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Håstad many times for co-refereeing this thesis.

I also want to thank all the people which were part of the information
security and cryptography research group or the quantum information
group at ETH Zürich during my stay. This includes Georges Baatz, Zuza-
na Beerliova, Stefan Dziembowski, Thomas Dübendorfer, Marc Fischlin,
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Douglas Wikström, Stefan Wolf, Jürg Wullschleger, and Vassilis Zikas.

Special thanks go to Renato Renner who was my officemate for most
of my stay at ETH. Much of the research in this thesis originated from
discussions with him or was done in collaboration with him.

I would also like to thank my diploma students Johan Sjödin, Pierre
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Abstract

Given an authentic communication channel, a key agreement protocol
enables two parties to obtain a common bit string (the key), such that an
eavesdropper does not have any information about it, even if he observes
the whole communication. While no such protocol is secure in an infor-
mation theoretic sense, it seems possible to give a key agreement pro-
tocol which is secure against eavesdroppers which do not have exceed-
ingly large computational power. In fact, many protocols which promise
to achieve such computational security are used in practice today. This
holds even though no such protocol has been proven secure. Instead,
the security of such a protocol is based on an unproven, but plausible
assumption.

The goal of this thesis is to construct a computationally secure key
agreement protocol whose security is based on an assumption which is
as weak as possible. The assumption we use is the existence of a “weak
key agreement protocol”. Such a protocol works partially: in some execu-
tions the honest parties get the same key, but sometimes their respective
keys differ. Furthermore, in some cases the resulting key is secret, while
sometimes information about the key is leaked to an eavesdropper. We
then strengthen such a protocol; i.e., we make it both secret and correct.
In order to simplify the study, we restrict the given weak key agreement
protocol to yield a single key bit.

To strengthen a weak key agreement protocol, we proceed in two steps.
In a first step, we solve a related, completely information theoretic prob-
lem. More concretely we assume that some trusted source distributes
random variables to the honest parties and to an eavesdropper according
to a fixed and commonly known distribution. We then study whether the
honest parties can use this randomness in order to obtain an information
theoretically secure key. Such information theoretic key agreement from
correlated information is a problem which has been studied before. It is
interesting in its own right, and we look at it in some depth.

In a second step we show that certain protocols for the information
theoretic setting we described can be used in the computational setting
as well. Thus, we first use the weak key agreement protocol to obtain
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random variables with certain computational security. We then use these
random variables in a protocol designed for information theoretic secu-
rity. We will see that for certain protocols the resulting key is computa-
tionally secure.

The two step process has many advantages. It greatly simplifies the
constructions as well as the security proofs, since most of the work can be
done in the easier information theoretic setting. It is also very intuitive,
and it allows us to give constructions which work for optimal parameters.

In order to show that this two step process is possible, we use a power-
ful lemma about hard-core sets. Roughly speaking, the lemma shows that
any computational problem which is mildly hard has a set of instances for
which it is very hard. In our setting this implies that for a weak key agree-
ment protocol as given, if the randomness of Alice and Bob is restricted
to a certain subset, finding the key given the communication is a very
hard problem. Such a lemma has been known before, and it has found
various applications in theoretical computer science. In this thesis we im-
prove on the known result in two ways. First, we increase the size of the
hard set to the maximum possible. Further we give a variant which can
be applied in the usual uniform setting (where the adversary is modeled
as an algorithm). Previously, only a lemma applicable in the non-uniform
setting (where the adversary is modeled using circuits) was known.



Zusammenfassung

Ein Schlüsselvereinbarungsverfahren erlaubt zwei Parteien eine geheime
Bitfolge (einen sogenannten Schlüssel) zu erzeugen, falls ihnen ein au-
thentischer Kanal zur Verfügung steht. Falls kein zusätzliches Hilfsmit-
tel (wie zum Beispiel ein Kanal für einzelne Photonen) zur Verfügung
steht, ist jedes Protokoll für diesen Zweck informationstheoretisch ge-
sehen unsicher. Trotzdem scheint Schlüsselvereinbarung auch in diesem
Fall möglich zu sein, falls Sicherheit nur gegen Gegner mit beschränk-
ter Rechenzeit nötig ist. Tatsächlich werden in der Praxis verschiedene
solche Verfahren verwendet. Unglücklicherweise kennt man für kein sol-
ches Verfahren einen Beweis für die Sicherheit. Diese beruht auf einer
unbewiesenen (aber üblicherweise vernünftigen) Annahme.

Das Ziel dieser Arbeit ist die Konstruktion von einem Schlüsselver-
einbarungsverfahren, basierend auf einer möglichst schwachen Annah-
me. Wir werden annehmen, dass ein solches Verfahren existiert, welches
aber nur teilweise funktioniert: in einigen Ausführungen werden die ehr-
lichen Parteien unterschiedliche Schlüssel erhalten, und in anderen kann
ein Gegner Information über den Schlüssel aus der Kommunikation fol-
gern. Wir demonstrieren dann wie man aus einem solchen Protokoll ein
sicheres erzeugt. Um dies zu erleichtern, beschränken wir uns auf den
Fall in welchem das gegebene Verfahren einzelne Bits produziert.

Wir werden in zwei Schritten vorgehen. In einem ersten Schritt lösen
wir ein verwandtes informationstheoretisches Problem. In diesem erhal-
ten die ehrlichen Parteien und der Gegner korrelierte Information, wobei
die Art der Korrelation allen bekannt ist. Wir studieren dann die Frage
in welchen Fällen solche zusätzliche Information informationstheoretisch
sichere Schlüsselvereinbarung erlaubt. Dieses Problem wurde schon in
früheren Arbeiten intensiv studiert und ist auch ohne unsere ursprüngli-
che Motivation interessant; wir werden es deshalb eine Weile lang unter-
suchen.

In einem zweiten Teil werden wir zeigen dass wir gewisse Lösungen
vom ersten Teil auch verwenden können, um unser ursprüngliches Pro-
blem zu lösen. Genauer: wir verwenden das gegebene teilweise funktio-
nierende Protokoll und erzeugen damit Zufallsvariablen welche eine ge-
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wisse Sicherheit gegen Gegner mit beschränkter Rechenzeit bieten. Wir
verwenden diese dann in einem Protokoll für ähnliche, aber informati-
onstheoretische sichere Zufallsvariablen, und zeigen dass der resultieren-
de Schlüssel berechenmässige Sicherheit haben wird.

Dieser zweiteilige Beweis hat viele Vorteile. So ist er wesentlich einfa-
cher als ähnliche bislang bekannte Beweise, und dazu auch noch recht
intuitiv. Weiters erlaubt uns die Zweiteilung Konstruktionen welche für
den grösstmöglichen Bereich von Parametern funktionieren.

Um zu zeigen dass diese Zweiteilung tatsächlich funktioniert verwen-
den wir ein mächtiges Lemma über harte Teilmengen. Salopp gesagt zeigt
dieses Lemma dass jedes berechenmässig mittelschwere Problem einen
“harten Kern” von Instanzen hat, auf welchem das Problem sehr schwer
ist. In obigem Szenario impliziert es, dass in gewissen Fällen das Schlüs-
selbit von den ehrlichen Parteien sehr schwer vorherzusagen ist. Ein ähn-
liches Lemma war vor unserer Arbeit schon bekannt; wir verstärken die-
ses auf zwei Arten. Zum einen vergrössern wir den harten Kern auf das
maximal mögliche. Zum anderen ist unser Lemma auch im üblicherwei-
se verwendeten “uniformen” komplexitätstheoretischen Modell anwend-
bar. Das vorherige Lemma konnte dagegen nur im weniger verbreiteten
“nicht-uniformen” Modell angewandt werden.
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1. Introduction

1.1. Key Agreement

Alice and Bob, living in different places, would like to communicate pri-
vately. There are two security requirements which Alice and Bob have in
such a setting. First, the communication should be secret, meaning that
a potential eavesdropper, commonly called “Eve”, will not get any infor-
mation about their communication. Second, the communication should
be authentic, which means that Eve cannot insert messages without being
detected. If both these requirements are met we say that Alice and Bob
can communicate securely.

In this thesis, we make the basic assumption that Alice and Bob share
an authentic channel, i.e., the second goal is already achieved by physical
means or some underlying protocol.

The term key agreement refers to the following task: given an authentic
channel, Alice and Bob communicate and then agree on a bit string (called
the key), about which Eve has no information. It is not so hard to see that
key agreement is equivalent to achieving secret communication from an
authentic channel, and our goal from now on will be to obtain a key.

For classical communication channels, key agreement is not possible
unconditionally. But if we assume that Eve is computationally bounded, i.e.,
if the computing time which Eve has at her disposal is not very large, then
this changes (or rather, it is commonly believed that this changes). Pro-
tocols which are belived to achieve key agreement in this case were first
proposed by Merkle [Mer79] (in a limited sense) and by Diffie and Hell-
man [DH76], and are widely used in practice nowadays. However, we are
currently unable to prove the security of any such protocol. Such a proof
would imply a non-trivial lower bound for the computation of Eve, and
to give such a lower bound is a notoriously hard problem in theoretical
computer science (in particular, if Eve needs superpolynomial computa-
tion to break a protocol which runs in polynomial time, then P 6= NP).
Consequently one makes assumptions under which such a protocol is se-
cure. For example one assumes that computing discrete logarithms or
factoring large numbers are intractable problems.
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The goal of this thesis is to make this assumption as weak as possible.
A very strong result of this form would be to base a key agreement pro-
tocol on an arbitrary one-way function (i.e., a function which is easy to
evaluate but for which it is difficult to find a preimage of a given image).
However, Impagliazzo and Rudich [IR89] showed that this is not possible
using black-box reductions, which roughly means that it is beyond reach
using the techniques we know.

We therefore use a different assumption, namely that a weak form of
computationally secure key agreement is given: we assume that Alice and
Bob have a protocol in which they end up with key bits X and Y, satisfy-
ing Pr[X = Y] ≥ 1+α

2 for a given parameter α (throughout the thesis we
assume that the given protocol produces single key bits, which is to keep
the studies simpler — extending the results to longer strings is an open
problem). Furthermore, we assume that it is intractable for Eve, observ-
ing only the communication Z, to guess one of these bits with probability
larger than 1+β

2 . The question studied is for what parameters α and β
such a protocol is strong enough to provide key agreement.

A reader familiar with the concept of one-way functions will immedi-
ately agree that this question should be much simpler to answer than the
question whether key agreement can be constructed from an arbitrary
one-way function. Nevertheless, it is far from trivial.

1.2. Outline and Proof Sketch

Assume that a computationally secure protocol PC as described above
is given: it produces key bits X and Y (Alice gets X and Bob gets Y)
such that Pr[X = Y] ≥ 1+α

2 . Furthermore, it has the property that it is
intractable to predict (say) X from the communication Z with probability
exceeding 1+β

2 (one might also use a bound on the maximal probability in
predicting Y from the communication; such differences will be discussed
later).

Our idea is that this situation is analogous to a situation where a trusted
third party distributes bits X and Y to Alice and Bob with Pr[X = Y] ≥
1+α

2 , as well as some information Z to Eve which satisfies

Pr[ f (Z) = X] <
1 + β

2
(1.1)

for all functions f (i.e., we remove the condition that f should be ef-
ficiently computable). For such random variables we can now try to
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give a protocol to obtain an information theoretically secure key; i.e., a
key whose security does not depend on the fact that Eve’s computational
power is bounded, but instead simply on the properties of the distribu-
tion of (X, Y, Z). This scenario has first been studied for general random
variables by Maurer [Mau93], and we will use results from this line of
research in our thesis. Afterwards we show that a protocol for this infor-
mation theoretic setting can also be used in the computational setting.

The thesis is divided into two parts. In the first part, protocols for in-
formation theoretically secure key agreement are studied. In the second
part we show that some of the resulting protocols can also be used in the
computational setting.

Information Theoretic Part

After introducing basic concepts and definitions in Chapter 2, we study
information theoretic key agreement in Chapters 3 and 4, when random
variables X, Y, and Z are given. While the main goal is to obtain proto-
cols which can be used in the computational setting, we believe that this
study is interesting in its own right, and thus we do slightly more work
than what is required for the goal of strengthening computational key
agreement.

Chapter 3 studies the case where only a single message from Alice to
Bob is allowed, but does so for arbitrary random variables. The one-
message case is important for several reasons. First, it is much better
understood than the general case. Second, protocols for the one-message
case have applications in other areas (we will see two examples in this
thesis: circuit polarization in Section 4.5 and the strengthening of public-
key encryption schemes in Section 7.4). Third, all known protocols for the
general case consist of two phases: in a first phase, the given random vari-
ables are “enhanced” using arbitrary communication to obtain instances
which can be used in a one-message protocol, and in the second phase
the one-message protocol is used.

In Chapter 4 we go closer to the computational setting and study ran-
dom variables as explained above, i.e., we assume that the honest parties
know bounds on Pr[X = Y] and max f Pr[ f (Z) = X] (or some similar
expression), but do not know the exact distribution of (X, Y, Z). For this
case we study key agreement where only one message is allowed as well
as key agreement where arbitrary messages are allowed.
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Computational Part

In the second part of the thesis we show that if we use the given compu-
tational protocol PC from above to produce “computational instances” of
random variables and then use them in an information theoretic proto-
col PIT from Chapter 4, we obtain a computationally secure key.

We first provide some definitions and some basic facts in Chapter 5, and
then prove our lemma about “hard-core sets” in Chapter 6; a strengthen-
ing of a lemma previously given by Impagliazzo [Imp95]. Let us sketch
this lemma quickly here: consider any process which generates random
variables X and Z from some common source of uniform randomness,
such that all efficient algorithms satisfy

Pr[A(Z) = X] ≤ 1 + β

2
.

The hard-core lemma essentially states that we can distinguish two cases:
with probability 1− β, predicting X from Z is very hard for all algorithms,
while with probability β it is easy. In other words, the randomness used to
generate X and Z has a “hard subset” S , such that if X and Z is generated
using randomness from S , then all efficient algorithms satisfy

Pr[A(Z) = X] ≈ 1
2

.

Additionally, uniform randomness will be in S with probability 1 − β.
A similar result was previously known, and has found various applica-
tions in theoretical computer science. In this thesis, we improve on the
known result in two ways. First, in our lemma the set size is maximal.
Second, our lemma is also applicable if predicting X from Z is hard for
algorithms, while the previous lemma could only be applied if the com-
putational hardness is against circuits. In other words, our lemma can
also be used in the more common “uniform” setting.

In Chapter 7 we show that the hard-core lemma implies that instances
generated by PC can be used in the information theoretic protocol PIT
to generate a computationally secure key. We can give the intuition of
the proof here: imagine that we simulate a modification of the resulting
protocol in which, before running PIT, we check for each instance of the
random variables produced by PC whether the randomness is from the
hard set S (since the result of Chapter 6 holds for arbitrary processes gen-
erating (X, Z) it must hold as well for the instances generated by PC). If
the randomness is from the hard set, we replace the resulting key bits with
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information theoretic key bits before running PIT. Now, by the proper-
ties of the information theoretic protocol, running PIT with these random
variables will produce a key which is information theoretically secure.
However, the bits we replaced by random bits were indistinguishable to
random bits, and we thus expect that the key of the simulation is indis-
tinguishable from a key in the real protocol. This will imply that the key
produced in the real protocol is computationally secure.
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2. Preliminaries

Throughout this thesis, sets will be denoted by the calligraphic letters A
to Z . Exceptions are R for the reals and N for the non-negative integers.

For a finite set X , a distribution PX over X is a function PX : X → [0, 1]
with ∑x∈X PX(x) = 1. We usually denote random variables using cap-
ital letters, and values with lower case letters. For example, if a proba-
bility distribution PX is specified in the context, we write Pr[X > 1] for
∑x>1 PX(x). If X is a subset of R the expected value of X is E[X] :=
∑x∈X xPX(x).

If P is a probability distribution which is not specifically associated
with X we analogously write PrX←P[X > 1] to denote the probability
that a random variable chosen according to P is larger than 1; or EX←P[X]
for the expected value of a random variable chosen according to P. For a
set S we also write PrX←S [X > 1] to denote that X is chosen according to
the uniform distribution over S , i.e., PX(x) := 1

|S| .
We often manipulate distributions freely. For example, if PX is a dis-

tribution on X then (PX)2 is understood to be the distribution on X 2

where the first and second element are independent, i.e., (PX)2(x0, x1) :=
PX(x0) · PX(x1). Furthermore, if a distribution PXY over X × Y is given,
then we write PX and PY to denote marginal distributions, i.e., PX(x) :=
∑y∈Y PXY(x, y), analogous for PY. The conditional distribution PX|Y is
defined as PX|Y(x|y) := PXY(x, y)/PY(y).

We use superscripts to denote tuples, e.g., Xn := (X0, . . . , Xn−1) and
xn := (x0, . . . , xn−1).

2.1. Prediction of Random Variables

Let PXY be an arbitrary probability distribution, where X is a bit and Y is
over an arbitrary finite alphabet Y . A natural question is how good X can
be predicted from Y.

Definition 2.1 (Prediction Advantage). For a distribution PXY over {0, 1}×
Y and any function f : Y → {0, 1} the advantage of f in predicting X from Y
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is

Adv f (X|Y) := 2 Pr[ f (Y) = X]− 1.

The maximal prediction advantage is

Advmax(X|Y) := max
f :Y→{0,1}

Adv f (X|Y).

We could also allow randomized decisions in predicting X from Y.
However, this would not change the maximal prediction advantage: ev-
ery randomized strategy can be described by a distribution over func-
tions, and the prediction advantage of a randomized strategy is just the
expectation of the advantage of the chosen function.

The following lemma states that for any distribution PXY we can dis-
tinguish two cases: with probability 1−Advmax(X|Y) every strategy has
advantage 0, and with probability Advmax(X|Y) the best strategy has ad-
vantage 1.
Lemma 2.2. Let PXY be any distribution over {0, 1} × Y . There exists a con-
ditional distribution PB|XY over {0, 1} × {0, 1} × Y such that

Pr[B=1] = Advmax(X|Y), (2.1)

for all functions f : Y → {0, 1}:

Pr[ f (Y)=X|B=0] =
1
2

, (2.2)

and there exists a function g : Y → {0, 1} with

Pr[g(Y)=X|B=1] = 1. (2.3)

Proof. We first note that (2.2) and (2.3) imply (2.1) because

Adv f (X|Y) ≤ Pr[B=1] · 1 + Pr[B=0] · 0 = Pr[B=1]

holds for all functions f , and with equality for g.
We define

Pr[B=0|X=x, Y=y] :=
min(PXY(0, y), PXY(1, y))

PXY(x, y)
.
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First, we show that (2.2) holds: for any y ∈ Y we get (using Bayes’
Theorem):

Pr[X=0|B=0, Y=y] =
Pr[B=0|X=0, Y=y] Pr[X=0|Y=y]

Pr[B=0|Y=y]

=
Pr[B=0|X=1, Y=y] Pr[X=1|Y=y]

Pr[B=0|Y=y]
= Pr[X=1|B=0, Y=y],

which implies Pr[ f (Y)=X|B=0, Y=y] = 1
2 for every fixed y and thus this

must also hold overall.
Further, the function g defined as

g(y) :=

{
0 if PXY(0, y) ≥ PXY(1, y),
1 otherwise,

satisfies (2.3), since B = 1 implies PXY(x, y) > PXY(1−x, y).

We give a quick example how the above lemma can be useful (we will
use this example in Section 4.3).

Lemma 2.3. Let PXY be an arbitrary distribution over {0, 1}×Y , and Pn
XY the

n-wise direct product. Then,

Advmax(X0 ⊕ · · · ⊕ Xn−1|Y0, . . . , Yn−1) =
(
Advmax(X|Y)

)n.

Proof. For every i, let Bi be the random variable whose existence is guar-
anteed by Lemma 2.2. If Bi = 0 for any 0 ≤ i < n, then any function
f : Yn → {0, 1} will output X0 ⊕ · · · ⊕ Xn−1 with probability 1

2 , and thus

Advmax(X0 ⊕ · · · ⊕ Xn−1|Y0, . . . , Yn−1)

≤
(
Advmax(X|Y)

)n · 1 +
(

1−
(
Advmax(X|Y)

)n
)
· 0

=
(
Advmax(X|Y)

)n.

Further, let g be the function which predicts X correctly from Y in
case B = 1. Then g′(y0, . . . , yn) := g(y0)⊕ · · · ⊕ g(yn−1) will be correct if
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Bi = 1 for all i. Thus,

Advmax(X0 ⊕ · · · ⊕ Xn−1|Y0, . . . , Yn−1)

≥ Advg′(X0 ⊕ · · · ⊕ Xn−1|Y0, . . . , Yn−1)

=
(
Advg(X|Y)

)n.

=
(
Advmax(X|Y)

)n.

A concept related to Advmax(X|Y) is the statistical distance of two dis-
tributions. For two distributions PY0 and PY1 over the same set it is de-
fined as follows:
Definition 2.4 (Statistical distance). For probability distributions PY0 and
PY1 over Y the statistical distance ‖PY0 − PY1‖ is

‖PY0 − PY1‖ :=
1
2 ∑

y∈Y

∣∣PY0(y)− PY1(y)
∣∣.

If PXY is a distribution over {0, 1} × Y for which X is a uniform bit,
then the statistical distance of the two distributions PY|X=0 and PY|X=1 is
exactly the maximal prediction advantage.

Lemma 2.5. Let PXY be any distribution with PX(0) = PX(1) = 1
2 . Then,

Advmax(X|Y) = ‖PY|X=0 − PY|X=1‖.

Proof. For an arbitrary function g : Y → {0, 1} we get

Pr[g(Y) =X] = ∑
y∈Y

PXY(g(y), y)

≤ ∑
y∈Y

max(PXY(0, y), PXY(1, y))

= ∑
y∈Y

PXY(0, y) + PXY(1, y)
2

+ ∑
y∈Y

|PXY(0, y)− PXY(1, y)|
2

=
1
2

+
1
2
‖PY|X=0 − PY|X=1‖.

Also, the above holds with equality for the function g defined as

g(y) :=

{
0 if PXY(0, y) ≥ PXY(1, y),
1 otherwise.
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2.2. Security of a Key

Let SA be the random variable Alice wants to use as a key, SB the random
variable Bob wants to use as key, and T all the information accessible
to an eavesdropper Eve. If SA and SB are a perfect key, then SA = SB,
uniformly distributed over the keyspace X , for every value of T.
Definition 2.6 (Perfect Key). The random variables SA and SB are a perfect
key over |S| with respect to information T if PSASBT = PSASBPT (i.e., T is
independent of SA and SB) and

PSASB(sa, sb) =

{
1
|S| if sa = sb,

0 otherwise.

In many scenarios we do not have the possibility of obtaining such a
perfect key, but still we can obtain random variables SA and SB while Eve
gets T such that PSASBT has statistical distance at most ε from a perfect
key. Lemma 2.2 together with Lemma 2.5 emphasizes the usefulness of
this: it is impossible to distinguish the imperfect from a perfect key better
than with probability 1+ε

2 , even given the key and all the information of
Eve.

We define the related concept that X is close to uniform with respect
to Y.
Definition 2.7 (Closeness). Let PXY be a probability distribution overX ×Y .
Let PU be the uniform distribution over X . Then, X is ε-close to uniform with
respect to Y if

‖PXY − PUPY‖ ≤ ε.

Our goal of obtaining a key can then be formulated as follows: we want
a protocol which produces random variables SA for Alice and SB for Bob,
such that Pr[SA = SB] ≥ 1− γ and SA is ε-close to uniform with respect
to T:
Definition 2.8 (Soundness and secrecy). Let PSASBT be a probability distri-
bution. We say that (SA, SB) is a key with soundness 1− γ if Pr[SA = SB] ≥
1− γ. Further (SA, SB) is a key with secrecy 1− ε with respect to T if SA is
ε-close to uniform with respect to T.

When no confusion can arise, we often omit T and say that a key has
secrecy 1− ε. Then it is understood that the key should have secrecy 1− ε
with respect to the complete information accessible to an eavesdropper
Eve.
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2.3. Entropy Measures

The entropy of a random variable X is a measure of the uncertainty of X.
We use several different flavors of entropy in this thesis:1

Definition 2.9 (Entropy measures). Let PXYZ be a probability distribution
over X ×Y ×Z . The entropy is

H(X) := ∑
x∈X

PX(x) log
( 1

PX(x)

)
.

The conditional entropy is

H(X|Y) := ∑
y∈Y

PY(y) · H(X|Y=y),

the mutual information is

I(X; Y) := H(X) + H(Y)− H(XY),

and the conditioned mutual information is

I(X; Y|Z) := H(X|Z) + H(Y|Z)− H(XY|Z).

The min-entropy of X is

H∞(X) := min
x∈X

log
( 1

PX(x)

)
,

and the min-entropy of X conditioned on Y is

H∞(X|Y) := min
y∈Y

H∞(X|Y=y).

Further, we define

H0(X) := log
∣∣∣{x ∈ X | PX(x) > 0

}∣∣∣
and

H0(X|Y) := max
y∈Y

H0(X|Y=y).

1Throughout this thesis, we use log(·) to denote the logarithm to base 2.
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The entropies H(X) and H(X|Y), as well as the mutual information
I(X; Y) and I(X; Y|Z) are standard quantities in information theory. We
refer to [CT91] or any other textbook on information theory for a discus-
sion of these quantities.

The interpretation of H∞(X|Y) and H0(X|Y) is as follows: the con-
ditional min-entropy H∞(X|Y) is the guaranteed amount of randomness
which is in X, even if Y is publicly known. Further, 2H0(X|Y) is an upper
bound on the size of the set of possible values for X given Y; or, more
intuitively (but not exactly correct because of rounding issues), H0(X|Y)
is the number of bits needed if one wants to communicate X to someone
who knows Y.

For the min-entropy it is often useful to have these quantities in a ver-
sion tolerating errors (analogous for H0, but we do not need this in this
thesis). Thus, Hε

∞(X|Y) is a lower bound on the randomness contained
in X if Y is given, as long as an “error probability” ε is tolerated. This leads
to the definition of smoothened min-entropy, as introduced in [RW05]:

Definition 2.10 (Smooth min-entropy). For 1 > ε ≥ 0 the ε-smooth min-
entropy is

Hε
∞(X) := max

X′ :‖PX′−PX‖≤ε
H∞(X′),

where the maximization is over random variables X with potentially larger al-
phabets than X (it is easy to see that this maximum exists). Analogously the
ε-smooth conditioned min-entropy Hε

∞(X|Y) is

Hε
∞(X|Y) := max

X′Y′ :‖PX′Y′−PXY‖≤ε
H∞(X′|Y′).

2.4. Independent Repetitions

Upper bounds on the probabilities of tails

Let any distribution PX be given, and PXr := (PX)r be the distribution of
r independent copies of X. The asymptotic equipartition property (see for
example [CT91]) states that, if r is large enough, the vast majority of the
outcomes will have probability 2−r(H(X)±ε). The following Proposition
from [Ren05, Section 3.3] gives a quantitative bound on this (and also for
the conditioned case), which is tight up to the constants which appear in
it. A slightly weaker bound can be found in [ILL89].
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Proposition 2.11. Let PXY be a probability distribution over X ×Y , PXrYr :=
(PXY)r the r-wise direct product. Then, for any δ ∈ [0, log(|X |)] and (xr, yr)
chosen according to PXrYr

Pr
(U,V)←PXrYr

[
log
( 1

PXr |Yr (U|V)

)
≥ r
(

H(X|Y) + δ
)]
≤ 2

− rδ2

16 log2(|X |) ,

and, similarly,

Pr
(U,V)←PXrYr

[
log
( 1

PXr |Yr (U|V)

)
≤ r
(

H(X|Y)− δ
)]
≤ 2

− rδ2

16 log2(|X |) .

We immediately get bounds on the smooth min-entropy for this case.

Corollary 2.12. Let PXY be a probability distribution over X × Y , PXrYr :=
(PXY)r the r-wise direct product. Then, for any ε > 0:

Hε
∞(X0 . . . Xr−1|Y0 . . . Yr−1) ≥ rH(X|Y)− 4

√
r log(1/ε) log(|X |).

Proof. We set δ := 4
√

r log( 1
ε ) log (|X |) in the first bound in Proposi-

tion 2.11.

A different (but very similar) situation is the following: Assume that
X0 to Xr−1 are independently distributed in the interval [0, 1]. Then, anal-
ogously to Proposition 2.11 one would expect that with high probability,
the mean of the Xi is very close to the expected mean. The following
bound by Hoeffding [Hoe63] states that this is indeed the case.

Proposition 2.13 (Hoeffding’s bound). Let PX0X1···Xr−1 = PX0 · · · ·PXr−1

be a product distribution with Xi ∈ [0, 1]. Let X := 1
r ∑r−1

i=0 Xi. Then, for
any ε > 0,

Pr
[

X ≥ E[X] + ε
]
≤ e−rε2

,

and,

Pr
[

X ≤ E[X]− ε
]
≤ e−rε2

.
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Lower bounds on the probabilities of tails

A random variable B over {0, 1} distributed according to the distribution

PB(b) :=

{
1− p if b = 0,
p if b = 1,

is said to be a Bernoulli trial with success probability p. The binomial distribu-
tion Pp(k|r) is defined as

Pp(k|r) :=
(

r
k

)
pk(1− p)k,

and Pp(k|r) is exactly the probability of obtaining k successes from r in-
dependent Bernoulli trials with probability p.

The Hoeffding bound (Proposition 2.13) shows that that if n is large
enough the number of successes of r Bernoulli trials will be very close
to rp. The following lemma from [HR05a] gives a bound in the opposite
direction, i.e., it gives a lower bound on the probability that the number
of successes is at least r(p + ε) for some ε > 0. This will be useful when
we want to show that our results are tight. We give a proof of this Lemma
in Appendix A.

Lemma 2.14. Let p ≥ 1
2 , r, s ∈N such that pr + 3s ≤ r. Then,

dpre+2s−1

∑
k=dpre+s

Pp(k|r) >
s

2
√

r
e−

2s2
rp(1−p) .

2.5. Randomness Extraction

Let a random variable X be given. An extractor is a randomized func-
tion which uses the randomness inherent in X to obtain a nearly uniform
bit string. Allowing the function to be randomized means that it has ac-
cess to additional uniform randomness, called seed, and we expect that
the concatenation of the seed and the output of the extractor is close to
uniform (this implies that the extractor cannot just output the seed).

The maximal probability occurring in PX is 2−H∞(X). Since in a uniform
bit string of length r all occurring probabilities are 2−r we only hope to
extract r bits if H∞(X) ≥ r; we call H∞(X) − r the entropy loss of the
extractor.
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Definition 2.15 (Strong extractor). A function h : X × S → {0, 1}r is a
strong extractor with closeness ε and entropy loss ` if, for any distribution
PX with H∞(X) ≥ r + `, and S uniform over S , the distribution of h(X, S) is
ε-close to uniform with respect to S.

The term strong in the above definition comes from the requirement
that h(X, S) is ε-close to uniform with respect to S. In contrast, a non-strong
extractor (a concept we do not need in this thesis) satisfies that the output
is ε-close to uniform (without conditioning on S). In this case one expects
the output of f to be log(|S|) bits longer.

In [BBR88, ILL89] it was proven that weak two-universal hash func-
tions (as introduced in [CW79]) form one possibility of strong extrac-
tors. A weak two-universal hash function h(x, s) satisfies that the colli-
sion probability of two different x 6= x′ is the same as for a completely
random function. The term weak is used because we do not require that
the output distribution of h(x, S) for uniform random S is uniform.
Definition 2.16 (Weak two-universal hash function). A function h : X ×
S → Y is weak two-universal if for all x, x′ ∈ X with x 6= x′:

Pr
S←S

[h(x, S) = h(x′, S)] =
1
|Y| .

