (without loss
of generality) the update of the minimization over one parameter θi ∈ θ. If
the ith eigenvalue λθ

i of ∇2
θ f is negative, the updates of GD and Newton,

along the eigenvector eθ
i , point in different directions.

GD: |λθ
i |∆vθ

i Newton: − ∆vθ
i (7.8)

The authors of [8] argue that for the Newton method, we are moving in a
direction of increasing error, towards the critical point. Hence, any critical
point of the individual dynamics θ̄ (ϕ̄) becomes an attractor, even if it is no
local minimum (maximum) of the objective, but rather a saddle point, which
means that ∇2

θ f (θ̄,ϕ̄) is not positive semi-definite (∇2
ϕ f (θ̄,ϕ̄) is not negative

semi-definite). Summarizing this finding for our problem yields that the
simultaneous Newton method is attracted to all critical points, and not just
locally optimal saddle points.

The authors of [8] propose the Saddle Free Newton (SFN) method to circum-
vent the identified problem of the vanilla Newton method for non-convex
optimization. The SFN method modifies the inverse Hessian H−1 in the
update equation by |H|−1, where |H| is the matrix obtained by taking the
absolute value of each of the eigenvalues of H. Through this change, we can
make sure that the update of GD and Newton, along the eigendirection, in
equation 7.8 always have the same sign. Applying this concept to our simul-
taneous Newton method for for the saddle point problem is straightforward
and results in the following update equation:

[
∆θ
∆ϕ

]
= η

∣∣∣∣[∇2
θ f 0
0 −∇2

ϕ f

]∣∣∣∣−1 [−∇θ f
∇ϕ f

]
, (7.9)

which yields the two parameter updates along the corresponding eigenvec-
tors as

−
λθ

i

|λθ
i |

∆vθ
i and

λ
ϕ
i

|λϕ
i |

∆vϕ
i . (7.10)

As we can see, this method combines the benefits of the re-scaling with the
eigenvalue, but still keeps the same direction as GD.
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7.2. Dynamics of Newton’s Method

7.2.2 Simultaneous vs. full Newton Updates

The simultaneous Newton update equation 7.1 presents the major simpli-
fication of this method. Namely, that we approximate the Hessian of the
objective with a block diagonal matrix, disregarding all curvature informa-
tion of the cross-terms. In this section we are going to show that this gives
rise to different update directions and visualize its consequences for a sim-
ple convex-concave objective.

With the full Newton method we denote the parameter updates according
to the following equation:

[
∆θ
∆ϕ

]
= −η

[
∇2

θ f ∇θϕ f
∇>θϕ f ∇2

ϕ f

]−1 [∇θ f
∇ϕ f

]
(7.11)

We update both sets of parameters at once by using the Hessian of the full
problem, which includes the curvature information about the cross terms,
i.e., ∇θϕ f and ∇>ϕθ f . Note that the update equation for the simultaneous
method in Eq. (7.1) is a special instance of this where ∇θϕ f = 0. Therefore,
in general, the two methods yield different update equations, which means
that they change the parameters along different directions.

Obviously, with a shrinking relative magnitude of the cross term curvature
∇θϕ f , the block diagonal approximation gets closer to the true Hessian. Intu-
itively, it seems clear that with a better approximation the update directions
of the simultaneous and the full method become more similar. Hence, the
similarity of the update directions of the two methods can be controlled by
the relative magnitude of ∇θϕ f . The following paragraph gives a quantita-
tive analysis of this argument, using a simple convex-concave example.

Convex-Concave Example To study the difference between the simultane-
ous Newton update in Eq. (7.1) and the full Newton update in Eq. (7.11) on
an actual example, we consider the following simple convex-concave func-
tion

f (θ,ϕ) =
α

2
‖θ‖2 + θ>Mϕ− β

2
‖ϕ‖2 (7.12)

with θ ∈ Rn, ϕ ∈ Rm, M ∈ Rn×m and α, β > 0. Since this function is convex
in θ and concave in ϕ, the only critical point (θ∗,ϕ∗) = (0, 0) is a locally
optimal saddle point. The gradient and Hessian of the function are given by

∇ f (θ,ϕ) =
[

αθ+ Mϕ
−βϕ+ M>θ

]
H(θ,ϕ) =

[
αI M

M> −βI

]
. (7.13)
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To compare the simultaneous method to the full method, we evaluate the
parameter update step for both at a random point (θ,ϕ).

