Selected Topics in
Secure Multi-Party Computation

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Daniel Tschudi
MSc ETH Mathematics, ETH Zurich

born on 15 May 1988
citizen of Glarus GL, and Zürich ZH, Switzerland

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Dr. Martin Hirt, co-examiner
Prof. Dr. Jesper Buus Nielsen, co-examiner

2018
Acknowledgments

First of all, I would like to thank my advisor Ueli Maurer for giving me the opportunity to do a PhD in his group and explore the fascinating world of cryptography. His abstract perspective on cryptography lead to many interesting discussions.

I owe a great debt of gratitude to Martin Hirt. He always had time for me and taught me in endless, but enlightening discussions how to transform cool ideas into presentable results. His support and patience were a great help in reaching this point. I would also like to thank him for organizing the applied geometry seminar

Sincere thanks go to Jesper Buus Nielsen for kindly agreeing to serve as a co-examiner on my committee.

I thank all my collaborators on projects both in and outside the scope of this thesis – Christian Badertscher, Juan Garay, Chen-Da Liu Zhang, Julian Loss, Marta Mularczyk, Martin Raszyk, and Vassilis Zikas. In particular, I would like to thank Vassilis for his advice on writing papers.

Special thanks go to my long-term office mates Chen-Da Liu Zhang and Sandro Coretti, who had to endure me and were great partners for discussing research and all kinds of other things. I am also grateful to all the other former and current members of the Information Security and Cryptography Group at ETH that have been my colleagues: Peter Gaži, Maria Dubovitskaya, Björn Tackmann, Pavel Raykov, Gian Pietro Farina, Robert Enderlein, Grégory Demay, Christian Matt, Daniel Jost, Gregor Seiler, Christopher Portmann, and Fabio Banfi.

I would also like to thank our group and department secretaries Beate Bernhard, Claudia Günthart, and Denise Spicher for helping with all the

1a.k.a. the pool billiards sessions over lunch
administrative tasks.

Doing a PhD can be harsh at times. I would therefore thank my parents Edith and Thomas, and my brothers Christian and Lukas, for their support during such times—and all other times as well.
Secure multi-party computation (MPC) allows a set of n parties to evaluate a function f in the presence of an adversary who corrupts a subset of the parties. In this work we investigate three selected topics in the area of MPC.

Most MPC protocols require that parties are pair-wise connected by means of secure channels. To run an MPC over an incomplete network, secure message transfer protocols (SMTP) can be used. However, classic SMTP leaks information about the topology of the underlying network. In the first part of this thesis, we present the first topology-hiding communication protocol for incomplete networks which makes black-box use of the underlying cryptographic assumptions. The protocol tolerates any adversary who passively corrupts arbitrarily many network nodes. This protocol allows to make any MPC protocol with passive security topology-hiding. We further show how to construct anonymous broadcast without using expensive MPC to setup the original pseudonyms.

Broadcast channels are an important primitive used in many MPC protocols. It is well-known that broadcast channels can be achieved with perfect security if and only if the fraction of active cheaters is less than a third. A natural question initially raised by Lamport, is whether there are weaker, still useful primitives achievable from authenticated channels. In the second part of the thesis we investigate generalizations of the broadcast setting in two directions: weaker forms of consistency guarantees are considered, and other resources than merely bilateral channels are assumed to be available. The ultimate goal of this line of work is to arrive at a complete classification of consistency specifications.

In the third part of the thesis, we consider active, general adversaries which are characterized by a so-called adversary structure \mathcal{Z}. The ad-
versary structure enumerates all possible subsets of corrupted parties. Protocols for general adversaries are “efficient” in the sense that they require $|\mathcal{Z}|^{O(1)}$ bits of communication. However, as $|\mathcal{Z}|$ is usually very large (even exponential in n), the exact exponent is very relevant. For the setting with perfect security we present a protocol which requires $O(|\mathcal{Z}|^2)$ bits of communication. For the setting with statistical security we present a protocol which requires $O(|\mathcal{Z}|)$ bits of communication. Both protocols have a better communication complexity than previous protocols.
Zusammenfassung

Sichere Mehrspielerberechnung (MSB) erlaubt n Parteien eine Funktion f in Präsenz eines Gegner, der eine Teilmenge der Parteien korrumpiert, sicher zu berechnen. In dieser Arbeit untersuchen wir drei ausgesuchte Themenbereiche im Gebiet der MSB.

Rundfunkkanäle sind ein wichtiges Grundelement, das in vielen MSB-Protokollen verwendet wird. Es ist wohlbekannt, dass Rundfunkkanäle genau dann konstruiert werden können, wenn der Anteil an aktiven Betrügern weniger als ein Drittel beträgt. Eine natürliche Frage, die zuerst von Lamport aufgeworfen wurde, ist, ob es schwächere, aber noch immer nützliche Primitiven gibt, die aus authentifizierten Kanälen erreichbar sind. Im zweiten Teil der Dissertation werden zwei Richtungen zur Verallgemeinerungen dieses Unmöglichkeitsresultats untersucht: Schwächere Formen von Konsistenzgarantien werden betrachtet und andere Ressour-
cen als nur bilaterale Kanäle werden als verfügbar vorausgesetzt. Das ultimative Ziel in dieser Fragestellung ist, eine vollständige Klassifizierung der Konsistenzspezifikationen zu erreichen.

Im dritten Teil der Dissertation werden aktive Allgemeingegner betrachtet, die durch eine sogenannte Gegnerstruktur \mathcal{Z} gekennzeichnet sind. Die Gegnerstruktur zählt alle möglichen Mengen korrumpierter Parteien auf. Protokolle für Allgemeingegner sind "effizient" in dem Sinne, dass sie $|\mathcal{Z}|^{\mathcal{O}(1)}$ Bits Kommunikation benötigen. Da $|\mathcal{Z}|$ normalerweise sehr gross ist (sogar exponentiell in n), ist der exakte Exponent äusserst relevant. Für perfekte Sicherheit wird ein Protokoll präsentiert, das $\mathcal{O}(|\mathcal{Z}|^2)$ Bits Kommunikation benötigt. Für statistische Sicherheit wird ein Protokoll präsentiert, das $\mathcal{O}(|\mathcal{Z}|)$ Bits Kommunikation benötigt. Beide Protokolle haben eine bessere Kommunikationskomplexität als alle bisherigen Protokolle.
Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

Contents ix

1 Introduction 1

1.1 Secure Multi-Party Computation 2

1.1.1 Multi-Party Computation Models 2

1.1.2 History of MPC 4

1.2 Contributions 4

1.2.1 Topology-Hiding Communication 4

1.2.2 Classification of Consistency Specification 5

1.2.3 Efficient General Adversary MPC 6

2 Preliminaries 9

2.1 General Notation 9

2.2 Cryptographic Primitives 10

2.2.1 Broadcast Channel 10

2.2.2 Public-Key Encryption 10

2.2.3 Threshold Public-Key Encryption 11

2.3 Hardness Assumptions 12

2.3.1 Decisional Diffie-Hellman Assumption 12
Contents

3 Topology-Hiding Communication

3.1 Introduction .. 13
 3.1.1 Related Literature 14
 3.1.2 Contributions 16
 3.1.3 Comparison with [MOR15] 19
 3.1.4 Preliminaries and Notation 21
 3.1.5 Outline .. 21

3.2 Topology-Hiding Security Definition 22

3.3 MHT-PKE with Reversible Randomization 25
 3.3.1 Multi-Homomorphic Threshold Encryption 26
 3.3.2 Reversible Randomization 29
 3.3.3 RR-MHT-PKE based on DDH 31

3.4 Topology-Hiding Communication 35
 3.4.1 Topology-Hiding Threshold Encryption 36
 3.4.2 Multi-Party Boolean OR 47
 3.4.3 Topology-Hiding Broadcast 48

3.5 Applications .. 49
 3.5.1 Topology-Hiding Secure MPC 49
 3.5.2 Anonymous Broadcast 50

4 Classes of Consistency Specifications

4.1 Introduction .. 55
 4.1.1 Contribution and Outline 56
 4.1.2 Related Work 57

4.2 Preliminaries ... 59
 4.2.1 Consistency Specifications 59
 4.2.2 Protocols and Constructions 61

4.3 Impossibility Proofs 64
 4.3.1 Broadcast Impossibility 65
 4.3.2 Strong Broadcast Impossibility 66

4.4 Classification of Specifications 69
 4.4.1 Classification of Single-Input Specifications 70

4.5 Strong Separation Results 77
 4.5.1 XOR-Cast ... 77
 4.5.2 Weak Broadcast 80

4.6 Discussion and Open Problems 82
Chapter 1

Introduction

Alice, Bob, Charlie and Eve want to listen to some music. Bob suggests that everyone discloses their favorite artists such that they can choose music which is fine for everyone. However, from past experience Charlie and Eve both distrust each other claiming that the other person will for sure ridicule them for their music taste. Unfortunately, their friend Trent whom they all trust is sick and not there to help and choose the music for them. Alice, eager to listen to some music, interrupts the ensuing discussion and starts with “Have you ever heard of MPC?”