For example, let X = S = {0, 1}r, identify {0, 1}r with GF(2r) in an
arbitrary way, and let � be the multiplication over GF(2r). Further, for
x ∈ {0, 1}r let x|0...i−1 be the first i bits of x. Because for any x, x′ ∈ {0, 1}r

with x 6= x′

Pr
A←{0,1}r

[
(A� x)|0...i−1 = (A� x′)|0...i−1

]
= Pr

A←{0,1}r

[
(A� (x− x′))|0...i−1 = 0i] = 2−i,

the function h : {0, 1}r × {0, 1}r → {0, 1}i which is given by h(x, s) :=
(x� s)|0...i−1 is a weak two-universal hash function.

The following theorem from [BBR88, ILL89] shows that any weak two-
universal hash function is a strong extractor. Our proof is adapted from
[LW95].
Theorem 2.17 (Left-over hash lemma). Let h : X × S → {0, 1}m be weak
two-universal and ε > 0. Then, h is a strong extractor with closeness ε and
entropy loss 2 log(1/ε).

Proof. Let PVS be the distribution of the output of the weak two-universal
hash-function concatenated with the seed S, and PU the uniform distri-
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bution over {0, 1}m. We use the inequality (∑n
i=1 ai)2 ≤ n ∑n

i=1 a2
i which

follows from Cauchy-Schwarz to obtain

‖PVS − PUPS‖

=
1
2 ∑

v∈{0,1}m ,s∈S

∣∣∣PVS(v, s)− 1
|S| 2m

∣∣∣
≤ 1

2

√
|S| 2m

√
∑
v,s

P2
VS(v, s)− 2 ∑

v,s

PVS(v, s)
|S| 2m + ∑

v,s

( 1
|S| 2m

)2

=
1
2

√
|S| 2m

√
∑
v,s

P2
VS(v, s)− 1

|S| 2m . (2.4)

Let now X0 and X1 be independently distributed according to PX , and S0
and S1 independently distributed according to PS. The collision probabil-
ity of h(X, S) concatenated with S is

Pr[h(X0, S0) = h(X1, S1) ∧ S0 = S1] = ∑
v,s

P2
VS(v, s).

Thus, (2.4) gives an an upper bound on ‖PVS − PUPS‖ from the collision
probability of two independent invocations of the hash-function on two
independent samples from the distribution PX . We can estimate this col-
lision probability as follows:

Pr[h(X0, S0)=h(X1, S1) ∧ S0=S1]
= Pr[S0=S1] Pr[h(X0, S0)=h(X1, S0)]

≤ Pr[S0=S1]
(
Pr[X0=X1] + Pr[h(X0, S0)=h(X1, S0)|X0 6=X1]

)
≤ 1
|S|

( 1
2m+2 log(1/ε)

+
1

2m

)
=

1 + ε2

|S| 2m . (2.5)

Inserting (2.5) into (2.4) yields ‖PVS − PUPS‖ ≤ ε
2 .

Extractors are a very well studied topic. In particular, the question how
many bits the seed S needs to have has undergone much research. For
us weak two-universal hash functions are sufficient, however. We refer to
[Sha02] for an overview to the construction of other extractors.
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Part I.

Information Theoretically
Secure Key Agreement





3. One-Message Key Agreement

In this chapter we study the following scenario: Alice, Bob, and Eve have
access to many independent instances of random variables X, Y, and Z,
respectively, distributed according to some fixed and commonly known
distribution PXYZ. Alice and Bob want to agree on a key with a single
message from Alice to Bob, and using as few random variables as possi-
ble. In this chapter we will see for which distributions PXYZ this is possi-
ble and give protocols for this task. Further, we give lower bounds on the
number of random variables needed.

Overview of this chapter

In Section 3.1 we start by giving an intuition of the protocol and explain
the three basic steps. In the first step, a preprocessing step, Alice manipu-
lates her random variables individually to obtain random variables which
are better suited for the subsequent protocol. In the next step, called infor-
mation reconciliation, Alice sends Bob information which allows him (but
not Eve) to find the random variables of Alice. This gives Alice and Bob
a common string about which Eve has imperfect knowledge. In the third
step, called privacy amplification, Alice and Bob use this common string to
obtain a secure key. The discussion of Section 3.1 also leads to the defi-
nition of the one-message key rate, the rate at which Alice and Bob can use
their random variables to obtain key bits.

In Section 3.2 we give a detailed study of the preprocessing step, and
Section 3.3 contains a description of our information reconciliation proto-
col. As privacy amplification is simple to implement (we apply a strong
extractor) we do not need a section in order to describe it. Section 3.4 then
describes the complete protocol in detail.

Section 3.5 contains lower bounds on the number of random variables
needed to obtain a key. We will see that the lower bounds basically match
the usage in our protocols (up to constants in the non-dominating terms).

Related work

The problem of communicating securely in an information theoretic set-
ting was first considered by Shannon [Sha49a]. He showed that, for one-
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way communication, Alice and Bob cannot secretly communicate over
a non-secret channel unless they have some previously shared informa-
tion K. The result was later extended to two-way communication by Mau-
rer [Mau93].

Wyner [Wyn75], and subsequently Csiszár and Körner [CK78] studied
the question whether information theoretic secure communication is pos-
sible when Alice has a noisy channel to Bob on which Eve has only limited
access. Maurer [Mau93] proposed to study key agreement in the more
general scenario where a source distributes random variables to parties
Alice, Bob, and Eve (for example a satellite broadcasting random bits). He
showed that interaction between Alice and Bob can make key agreement
possible even if one-way communication is not sufficient. Subsequently,
Ahlswede and Csiszár [AC93] studied Maurer’s scenario in the setting
where only one-way communication is allowed.

The concepts of information reconciliation and privacy amplification
evolved parallel with the above development ([BBR88, BBCM95, BS93]).

In a different line of research Juels and Wattenberg [JW99] constructed
a “fuzzy commitment scheme”. Based on this work, Dodis, Reyzin, and
Smith [DRS04] introduced the concept of fuzzy extractors. It is easy to see
that this concept is equivalent to the combination of information reconcil-
iation and privacy amplification.

Contributions of this thesis

Almost all the contents of this chapter were previously known. We list the
minor improvements over the previously known results which are made
in this chapter:

• Theorem 3.3 concerns the preprocessing step, in which Alice uses
X to obtain random variables U and V (as described later). The
theorem states that the alphabet size of U and V need not be larger
than the alphabet size of X. Previously, only slightly weaker bounds
were known (the alphabet size of V was bounded by |X |+ 3, and
the alphabet size of U by |X |+ 1 see [CK78, AC93]). A similar state-
ment where two-way communication is considered can be found in
[CRW03a] (with the same alphabet size as in our case). It is possible
that our bounds are tight.

• We show how to do information reconciliation for any distribu-
tion PXYZ using a code which has a rate close to the channel ca-
pacity, instead of using a two-universal hash-function. The method
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Alice 1 1 1 0 0 1 0 1 0 0 0
Bob 1 ⊥ 1 0 0 1 ⊥ 1 0 0 0
Eve ⊥ ⊥ 1 ⊥ ⊥ ⊥ 0 ⊥ 0 ⊥ ⊥

Figure 3.1.: Possible sample of random variables in the example (p = 0.2,
q = 0.8)

we use does not seem to appear anywhere in the literature, but it is
safe to assume that the possibility of this was folklore. The advan-
tage of this approach is the possibility of using concatenated codes,
and this allows for a polynomial time implementation of Bob’s al-
gorithm (Theorem 3.15). This was previously published in [HR05b].

• We give more exact lower bounds on the number of random vari-
ables needed for one-message key agreement (Theorem 3.17). Pre-
viously, lower bounds were only stated in an asymptotic manner
([CK78, AC93, HR05b]). Also, we show that the number of ran-
dom variables used must increase as the required security increases
(Theorem 3.18).

3.1. Example and One-Message Key Rate

In order to illustrate the basic idea, we start with an example probability
distribution PXYZ, and give a simple protocol for this distribution. The
protocol has the disadvantage that it requires a huge amount of commu-
nication.

The distribution is best described by the following random process: Al-
ice gets a uniform random bit X, Bob gets the same bit after it has been
sent through an erasure channel which outputs a special erasure sym-
bol ⊥ with probability p, and Eve also gets X but erased with probability
q > p (see Figure 3.1, one can imagine that these random variables are
distributed by a trusted third party). Clearly, in such a scenario Alice and
Bob have a certain advantage over Eve, and one hopes that this advantage
can be exploited in order to get a secure key.

In this case, our protocol has two steps. First, information reconciliation
makes sure Alice and Bob get a common string over which Eve has some
uncertainty. Then, privacy amplification transforms this bit string into a se-
cret key. We now describe these steps for this distribution in more detail.
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3.1.1. Information Reconciliation

Alice, who obtained the bit string x0 of length n from the trusted third
party first chooses a very large number of uniform random n-bit strings
x1, . . . , xt and sends them to Bob, whereas she hides x0 in a random po-
sition in the strings (in other words, she sends a random permutation of
x0, . . . , xt to Bob). We do not care about the amount of communication
needed in this simple protocol.

A randomly chosen string matches Bob’s information with probability
2−n(1−p), while it matches Eve’s information with probability 2−n(1−q).
Thus, if q > p and n is large enough, we can choose t appropriately
between 2n(1−q) and 2n(1−p), such that with high probability only the
string x0 matches Bob’s information, while many strings will match Eve’s
information. In other words, Alice and Bob agree on a common string,
while Eve still has large min-entropy about x0.

This method to do information reconciliation requires a large amount of
communication. A different method often used in the literature is that Al-
ice sends Bob the output of a randomly chosen two-universal hash func-
tion applied on her input (including the information which two-universal
hash function was chosen). The idea here is that the possible preimages
of a two-universal hash function have similar properties as our randomly
chosen strings. However, in this case it is not clear how Bob can recover
the input of Alice computationally efficiently. For this reason we will use
error correcting codes in our construction, as explained in Section 3.3.

3.1.2. Privacy Amplification

After information reconciliation, Alice and Bob both know x0 but cannot
use it as key, since Eve has some information about it (in fact, Eve knows
some positions of x0 with certainty in our setting). Alice and Bob rectify
this situation in the next step, called privacy amplification.

The simple idea is that Alice and Bob can apply a strong extractor: Alice
chooses a seed uniformly at random and sends it to Bob. Then, they both
apply the extractor to x0. Since for Eve x0 has large min-entropy, this gives
a bit string which is close to uniform with respect to Eve’s information.

3.1.3. Preprocessing

The simple protocol explained above uses the fact that Bob knows more
about the value of Alice than Eve knows. In fact, one can show that a
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x y z PXYZ
00 0 0 1/4

01 0 1 1/4

10 1 0 1/4

11 1 1 1/4

H(X|Z)− H(X|Y) = 0

u y z PUYZ
0 0 0 1/4

0 0 1 1/4

1 1 0 1/4

1 1 1 1/4

H(U|Z)− H(U|Y) = 1

x y z v PXYZV
00 0 0 0 1/4

01 0 1 1 1/4

10 1 0 0 1/4

11 1 1 1 1/4

H(X|ZV)− H(X|YV) = 1

Forget second bit Send second bit

Figure 3.2.: For some random variables “forgetting information” or “sen-
ding information” helps.

protocol similar to the above works for any distribution PXYZ as long as
H(X|Z)− H(X|Y) is positive. Even more, the protocol generates key bits
at a rate of H(X|Z)− H(X|Y), i.e., asymptotically Alice and Bob get that
many key bits per random variable used.

In some cases it is possible to improve upon H(X|Z)−H(X|Y). For ex-
ample, assume that Alice gets two independent bits, Bob knows the first,
and Eve the second (see Figure 3.2, topmost table). In this case, both con-
ditioned entropies H(X|Z) and H(X|Y) are equal to one. But since Alice
knows the distribution she can solve this problem easily: she “forgets”
the second bit in every X. If U is the resulting random variable (i.e., the
first bit of X) we have H(U|Z) = 1 and H(U|Y) = 0, and therefore the
protocol sketched previously will work. Alternatively Alice can send the
second bit to Bob. If we call the random variable sent V (i.e., the second
bit of X), we then have H(X|ZV) = 1 and H(X|YV) = 0. We will see
later that these two preprocessing steps are sufficient to make sure our
protocols achieve an optimal rate, i.e., asymptotically no stronger results
are possible.
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3.1.4. The One-Message Key Rate

This previous discussions give rise to the following definition, which we
can trace back to [AC93].1

Definition 3.1 (One-message key rate). Let PXYZ be any probability distri-
bution over X ×Y ×Z . The one-message key rate S→(X; Y|Z) is

S→(X; Y|Z) := sup
PUV|X

H(U|ZV)− H(U|YV),

where the supremum is over all conditional distributions PUV|X with finite al-
phabets for U and V.

In our previous example we obtained U and V in a deterministic way
from X. However, in general this is not possible (we will see an example
in Chapter 4).

It will follow from Theorem 3.3 that there always exists a distribu-
tion PUV|X with S→(X; Y|Z) = H(U|ZV)−H(U|YV), i.e., the supremum
can always be achieved and is finite.

The naming of S→(X; Y|Z) as one-message key rate originates from
Theorem 3.13, which states that for any rate R < S→(X; Y|Z) it is possi-
ble to obtain nR key bits from n random variables, as long as n is large
enough; as well as from Theorem 3.18, which states that no rate R >
S→(X; Y|Z) can be achieved by any protocol.

Finally, we note that the expression we maximize over in Definition 3.1
can be equivalently written as

H(U|ZV)−H(U|YV)
= H(UZV)− H(ZV)− H(UYV) + H(YV)
= H(Z|UV)− H(Y|UV)− (H(Z|V)− H(Y|V)). (3.1)

3.2. Preprocessing: Alphabet Size

We first show that in Definition 3.1 it is sufficient to consider random
variables U and V over X , i.e., the alphabet of U and V need not be larger

1In [AC93], the expression I(VY; U) − I(VZ; U) (which is easily seen to be equal to
H(U|ZV) − H(U|YV)) is used. Further, PUV|X is restricted to distributions of the
form PU|XPV|U . This is possible because from H(U|ZV)− H(U|YV) = H(UV|ZV)−
H(UV|YV) we see that V can be encoded into U. We believe that our version is more
natural.
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Figure 3.3.: Carathéodory’s Theorem for R2: Every point in the convex
hull of points {s0, . . . , sr−1} can be written as a convex combi-
nation of at most 3 of these points.

than |X |. This means that the supremum in Definition 3.1 is over a com-
pact set, which implies that it can be achieved and is finite. Further, it is
convenient because we can limit the amount of communication and stor-
age needed, and it may simplify the task of finding optimal variables U
and V.

We will prove the theorem by showing that for any given probability
distribution PUV|X we can reduce the alphabet size of U and V without
decreasing H(U|ZV)−H(U|YV). We do this in two steps: first, we show
that the alphabet size of V can be reduced, then we show that for every
v ∈ V the alphabet size of U can be reduced as well.

For both steps, the following lemma is of key importance. It is a slight
strengthening of Carathéodory’s Theorem, and attributed to Fenchel and
Eggleston in [CK78]. However, the proof referred to in [CK78] is for a
different statement.

Carathéodory’s Theorem is very intuitive: it states that any point in the
convex hull of a finite number of points in Rd can be written as convex
combination of d + 1 points (see Figure 3.3). One can conveniently for-
mulate this as follows: for any finite set S ⊆ Rd and for any probability
distribution PS over S , there exists a probability distribution PS over S
such that E[S] = E[S] and PS(x) is zero for all but d + 1 elements of S .
Our strengthening shows that this holds even if the expected value of a
given function h on these points is not allowed to decrease.

Lemma 3.2. Let S ⊆ Rd be a finite set and let h : S → R be an arbitrary func-
tion. For any probability distribution PS : S → [0, 1] there exists a probability
distribution PS : S → [0, 1] such that E[S] = E[S], E[h(S)] ≥ E[h(S)] and the
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size of the support of S is at most d + 1.

Proof. We show that we can remove one point from the support if it is
greater than d + 1. Induction then proves the lemma.

Let S := {s0, . . . , sr−1} and assume without loss of generality that
PS(s) > 0 for all s ∈ S and that E[S] = 0. Since we assume r > d + 1 we
can extend all points in S with one coordinate which is equal to 1 (i.e., we
map the points from Rd to Rd+1 by placing them in the hyperplane with
last coordinate 1) and the extended points will still be linearly dependent
over Rd+1. Therefore (as this is the definition of linear independence) we
can find coefficients ci which are not all zero and satisfy

r−1

∑
i=0

cisi = 0 (3.2)

as well as (this follows from the linear dependence in the additional co-
ordinate)

r−1

∑
i=0

ci = 0. (3.3)

For any λ ∈ R define the function Pλ : S → R as

Pλ(si) := PS(si) + λci.

The following equations then follow from (3.2) and (3.3) by linearity:

r−1

∑
i=0

Pλ(si) = 1, (3.4)

r−1

∑
i=0

Pλ(si)si = 0, (3.5)

r−1

∑
i=0

Pλ(si)h(si) = E[h(S)] + λc, (3.6)

where c ∈ R is some constant. We now note that there must exists num-
bers λ− < 0 < λ+ such that Pλ is a probability distribution exactly if
λ ∈ [λ−, λ+], and Pλ− as well as Pλ+ are probability distributions with
smaller support than PS (for this we first use that not all ci are zero, which
means that some values Pλ(si) will eventually leave the interval [0, 1] as
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λ is increased or decreased, and because of (3.4) first one value Pλ(si) will
drop to zero; we use the corresponding λ).

Equations (3.5) and (3.6) now imply that either PS = Pλ− or PS = Pλ+

reduces the support size under the conditions of the lemma, and we can
use induction.

We are now ready to give the main result of this section, namely that
in Definition 3.1 it is sufficient to maximize over probability distributions
with support size |X | for U and V. This theorem appears (without ex-
plicit proof) with slightly weaker parameters in [AC93] (see also [CK78]).
However, the proof method employed here does not differ significantly
from the one used in [AC93].
Theorem 3.3. Let PUVXYZ be a probability distribution over U × V × X ×
Y ×Z such that PUVXYZ = PXYZ · PUV|X for all u, v, x, y, z.

There exists a conditional distribution PU′V′ |X such that

H(U′|ZV′)− H(U′|YV′) ≥ H(U|ZV)− H(U|YV),

and such that the support of U′ and V′ is at most of size |X |.

Proof. To simplify notation let X = {x0, . . . , xr−1}, i.e., |X | = r. First, we
use

H(U|ZV)− H(U|YV) = H(Z|UV)−H(Y|UV)− (H(Z|V)−H(Y|V)),
(3.7)

as noted after Definition 3.1. We start by reducing the alphabet size of V.
For this, we rewrite the probability distribution as

PUVXYZ(u, v, x, y, z) = PV(v) PU|V(u|v) PX|UV(x|u, v) PYZ|X(y, z|x).
(3.8)

We now change PV in (3.8) to PV′ and leave the other terms on the right
hand side constant such that the alphabet size of V is reduced, and the
distribution of X, Y, and Z stays the same, while (3.7) does not decrease.
For this, we define f : V → Rr−1

f (v) :=
(
PX|V(x0|v), PX|V(x1|v), . . . , PX|V(xr−2|v)

)
(note that we omit PX|V(xr−1|v)). Further, define the function h : V → R

as

h(v) := H(Z|U, V=v)− H(Y|U, V=v)− H(Z|V=v) + H(Y|V=v)
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(note that h(v) does not depend on PV , only on PU|V , PX|UV and PYZ|X).
We apply Lemma 3.2 (we identify the points of V with points in Rr−1 as
given by the function f and apply the lemma on those points) and get a
distribution PV′ over a subset of size r of V . We define the new probability
distribution

PU′V′XYZ(u, v, x, y, z)
:= PV′(v) · PU|V(u|v) · PX|UV(x|u, v) · PYZ|X(y, z|x). (3.9)

Note that we keep PU|V , PX|UV , and PYZ|X constant. Nevertheless, in
general the distribution of U changes. However, E[ f (V′)] = E[ f (V)] im-
plies that the distributions PX and thus also PXYZ stay the same. Further
E[h(V′)] ≥ E[h(V)] implies that (3.7) does not decrease if we use U′ and
V′ instead of U and V.

Starting from (3.9), we now reduce the alphabet size of U′ without
changing the alphabet size of V′. We can do this for every fixed v ∈ V
separately (this is sufficient because we can later rename the symbols in U
such that they are the same for every v, which does not change any quan-
tity we are interested in). Similarly to before, in order to reduce the alpha
be size, we change PU|V=v to PU′′ |V=v in (3.9), while leaving the other
terms constant. Define

f ′v(u) :=
(
PX|UV(x0|u, v), PX|UV(x1|u, v), . . . , PX|UV(xr−2|u, v)

)
,

and the function h′v as

h′v(u) := H(Z|U=u, V=v)− H(Y|U=u, V=v).

Again applying Lemma 3.2 (using the points of f ′v and h′v) we obtain
PU′′ |V′=v such that U′′ has support size at most |X |. We consider the
probability distribution

PU′′V′XYZ(u, v, x, y, z)
:= PV′(v) · PU′′ |V′(u|v) · PX|UV(x|u, v) · PYZ|X(y, z|x). (3.10)

Because E[ f ′v(U)] is constant, this does not change PX|V′=v and thus PXYZ
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also stays constant. Also we get

H(Z|U′V′)− H(Y|U′V′)− (H(Z|V′)− H(Y|V′))

= ∑
v∈V

PV′(v)
(

E[h′v(U′)]− (H(Z|V′=v)− H(Y|V′=v))
)

≤ ∑
v∈V

PV′(v)
(

E[h′v(U′′)]− (H(Z|V′=v)− H(Y|V′=v))
)

= H(Z|U′′V′)− H(Y|U′′V′)− (H(Z|V′)− H(Y|V′)).

3.3. Information Reconciliation

This section describes information reconciliation, i.e., it shows how Al-
ice and Bob can obtain a common string over which Eve has large min-
entropy. For this we assume that Alice and Bob have instances of random
variables which are distributed according to a distribution PXYZ which
satisfies H(X|Z) > H(X|Y) (i.e., we ignore the preprocessing in this sec-
tion).

3.3.1. Overview

Our information reconciliation protocol works as follows: Alice chooses
a word (d0, . . . , dn−1) ∈ X n of an appropriately chosen error correcting
code which we describe later. For each position i, Alice uses her random
variable xi and sends xi ⊕ di to Bob (we identify X with {0, . . . , |X | − 1},
and use ⊕ to denote the addition modulo |X |). The properties of the
error correcting code will then ensure that with high probability Bob can
find (d0, . . . , dn−1), while Eve has large min-entropy about (d0, . . . , dn−1).
Alice and Bob can then use privacy amplification to obtain a key.

The code we use is such that a codeword can be decoded after sending
it through the channel C which maps an input d ∈ X to a pair (d⊕ X, Y),
where X and Y are chosen according to PXY (note that this is exactly the
information Bob obtains for one invocation). We quickly compute the ca-
pacity Cap(C) of this channel. Recall (see, e.g.[CT91]) that the capacity of
a channel from S to T specified by PT|S equals maxPS(H(T)− H(T|S)).
In our case H(T|S) = H(XY) independently of the distribution on the
input, and it is easy to see that H(T) is maximized by the uniform distri-
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bution on the input. This gives

Cap(C) = max
PS

(
H(T)︸ ︷︷ ︸

log(|X |)+H(Y)

−H(T|S)︸ ︷︷ ︸
H(XY)

)
= log(|X |)− H(X|Y). (3.11)

(This implies that the capacity of the channel can be artificially increased
by enlarging the alphabet X . However, this does not achieve anything,
as it would give Eve more information as well.)

In Section 3.3.2 we give codes with rate close to the capacity. In Sec-
tion 3.3.3 we show that Eve’s min-entropy about the codeword is large af-
ter the protocol above, assuming the rate of the code used is close enough
to the capacity.

3.3.2. Error Correcting Codes

We now show how to construct codes for an arbitrary memoryless chan-
nel with rate arbitrarily close to the capacity. Our constructions will work
for any channel which achieves the capacity on the uniform input distri-
bution, i.e., a channel from S to T for which H(T)−H(T|S) is maximized
for the uniform distribution over the input S .

Given a channel C from S to T , we write C(s) to denote the random
variable over T given by PT|S=s as specified by the channel. Further, if
sn ∈ Sn we write C(n)(sn) to denote the corresponding random variable
over T n, i.e., we apply the channel independently n times.

To transmit information reliably over a channel, redundancy is added
in a systematic way, as described by an error correcting code. Such a code
is given by a encoding function C and a decoding function D. The encoding
function takes as input a bit string of appropriate length and outputs an n-
tuple sn over Sn. After applying the channel n times we obtain C(n)(sn),
and from this the decoding function can find the initial bit string with
very large probability.

Definition 3.4 (Error correcting code and rate). An (n, 2k)-error correct-
ing code with error probability perr for a channel C from S to T is a pair of
functions C : [2k] → Sn and D : T n → [2k] such that for all c ∈ [2k]:
Pr[D(C(n)(C(c))) = c] ≥ 1− perr. The rate of the code is k

n .

The codes we study will be chosen at random from a family of codes.
In this case we are interested in the error probability over the random-
ness of channel and the choice of the code. This is not usual, since in most
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applications a single code with good properties is needed, and good ex-
pected performance is not sufficient. In our setting this is different: we can
choose an instance of the code at random every time we need one.

Definition 3.5 (Family of error correcting codes). A family of (n, 2k)-
error correcting codes with index set A and expected error probability perr
for the channel C from S to T is a pair of function families CA : [2k] → Sn

and DA : T n → [2k] such that for PA the uniform distribution over A and
all c ∈ [2k]: Pr[DA(C(n)(CA(c))) = c] ≥ 1− perr (where the probability is
over the choice of A and the randomness of the channel).

Codes with rate arbitrarily close to the capacity can be constructed in
several ways. In this thesis we use two constructions. First, we use a
construction which resembles random linear codes (this is similar to the
random codes used by Shannon [Sha48]). Second, we concatenate these
codes with a Reed-Solomon code (this construction is from Forney [For66]).
Both these constructions are well known and studied in the literature, but
usually only the asymptotic behavior of the error is studied. We will be
interested in concrete values, and we study these codes with this in mind
in the following.

Random linear codes

We use the following form of a random linear code2 C : [2k] → Sn:
First, identify S with {0, . . . , |S| − 1} and let ⊕ be the addition mod-
ulo |S|. Also, identify [2k] in an arbitrary way with the vector space
GF(2)k with basis e1, . . . , ek, and, for every basis vector ei, choose an im-
age C(ei) from Sn uniformly at random. Additionally, choose a vector c0

from Sn uniformly at random. The image C(c) of a vector c = ∑k
i=1 λiei

with λi ∈ {0, 1} is then given by c0 ⊕
⊕k

i=1 λiC(ei) (we shift the code
by the random vector c0 in order to make sure that C(0) is also chosen
uniformly at random). For these codes we obtain the following theorem:

Theorem 3.6. Let C be a channel from S to T which achieves the capacity
on the uniform input distribution. For any n, k, there exists a family of codes

2Our construction does not give a linear code in a strict sense: if s0 and s1 are codewords,
s0 ⊕ s1 may not be a codeword. The reason we use this construction is that linear codes
with good properties can only be constructed if |S| is a prime power. Nevertheless,
our construction resembles the usual construction of linear codes, and also the resulting
codes share the most important properties with random linear codes, which is why we
still use this name.
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Ca : [2k]→ Sn with expected error probability

perr ≤ 2

(
3− nε2

256 log2(|S| |T |)

)
,

where ε := Cap(C) − k
n . Further, Ca(·) can be computed in time O(n2),

Da(·) can be computed in time O(n2) · 2k, and the index set satisfies |A| =
(|S|)n(k+1).

Proof. We use a family of random linear codes as described above.
Consider the joint distribution PST defined by the uniform distribu-

tion PS on S and the conditional distribution PT|S as given by the chan-
nel C. For this distribution and a parameter δ > 0 (which we later set
to ε/4), we define the typical set

A(n)
δ :=

{
(sn, tn) ∈ Sn × T n

∣∣∣∣∣∣∣ 1n log
( 1

PSnTn(sn, tn)

)
− H(ST)

∣∣∣ ≤ δ ∧∣∣∣ 1
n

log
( 1

PSn(sn)

)
− H(S)

∣∣∣ ≤ δ ∧∣∣∣ 1
n

log
( 1

PTn(tn)

)
− H(T)

∣∣∣ ≤ δ

}
.

Let Ca be a randomly chosen linear code as described above. On re-
ceived word tn ∈ T n the receiver enumerates all words c ∈ [2k] and
checks whether (Ca(c), yn) ∈ A(n)

δ . In case there is a unique codeword c
which satisfies this, the decoder outputs this word. Otherwise an arbi-
trary codeword is returned. The running time of the encoder is clearly
bounded by O(n2), and the running time of the decoder can be bounded
by O(n2) · 2k.

Let now c be the codeword chosen by Alice. Since by construction
CA(c) is chosen according to PSn (i.e., the uniform distribution), Propo-
sition 2.11 implies that the probability Pr[(Sn, Tn) /∈ A(n)

δ ] is at most

6 · 2
− nδ2

16 log2(|S| |T |) .
On the other hand, let now c′ be a codeword which was not sent, i.e.,

c′ 6= c. In this case, our choice of the code implies that CA(c′) and Tn are
both chosen independently with the marginals of PST . The probability
that (CA(c′), Tn) ∈ A(n)

δ is at most |A(n)
δ | · 2

−nH(S)−nH(T)+2nδ. From the

definition of A(n)
δ it is easy to see that |A(n)

δ | ≤ 2nH(ST)+δ and together we
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obtain

Pr[(CA(c′), Tn) ∈ A(n)
δ ] ≤ 2−nCap(C)+3nδ = 2−n(ε−3δ)−k.

Setting δ := ε/4 and using the union bound we obtain:

Pr[(CA(c), Tn) /∈ A(n)
δ ∨ ∃c′ 6= c : (CA(c′), Tn) ∈ A(n)

δ ]

≤ 6 · 2
− nε2

256 log2(|S| |T |) + 2−
nε
4

≤ 7 · 2
− nε2

256 log2(|S| |T |) ,

where we used ε ≤ log(|S| |T |) in the last step. Finally, by inspection of
the construction above we get |A| = (|S|)n(k+1).

Concatenated codes

Random linear codes have the disadvantage that we do not know how to
decode a noisy codeword efficiently. Codes which do not have this draw-
back were first proposed by Forney [For66]. He combined random codes
with algebraic codes and obtained codes which were efficiently decod-
able, while still achieving a rate arbitrarily close to the capacity. We can
use this technique to get the following theorem:
Theorem 3.7. Let C be a channel from S to T which achieves the capacity on
the uniform input distribution. Set C := Cap(C) and d := 220 log2(|S||T |). If
k and n, k < Cn are such that for ε := C− k

n the inequalities

C
ε

> 2 and n ≥
(C

ε

) d
ε2

are satisfied, then there exists a family of codes C : [2k] → Sn which can be
encoded and decoded in time O(n2) with expected error probability

perr < 2−
nε4

dC2

for the channel C. Further, the index set satisfies |A| < (|S|)n2
.

The idea is that instead of using one random linear code, many small
instances are used, in order to keep the task of decoding manageable.
These blocks are then combined using an algebraic code which can be
decoded efficiently. In this thesis we use a (shortened) Reed-Solomon
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Figure 3.4.: Concatenation of a random linear code C(1) with a Reed-
Solomon code C(2).

code, introduced in [RS60], for this. A Reed-Solomon code is defined as
follows over any finite field GF(p): The function C : GF(p)k → GF(p)n is
given by interpreting the input as description of a polynomial over GF(p)
of degree k − 1, and then evaluating this polynomial at n points. There
are highly developed algorithms to correct errors in such a code [Ber68,
Mas69, Jus76, WB86]. We use the following proposition whose proof can
be found in several of these references:

Proposition 3.8. Let n, k, p ∈ N with k < n ≤ p and p a prime power be
given. There exists a code C : [pk]→ [pn] which can be encoded in time O(p2),
such that for ε := 1− k

n a codeword with less than fraction ε/2 errors, can be
decoded correctly in time O(p2).