First, observe that derivatives of f of a higher order than two are zero. Hence,
the second order Taylor expansion is exact, i.e.,

f
([

θ+ ∆θ
ϕ+ ∆ϕ

])
= f

([
θ
ϕ

])
+
[
∆θ> ∆ϕ>

] [∇θ f (θ,ϕ)
∇ϕ f (θ,ϕ)

]
+

1
2
[
∆θ> ∆ϕ>

]
H(θ,ϕ)

[
∆θ
∆ϕ

]
. (7.14)

Taking the derivative of the expansion with respect to
[

∆θ
∆ϕ

]
, and setting it

to zero yields [
∇θ f (θ,ϕ)
∇ϕ f (θ,ϕ)

]
+ H(θ,ϕ)

[
∆θ
∆ϕ

]
= 0 (7.15)

⇒
[

∆θ
∆ϕ

]
= −H−1

[
∇θ f (θ,ϕ)
∇ϕ f (θ,ϕ)

]
(7.16)

which is exactly the update equation for Newton’s method. Since our partic-
ular function has zero gradients only at the origin, the parameter update of
the full Newton method at any point (θ,ϕ) is[

∆θ
∆ϕ

]
= −

[
θ
ϕ

]
, (7.17)

leading straight to the origin.

For the simultaneous update, on the other hand, we have the following two
update equations

∆θ = −
(
∇2

θ f (θ,ϕ)
)−1∇θ f (θ,ϕ) (7.18)

= −1
α
(αθ+ Mϕ) = −θ− 1

α
Mϕ (7.19)

∆ϕ = −
(
∇2

ϕ f (θ,ϕ)
)−1
∇ϕ f (θ,ϕ) (7.20)

=
1
β
(−βϕ+ M>θ) = −ϕ+

1
β

M>θ (7.21)

which results in the overall update[
∆θ
∆ϕ

]
= −

[
θ
ϕ

]
+

[
− 1

α Mϕ
1
β M>θ

]
. (7.22)
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Figure 7.1: Function 7.12 with α, β = 2 and M = 1. The blue and black arrow
show one optimization step of the full Newton and simultaneous Newton,
respectively, from the start point (θ, ϕ) = (−4,−2).

Hence, we introduce an additive error term to the optimization scheme,
when disregarding the cross terms, that depends on the matrix M.

In figure 7.1, we see one example where the additive error term leads to
a significantly worse update. This example shows that even in a simple
convex-concave setting, the simultaneous Newton method, with its block
diagonal approximation, can lead to bad updates when the cross-term de-
pendencies in the matrix M are large.

7.3 Generalized Trust Region Method for the Saddle
Point Problem

In the previous section, we have seen that the naı̈ve replacement of a com-
mon GD optimizer with the Newton method introduces two severe prob-
lems. First, that it is attracted to any critical point and secondly that the
simultaneous approach can yield bad approximations to the true eigendi-
rections of the full Hessian. We already identified the solutions to both
of the problems, namely, using the SFN method for the former and a full
Newton update for the latter. However, combining these two approaches
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is not straightforward, as the SFN method is only defined for minimization
problems. Therefore, in this section, we extend the generalized trust region
approach from [8] to the saddle point problem, yielding a modified second-
order method to find structured saddle points.

To extend the generalized trust region method, we must account for the fact
that we are doing a min-max operation over the function f with respect to
the parameters θ and ϕ, respectively. Therefore, we formulate two individ-
ual optimization problems within this framework:

∆θ = arg min
∆θ
T1

(
f ,
[

θ
ϕ

]
,
[

∆θ
∆ϕ

])
s.t. d

([
θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
≤ ∆ (7.23)

∆ϕ = arg min
∆ϕ
T1

(
− f ,

[
θ
ϕ

]
,
[

∆θ
∆ϕ

])
s.t. d

([
θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
≤ ∆ (7.24)

The expression T1

(
f ,
[

θ
ϕ

]
,
[

∆θ
∆ϕ

])
denotes the first-order Taylor approxima-

tion of f around the point
[

θ
ϕ

]
, evaluated at

[
∆θ
∆ϕ

]
. In the generalized trust

region framework, the authors of [8] use the discrepancy between the first-
order and second-order Taylor approximation as the distance measure d. To
extend this idea to our saddle point problem, with two individual optimiza-
tion objectives, we use the mean sum of the discrepancies to ensure that
both problems have the same constraint. Note that the discrepancy is de-
fined as the absolute difference, and therefore it is independent of the sign
of f . Thus, the distance simplifies to the discrepancy of f , which is given
by:

d
([

θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
=

∣∣∣∣ f (θ,ϕ) +
[
∆θ> ∆ϕ>

] [∇θ f
∇ϕ f

]
+

1
2
[
∆θ> ∆ϕ>

]
H
[

∆θ
∆ϕ

]
− f (θ,ϕ)−

[
∆θ> ∆ϕ>

] [∇θ f
∇ϕ f

]∣∣∣∣
=

1
2

∣∣∣∣[∆θ> ∆ϕ>
]