The above problem of choosing music is a special case of private set intersection. Private set intersection is one of a large class of problems where a set of mutually distrusting parties would like to do a joint computation. If a trusted third-party is available such problems can be solved by outsourcing the computation to the trusted party. If no trusted party is available the problems can be solved using a secure multi-party computation (MPC) protocol. More generally, MPC protocols enable the parties to emulate a trusted party which can do an arbitrary computation on the parties’ (secret) inputs.

There are many MPC problems known in the literature. In Chaum’s spymaster problem two spymasters want to learn the names of double agents, i.e. agents which work for both spy agencies. For obvious reasons,
both spymasters are reluctant to give the other the list of all their agents. In Yao’s millionaires problem, two millionaires want to determine who is richer without revealing anything else about their fortunes. In both cases MPC allows to compute the desired information without revealing any other information.

More common applications of MPC include online auctions, e-voting or the protection of customer data.

1.1 Secure Multi-Party Computation

In this section we give a short introduction to secure multi-party computation and provide an overview of the different models used. For a more detailed introduction see, e.g, [CDN15].

1.1.1 Multi-Party Computation Models

Parties and Computation. In the secure multi-party computation problem a set of \(n \) parties \(\mathcal{P} = \{P_1, \ldots, P_n\} \) (also known as players or processors) wants to compute a function \(f \) over some finite field \(\mathbb{F} \). The function is normally specified by a circuit \(\mathcal{C} \) consisting of input, output, random, addition, and multiplication gates. In an ideal world, a trusted party does all the computation. In the real world, parties emulate the trusted party by using some MPC protocol \(\Pi \).

Communication Model. The parties are connected over a network of pairwise channels. Additionally parties may have access to broadcast channels. A broadcast channel allows a party (the sender) to consistently distribute a message among all other parties. The network (topology) of channels can be complete or incomplete.

The assumed (broadcast) channels can be insecure, authentic, or even secret (authentic and private).

In this work we assume a synchronous communication model, where all channels have a known and constant upper-bound on the delay and parties have a common clock. This allows for round-based protocols.

Adversary Model. Dishonesty is modeled in terms of a central adversary \(\mathcal{A} \) who corrupts parties. There are three different corruption models:
During the execution of the protocol passively or semi-honestly corrupted parties follow protocol instructions but the adversary can access their internal state. A fail-stop corrupted party follows the protocol instructions until the adversary decided to crash it; from then on the party does no longer participate in the protocol. In particular, it does not send out messages to parties. The adversary can access the internal state of actively corrupted parties and make them deviate from the protocol at will. Parties which are not corrupted are called honest.

Often, a threshold adversary is assumed which is characterized by an upper bound \(t \) on the number of corrupted parties. Threshold adversaries are a special case of general adversaries. The corruption choice of a general adversary is limited by means of an adversary structure \(\mathcal{Z} = \{Z_1, \ldots, Z_\ell\} \subseteq 2^P \), i.e., the set \(Z^\ast \) of corrupted parties must be an element of \(\mathcal{Z} \).

A static adversary must specify the set of corrupted parties before the protocol execution. In contrast, an adaptive adversary can corrupt parties during the protocol execution.

Finally, we distinguish between computationally unbounded and computationally bounded adversaries.

Security Model. We say a protocol is secure if anything the adversary achieves during the execution of the protocol can as well be achieved in the ideal world where a trusted party does the computation. We distinguish between information-theoretic and cryptographic security. In information-theoretic security we require that for every adversary in the real world there exists an adversary in the ideal world such that both the information the adversary gets and the output of honest parties are identically distributed for perfect security respectively statistically close for unconditional security. In cryptographic security the indistinguishability between the real-world and the ideal-world relays on assumed the bounded computing power of the distinguisher and the (assumed) hardness of some computational problems.

Efficiency of MPC. There are different measures for the protocol complexity. First, we denote by the round complexity the (maximal) number of rounds the protocol requires. Next, we denote by the communication complexity the number of bits sent or received by honest parties. For
the communication complexity we only consider messages which should have been received according to the protocol description. The communication complexity can be split into the communication complexity for normal channels and the broadcast complexity which measures the number of broadcast bit. Sometimes, one also considers the computational complexity of the (local) computation of an honest party.

1.1.2 History of MPC

MPC was introduced by Yao [Yao82]. A first solution (with computational security) was given by Goldreich, Micali, and Wigderson [GMW87]. Later solutions [BGW88, CCD88, RB89] provide statistical and even perfect security. All these protocols consider threshold adversaries. This was generalized in [HM00] by considering general adversaries.

In the setting with perfect active security, MPC is achievable if and only if \(t < \frac{n}{3} \), respectively \(Q^3(\mathcal{P}, \mathcal{Z}) \) (the union of no three sets in \(\mathcal{Z} \) covers \(\mathcal{P} \)). In the setting with statistical or cryptographic active security, MPC is achievable if and only if \(t < \frac{n}{2} \), respectively \(Q^2(\mathcal{P}, \mathcal{Z}) \) (the union of no two sets in \(\mathcal{Z} \) covers \(\mathcal{P} \)) if given broadcast.

1.2 Contributions

The contributions of this thesis comprise a protocol for topology-hiding communication [HMTZ16], a classification of consistency specifications [LMT16, LMT17] and an efficient protocol for general adversary MPC [HT13].

1.2.1 Topology-Hiding Communication

In MPC it is commonly assumed that parties are connected over a complete network of channels. If the network has an incomplete topology, one can use secure message transmission (SMT) to build pairwise secure channels between parties and thus complete the network. Since the introduction of SMT in [DDWY90] the problem has been widely studied under the aspect of different settings and security requirements (see for example [SNR04, FFGV07, KS08]).
1.2. CONTRIBUTIONS

However, in those work the topology of the underlying communication network is not treated as private data. In fact, SMT protocols require that parties have knowledge of the network topology. The problem of topology-hiding secure multi-party computation over an incomplete network was introduced in [MOR15]. In this work a proof-of-concept network-hiding communication protocol is given for the computational setting (i.e., assuming secure public-key encryption) tolerating a passive (semi-honest) and static adversary. At a very high level, [MOR15] uses public-key encryption and (passive) multi-party computation to topology-hidingly emulate a communication network. This network is then used to execute an arbitrary multi-party protocol in which parties communicate over a complete communication network.

In Chapter 3 we present the first topology-hiding communication protocol for incomplete networks which makes black-box use of the underlying cryptographic assumption—in particular, a public-key encryption scheme—and tolerates any adversary who passively corrupts arbitrarily many network nodes. Our solution is based on a new, enhanced variant of threshold homomorphic encryption, in short, TH-PKE, that requires no a-priori setup and allows to circulate an encrypted message over any (unknown) incomplete network and then decrypt it without revealing any network information to intermediate nodes. We show how to realize this enhanced TH-PKE from the DDH assumption. The black-box nature of our scheme, along with some optimization tricks that we employ, makes our communication protocol more efficient than previous solutions.

We then use our communication protocol to make any passively secure MPC protocol topology-hiding with a reasonable—i.e., for simple networks, polynomial with small constants—communication and computation overhead. We further show how to construct anonymous broadcast without using expensive MPCs to setup the original pseudonyms.

1.2.2 Classification of Consistency Specification

A classical problem in MPC is to construct a broadcast channel from authenticated channels allowing a sender to send a value consistently to all (honest) receivers. Lamport showed in [Lam83] that this is possible to perfectly construct authenticated broadcast if and only if the fraction of dishonest parties is less than a third.