In order to concatenate the Reed-Solomon code with a linear code, we
need a stronger version of the Hoeffding bound. Compared with Proposi-
tion 2.13 an additional logarithmic term appears in the exponent. A proof
is given in [Hoe63].

Proposition 3.9. Let PX0X1···Xr−1 = PX0PX1 · · ·PXr−1 be a product distribu-
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tion with Xi ∈ [0, 1]. Let X := 1
r ∑r−1

i=0 Xi. Then, for any ε > 0,

Pr
[
X ≥ E[X] + ε

]
≤ e
−rε2 ln

(
1

E[X]

)
< 2

−rε2 log
(

1
E[X]

)
.

We can now concatenate random linear codes as inner codes with a
Reed-Solomon code as outer code: the input is interpreted as bit string
and split into blocks, then encoded using an appropriate Reed-Solomon
code, and then every of the resulting blocks is encoded with a random lin-
ear code (see Figure 3.4). We choose every instance of the random linear
code independently of the other instances.

The following Lemma describes when two such codes can be concate-
nated. In this Lemma, k1, n1 and ε1 will denote the parameters of the (in-
ner) random linear code C(1), while conversely k2, n2 and ε2 will denote
the parameters of the (outer) Reed-Solomon code C(2). The parameters
have to be provided in order to use this lemma.

Lemma 3.10. Let C be any channel from S to T which achieves the capac-
ity on the uniform input distribution. Let k1, n1, k2, n2 ∈ N be given. Set
ε1 := Cap(C)− k1

n1
and ε2 := 1− k2

n2
, d := 8192 log2(|S||T |). If these param-

eters satisfy k1 < Cap(C)n1, n2
2 < k2 < n2 ≤ 2k1 , and n1 ≥ d

ε2
1

log( 1
ε2

), then

there exists a family of codes CA : [2k1k2 ] → Sn1n2 , which can be encoded and
decoded in time O(n2

1n22k1 + 22k1) and which has expected error probability

perr < 2−
n1n2ε2

1ε2
2

d

for the channel C. Further, the index set satisfies |A| = (|S|)n1n2(k1+1).

Proof. Let C(1)
A : [2k1 ] → Sn1 be a family of random linear codes. We con-

catenate this code with a Reed-Solomon code C(2) : [(2k1)k2 ] → [(2k1)n2 ]
from Proposition 3.8. This means that the resulting code Ca first splits the
input of length k1k2 into k2 blocks of length k1, and then encodes these
blocks with a Reed-Solomon code as given by Proposition 3.8, by inter-
preting the blocks as elements of GF(2k1). We can use Proposition 3.8 in
that way because k2 < n2 ≤ 2k1 . Subsequently, every block (i.e., every el-
ement of GF(2k1)) is encoded using a random linear code, where we take
an independently chosen random code for every block.

According to Theorem 3.6, the probability that a fixed block is not de-
coded correctly is at most (observe that n1 ≥ d

ε2
1

log( 1
ε2

) and ε2 ≤ 1
2 imply
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n1ε2
1

512 log2(|S||T |)
≥ 16 log( 1

ε2
) ≥ 16):

2
3− n1ε2

1
256 log2(|S||T |) ≤ 2

− n1ε2
1

512 log2(|S||T |) ≤ ε2

4
. (3.12)

Since Proposition 3.8 implies that we can decode correctly if there are less
than fraction ε2

2 errors, we can only get a decoding error if the fraction
of wrongly decoded blocks deviates by more than ε2

4 from the expected
value µ. According to Proposition 3.9, the probability of this event is at

most (where we use µ ≤ 2
− n1ε2

1
512 log2(|S||T |) , as implied by (3.12)):

perr ≤ 2−n2
ε2
16 log( 1

µ ) ≤ 2
− n1n2ε2

1ε2
2

8192 log2(|S||T |) .

To encode a word first the encoding of a Reed Solomon code is needed,
which takes time O(22k1). Then n2 blocks are encoded in time O(n2

1)
each, which gives a total time ofO(n2

1n2 + 22k1). To decode a noisy word,
first n2 blocks are decoded in timeO(n2

12k1) each, then the Reed Solomon
code is decoded in time O(22k1), which gives a total time of O(n2

1n22k1 +
22k1) to decode. The size of the index set follows directly from the defini-
tion of the code.

For appropriately chosen parameters, Lemma 3.10 provides what we
need: an efficiently decodable code for any channel C from S to T with
rate arbitrarily close to the capacity. Unfortunately, the parameters in
Lemma 3.10 are rather hard to handle, as everything needs to be pro-
vided properly. It is more convenient to have a theorem where one only
n and k needs to be specified. Doing this we arrive at Theorem 3.7.

Proof (of Theorem 3.7). Given n, it is possible to choose numbers n1 and n2
such that

n1n2 < n < n1n2
(
1 +

ε

3C
)

and

3 log(n2)
C

< n1 <
4 log(n2)

C

are satisfied. Further, we chose k1, k2 ∈ N, and thus ε1 := C − k1
n1

and
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ε2 := 1− k2
n2

, such that

ε

4
< ε1 <

ε

3
,

ε

4C
< ε2 <

ε

3C
,

which is always possible for the numbers we use. We will construct a
code [2k1k2 ]→ Sn1n2 , and since n1n2 < n and

k1k2 = (n1C− n1ε1)(n2 − n2ε2)
> n1n2C− n1n2ε1 − n1n2ε2C

> n1n2(C− 2ε

3
)

> n(C− 2ε

3
)/(1 + ε/3C)

> n(C− ε) = nk,

this is sufficient.
We now check that we can use Lemma 3.10 for these parameters. We

first note that n2 > k2, Cn1 > k1 and also n2
2 < k2 (the last one because

ε2 < ε
3C and ε < C/2). Further, ε < C

2 also implies

2k1 = 2n1(C−ε1) > 2
Cn1

2 > 2log n2 = n2.

Finally, the condition n ≥ ( C
ε )

d
ε2 implies 2n1n2 ≥ ( C

ε )
d
ε2 and thus, us-

ing 4 log(n1)
C > n2, 2n22

4n2
C ≥ ( C

ε )
d
ε2 . Taking the logarithm on both sides

gives 4n2
C + log(n2) + 1 ≥ d

ε2 log( C
ε ) and this implies n2 ≥ Cd

8ε2 log( C
ε ) ≥

Cd
128ε2

2
log( 1

4ε1
) ≥ 8192 log2(|S| |T |)

ε2
2

log( 1
ε1

).

The error probability and the run time of the algorithms also follow
from Lemma 3.10.

3.3.3. A Bound on Eve’s Knowledge

In the information reconciliation protocol we use, Alice chooses a code-
word from an appropriate error correcting code and then sends the point-
wise sum of her random variables and the codeword to Bob. We want
to show that given Eve’s random variables and this communication, the
min-entropy over the codeword is still large with high probability. This
will follow from the following lemma (adapted from [RW05, Cac97]).
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Lemma 3.11. Let PUVW be a probability distribution over U × V ×W . For
any ε ≥ 0 and ε′ > 0:

Hε+ε′
∞ (U|VW) ≥ H∞(U|W) + Hε

∞(V|UW)− H0(V|W)− log
( 1

ε′

)
.

The intuition is that this is similar to the common equality H(U|VW) =
H(U|W) + H(V|UW)− H(V|W) which holds for Shannon entropy.

In our application we can use this lemma as follows: we set U to be the
codeword chosen by Alice, V to the communication produced by Alice,
and W to the a priori information Eve has, i.e., (Z1 . . . Zn). If the rate of the
code used is R, the quantities on the right hand side can then be bounded
as follows:

H∞(U|W) ≥ nR
Hε

∞(V|UW) ' nH(X|Z)
H0(V|W) ≤ n log(|X |),

where the second bound follows because we use independent repetitions
(i.e., using Corollary 2.12). If the code has rate close enough to the ca-
pacity log(|X |)− H(X|Y) (as given in equation (3.11) on page 36) of the
corresponding channel, and if H(X|Z) > H(X|Y), then the min-entropy
of Eve will grow linearly in n.

Proof. We prove the following two inequalities. The lemma then follows
by inserting (3.14) into (3.13).

Hε+ε′
∞ (U|VW) ≥ Hε

∞(UV|W)− H0(V|W)− log
( 1

ε′

)
(3.13)

Hε
∞(UV|W) ≥ H∞(U|W) + Hε

∞(V|UW). (3.14)

Proof of (3.13): Let PU′V′W ′ be a distribution over U × V × W with
‖PUVW − PU′V′W ′‖ ≤ ε which satisfies H∞(U′V′|W ′) = Hε

∞(UV|W) and
H0(V′|W ′) ≤ H0(V|W) (note that H0(V′|W ′) ≤ H0(V|W) is not a restric-
tion on the maximization, as it is always sufficient to enlarge the alphabet
of U). We show

Hε+ε′
∞ (U|VW)

(1)
≥ Hε′

∞(U′|V′W ′)
(2)
≥ H∞(U′V′|W ′)− H0(V′|W ′)− log

( 1
ε′

)
(3)
≥ Hε

∞(UV|W)− H0(V|W)− log
( 1

ε′

)
.
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Inequality (1) follows from the fact that any distribution within statisti-
cal distance ε′ from PU′V′W ′ is also within statistical distance ε + ε′ from
PUVW , and thus the maximization on the right hand side is over a subset
of the maximization on the left hand side.

For inequality (2) let

Sε′ := {(v, w) ∈ V ×W|PV′ |W ′(v|w) ≤ ε′2−H0(V′ |W ′)},

and define the distribution PU′′V′′W ′′ as

PU′′V′′W ′′(u, v, w) :=

{
PU′V′W ′(u, v, w) if (v, w) /∈ Sε′

1
|X |PV′W ′(v, w) if (v, w) ∈ Sε′ .

Since

Pr[(V′, W ′) ∈ Sε′ ] = ∑
(v,w)∈Sε′

PW ′(w) PV′ |W ′(v|w)

≤ ∑
(v,w)∈Sε′

PW ′(w) ε′ 2−H0(V′ |W ′)

≤ ∑
w∈W

PW ′(w)2H0(V′ |W ′=w) ε′ 2−H0(V′ |W ′)

≤ ε′,

we get ‖PU′V′W ′ − PU′′V′′W ′′‖ ≤ ε′. Thus, for inequality (2) it is sufficient
to show that H∞(U′′|V′′W ′′) ≥ H∞(U′V′|W ′)− H0(V′|W ′)− log(1/ε′),
or, equivalently, for all (u, v, w) ∈ U × V ×W :

PU′′ |V′′W ′′(u|v, w) ≤ 2−H∞(U′V′ |W ′)+H0(V′ |W ′)+log( 1
ε′ ).

For (v, w) ∈ Sε′ this is clear since H∞(U′′|V′′=v, W ′′=w) is maximal. For
(v, w) /∈ Sε′ we get

PU′′ |V′′W ′′(u|v, w) =
PU′′V′′ |W ′′(u, v|w)

PV′′ |W ′′(v|w)
<

2−H∞(U′V′ |W ′)

ε′ 2−H0(V′ |W ′)

= 2−H∞(U′V′ |W ′)+H0(V′ |W ′)+log( 1
ε′ ).

Finally, (3) follows from Hε
∞(UV|W) = H∞(U′V′|W ′) and H0(V|W) ≥

H0(V′|W ′).
Proof of (3.14): Let PU′V′W ′ be a distribution with ‖PUVW − PU′V′W ′‖
≤ ε and Hε

∞(V|UW) = H∞(V′|U′W ′). Such a distribution can be found
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even if we require that H∞(U′|W ′) ≥ H∞(U|W) is satisfied because the
conditional probabilities PU|W can be held constant.

We will show that

Hε
∞(UV|W)

(4)
≥ H∞(U′V′|W)
(5)
≥ H∞(U′|W ′) + H∞(V′|U′W ′)
(6)
≥ H∞(U|W) + Hε

∞(V|UW).

Inequality (4) is immediate from ‖PUVW − PU′V′W ′‖ ≤ ε. Inequality (5)
is equivalent to

2−H∞(U′V′ |W ′) = max
(u,v,w)∈U×V×W

PU′V′ |W ′(u, v|w)

= max
(u,v,w)∈U×V×W

(
PU′ |W ′(u|w) · PV′ |U′W ′(v|u, w)

)
≤
(

max
(u,w)∈U×W

PU′ |W ′(u|w)
)
×(

max
(u,v,w)∈(U×V×W)

PV′ |U′W ′(v|u, w)
)

= 2−H∞(U′ |W ′)−H∞(V′ |U′W ′).

Finally, (6) follows from the definition of PU′V′W ′ .

3.4. The Protocol

We now combine the three steps (preprocessing, information reconcilia-
tion, and privacy amplification) into a single protocol. Depending on the
code we use to do information reconciliation the protocol will have dif-
ferent properties. We first give the protocol where without specifying a
specific code and later insert the different codes we have into that proto-
col. For the following theorem recall that S→(X; Y|Z) is the one-message
secret key rate (see Definition 3.1 on page 30).

3.4.1. The General Protocol

Lemma 3.12. Let PXYZ be a probability distribution over X × Y × Z and
PUV|X a conditional probability distribution over X ×X ×X which maximizes
H(U|ZV)− H(U|YV).
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Let n, k, and a code C : [2k] → X n be given for the channel C which, on in-
put x ∈ X , chooses U, V, and Y according to PUVY and outputs (x⊕U, V, Y).
Assume that C has rate k

n = log(|X |) − H(U|YV) − ε and decoding error
probability γ. Further, let κ2 > 2

n be given.
There exists a one-message key agreement protocol which uses n random vari-

ables and yields a key with

bn
(
S→(X; Y|Z)− ε− 8 log(|X |)

√
κ2
)
c

bits, soundness 1 − γ and secrecy 1 − 2−nκ2 . The protocol has the properties
that Alice sends at most 3ndlog(|X |)e bits, Alice encodes one word of C, and
Bob decodes one noisy word of C.

The protocol needs inputs κ2, n, and a description of PUV|X .

Proof. First, Alice does the preprocessing, i.e., using the supplied chan-
nel PUV|X for every random variable Xi, 0 ≤ i < n, she computes Ui
and Vi from Xi, sends Vi to Bob and keeps Ui.

Next, Alice chooses a random word D ∈ [2k] from C and sends, for ev-
ery i, (C(D))i ⊕Ui to Bob. Bob now has

(
(C(D))i ⊕Ui, Vi, Yi

)
for every i

which is exactly the information he gets in an application of the channel C.
This implies that he can decode the received word and finds the original
codeword D with probability 1− γ. Alice then sends a randomly cho-
sen seed of a two-universal hash-function which maps the codeword to
a string of length bn

(
S→(X; Y|Z)− ε− 8 log(|X |)√κ2

)
c. Both parties ap-

ply the hash-function (Alice to D, and Bob to the recovered version of D)
and output SA and SB, respectively. It is clear that the protocol satisfies
Pr[SA 6= SB] ≤ γ.

We now show that the resulting key has secrecy 1− 2−nκ2 . For this, we
first note that Lemma 3.11, implies, for any δ > 0:

H2δ
∞ (D|(Un ⊕ C(D))ZnVn) ≥ H∞(D|ZnVn)︸ ︷︷ ︸

=k

+ Hδ
∞(Un ⊕ C(D)|DZnVn)︸ ︷︷ ︸

=Hδ
∞(Un |ZnVn)

− H0(Un ⊕ C(D)|ZnVn)︸ ︷︷ ︸
≤n log(|X |)

− log
(1

δ

)

≥ k + Hδ
∞(Un|ZnVn)− n log(|X |)− log

(1
δ

)
.

Furthermore, from Corollary 2.12 we get Hδ
∞(Un|ZnVn) ≥ nH(U|ZV)−

4
√

n log( 1
δ ) log(|X |). Together with k = n(log(|X |)− H(U|YV)− ε) we
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obtain

H2δ
∞ (D|(Un ⊕ C(D))ZnVn) ≥ n(H(U|ZV)− H(U|YV)− ε)

− 4

√
n log

(1
δ

)
log(|X |)− log

(1
δ

)
.

Using Theorem 2.17 (for closeness δ, giving entropy loss 2 log( 1
δ )) we see

that we can get a string of length

bn(S→(X; Y|Z)− ε)− 4

√
n log(

1
δ
) log(|X |)− 3 log(

1
δ
)c

which is 3δ-close to uniform with respect to Zn, Vn, and the communica-
tion. We can now set δ := 2−2nκ2 (because κ2 > 2

n this suffices to ensure
that the output has secrecy 1− 2−nκ2 > 1− 3δ) which implies that the key
has length at least⌊

n
(

S→(X; Y|Z)− ε− 4
√

2κ2 log(|X |)− 6κ2

)⌋
.

Because S→(X; Y|Z) ≤ log(|X |) we can see that if κ2 ≥ 1
64 the statement

only guarantees a key of length 0. We thus assume κ2 < 1
64 , from which

we see
√

κ2 < 1
8 and thus 6κ2 < 3

4
√

κ2, which implies the lemma.

3.4.2. The Protocol Using a Random Linear Code

We first use the random linear code from Theorem 3.6 in our protocol.

Theorem 3.13. Let PXYZ be a probability distribution over X × Y × Z . Let
parameters n, κ1 > 2

n and κ2 > 2
n be given. There exists a one-message key

agreement protocol which uses n random variables and yields a key with at least⌊
n
(

S→(X; Y|Z)− 90 log(|X | |Y|)(
√

κ1 +
√

κ2)
)⌋

key bits, soundness 1 − 2−nκ1 , and secrecy 1 − 2−nκ2 . In the protocol, Alice
sends O(n2) bits to Bob, the computations of Alice can be done in time O(n2),
and the computations of Bob can be done in time O(n2)|X |n.

The protocol of Theorem 3.13 is the same for any distribution PXYZ
as long as a description of PXY and a description of PUV|X maximizing
S→(X; Y|Z) are supplied as input.
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Proof. We combine the protocol from Lemma 3.12 with the random linear
code from Theorem 3.6.

Let PUV|X be a distribution over X × X × X for which H(U|ZV) −
H(U|YV) is maximal. Let C be the channel which maps an input d to a
triple (d⊕U, V, Y), where (U, V, Y) is chosen according to PUVY. Let k be

k :=
⌊
n
(
Cap(C)− 28

√
κ1 log(|X |3 |Y|)

)⌋
(this implies 28

√
κ1 log(|X |3 |Y|) ≤ ε ≤ 30

√
κ1 log(|X |3 |Y|) for ε =

Cap(C)− k
n ). For this k, Alice chooses a random linear code C : [2k]→ X n

for C and sends a description of this code to Bob. Alice uses this code and
parameter κ2 in the protocol guaranteed by Lemma 3.12.

From Theorem 3.6 we get that the probability that the code is decoded
incorrectly is less than 23−3nκ1 < 2−nκ1 (where we used 2nκ1 > 4), and
Lemma 3.12 implies that the probability that SA is not equal to SB is
at most this value. Also, Lemma 3.12 states that the protocol has se-
crecy 1− 2−nκ2 .

The length of the key is at least bn(S→(X; Y|Z)− ε− 8 log(|X |)
√

κ2)c ≥
bn
(
S→(X; Y|Z)− 90 log(|X | |Y|)(√κ1 +

√
κ2)
)
c. Finally, the runtime and

amount of complexity are easy to check.

For example, assume that a fixed distribution PXYZ and a rate R <
S→(X; Y|Z) is given. We can then fix a constant κ depending on R such
that the protocol uses n random variables and yields nR secret bits with
soundness and secrecy 1− 2−nκ . In other words, we can get a key with
exponential security for every fixed rate smaller than S→(X; Y|Z).
Corollary 3.14. Let PXYZ be a probability distribution and R a constant sat-
isfying R < S→(X; Y|Z). There exists a constant c (depending on PXYZ and
R) and a one-message key agreement protocol (also depending on PXYZ and R)
which, on input n, uses n random variables and yields a key with at least bnRc
bits, soundness 1− 2−cn and secrecy 1− 2−cn.

Proof. From Theorem 3.13, choosing κ1 and κ2 accordingly and hard cod-
ing the description of PXY and PUV|X into the protocol.

3.4.3. The Protocol Using a Concatenated Code

Analogously as in the previous section with the random linear code, we
can combine the concatenated code from Theorem 3.7 with the protocol
from Lemma 3.12. This has the advantage that Bob’s algorithm runs in
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polynomial time, but the usage of random variables is slightly worse (and
also n needs to be very large).
Theorem 3.15. Let PXYZ be a probability distribution over X × Y × Z . Set
R := S→(X; Y|Z), d := 222 · log2(|X | |Y|), and let parameters n, κ1, and κ2 be

given. If these parameters satisfy κ1 < R2

16d , κ2 > 2
n , and n ≥ ( log2(|X |)

κ1d )
1

4R

√
d

κ1 ,
then there exists a one-message key agreement protocol which uses n random
variables and yields a key with at least

bn(R− 4
√

κ1d log2(|X |)− 8 log(|X |)
√

κ2)c

key bits, soundness 1− 2−nκ1 and secrecy 1− 2−nκ2 . In the protocol, Alice sends
O(n2) bits to Bob, and the computations of Alice and Bob can be done in time
O(n2).

As before, the protocol of Theorem 3.15 is the same for any distribu-
tion PXYZ as long as a description of PXY and a description of PUV|X
maximizing S→(X; Y|Z) are supplied as input.

Proof. Again we use the protocol from Lemma 3.12, this time combined
with the concatenated code from Theorem 3.7.

Consider now the channel C(x) mapping x to (U ⊕ x, Y, V). We know
already that C := Cap(C) = log(|X |)− H(U|YV) (see remarks at the be-
ginning of Section 3.3), and thus we see that log(|X |) ≥ C ≥ H(U|ZV)−
H(U|YV) = R. Let now ε := 4

√
κ1dC2 and k := n(C − ε). Alice chooses

a code as described in Theorem 3.7 for the Channel C mapping x to a
triple (U ⊕ x, Y, V) with rate C − ε and sends a description to Bob. The
requirements for Theorem 3.7 are satisfied: first, using κ1 < R2

16d we get

C
ε =

√
C

4√κ1d
> 2

√
C√
R

> 2. Second, n ≥ ( log2(|X |)
κ1d )

1
4R

√
d

κ1 > ( C2

κ1d )
1

4R

√
d

κ1 =

( C
ε )

1
R

√
d

κ1 = ( C
ε )

1
R

dC
ε2 > ( C

ε )
d
ε2 . Subsequently, Alice uses Lemma 3.12 to-

gether with this code, which directly implies the rest.

Again, we can fix a rate R < S→(X; Y|Z) to get a corollary which is
simple to use.
Corollary 3.16. Let PXYZ be a probability distribution, R < S→(X; Y|Z).
There exists a constant c (depending on PXYZ and R) and a one-message key
agreement protocol which, on input n, uses n random variables and yields a key
with at least nR key bits, soundness 1− 2−cn and secrecy 1− 2−cn. Further, the
protocol uses O(n2) bits of communication, both the computations of Alice and
Bob can be done in time O(n2).
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Proof. From Theorem 3.15.

3.5. Lower Bounds

In this section we give lower bounds on the number of random variables
used in a one-message key agreement protocol. The lower bounds match
the usage in our protocols in the dominating terms.

We first give a theorem (Theorem 3.17) which states that for any distri-
bution PXYZ no protocol for one-message key agreement has higher rate
than S→(X; Y|Z). This was already proven in [AC93] for the case where n
goes to infinity; we use the same method to give a quantitative statement
which holds for any (finite) n. Further, we show (Theorem 3.18) that there
exist distributions PXYZ for which it is impossible to obtain more than

n(S→(X; Y|Z)−
√

1− β

3
√

κ)

key bits with secrecy 1− 2−κn and equal soundness from n random vari-
ables. In other words, for some distributions the dependence of the num-
ber of random variables in terms of κ is optimal up to constant factors in
our protocol which uses a random linear code (cf. Theorem 3.13).
Theorem 3.17. Let a distribution PXYZ and a one-message key agreement pro-
tocol for this distribution be given. If the protocol uses n random variables and
yields m key bits with soundness 1− γ and secrecy 1− ε, then these parameters
satisfy nS→(X; Y|Z) ≥ m · (1− γ− ε)− h(γ).

Proof. Consider an arbitrary protocol which uses n instances of random
variables: First, Alice sends one message M to Bob, and then they both
compute their key SA and SB, respectively. Any such protocol is suffi-
ciently described by the three conditional distributions PM|Xn , PSA |Xn M,
and PSB |Yn M. We can thus consider the joint distribution PXnYnZn MSASB .

We prove the following chain of inequalities:

nS→(X; Y|Z)
(1)
≥ S→(Xn; Yn|Zn)
(2)
≥ S→(Xn M; Yn M|Zn M)
(3)
≥ H(SA|MZn)− H(SA|MYn)
(4)
≥ m(1− γ− ε)− h(γ).
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(It is possible to show that (1) holds with equality, but we do not need
this here.)

For (1), we need to show that

n
(

max
PUV|X

H(U|ZV)− H(U|YV)
)
≥ max

PU V|Xn
H(U|ZnV)− H(U|YnV).

(3.15)

To see this it is sufficient to construct from a given distribution PU V|Xn a
new distribution PUV|X with

H(U|ZV)− H(U|YV) ≥ 1
n

(
H(U|ZnV)− H(U|YnV)

)
. (3.16)

For this, we write

H(U|Z1 . . . ZnV)− H(U|Y1 . . . YnV)

=
n

∑
i=1

H(U|Z1 . . . ZiYi+1 . . . YnV)− H(U|Z1 . . . Zi−1Yi . . . YnV).

(3.17)

For every i the expression of the second line can be written equivalently
as H(Ui|ZiVi)− H(Ui|YiVi) where Ui and Vi are obtained from a chan-
nel from Xi (this can be done as follows: for all j 6= i choose (Xj, Yj, Zj)
according to PXYZ, then choose (U, V) according to PU V|X1,...,Xn , and set
Ui := U and Vi := (Z1, . . . , Zi−1, Yi+1, . . . , Yn, V)). Let i be the value for
which the difference on the right hand side in (3.17) is maximal. For this i
we thus find a channel PUi Vi |X which satisfies (3.16).

Inequality (2) holds because

max
PU V|Xn

H(U|ZnV)− H(U|YnV)

≥ max
PU V|MXn

H(U|MZnV)− H(U|MYnV),

which follows from the fact that in the maximum on the left hand side M
can be encoded in V.

Inequality (3) is equivalent to

max
PU V|MXn

H(U|MZnV)− H(U|MYnV) ≥ H(SA|MZn)− H(SA|MYn),

but this holds because the maximum on the left hand side ranges over the
values used on the right hand side.
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For (4) first note that according to the specification of the protocol it is
possible to compute SB from MYn such that Pr[SA = SB] ≥ 1− γ. This
implies, using Fano’s inequality (see [CT91, Theorem 2.11.1])

H(SA|MYn) ≤ h(γ) + mγ.

Also with probability 1− ε Eve has no information about SA, which im-
plies

H(SA|MZn) ≥ m(1− ε).

Together this gives (4).

The above Theorem states that the number of random variables needed
must grow basically as m

S→(X;Y|Z) , which matches the protocol given in
Theorem 3.13 in terms of the dependence on m. However, Theorem 3.13
also needs a term depending on κ. It is obvious that this term is not
necessary for all distributions: if X = Y is a uniform bit such that Eve
already has no information (i.e., X and Y are already perfect key bits),
Alice and Bob can obtain a secure key of length m using only n = m =
m/S→(X; Y|Z) random variables for any security parameter κ. We next
show that for more general distributions (where information is leaked
to Eve) a dependence on κ is inherent. We will consider the distribution
where Alice and Bob always get the same uniform bit, and Eve either also
gets this bit, or a special symbol ⊥ signaling that she gets no information.
(The distributions used below are a special case of class of distributions
which we will study intensively in Chapter 4.)

Theorem 3.18. Let β with 1 > β ≥ 1
2 be given. Let PXYZ be the distribution

over {0, 1} × {0, 1} × {0, 1,⊥} given by

PXY(0, 0) := PXY(1, 1) := 1/2,
PZ|XY(0|0, 0) := PZ|XY(1|1, 1) := β, and

PZ|XY(⊥|0, 0) := PZ|XY(⊥|1, 1) := 1− β.

Assume there exists a one-message key agreement protocol for this distribution
which uses n random variables and yields m key bits with secrecy and soundness
1− 2−nκ , where 1− β > κ > 144

n(1−β) . Then, these quantities satisfy

m < n(S→(X; Y|Z)−
√

1− β

3
√

κ).
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Proof. We first show that for any one-message protocol with message M,
for ε := 2−nκ

H2ε
∞ (Xn|Zn M) ≥ m. (3.18)

To see this first note that the security of a one-message protocol requires

Hε
∞(SA|Zn M) ≥ m,

Further there must be a (deterministic) function f mapping Xn and M to
a string with Pr[ f (Xn, M) = SA] ≥ 1− ε, since otherwise Pr[SA = SB] <
1− ε. Thus, we get H2ε

∞ (Xn M|Zn M) ≥ m, which is equivalent to (3.18).
Next, consider the probability that Eve gets information in k of the n

random variables (i.e., Eve obtains the symbol ⊥ exactly n − k times).
This probability is exactly (n

k)βk(1− β)n−k. Setting s := n
√

(1− β)κ/3

Lemma 2.14 states (note that we can apply the lemma since s < n(1−β)
3 )

that the probability that Eve gets information in more than nβ + s random
variables is at least

s
2
√

n
e−

2s2
n(1−β)β ≥

√
(1− β)κn

6
e−

κn
4β ≥ 2e−

κn
2 > 2 · 2−κn = 2ε.

Therefore, n− (nβ + s) must be larger than m, because otherwise (3.18) is
violated. Together we get

m < n(1− β)− s
= n (H(X|Z)− H(X|Y))︸ ︷︷ ︸

=1−β

−s

≤ n(S→(X; Y|Z)−
√

1− β

3
√

κ).
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In this chapter we study key agreement for probability distributions PXYZ
over {0, 1} × {0, 1} × Z if only a lower bound on Pr[X=Y] and upper
bounds on the maximal advantage of predicting X or Y from Z are given.
There are at least two reasons for such a study: first, such bounds form an
information theoretic analog of the computational bounds we have after a
weak bit agreement protocol. Second, there is is a connection to the study
of statistical zero knowledge (more concretely circuit polarization), and
our results will allow insights in this area.

Overview of this chapter

In Section 4.2 we study the one-message key rate for a distribution if only
bounds as described above are given. The results will specify what the
bounds must satisfy in order to guarantee the existence of a one-message
key agreement protocol.

Section 4.3 gives an alternative one-message protocol, which is due to
Sahai and Vadhan. If Bob’s computation needs to be efficient, this proto-
col usually needs fewer random variables than the protocols from Chap-
ter 3. An overview of the different protocols will be given in Section 4.4.

In Section 4.5 we study the relationship of two seemingly unrelated
tasks. Namely, we show that one-message key agreement as studied in
Sections 4.3 and 4.4 is roughly the same as polarizing circuits (we will de-
fine this later), which was introduced by Sahai and Vadhan in the context
of statistical zero knowledge. This result is not needed to understand the
remainder of the thesis.

In Section 4.6 key agreement protocols are studied when arbitrary com-
munication between Alice and Bob is allowed. We will see that this case
is less understood than the one-message case. Section 4.7 compares the
different protocols.