H
[

∆θ
∆ϕ

]∣∣∣∣ ≤ ∆ (7.25)

The Hessian, denoted by H, is defined as

H =

[
∇2

θ f ∇θϕ f
∇ϕθ f ∇2

ϕ f

]
. (7.26)
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Lemma 7.2 (Lemma 1 from [8]) Let A be a nonsingular square matrix in
Rn × Rn, and x ∈ Rn be some vector. Then it holds that∣∣∣x>Ax

∣∣∣ ≤ x> |A| x , (7.27)

where |A| is the matrix obtained by taking the absolute value of each of the
eigenvalues of A.

Proof Let e1, . . . , en be the different eigenvectors of A and λ1, . . . , λn the
corresponding eigenvalues. By decomposing the matrix A, we can re-write
the left-hand side of the inequality as follows:∣∣∣x>Ax

∣∣∣ = ∣∣∣∣∣x>
(

n

∑
i=1

λieie>i

)
x

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

λix>eie>i x

∣∣∣∣∣ (7.28)

=

∣∣∣∣∣ n

∑
i=1

λi

(
e>i x

)> (
e>i x

)∣∣∣∣∣ =
∣∣∣∣∣ n

∑
i=1

λi

(
e>i x

)2
∣∣∣∣∣ (7.29)

With the use of the triangular inequality∣∣∣∣∣∑i
xi

∣∣∣∣∣ ≤∑
i
|xi| (7.30)

we obtain the upper bound of the expression as:∣∣∣x>Ax
∣∣∣ ≤ n

∑
i=1

∣∣∣∣λi

(
e>i x

)2
∣∣∣∣ = x>

(
n

∑
i=1
|λi| eie>i

)
x (7.31)

= x> |A| x (7.32)
�

With the help of Lemma 7.2, we can construct an upper bound of the dis-
tance measure d with

d
([

θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
≤ 1

2
[
∆θ> ∆ϕ>

]
|H|

[
∆θ
∆ϕ

]
≤ ∆ (7.33)

where |H| =
[

H1 H2
H3 H4

]
is the matrix obtained by taking the absolute value

of each of the eigenvalues of the Hessian of f .

To solve the two constrained optimization problems, we use Lagrange mul-
tipliers which yield the following two functions:

L1 = f (θ,ϕ) +
[
∆θ> ∆ϕ>

] [∇θ f
∇ϕ f

]
+ λ

(
1
2
[
∆θ> ∆ϕ>

]
|H|

[
∆θ
∆ϕ

]
− ∆

)
(7.34)
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L2 = − f (θ,ϕ)−
[
∆θ> ∆ϕ>

] [∇θ f
∇ϕ f

]
+ λ

(
1
2
[
∆θ> ∆ϕ>

]
|H|

[
∆θ
∆ϕ

]
− ∆

)
(7.35)

Minimizing L1 with respect to ∆θ, yields

∂L1

∂∆θ
= ∇θ f (θ,ϕ) + λ(H1∆θ+

1
2

H2∆ϕ+
1
2

H>3 ∆ϕ) (7.36)

Similarly, minimizing L2 with respect to ∆ϕ, yields

∂L1

∂∆ϕ
= −∇ϕ f (θ,ϕ) + λ(H4∆ϕ+

1
2

H3∆θ+
1
2

H>2 ∆θ) (7.37)

Lemma 7.3 Let A ∈ Rn × Rn be a symmetric matrix. Then, |A| is also
symmetric, where |A| is the matrix obtained by taking the absolute value of
each of the eigenvalues of A.

Proof Let ei, . . . , en be the different eigenvectors of A and λ1, . . . , λn the
corresponding eigenvalues. Using eigendecomposition for symmetric real
matrices, we can re-write the matrix A as

n

∑
i=1

λieie>i . (7.38)

Taking the absolute values of every eigenvalue leads to the following expres-
sion for |A|:

n

∑
i=1
|λi| eie>i . (7.39)

Observing that the outer product of each eigenvector forms a symmetric
matrix, and that the set of symmetric matrices is closed under the weighted
sum, concludes the proof. �

Using the statement of Lemma 7.3, and observing that∇θϕ f> = ∇ϕθ f due to
the symmetry of the Hessian, leads to the conclusion, that H>2 = H3. Hence,
we can replace H>3 with H2 in equation 7.36 and H>2 with H3 in equation
7.37. Setting both derivatives to zero yields the following two equations,
respectively.