A natural question, first raised by Lamport, is whether there are
CHAPTER 1. INTRODUCTION

weaker, still useful primitives achievable from authenticated channels. He proposed weak broadcast, where the validity condition must hold only if all parties are honest, and showed that it can be achieved with an unbounded number of protocol rounds, while broadcast cannot, suggesting that weak broadcast is in a certain sense weaker than broadcast.

In Chapter 4 we deepen the investigation of the separation between broadcast and authenticated channels. To this end, we use consistency specifications \cite{Mau04} to model the guarantees primitives such as broadcast provide for the outputs of honest parties.

First, we consider a generalized version of so called “scenario”-proofs \cite{FLM85}. This allows us to prove a stronger impossibility result for three-party broadcast. Namely, even if two of the parties can broadcast, one cannot construct authenticated broadcast for the third party. Next, we present a complete classification of three-party specifications with a binary input and two binary outputs. Finally, we prove a strong separation between authenticated channels and broadcast by exhibiting a new primitive, called XOR-cast, which satisfies two conditions: (1) XOR-cast is strongly unrealizable (even with small error probability) from authenticated channels (which is not true for weak broadcast), and (2) broadcast is strongly unrealizable from XOR-cast (and authenticated channels). This demonstrates that the hierarchy of three-party primitives has a more complex structure than previously known.

1.2.3 Efficient General Adversary MPC

In MPC one normally considers threshold adversaries which can corrupt up to \(t \) parties. An alternative are general adversaries, characterized by a so-called adversary structure \(\mathcal{Z} \) which enumerates all possible subsets of corrupted parties. In particular for small sets of parties general adversaries better capture real-world requirements than classical threshold adversaries.

In Chapter 5 we consider the efficiency of secure MPC against active general adversaries. Protocols for general adversaries are “efficient” in the sense that they require \(|\mathcal{Z}|^{O(1)} \) bits of communication. However, as \(|\mathcal{Z}| \) is usually very large (even exponential in \(n \)), the exact exponent is very relevant. In the setting with perfect security, the most efficient protocol previously known communicates \(\mathcal{O}(|\mathcal{Z}|^3) \) bits; we present a protocol for this setting which communicates \(\mathcal{O}(|\mathcal{Z}|^2) \) bits. In the setting with
statistical security, $\mathcal{O}(|\mathcal{Z}|^3)$ bits of communication is needed in general (whereas for a very restricted subclass of adversary structures, a protocol with communication $\mathcal{O}(|\mathcal{Z}|^2)$ bits is known); we present a protocol for this setting (without limitations) which communicates $\mathcal{O}(|\mathcal{Z}|^1)$ bits.
Chapter 2

Preliminaries

In this chapter we introduce some general notation and provide the definition of some fundamental cryptographic primitives and hardness assumptions.

2.1 General Notation

We denote by $\mathcal{P} = \{P_1, \ldots, P_n\}$ a set of n parties. For convenience, we will sometimes write i instead of P_i. We distinguish between the subset of honest parties $H \subseteq \mathcal{P}$ and the dishonest parties in the complement $\overline{H} := \mathcal{P} \setminus H$. The (central) adversary is denoted by A.

Throughout this work, the security parameter is denoted κ. We write $\negl(\kappa)$ to refer to a negligible function of κ. (See [Gol01] for a formal definition of negligible functions.)

For an algorithm A we write $(y_1, \ldots, y_k) \leftarrow A(x_1, \ldots, x_k)$ to denote that (y_1, \ldots, y_k) are outputs of A given inputs (x_1, \ldots, x_k). For a probabilistic algorithm B we write $(y_1, \ldots, y_k) \leftarrow B(x_1, \ldots, x_k; r)$ where r is the chosen randomness. If we write $(y_1, \ldots, y_k) \triangleright B(x_1, \ldots, x_k)$ instead, we assume that the randomness has been chosen uniformly.

Finally, we denote by $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ the set of natural numbers. For any $n \in \mathbb{N}$ we write $[n]$ for the set $\{1, \ldots, n\}$. Moreover, \mathbb{F} denotes an arbitrary finite field. For a set of values V and a index-set I, we denote by M^I the Cartesian product $\times_{i \in I} M$. A tuple $\vec{v}_I \in V^I$ contains for each
index $i \in I$ value \bar{v}_i. We denote by $\bar{v}_{I|I'} \in M^{I'}$ the projection of $\bar{v}_I \in M^I$ to entries in $I' \subseteq I$, i.e., the tuple $\bar{v}_{I|I'} \in M^{I'}$ contains exactly the values of $\bar{v}_I \in M^I$ for index set I'.

2.2 Cryptographic Primitives

2.2.1 Broadcast Channel

A *broadcast channel* BC_s allows the sender P_s to distribute a message m among the parties in \mathcal{P} such that:

Consistency: All honest parties output the same message m'.

Validity: If the sender P_s is honest, then all honest parties output $m' = m$.

More generally, one can define broadcast channels $BC_{s,R}$ where the sender’s message is only guaranteed to be output to the recipient set $R \subseteq \mathcal{P}$. However, in this work the recipient set is generally assumed to be the whole party set \mathcal{P}.

2.2.2 Public-Key Encryption

A *public-key encryption* (PKE) scheme with public-key space \mathcal{PK}, secret-key space \mathcal{SK}, message space \mathcal{M}, and ciphertext space \mathcal{C} is defined as three algorithms ($\text{KeyGen}, \text{Enc}, \text{Dec}$) all parameterized by security parameter κ where:

1. The (probabilistic) *key-generation* algorithm KeyGen outputs a public key $pk \in \mathcal{PK}$ and a secret key $sk \in \mathcal{SK}$.

2. The (probabilistic) *encryption algorithm* Enc takes a public key $pk \in \mathcal{PK}$ and a message $m \in \mathcal{M}$ and outputs a ciphertext $c \leftarrow \text{Enc}(pk, m; r)$.

3. The *decryption algorithm* Dec takes a secret key $sk \in \mathcal{SK}$ and a ciphertext $c \in \mathcal{C}$ and outputs message $m \leftarrow \text{Dec}(sk, c)$.

A PKE scheme is *correct* if for any key pair $(pk, sk) \leftarrow \text{KeyGen}$ and any message $m \in \mathcal{M}$ it holds (with probability 1 over the randomness of Enc) that $m = \text{Dec}(sk, \text{Enc}(pk, m; r))$.
2.2. CRYPTOGRAPHIC PRIMITIVES

Chosen-Plaintext Security. Indistinguishability under chosen-plain- text attacks (IND-CPA) considers an adversary trying to decide which of two messages of his choice is encrypted in a given ciphertext. More formally, a PKE scheme is IND-CPA secure if an (efficient) adversary has not a non-negligible advantage in winning the following game.

1. The game generates a key pair \((pk, sk) \leftarrow \text{KeyGen}\) and chooses a random bit \(b\). Then the game sends \(pk\) to the adversary (this allows him to generate encryptions of arbitrary messages).

2. The adversary sends two messages \(m_0\) and \(m_1\) of the same length and the game returns \(c = \text{Enc}(pk, m_b)\).

3. The adversary sends a bit \(b'\). If \(b = b'\) the adversary has won the game.

2.2.3 Threshold Public-Key Encryption

A \((\ell, \ell)\)-threshold public-key encryption (T-PKE) scheme with public-key space \(\mathcal{PK}\), secret-key space \(\mathcal{SK}\), message space \(\mathcal{M}\), and ciphertext space \(\mathcal{C}\) is defined as four algorithms \(\text{TKeyGen, Enc, ShareDecrypt, Decode}\) all parameterized by security parameter \(\kappa\) and the threshold \(\ell\) where:

1. The (probabilistic) key-generation algorithm \(\text{TKeyGen}\) outputs a public key \(pk \in \mathcal{PK}\) and a secret key \(sk\) which consists of a vector of sub-keys \(sk_i \in \mathcal{SK}\), i.e., \(sk = (sk_1, \ldots, sk_\ell)\).

2. The (probabilistic) encryption algorithm \(\text{Enc}\) takes a public key \(pk \in \mathcal{PK}\) and a message \(m \in \mathcal{M}\) and outputs a ciphertext \(c \leftarrow \text{Enc}(pk, m; r)\).