Related work

As far as I know, key agreement for this particular constraints on the ran-
dom variables has not been studied before. However, Sahai and Vadhan
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[SV97, SV99] have studied the problem of polarizing circuits which is re-
lated to one-message key agreement for the constraints we use (see Sec-
tion 4.5).

Dwork, Naor and Reingold [DNR04] study the task of strengthening
public-key encryption schemes, a task which is quite directly connected
to the problem studied in this chapter. While they note a connection be-
tween this and the problem of polarizing circuits, they do not study this
connection in detail.

In Section 4.6 key agreement protocols with two-way communication
are studied. It was first shown in [Mau93] that distributions exists for
which one message is not sufficient to obtain a secure key, but two-way
communication suffices. Some of the distributions we study will also
have this property. More such cases are studied in [Wol99].

Contributions of this thesis

The results of Sections 4.2 and 4.5 are joint work with Renato Renner
[HR05b]; the theorems contained therein are thus original to this thesis.
Section 4.3 gives a one-message key agreement protocol, which is based
on a method to polarize circuits by Sahai and Vadhan [SV97, SV99]. Thus,
while Theorem 4.14 may look novel, it not a new result in a strict sense.
Section 4.6 also contains new results; in part these were previously pub-
lished in [Hol05].

4.1. Definitions and Overview

We first define the correlation α and the leakage β of a distribution PXYZ
over {0, 1} × {0, 1} × Z . In our protocols we will then require a lower
bound on the correlation and an upper bound on the leakage.

The correlation is the probability that X equals Y normalized in the
interval [−1, 1].
Definition 4.1 (Correlation). The correlation of a probability distribution
PXY over {0, 1} × {0, 1} is α := 2 Pr[X = Y]− 1.

We assume that the correlation satisfies α ≥ 0 (otherwise, Bob can swap
his bit to get positive correlation). Further we note that the correlation
only depends on PXY, but not on PZ|XY.

The leakage is the maximal advantage of predicting X from Z.
Definition 4.2 (Leakage). The leakage of a distribution PXZ over {0, 1} ×Z
is β := Advmax(X|Z).
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The leakage depends only on the joint distribution of X and Z (but not
of the distribution of Y). This is what one expects in the one-message case
which we study in most of this chapter: in this case the joint distribution
of Y and Z does not matter. We will study parameters which are relevant
if arbitrary messages are allowed in Sections 4.6 and 4.7.

The characteristic distribution for correlation α and leakage β is, intu-
itively, the worst case distribution for a fixed α and β (i.e., one of the
distributions where one-message key agreement should be hardest).

The idea of the characteristic distribution is that random variables dis-
tributed according to it can be obtained as follows. First, X is chosen as
a uniform random bit. Then, Y is obtained by sending X through a bi-
nary symmetric channel with bit flip probability 1−α

2 , and Z is obtained
by sending X through a binary erasure channel with erasure probabil-
ity 1− β.
Definition 4.3 (Characteristic distribution). For fixed α, β, the character-
istic distribution PXYZ over {0, 1} × {0, 1} × {0, 1,⊥} is defined as

PXYZ(x, y, z) := PX(x) · PY|X(y|x) · PZ|X(x|z),

where

PX(0) := PX(1) :=
1
2

,

PY|X(y, x) :=

{
1+α

2 if x = y,
1−α

2 otherwise,

PZ|X(z, x) :=


β if z = x,
1− β if z = ⊥,
0 otherwise.

4.2. The One-Message Key Rate

In this section we show two statements (given in Theorem 4.9). First, the
one-message key rate of any distribution PXYZ over {0, 1} × {0, 1} × Z
with correlation α and leakage β < α2 is at least (α2−β)2

7 . Second, if α2 ≤ β,
then there exists a distribution with correlation α, leakage β, and one-
message key rate zero.

For this, Lemma 4.4 shows that both statements above hold for the char-
acteristic distribution. Lemma 4.8 then shows that the characteristic dis-
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tribution is the distribution which has the lowest one-message key rate
among all distributions with correlation α and leakage β.

Together with the results of Chapter 3 this gives protocols for one-
message key agreement for any distribution with correlation α and leak-
age β, as long as α2 > β.

Lemma 4.4. Let PXYZ be the characteristic distribution with correlation α and
leakage β. Then,

S→(X; Y|Z) = max
λ

H(Xλ|Z)− H(Xλ|Y), (4.1)

where Xλ is the random variable over {0, 1} obtained by sending X through a
binary symmetric channel with bit flip probability 1−λ

2 , i.e.,

PXλ |X(x|x) :=

{
1+λ

2 if x = x,
1−λ

2 otherwise.

Moreover, α2 > β implies S→(X; Y|Z) ≥ 1
7 (α2 − β)2 while α2 ≤ β implies

S→(X; Y|Z) = 0.
Since the term in the maximum of (4.1) only involves random variables

whose distribution is explicitly known (cf. Definition 4.3) we get the fol-
lowing form of it (where h(x) := −x log(x) − (1 − x) log(1 − x) is the
binary entropy function):

gα,β(λ) := H(Xλ|Z)− H(Xλ|Y)

= (1− β) + βh
(1 + λ

2

)
−h
(1 + αλ

2

)
. (4.2)

See Figure 4.1 for a plot of the function gα,β for specific parameters of α

and β.1

We first give a few properties of the function gα,β. For this we need the
following estimate on the binary entropy function.

Lemma 4.5. For any −1 ≤ x ≤ 1:

1− x2

2 ln(2)
−
(

1− 1
2 ln(2)

)
x4 ≤ h

(1 + x
2

)
≤ 1− x2

2 ln(2)
.

1We can see in Figure 4.1 that these random variables are a case where “forgetting helps”:
H(X|Z) − H(X|Y) is negative in Figure 4.1, while H(Xλ|Z) − H(Xλ|Y) is positive for
some λ ∈ [−1, 1].
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−1 1
−0.02

−0.04

λ

gα,β(λ)

Figure 4.1.: Plot of gα,β(λ) with α = 0.8 and β = 0.59.

Proof. Using standard tools of calculus we obtain for −1 ≤ x ≤ 1:

h
(1 + x

2

)
= 1− 1

2 ln(2)

∞

∑
n=1

x2n

2n2 − n
.

The lower bound can be obtained by using x2n ≤ x4 for n ≥ 2. The upper
bound is obtained by stopping the summation after the first term.

We now prove several properties of gα,β.

Lemma 4.6. Let the function gα,β : [−1, 1]→ R be as in (4.2). If α2 ≤ β, then
gα,β(λ) ≤ 0 for all λ ∈ [−1, 1] and gα,β is concave. If α2 > β, then gα,β has one
local minimum at λ = 0 with gα,β(0) = 0 and two local maxima at −λ+ and
λ+, λ+ ∈ (0, 1] with gα,β(−λ+) = gα,β(λ+) ≥ 1

7 (α2 − β)2. Furthermore,
gα,β is concave in [−1,−λ+] and [λ+, 1].

Proof. First, note that gα,β is symmetric with respect to the vertical axis.
Further, gα,β(0) = 0 and g′α,β(0) = 0. The second derivation g′′α,β of gα,β

has the simple form

g′′α,β(λ) =
1

ln(2)

( α2

1− α2λ2 −
β

1− λ2

)
,

which is never positive if α2 ≤ β, implying the statements for this case.
If α2 > β, this implies g′′α,β(0) > 0, and thus gα,β has a local minimum
for λ = 0.



60 Bounded Distributions

Furthermore we see that g′′α,β(λ) = 0 if and only if

α2 − β = α2λ2(1− β)

Since this is quadratic in λ, the second derivation g′′α,β has at most two
zeros. Hence, the function gα,β has at most two inflection points and thus
at most two local maxima. Since the function has a local minimum at 0,
and [−1, 1] is closed, it must have at least 2 local maxima (possibly at the
endpoints −1 and 1), and we denote these by −λ+ and λ+. Also, the
function must be concave outside of the inflection points.

To see that gα,β(λ+) ≥ (α2−β)2

7 , we first use Lemma 4.5 to obtain

gα,β(λ) ≥ λ2

2 ln(2)
(α2 − β− λ2(2β ln(2)− β))

and assume first that 0 ≤ α2 − β ≤ 4β ln(2) − 2β. Then, setting λ2 :=
α2−β

4β ln(2)−2β
yields

max
λ

gα,β(λ) ≥ (α2 − β)2

8β ln(2)(2 ln(2)− 1)
>

(α2 − β)2

3
.

If, on the other hand, α2 − β > 4β ln(2)− 2β (i.e., β < α2/(4 ln(2)− 1)),
then setting λ := 1 gives

max
λ

gα,β(λ) ≥ α2

2 ln(2)
− β >

α2

7
≥ (α2 − β)2

7
,

since α ≤ 1.

We can now show that V is not needed, i.e., we prove S→(X; Y|Z) =
maxλ gα,β(λ). Per definition, S→(X; Y|Z) ≥ maxλ gα,β(λ), so we only
need to show that maxλ gα,β(λ) is also a lower bound.
Lemma 4.7. Let PXYZ be the characteristic distribution with correlation α and
leakage β. Then, S→(X; Y|Z) ≤ maxλ gα,β(λ), where gα,β is defined by (4.2).

Proof. Let PUV|X be a fixed channels. We will show that H(U|ZV) −
H(U|YV) ≤ maxλ gα,β(λ).

As in (3.1) (see page 30) we rewrite H(U|ZV)− H(U|YV) as

H(U|ZV)− H(U|YV)= H(Z|UV)− H(Y|UV)− (H(Z|V)− H(Y|V)).
(4.3)
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Consider now a fixed pair (u, v). Setting 1+λu,v
2 := Pr[X=0|U=u, V=v]

and 1+λv
2 := Pr[X=0|V=v], a straightforward computation yields:

H(Z|U=u, V=v)−H(Y|U=u, V=v)

= h(β) + βh
(1 + λu,v

2

)
− h
(1 + αλu,v

2

)
H(Z|V=v)− H(Y|V=v) = h(β) + βh

(1 + λv

2

)
− h
(1 + αλv

2

)
.

Because gα,β differs from these expressions only by a constant, together
with (4.3) this gives

H(U|ZV)− H(U|YV) = E
PUV

[gα,β(λU,V)]− E
PV

[gα,β(λV)].

Using E
PU|V=v

[λU,v] = λv we thus obtain

H(U|ZV)− H(U|YV) = E
PV

[
E

PU|V=v

[gα,β(λU,V)]− gα,β( E
PU|V=v

[λU,V ])
]
.

(4.4)

For every fixed v, we can use Lemma 4.6 to obtain the following upper
bound on the term in the expectation:

E
PU|V=v

[gα,β(λU,v)]− gα,β( E
PU|V=v

[λU,V ]) ≤ max
λ

gα,β(λ)− gα,β(0)

= max
λ

gα,β(λ),

which can now be inserted in (4.4).

These Lemmas immediately imply Lemma 4.4:

Proof (of Lemma 4.4). From Lemmas 4.6 and 4.7.

The following lemma shows that if we have any distribution PXYZ with
correlation α and leakage β, it is safe to assume it is the characteristic
distribution.
Lemma 4.8. Let α, β and λ be given, and let PXYZ be any distribution with cor-
relation at least α and leakage at most β. Let further PX Y Z be the characteristic
distribution with correlation α and leakage β.

Let Xλ be the random variable obtained from X by sending it through an bi-
nary symmetric channel with bit flip probability 1−λ

2 . Analogously, let Xλ be



62 Bounded Distributions

obtained from X by sending it through an binary symmetric channel with bit flip
probability 1−λ

2 . Then,

H(Xλ|Z)− H(Xλ|Y) ≥ H(Xλ|Z)− H(Xλ|Y).

Proof. For the distribution PXZ let PB|XZ be the distribution as guaranteed
by Lemma 2.2. We get H(Xλ|Z) ≥ H(Xλ|ZB) ≥ (1− β) + βh( 1+λ

2 ) =
H(Xλ|Z).

Thus, it is sufficient to show that H(Xλ|Y) ≤ H(Xλ|Y). For this, let U
be a uniform random bit, which is independent of X and Y. We get
H(Xλ|Y) = H((Xλ ⊕U)|Y ⊕U, U) ≤ H((Xλ ⊕U)|Y ⊕U) ≤ H(Xλ|Y)
where the last inequality can be seen by noting that instead of computing
(Xλ ⊕U) one can equivalently send X ⊕U through a binary symmetric
channel (in which case we have exactly the same random experiment as
for the characteristic distribution).

Theorem 4.9. Let α ∈ [0, 1] and β ∈ [0, 1] be constants. If α2 > β then any

distribution PXYZ with correlation α and leakage β has S→(X; Y|Z) ≥ (α2−β)2

7 .
If α2 ≤ β then there exists a distribution PXYZ with correlation α, leakage β,
and S→(X; Y|Z) = 0.

Proof. From Lemma 4.4 and Lemma 4.8.

This implies that we can combine Theorem 4.9 with the protocols from
Section 3.4 and obtain protocols which can be used without knowing
more of a given distribution than the correlation and leakage it has.2

4.3. The Sahai-Vadhan Protocol

In [SV97], Sahai and Vadhan give a method to polarize circuits, a task
which occurs in the study of statistical zero knowledge. In Section 4.5 we
will show that circuit polarization is essentially the same as one-message
key agreement for α-correlated variables with leakage β. This implies
that Sahai and Vadhan implicitly present such a one-message key agree-
ment protocol in their paper. This protocol usually uses fewer random
variables than the protocol which uses a concatenated code given in The-
orem 3.15, and thus we present it here (the protocol from Theorem 3.13 is

2Strictly speaking, one must also check that the protocols given in Section 3.4 work in case
the correlation is bigger than expected. However, it is easy to see that one can modify
the error correcting codes used slightly in order to make sure that this is not a problem.
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our most efficient protocol in terms of random variables used, but lacks
polynomial time decoding).

In the protocol, Alice and Bob start by taking the XOR of s random
variables they have (this requires no communication). Then, r instances
of these new random variables are used in a repeat code to correct errors:
Alice chooses a bit X and sends (X0 ⊕ X, . . . , Xr−1 ⊕ X) to Bob, who uses
his information to guess X. If α2 > β and (r, s) is appropriately chosen,
this two stage process can be used to transform α-correlated random vari-
ables with leakage β to 2

3 -correlated random variables with leakage 1
3 . To

get a key from such random variables we then use the standard protocol
using a concatenated code as given in Theorem 3.15 (Sahai and Vadhan
use a different, slightly less efficient approach).

First, we need a technical lemma:

Lemma 4.10. Let X1 and X2 be independent random variables over {0, 1} with
Pr[X1 = 0] = 1+α1

2 and Pr[X2 = 0] = 1+α2
2 . Then,

Pr[X1 ⊕ X2 = 0] =
1 + α1α2

2
.

Proof. Pr[X1 ⊕ X2 = 0] =
1 + α1

2
· 1 + α2

2
+

1− α1

2
· 1− α2

2
=

1 + α1α2

2
.

Using this, we can analyze the first step in the protocol (i.e., taking the
XOR of independent random variables).

Lemma 4.11. Let (X0, Y0, Z0), . . . , (Xs−1, Ys−1, Zs−1) be independent α-corre-
lated random variables with leakage β. Then (X0⊕ · · ·⊕Xs−1, Y0⊕ · · ·⊕Ys−1,
Z0 . . . Zs−1) is αs-correlated and has leakage βs.

Proof. Since (X0 ⊕ Y0) ⊕ · · · ⊕ (Xs−1 ⊕ Ys−1) = 0 exactly if the result-
ing random random variables of Alice and Bob are equal, the fact that
the resulting random variables are αs-correlated follows directly from
Lemma 4.10 using induction. Further, Lemma 2.3 states

Advmax(X0 ⊕ · · · ⊕ Xs−1|Z0, . . . , Zs−1) =
(
Advmax(X|Z)

)s.

We now analyze the used repeat code:

Lemma 4.12. Let (X0, Y0, Z0), . . . , (Xr−1, Yr−1, Zr−1) be independent α-corre-
lated random variables with leakage β. Then, Alice can send one message M
of length r to Bob such that Alice and Bob get output X and Y, respectively
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and (X, Y, Z0 . . . Zr−1M) is 1− 2e−r α2
4 -correlated and has leakage at most rβ.

Furthermore, both Alice’s and Bob’s algorithms run in time O(r).

Proof. Alice chooses a uniform random bit X ∈ {0, 1} and sends the
values X1 ⊕ X, . . . , Xr ⊕ X to Bob, who sets Y to the majority of what
X ⊕ Xi ⊕ Yi yields. Using the Hoeffding bound (Proposition 2.13) we see
that Pr[X = Y] ≥ 1− exp(−r α2

4 ).
To see that Advmax(X|Z0 . . . Zs−1M) ≤ rβ we use Lemma 2.2 and asso-

ciate a random variable Bi with each pair (Xi, Zi) such that Pr[Bi = 0] =
1− β and Pr[ f (Zi) = Xi|Bi = 0] = 1

2 . If B is the random variable which
is zero if Bi = 0 for all i, then, for all functions f

Pr[ f (Z0, . . . ,Zr−1, M) = X]
= Pr[B = 0] Pr[ f (Z0, . . . , Zr−1, M) = X|B = 0]

+ Pr[B = 1] Pr[ f (Z0, . . . , Zr−1, M) = X|B = 1]

≤ Pr[B = 0]
1
2

+ Pr[B = 1].

The union bound implies Pr[B = 0] ≥ 1− rβ, and thus we get

Pr[ f (Z0, . . . , Zr−1, M) = X] ≤ 1 + rβ

2
.

The following lemma combines these protocols to get 2
3 -correlated ran-

dom variables with leakage 1
3 from α-correlated random variables with

leakage β, satisfying α2 > β.

Lemma 4.13. Let PXYZ be a probability distribution with correlation at least α

and leakage at most β < α2. For γ := max(1, 1
log(α2/β) ) there exists a one-

message key agreement protocol which uses n = b 128γ

α(12γ) c random variables and
outputs one random variable with correlation at least 2

3 and leakage at most 1
3 .

The protocol needs α and β as input. Further, the computations of both Alice and
Bob can be done in time O(n).

Proof. We assume α2 ≤ 2β (otherwise, we increase β to α2/2; this will
not make the protocol insecure and does not change γ). We first apply
Lemma 4.11 for s := d5/ log(α2/β)e. Then, we use the resulting random
variables in the protocol of Lemma 4.12 with r := d 1

4βs e. We first note
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(using 2β ≥ α2) that

s <
5

log
(

α2

β

) + 1 =
5 + log( α2

β )

log( α2

β )
≤ 6

log( α2

β )
.

Further (using s > 5/ log(α2/β) > 5/ log(1/β) = logβ(1/32)) we get

r <
1

4βs + 1 =
1 + 4βs

4βs <
1 + 4

32
4βs <

1
3βs .

Using Lemmas 4.11 and 4.12, we see that this gives us random variables
with correlation

1− 2 exp
(
−r

α2s

4

)
≥ 1− 2 exp

(
− α2s

16βs

)
= 1− 2 exp

(
− 1

16

(α2

β

)s)
≥ 1− 2 exp

(
− 1

16
2

log(α2/β) 5
log(α2/β)

)
= 1− 2 exp(2−32/16) >

2
3

.

Using r < 1
3βs , we get that the leakage is at most rβs < 1

3 . Finally, the
number of random variables used is s · r which is at most

6

log( α2

β )
· 1

3β

6

log( α2
β

)

=
2

log( α2

β )β

6

log( α2
β

)

=
2γ

β6γ
.

Since 21/γ = α2

β (and thus β = α2

21/γ ) we get β6γ = α12γ/64, and thus

2γ

β6γ
=

128γ

α12γ
.

Finally, the bound on the runtime of Alice and Bob follows directly from
Lemmas 4.11 and 4.12.

The random variables produced by Lemma 4.13 are now used in a stan-
dard key agreement protocol which uses a concatenated code for infor-
mation reconciliation (Theorem 3.15). Together this gives a complete one-
message key agreement protocol for α-correlated random variables with
leakage β.
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In the following theorem, we assume that we want m bits with sound-
ness and secrecy 1− 2−m (i.e., we do not use a separate security parame-
ter).3

Theorem 4.14. Let PXYZ be a probability distribution with correlation at least α
and leakage at most β < α2. There exists an absolute constant d > 0 and a one-
message key agreement protocol which uses n random variables and yields a key
with at least

m =
⌊dnα12γ

γ

⌋
bits, secrecy and soundness 1− 2−m, where γ := max(1, 1

log(α2/β) ). For this,
the protocol needs inputs α, β, and n. Further, Alice’s and Bob’s algorithms run
in time O(n2).

Proof. We first use the protocol from Lemma 4.13 to get 2
3 -correlated ran-

dom variables with leakage 1
3 . These random variables are then used in

the protocol of Theorem 3.15. Let n0 := b nα12γ

128γ c be the number of random
variables used in Theorem 3.15. Clearly, the one-message key rate of 2

3 -
correlated random variables with leakage 1

3 is a positive constant, and we
choose constants κ1 = κ2 = κ small enough that Theorem 3.15 yields se-
cret bits at a constant rate (say at rate d0), for which only n0 > d1 for some
large constant d1 is required. As the key produced has both secrecy and
soundness 1− 2−κn0 , we can now possibly use only a constant fraction
of the key output, in order to make sure that the key of length m has se-
crecy and soundness 1− 2−m. Thus, for an appropriate constant d all the
statements hold.

4.4. Summary of One-Message Protocols

If random variables distributed according to a distribution PXYZ with cor-
relation at least α and leakage at most β < α2 are given, our results up to
now give several one-message key agreement protocols. Namely, we can

3This is in contrast to Theorems 3.13 and 3.15, where we studied how the number of ran-
dom variable grows depending on the number of key bits as well as the security sepa-
rately. The main reason for this is that in Theorems 3.13 and 3.15 it is possible to achieve a
rate arbitrarily close to the one-message key rate. In Theorem 4.14 the use of Lemma 4.13
prevents us from achieving the rate in the first place. We thus give the simpler version
of Theorem 4.14 which costs only constant factors.
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Protocol Rate achieved Remarks
Theorem 3.13 S→(X; Y|Z)− ε Exponential computation for Bob
Theorem 3.15 S→(X; Y|Z)− ε n > ( 1

α2−β
)poly(1/(α2−β))

Theorem 4.14 Θ( α12γ

γ ) γ = max(1, 1
log(α2/β) )

Table 4.1.: One-message key agreement protocols for distributions with
correlation α and leakage β; ε can be any small constant larger
than 0.

use either Theorem 3.13 (our basic protocol where we use a random linear
code to do information reconciliation), Theorem 3.15 (the protocol with a
concatenated code for information reconciliation) or Theorem 4.14. We
will now compare these approaches, an overview is given in Table 4.1.

The protocol of Theorem 3.13 has the advantage that it requires the least
number of random variables for given security parameters and given
number of key bits required. On the other hand, it does not allow effi-
cient decoding.

Comparing the protocols of Theorem 3.15 and Theorem 4.14, we see
that the former has the advantage that it can give key bits at a rate arbi-
trary close to the one-message key rate. The disadvantage of this protocol
is that n needs to be very large, namely

n >
( 1

α2 − β

)poly( 1
α2−β

)
, (4.5)

(we used the fact that κ1 has to be smaller than the one-message key rate).
We compare this with the number of random variables needed for a single
key bit when using Theorem 4.14 which is

Θ
( γ

α12γ

)
. (4.6)

We can show that (4.5) usually grows much faster than (4.6): in case
α2 ≥ 2β, (4.5) has asymptotic behavior ( 1

α )poly( 1
α ), while (4.6) grows ap-

proximately as Θ( 1
α12 ), i.e., Theorem 4.14 uses fewer random variables in

this case. If α2 < 2β we can use 1− x ≤ ln( 1
x ) (which holds for 0 < x ≤ 1)

and get α2− β = α2(1− β

α2 ) ≤ α2 ln( α2

β ) ≤ ln( α2

β ) < 2
γ (the last inequality

holds per definition of γ because α2 < 2β), and thus 1
α2−β

> γ
2 . Therefore,
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(4.5) has a larger exponent and will still grow asymptotically faster than
(4.6). On the other hand, if the number of key bits required is exceedingly
large, the protocol from Theorem 3.15 will use fewer random variables
(since it achieves a higher rate).

4.5. One-Message Protocols and Circuit
Polarization

Let two circuits be given, which on uniform random input yield output
distributions PW0 and PW1 over the same set. For two given parameters α
and β with α > β, the distributions are guaranteed to satisfy either

‖PW0 − PW1‖ ≥ α, (4.7)

or

‖PW0 − PW1‖ ≤ β. (4.8)

In this section we look for an efficient method to polarize the circuits: if
(4.7) holds, the method should output two new circuits which produce
near disjoint output distributions. If (4.8) holds, then the method should
output two circuits which produce near identical distributions.4

This problem arises in the study of statistical zero knowledge (for hon-
est verifiers). Assume that Vic (the verifier) has given two circuits for
which the corresponding distributions satisfies (4.7) or (4.8). Peggy, a
powerful prover who has also given the circuits, would like to convince
Vic that (4.7) holds. The following protocol achieves this (but is not zero
knowledge): Vic chooses a random sample of either PW0 or PW1 and sends
it to Peggy. Peggy replies with a guess which distribution was chosen. By
repeating this, Vic can check that Peggy succeeds with probability 1+α

2 ,
which is only possible if ‖PW0 − PW1‖ ≥ α. The protocol is not zero
knowledge, even if Vic does not deviate from the protocol, because Vic
learns on which instances Peggy errs. If an efficient polarization method
can be applied before the protocol, Vic will always be able to anticipate
the answer of Peggy which implies that the protocol is zero knowledge
(in case Vic does not deviate from the protocol).

4Deciding which of (4.7) or (4.8) holds is believed to be a computationally hard problem
(an example where it seems difficult for α = 1 and β = 0 can be constructed based on
the conjectured difficulty of deciding whether two given graphs are isomorphic). This
means that we cannot polarize by first measuring the statistical distance.
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4.5.1. Polarization and Oblivious Polarization

In general, a method to polarize two circuits can use the description of
the circuits given. Here, we focus on methods with several restrictions.
First, they use the given circuits with uniform and independent random
input in a black-box manner only. Second, they output all the samples
obtained, but do not do any other computation with them.

The following process can be used to describe such a method com-
pletely: on input b ∈ {0, 1} (this denotes which distribution should be
produced) and k (a “security” parameter), algorithm A outputs a list of
query bits (Q0

b, Q1
b, . . . , Qn−1

b ) and some side information Rb. The output
of the algorithm is then the concatenation of samples WQ0

b
to WQn−1

b
and

the string Rb.
Definition 4.15 (Oblivious polarization). Let an algorithm be given which,
for parameters α and β, and inputs k and b outputs bits Q0

b, . . . , Qn−1
b and a

string Rb. For two distributions PW0 and PW1 , let PWb
be the distribution ob-

tained by concatenating independent samples WQ0
b

to WQn−1
b

and Rb. The algo-
rithm is an oblivious polarization method if it satisfies

‖PW0 − PW1‖ ≥ α =⇒ ‖PW0
− PW1

‖ ≥ 1− 2−k

‖PW0 − PW1‖ ≤ β =⇒ ‖PW0
− PW1

‖ ≤ 2−k.

The method is efficient if the algorithm runs in time polynomial in k.
The method given in [SV99] to polarize circuits is oblivious in this

sense.5 We note here that in [SV99] a second, non-oblivious method is
given which inverts the statistical distance of given (but already polar-
ized) distributions.

4.5.2. Equivalence of Polarization and Key Agreement

An oblivious polarization method for parameters α and β is basically
equivalent to a one-message key agreement protocol for probability dis-
tributions with correlation α and leakage β.
Theorem 4.16. There exists an oblivious polarization method for parameters α
and β if and only if there exists a one message key agreement protocol secure
on distributions with correlation α and leakage β. Moreover, there exists an
efficient oblivious polarization method if and only if there exists a protocol where
Alice’s algorithm runs in polynomial time.

5In fact, Rb is the empty string in their method.



70 Bounded Distributions

We prove Theorem 4.16 in both directions separately. We first show
that a polarization method implies the existence of a one-message key
agreement protocol:

Lemma 4.17. Let an oblivious polarization method for parameters α and β be
given. Then there exists a one-message key agreement protocol which is secure
for any distribution PXYZ with correlation at least α and leakage at most β.
Furthermore, if the polarization method is efficient, then Alice’s algorithm runs
in polynomial time.

Proof. We give a one-message key agreement protocol which yields a sin-
gle key bit. This is clearly sufficient.

The protocol, which uses as many random variables as the number of
query bits produced by the polarization method, works as follows: Alice
first simulates the polarization method with input k and a uniform ran-
dom bit B. This yields RB and Q0

B, . . . , Qn−1
B . Then, Alice sends RB as well

as (X0 ⊕ Q0
B, . . . , Xn−1 ⊕ Qn−1

B ) as communication to Bob, and outputs B
as secret bit.

Bob can find B with high probability from the communication and Yn

(it may not be possible to implement this efficiently): Since PXYZ has
correlation at least α the random variables PW0 := (X, Y) and PW1 :=
(1 ⊕ X, Y) satisfy ‖PW0 − PW1‖ ≥ α. Furthermore, Y1, . . . , Yn and the
communication gives Bob a sample of the distribution produced by the
polarization method with input PW0 and PW1 . The polarization property
of the method now implies that a statistical test can find B while making
only an exponentially small error in k.

Also the protocol is secure against Eve: consider the random variables
W ′0 := (Z, X) and W ′1 := (Z, X⊕ 1). Since PXYZ has leakage at most β we
see that ‖PW ′0

−PW ′1
‖ ≤ β. Further, Eve gets exactly a sample of of the dis-

tribution produced by the polarization method with input PW ′0
and PW ′1

,
which means that it is independent of B except with probability exponen-
tially small in k.

On the other hand, a one-message key agreement protocol yields a po-
larization method:

Lemma 4.18. Let a one-message key agreement protocol secure for any distri-
bution PXYZ with correlation at least α and leakage at most β be given. Then,
there exists an oblivious polarization method for parameters α and β. Further-
more, if Alice’s algorithm runs in polynomial time, then the polarization method
is efficient.
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Proof. Throughout the proof we only need key agreement for one key
bit. The polarization method works as follows: on input b and k, the
polarization method first chooses random (uniform and independent)
query bits Q0

b, . . . , Qn−1
b . Then Alice is simulated with given random vari-

ables X0 := Q0
b, . . . , Xn−1 := Qn−1

b , which yields communication Γ, and a
secret bit S. The string Rb is then defined as Rb := (Γ, S⊕ b).

We first show that ‖PW0 − PW1‖ ≥ α implies that this polarization
method produces distribution with statistical distance exponentially close
to 1. From Lemma 2.5 we see that we can assume that B (i.e., the ran-
dom variable which takes values b) is chosen uniformly at random, and
then show how to find B from the produced distribution PWB

with error
probability exponentially close 1. Again using Lemma 2.5 we see that
‖PW0 − PW1‖ ≥ α implies that there exists a function y such that setting
Yi := y(WQi

b
) gives Pr[Yi = Qi

b] ≥
1+α

2 . Thus we can use the decod-
ing algorithm of Bob which is needed by the key agreement protocol to
reconstruct S with probability exponentially close to one. Since S⊕ B is
also given we can find B.

Now assume that ‖PW0 −PW1‖ ≤ β. Consider the tripartite probability
distribution PXYZ where X = Y is a uniform random bit, and Z = WX .
The distribution PXYZ has correlation 1 and leakage at most β. If the one-
message key agreement protocol is run with this distribution, Eve will see
a sample of (WQ0

b
, . . . , WQn−1

b
, Rb). The properties of the protocol imply

that this distribution is statistically independent (with high probability)
of S. Furthermore, in the output of the polarization method we get exactly
the same distribution, plus the value of S⊕ b, which is thus independent
of the rest, and the resulting distributions must be exponentially close to
each other.