−∇θ f = λ
[
H1 H2

] [∆θ
∆ϕ

]
(7.40)

∇ϕ f = λ
[
H3 H4

] [∆θ
∆ϕ

]
(7.41)
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This set of equations can be re-written as

−
[
∇θ f
−∇ϕ f

]
= λ

[
H1 H2
H3 H4

] [
∆θ
∆ϕ

]
, (7.42)

from which we obtain the following solution:[
∆θ
∆ϕ

]
= − 1

λ
|H|−1

[
∇θ f
−∇ϕ f

]
. (7.43)

Hence, the optimal update step of the generalized trust region method uses
the inverse of the modified Hessian of f , which is constructed using the
absolute value of every eigenvalue of the Hessian. Additionally, it is using a
negative sign for the update over the parameters to be maximized. We call
the method using this update SPNewton (saddle point Newton) from now
on.

7.3.1 Support for Different Loss Functions

So far, we have adapted the Saddle Free Newton procedure via an extended
version of the generalized trust method to the saddle point problem. How-
ever, we have seen in chapter 2 that in many practical use cases we can
accelerate training by considering two individual loss functions, which is
not solvable by our proposed SPNewton method. In this section, we are go-
ing to generalize the saddle free Newton idea even further to the case where
we have two individual loss functions (cf. section 2.2.1) f1, f2 over which we
minimize and maximize, respectively. I.e., instead of the standard saddle
point problem approach where we optimize over

min
θ

max
ϕ

f (θ,ϕ) ≡
{

minθ f (θ,ϕ)
minϕ− f (θ,ϕ)

, (7.44)

we consider the more general case with two individual loss functions:{
minθ f1(θ,ϕ)
minϕ− f2(θ,ϕ)

. (7.45)

While adapting common first-order methods to this adjustment is straight-
forward, our SPNewton method relies on the fact that we optimize over a
single loss function for both sets of parameters. Therefore, in this section,
we are going to further generalize the method to be able to handle this more
generic case.
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Adapting the framework The first obvious modification we have to make is
to re-formulate the individual optimization problems within the generalized
trust region method (7.23, 7.24). This is straightforward as we just have to
replace the respective functions, which results in

∆θ = arg min
∆θ
T1

(
f1,
[

θ
ϕ

]
,
[

∆θ
∆ϕ

])
s.t. d

([
θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
≤ ∆ (7.46)

∆ϕ = arg min
∆ϕ
T1

(
− f2,

[
θ
ϕ

]
,
[

∆θ
∆ϕ

])
s.t. d

([
θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
≤ ∆. (7.47)

However, now that we have two different loss functions we obviously have
different Hessian matrices, which means that the two distance constraints
are not the same anymore. We defined the distance as the mean absolute
discrepancy between the first-order and second-order Taylor approximation,
which now becomes the following expression:

d
([

θ
ϕ

]
,
[

θ+ ∆θ
ϕ+ ∆ϕ

])
=

1
2

∣∣∣∣[∆θ> ∆ϕ>
]

H(1)
[

∆θ
∆ϕ

]∣∣∣∣+ 1
2

∣∣∣∣[∆θ> ∆ϕ>
]

H(2)
[

∆θ
∆ϕ

]∣∣∣∣
≤ 1

2
[
∆θ> ∆ϕ>

] (
|H|(1) + |H|(2)

) [
∆θ
∆ϕ

]
≤ ∆ (7.48)

where H(i) is the Hessian of the function fi with i = {1, 2}, and |H|(i) denotes
the corresponding matrix constructed by taking the absolute value of each
eigenvalue. The inequality of the distance is a direct consequence of Lemma
7.2.

With the given expression for the distance, we can use the same line of
argument as in the previous section to arrive at the following update step
equation: [

∆θ
∆ϕ

]
= − 1

λ

(
|H|(1) + |H|(2)

)−1
[
∇θ f1
−∇ϕ f2

]
(7.49)

This method uses the inverse of the sum of the positive definite Hessians of
the individual functions. With the use of this optimizer (which we call Ad-
ditiveSPNewton from now on) we are able to use the the saddle-free Newton
idea in a modified saddle point problem setting with different loss functions
(as it usually arises in the training of GANs), at the cost of constructing two
Hessian matrices over the full set of parameters.
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(a)

Discr. Gen.
Input Dimension 2 2
Hidden Layers 1 1
Hidden Units / Layer 30 30
Activation Function ReLU ReLU
Output Dimension 1 2
Batch Size 8192
Learning Rate 0.05

(b)

Figure 7.2: Plot (a) shows the data distribution. The four means of the
Gaussian mixtures are arranged on a circle with radius two around the ori-
gin and indicated by the red dots. All the mixtures have equal probability
weight and a standard deviation of diag(0.1, 0.1). The table in (b) shows the
Network architecture parameters.