3. The decryption-share algorithm \(\text{ShareDecrypt}\) takes a sub-key \(sk_i \in \mathcal{SK}\), and a ciphertext \(c \in \mathcal{C}\) as inputs and outputs a decryption share \(x_i \leftarrow \text{ShareDecrypt}(sk_i, c)\).

4. The decoding algorithm \(\text{Decode}\) takes decryption shares \(x_1, \ldots, x_\ell \in \mathcal{DS}\) and a ciphertext \(c \in \mathcal{C}\) as inputs and outputs a message \(m \leftarrow \text{Decode}(x_1, \ldots, x_\ell, c)\).
A T-PKE scheme is correct if for any key pair $pk, sk = (sk_1, \ldots, sk_\ell)$ generated using KeyGen and any message $m \in \mathcal{M}$ it holds (with probability 1 over the randomness of Enc) that $m = \text{Decode}(x_1, \ldots, x_\ell, c)$ where $x_i = \text{ShareDecrypt}(sk_i, c)$ and $c = \text{Enc}(pk, m; r)$.

Remark. More generally, one can define a (t, ℓ)-threshold public-key encryption scheme where the secret key consists of ℓ key shares. To efficiently decrypt a ciphertext at least t out of the ℓ key shares are required.

2.3 Hardness Assumptions

2.3.1 Decisional Diffie-Hellman Assumption

Let $\langle G, \cdot \rangle$ be a cyclic group of prime order q and let g be a generator of G. The *decisional Diffie–Hellman* (DDH) problem for G is the problem of distinguishing for given group elements (α, β, γ) whether they are independent uniform random in G or whether $\alpha = g^a$ and $\beta = g^b$ are independent uniform random and $\gamma = g^{ab}$.

The DDH assumption holds in G if it is computationally hard to solve the DDH problem in G.
Chapter 3

Topology-Hiding Communication

The content of this chapter is based on [HMTZ16].

3.1 Introduction

Secure communication is perhaps the central goal of cryptography. It allows a sender, Alice, to securely transmit a message to a receiver, Bob, so that even if some eavesdropper, Eve, is intercepting their communication she cannot figure out anything about the transmitted message. When Alice and Bob share a physical (but potentially tappable) communication channel, this task can be easily carried out by use of standard public-key cryptography techniques, e.g., Bob sends to Alice his public key who uses it to encrypt her message and send it over the physical communication channel to Bob. But this idealized scenario occurs rarely in modern networks, such as the Internet, where Alice and Bob would most likely not share a physical channel and would, instead, have to communicate over some (potentially incomplete) network of routers. Without further restrictions, the above modification marginally complicates the problem as it can be directly solved by means of a private flooding scheme. In such a scheme, Alice encrypts her message, as before, and sends it to all her immediate neighbors, i.e., network routers with which she shares
physical links, who then forward it to their immediate neighbors, and so on, until it reaches Bob. Clearly, if Alice has a path to Bob and the forwarding step is repeated as many times as the length of this path, the message will reach Bob. And the fact that the intermediate routers only see encryptions of the transmitted message means that they do not learn anything about the message.

But modern distributed protocols often require much more than just privacy of the transmitted message. For example, ensuring anonymity in communication is a major goal of security as it, for example, protects against censorship or coercion. Similarly, as privacy awareness in social networks increases, users might not be willing to reveal information about the structure of their peer graph (i.e., their Facebook friends graph) to outsiders. Other applications might require to hide a communicating agent’s location, as is the case in espionage or when using mobile agents to propagate information through some ad-hoc network, e.g., in vehicle-to-vehicle communication. All these applications require a routing scheme, that hides the topology of the underlying communication network. Evidently, using the simple private flooding strategy does not hide the topology of the underlying communication network as, for example, an eavesdropping router can easily determine its distance (and direction) to the sender by observing in which round (and from whom) it receives the first encryption.

3.1.1 Related Literature

The problem of routing through an incomplete network has received a lot of attention in communication networks with a vast amount of works aiming at optimizing communication complexity in various network types. In the following, however, we focus on the cryptographic literature which is more relevant to our goals—namely network hiding communication—and treatment.

Perhaps the main venue of work in which keeping the network hidden is a concern is the literature on anonymous communication, e.g., [Cha03, RR98, SGR97]. These works aim to hide the identity of the sender and receiver in a message transmission, in a way that protects these identities even against traffic analysis. In a different line of work initiated by Chaum [Cha81], so called mix servers are used as proxies which shuffle messages sent between various peers to disable an eavesdropper from
following a message’s path. This technique has been extensively studied and is the basis of several practical anonymization tools. An instance of the mix technique is the so called onion routing [SGR97, RR98], which is perhaps the most wide-spread anonymization technique. Roughly, it consists of the sender applying multiple encryptions in layers on his message, which are then “peeled-off” as the cipher-text travels through a network of onion routers towards its destination. An alternative anonymity technique by Chaum [Cha88] and implemented in various instances (e.g., [Bd90, GJ04, GGOR14]) is known as Dining Cryptographers networks, in short DC-nets. Here, the parties themselves are responsible for ensuring anonymity.

The question of hiding the communication network was also recently addressed in the context of secure multi-party computation by Chandran et al. [CCG+15]. This work aims at allowing n parties to compute an arbitrary given function in the presence of an adaptive adversary, where each party communicates with a small (sublinear in the total number of parties) number of its neighbors. Towards this goal, [CCG+15] assumes that parties are secretly given a set of neighbors that they can communicate with. Because the adversary is adaptive, it is crucial in their protocol that the communication does not reveal much information about the network topology, as such information would allow the adversary to potentially discover the neighbors of some honest party, corrupt them, and isolate this party, thereby breaking its security. Another work which considers such an adaptive corruption setting is the work of King and Saia [KS10], which is tailored to the Byzantine agreement problem. We note in passing that the result of [CCG+15, KS10] was preceded by several works which considered the problem of MPC over incomplete networks. However, these works do not aim to keep the network hidden as they either only consider a static adversary, e.g., [BGT13], and/or they only achieve so called almost everywhere computation [GO08, KSSV06a, KSSV06b, CGO15] where the adversary is allowed to isolate a small number of honest parties.

In our work we improve the recent work of Moran, Orlov, and Richelson [MOR15], which considers the problem of topology-hiding secure multi-party computation over an incomplete network in the computational setting (i.e., assuming secure public-key encryption) tolerating a passive

1 Learning the network topology through the communication cannot help a static adversary to isolate any honest party as the set of corrupted parties is fixed before the execution of the protocol.
(semi-honest) and static adversary. At a very high level, \[\text{MOR15}\] uses public-key encryption and (passive) multi-party computation to implement a proof-of-concept network-hiding communication protocol, which emulates a complete network of secure channels. This emulated network is then used to execute an arbitrary multi-party protocol in which parties communicate over a complete communication network, e.g., \[\text{GMW87, Pas04}\]. In fact, as noted in \[\text{MOR15}\], relying on a computational assumption seems inevitable, as in the information-theoretic setting the work of Hinkelmann and Jakoby \[\text{HJ07}\] excludes fully topology-hiding communication. As \[\text{MOR15}\] was the starting point for our work, we include a detailed comparison of our results with \[\text{MOR15}\] in Section 3.1.3.

3.1.2 Contributions

In this work we present the first network-hiding communication protocol which makes black-box use of public-key encryption and, for networks with reasonable degree and diameter, has a moderate communication and computation complexity. Our protocol allows the parties to communicate over an incomplete network of point-to-point channels in a way which computationally hides both the transmitted message and the neighborhood of honest parties from an adversary passively corrupting arbitrary many parties. We remark that as pointed out in \[\text{CCG+15}\], when the communication graph is to be kept hidden, the adversary cannot be eavesdropping on communication channels, and in particular cannot be informed when a message is transmitted over some channel. We resolve this issue by assuming, along the lines of \[\text{MOR15}\], a special network functionality (cf. Section 3.2).

A bit more concretely, the high-level idea of our construction is to enhance the naïve private flooding-protocol by using homomorphic public-key encryption (in short, PKE). The starting point of our approach is the observation—underlying also the construction from \[\text{MOR15}\]—that the flooding protocol would be topology-hiding if the parties could not read intermediate messages. But instead of using, as in \[\text{MOR15}\], expensive nested MPCs for ensuring this fact (see below for a high-

\[\text{To our understanding the result of \[\text{HJ07}\] does not apply to the case where a strong information-theoretic setup, e.g., sufficiently long correlated randomness, is available to the parties. Extending this results to that setting is an interesting open problem.}\]
level description of [MOR15] we use a version of threshold PKE with additional homomorphic properties. We also show how to implement our enhanced threshold PKE definition assuming hardness of the Decisional Diffie-Hellmann (DDH) problem.