Proof (of Theorem 4.16). Follows from Lemmas 4.17 and 4.18.

Since we know for which parameters α and β a one-message key agree-
ment protocol exists, we get:

Corollary 4.19. For constant parameters α and β, there exists an (efficient)
oblivious black-box polarization method if and only if α2 > β.

Proof. Using Theorem 4.9, Theorem 4.16, and Theorem 3.17.

In particular this shows that no oblivious polarization method exists in
case α2 ≤ β, which answers an open question posed in [Vad99].
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4.6. Multi Message Key Agreement

In this section we remove the restriction that Alice sends only a single
message to Bob. Instead, we assume that Alice and Bob share an authentic
channel from Alice to Bob, as well as an authentic channel from Bob to
Alice; and they may communicate arbitrarily over these channels.

This scenario is much less understood than the one-message case: no
expression for the achievable rate in terms of entropies is known (as op-
posed to the one-message key rate S→(X; Y|Z)), and it can be very hard to
even decide if for a given distribution PXYZ key agreement with arbitrary
communication is possible. The usual upper bound on the rate in terms
of entropies is given by the intrinsic information I(X; Y↓Z), introduced in
[MW99]. It is defined as

I(X; Y↓Z) := min
PZ|Z

I(X; Y|Z),

i.e., the mutual entropy of X and Y conditioned on the minimizing ran-
dom variable Z Eve can obtain from Z. While it is known that this bound
is not tight [RW03], it is an open problem whether I(X; Y↓Z) > 0 implies
that key agreement is possible (the usual conjecture is that this is not the
case).

Because of these facts, our study of general key agreement is much
shorter than the study of one-message key agreement, and we only study
random variables where X = Y = {0, 1}, and the information of Z is
bounded in a similar way as the leakage.

In the case where arbitrary messages are allowed, most key agreement
protocols proceed in two phases: first, in a process called advantage dis-
tillation, Alice and Bob communicate to obtain random random variables
X′ and Y′ (while giving Eve information Z′) which have positive one-
message key rate, i.e., S→(X′; Y′|Z′) > 0 or S→(Y′; X′|Z′) > 0. Then,
Alice and Bob apply a one-message key agreement protocol. The intu-
itive reason why interaction can help is that for some distributions Alice
and Bob can first find “good instances” of their random variables without
leaking too much information about those.

4.6.1. Considered Bounds

In the one-message case, we bounded the information which is given to
Eve by Advmax(X|Z); this was possible because the marginal PYZ was
not of interest. If arbitrary communication is allowed this is not the case
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anymore, and at least both Advmax(X|Z) and Advmax(Y|Z) will be of
interest in this case. However, one must also consider the best advantage
possible in predicting X in case X = Y and in case X 6= Y. This comes
from the fact that a protocol can treat instances with X = Y differently
than instances with X 6= Y.

We will make the simplifying assumption that Z contains the informa-
tion whether X = Y, i.e., Advmax(X ⊕ Y|Z) = 1.6 In this case, we only
have to consider the amount of information leaked about X in case X = Y,
and in case X 6= Y. As it turns out, with this assumption the quantity of
interest is the leakage in case X = Y.
Definition 4.20 (Equality leakage). Let PXYZ be a tripartite probability dis-
tribution over {0, 1} × {0, 1} × Z , and define a new probability distribution
PX′Z′ by

PX′Z′(x, z) := Pr[X = x, Z = z|X = Y] = PXYZ(x, x, z)/PXY(x, x).

The equality-leakage βeq of PXYZ is

βeq := Advmax(X′|Z′).

We will see later that for a distribution PXYZ key agreement is possible
if the equality leakage βeq and the correlation α satisfy βeq < 2α

1+α . On
the other hand, we will see that for any α there exists a distribution PXYZ
with equality leakage βeq = 2α

1+α (i.e., exactly meeting the bound) for
which key agreement is impossible. This distribution has the additional
property that X 6= Y implies that X cannot be predicted with advantage
exceeding 0 from Z. Thus, our protocol is tight in this sense.

4.6.2. Advantage Distillation

The basic idea of the protocol is that Alice and Bob use the authentic
channel to discard the positions where their random variables disagree,
without revealing much information about X or Y. This is done using
the following advantage distillation protocol: Alice sends Bob the XOR
of two random variables X0 and X1, and Bob replies whether Y0 ⊕ Y1 is
the same value. If the values are the same, Alice and Bob keep their first
random variable as output, otherwise they discard both and start the pro-
tocol again.

6Our protocols will not become insecure in case Z does not contain this information, but
they might not be optimal in this case. See the discussion in Section 4.7.
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In this context it is convenient to write the correlation α as α = 1−ϑ
1+ϑ

(the parameters will get simpler in that way). Since α is in the interval
[0, 1], ϑ will be in the interval [0, 1] as well, with a larger value denoting a
smaller α. For reference, we get the following conversion formulas:

ϑ =
1− α

1 + α

α =
1− ϑ

1 + ϑ

Pr[X = Y] =
1

1 + ϑ
=

1 + α

2
.

Lemma 4.21. Let PXYZ be a probability distribution with correlation 1−ϑ
1+ϑ and

equality leakage βeq. There exists a protocol which uses an expected number of
n = 2(1 + ϑ)2/(1 + ϑ2) random variables and yields random variables with
correlation 1−ϑ2

1+ϑ2 and equality leakage 1− (1− βeq)2. Further, the computations
of Alice and Bob can be done in time O(n).

Proof. Alice and Bob use two instances (X0, Y0) and (X1, Y1) of the ran-
dom variables. Alice sends X0 ⊕ X1 to Bob, who checks if this is equal to
Y0 ⊕ Y1. If this is the case he notifies Alice that the protocol was success-
ful, and they output X = X0 and Y = Y0, respectively. Otherwise they
discard the bits and start over again. Note that Eve will know at which
point Alice and Bob accepted.

That probability that Alice and Bob accept is pacc := 1
(1+ϑ)2 + ϑ2

(1+ϑ)2 =
1+ϑ2

(1+ϑ)2 , thus the expected number of repetitions of the protocol is (1+ϑ)2

1+ϑ2 ,

and the expected number or random variables used 2 (1+ϑ)2

1+ϑ2 . Further, the
probability that X0 = Y0 and X1 = Y1 is 1

(1+ϑ)2 , which implies that the

probability that X = Y holds after the protocol is Pr[(X1=Y1)∧(X2=Y2)]
pacc

=
1

1+ϑ2 , and the correlation is thus 2
1+ϑ2 − 1 = 1−ϑ2

1+ϑ2 .
We now show that the equality leakage of the new random variables

is 1− (1− βeq)2. Note first that X = Y exactly if X0 = Y0 and X1 = Y1.
Let B0 and B1 be the random variables guaranteed by Lemma 2.2 for the
distributions conditioned on X0 = Y0 and X1 = Y1. Conditioned on
X = Y, if both B0 = 0 and B1 = 0, then all functions have advantage 0
in predicting X from (Z1, Z2) and the communication. Since this happens
with conditional probability (1− βeq)2, we obtain the lemma.
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Lemma 4.22 shows how to repeat the steps of Lemma 4.21 multiple
times until Alice and Bob have random variables usable in a one-message
protocol (i.e., it produces random variables with correlation α and leak-
age β such that α2 > β). It can be applied in case

ϑ < 1− βeq. (4.9)

It is easy to see that (4.9) is equivalent to βeq < 2α
1+α , and as we mentioned

before, we will see that this is optimal.

Lemma 4.22. Let PXYZ be a probability distribution with correlation 1−ϑ
1+ϑ and

equality leakage βeq such that ϑ < 1− βeq.

For ϕ := max
(

2, 8
log(

1−βeq
ϑ )

)
, there exists a protocol which uses an expected

number of at most n = ϕ · 1+ϑ
1−ϑ random variables and yields random variables

with correlation at least α ≥ 7
8 and leakage at most β such that α2

β > 1 + ϑϕ.
The computations of Alice and Bob can be done in time O(n).

Proof. We assume that 1− βeq ≤ 16ϑ (otherwise we increase βeq accord-
ingly; this can not make the protocol insecure, and ϕ will not change). We
set δ := 1− βeq and then choose the parameter r ∈N such that

4
log( δ

ϑ )
≤ 2r <

8
log( δ

ϑ )
= ϕ. (4.10)

To keep the notation simple we set R := 2r. We note for later that (4.10)
implies δ

ϑ ≥ 24/R and thus δR ≥ 16ϑR.
We use Lemma 4.21 recursively r times (i.e., the output of one applica-

tion of Lemma 4.21 is used as input in the next step). From this, we get
random variables with correlation α = 1−ϑR

1+ϑR ≥ (1− ϑR)2 ≥ 1− 2ϑR (this

is at least 7/8 since ϑR ≤ 1
16 δR), and equality leakage at most 1− δR. In

case X 6= Y the leakage can be at most 1 and we can thus upper bound β
as

β ≤ Pr[X = Y]︸ ︷︷ ︸
= 1

1+ϑR

(1− δR) + Pr[X 6= Y]︸ ︷︷ ︸
= ϑR

1+ϑR

=
1− δR + ϑR

1 + ϑR ≤ 1− 15ϑR

1 + ϑR ≤ 1
1 + 16ϑR .
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Thus, we get for α2

β :

α2

β
≥ (1− 4ϑR)(1 + 16ϑR)

= 1 + 12ϑR − 64ϑ2R

≥ 1 + ϑR + 11ϑR(1− 6ϑR)

≥ 1 + ϑR,

where the last inequality follows from ϑR ≤ 1
16 δR ≤ 1

16 . The expected
number of random variables used is upper bounded by

2(1 + ϑ)2

1 + ϑ2 · 2(1 + ϑ2)2

1 + ϑ4 · 2(1 + ϑ4)2

1 + ϑ8 · · · 2(1 + ϑ2r−1
)2

1 + ϑ2r

= 2r (1 + ϑ)2(1 + ϑ2)(1 + ϑ4) · · · (1 + ϑ2r−1
)

1 + ϑ2r

≤ 2r(1 + ϑ)
(
(1 + ϑ)(1 + ϑ2)(1 + ϑ4) · · · (1 + ϑ2r−1

)
)

= 2r(1 + ϑ)(1 + ϑ + ϑ2 + ϑ3 + . . . + ϑ2r−1)

= 2r(1 + ϑ)
1− ϑ2r

1− ϑ

≤ 2r 1 + ϑ

1− ϑ
.

It follows directly from Lemma 4.21 that the computation can be done in
linear time.

4.6.3. Combining the Protocols

We now combine the advantage distillation from Lemma 4.22 with the
one-message key agreement protocol from Theorem 4.14. This will give
our protocol for key agreement with arbitrary messages.

Theorem 4.23. Let PXYZ be a distribution with correlation at least 1+ϑ
1−ϑ and

equality leakage at most βeq. If ϑ < 1 − βeq, there exists a key agreement
protocol and an absolute constant d > 0, such that the protocol uses n random
variables and yields

m =
⌊

dn
ϕ24γ

1− ϑ

1 + ϑ

⌋
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key bits with secrecy and soundness 1− 2−m, where ϕ := max
(

2, 8
log(

1−βeq
ϑ )

)
,

and γ := 1
log(1+ϑϕ) . For this, the protocol needs inputs ϑ, βeq, and n. Further,

Alice’s and Bob’s algorithms run in time O(n2).

Proof. We use Lemma 4.22 to get random variables which we can use in
Theorem 4.14.

From Lemma 4.22, we see that for ϕ 1+ϑ
1−ϑ instances of the original ran-

dom variables we get one instance of a α-correlated random variable with
leakage β, such that α > 7

8 and α2

β > 1 + ϑϕ, and thus log(α2/β) > 1
γ . Ap-

plying Theorem 4.14 (note that γ ≥ 1) we see that from n′ of those new
random variables we get

m =
⌊dn′α12γ

γ

⌋
>
⌊ dn′

γ23γ

⌋
>
⌊ dn′

24γ

⌋
random variables with soundness and secrecy 1− 2−m. Thus, from n of
the initial random variables we can obtain⌊

dn
ϕ24γ

1− ϑ

1 + ϑ

⌋
key bits with the required security.

4.6.4. Impossibility

In this section, we show that our bound is tight. For this we present, for
every ϑ ∈ [0, 1], a distribution PXYZ which has correlation 1−ϑ

1+ϑ , equality
leakage 1− ϑ, secrecy in case X 6= Y, and which Alice and Bob can obtain
by a protocol even if they have no shared randomness before. Clearly
such random variables cannot help in obtaining a key since otherwise
there would be a key agreement protocol which does not need a priori
information.

Alice and Bob obtain these random variables by mixing two strategies:
either, they both pick a bit uniformly and independently of each other as
random variable, or Alice sends a uniform bit to Bob which they both use.
Theorem 4.24. For any ϑ ∈ [0, 1], there exists a distribution PXYZ such that
Alice and Bob can produce random variables X and Y using two bits of com-
munication Z from Alice to Bob. Further, PXYZ has correlation 1−ϑ

1+ϑ , equality
leakage βeq = 1− ϑ, and satisfies PZ|X=0,Y=1 = PZ|X=1,Y=0.
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Proof. Alice chooses a bit b0 such that Pr[b0 = 0] = 2ϑ
1+ϑ and an indepen-

dent uniform bit b1. She then sends these bits to Bob. If b0 = 0 then Alice
outputs another uniform random bit as X, and Bob outputs a uniform
random bit as Y. In case b0 = 1 they output X = Y = b1.

The probability that they output the same bit is ϑ
1+ϑ + 1−ϑ

1+ϑ = 1
1+ϑ (and

thus the correlation is 1−ϑ
1+ϑ ). Further, predicting X from Z in case X = Y

is possible with advantage 1 if b0 = 1, and with advantage 0 otherwise.
Conditioned on X = Y we have b0 = 1 with probability 1− ϑ, and thus
the equality leakage is 1− ϑ.

Finally, if Alice and Bob do not have the same bit then b0 = 0 and thus
the distribution of the communication is independent of the bits of Alice
and Bob.

Thus, we have an exact characterization of when key agreement is pos-
sible in this case. This is stated in the following corollary.
Corollary 4.25. Let ϑ ∈ [0, 1], βeq ∈ [0, 1] be constants. If ϑ < 1 − βeq,
then there exists a key agreement protocol for random variables distributed ac-
cording to any distribution PXYZ over {0, 1} × {0, 1} × Z with correlation at
least 1−ϑ

1+ϑ and equality leakage at most βeq. If ϑ ≥ 1− βeq then there exists a
distribution PXYZ with correlation 1−ϑ

1+ϑ and equality leakage βeq such that for
this distribution no key agreement is possible.

Proof. The first part follows from Theorem 4.23. The second part follows
from Theorem 4.24, and the fact that no key agreement is possible using
an authentic channel and arbitrary communication only [Mau93].

4.7. Discussion of the Results

Let PXYZ be a probability distribution over {0, 1} × {0, 1} × Z , with cor-
relation α, leakage β and equality-leakage βeq. If

α2 > β, (4.11)

then key agreement is possible with a single message from Alice to Bob
(Theorem 4.14). If

βeq <
2α

1 + α
, (4.12)

then key agreement is possible with two-way communication. We cannot
compare (4.11) and (4.12) directly, as one deals with the leakage while the
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α2 = β

2α
1+α = β

0 1

1

β

α

Figure 4.2.: Feasible regions for key agreement for distributions with cor-
relation α and leakage β.

other deals with the equality leakage. In the following we distinguish
the case where Z contains the information whether X = Y from the case
where the honest parties have (partial) secrecy about this information.

Distributions which leak complete information about the equality

First, we only consider distributions PXYZ which have the property that
the information whether X equals Y can be inferred from Z. If we define
the inequality leakage as βneq := Advmax(X′|Z′) where PX′Z′(x, z) :=
Pr[X=x, Z=z|X 6=Y], then we get for such distributions

β = Pr[X=Y]βeq + Pr[X 6=Y]βneq =
1 + α

2
βeq +

1− α

2
βneq. (4.13)

Now, consider the case βeq := 2α
1+α , i.e., βeq is exactly such that key

agreement is not possible anymore. If we insert this expression for βeq
into (4.13) and use βneq ∈ [0, 1] we get the following inequalities which β
must satisfy in case key agreement is exactly not possible anymore:

α ≤ β ≤ 1 + α

2
.

This is illustrated in Figure 4.2. In the area on the top left, (above
α2 = β), one-message key agreement is possible, below this line one-
message key agreement is impossible. Between this line and the shaded
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area, key agreement is possible, and in the shaded area, key agreement
may be possible depending on the (in)equality leakage. In case β = βeq,
the second solid line is relevant ( 2α

1+α = β).

Distributions which do not leak complete information about the
equality

From Figure 4.2 it seems clear that whenever our one-message protocol
(i.e., Theorem 4.14) works, the protocol using arbitrary messages (i.e.,
Theorem 4.23) could also be used. However, this is not the case for distri-
butions which do not satisfy (4.13) (which is the case if the honest parties
have secrecy about the information whether their random variables are
equal).

As an example, consider the distribution PXYZ over {0, 1} × {0, 1} ×
{0, 1,⊥}, parameterized by the correlation α ∈ [0, 1] and a second param-
eter ε ∈ [0, 1], which is defined as follows:

PX(0) := PX(1) :=
1
2

,

PY|X(y|x) :=

{
1+α

2 if x = y,
1−α

2 otherwise,

PZ|XY(z|x, y) :=


ε if z = ⊥ ∧ x = y,
1− ε if z = y ∧ x = y,
1 if z = y ∧ x 6= y,
0 otherwise.

First, we note that for any ε > 0, one-message key agreement from Alice
to Bob is possible since H(X|Z) > H(X|Y). But this does not mean that
we can infer that key agreement is possible if we only know the correla-
tion α and the leakage β (or the correlation and the equality leakage βeq).

The correlation of PXYZ is α, and the equality-leakage βeq is 1− ε. To
compute the leakage β we first find

PZ|X=0(z) :=


(1− ε)

( 1+α
2
)

if z = 0,
1−α

2 if z = 1,
ε( 1+α

2
)

if z = ⊥,
(4.14)
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0 1

1

ε

α

(a) One-message key agreement.

0 1

1

ε

α

(b) Key agreement with arbitrary mes-
sages.

Figure 4.3.: Shaded are the regions for which our protocols achieve key
agreement on the distribution PXYZ given in the text.

and

PZ|X=1(z) :=


1−α

2 if z = 0,
(1− ε)

( 1+α
2
)

if z = 1,
ε( 1+α

2
)

if z = ⊥,
(4.15)

which gives (using Lemma 2.5) β =
∣∣(1− ε)( 1+α

2 )− 1−α
2

∣∣ = |α− ε
2 −

αε
2 |.

From the above we can find the values for α and ε for which α2 > β, and
thus for which our one-message protocol works. The region is shaded
dark in Figure 4.3 (a). The protocol with arbitrary messages works if
βeq < 2α

1+α , and the corresponding region is shown in Figure 4.3 (b). Note
that for some parameters one protocol works while for other parameters
the other protocol works. The reason for this paradoxical situation is that
in the above distribution, Z does not contain the information whether
X = Y. In this case our protocols are not optimal. In particular, (4.13)
does not hold for such a distribution. It is an open problem to under-
stand these cases better.
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Part II.

Computationally Secure
Key Agreement





5. Computational Security

This chapter introduces basic concepts needed for our studies of compu-
tationally secure key agreement. It also contains an example of a simple
black-box reduction.

Overview of this chapter

Section 5.1 explains the computational models we use in this part of the
thesis. In particular, we define circuits, oracle circuits, and oracle algo-
rithms. We also give two basic theorems about these concepts we need
later (we count the number of predicates which can be computed by cir-
cuits of fixed size and we show that circuits can simulate Turing ma-
chines).

Section 5.2 contains an example of a computational security proof. We
use this example to explain the basic concept of a black-box security proof
and illustrate the difference between uniform and non-uniform security.

5.1. Computational Models

Usual models of computation include random access machines, single
and multi-tape Turing machines, and others. We assume that the reader
is familiar with at least one of these models. Since in most cases the ex-
act model at hand is irrelevant, we are not specific about it, but simply
speak of algorithms. In this subsection we quickly explain oracle algo-
rithms, where an arbitrary model from above gets enhanced by one or
more oracles. Also, we discuss circuits as a computational model.

5.1.1. Oracle Algorithms

For an arbitrary function f : {0, 1}∗ → {0, 1}∗, an oracle algorithm A( f )

is an algorithm which can call f as a subroutine. For such algorithms, the
computation required to evaluate f is neglected; instead calling f requires
just one single step in the computation. However, we often count the
number of oracle calls separately if we want a more exact analysis.
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If multiple functions f0, . . . , ft−1 are given we use A( f0,..., ft−1) in a simi-
lar way: the algorithm may call any of the t functions in arbitrary order.
In this case we may count the calls the algorithm does to the different
oracles separately.

5.1.2. Circuits

Circuits are a computational model which are slightly less known than
Turing machines or random access machines. Since we use circuits ex-
tensively in this thesis we discuss this model here in some detail. The
main difference between circuits and a more usual model (like Turing
machines) is that a circuit is restricted to a single problem size: a circuit
can only compute a function f : {0, 1}`in → {0, 1}`out for fixed `in and
fixed `out, while a Turing machine has well defined behavior for all input
sizes. A model which treats all input sizes with one object (e.g., Turing
machines) is often called uniform, while a model in which each input size
is treated separately is non-uniform (e.g., circuits).

We define a circuit as sequence of gates; the first `in gates are input gates
(and will be directly associated with the respective input) and the last
`out gates are output gates. Except for the input gates, a gate is described
by a triple (j, k, f ), where f is a function and j and k are integers which
designate the inputs of this function.

Definition 5.1 (Circuit). A circuit C with `in inputs and `out outputs is a
finite tuple (g`in , . . . , gs−1) of gates (where s > `in and s > `out). A gate gi
is a triple gi := (ji, ki, fi) such that 0 ≤ ji ≤ ki < i, and fi is a function
fi : {0, 1}2 → {0, 1}. The size of a circuit C is Size(C) := s.

Every circuit computes a function f : {0, 1}`in → {0, 1}`out which is
defined recursively as follows. First, for 0 ≤ i < `in let the values vi be the
i-th bit of the input x, i.e., vi := x|i. For `in ≤ i < s where gi = (ji, ki, fi)
let vi := fi(vji , vki

). The output y of the function is the bit string with bits
vs−`out to vs−1, i.e., y|i := vs−`out+i.

Given an arbitrary function f : {0, 1}`in → {0, 1}`out we can construct
a circuit C which computes this function (for example by writing the
boolean formula for every output bit in disjunctive normal form). This
is in harsh contrast to uniform computation, where some functions are
not computable.

Similar to Turing machines, we can consider oracle circuits. For a func-
tion f : {0, 1}r → {0, 1} an oracle circuit C f is defined like a usual circuit,
but some of the gates may be oracle gates ( f , ji,0, ji,1, . . . , ji,r−1). Again we
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can count the number of function calls to f separately (but the size is still
the number of total gates). For a set F of functions an oracle circuit CF is
defined such that it can call any function from F .

Circuit complexity

We first get a well known fact about circuit complexity (originally due to
Shannon [Sha49b]):
Lemma 5.2. The set of circuits of size at most s with ` inputs and one output
compute less than (45s)s functions f : {0, 1}` → {0, 1}.

Proof. Let C be the set of all tuples
(
(j`, k`, f`), . . . , (js−1, ks−1, fs−1)

)
where

0 ≤ ji < s, 0 ≤ ki < s, and fi : {0, 1}2 → {0, 1} is arbitrary (i.e., like cir-
cuits, but the restrictions on ji and ki are relaxed). There are (16s2)s−`

such (s− `)-tuples. Let C ∈ C be such an (s− `)-tuple which addition-
ally satisfies 0 ≤ ji ≤ ki < i for all i (i.e., C is a circuit), and which also
satisfies that no triple (ji, ki, fi) occurs twice. We can associate (s− `− 1)!
different tuples in C with C by permuting all but the last entry (The idea
is that we permute the labelling of the gates. Formally we choose a per-
mutation π : {0, . . . , s− 1} → {0, . . . , s− 1} which satisfies π(j) = j for
0 ≤ j < `− 1 and then consider the tuple(
(π−1(jπ(`)), π−1(kπ(`)), fπ(`)), . . . , (π−1(jπ(s−1)), π−1(kπ(s−1)), fπ(s−1))

)
,

which can easily be seen to correspond to this intuition of permuting la-
bellings.) All these tuples are different (because given the initial circuit
and the obtained tuple it is possible to find the permutation when start-
ing from the inputs — here we use that no two entries in the tuple are the
same), all are in the initial set C, and for no two circuits which compute
different functions we will obtain the same tuple.

For every circuit of size at most s we can give a circuit of size s which
computes the same function and satisfies that no triple (ji, ki, fi) occurs
twice, which means that for every function computed by a circuit of size
at most s we identified (s− `− 1)! distinct entries in C.

Thus, the number of functions computed by circuits of size s is at most
(where we use n! > nne−n which follows from Stirling’s formula)

(16s2)s−`

(s− `− 1)!
= (s− `)

(16s2)s−`

(s− `)!

< (s− `)(16e)s−`ss ss−2`

(s− `)s−`
< s · (44s)s ss−2`

(s− `)s−`
.
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For natural numbers a > b one can show (by expanding) that (a + 1)b ≤
ab+1. Thus ss−2`

(s−`)s−` is at most 1, which proves the lemma.

From the above lemma, we immediately get that some functions need
circuits of size at least 2`/`:
Corollary 5.3. For every ` > 45, there exists a function f : {0, 1}` → {0, 1}
such that the smallest circuit which computes f has size at least 2`/`.

Proof. According to Lemma 5.2, circuits of size 2`/` compute at most

(
45

2`

`

) 2`

` =
(45

`

) 2`

`︸ ︷︷ ︸
<1

(
2`
) 2`

`
< 22`

different functions. Since there are 22`
functions f : {0, 1}` → {0, 1} at

least one of them cannot be computed by a circuit of size 2`/`.

Lupanov [Lup58] showed (see also [Weg87, Section 4.2]) that every
function f : {0, 1}` → {0, 1} can be computed by a circuit C of Size(C) =
2`

` (1 + o(1)). Thus, Corollary 5.3 is tight in this sense.

Constructing circuits from algorithms

Assume that there is a polynomial time algorithm A which computes a
function family fk : {0, 1}k → {0, 1} for every k ∈ N. Is it true that for
every k there exists a small circuit which computes fk? The answer is yes,
since circuits can simulate algorithms. This is given in the following well
known theorem. In it, the exact computational model is relevant; we use
(single tape) Turing machines to model algorithms here.
Theorem 5.4. Let fk : {0, 1}k → {0, 1} be an infinite function family which
can be evaluated by a Turing machine in time g(n). Then, there exists an infinite
family of circuits {Ck} of size Size(Ck) ∈ O(g2(n)) such that Ck computes fk
(i.e., the function f restricted on inputs of length k).

Proof. Let M be a Turing machine which decides f in time g(n) (i.e., after
g(n) steps it ends either in a special accepting or special rejecting state,
depending on f (x)). Clearly, M cannot use more than 2g(n) + 1 cells on
the tape (namely, the g(n) on the left hand side of the starting position,
the g(n) on the right hand side of the starting position, and the one at the
starting position). For every time step, we now use gates as follows:
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• A constant number of gates which compute the state of the Turing
Machine in this time step,

• dlog(2g(n) + 1)e gates which compute an encoding of the position
of the head at this time step,

• a constant number of gates for each of the 2g(n) + 1 possibly used
cells, which compute the contents of this cell at this time step.

For every time step we use O(g(n)) gates. Further, it is easy to see that
for every time step it is possible to compute this information with the
described amount of gates, given the information of the previous time
step. This also holds at the beginning, if the input is given. Finally, a
constant number of gates suffice to output 1 if the machine ends in the
accepting state and 0 otherwise.

5.2. Black-Box Security Proofs

5.2.1. Introduction

An important task in cryptography is to base primitives on other, usually
seemingly simpler primitives. For example, a pseudorandom generator
(a function which expands the input and whose output is indistinguish-
able from uniform random bits) can be built from an arbitrary one-way
function, as shown by Håstad, Impagliazzo, Levin, and Luby [HILL99]
(see also [ILL89, Hås90]). Such constructions can be complicated, but up
to very few examples they always have the following simple structure
(see also Figure 5.1): in a first part, the more complicated primitive g
is built based on the given primitive f , i.e., an algorithm g(·) is given
which uses oracle access to f . In a second part, it is shown how every
adversary Ag which breaks g can be used to get an adversary A f which

breaks f . For this one gives an algorithm A(·,·)
f which uses oracle access

to Ag and f such that whenever Ag breaks g, A
(Ag , f )
f breaks f . Clearly

this implies that no efficient Ag exists, as otherwise we would obtain an
algorithm A f which breaks f efficiently. Such proofs usually work for all
functions f and Ag, and not only for efficiently implementable ones. In
this case, such a proof is called a black-box reduction, since it only con-
siders the input and output behavior of the functions f and Ag; it treats
these functions as black box.
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g

f

f

f

f

(a)

A f
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f
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(b)

Figure 5.1.: A cryptographic construction of a primitive g from a prim-
itive f . In (a), a way to build g from f is given. In (b), an

adversary Ag for g is used to build an adversary A
(Ag , f )
f for f .

To discuss parameters of such black-box reductions we give a simple
example of such a reduction. It shows how to strengthen one-way func-
tions (i.e., functions which are easy to evaluate but hard-to invert).

5.2.2. Example: Strengthening One-way Functions

In the following definition of (weak) one-way functions, algorithm A may
use some randomness RA, which we assume to be a uniformly chosen bit
string of appropriate length.
Definition 5.5 (One-way function). For a function δ(k) : N → [0, 1], com-
putable in time poly(k), a function f : {0, 1}∗ → {0, 1}∗ is a δ-weak one-way
function if

• there is an algorithm running in time poly(k) which outputs f (x) on
input x ∈ {0, 1}k, and

• any algorithm A(·, ·, ·) running in time poly(k) satisfies

Pr
X←{0,1}k

RA

[ f (A(k, f (X), RA)) = f (X)] < δ(k)

for all but finitely many k.

A function f : {0, 1}∗ → {0, 1}∗ is a strong one-way function if it is a
1

p(k) -weak one-way function for every polynomial p(k).
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We use the following conventions to simplify notation: first, we write
f : {0, 1}k → {0, 1}`, where we understand that the function f is defined
for all k ∈ N and assume that the output length for all x ∈ {0, 1}k is
exactly `(k) (this is no loss of generality; otherwise it is possible to pad
the output appropriately). Second, we omit the parameter k as an input
to the algorithm A and to δ from now on. Finally, we omit RA as an
argument to A (however, we still make explicit which probability is over
this randomness, see the following theorem for an example).

The next theorem (this can be traced back to [Yao82]) shows how to
increase the difficulty of inverting one-way functions.
Theorem 5.6. Let ε : N→ [0, 1], δ : N→ [0, 1], and s : N→N be functions
computable in time poly(k). Define

g( f )(xs) := f (x0)
∥∥ · · · ∥∥ f (xs−1).

There is an algorithm A(·,·)
f (·), running in time poly( 1

ε , s, k) such that for any
function Ag with

Pr
Xs←{0,1}ks

RAg

[g(Ag(g(Xs))) = g(Xs)] > δs + ε,

A
(Ag , f )
f makes d 2s2

ε ln( 4s
ε )e calls to Ag and satisfies:

Pr
X←{0,1}k

RA f

[ f (A f ( f (X))) = f (X)] > δ.

Before we go to the proof of Theorem 5.6 we show how it can be used
to obtain a strong one-way function from a weak one-way function:

Corollary 5.7. If there exists a δ-weak one-way function with 1− δ(k) > 1
p(k)

for some polynomial p(k) then there exists a strong one-way function.