7.4 Experiments

7.4.1 SPNewton vs. Newton and Gradient Descent

Objective and setup In the first experiment, we want to compare the perfor-
mance of SPNewton against the Newton’s method (Newton) and Gradient
Descent (SGD). We asses the quality of the generative model on a simple 2D
toy problem, with data coming from a mixture of four Gaussians. The data
distribution is visualized in figure 7.2 (a). The detailed parameters of the
model are shown in table 7.2 (b).

Figure 7.4: Logarithmic sum of
gradients.

Results The visual outcome of the
comparison of the three different opti-
mization schemes is summarized in fig-
ure 7.3. The kernel density estimate
of the generator’s distribution is shown
in green, while the means of the Gaus-
sian mixtures are represented by the red
dots. The results of this experiment
show very clearly the aforementioned
flaw of Newton’s method for this type
of problem. Namely, that it converges
to some critical point very quickly, that
is not an optimal solution. Evidence
that it actually converged to a critical
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Iteration 1 Iteration 900 Iteration 1,800 Iteration 10,000

SPNewton

Newton

SGD

Figure 7.3: Plots of the kernel density estimate of the generator’s distribution
for 0 to 10000 iterations (left to right) and different optimization methods:
Newton, SGD, SPNewton (top to bottom). Note that between the third and
the fourth column is a relatively larger gap in iterations.

point is given by the small value of the absolute gradient sum in figure
7.4. The SPNewton method, on the other hand, is not attracted by one of
these undesired critical points. More to the contrary, it converges quickly to
something similar to the true data generating distribution, even outpacing
Gradient Descent by far.

7.4.2 SPNewton vs. Simultaneous SFNewton

Objective and setup In the second experiment, we compare the SPNew-
ton method against the simultaneously applied Saddle Free Newton method
(SFNewton) from Dauphin et al. [8]. This comparison is important, as it
gives empirical evidence to the problem of discrepancy in the eigenvectors,
described in section 7.2.2. It is, therefore, closely related to the toy exper-
iment on the convex-concave function, but on the significantly larger and
more complex 2D-Gaussian GAN problem. We use the same data and model
architecture for SPNewton as in the previous experiment.

Results In figure 7.5, we see a scatter plot of the resulting distribution of
the generator (blue), compared to a subset of the data samples (green).The
top row shows the results for the simultaneous SFNewton, and the bottom
row for the SPNewton optimizer. We can see, that the SPNewton optimizer
finds the modes of the gaussian a lot faster and converges quickly to an
almost perfect distribution. The simultaneous approach, on the other hand,
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has trouble identifying the modes and doesn’t seem to converge within ten
thousand iterations.
The result of this comparison confirms the theoretical argument of the su-
periority of a Newton method applied to the full objective, instead of a si-
multaneous approach. It illustrates the consequences of approximating the
Hessian with a block diagonal matrix.

Iteration 0 Iteration 2500 Iteration 4500 Iteration 8000 Iteration 10000

Figure 7.5: Scatter plots of a subset of the data (green) and generated sam-
ples (blue) over the course of 10000 iterations. The upper row shows the
results for the SFNewton applied simultaneously, and the bottom row for
the proposed SPNewton optimizer.

7.4.3 Robust Optimization

Objective and Setup In this last experiment of the SPNewton method, we
take a step back from the GAN objective and move to the framework of
Robust Optimization (cf. section 2.3). Robust Optimization, in the sense of
empirical risk minimization, gives rise to a saddle point problem that has
already been described in more detail in a previous experiment in section
6.5.3. In this experiment we again consider this framework with the same
architectural parameters.

Experiment 1 First, we test the SPNewton optimizer against the Newton
method in both variations: simultaneously applied (7.1) and on the full ob-
jective (7.11). We compare the methods by their test set accuracy over the
number of epochs. We run it for 2000 epochs with 10 different random pa-
rameter initializations and different trainings-, test-set splits. The accuracy
results are reported in the left plot of figure 7.6 with their corresponding 90
percent confidence intervals. To be sure that the methods have converged
we plot the squared sum of gradients over epochs in the right plot of figure

The source code for the SPNewton optimizer and the experiments is available on github.
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Figure 7.6: Robust optimization experiment on the breast cancer Wisconsin
dataset [16] (binary classification on 30 attributes). The left plot shows the
test set accuracy and the right plot the corresponding squared sum of gradi-
ents for the SPNewton, Newton and the simultaneous Newton optimization.
The experiment has been run over 2000 epochs for 10 different initializations
and training-, test-set splits. The solid line shows the mean over the different
runs and the blurry area the corresponding 90 percent confidence interval.