To demonstrate our ideas, imagine there was a world in which parties (corresponding to all intermediate routers) could encrypt with a homomorphic public-key encryption scheme where the private (decryption) key is known to nobody, but instead parties have access to a decryption oracle. Provided that the associated PKE-scheme is semantically secure, parties can enhance the flooding protocol as follows: Alice encrypts its message and starts the flooding; in each step of the flooding protocol, the intermediate party—which, recall, is supposed to forward the received ciphertext—first re-randomizes the ciphertext and then forwards it. Once the message arrives to Bob, he invokes the decryption oracle to open its final ciphertext. We observe that in this case the adversary does no longer learn anything from intermediate messages, the protocol is thus topology-hiding.

There are two major challenges with the above approach. First, if intermediate parties are silent until a message reaches them during the flooding, then the adversary observing this fact can use it to deduce information about the network. E.g., if a neighbor P_i of a corrupted party has not sent anything by the second round of the flooding protocol, then the adversary can deduce that P_i is not a neighbor of Alice. Secondly, we need a way to implement the decryption oracle. Observe that using an off-the-shelf threshold decryption scheme and have decryption shares exchanged by means of flooding would trivially destroy the topology-hiding property; and the same is the case if we would use an MPC protocol for this purpose, unless the MPC were itself topology-hiding. In the following we discuss how we solve each of the protocols, separately.

The first issue—information leakage from silent parties—can be solved by having every party send messages in every round. As simple as this idea might seem, it has several difficulties. For starters, the messages that are injected by intermediary parties should be indistinguishable from encryptions, as otherwise adding this noise makes no difference. But now, there is a new issue that the intermediate parties cannot tell which of the indistinguishable messages they receive contains the initial message sent by Alice. The naive solution to this would be to have parties re-randomize everything they receive and add their own noise-message. But this would
impose an exponential, in the graph diameter, factor both in the message and communication complexity. Our solution, instead, is to use the homomorphic properties of the encryption scheme and build an efficient process which allows every party to compute an encryption of the OR of the messages it receives from its neighbors. Thus, to transfer a bit \(b \), Alice encrypts \(b \) and starts flooding, whereas every party encrypts a zero-bit and starts flooding simultaneously. In each following round of the flooding scheme, every party homomorphically computes the OR of the messages it receives and continues flooding with only this encryption. Bob keeps computing the OR of the encryptions he receives, and once sufficiently many rounds have passed, the decryption is invoked to have him obtain Alice’s bit. Note that we only treat the case of passively-corrupted parties here, thus no party will input an encryption of a one-bit into this smart flooding scheme which would destroy its correctness.

To solve the second issue—i.e., implement the decryption oracle in a topology-hiding manner—we introduce a new variant of threshold homomorphic public-key encryption (TH-PKE) with enhanced functionality, which we call \textit{multi-homomorphic threshold encryption with reversible randomization}. Roughly speaking, our new TH-PKE assumes a strongly correlated setup, in which secret (sub)keys are nested in a way which is consistent with the network topology and which allows parties to decrypt messages in a topology-hiding manner. We provide a security definition for the new primitive and describe a topology-hiding protocol for establishing the necessary setup using no setup-assumption whatsoever. And we also describe how to instantiate our schemes under the DDH assumptions. We believe that both the general definition of this augmented TH-PKE and the concrete instantiation could be of independent interest and can be used for anonymizing communication.

\textbf{Applications} Building on our topology-hiding network and utilizing the functionality of our topology-hiding homomorphic OR protocol we present the following applications:

\textbf{Anonymous broadcast:} We consider a variant of anonymous broadcast where parties can broadcast messages under a pseudonym. The presented protocol allows to realize anonymous broadcast directly from the topology-hiding homomorphic OR protocol without using expensive MPC to setup the pseudonyms.
3.1. INTRODUCTION

Topology-hiding MPC: Having a topology-hiding network, we can execute on top of it any MPC protocol from the literature that is designed for point-to-point channels which will render it topology-hiding.

3.1.3 Comparison with [MOR15]

The work by Moran *et al.* [MOR15] provides the first protocol that solves this problem in the computational setting. Our goals are closely related to theirs. In fact, our security definition of topology-hiding communication and, more general, computation is a refinement of their simulation-based definition of topology-hiding MPC. But our techniques are very different. In light of this similarity in goals, in the following we include a more detailed comparison to our work.

More concretely, the solution of [MOR15] also follows the approach of enhancing the naïve flooding protocol to make it topology-hiding. The key idea is to use nested MPCs, recursively, to protect sensitive information during the execution of the flooding protocol. Roughly, in the basic topology-hiding communication protocol of [MOR15], each party P_i is replaced by a virtual-party \hat{P}_i, which is emulated by its immediate neighbors by invoking locally (i.e., in the neighborhood) an off-the-shelf MPC protocol. The complete network of point-to-point channels required by the MPC protocol is emulated by use of a PKE-scheme over the star network centered around P_i, i.e., by naïve flooding where P_i is used as the routing node. The above ensures that P_i cannot analyze the messages that are routed through him, as they are actually handled by its corresponding virtual party \hat{P}_i. However, there is now a new problem to be solved, namely, how do virtual parties use the underlying (incomplete) communication network to flood messages in a topology-hidingly manner? This is solved as follows: To enable secure communication between adjacent virtual-parties a PKE-scheme is used (once more). Here each virtual-party generates a key-pair and sends the encryption key to the adjacent virtual-parties using real parties as intermediates. This basic protocol is topology-hidingly secure as long as the adversary does not corrupt an entire neighborhood. But this is of course not enough for arbitrarily many corruptions to be tolerated. Thus, to ensure that the overall flooding protocol is also topology-hiding, each virtual party is replaced, again by means of MPC,
by a “doubly virtual” party \(\hat{P} \). This will ensure that only adversaries corrupting all the parties that emulate \(\hat{P} \) can break the topology-hiding property. To extend the set of tolerable adversaries, the doubly virtual parties are again emulated, and this process is continued until we reach an emulated party that is emulated by all parties in the network. This requires a number of nested MPCs in the order of the network diameter.

In the following we provide a comparison of the solution of [MOR15] with ours, demonstrating the advantages of our solution both in terms of simplicity and efficiency. In all fairness, we should remark that the solution of [MOR15] was explicitly proposed as a proof-of-concept solution. The major advantage of our work over [MOR15] is that our communication protocol makes no use of generic MPC, and makes black-box use of the underlying PKE. This not only yields a substantial efficiency improvement, in terms of both communication and computation, but it also yields a more intuitive solution to the problem, as it uses the natural primitive to make communication private, namely encryption, instead of MPC.

More concretely, the player-virtualization protocol from [MOR15] makes non-black-box use of public-key encryption, i.e., the circuit which is computed via MPC is a public-key encryption/decryption circuit. This is typically a huge circuit which imposes an unrealistic slowdown both on the computation complexity and on the round and/or communication complexity.\(^3\) And this is just at the first level of recursion; the computation of the second level, computes a circuit, which computes the circuit, which computes PK encryptions/decryptions, and so on. Due to the lack of concrete suggestions of instantiation of the PKE and MPC used in [MOR15] we were unable to compute exact estimates on the running time and communication complexity of the suggested protocols. Notwithstanding it should be clear that even for the simple case in which the network has constant degree and logarithmic diameter—for which the communication protocol in [MOR15] achieves a polynomial complexity—and even for the best MPC instantiation the actual constants are huge.

Instead, our solution makes black-box use of the underlying PKE scheme and is, therefore, not only more communication and computation efficient, but also easier to analyze. In fact, in our results we include concrete upper bounds on the communication complexity of all our protocols.

\(^3\)Of course the latter can be traded off by choosing to use either a communication heavy or a round heavy protocol.
3.1. INTRODUCTION

Indicatively, for a network with diameter D and maximum degree d our network-hiding broadcast protocol communicates at most $(d + 1)^D \cdot n \cdot \lambda$ bits within just $5 \cdot D$ rounds, where λ is linear (with small constant, less than 5) in the security parameter κ of the underlying PKE scheme. We note that many natural network graphs, such as social networks or the internet have a small diameter.