Proof. In Theorem 5.6 choose s(k) := kp(k). Note that there is an algo-
rithm which computes s(k) efficiently (since p(k) is a polynomial). Since

δs(k) = (1 − 1
p(k) )

s(k) ≤ e−
s(k)
p(k) = e−k any polynomial time algorithm

which inverts g with non-negligible probability can be used to invert f
with probability exceeding δ infinitely often and in polynomial time.

It is a question of style whether one prefers formulations as in Theo-
rem 5.6 or as in Corollary 5.7; in the literature it is more common to state
such results solely in a form similar to Corollary 5.7.
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Comparing the statements, the advantage of Corollary 5.7 is obvious:
it is easier to state and easier to understand. However Theorem 5.6 also
has some advantages. First, the parameters of the reduction are explicit;
clearly, a construction of g from f which uses fewer calls is preferable to
one which uses more calls; analogously we would like Ag to be called
as few times as possible by A f (the most important resource such a con-
struction should minimize is probably the amount of randomness needed
in order to use the construction). Second, Theorem 5.6 is independent of
the definition of (weak) one-way functions, and thus arbitrary choices we
made when defining these terms are irrelevant when only considering
Theorem 5.6. Finally, it is possible that Theorem 5.6 is interesting in an
information theoretic setting, because it does not require Ag or f to be
efficiently computable.

Proof (of Theorem 5.6). Algorithm A f , which gets input f (x), first chooses
a position i ∈ {0, . . . , s− 1} at random, then chooses values x0, . . . , xi−1,
xi+1, . . . , xs−1 from {0, 1}k at random, and then runs

Ag( f (x0)‖ . . . ‖ f (xi−1)‖ f (x)‖ f (xi+1)‖ . . . ‖ f (xs−1)).

It then checks whether the potential preimage of f (x) is indeed a preim-
age of f (x) (using the oracle f ). If so it returns it, otherwise it repeats
the above r := d 2s2

ε ln( 4s
ε )e times. The bounds on the run time and the

number of oracle calls of the algorithm are immediate.
We now analyze the success probability of this algorithm. Since the

inputs to the subsequent calls to Ag are not independent this is not com-
pletely straightforward. First note that for a fixed f (x) every call to Ag
has the same distribution. Thus, consider the probability px that one call
to Ag inverts conditioned on that the input to A f is f (x):

px := Pr
Xs←{0,1}ks

I←{0,...,s−1},RAg

[
g(Ag(g(X0, . . . , XI−1, x, XI+1, . . . , Xs−1))) =

g(X0, . . . , XI−1, x, XI+1, . . . , Xs−1)
]

Let S be the set for which px > ε
2s2 , i.e.,

S :=
{

x ∈ {0, 1}k
∣∣∣ px >

ε

2s2

}
,
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and (for ease of notation) set µ(S) := |S| 2−k = PrX←{0,1}k [X ∈ S ]. Then,
the probability that A f inverts f is at least:

Pr
X←{0,1}k

RA f

[ f (A f ( f (X))) = f (X)]

≥ Pr
X←{0,1}k

[X ∈ S ] ·
(

1−
(

1− ε

2s2

) 2s2
ε ln(4s/ε))

≥ µ(S) ·
(

1−
(
e−

ε
2s2
) 2s2

ε ln(4s/ε)
)

= µ(S)
(

1− ε

4s

)
. (5.1)

We now show that µ(S) is big because otherwise Ag would not have the
required success probability. For this, we have to shorten the notation
somewhat. In the following all probabilities are over the random choices
of X0 to Xs−1 and the randomness of Ag. Further, let I be the event (de-
pending on X0 to Xs−1 and RAg ) that Ag(g(X0, . . . , Xs−1)) finds a preim-
age. With these conventions we can write the probability that Ag inverts g
as follows:

Pr[I ] =
Pr[I|X0 /∈ S ] Pr[X0 /∈ S ]

+ Pr[I|X0 ∈ S ∧ X1 /∈ S ] Pr[X0 ∈ S ∧ X1 /∈ S ]
+ Pr[I|X0 ∈ S ∧ X1 ∈ S ∧ X2 /∈ S ] Pr[X0 ∈ S ∧ X1 ∈ S ∧ X2 /∈ S ]
+ . . .
+ Pr[I|X0 ∈ S ∧ · · · ∧ Xs−2 ∈ S ∧ Xs−1 /∈ S ]×

Pr[X0 ∈ S ∧ · · · ∧ Xs−2 ∈ S ∧ Xs−1 /∈ S ]
+ Pr[I|X0 ∈ S ∧ · · · ∧ Xs−1 ∈ S ] Pr[X0 ∈ S ∧ · · · ∧ Xs−1 ∈ S ]. (5.2)

We now upper bound the summands on the right hand side of (5.2): first,
for the last summand we get

Pr[I|X0 ∈ S ∧ X1 ∈ S ∧ · · · ∧ Xs−1 ∈ S ]×
Pr[X0 ∈ S ∧ X1 ∈ S ∧ · · · ∧ Xs−1 ∈ S ]
≤ 1 · Pr[X0 ∈ S ∧ X1 ∈ S ∧ · · · ∧ Xs−1 ∈ S ] = µ(S)s. (5.3)

Further for any i we have ε
2s ≥ Pr[I|Xi /∈ S ]. (To see this, consider any

fixed value x /∈ S . If Pr[I|Xi = x] > ε
2s one iteration of our algorithm A f
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has at least probability ε
2s2 in inverting on input f (x), and thus x ∈ S .)

We thus get for any event E
ε

2s
≥ Pr[I|Xi /∈ S ]

= Pr[I|(Xi /∈ S) ∧ E ] Pr[E|Xi /∈ S ] + Pr[I|(Xi /∈ S) ∧ E ] Pr[E|Xi /∈ S ]
≥ Pr[I|(Xi /∈ S) ∧ E ] Pr[E|Xi /∈ S ],

and thus for E := X0 ∈ S ∧ X1 ∈ S ∧ · · · ∧ Xi−1 ∈ S

Pr[X0 ∈ S ∧ · · · ∧Xi−1 ∈ S ∧ Xi /∈ S ]×
Pr[I|X0 ∈ S ∧ · · · ∧ Xi−1 ∈ S ∧ Xi /∈ S ]

= Pr[Xi /∈ S ] Pr[E|Xi /∈ S ] Pr[I|E ∧ (Xi /∈ S)]

≤ Pr[Xi /∈ S ]
ε

2s
<

ε

2s
, (5.4)

which upper bounds every summand in (5.2) except the last one. We
combine the requirement on Ag in the theorem, (5.2), (5.3), and (5.4), and
get

δs + ε ≤ Pr[I ] ≤ s · ε

2s
+ µ(S)s

which implies

δs +
ε

2
≤ µ(S)s.

Using (5.1) we thus get for the probability that A f inverts f(
Pr

X←{0,1}k
RA f

[ f (A f ( f (X))) = f (X)]
)s

≥ µ(S)s
(

1− ε

4s

)s
≥
(

δs +
ε

2

)(
1− ε

4s

)s

>
(

δs +
ε

2

)(
1− ε

4

)
≥ δs,

which proves the theorem.

5.2.3. Non-uniform Security

In this section we discuss the difference between non-uniform and uni-
form security as well as non-uniform and uniform reductions.
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Non-uniform security definitions

Let f : {0, 1}k → {0, 1}` be a strong one-way function with uniform se-
curity (i.e., as in Definition 5.5). Then, it may happen that there exists a
small polynomial p(·) (for example p(k) = k2) such that for every k there
is a circuit Ck of size p(k) which inverts f with probability 1

2 . If this is
the case then it must be hard to compute the circuit Ck for a given k (as
otherwise we immediately get an algorithm contradicting the hardness:
we compute the circuit and then evaluate it).

If one uses a one-way function in practice, one probably hopes that this
is not the case, since even if the circuit is hard to find for a computer,
it would be more comforting if the security of a one-way function guar-
antees that no such circuit exists. For example, one could hope that the
smallest circuit inverting f with probability more than 2−k/3 has size at
least 2k/3. This gives rise to non-uniform security.

Traditionally, a non-uniformly secure one-way function has the property
that every polynomial sized family of circuits has negligible success prob-
ability in inverting (however, in the case of circuits the security require-
ment can also be formulated in an non-asymptotic way). We remark that
the function itself should still be computable by a polynomial time algo-
rithm.

Non-uniform reductions

Similar to the uniform model, one often wants to construct stronger prim-
itives from seemingly weaker ones. Clearly, if the weaker primitive f has
non-uniform security, it is desirable that the constructed primitive g has
non-uniform security as well.

However, if a uniform reduction is given, as in Theorem 5.6, then this
is automatically implied. The reason is simply that Theorem 5.6 does
not assume that Ag is a Turing machine, any function (in particular one
computed by a small circuit) which inverts g can also be used. In this case
Theorem 5.6 (together with Theorem 5.4) guarantees that it is possible to
obtain a small circuit which inverts f .

On the other hand, a black-box security proof tailored for the non-
uniform model may not be applicable in the uniform model; it is possible
that only the existence of a circuit is shown but not how to find it for ev-
ery k. An example of this will be given in Section 6.1. Because of this,
security proofs for the uniform model are preferable.
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6. Hard-Core Sets

Let PXY be an arbitrary probability distribution over {0, 1} × Y , and as-
sume that for all functions g from Y to {0, 1}

Pr[g(Y)=X] ≤ 1− δ

2
(6.1)

holds. This implies (see Lemma 2.2) that there exists a conditional prob-
ability distribution PB|XY over {0, 1} × {0, 1} × Y for which Pr[B=0] = δ
and

Pr[g′(Y)=X|B=0] =
1
2

(6.2)

for all functions g′.
The non-uniform hard-core lemma we prove in this section shows that this

implication also holds for functions with small circuit complexity. More
concretely, assume that (6.1) only holds for all functions g which can be
computed by a circuit of size at most s. Then, there exists a distribu-
tion PB|XY with Pr[B=0] = δ such that

Pr[g′(Y)=|B=0] ≈ 1
2

(6.3)

for all functions g′ with can be computed by circuits of a size which is
slightly smaller than s.

This non-uniform hard-core lemma can only be applied if functions g
with small circuit complexity are considered, but not if bounds on the max-
imal run time of algorithms are given. For this case, we also prove a
uniform version of the hard-core lemma, which has a slightly different
formalization, but achieves the same in applications.

In the computational setting it is usual to model the process of draw-
ing random variables X and Y with functions P and f , i.e., X = P(W)
and Y = f (W), where W is a uniform random bit string. The hard-core
lemma then states there is a large subset S — a hard-core set — of the
possible randomness such that if w is drawn from S , then P(w) becomes
very hard to predict given f (w).
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Overview of this chapter

The chapter is divided into two sections. We first give a proof of the non-
uniform hard-core lemma in Section 6.1. Section 6.2 contains the uniform
version of the hard-core lemma and it’s proof. The non-uniform version is
easier to understand than the uniform version, which is why we give both
lemmas (the uniform lemma implies the non-uniform one with slightly
weaker parameters).

Related work

The first hard-core lemma proven by Impagliazzo [Imp95] was exclu-
sively for the non-uniform setting, and the size of the hard set was only
half as big as it is in our version (but, as Impagliazzo notes, the lemma
can be applied repeatedly in order to get arbitrarily close to the our set
size). In [Imp95] two proofs of the lemma were given: a constructive one
(we will change it and then use it in the proof of the uniform hard-core
lemma), and a non-constructive one due to Nisan (we will slightly change
this proof to get twice the set size in the non-uniform version).

In [KS03], Klivans and Servedio give a connection of hard-core sets
to boosting algorithms in computational learning theory (i.e., any algo-
rithm used in a proof of the hard-core lemma is a boosting algorithm,
and any boosting algorithm which has an additional smoothness prop-
erty can be used to prove the hard-core lemma). Boosting algorithms
are usually uniform, which makes the existence of a uniform hard-core
lemma less surprising (in fact, [KS03] motivated us to prove a uniform
hard-core lemma).

Previously to our work, Trevisan proved a variant of the hard-core
lemma for the uniform setting [Tre03]. The main difference between the
two versions is that Trevisan does not assume that the predicate P is ef-
ficiently computable. Consequently he arrives at a weaker conclusion.1

In general, the simple guideline is that our version should be applied if P
(and f ) can be computed efficiently, otherwise Trevisan’s version can be
used.

1Described in the words of Theorem 6.9, in Trevisan’s lemma algorithm B has only a small
probability to produce a circuit which performs well (while in our version it does so with
probability almost 1). The net effect is that his lemma can only be applied as long as the
relative size of the hard set and the advantage of algorithms on the hard set are relatively
large (usually, larger than about 1

log(k) ), while in our case these quantities only need to
be noticeable.
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Contributions of this thesis

The contributions of this chapter are Theorems 6.1 and 6.9. Theorem 6.1
gives a non-uniform hard-core lemma. Similar lemmas were known pre-
viously, but our variant is the first with a tight set size. Theorem 6.9, the
uniform hard-core lemma gives a variant applicable in the uniform set-
ting as well; previously no such lemma was known. These results were
previously published in [Hol05], the description here is more detailed.

6.1. The Non-Uniform Case

We first consider the simpler case, where we have computational hard-
ness for non-uniform circuits, as the hard-core lemma is more intuitive in
this case.

We start in Section 6.1.1 by giving a formal version of the hard-core
lemma. Section 6.1.2 gives an example of how the lemma is used in ap-
plications, it can be skipped it if no such example is desired. Then we
prove the hard-core lemma in two steps. First, in Section 6.1.3 we show
that every mildly hard predicate has a hard-core “measure” (a measure is
a fuzzy set which can contain some elements more than others — see Def-
inition 6.3). This is the main part of the proof. Then, in Section 6.1.4 we
show that a predicate which has a hard-core measure also has a hard-core
set.

6.1.1. The Non-Uniform Hard-Core Lemma

We now give the exact statement of the non-uniform hard-core lemma.
Theorem 6.1 (Non-uniform hard-core lemma — set version). Let func-
tions f : {0, 1}k → {0, 1}` and P : {0, 1}k → {0, 1}, and constants γ ∈ (0, 1),
δ ∈ (0, 1), and s′ ≤ 2k δ4

60 be given. If all circuits C′ of size s′ satisfy

Pr
W←{0,1}k

[
C′
(

f (W)
)

= P(W)
]
≤ 1− δ

2
+

γδ

8
, (6.4)

then there exists a set S ⊆ {0, 1}k with size |S| ≥ δ2k such that all circuits C
of size at most s = γ2

40k s′ satisfy

Pr
W←S

[C( f (W)) = P(W)] <
1 + γ

2
. (6.5)
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The upper bound 2k δ4

60 on the size of the circuits considered is not a
restriction in most applications, since all predicates with ` bits input can
be computed by circuits of size 2`

` (1 + o(1)).2 The term γδ
8 in (6.4) makes

the theorem a bit (but not significantly) stronger than what one would
expect.

Alternatively we could formulate this result using the notation intro-
duced in Section 2.1: if all circuits C′ of size s′ satisfy

AdvC′

W←{0,1}k
(P(W)| f (W)) ≤ 1− δ +

γδ

4
,

then all circuits C of size s satisfy

AdvC
W←S

(P(W)| f (W)) < γ

for an appropriate set S . We believe the notation in the theorem is more
intuitive.

It is interesting to note that this result is tight in the set size δ2k (it may
not be tight in the circuit size s′, but this is secondary). Assume that there
is a set of size δ2n for which no circuit of size s does better than a random
guess in finding P(w) from f (w). Then, no circuit of the same size can
predict P(w) from f (w) with probability larger than 1− δ

2 overall: any
circuit contradicting the latter would also contradict the first statement.

As mentioned before, Theorem 6.1 is similar to the information theo-
retic Lemma 2.2, which says that if a distribution PXY over {0, 1} × Y has
the property that no function predicts X from Y with probability larger
that 1− δ

2 , then there is an event with probability δ conditioned on which
no function predicts X from Y with probability exceeding 1

2 .

6.1.2. An Application

Before we go to the proof of Theorem 6.1 we provide an application of
it. For this, assume that a function f : {0, 1}` → {0, 1}k and a predicate
P : {0, 1}` → {0, 1} are given for which it is mildly hard to predict P(w)
from f (w). We define f (n) : {0, 1}nk → {0, 1}n` as the concatenation of
f (w0) to f (wn−1):

f (n)(w0, . . . , wn−1) := f (w0)‖ . . . ‖ f (wn−1),

2In case this might be a problem it might still be possible to use Theorem 6.4, where no
such upper bound is needed.
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and P(⊕n) : {0, 1}nk → {0, 1} as the XOR of P(w0) to P(wn−1):

P(⊕n)(w0, . . . , wn−1) := P(w0)⊕ · · · ⊕ P(wn−1).

The following theorem is the computational analog to Lemma 2.3 and
commonly known as “Yao’s XOR Lemma”. It states that it is harder to
predict P(⊕n)(w0, . . . , wn−1) from f (n)(w0, . . . , wn−1) than it is to predict
P(w) from f (w). It appeared first implicitly in [Yao82], the first proof is
by Levin [Lev87]. For an overview see [GNW95].
Theorem 6.2. Let f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, γ ∈ (0, 1),

β ∈ (0, 1) and s′ ≤ 2k (1−β)4

60 be given. If all circuits C′of size s′ satisfy

Pr
W←{0,1}k

[C′( f (W) = P(W))] ≤ 1 + β

2
, (6.6)

then, all circuits C of size at most s = γ2

40k s′ satisfy

Pr
Wn←{0,1}nk

[C( f (n)(Wn)) = P(⊕n)(Wn)] <
1 + βn + γ

2
. (6.7)

Proof. Using Theorem 6.1 for δ := 1− β we see that there exists a set S
with |S| ≥ δ2k such that all circuits C of size at most s satisfy

Pr
W←S

[C( f (W)) = P(W)] <
1 + γ

2
. (6.8)

We assume that a circuit C̃ of size at most s is given which does not
satisfy (6.7), i.e.,

Pr
Wn←{0,1}nk

[C̃( f (n)(Wn)) = P(⊕n)(Wn)] ≥ 1 + βn + γ

2
.

From C̃ and the given set S we will, using some randomness, construct
a circuit C which contradicts (6.8) on average over the randomness used
in our construction. This is enough to give a contradiction, and thus it
proves the theorem.

For this, we first choose n pairs (wi, P(wi)) for 0 ≤ i < n and check
which of the wi are elements of S . If there is no coordinate i for which
wi ∈ S , then our construction chooses randomly either the circuit which
outputs the constant 0 or the circuit which outputs the constant 1. In this
case, the expectation of Pr[C( f (W)) = P(W)] is 1

2 .
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If there is at least one i with wi ∈ S we construct C as follows: first, we
pick a position j such that wj ∈ S uniformly at random. Then, on input w,
circuit C runs the given circuit C̃ with input

( f (w0), . . . , f (wj−1), f (w), f (wj+1), . . . , f (wn−1)).

If this yields bit b, circuit C returns the bit

b⊕ P(w0)⊕ · · · ⊕ P(wj−1)⊕ P(wj+1)⊕ · · · ⊕ P(wn−1)

(note that C can be constructed from C̃ without increasing the size).
To see why this yields the claimed advantage, let E be the event that

in the construction above wi ∈ S holds for at least one i. Then we get
(the expected values in the following are over the random choices done
to generate the circuit C, and the set S is defined as S := {0, 1}k \ S):

E
[

Pr
W←S

[C( f (W)) = P(W)]
]

= Pr
[
E
]

E
[

Pr
W←S

[C( f (W)) = P(W)]
∣∣E]

+ Pr[E ] E
[

Pr
W←S

[C( f (W)) = P(W)]
∣∣E]

= Pr[E ] E
[

Pr
W←S

[C( f (W)) = P(W)]
∣∣∣E]+

Pr[E ]
2

(1)
= Pr[E ] Pr

Wn←{0,1}nk\Sn
[C̃( f (W)) = P(W)] +

Pr[E ]
2

≥ Pr[E ] Pr
Wn←{0,1}nk\Sn

[C̃( f (W)) = P(W)]

+ Pr[E ]
(

Pr
Wn←Sn

[C̃( f (W)) = P(W)]− 1
)

+
Pr[E ]

2

= Pr
Wn←{0,1}nk

[C̃( f (W)) = P(W)]− Pr[E ]
2

≥ 1 + γ

2
.

Equality (1) is easiest seen as follows: instead of choosing wi for each coor-
dinate, first choose an appropriately biased bit which signalizes whether
wi ∈ S , and then choose wi either uniformly from S or S . For one coor-
dinate where wi is chosen from S we then use the input, which does not
change the distribution.



6.1 The Non-Uniform Case 103

(a) A set of relative size 1
4 (b) A measure of density 1

4

Figure 6.1.: Sets and Measures

From the above, we see that a circuit C which contradicts (6.8) must
exist, which finishes the proof.

6.1.3. Hard-Core Measures

The proof of the hard-core lemma is by contradiction: if for every set S
of size at least δ2k there exists a circuit which contradicts (6.5), then we
can combine these circuits to get one which contradicts (6.4). This process
will not be done directly on sets, but rather on measures.
Definition 6.3 (Measure). A measure is a function M : {0, 1}k → [0, 1].
The size of a measure is |M| := ∑w∈{0,1}kM(w). The density of a measure
M is µ(M) := |M| 2−k.

Measures should be thought of as fuzzy sets (see Figure 6.1): an ele-
ment w withM(w) = 1 is in the measure, an element w withM(w) = 0
is not in the measure, and an element w with M(w) = 1

2 is “half” in
the measure. A measure induces the probability distribution PM(w) :=
M(w)
|M| , which we often associate implicitly with the measure.3 Further we

will choose a set S randomly according to the measure (we write S ⇐M
for this): every element w ∈ {0, 1} is in S independently of the other el-
ements with probabilityM(w). Clearly the expectation of the size of the
set is just the size of the measure: ES⇐M

[
|S|
]

= |M| (we also use the
letter S to denote the random variable over sets).

The following version of the hard-core lemma states that for a mildly
hard predicate we can find a measureM on which the predicate is hard.
We state the contrapositive version.

3The connection between measures and distributions over {0, 1}k is as follows: the min-
entropy of the distribution induced by a measure of density δ is at least k− log( 1

δ ), and
for any distribution with min-entropy k − log( 1

δ ) there exists a measure of density δ
which induces it.
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In applications, one can usually use the measure version instead of the
set version (in fact, we have never seen an example where this is not the
case). But since it is simpler to think in terms of sets than in terms of
measures we also included the set version.
Theorem 6.4 (Non-uniform hard-core lemma — measure version). Let
f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, γ ∈ (0, 1), and δ ∈ (0, 1) be
given. Let C be a set of functions such that for every measureM :{0, 1}k → [0, 1]
with density µ(M) ≥ δ there exists a function CM : {0, 1}` → {0, 1} in C
such that

Pr
W←M

[CM( f (W)) = P(W)] ≥ 1 + γ

2
. (6.9)

Then there exists an oracle circuit DC with 16k
γ2 oracle gates and 11 · 16k

γ2 non-
oracle gates such that

Pr
W←{0,1}k

[
DC
(

f (W)
)

= P(W)
]

> 1− δ

2
+

δγ

4
. (6.10)

The proof of Theorem 6.4 is in two steps. Lemma 6.5 (originally due
to Nisan, see [Imp95]) assumes that a collection C as in the theorem ex-
ists, and shows that in this case a small collection C′ ⊆ C exists, such
that a function chosen uniformly from C′ has slightly higher probability
than 1

2 in predicting P(w) correctly from f (w) for every set S of size δ2k

(note the change in quantifiers: the collection C′ is the same for every set).
Lemma 6.6 shows that such a collection C′ is sufficient to obtain an oracle
circuit satisfying equation (6.10).
Lemma 6.5. Let f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, γ ∈ (0, 1),
and δ ∈ (0, 1) be given. Let C be a set of functions such that for every mea-
sure M : {0, 1}k → [0, 1] with density µ(M) ≥ δ there exists a function
CM : {0, 1}` → {0, 1} in C such that

Pr
W←M

[CM( f (W)) = P(W)] ≥ 1 + γ

2
. (6.11)

Then there exists a collection C′ ⊆ C with |C′| ≤ 16k
γ2 such that for every set S

of size |S| ≥ δ2k

Pr
C←C′ ,W←S

[C( f (W)) = P(W)] >
1 + γ

2
2

. (6.12)
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Proof. Consider the following zero-sum game of two players Alice and
Bob: Alice chooses a function C ∈ C and simultaneously Bob chooses a
set S ⊆ {0, 1}k with |S| ≥ δ2k. The payoff for Alice is

Pr
W←S

[C( f (W)) = P(W)].

A randomized strategy for Bob is thus a distribution on sets of size at
least δ2k, and corresponds to a measureM on {0, 1}k with µ(M) ≥ δ. For
any such strategy, the assumption of the lemma implies that Alice has a
strategy to obtain a value of at least 1+γ

2 . According to von Neumann’s
min-max Theorem [vN28] this means that there exists a strategy (i.e., a
distribution on functions) for Alice, such that for no strategy of Bob the
payoff is lower than 1+γ

2 . Let C′ be this distribution on the functions.
Thus, for every set S with |S| ≥ δ2k, we get

Pr
C←C′ ,W←S

[C( f (W)) = P(W)] ≥ 1 + γ

2
. (6.13)

Fix now w ∈ {0, 1}k. If C′′ is obtained by sampling 16k
γ2 functions indepen-

dently from the distribution C′, then∣∣∣ Pr
C←C′

[C( f (w)) = P(w)]− Pr
C←C′′

[C( f (w)) = P(w)]
∣∣∣ <

γ

4
(6.14)

with probability 1− 2e−k, according to Proposition 2.13. Thus, assuming
k ≥ 2 and using the union bound, the probability that (6.14) holds for all
w ∈ {0, 1}k is at least 1− 2k · 2 · e−k > 0, which implies that there exists
a collection C′′ which satisfies (6.14) for all w. Together with (6.13) this
implies that (6.12) is satisfied for this collection.

The key observation to improve over [Imp95] in the set size is given in
the following lemma, which states that to do so, a collection of functions
which does well on average for every set is sufficient. The proof uses a
trick very similar as one used by Levin in order to give a tight proof the
XOR-Lemma (see [GNW95]), namely it does a randomized decision in-
stead of taking the majority (which is a more usual but inferior strategy).
Lemma 6.6. Let f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, δ ∈ (0, 1)
and γ ∈ (0, 1) be given. Let C a collection of functions such that for every
S ⊆ {0, 1}k of size |S| ≥ δ2k

Pr
C←C
W←S

[C( f (W)) = P(W)] >
1 + γ

2
. (6.15)



106 Hard-Core Sets

Then there is an oracle circuit DC with |C| oracle gates and 11|C| usual gates
such that

Pr
W←{0,1}k

[D( f (W)) = P(W)] ≥ 1− δ

2
+

γδ

2
. (6.16)

The main idea of the proof is as follows: consider the set S on which
the collection C performs worst. On input x, our circuit first invokes all
circuits in C and then does a decision depending on the number of pos-
itive answers. This decision is always correct on elements outside of S ,
and is not worse on elements from S than what a randomly chosen circuit
from C would achieve.

Proof. Let

αcorr(w) := 2 Pr
C←C

[C( f (w)) = P(w)]− 1

be the expected advantage of a function from C on w. Analogous, let

α1(w) := 2 Pr
C←C

[C( f (w)) = 1]− 1.

Consider a subset S ⊆ {0, 1}k of size |S| ≥ δ2k for which the sum
∑w∈S αcorr(w) is minimal, and let ϕ > 0 be the maximum of αcorr(w)
for w ∈ S .

We first describe a randomized circuit which satisfies (6.16) (i.e., a cir-
cuit which has an additional input R ∈ R which is chosen at random
from some appropriate set R; the circuit can do randomized decisions in
that way). On input f (w), circuit DC first uses oracle gates to evaluate
all functions in the collection C and finds α1(w). It then outputs 1 with
probability

Pr
R←R

[D( f (w), R) = 1] =


0 if α1(w) ≤ −ϕ,
1
2 + α1(w)

2ϕ if −ϕ < α1(w) < ϕ,

1 if ϕ ≤ α1(w).

The probability that D( f (w), R) equals P(w) is then 1
2 + αcorr(w)

2ϕ truncated
at 0 and 1. Therefore for w /∈ S , the circuit will always be correct.

On the other hand, since |S| ≥ δ2k, (6.15) implies

Pr
C←C,W←S

[C( f (W)) = P(W)] >
1
2

+
γ

2
,
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and thus EW←S [αcorr(W)] > γ. For a fixed w ∈ S we obtain

Pr
R←R

[D( f (w), R) = P(w)] = max
(

0,
1
2

+
αcorr(w)

2ϕ

)
≥ 1

2
+

αcorr(w)
2ϕ

and thus PrW←S ,R←R[D( f (W), R) = P(W)] ≥ 1+γ
2 . In total we obtain

Pr
W←{0,1}k

R←R

[D( f (W), R) = P(W)] = δ Pr
W←S
R←R

[D( f (W), R) = P(W)] + (1− δ)

≥ 1− δ

2
+

δγ

2
.

Now, fix the randomness used to the value on which the circuit per-
forms best. It is easy to see that in this case we only need to compute
a threshold function (i.e., check if more than a fixed number of outputs
equals one). This can be done with 11|C| gates (see [Weg87, Section 3.4]).

We can use Lemmas 6.5 and 6.6 to proof Theorem 6.4.

Proof (of Theorem 6.4). We know that for every measureMwhich has den-
sity µ(M) ≥ δ there exists a function CM ∈ C

Pr
W←M

[CM( f (W)) = P(W)] ≥ 1 + γ

2
.

Lemma 6.5 then implies that there exists a collection C′ ⊆ C of size at most
|C′| ≤ 16 kγ−2 with

Pr
C←C′
W←S

[C( f (W)) = P(W)] >
1 + γ

2
2

.

Lemma 6.6 states that we can combine these circuits to obtain one cir-
cuit DC′ with 16 kγ−2 oracle gates and 11 · 16 kγ−2 usual gates such that

Pr
W←{0,1}k

[DC′( f (W)) = P(W)] > 1− δ

2
+

γδ

4
.

Since C′ ⊆ C we get the theorem.
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6.1.4. From Measures to Sets

The reason why the hard-core lemma for measures implies the hard-core
lemma for sets is simple: if we choose a set according to a measure M
(recall that this means that every element w ∈ {0, 1}k is in the set inde-
pendently of the others with probabilityM(w)) then no circuit which is
not too large will distinguish the set from the measure. Thus, if the mea-
sure is a hard core, a set chosen according to it will also be a hard core. For
this, we only need the fact that there are not so many functions computed

by circuits of size 2k γ2δ4

64k .
The following lemma is used for this. It will be reused in Section 6.2,

and, because of this, it is slightly stronger than what we need here (it
shows that for almost all sets all small circuits behave almost the same;
here we would only need that there exists a set for which all small circuits
behave almost the same).

Lemma 6.7. Let f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, γ ∈ (0, 1
2 ), and

δ ∈ (0, 1) be given. Let furtherM : {0, 1}k → [0, 1] be a measure with density
µ(M) ≥ δ. The probability that for a random set S chosen according to M
there exists a circuit C with Size(C) ≤ 2k γ2δ4

64k satisfying∣∣∣ Pr
W←M

[
C( f (W)) = P(W)

]
− Pr

W←S

[
C( f (W)) = P(W)

]∣∣∣ ≥ γ (6.17)

is less than 2−2kγ2δ4/64.

Proof. First, the Hoeffding bound (Proposition 2.13), shows that(
1− γδ

4

)
δ2k ≤ |S| ≤

(
1 +

γδ

4

)
δ2k (6.18)

with probability at least 1− 2 exp(−2kγ2δ4/16) (since |S| is the sum of 2k

independent random variables with range [0, 1], namely the indicator
variables for w ∈ S).