7.6.
The results clearly support our intuition from the previous section. The orig-
inal Newton methods, in both forms, converge to a non-ideal critical point
where the test set accuracy is low. Our SPNewton optimizer, on the other
hand, is able to find a significantly better solution.

Experiment 2 In this experiment, we want to analyze the behavior of the
different optimizer around critical points. In the previous section we ar-
gued that the major shortcoming of Newton’s method is its attraction to any
saddle point. We constructed SPNewton with the specific goal to not be at-
tracted to bad saddle points, but still to locally optimal ones. The following
experiment aims to validate this property of SPNewton.
We first run Newton’s method until we can be sure, based on the squared
sum of gradients, that we found a critical point. Then we perturb the param-
eters of the model by some gaussian noise coming from N (0, 0.1), and com-
pare the performance of SPNewton and Newton for the upcoming epochs.
An optimizer that is attracted to the initial critical point will quickly con-
verge to the same point again, whereas SPNewton should be able to escape
and converge to a different point.
The results of this experiment are shown in figure 7.7. The test set accuracy
plot on the left gives evidence that, in fact, the SPNewton optimizer is able to
escape from the critical point and find a better solution. On the contrary, the
simultaneous Newton method seems to converge back to the initial critical
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Figure 7.7: Robust optimization experiment on the breast cancer Wiscon-
sin dataset [16] (binary classification on 30 attributes). The left plot shows
the test set accuracy and the right plot the corresponding logarithm of the
squared sum of gradients for the SPNewton and the simultaneous Newton
optimization. The vertical black line indicates the epoch number at which
the model parameters have been perturbed with additive values coming
from N (0, 0.1).

point. The squared sum of gradient plot on the right shows that (i) we really
found a critical point with the Newton start, (ii) the Newton and SPNewton
method converge after the perturbation.

7.5 Problems with Second-order Methods and Future
Work

The main drawback of any second-order method is the need to compute
the Hessian. The size of this matrix depends quadratically on the number
of parameters. Hence, for high-dimensional problems it is very costly or
even unfeasible to compute and store the Hessian. Most of the saddle point
problems we are addressing in this thesis are based on deep neural net-
works which are naturally very high dimensional. Therefore, the proposed
SPNewton optimizer is not applicable due to the computational complexity
the Hessian computation entails. However, to overcome this limitation we
could relinquish the exact Hessian computation and rely on an approxima-
tion, i.e., an SPNewton optimizer within the framework of quasi-Newton
methods [22].

Quasi-SPNewton Quasi-Newton methods use the alternating structure of
the algorithm to update its approximation of the Hessian B after each step
with the gained gradient information. This can be done by observing that
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the change in the gradient ∇ f (x) provides information about the second
derivative of f . To justify this statement, we follow the argument of [22] –
starting from Taylor’s theorem – to derive the secant equation. First, observe
that for any twice continuously differentiable function f (x) and for some t
∈ (0, 1) it holds that

∇ f (x + p) = ∇ f (x) +
∫ 1

0
∇2 f (x + tp)p dt. (7.50)

By adding and subtracting ∇2 f (x)p on the right hand side we obtain

∇ f (x + p) = ∇ f (x) +∇2 f (x)p +
∫ 1

0
(∇2 f (x + tp)−∇2 f (x))p dt. (7.51)

and because ∇ f (x) is continuous, the integral on the right is of size o(‖p‖).
To derive the secant equation we set x = xk and p = xk+1 − xk, which leads
to

∇ fk+1 = ∇ fk +∇2 fk(xk+1 − xk) + o(‖xk+1 − xk‖). (7.52)

Hence, for xk and xk+1 close to a solution where ∇2 f is positive definite, we
can write

∇2 fk(xk+1 − xk) ≈ ∇ fk+1 −∇ fk (7.53)

leading to the secant equation:

Bk+1(xk+1 − xk) = ∇ fk+1 −∇ fk (7.54)

which is the theoretical foundation of all quasi-Newton methods. Most
prominently, the BFGS formula ((2.19) of [22]) is used to approximate the
Hessian based on the secant equation. On top of BFGS, we can apply the
SPNewton method to arrive at quasi-SPNewton that doesn’t require exact
Hessian computation.