3.1.4 Preliminaries and Notation

We consider an MPC-like setting where n parties $\mathcal{P} = \{P_1, \ldots, P_n\}$ wish to communicate in a synchronous manner over some incomplete network of secure channels. When the communication is intended to be from P_i, the sender, to P_j, the receiver, we will refer to the parties in $\mathcal{P} \setminus \{P_i, P_j\}$ as the intermediate parties. We will assume a passive and static (aka non-adaptive) computationally-bounded adversary who corrupts an arbitrary subset $H \subseteq \mathcal{P}$ of parties. We use simulation based security to prove our results. For simplicity our proofs are in Canetti’s modular composition framework [Can98] but all our results translate immediately to the universal composition UC framework [Can01] (recall that we consider passive (semi-honest) static security). In fact, to make this transition smoother, we describe our hybrids in the form of UC functionalities. For compactness, for any functionalities F and G, we will denote by $\{F, G\}$ the composite functionality that gives parallel access to F and G.

3.1.5 Outline

The remainder of the chapter is organized as follows. In Section 3.2 we give our definition of topology-hiding security. In Section 3.3 we introduce multi-homomorphic threshold encryption with irreversible randomization (RR-MHT-PKE). In Section 3.4 we present a construction based on RR-MHT-PKE which allows to realize topology-hiding communication. First, in Section 3.4.1 we describe a topology-hiding threshold encryption protocol based on RR-MHT-PKE. This protocol is used in Section 3.4.2

\[4\] This can be contrasted with the complexity $\text{poly}(d)^D \cdot n \cdot \lambda$ obtained by [MOR15].

\[5\] Backstrom et al. [UKBM11] showed that a sub-graph of the Facebook social network consisting of 99.6% of all users had a diameter of 6. In this particular case the broadcast protocol would communicate at most $n^7 \cdot \lambda$ bits within 30 rounds.
to topology-hidingly realize the Boolean-OR functionality. This allows to give a topology-hiding construction of broadcast and secure channels in Section 3.4.3. Finally, in Section 3.5 we present topology-hiding MPC and topology-hiding anonymous broadcast as applications of the protocols from the previous section.

3.2 Topology-Hiding Security Definition

In this section we provide the formal simulation-based definition of topology-hiding computation. Our definition is an adaptation of the original simulation-based definition of Moran et al. More concretely, the topology-hiding property requires that parties learn no information on the underlying communication network other than the description of their local neighborhood, i.e., the identities of their neighbors. To capture this property, we assume that the parties (in the real world) have access to a network functionality N which has knowledge of every party P_i’s neighborhood (i.e., the set of point-to-point channels connected to P_i) and allows P_i to communicate (only) to its neighbors.

Clearly, a protocol execution over such a network N allows an adversary using it knowledge of the neighborhood of corrupted parties; thus the simulator needs to also be able to provide this information to its environment. To give this power to the simulator, augments the ideal functionality with an extra component which allows the simulator access to this information. In this work we use N itself in the ideal world to provide this information to the simulator. Note that this does not affect the security statements, as the trivial N-dummy protocol ϕ_N securely realizes N.

A conceptual point in which our model of topology-hiding computation deviates from the formulation of Moran et al. has to do with respect to how the communication graph is chosen. At first thought, one might think that parameterizing the network functionality with the communication graph does the trick. This is, however, not the case because the parameters of hybrid-functionalities are known to the protocol which invokes them and are therefore also known to the adversary. The only information

6In any case, our protocol will not output anything other than the output of the functionality, hence the simulator will only use N to learn the corrupted parties neighborhood.
which is not known to the adversary are inputs of honest parties and internal randomness of the functionality; thus, as a second attempt, one might try to have the network functionality sample the communication graph from a given distribution. Unfortunately this also fails to capture the topology-hiding property in full, as we would like to make sure that the adversary (or simulator) gets no information on any given (hidden) graph.

Motivated by the above, \[\text{MOR15}\] defines topology-hiding computation using the following trick: they assume an extra incorruptible party, whose only role is to provide the network graph as input to the network functionality. Because this network-choosing party is (by assumption) honest, the simulator cannot see its input and needs to work having only the knowledge that \(\mathcal{N}\) allows him to obtain, i.e., the neighborhood of corrupted parties.

In this work we take a slightly different, but equivalent in its effect, approach to avoid the above hack of including a special purpose honest party. We assume that each party provides its desired neighborhood to \(\mathcal{N}\) as (a special part of) its input. Since the inputs are explicitly chosen by the environment, we are effectively achieving the same topology-hiding property as \[\text{MOR15}\] but without the extra special-purpose honest party.

In the remainder of this section we provide a formal specification of our network functionality (also referred to as network resource) and our formal security definition of topology-hiding computation.

The Network The network topology is captured by means of an undirected graph \(G = (V, E)\) with vertex-set \(V = \mathcal{P}\) and edge-set \(E \subseteq \mathcal{P} \times \mathcal{P}\). An edge \((P_i, P_j) \in E\) indicates that \(P_j\) is in the neighborhood of \(P_i\), which, intuitively, means that \(P_i\) and \(P_j\) can communicate over a bilateral secure channel. For a party \(P_i\) denote by \(N_G[i]\) its neighborhood in \(G\). We will refer to \(N_G[i] = \{P_i\} \cup N_G(i)\) as \(P_i\)'s closed neighborhood. Furthermore let \(N_G[i]^k\) be all nodes in \(G\) which have distance \(k\) or less to \(P_i\) (Clearly \(P_i \in N_G[i]^k\)). This set of nodes \(N_G[i]^k\) is called the \(k\)-neighborhood of \(P_i\).

The network functionality allows two types of access: (1) any party \(P_i \in \mathcal{P}\) can submit its neighbors \(N_G[i]\), and (2) every party can submit a vector \(\vec{m}\) of messages, one for each of its neighbors, which are then

7 Intuitively, this would correspond to the hidden graph model of \[\text{CCG+15}\].
CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

delivered in a batch form to their intended recipients. In order to be able to make statements for restricted classes of graphs, e.g., expanders, we parameterize the network functionality by a family \mathcal{G} of setups and require that \mathcal{N}_G only allows (the environment on behalf of) the honest parties to chose their neighborhood from this class.

Note, that the adversary is not bound to choose a neighborhood from a graph in \mathcal{G}, i.e., any valid neighborhood is accepted for corrupted parties. This is not an issue in the passive setting considered in this work as a passive adversary will submit whatever input the environment hands it. Thus, for the passive case it suffices that the functionality becomes unavailable (halts) upon receiving an invalid neighborhood from the adversary (or from some honest party).

In the description of \mathcal{N}_G we use the following notation: For a graph G with vertex set V, and for any $V' \subseteq V$, we denote by $G|_{V'}$ the restriction of G to the vertices in V', i.e., the graph that results by removing from G all vertices in $V \setminus V'$ and their associated edges.

The network initializes a topology graph $G = (V, E) := (\mathcal{P}, \emptyset)$.

Info Step:

1. Every party $P_i \in \mathcal{P}$ (and the adversary on behalf of corrupted parties) sends (input) $(\text{MyNeighborhood}, N_G[i])$ to \mathcal{N}; if $N_G[i]$ is a valid neighborhood for P_i, i.e., $N_G[i] \subseteq \{(P_i, P_j) \mid P_j \in \mathcal{P}\}$, then \mathcal{N}_G updates $E := E \cup N_G[i]$.

2. If there exist no $G' \in \mathcal{G}$ such that $G' = G$ then \mathcal{N}_G sets $E := \emptyset$ and halts. (Every future input is answered by outputting a special symbol (BADNETWORK) to the sender of this input.)

Communication Step:

1. For each $P_i \in \mathcal{P}$ let $N_G(i) = \{P_{i1}, \ldots, P_{i\nu_i}\}$.

2. Every $P_i \in \mathcal{P}$ sends \mathcal{N}_G input (send, \vec{m}_i), where

\[
\vec{m}_i = (m_{i,i_1}, \ldots, m_{i,i_{\nu_i}});
\]

if P_i does not submit a vector \vec{m}_i of the right size or format, then \mathcal{N}_G adopts $\vec{m}_i = (\bot, \ldots, \bot)$.