Fix any function g : {0, 1}` → {0, 1}, and assume w.l.o.g. that T :=
{w ∈ {0, 1}k | g( f (w)) = P(w)} satisfies E[|S ∩ T |] ≥ δ2k/2 (otherwise
apply the following argument to the negation of the output of g). The
probability that(

1− γδ

4

)
E
[
|S ∩ T |

]
≤ |S ∩ T | ≤

(
1 +

γδ

4

)
E
[
|S ∩ T |

]
(6.19)
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holds is at least 1− 2 exp(−2kγ2δ4/32) (by the same Hoeffding bound as
before). If both (6.18) and (6.19) is satisfied, a straightforward calculation
shows that for this function g:∣∣∣ Pr

W←M

[
g( f (W)) = P(W)

]
− Pr

W←S

[
g( f (W)) = P(W)

]∣∣∣
=
∣∣∣E[|S ∩ T |]

E[|S|] − |S ∩ T ||S|

∣∣∣ ≤ γ. (6.20)

The probability that (6.20) holds is thus at least 1− 4 exp(−2kγ2δ4/32).
According to Lemma 5.2, for fixed size s, there are less than (45s)s

functions computed by circuits of size s, and thus for maximum size

s := 2k γ2δ4

64k there are less than (assuming k > 2)

(
2k γ2δ4

k

)2k γ2δ4
64k = 22k γ2δ4

64

(γ2δ4

k

)2k γ2δ4
64k︸ ︷︷ ︸

< 1
4

<
1
4

22k γ2δ4
64

functions computed. Using the union bound, this implies that the proba-

bility that a circuit of size 2k γ2δ2

64k which contradicts (6.17) exists is bounded

by 2−2kγ2δ2/64.

We can now show Theorem 6.1.

Proof (of Theorem 6.1). Let γ′ := 2γ
3 and δ′ := δ(1 + γ

12 ). Assume for a
contradiction that for every set S of size δ2k we have a circuit C of size s
contradicting (6.5), i.e.,

Pr
W←S

[C( f (W)) = P(W)] ≥ 1 + γ

2
. (6.21)

We show that for any measureM of density µ(M) ≥ δ′ there is a circuit C
of size s such that

Pr
W←M

[C( f (W)) = P(W)] ≥ 1 + γ′

2
. (6.22)

For this, letM be such a measure, and let the set S be chosen according

toM. Since s < 2k γ2δ4

2400k , Lemma 6.7 implies that with positive probability
we get a set which has size at least δ2k and on which no circuit of size s
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differs more than γ
6 in the probability of guessing P(w) from f (w), which

implies (6.22).
We now use Theorem 6.4 with the set C of functions computed by cir-

cuits of size at most s. This gives an oracle circuit DC which satisfies

Pr
W←{0,1}k

[
DC( f (W)) = P(W)

]
≥ 1− δ′

2
+

δ′γ′

4

≥ 1− δ

2
− δγ

24
+

δγ

6

= 1− δ

2
+

δγ

8
.

We can now replace all the oracle gates in D with the respective circuits.
This gives a contradicting (non-oracle) circuit of size at most 16k

(γ′)2 s +

11 16k
(γ′)2 = 36k

γ2 s + 11 36k
γ2 < 40k

γ2 s (we silently used s ≥ 99).

6.2. The Uniform Case

Theorems 6.1 and 6.4 are only applicable in the non-uniform setting, i.e.,
where the hardness of predicting P(w) given f (w) is for non-uniform cir-
cuits. It is not immediately clear how to translate these theorems into the
uniform setting (where one algorithm is used for all k). For example, the
following naive idea does not seem to work: argue that for any pair ( f , P)
which is mildly hard there exists an infinite sequence of sets S1,S2, . . .
such that it is very hard to predict P(w) from f (w) if w is chosen from the
set Sk for the respective problem size k. In fact, it is both unclear how to
prove this statement and how to use it in applications.

In this section, we will develop a uniform version of the hard-core
lemma. First, in Section 6.2.1, we give the hard-core lemma for the uni-
form setting. In Section 6.2.2 we describe the basic algorithm which gives
a measure version of the hard-core lemma (this is the main work). In
Section 6.2.3 we use the measure version to prove the set version of the
lemma.

6.2.1. The Uniform Hard-Core Lemma

The uniform hard-core lemma states that if the family ( f , P) of functions
(now defined for every k ∈ N) is mildly hard for every efficient algo-
rithm, then no efficient algorithm can perform even slightly good on ev-
ery large enough subset S of inputs, even if it can access the characteristic



6.2 The Uniform Case 111

function4 χS of S (but is restricted to query χS independently of the in-
put5).

For the following theorem, recall that RA is the randomness which al-
gorithm A uses, even though we omit it as argument to A. Analogously,
RB is the randomness used by algorithm B.
Theorem 6.8 (Uniform hard-core lemma — set version). Let the functions
f :{0, 1}k → {0, 1}`, P :{0, 1}k → {0, 1}, δ : N→ (0, 1), and γ : N→ (0, 1),
computable in time poly(k) be given, such that γ and δ are noticeable.

Assume that there is no polynomial time algorithm B such that

Pr
W←{0,1}k

RB

[B( f (W)) = P(W)] ≥ 1− δ

2
+

γ2δ5

8192
(6.23)

for infinitely many k. Then there is no polynomial time oracle algorithm A(·)

such that for infinitely many k the following holds: for any set S ⊆ {0, 1}k with
|S| ≥ δ2k,

Pr
W←S
RA

[AχS ( f (W)) = P(W)] ≥ 1 + γ

2
, (6.24)

and the queries of A to χS are computed independently of the input f (w).
We give a quick example how this theorem is used, again based on

Yao’s XOR-Lemma. In the non-uniform proof of it (Theorem 6.2) we used
the hard-core lemma as follows: assume a circuit C̃ contradicts the conclu-
sion that P(⊕n)(wn) is very hard-to predict from f (n)(wn). Then, for any
large enough set S we used the circuit C̃ to get a circuit C which satisfied

Pr
W←S

[C( f (W)) = P(W)] ≥ 1 + γ

2
.

This was done as follows: on input f (w) first n random samples wi were
chosen. Then, C̃ was called with input f (w0), . . . , f (wn−1), but one of the
entries with wi ∈ S was replaced with the input f (w) to C (by doing
it that way we ensured that the distribution with which we called C̃ is
not changed). This way of constructing C from C̃ can be implemented

4The characteristic function χS of a set S is defined as χS (w) := 1 if w ∈ S and χS (w) := 0
otherwise.

5There is some subtlety here: we require that the queries are computed before even looking at
the input. This is stronger than requiring that the queries are distributed independently
of the input.
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by an algorithm, as long as it is possible to decide whether a randomly
chosen element of {0, 1}k is in S , i.e., if χS is given as oracle. Thus, if an
algorithm which has high advantage in predicting the XOR is given, it
is easy to obtain an algorithm contradicting (6.24) (note that the queries
to χS will be independent of the input w, as required by Theorem 6.8).6

6.2.2. The Basic Algorithm

Again we will first prove a measure version of our theorem (this means
now that algorithm A has oracle access to a measure7 instead of the char-
acteristic function of a set).

We assume here that A does not get an input w distributed according to
the measureM; instead A has oracle access to the measureM to produce
a circuit C which performs well onM (here C does not have access toM
anymore). This is basically equivalent to the requirement in Theorem 6.8
that the queries of A to the oracle must be computed independently of
the input (we explain this in more detail in the proof of Theorem 6.8).

We formulate the contrapositive lemma (i.e., we describe the proper-
ties of the algorithm we use in the lemma). Note that the algorithm B we
describe in the proof will have to use algorithm A. Thus, B will to sup-
ply A with measures; these measures in turn are dependent of the circuits
returned by previous calls to A.
Theorem 6.9 (Uniform hard-core lemma — measure version). Let the
functions f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, δ : N → (0, 1)
and γ : N→ (0, 1), computable in time poly(k) be given.

There is an oracle algorithm B(·) such that:

• If, for every measure M with µ(M) ≥ δ, AM returns a circuit CM
satisfying

Pr
W←M

[CM( f (W)) = P(W)] ≥ 1 + γ

2

then, with probability at least 1− 2−k (over the randomness RB of B), BA

returns a circuit C′ satisfying

Pr
W←{0,1}k

[C′( f (W)) = P(W)] ≥ 1− δ

2
+

γ2δ5

2048
. (6.25)

6A formal version of the uniform XOR-Lemma can be derived from Theorem 7.3.
7Consistent with the notation introduced in Section 5.1.1, we expect that the oracle re-

turns M(w) encoded appropriately in {0, 1}∗; for example as pair (u, v) denoting the
rational number u/v.
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• BA does O(γ−2δ−3) calls to A.

• BA evaluates f and P at most O(kγ−4δ−7) times.

• BA does O(kγ−6δ−10) simulations of circuits returned by A.

• Additionally, for every call which A does toM, O(γ−2δ−3) simulations
of circuits returned by A in previous calls are done, and f and P are eval-
uated once.

• Besides the simulations, B runs in time poly(γ−1, δ−1, k).

Algorithm B starts with an empty collection8 C of circuits, and adds
circuits one by one to C. In every step, the collection C is used to define a
measureM with µ(M) ≥ δ. The measure is then used with A to obtain
another circuit, which is then added to the collection. This is repeated
until for the collection either the majority of the circuits answers correctly
on slightly more than fraction 1− δ

2 , or else for every set S of size δ2k,
a random circuit of C has slightly larger probability than 1/2 of being
correct on S (a similar condition as for Lemma 6.6). We then show that in
both cases we can obtain a circuit satisfying (6.25). A graphical overview
of the process is given in Figure 6.2.

The idealized algorithm

We first describe an idealized version of the algorithm B. The idealized
version assumes that some characteristics of a given collection C of cir-
cuits (for example the density of the measureMC,s defined by C, see be-
low) can be estimated up to some error margin, but the probability of a
larger error is zero. We will later show (Claim 1) that we can estimate
these quantities while the probability that we make a larger mistake is at
most 2−2k.

For the collection C of circuits let

NC(w) :=
∣∣{C ∈ C | C( f (w)) = P(w)}

∣∣−∣∣{C ∈ C | C( f (w)) 6= P(w)}
∣∣. (6.26)

The measure MC,s(w) used to request the next circuit depends on NC

and additionally on a number s (which is initially 0 but will be increased

8Formally, C should be a multiset, because we may want to insert the same circuit more
then once.
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C = {}

B

M0
A

w(0)
0 , . . . , w(0)

s−1

M0(w(0)
1 ), . . . ,M0(w(0)

s )

C0

C = {C0}

B

M1
A

w(1)
0 , . . . , w(1)

s−1

M1(w(1)
1 ), . . . ,M1(w(1)

s )

C1

C = {C0, C1}

C = {C0, C1, . . . , Ct−1}

B

Mt
A

w(t)
0 , . . . , w(t)

s−1

Mt(w(t)
1 ), . . . ,Mt(w(t)

s )

Ct

C′

Figure 6.2.: Uniform hard-core lemma: an algorithm A which produces
good circuits for every measureM can be used to get a circuit
which is good overall. The algorithm B uses A several (t + 1)
times, always using different measures Mi. In the end, the
circuits Ci are combined into a single circuit C′.
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N

M
1

0
s

AC,s(w)

NC(w) s + 1
γδ

Figure 6.3.: The advantage NC(w), measure MC,s(w), area AC,s(w) for
one fixed w.

while the collection is growing). It is defined as

MC,s(w) :=


1 if NC(w) ≤ s,
1− (NC(w)− s)γδ if s < NC(w) < s + 1

γδ ,
0 if NC(w) ≥ s + 1

γδ

(6.27)

(cf. Figure 6.3). We note that given s, a collection C of circuits, and an
element w ∈ {0, 1}k we can computeMC,s(w) if we simulate all circuits
from C on input w and evaluate f (w) and P(w).

In order to prove that our algorithm will stop we consider the area
under the curve in Figure 6.3, starting from NC(w). Formally, AC,s(w)
is defined as

AC,s(w) :=


s− NC(w) + 1

2γδ if NC(w) ≤ s,
0 if NC(w) ≥ s + 1

γδ ,
MC,s(w)

2
(
s + 1

γδ − NC(w)
)

otherwise.

(6.28)

The total area is also important, and it is thus natural to define

A(C, s) :=
1
2k ∑

w∈{0,1}k

AC,s(w).

The idealized version of the algorithm is shown in Figure 6.1. We use
the following notation: The skip-statement does nothing. The semantics
of the if statement as in
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1 procedure GoodEnough(Collection C):
2 p := minS :|S|≥δ2k PrW←S ,C←C[C( f (W)) = P(W)]
3 r := 1

2k |{w | NC(w) ≤ 0}
∣∣

4 if p ≥ 1/2 + γδ2/32 ∨ r ≤ 7δ/16→ return true
5 [] p ≤ 1/2 + γδ2/16 ∧ r ≥ 3δ/8 → return false
6 fi
7 end GoodEnough.
8
9 procedure HardCore:

10 s := 0, C := ∅
11 while not GoodEnough(C) do
12 if µ(MC,s) ≤ δ(1 + γδ/16)→ s := s + 1
13 [] µ(MC,s) ≥ δ→ skip
14 fi
15 C := C∪ {CM}, where CM satisfies
16 PrW←MC,s [CM( f (W)) = P(W)] > 1+γ

2 .
17 od
18 return C
19 end HardCore.

Listing 6.1: Algorithm for the proof of Theorem 6.9. The statement “skip”
does nothing. In an if-statement, any line may be executed for
which the guard evaluates to true.
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if C1 → S1
[] C2 → S2

fi

for conditions C1 and C2, and statements S1 and S2 is that one condition
which holds is chosen in an arbitrary way, and the corresponding state-
ment is executed. It is important that we do not make any assumption
which statement is executed if both conditions hold.

The algorithm, given completely in Figure 6.1, is very simple: it adds
the circuit which performs well onMC,s to the collection C as long as the
measure has density at least δ. If the density is too small, i.e., if µ(MC,s) ≤
δ, then s is increased before obtaining the circuit. This is repeated until the
resulting collection is good enough to prove Theorem 6.9.

The if-statements in the idealized algorithm require sampling, and thus
it is not possible to give an efficient implementation of the algorithm in
Figure 6.1 without making mistakes with very small probability. We will
give a bound on the probability of these mistakes.

We show the correctness of the algorithm in several steps. First, we
show that there exists an efficient randomized implementation for the
loop. Then we show that in the idealized version the loop terminates
after at most 4γ−2δ−3 iterations. Finally, we prove that a collection as
returned by the idealized version is sufficient to prove Theorem 6.9.

Efficient implementation of one loop

To implement the algorithm in Figure 6.1, some knowledge about the
quantities µ(MC,s), p (line 2), and r (line 3) is required. Also we need
to make sure that we can obtain circuits for the measures as required in
line 15.
Claim 1. There exists an implementation of the conditional statements in lines 4
and 12, which doesO( k

γ2δ4 ) simulations of all the circuits in C,O( k
γ2δ4 ) calls to

both f and P, and has error probability at most 2−2k for every call.

Proof. First, consider line 12: we can implement it if we can estimate

µ(MC,s) up to an error of γδ2

32 . For this, we choose O( k
γ2δ4 ) times a uni-

form w ∈ {0, 1}k and computeMC,s(w): we query f (w) and simulate all
the circuits in C on input f (w), then compare the result with P(w). Since
µ(MC,s) is just the expectation of this, the Hoeffding bound (Proposi-
tion 2.13) states that the probability of an error can be made smaller than
2−2k.
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Now consider line 4. In order to estimate r within a margin of δ
32 it is

sufficient to do O( k
δ2 ) simulations of circuits in C at random points and

that many oracle queries to f and P, again the probability that we are off
too much can be bounded by 2−2k.

It is a bit more tricky to see that we can efficiently estimate p such that
with probability 2−2k the estimate is not more than γδ2/64 off. For this,
let � be a total order on {0, 1}k satisfying

NC(w) < NC(w′)⇒ w � w′,

and such that � is simple to compute given w and w′. We set wδ to
be the element at the δ-quantile according to this order, and define the
set T := {w ∈ {0, 1}k | w � wδ}. With this notation we want to estimate
p = PrW←T [C( f (W)) = P(W)]. After drawing elements w0, . . . , ws−1,
computing f (wi), P(wi) and simulating C( f (wi)) for all circuits C ∈ C
and all i we can compute NC(wi) for all wi. Considering only the sampled
elements wi, let wδ be the element at the δ-quantile according to� and de-
fine T := {w ∈ {0, 1}k | w � wδ}. Now, p := PrW←T [C( f (W)) = P(W)]
is a good estimate for p (note that wδ must be close to wδ; this can be
shown by applying the Hoeffding bound once for a slightly smaller set
than T and once for a slightly bigger one). Further, the average of the
respective probabilities of the sampled elements smaller than wδ gives a
good estimate of p because of the Hoeffding bound. In total, we see that
s ∈ O( k

γ2δ4 ) is sufficient. ♦

We also need to show that in the idealized version of the algorithm
the measure satisfies µ(MC,s) ≥ δ whenever a circuit for this measure is
requested.
Claim 2. In every iteration µ(MC,s) ≥ δ holds after line 14.

Proof. The claim holds in the first round. Furthermore, the claim can only
be wrong if s is increased in line 12. In this case the measure cannot have
decreased for any w when compared with the iteration before. This im-
plies that the total density is at least as big as one iteration earlier, which
implies the claim by induction. ♦

Termination

We now show that the algorithm stops after at most 4γ−2δ−3 iterations.
For this, we show that A(C, s) − δs decreases by at least γδ2/8 in every
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iteration, and that the algorithm must stop if this expression gets smaller
than 0. Note that initially A(∅, 0) = 1

2γδ .
First, we show that adding a circuit to C (while leaving s constant) de-

creases A(C, s) by at least γδ
2 .

Claim 3. If CM satisfies PrW←MC,s [CM( f (W)) = P(W)] ≥ 1+γ
2 as well as

µ(MC,s) ≥ δ, then A(C∪ {CM}, s) ≤ A(C, s)− γδ
2 .

Proof. Let S+ := {w | CM(g(w)) = f (w)} (i.e., the w for which CM is
correct), S− := {w | CM(g(w)) 6= f (w)}, and C′ := C∪ {CM}.

Consider a fixed w. If w ∈ S+, then AC′ ,s(w) ≤ AC,s(w)−MC,s(w) +
γδ
2 (note that NC′(w) = NC(w) + 1, and with Figure 6.3 it is easy to see

that the area decreases by at leastMC,s(w) minus the small triangle which
is cut off in caseMC,s(w) does not stay constant when adding CM). Also,
if w ∈ S− then AC′ ,s(w) ≤ AC,s(w) +MC,s(w) + γδ

2 , using a similar ar-
gument. Thus,

A(C′, s)≤A(C, s)+
γδ

2
+

1
2k

(
∑

w∈S−
MC,s(w)− ∑

w∈S+
MC,s(w)

)
.

Now, PrW←MC,s [CM( f (W)) = P(W)] ≥ 1+γ
2 is equivalent to

∑
w∈S+

MC,s(w)− ∑
w∈S−

MC,s(w) ≥ γ ∑
w
MC,s(w),

and using µ(MC,s) ≥ δ we see that

A(C′, s) ≤ A(C, s) +
γδ

2
− γδ = A(C, s)− γδ

2
. ♦

Of course, if s is increased in line 12, then the area A(C, s) will grow.
We can give an upper bound on this:

Claim 4. If s is increased in line 12 then A(C, s + 1) ≤ A(C, s)+ δ + γδ
2 −

γδ2

8 .

Proof. First we note that for any w, AC,s+1(w) ≤ AC,s(w) +MC,s(w) +
γδ/2, and if NC(w) ≤ 0 ≤ s then AC,s+1(w) ≤ AC,s(w) +MC,s(w). Since
the loop would have stopped if S := {w | NC(w) ≤ 0} was smaller than
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(3δ/8)2k, we get

A(C, s+1) ≤ A(C, s) +
1
2k

(
∑

w∈S
MC,s(w) + ∑

w/∈S

(
MC,s(w) +

γδ

2

))
≤ A(C, s) + µ(MC,s)︸ ︷︷ ︸

≤δ(1+γδ/16)

+
(

1− 3δ

8

)γδ

2

≤ A(C, s) + δ +
γδ

2
− γδ2

8
. ♦

Claim 5. In every iteration of the loop, A(C, s)− sδ decreases by at least γδ2

8 .

Proof. Combine Claim 3 and 4. ♦

Claim 6. If A(C, s)− sδ < 0, then C is a collection which satisfies

Pr
C←C,W←S

[C( f (W)) = P(W)] >
1
2

+
1

4γδ|C|

for every S ⊆ {0, 1}k of size |S| ≥ δ2k.

Proof. LetH ⊆ {0, 1}k be a set of size δ2k for which

Pr
C←C,W←H

[C( f (W)) = P(W)]

is minimized. Since

Pr
C←C,W←H

[C( f (W)) = P(W)] =
1
2

+ ∑w∈H NC(w)
2|C||H|

it is enough to show that ∑w∈H NC(w) > 2k

2γ . We see that AC,s(w) ≥
1

2γδ + s− NC(w) (this is easiest seen as follows: 1
2γδ + s− NC(w) can be

thought of as
∫ b

a 1 dw for a := NC(w) and b := s + 1
2γδ ; comparing the

corresponding area with Figure 6.3 yields the claim), and this implies

∑
w∈H

NC(w) ≥ ∑
w∈H

1
2γδ

+ s− AC,s(w)

≥ δ2k
( 1

2γδ
+ s
)
− ∑

w∈{0,1}k

AC,s(w)

=
2k

2γ
+ δ2ks− 2k A(C, s) >

2k

2γ
. ♦
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Lemma 6.10. The loop of algorithm HardCore is traversed at most 4γ−2δ−3

times.

Proof. Initially the collection is empty, and thus A(C, s) = A(∅, 0) =
1

2γδ . Since in every iteration A(C, s) − sδ decreases by at least γδ2

8 , this
means that after at most 4γ−2δ−3 iterations A(C, s) − sδ < 0, in which
case Claim 6 implies that

Pr
C←C,W←S

[C( f (W)) = P(W)] >
1
2

+
γδ2

16

(note that |C| ≤ 4γ−2δ−3). Thus, the if statement in line 4 of the algorithm
must return true (since the guard of line 5 is wrong), and the algorithm
terminates.

The collection yields a circuit

Claim 7. Let γ : N→ (0, 1), δ : N→ (0, 1) be given, and C be a collection of
circuits such that for every set S of size |S| ≥ δ2k

Pr
W←S ,C←C

[C( f (W)) = P(W)] >
1
2

+
γδ2

16
.

Then there exists a randomized circuit C′ of size 11|C| + ∑C∈C Size(C) for
which

Pr
W←{0,1}k

[C′( f (W)) = P(W)] > 1− δ

2
+

γ2δ5

2048

with probability 1 − 2−k. Furthermore, such a circuit C′ can be found by an
algorithm from C which performsO(kγ−2δ−6) simulations of all circuits from C
and does O(kγ−2δ−6) computations of f and P. The algorithm runs in time
polynomial in the total size of the circuits in C.

The proof is analogous to the proof of Lemma 6.6, but we need to make
sure that we can find C′ efficiently.

Proof. Let � be a total order on {0, 1}k satisfying

NC(w) < NC(w′)⇒ w � w′,

and we assume that � is simple to compute given w and w′.
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First, for ϕ := γδ2

32 , we find a triple (w̃, f (w̃), P(w̃)) such that

1
2k

∣∣{w | w � w̃}
∣∣ ∈ [δ, δ(1 + ϕ)] (6.29)

with probability 1− 2−2k. This can be done efficiently as follows: sample
O(kϕ−2δ−2) many triples (w, f (w), P(w)), order them according to �,
and select the element w̃ at relative position δ(1 + ϕ/2). The Hoeffding
bound implies that we can do this such that w̃ satisfies (6.29) with proba-
bility 1− 2−2k. We compute NC(w̃) > 0, and return a circuit C′ which, on
input f (w) first computes the number

NC,1(w) :=
∣∣{C ∈ C | C( f (w)) = 1}

∣∣− ∣∣{C ∈ C | C( f (w)) = 0}
∣∣,

and then outputs one with probability

Pr
RC′

[C′( f (w)) = 1] =


0 if NC,1(w) ≤ −NC(w̃),
1
2 + NC,1(w)

2NC(w̃) if −NC(w̃) < NC,1(w) < NC(w̃),

1 if NC(w̃) ≤ NC,1(w).

Note that for a w with w 6� w̃ the circuit is always correct. For a w satisfy-
ing w � w̃, we have

Pr
RC′

[C′( f (w)) = P(w)] ≥ 1
2

+
NC(w)

2NC(w̃)
,

and thus

Pr
W←{w|w�w̃}

RC′

[C′( f (W)) = P(W)] ≥ 1
2

+
∑w�w̃ NC(w)

2NC(w̃) |{w | w � w̃}|

≥ 1
2

+
∑w�w̃ NC(w)

2
∣∣C∣∣ · ∣∣{w|w � w̃}

∣∣
= Pr

C←C,W←{w|w�w̃}
[C( f (W)) = P(w)]

≥ 1 + ϕ

2
.
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In total, we obtain

Pr
W←{0,1}k

[C′( f (W)) = P(W)]

= Pr
W←{0,1}k

[W � w′]
1 + ϕ

2
+ Pr

W←{0,1}k
[W 6� w′] · 1

≥ δ(1 + ϕ)
1 + ϕ

2
+ (1− δ(1 + ϕ))

> 1− δ

2
+

δϕ2

2
. ♦

Claim 8. Let C be a collection of circuits that 1
2k

∣∣{w | NC(w) ≤ 0}
∣∣ ≤ 7δ

16 .
Then there is a circuit C′ of size 11|C|+ ∑C∈C Size(C) for which

Pr
W←{0,1}k

[C′( f (W)) = P(W)] > 1− 7δ

16
.

Furthermore, C′ can be found efficiently from C.

Proof. The majority function applied to the output of all the circuits in the
collection satisfies the desired properties. ♦

Finishing the proof

We can now finish the proof of Theorem 6.9.

Proof (of Theorem 6.9). We use the algorithm in Figure 6.1. For the if state-
ments we use the observations in Claim 1. After running the algorithm
we get a single circuit using either Claim 7 or Claim 8.

We check statements of the theorem one by one.

• Claim 2 makes sure that we only call A with measures which sat-
isfy µ(M) ≥ δ. Further, because the algorithm stops (Lemma 6.10),
and because of Claims 7 and 8, we see that B returns a circuit for
which (6.25) holds.

• First, Lemma 6.10 states that the loop is traversed at most 4γ−2δ−3

times. Thus the algorithm does only that many calls to A. For later
we note that this also implies |C| ≤ 4γ−2δ−3.

• The number of evaluations of f and P is O(kγ−4δ−7): first, f and
P are evaluated O(kγ−2δ−4) times for every if statement (Claim 1),
totaling to O(kγ−4δ−7). Further, they are called O(kγ−2δ−6) times
to get a circuit from the collection C (Claims 7 and 8).
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• In every iteration of the loop, algorithm B does O(kγ−4δ−7) sim-
ulations of circuits returned by A (Claim 1), totaling to at most
O(kγ−6δ−10) simulations. To get a circuit from the collection we
do another O(kγ−2δ−6) simulations, which totals to O(kγ−6δ−10)
simulations.

• For a call ofM from A we have to simulate C( f (w)) for all circuits C
in C; thus at most O(γ−2δ−3) simulations need to be performed.
Also one call to f and P is needed.

• Clearly, B runs in time polynomial in γ−1, δ−1 and k.

6.2.3. Measures and Sets

As in the non-uniform case we can get a version of the hard-core lemma
which uses sets. Again, the observation is that any algorithm which pro-
duces circuits for any set of size δ2k must also work for any measure of
density δ. We only consider polynomial time algorithms and noticeable γ
and δ here because it’s the most usual case. Recall that for a set S we
use χS to denote its characteristic function.

Lemma 6.11. Let the functions f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1},
δ : N→ (0, 1) and γ : N→ (0, 1), computable in time poly(k) be given, such
that γ and δ are noticeable.

Let A(·) be a polynomial time algorithm such that for any set S ⊆ {0, 1}k

with |S| ≥ δ2k, AχS outputs a circuit C satisfying

E
RA

[
Pr

W←S
[C( f (W)) = P(W)]

]
≥ 1 + γ

2
.

If Size(C) ∈ poly(k), then there exists an algorithm A running in time poly(k)
such that for any measureM with |M| ≥ δ algorithm AM outputs a circuit
such that with probability 1− 2−2k (over RA):

Pr
W←M

[C( f (W)) = P(W)]
]
≥ 1 + γ/2

2
. (6.30)

Proof. Note that given oracle access toM(w), it is possible to efficiently
simulate an oracle χS for a set S chosen according to M (the answers
must be cached). We thus run algorithm AχS for a set S chosen according
to M. Because of Lemma 6.7 and Markov’s inequality, the probability
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that a circuit C is returned for which

q := Pr
W←M

[C( f (W)) = P(W)] ≥
1 + 3γ

4
2

. (6.31)

is noticeable (for infinitely many k). Using the Hoeffding bound it is easy
to see that we can now make sure that (6.30) holds by estimating q (we
accept if the estimate q̃ satisfies q̃ > 1+5γ/8

2 ), and such that the probability
that we accept if (6.30) does not hold is at most 2−2k.

Lemma 6.11 and Theorem 6.9 together can be used to prove Theo-
rem 6.8.

Proof (of Theorem 6.8). Assume otherwise, i.e., let A be a polynomial time
oracle algorithm, which satisfies

Pr
W←S
RA

[AχS ( f (W)) = P(W)] ≥ 1 + γ

2
,

and for which the queries of A to χS are computed independently of the
input f (w). We construct A1 as follows: first, it chooses the randomness
for A and then computes the queries A makes to χS and then outputs a
circuit which performs the same computation as A on this randomness
(this is only possible if the queries to χS are computed independently of
the input f (w)). The circuit has expected probability 1+γ

2 of being cor-
rect, and thus we can use Lemma 6.11 and get that there exists an efficient
algorithm A2 such that for any measureM with density at least δ algo-
rithm A2 outputs a circuit which satisfies

Pr
W←M

[C( f (W)) = P(W)] ≥ 1 + γ/2
2

.

with probability 1− 2−k over RA2 . We use this algorithm together with
the algorithm B from Theorem 6.9. Since A2 is efficient it only does a
polynomial number of queries to M for any call, and since γ and δ are
noticeable, the whole algorithm will be efficient. Thus, BA2 yields a cir-
cuit C which satisfies

Pr
W←{0,1}k

RB

[C( f (W)) = P(W)] ≥ 1− δ

2
+

γ2δ5

8192

with probability 1− 2−k−1. We can then simulate this circuit on the given
input and output the result which gives a contradiction.
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7. Strengthening Key Agreement

This final chapter of this thesis connects the results up to now. Assume
that a weak bit agreement protocol is given, i.e., Alice and Bob have a pro-
tocol where they end up with bits X and Y such that Pr[X = Y] ≥ 1+α

2 .
Further, assume that conditioned on the event X = Y no polynomial time
algorithm can predict these bits with probability exceeding 1+βeq

2 from the
communication Z and all but finitely many k. We show that if Alice and
Bob insert the resulting bits of this protocol into an efficient information
theoretic protocol for α-correlated random variables with equality leak-
age βeq, they obtain a computationally secure key.

An analogous lemma holds for one-way key agreement; this case is
interesting as it allows us to strengthen key agreement protocols without
adding rounds, which is important when we want to strengthen public-
key encryption schemes. The key step in the proof of these statements
uses the lemma about hard-core sets from the previous chapter.