L-BFGS By using quasi-Newton methods, we are able to efficiently com-
pute the Hessian even for high-dimensional functions. However, the mem-
ory problem of storing an n× n matrix is still present. To remedy this issue,
limited-memory versions of quasi-Newton methods have been developed.
The idea behind these methods is to store an implicit approximation of the
Hessian. Instead of maintaining the full n× n matrix, they only keep a few
vectors of length n from which the approximation can be retrieved. The
limited-memory algorithm that is based on the BFGS updating formula is
called L-BFGS. It achieves the memory reduction by only storing the curva-
ture information of the last L iterations in order to construct the Hessian
information. Therefore, making a trade-off between approximation quality
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and memory requirement by varying the value of L. At the heart of the
L-BFGS algorithm is the two-loop recursion from Alg. 7.4 [22]. It computes
the BFGS update by using only the most recent derivative information. The
extension to the L-BFGS algorithm allows to apply the most famous quasi-
Newton method to problems with large scale data.
Using L-BFGS to compute an approximate update direction for the SPNew-
ton method is not straightforward. The limited-memory version never ex-
plicitly computes an approximate Hessian, but only its product with the
gradient. Therefore, it is not obvious how to apply the absolute eigenvalue
operator | · | in the update equation of the SPNewton method (Eq. 7.43) to
the approximation matrix. Changing L-BFGS to handle the SPNewton up-
date requires careful adjustment of the two-loop recursion algorithm, which
is left as future work. Such a modified method would pave the way for the
SPNewton optimizer for high-dimensional saddle point problems.
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Appendix

Convergence Analysis on a Convex-Concave Objective

Lemma 4.1 Suppose that∇2
θ f (θ,ϕ) � αI and∇2

ϕ f (θ,ϕ) � −αI with α > 0,
and assumptions 3.4 and 3.5 hold. Let (θ∗,ϕ∗) be the unique solution of the
saddle point problem, then t gradient steps obtain

‖
[

θ(t) − θ∗

ϕ(t) −ϕ∗

]
‖2 ≤ (1 + η(Lzη − 2α))t‖

[
θ(0) − θ∗

ϕ(0) −ϕ∗

]
‖2 (.55)

Proof From the update step for simultaneous Gradient Descent/ Ascent in
equation 4.1, we can derive the euclidean distance between the parameters
after t steps and the optimum as

‖
[

θ(t) − θ∗

ϕ(t) −ϕ∗

]
‖2 = ‖

[
θ(t−1) − θ∗

ϕ(t−1) −ϕ∗

]
‖2

+ 2η
[
∇θ f ∇ϕ f

] [−θ(t−1) + θ∗

ϕ(t−1) −ϕ∗

]
+ η2‖

[
∇θ f
∇ϕ f

]
‖2 (.56)

Using the mean-value theorem, there exists a value pair (θ̄,ϕ̄) in the neigh-
bourhood of (θ∗,ϕ∗) such that

[
∇θ f −∇θ f (θ∗,ϕ∗)︸ ︷︷ ︸

0

∇ϕ f −∇ϕ f (θ∗,ϕ∗)︸ ︷︷ ︸
0

]
=

[
(θ− θ∗)> (ϕ−ϕ∗)>

] [∇2
θ f (θ̄,ϕ̄) ∇θϕ f (θ̄,ϕ̄)

∇ϕθ f (θ̄,ϕ̄) ∇2
ϕ f (θ̄,ϕ̄)

]
(.57)
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From the smoothness assumption 3.4 follows that

‖
[
∇θ f
∇ϕ f

]
‖2 ≤ Lz‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2 (.58)

With those two properties we can rewrite equation .55 as

‖
[

θ(t) − θ∗

ϕ(t) −ϕ∗

]
‖2 ≤ ‖

[
θ(t−1) − θ∗

ϕ(t−1) −ϕ∗

]
‖2

− 2η(θ(t−1)−θ∗)>∇2
θ f (θ̄,ϕ̄) (θ(t−1)−θ∗)+ 2η(ϕ(t−1)−ϕ∗)>∇2

ϕ f (θ̄,ϕ̄) (ϕ(t−1)−ϕ∗)

+ η2Lz‖
[

θ(t−1) − θ∗

ϕ(t−1) −ϕ∗

]
‖2 (.59)

Suppose that

αI � ∇2
θ f (θ̄,ϕ̄), ∇2

ϕ f (θ̄,ϕ̄) � −αI (.60)

Then

‖
[

θ(t) − θ∗

ϕ(t) −ϕ∗

]
‖2 ≤ ‖

[
θ(t−1) − θ∗

ϕ(t−1) −ϕ∗

]
‖2 + η(Lzη − 2α)‖

[
θ(t−1) − θ∗

ϕ(t−1) −ϕ∗

]
‖2 (.61)

≤ (1 + η(Lzη − 2α))t‖
[

θ(0) − θ∗

ϕ(0) −ϕ∗

]
‖2 (.62)