8Note that the environment knows/chooses all the inputs and therefore knows whether or not the submitted neighborhoods are allowed by the graph class.
3. Every P_i receives (output) $\vec{m}^i = (m_{i_1,i}, \ldots, m_{i_{\nu_i},i})$ from N_G.

An important feature of the above functionality is that the communication pattern (i.e., which parties send or receive messages) does not reveal to the adversary any information other than the neighborhood of corrupted parties. Thus, the simulator cannot use this functionality in the ideal world to extract information about the network. However, when using this network-functionality (in the real-world protocol) to emulate, e.g., a complete communication network, the adversary might use the messages exchanged in the protocol to extract information that the simulator cannot. In fact, the challenge of a topology-hiding protocol is exactly to ensure that the exchanged messages cannot be used by the adversary in such a way.

Definition 1. Let G be a family of graphs with vertex set P. Let also F be a functionality and N_G denote the network functionality (as specified above) and π be a N_G-hybrid protocol. We say that π securely realizes the functionality F in a topology-hiding manner with respect to network class G if and only if π securely realizes the composite functionality $\{F, N_G\}$.

3.3 Multi-Homomorphic Threshold Encryption with Reversible Randomization

In this section we introduce *multi-homomorphic threshold encryption with reversible randomization* RR-MHT-PKE, a special type of threshold public-key encryption, which will allow us to securely and topology-hidingly realize a distributed encryption scheme. In addition to the (common) homomorphic property of ciphertexts RR-MHT-PKE features homomorphic public-keys and decryption-shares. This allows for a decentralized generation of shared keys which enables parties to generate securely and topology-hidingly a public-key setup where the private-key is shared among all parties. Its reversible randomization property allows parties to transmit public-keys and/or ciphertexts through the network such that the adversary can not track them. We also give a practical implementation of RR-MHT-PKE based on the DDH assumption (see Section 3.3.3).
We first start by recalling some standard definitions. A public-key encryption (PKE) scheme consists of three algorithms, KeyGen for key generation, Enc for encryption and Dec for decryption. Since in this work we consider passive adversaries, we will only need encryption satisfying the standard IND-CPA security definition. For completeness this definition is provided in Section 2.2.2.

Threshold public-key encryption (T-PKE) with (\(\ell, \ell\))-threshold is PKE in which the private key \(\mathcal{SK}\) is distributed among \(\ell\) parties \(P_1, \ldots, P_\ell\), such that each party \(P_i\) holds a share (aka sub-key) \(sk_i\) of \(\mathcal{SK}\) with the property that any \(\ell - 1\) sub-keys have no information on \(\mathcal{SK}\). Importantly, such a scheme allows for distributed decryption of any given ciphertext: any party \(P_i\) can locally compute, using its own sub-key \(sk_i\) of the private key \(\mathcal{SK}\), a decryption share \(x_i\), so that if someone gets a hold of decryption shares (for the same \(c\)) from all parties (i.e., with each of the shares of the private key) he can combine them and recover the plaintext. For the classical definition of T-PKE we refer to Section 2.2.3.

Finally, a homomorphic threshold public-key encryption (HT-PKE) scheme is a T-PKE which allows to add up encrypted messages. Here, the message space \(\langle \mathcal{M}, + \rangle\) and the ciphertext space \(\langle \mathcal{C}, \cdot \rangle\) are groups such that \(m_1 + m_2 = \text{Dec}(\mathcal{SK}, \text{Enc}(\mathcal{PK}, m_1; r_1) \cdot \text{Enc}(\mathcal{PK}, m_2; r_2))\). for any key pair \((\mathcal{PK}, \mathcal{SK}) \leftarrow \text{KeyGen}\) and any messages \(m_1, m_2 \in \mathcal{M}\).

3.3.1 Multi-Homomorphic Threshold Encryption

We first present multi-homomorphic threshold encryption which is in essence HT-PKE with two additional properties.

The first property is a decentralized key-generation. The idea is that parties locally generate public/private-key pairs. By combining those local public keys they can then generate a public key with shared private-key where the local private keys act as key shares. More formally, its required that the public-key space \(\langle \mathcal{PK}, \cdot \rangle\) and the private-key space \(\langle \mathcal{SK}, + \rangle\) are groups. Moreover its is required (1) that there exists a key-generation algorithm KeyGen, which outputs a public/private-key pair \((pk_i, sk_i) \in \mathcal{PK} \times \mathcal{SK}\), and (2) that for any key pairs \((pk_1, sk_1), (pk_2, sk_2) \in \mathcal{PK} \times \mathcal{SK}\) it holds that \(pk_1 \cdot pk_2\) is the public key corresponding to private key \(sk_1 + sk_2\). In other words a multi-homomorphic threshold encryption scheme is homomorphic with respect to public/private keys. We point out this is not a standard property of threshold PKE schemes. For instance,
the threshold variant \cite{DJ01} of Paillier’s encryption scheme \cite{Pai99} does not satisfy this property.

Secondly, a multi-homomorphic threshold encryption scheme is required to be homomorphic with respect to decryption shares and private keys. That is, for any key pairs \((pk_1, sk_1), (pk_2, sk_2)\) and any ciphertext \(c\) it must hold that \(\text{ShareDecrypt}(sk_1, c) \cdot \text{ShareDecrypt}(sk_2, c) = \text{ShareDecrypt}(sk_1 + sk_2, c)\).

Definition 2. A multi-homomorphic threshold encryption (MHT-PKE) scheme with security parameter \(\kappa\) for spaces \(M, C, SK,\) and \(PK\) consists of four algorithms \text{KeyGen}, \text{Enc}, \text{ShareDecrypt},\) and \text{Decode} which are parametrized by \(\kappa\) where:

1. The (probabilistic) key-generation algorithm \text{KeyGen} outputs a public key \(pk \in PK\) and a private key \(sk \in SK\).

2. Homomorphic keys: The public-key space \(\langle PK; \cdot \rangle\) and the private-key space \(\langle SK; + \rangle\) are cyclic groups of prime order. For any key pairs \((pk_1, sk_1), (pk_2, sk_2) \in PK \times SK\) it holds that \(pk_1 \cdot pk_2\) is the public key corresponding to private key \(sk_1 + sk_2\).

3. The (probabilistic) encryption algorithm \text{Enc} takes a public key \(pk \in PK\) and a message \(m \in M\) and outputs a ciphertext \(c \leftarrow \text{Enc}(pk, m; r)\).

4. Homomorphic ciphertexts: The message space \(\langle M; + \rangle\) and the ciphertext space \(\langle C; \cdot \rangle\) are cyclic groups of prime order. For any public-key \(pk \in PK\) and any two messages \(m_1, m_2 \in M\) where \(c_1 \leftarrow \text{Enc}(pk, m_1; r_1)\) and \(c_2 \leftarrow \text{Enc}(pk, m_2; r_2)\) it holds that \(c_1 \cdot c_2\) is an encryption of \(m_1 + m_2\) under \(pk\).

5. The decryption share algorithm \text{ShareDecrypt} takes a private key \(sk_i \in SK\) and a ciphertext \(c \in C\) as inputs and outputs a decryption share \(x_i \leftarrow \text{ShareDecrypt}(sk_i, c)\).

6. Homomorphic decryption-shares: The decryption-share space \(\langle DS; \cdot \rangle\) is a cyclic group of prime order. For ciphertext \(c \in C\) and private keys \(sk_1, sk_2 \in SK\) where \(x_1 \leftarrow \text{ShareDecrypt}(sk_1, c)\) and \(x_2 \leftarrow \text{ShareDecrypt}(sk_2, c)\) we have \(x_1 \cdot x_2 = \text{ShareDecrypt}(sk_1 + sk_2, c)\).
The decoding algorithm \textit{Decode} takes a decryption share \(x \in DS \) and a ciphertext \(c \in C \) and outputs a message \(m \leftarrow \text{Decode}(x, c) \).