Overview of this chapter

This chapter is organized as follows: in Section 7.1, we start with a few
preparations: first, we give a slight strengthening of Theorem 6.8 (which
is for technical reasons — basically it states that a mildly hard predicate P
which is only defined on a subset of {0, 1}k also has a hard-core set). Sec-
ond, we show that predicting P(w) from f (w) is essentially equivalent
to distinguishing P(w) from a uniform random bit given f (w); this is a
well known equivalence and we need it later. In Section 7.2 we use the
hard-core lemma to give a general method of extracting pseudorandom-
ness from a mildly hard predicate. Sections 7.3 and 7.4 then apply this
general method to our two computational settings. Thus in these sec-
tions it is shown how to strengthen both general key agreement protocols
and public-key cryptosystems. Both sections also contain theorems which
show that for black-box reductions our results are tight (in the second case
this holds only in case additional restrictions are placed on the reduction).



128 Strengthening Key Agreement

Related work

The question whether public-key encryption schemes can be strength-
ened has first been considered by Dwork, Naor, and Reingold [DNR04].
The construction they present is weaker than our construction in that it
starts from a stronger public-key encryption scheme.

A result similar to Theorem 7.3 is given implicitly in [HILL99] (see also
[Hås90]), but the proof uses a different technique. Independently of this
work, Harnik, Haitner, and Reingold [HHR05] use our hard-core lemma
to present another similar theorem. Our version is slightly stronger than
these theorems in that it allows the possibility of side information (Theo-
rem 7.3 allows a non-trivial function Leak).

Contributions of this thesis

The result of Section 7.3 is original to this thesis. It was previously pub-
lished in [Hol05] in a slightly weaker form. The result of Section 7.4 is
joint work with Renato Renner, and a slightly weaker form appears in
[HR05b]. Theorem 7.3 in Section 7.2 is a novel abstraction and unifies a
key transition step from the information theoretic to the computational
setting, which is implicitly used in both of the above references.

7.1. Preparations

We first perform two technical preparations. First, a slight strengthening
of the hard-core lemma is given. Second, we give a well known lemma
which states that predicting a bit is essentially the same as distinguishing
it from a uniform random bit.

7.1.1. Strengthening the Hard-Core Lemma

Assume that Alice and Bob have a weak key agreement protocol which
produces random variables X and Y as well as communication Z such
that Pr[X = Y] = 1+α

2 and for all polynomial time algorithms A

Pr
XYZ,RA

[A(Z) = X|X = Y] ≤
1 + βeq

2
.

We would like to use Theorem 6.8 to show that there exists a set of the
randomness Alice and Bob use such that on this set it is very hard to
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predict the key bit. However, because we have only a guarantee on the
hardness of predicting the key in case X = Y there is a minor technical
problem: Theorem 6.8 only gives an assertion for predicates which are
slightly hard on the whole domain {0, 1}k.

In this section, we remove this assumption. For this, we assume that
we have an additional function q : {0, 1}k → {0, 1} (in our application q
will indicate whether X = Y, i.e., whether the output is equal), and we
assume that it is slightly hard to predict P(w) given f (w) in case q(w) = 1.
We show that the usual hard-core lemma implies a version for this case
as well. The idea is to extend the predicate P(w) in case q(w) 6= 1 such
that it can easily be predicted in this case, and then to apply Theorem 6.8.
Lemma 7.1. Let the functions f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1},
q : {0, 1}k → {0, 1}, δ : N → (0, 1), and γ : N → (0, 1), computable
in time poly(k) be given, such that γ, δ, as well as the function given by
PrW←{0,1}k [q(W) = 1] are noticeable. Let Q := {w ∈ {0, 1}k|q(w) = 1}.

If there is no polynomial time algorithm B such that

Pr
W←Q
RB

[B( f (W)) = P(W)] ≥ 1− δ

2
(7.1)

for infinitely many k, then there is no polynomial time oracle algorithm A(·)

such that for infinitely many k the following holds: for any set S ⊆ Q with
|S| ≥ δ|Q|,

Pr
W←S
RA

[AχS ( f (W)) = P(W)] ≥ 1 + γ

2
, (7.2)

and the queries of A to χS are computed independently of the input f (w).

Proof. Define P(w) := q(w) ∧ P(w), i.e., P(w) = 1 if both P(w) = 1
and q(w) = 1. Further, define f (w) := f (w)‖q(w) as the concatenation
of f (w) and q(w).

The assumption (7.1) then implies that no polynomial time algorithm B
satisfies (for µ(Q) := |Q| 2−k)

Pr
W←{0,1}k

[B( f (W)) = P(W)]

≥ Pr
W←{0,1}k

[q(W) = 0] + Pr
W←{0,1}k

[q(W) = 1]
(

1− δ

2

)
= 1− δµ(Q)

2
.
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Applying Theorem 6.8 this means that there exists no polynomial time al-

gorithm A(·) such that, for any S ⊆ {0, 1}k with |S| ≥ |Q|δ, AχS satisfies

Pr
W←S

[AχS ( f (W)) = P(W)]
]
≥ 1 + γ

2
.

and does queries to χS which are independent of S . However, any algo-

rithm AχS which contradicts (7.2) gives such an algorithm A(·) (because
in case q(w) = 0 it is easy to predict P from f ).

7.1.2. Predicting and Distinguishing Single Bits

We will need a simple (well known) lemma which states that if an algo-
rithm which gets f (w) can distinguish P(w) from a uniform bit slightly
better than guessing uniformly at random, then it can be used to pre-
dict P(w) from f (w) slightly better than a uniform random guess.
Lemma 7.2. Let functions f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1}, and
a distribution PW over {0, 1}k be given. There is an oracle algorithm B(·) such
that, for any algorithm A, setting

ε := Pr
W←PW

RA

[A( f (W), P(W)) = 1]− Pr
W←PW

U←{0,1},RA

[A( f (W), U) = 1], (7.3)

algorithm BA satisfies

Pr
W←PW

RB

[BA( f (W)) = P(W)] =
1
2

+ ε,

does one oracle call to A, and computes one XOR.

Note that in this lemma ε cannot be larger than 1
2 , since a uniform bit

is equal to P(w) with probability 1
2 . This explains why the probability

that BA is correct can be 1
2 + ε and not only 1+ε

2 .

Proof. On input f (w), Algorithm B chooses a bit u uniformly at random
and simulates A( f (w), u). Assume that A answers with the bit b. Then B
outputs b⊕ u⊕ 1.

For u ∈ {0, 1} and w ∈ {0, 1}k let

pw,u := Pr
RA

[A( f (w), u) = 1].
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With this notation we can rewrite (7.3) as follows:

ε = E
W←PW

[pW,P(W)]− E
W←PW
U←{0,1}

[pW,U ]

= E
W←PW

[
pW,P(W) −

pW,P(W) + pW,1−P(W)

2

]
= E

W←PW

[ pW,P(W) − pW,1−P(W)

2

]
. (7.4)

The output of Algorithm B is correct in two cases: if u = P(w) and
the output of A is 1, or if u 6= P(w) and the output of A is 0. Thus, the
probability that the output of B is correct is (where we use (7.4)):

Pr
W←PW

[BA( f (W)) = P(W)] = E
W←PW

[
1
2
(

pW,P(W) + 1− pW,1−P(W)
)]

= E
W←PW

[1 + pW,P(W) − pW,1−P(W)

2

]
=

1
2

+ ε.

7.2. Extraction of Pseudorandomness

Assume that functions f : {0, 1}k → {0, 1}` and P : {0, 1}k → {0, 1} are
given such that every algorithm A running in polynomial time satisfies

Pr
W←{0,1}k

RA

[A( f (W)) = P(W)] ≤ 1 + β

2

for a given function β : N → [0, 1] and all but finitely many k. Choose
values wn = (w0, . . . , wn−1) independently and uniform from {0, 1}k. If n
is large enough, the hard-core lemma suggest that a polynomial time al-
gorithm which has given the concatenation

f (n)(wn) := f (w0)‖ . . . ‖ f (wn−1)

of all f (wi) can not predict P(wi) better than a random guess for about
(1− β)n of the instances. While we cannot tell which instances are hard,
we should be able to use an extractor (see Section 2.5) to get roughly
(1− β)n (minus some entropy loss) uniform looking bits out of

P(n)(wn) := P(w0)‖ . . . ‖P(wn−1),
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even conditioned on f (n)(wn).
In fact, let Ext be a function such that for any distribution PXZ with

Advmax(X|Z) ≤ β (recall Definition 2.1, page 11) the outcome of Ext(Xn)
is ε-close to uniform with respect to Zn (recall Definition 2.7, page 15)
for some negligible ε. We believe that applying Ext on P(n)(wn) yields
bits which are computationally indistinguishable from uniform, even if
a distinguisher also gets f (n)(wn). The theorem below states that this is
indeed the case, but it asserts even more. Namely, assume that addition-
ally a function Leak is given. If, for any distribution as above, the output
of Ext is ε-close to uniform with respect to the concatenation of Zn and
Leak(Xn), then Ext(P(n)(wn)) yields bits which are pseudorandom even
if both f (n)(wn) and Leak(P(n)(wn)) are given.

Actually, we need to make the theorem a bit more complicated: we
additionally assume the existence of a function q : {0, 1}k → {0, 1}which
signals whether ( f (w), P(w)) are a valid pair (in our application with two-
way key agreement, P(w) will be the key bit of the weak scheme; it will
be valid if X = Y; in the one-message case it will always be valid).
Theorem 7.3. Let the functions

f : {0, 1}k → {0, 1}`, P : {0, 1}k → {0, 1},
q : {0, 1}k → {0, 1}, β : N→ [0, 1],

computable in time poly(k) be given, and define the set

Q := {w ∈ {0, 1}k|q(w) = 1}.

Assume that every polynomial time algorithm satisfies

Pr
W←Q
RB

[B( f (W)) = P(W)] ≤ 1 + β

2
(7.5)

for all but finitely many k.
Further, let also functions n(k), s(k),

Ext : {0, 1}n × {0, 1}n × {0, 1}s → {0, 1}t,

Leak : {0, 1}n × {0, 1}n × {0, 1}s → {0, 1}t′ ,

be given which are evaluable in time poly(k), and satisfy the following: for any
distribution PQXZ over {0, 1} × {0, 1} × Z with

PQ(1) = Pr
W←{0,1}k

[q(W) = 1]
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and for which PXZ|Q=1 has leakage at most β, the output of Ext(Qn, Xn, R)
is ε(k)-close to uniform with respect to (Zn, Leak(Qn, Xn, R)) (where R is a
uniform bit string of length s).

Then, no polynomial time algorithm A, which gets as input f (n)(wn) and
Leak(q(n)(wn), P(n)(wn), R), distinguishes

Ext(q(n)(wn), P(n)(wn), R)

from a uniform random string of length t with advantage ε + γ, for any non-
negligible function γ.

Proof. We assume a contradicting algorithm A exists, and show that this
implies the existence of a polynomial time algorithm B contradicting (7.5).
Lemma 7.1 states that for this it is sufficient to give an oracle algorithm
algorithm AχS which, for any set S ⊆ Q with |S| ≥ (1− β)|Q| satisfies

Pr
W←S
RA

[AχS ( f (W)) = P(W)] ≥ 1 + γ′

2
,

for some non-negligible function γ′, and calls χS only with queries which
are computed independently of the input.

First consider the following random experiment, defined for any fixed
j ∈ {0, . . . , n} and any fixed set S ⊆ Q : start by choosing independent
uniform bit strings wi ∈ {0, 1}k as well as uniform bits ui ∈ {0, 1} for
all i ∈ {0, . . . , n− 1}. Then set values yi, as

yi :=

{
P(wi) if i ≥ j or wi /∈ S ,
ui otherwise.

(7.6)

Continue by choosing r0 ∈ {0, 1}s uniformly at random and set

ej := Ext(q(n)(wn), yn, r0) and

`j := Leak(q(n)(wn), y(n), r0). (7.7)

Let PEj be the distribution of ej, PLj the distribution of `j, and PF be the

distribution of f (n)(wn).
We can see that PFL0E0 is one of the distributions for which A is usually

called (the one which is not uniform). On the other hand, the information
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theoretic requirement on the functions Ext and Leak imply that En is ε-
close to uniform conditioned on (Ln, F). With these facts we get∣∣∣ Pr

RA ,E0,L0,F
[A(E0,L0, F) = 1]

− Pr
RA ,En ,Ln ,F

[A(En, Ln, F) = 1]
∣∣∣ ≥ γ. (7.8)

This implies

E
J←{0,...,n−1}

[∣∣∣ Pr
RA ,EJ ,LJ ,F

[A(EJ , LJ , F)=1]

− Pr
RA ,EJ+1,LJ+1,F

[A(EJ+1, LJ+1, F)=1]
∣∣∣] ≥ γ

n
. (7.9)

Given this we now show how to implement a distinguisher which dis-
tinguishes ( f (w), P(w)) from ( f (w), U) with advantage γ/n, if w is cho-
sen uniformly from S and U a uniform random bit, as long as oracle
access to χS is given. On input ( f (w), b), the distinguisher first picks
wi ∈ {0, 1}k, ui ∈ {0, 1} as well as j ∈ {0, . . . , n − 1} uniformly at ran-
dom, computes f (wi), P(wi), and yi as in (7.6). If wj ∈ S , he replaces
f (wj) with the input f (w), and yi with b. Then, he evaluates ej and `j as
in (7.7). If b is a uniform bit, then this process gives random variables dis-
tributed according to PEj+1Lj+1F, otherwise it gives random variables dis-
tributed according to PEj Lj F. Thus, running A gives a distinguisher which
can be used in Lemma 7.2, and from the result we can apply Lemma 7.1
to get the theorem.

7.3. Key Agreement

Let a computational bit agreement protocol which has only weak security
be given. We consider the distribution PXYZ over {0, 1} × {0, 1} × {0, 1}`
which is generated by this protocol, where x is the key bit of Alice, y is
the key bit of Bob, and z is the communication produced.
Theorem 7.4. Let functions α : N → [0, 1] and βeq : N → [0, 1], both
efficiently computable, be given. Let a computational bit agreement protocol be
given which produces a distribution PXYZ, such that

Pr
PXY

[X=Y] ≥ 1 + α

2
(7.10)
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and for which all polynomial time algorithms A satisfy

Pr
RA ,XYZ

[A(Z)=X|X=Y] ≤
1 + βeq

2
(7.11)

for all but finitely many k. Further, let an information theoretic protocol be given
which takes α-correlated random variables with equality leakage βeq as as well
as k as input, produces a key of length m(k) with soundness and secrecy 1− 2−k

and runs in time poly(k). Then, using the information theoretic protocol where
every instance of the random variables is replaced by an independent outcome of
the computational protocol gives a computationally secure key agreement proto-
col.

Proof. First we note that it is clear that the resulting key has soundness 1−
2−k, since PXY has correlation α.

In order to prove the secrecy, we would like to use Theorem 7.3. For
this we describe the computational protocol by the following functions:
f : {0, 1}k → {0, 1}`, mapping the concatenation of the randomness of
Alice and Bob to the communication, PA : {0, 1}k → {0, 1} which maps
the randomness to the key bit x of Alice, and q : {0, 1}k → {0, 1}which is
defined as

q(w) :=

{
1 if x = y for randomness w
0 otherwise.

The functions Ext and Leak are defined by the information theoretic key
agreement protocol; Ext produces the key of Alice while Leak produces
the communication of the protocol. The input is given by Xn (i.e., the
random variables), Qn := Xn ⊕ Yn, and the joint randomness R which
Alice and Bob may use in the protocol.

Now Theorem 7.3 can be applied. Note that all assumptions hold: first,
it is easy to check that all functions can be evaluated in time poly(k).
Second, the requirement of the ε-closeness of Ext(Qn, Yn, R) with respect
to (Zn, Leak(Qn, Yn, R)) translates directly to the security requirement of
the information theoretic protocol.

From Theorem 4.23 we know for which parameters α and βeq informa-
tion theoretic key agreement exists, we can get the following corollary.
Corollary 7.5. Let efficiently computable functions α(k), βeq(k), be given such
that

1− α

1 + α
< 1− βeq. (7.12)
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Let ϕ := max

(
2, 8

log(
(1−βeq)(1+α)

1−α )

)
and γ := 1

log(1+((1−α)/(1+α))ϕ) , and as-

sume that ϕ24γ

α ∈ poly(k). If there exists a weak bit agreement protocol which
generates a distribution PXYZ for which

Pr
PXY

[X = Y] ≥ 1 + α

2

and for which all polynomial time algorithms A satisfy

Pr
RA ,W

[A(Z)=X|X=Y] ≤
1 + βeq

2
.

for all but finitely many k, then there exists a computationally secure key agree-
ment protocol.

Proof. Combine Theorems 4.23 and 7.4.

We note that the corollary is tight in the following sense: if α and βeq do
not satisfy (7.12), i.e., 1−α

1+α ≥ 1− βeq, then Theorem 4.24 shows that there
exists a bit agreement protocol which yields random variables with cor-
relation α and equality leakage βeq. Clearly, showing that such a protocol
implies key agreement is equivalent to proving that key agreement exists
unconditionally. Since random variables with equality leakage βeq also
have the analogous computational hardness, strengthening Corollary 7.5
in that way would imply is impossible.
Theorem 7.6. Let constants α ∈ [0, 1] and βeq ∈ [0, 1] be given. Using a
black-box reduction, it is possible to base key agreement on a weak bit agreement
protocol which generates a distribution PXYZ with

Pr
PXY

[X = Y] ≥ 1 + α

2

and for which all polynomial time algorithms A satisfy

Pr
RA ,PXYZ

[A(Z)=X|X=Y] ≤
1 + βeq

2
.

for all but finitely many k, if and only if

1− α

1 + α
< 1− βeq.

Proof. Directly from Corollary 7.5 and Theorem 4.24.
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7.4. Public-Key Encryption

A public-key encryption scheme is a key agreement protocol which has
only two rounds. The name stems from the fact that in such a protocol
the first message can be distributed to everybody, i.e., made public. Us-
ing this message, anyone can then finish the key agreement protocol by
computing the second message and sending it to the initial sender. If this
initial sender remembers the randomness used to generate the first mes-
sage, the reply is sufficient for the two parties to agree on a shared key,
which can then be used to encrypt a message. The party which replied
usually does so immediately and concatenates the encryption to the sec-
ond message of the key agreement protocol.

In this setting, we assume that Bob sends the first message.

Strengthening public-key encryption

We now show how to strengthen such a public-key encryption scheme.

Theorem 7.7. Let functions α : N→ [0, 1] and β : N→ [0, 1], both efficiently
computable, be given. Let a public-key encryption scheme be given where Bob
sends the first message which produces a distribution PXYZ such that

Pr
PXY

[X=Y] ≥ 1 + α

2
,

and for which all polynomial time algorithms A satisfy

Pr
RA ,PXZ

[A(Z)=X] ≤ 1 + β

2
.

Further, let an information theoretic one-message protocol be given which takes
as input k as well as α-correlated random variables with leakage β, produces a key
of length m(k) with soundness 1− 2−k and secrecy 1− 2−k and runs in time
poly(k). Then, using the information theoretic protocol where every instance
of the random variables is replaced by an independent outcome of the public-key
encryption scheme gives a computationally secure public-key encryption scheme.

Proof. Again we can apply Theorem 7.3. This is done exactly as in the
proof of Theorem 7.4, but in this case we define q(w) := 1 for all w.

The fact that we obtain a public-key encryption scheme is immediate,
since the number of rounds in the protocol is not increased.
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Corollary 7.8. Let efficiently computable functions α and β be given, as well as
a β-secure public bit encryption scheme with correlation α, such that α2 > β.
Further, let γ := max(1, 1

log(α2/β) ). If γα−12γ ∈ poly(k), then there exists a
public key encryption scheme.

Proof. Combine Theorems 4.14 and 7.7.

Tightness

We show that our results are tight, as long as one is restricted to a certain
class of reductions. In order to argue about this class, we first character-
ize a public-key encryption scheme by the three functions, one for each
round.

In the context of public-key encryption schemes, usually the following
naming conventions are used. The method to obtain the first message
is called a key-generation algorithm G, and the first message is the public
key pk. The randomness which is used as input to the key-generation al-
gorithm is then the secret key sk. The algorithm to generate the second
message is called encryption algorithm Enc (usually it takes an additional
input besides randomness which is then encrypted, i.e., the two tasks of
key agreement and encryption are done at the same time; we do not fol-
low this convention however), and the last algorithm is then analogously
called decryption algorithm Dec.

We assume that these functions have the following form:

• G(sk) : {0, 1}` → {0, 1}`,

• Enc(pk, ρ) : {0, 1}` × {0, 1}` → {0, 1}2` × {0, 1},

• Dec(c, sk) : {0, 1}2` × {0, 1}` → {0, 1}

The function Enc (for encrypt) takes as input the communication pro-
duced by Bob, and the randomness ρ of Alice, it outputs communication c
and a key bit X. The function Dec (for decrypt) takes as input the commu-
nication c from Alice, and the randomness sk from Bob, and outputs a key
bit Y.

We prove that our reduction is tight for a class of reductions which we
call “restricted black-box reductions”.
Definition 7.9 (Restricted Black-box Reductions). A restricted black-box
reduction for an α-correlated public-key encryption scheme with computational
leakage β consists consists of three oracle algorithms G(·), Enc(·) and Dec(·),
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which have oracle access to the three functions G′, Enc′ and Dec′ and adhere to
the following limitations:

• G has access to G′. Further, it queries G′ only on independent, uniformly
random chosen inputs. It outputs all the results, and does no further com-
putation.

• Enc has access to Enc′. It queries Enc′ with every output by G′ exactly
once, and the results appear in the output of Enc. It may additionally do
any other computation.

• Dec has access to Dec′.

Additionally, there is a black-box security proof of the reduction, i.e., an oracle
algorithm which, for any oracle breaking the resulting scheme, breaks the original
scheme with advantage exceeding β, assuming that the original scheme produces
random variables with correlation at least α.

The restrictions in Definition 7.9 are very strong, but our method to
strengthen weak public-key encryption satisfies them. The restrictions
we make could be relaxed slightly at some points and the proof of the fol-
lowing lemma still works. However, we believe that such slight changes
provide no new insight.
Lemma 7.10. Let parameters α, β ∈ [0, 1] be given. If there is a restricted black-
box reduction which constructs a public-key encryption scheme from a weak
public-key encryption scheme which satisfies

Pr
PXY

[X = Y] ≥ 1 + α

2

and

Pr
PXZ ,RA

[A(Z) = X] <
1 + β

2
.

Then, there exists an information theoretic one-message key agreement scheme
for α-correlated random variables with leakage β.

Proof. We can assume without loss of generality that the resulting scheme
generates a single key bit.

Let oracle algorithms G, Enc and Dec be given which adhere to the lim-
itations of Definition 7.9. From these algorithms we construct an infor-
mation theoretic one message key agreement protocol which produces a
secure key for α-correlated random variables with leakage β. Thus, let a
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distribution PXYZ with correlation α and leakage β be given. We can as-
sume that the distribution PXYZ satisfies PX(0) = PX(1) = 1

2 (otherwise,
Alice can XOR X with a uniform random bit and send the result to Bob to
obtain such a distribution).

In a first step, Alice runs G, and whenever the algorithm calls G′ on
a uniform random input ski, Alice simulates G′ by returning a uniform
random value pki ∈ {0, 1}`. Then, Alice remembers the pair (ski, pki). In
a second step, Alice runs the encryption procedure Enc, where, on every
call to the oracle Enc′, she obtains a new random variable Xi which she
treats as the weak key bit Enc′ agreed upon, and then outputs a random
communication value ci ∈ {0, 1}2`. She then stores (ci, i). Alice continues
the simulation until she obtains a message generated by Enc and a secret
bit SA.

Next, Alice sends the message generated by Enc as well as all tuples
(ski, pki, ci) to Bob. These tuples are sent sorted, so Bob knows which
entry belongs to which random variable.

Bob can find the SB by simulating the algorithm Dec. Any query Dec
makes to Dec′ with a query in the list and the correct secret key will be
answered by Yi. Otherwise, a random bit is returned. It is easy to see that
Alice and Bob will obtain agreement on the secret bit with overwhelming
probability: otherwise, oracles (G′′, Enc′′, Dec′′) for which the reduction
fails can be constructed.

We next show that the protocol is information theoretically secure. We
will prove this by contradiction. Thus, assume above protocol is insecure.
We see that Eve gets a sample of(

Zn, m, (sk1, pk1, c1), . . . , (skn, pkn, cn)
)

,

where m is the communication produced by Enc. As a first observation
we see that the secret keys ski are independent of the rest, and thus Eve
can fill those with her own randomness. Thus, from now on we assume
that Eve sees a a sample of(

Zn, m, (pk1, c1), . . . , (pkn, cn)
)

. (7.13)

Now, if the protocol is information theoretically insecure, we can assume
that the statistical distance ϕ of the distribution in case SA = 0 from the
distribution in case SA = 1 is non-negligible (otherwise a secure protocol
can be constructed). Thus, by trying all possible values for Xi and the
randomness used, we can, in polynomial space, find SA with advantage
ϕ.
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Let now G′ be a randomly chosen permutation. Further, let Enc′ also
be a random permutation if restricted to the first 2` bits of the output,
and choose the last one (the key bit) uniformly at random. Then, choose
a function Dec′ such that it outputs the same bit as Enc′ with the cor-
responding input with probability (1 + α)/2. Finally, we define an ad-
ditional oracle Break′(c) : {0, 1}2` → Z using the distribution PXZ for
which the above protocol fails; i.e., from the communication c the ora-
cle finds the key bit SA = X of Alice, and then chooses Z according to
PZ|X . Giving Eve access to the oracle Break′ does not violate the security
requirement of the initial protocol: still no efficient algorithm can find X
probability exceeding 1+β

2 .
If the protocol is now run, Eve sees an instance of(

m, pk1, . . . , pkn, c1, . . . , cn

)
.

Using the algorithm Break′, Eve can obtain Z1, . . . , Zn to get an element of
the same distribution as in in (7.13):(

Zn, m, (pk1, c1), . . . , (pkn, cn)
)

.

Together with a PSPACE-algorithm Eve can break the scheme with ad-
vantage ϕ. Since breaking a single instance better than with probability
1− β is impossible using the security property of the reduction we arrive
at a contradiction.

Now we know exactly for what parameters α and β a restricted black-
box reduction exists. We remark that we do not know how to prove that
the following theorem also holds for arbitrary black-box reduction (even
though we think that this could be true).
Theorem 7.11. Let α, β be constants. There exists a restricted black-box reduc-
tion for α-correlated public-key encryption with leakage β to public-key encryp-
tion if and only if α2 > β.

Proof. From Corollary 7.8 (noting by inspection that our proof gives a re-
stricted black-box reduction) and from Lemma 7.10.
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A. On the Binomial Distribution

In this section we prove Lemma 2.14. For this we first introduce the binary
Kullback-Leibler distance:

Definition A.1 (Kullback-Leibler distance). For p, q ∈ [0, 1], the binary
Kullback-Leibler distance D(q‖p) is defined as

D(q‖p) := q log
( q

p

)
+ (1− q) log

( 1− q
1− p

)
.

The following lemma describes the asymptotic behavior of D(p + ε‖p)
for small ε.

Lemma A.2. For p ≥ 1
2 , ε ≥ 0, p + ε < 1

D(p + ε‖p) ≤ ε2

2 ln(2)p(1− p)
.

Proof. Define the function fp(ε) := D(p + ε‖p). Taylor’s Theorem states
that there exists a δ ∈ [0, ε] such that

D(p + ε‖p) = fp(ε) = fp(0) + f ′p(0)ε + f ′′p (0)
ε2

2
+ f ′′′p (δ)

ε3

6
. (A.1)

A simple calculation yields fp(0) = f ′p(0) = 0 and f ′′p (0) = 1
ln(2)p(1−p) .

Also we get

f ′′′p (ε) =
2p + 2ε− 1

(p + ε)2(p + ε− 1)2 ln(2)
,

which is positive for our parameters. Together with (A.1) this gives the
lemma.

We further use the following well known approximation of n! by Stir-
ling.
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Proposition A.3. For any n > 0
√

2π nn+ 1
2 e−n+1/(12n+1) < n! <

√
2π nn+ 1

2 e−n+1/(12n), (A.2)

or, equivalently,

e
1

12n+1 <
n! en
√

2πn nn
< e

1
12n . (A.3)

Using Proposition A.3 we can give a bounds on Pp(k|n); we are inter-
ested in the lower bound, the upper bound is given only for complete-
ness.
Lemma A.4. For 0 < k < n, let Pp(k|n) := (n

k)pk(1− p)n−k. Then

e−
1

12k−
1

12(n−k) < Pp(k|n)
√

2π
k(n−k)

n 2nD( k
n ‖p) < 1.

Proof. We get

Pp(k|n)
√

2π
k(n−k)

n 2nD( k
n ‖p)

= pk(1− p)n−k n!
k! (n− k)!

·
√

2π
k(n−k)

n · 2(k log( k
pn )+(n−k) log( n−k

(1−p)n ))

= pk(1− p)n−k n!
k! (n− k)!

·
√

2π
k(n−k)

n ·
( k

pn

)k
·
( n− k

(1− p)n

)n−k

=
√

2π
k(n−k)

n · n!
k! (n− k)!

·
( k

n

)k
·
(n− k

n

)n−k

=
n! en
√

2πn nn
·
√

2πk kk

k! ek ·
√

2π(n− k) (n− k)n−k

(n− k)! en−k . (A.4)

Using (A.3) three times we obtain

Pp(k|n)
√

2π
k(n−k)

n 2nD( k
n ‖p) > e

1
12n+1 e−

1
12k e−

1
12(n−k) > e−

1
12k−

1
12(n−k) .

Analogously (and since either 1
12n < 1

12k+1 or 1
12n < 1

12(n−k)+1 )

Pp(k|n)
√

2π
k(n−k)

n 2nD( k
n ‖p) < e

1
12n e−

1
12k+1 e−

1
12(n−k)+1 < 1.

Corollary A.5. Let p ≥ 1
2 , pn ≤ k < n. Let Pp(k|n) := (n

k)pk(1− p)n−k.
Then

Pp(k|n) > e−
1

6(n−k)
√

n
2πk(n−k) e−n ( k

n−p)2

2p(1−p) .
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Proof. From Lemma A.4 we get

Pp(k|n) > e−
1

12k−
1

12(n−k)
√

n
2πk(n−k) 2−nD( k

n ‖p)

≥ e−
1

6(n−k)
√

n
2πk(n−k) 2−nD( k

n ‖p),

where we used k ≥ n
2 . Using the estimate in Lemma A.2 concludes the

proof.

We can now prove Lemma 2.14 (reproduced here for convenience).
Lemma 2.14. Let p ≥ 1

2 , r, s ∈N such that pr + 3s ≤ r. Then,

dpre+2s−1

∑
k=dpre+s

Pp(k|r) >
s

2
√

r
e−

2s2
rp(1−p) .

Proof. Clearly, r
k(r−k) ≥

4
r , for all values of r and k in the sum. Since

k < pr + 2s for all values in the above sum we get k
r − p < 2s

r , and also
we see that r− k ≥ s. Using this together with Corollary A.5 thus implies
for all k of interest

Pp(k|r) > e−
1
6s

√
2

πr
e−r ( 2s

r )2

2p(1−p)

>
1

2
√

r
e−

2s2
rp(1−p) .

Since there are s summands we get the lemma.
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[Hås90] Johan Håstad. Pseudo-random generators under uniform as-
sumptions. In Proceedings of the Twenty Second Annual ACM
Symposium on Theory of Computing, pages 395–404, 1990.

[HHR05] Iftach Haitner, Danny Harnik, and Omer Reingold. On the
power of the randomized iterate. Technical Report TR05-
135, Electronic Colloquium on Computational Complexity
(ECCC), 2005.
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