�

Lemma 4.2 Suppose that ∇2
θ f � ηI and ∇2

ϕ f � −γI with γ > 0, and
assumptions 3.4 and 3.5 hold. The step size matrices A and B are diagonal,
positive semi-definite matrices with

αminI � A � αmaxI (.63)
βminI � B � βmaxI (.64)

with a constant

R :=
min(αmin, βmin)

max(αmax, βmax)
. (.65)

Let (θ∗,ϕ∗) be the unique solution of the saddle point problem, then one modi-
fied gradient step of Eq. (4.3) with step size

η =
γR

Lz max(αmax, βmax)
(.66)
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leads to

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 = (1− γ2

Lz
R2)‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

− 2η
|θ|

∑
i=1

|ϕ|

∑
j=1

(Aii − Bjj)(θi − θ∗i )(ϕj −ϕ∗j )∇θiϕj f (θ̄,ϕ̄) (.67)

Proof We can use the same proof sketch as in Lemma 4.1. But since in
general A 6= B, the cross-dependencies in equation .55 don’t vanish and we
end up with the following expression:

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 = ‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

− 2η(θ− θ∗)>∇2
θ f (θ̄,ϕ̄) A(θ− θ∗) + 2η(ϕ−ϕ∗)>∇2

ϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)

+ 2η(θ− θ∗)>∇θϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)− 2η(ϕ−ϕ∗)>∇ϕθ f (θ̄,ϕ̄) A(θ− θ∗)

+ η2‖
[

A∇θ f
B∇ϕ f

]
‖2 (.68)

Using the assumptions on the block diagonals of the Hessian, i.e.

∇2
θ f � γI and ∇2

ϕ f � −γI ,

we can form an upper bound as

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 ≤ ‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

− 2ηγ(θ− θ∗)>A(θ− θ∗)− 2ηγ(ϕ−ϕ∗)>B(ϕ−ϕ∗)

+ 2η(θ− θ∗)>∇θϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)− 2η(ϕ−ϕ∗)>∇ϕθ f (θ̄,ϕ̄) A(θ− θ∗)

+ η2‖
[

A∇θ f
B∇ϕ f

]
‖2 (.69)

Let cmin := min(αmin, βmin) ≥ 0 be the smallest value of the diagonal matri-
ces A and B, then

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 ≤ (1− 2ηγcmin)‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

+ 2η(θ− θ∗)>∇θϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)− 2η(ϕ−ϕ∗)>∇ϕθ f (θ̄,ϕ̄) A(θ− θ∗)

+ η2‖
[

A∇θ f
B∇ϕ f

]
‖2 (.70)

We can find an upper bound for the last term of the right-hand-side of
the inequality by using the smoothness assumption 3.4, together with the
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inequality

‖
[

A∇θ f
B∇ϕ f

]
‖2 ≤ η2c2

max‖
[
∇θ f
∇ϕ f

]
‖2 (.71)

where cmax := max(αmax, βmax) ≥ 0. Hence, the upper bound becomes

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 ≤ (1− 2ηγcmin + η2Lzc2

max)‖
[

θ− θ∗

ϕ−ϕ∗

]
‖2

+ 2η(θ− θ∗)>∇θϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)− 2η(ϕ−ϕ∗)>∇ϕθ f (θ̄,ϕ̄) A(θ− θ∗)
(.72)

Observing that ∇θϕ f (θ̄,ϕ̄) = (∇ϕθ f (θ̄,ϕ̄))> we can rewrite the cross depen-
dency term as

2η(θ− θ∗)>∇θϕ f (θ̄,ϕ̄) B(ϕ−ϕ∗)− 2η(ϕ−ϕ∗)>∇ϕθ f (θ̄,ϕ̄) A(θ− θ∗)

= 2η(θ− θ∗)>[∇θϕ f (θ̄,ϕ̄) B− A∇θϕ f (θ̄,ϕ̄)](ϕ−ϕ∗)

= −2η
|θ|

∑
i=1

|ϕ|

∑
j=1

(Aii − Bjj)(θi − θ∗i )(ϕj −ϕ∗j )∇θiϕj f (θ̄,ϕ̄) (.73)

Using this identity and setting the step size to

η :=
γ

Lzc2
max

leads to the upper bound

‖
[

θ+ − θ∗

ϕ+ −ϕ∗

]
‖2 ≤ (1− γ2

L
R2)‖

[
θ− θ∗

ϕ−ϕ∗

]
‖2

− 2η
|θ|

∑
i=1

|ϕ|

∑
j=1

(Aii − Bjj)(θi − θ∗i )(ϕj −ϕ∗j )∇θiϕj f (θ̄,ϕ̄)

which concludes the proof. �
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