A MHT-PKE scheme is correct if it satisfies the following correctness property: For any key pairs \((pk_1, sk_1), \ldots, (pk_l, sk_l) \leftarrow \text{KeyGen} \) and any message \(m \in M \) it holds that \(m = \text{Decode}(x_1 \cdot \ldots \cdot x_l, c) \) where \(x_i = \text{ShareDecrypt}(sk_i, c) \), \(c = \text{Enc}(pk, m; r) \) and \(pk = pk_1 \cdot \ldots \cdot pk_l \). We assume, that the order of each of the above groups is publicly-known and that the group operations are efficiently computable. Moreover, we require that given a message \(m \in M \) and a ciphertext \(c \in C \) one can efficiently invert \(\text{Decode} \), i.e., compute a decryption share \(x \) with \(m = \text{Decode}(x, c) \).

We define the security of MHT-PKE with respect to a threshold variant of the IND-CPA security definition.

\textbf{Definition 3.} A MHT-PKE scheme is \textit{IND-TCPA} secure if the adversary’s advantage in winning the following game is negligible in \(\kappa \).

1. The game generates key pairs \((pk_1, sk_1), \ldots, (pk_l, sk_l) \leftarrow \text{KeyGen} \) and chooses a random bit \(b \). Then the adversary gets \(pk = pk_1 \cdot \ldots \cdot pk_1, pk_1, \ldots, pk_l \) and \(sk_2, \ldots, sk_l \). This allows him to generate encryptions of arbitrary messages and to generate decryption shares for all key pairs except \((pk_1, sk_1) \).

2. The adversary specifies two messages \(m_0 \) and \(m_1 \) and the game returns \(c = \text{Enc}(PK, m_b) \).

3. The adversary specifies a bit \(b' \). If \(b = b' \) the adversary has won the game.

Furthermore for any chosen public-key \(pk \in PK \), it should be hard to distinguish between \((pk, pk \cdot pk_1) \) and \((pk, pk_2) \) where \(pk_1, pk_2 \) are distributed according to \text{KeyGen}. This is the case, if the output distribution of \text{KeyGen} is indistinguishable from uniform.

\textbf{Definition 4.} A MHT-PKE scheme has the unif-KG property if the output distribution of \text{KeyGen} is indistinguishable from the uniform distribution.
3.3. MHT-PKE WITH REVERSIBLE RANDOMIZATION

3.3.2 Reversible Randomization

In this section we introduce multi-homomorphic threshold encryption with reversible randomization which is MHT-PKE with additional randomization properties for public-keys and ciphertexts.

Randomization of Public-Keys. The first property required is the randomization of public-keys. More concretely, a MHT-PKE with reversible randomization allows a party P_i with public key pk_i to “randomize” pk_i, i.e., compute a new masked public-key \tilde{pk}_i so that anyone seeing \tilde{pk}_i is unable to tell whether it is a freshly generated public-key or a randomized version of pk_i. Importantly, we require the randomization algorithm to be reversible in the following sense. The randomization algorithm must provide P_i with information rk_i, the de-randomizer, which allows it to map any encryption with \tilde{pk}_i back to an encryption with its original key pk_i. Looking ahead, the randomization of public-keys property will ensure that the adversary can not trace public keys while they travel the network. This allows us to build a topology-hiding information-transmission protocol.

Randomization of Ciphertexts. The second property required is the randomization of ciphertexts. More concretely, a MHT-PKE with reversible randomization allows a party P_i with ciphertext c_i to “randomize” c_i, i.e., compute a new masked ciphertext \hat{c}_i so that anyone seeing \hat{c}_i is unable to tell whether it is a freshly generated ciphertext (using an arbitrary public-key) or an randomized version of c_i. Importantly, we require the randomization algorithm to be reversible. This means it must provide P_i with information rk_i, the de-randomizer, which allows it to map any decryption share of \hat{c}_i and decryption key sk back to a decryption share of the original ciphertext c_i and sk. Looking ahead, the randomization of ciphertexts will ensure that the adversary can not trace ciphertexts and decryption-shares while they travel the network. This will allow us to build a topology-hiding decryption protocol. We remark that this property differs from the usual ciphertext re-randomization in homomorphic PKE schemes where one randomizes a ciphertext by adding up an encryption of 0.
MHT-PKE with Reversible Randomization We can now give the formal definition of multi-homomorphic threshold encryption with reversible-randomization (RR-MHT-PKE).

Definition 5. A RR-MHT-PKE scheme is a MHT-PKE scheme with four extra algorithms RandKey, DerandCipher, RandCipher, DerandShare where:

1. The (probabilistic) (key) randomization algorithm RandKey takes a public key $\text{pk} \in \mathcal{PK}$ and outputs a new public key $\tilde{\text{pk}} \in \mathcal{PK}$ and a de-randomizer $\text{rk} \in \mathcal{RK}_P$.

2. The (ciphertext) de-randomization algorithm DerandCipher takes a de-randomizer $\text{rk} \in \mathcal{RK}_P$ and a ciphertext $\tilde{\text{c}} \in \mathcal{C}$ and outputs a new ciphertext $\text{c} \in \mathcal{C}$ such that the following property holds. For any key pair (pk, sk), $(\tilde{\text{pk}}, \text{rk}) \leftarrow \text{RandKey}(\text{pk}; r')$, any message $m \in \mathcal{M}$, and any ciphertext $\tilde{\text{c}} \leftarrow \text{Enc}(\tilde{\text{pk}}, m; \tilde{r})$ there exists an r such that $\text{Enc}(\text{pk}, m; r) = \text{DerandCipher}(\text{rk}, \tilde{\text{c}})$. Moreover, given a ciphertext c and a de-randomizer rk one can efficiently invert DerandCipher, i.e., compute a ciphertext $\tilde{\text{c}}$ such that $\text{c} = \text{DerandCipher}(\text{rk}, \tilde{\text{c}})$.

3. The (probabilistic) (ciphertext) randomization algorithm RandCipher takes a ciphertext $\text{c} \in \mathcal{C}$ and outputs a new ciphertext $\hat{\text{c}} \in \mathcal{C}$ and a de-randomizer $\text{rk} \in \mathcal{RK}_C$.

4. The (share) de-randomization algorithm DerandShare takes a de-randomizer $\text{rk} \in \mathcal{RK}_C$ and a decryption share $\hat{x} \in \mathcal{DS}$ and outputs a share $x \in \mathcal{DS}$ such that the following property holds. For any key pair (pk, sk), any ciphertext $\text{c} \in \mathcal{C}$, the pair $(\text{rk}, \hat{\text{c}}) \leftarrow \text{RandCipher}(\text{c}; r)$, and decryption share $\hat{x} \leftarrow \text{ShareDecrypt}(\text{sk}_i, \hat{\text{c}})$ we have that $\text{DerandShare}(\text{rk}, \hat{x}) = \text{ShareDecrypt}(\text{sk}_i, \text{c})$. Moreover, given a decryption share x and a de-randomizer rk one can efficiently invert DerandShare, i.e., compute a decryption shares \hat{x} such that $x = \text{DerandShare}(\text{rk}, \hat{x})$.

For any public key pk it should be hard (for the adversary) to distinguish between $(\text{pk}, \text{RandKey}(\text{pk}))$ and (pk, pk') where pk' is freshly generated using KeyGen. Similar, for any ciphertext c it should be hard to distinguish between $(\text{c}, \text{RandCipher}(\text{c}))$ and (c, c') where c' is a randomly chosen ciphertext. More formally, the scheme should have the
indistinguishability under chosen public-key and chosen ciphertext attack (IND-CKCA) property.

Definition 6. A RR-MHT-PKE scheme is IND-CKCA secure if the probability of the adversary winning the following game is negligible (in κ) close to $\frac{3}{4}$.

1. The adversary specifies a public key $pk \in \mathcal{PK}$ and a ciphertext $c \in \mathcal{C}$.

2. The game generates key pairs $(pk_1, sk_1), (pk_2, sk_2) \leftarrow \text{KeyGen}$ and a uniform random message $m \in \mathcal{M}$. The game then chooses uniform random bits b_1 and b_2. The adversary gets public key \tilde{pk} and ciphertext \hat{c} where

$$\tilde{pk} = \begin{cases}
\text{RandKey}(pk) & \text{if } b_1 = 0 \\
 pk_1 & \text{if } b_1 = 1
\end{cases}$$

and

$$\hat{c} = \begin{cases}
\text{RandCipher}(c) & \text{if } b_2 = 0 \\
 \text{Enc}(pk_2, m) & \text{if } b_2 = 1
\end{cases}.$$

3. The adversary specifies bits b'_1 and b'_2. If $b_1 = b'_1$ or $b_2 = b'_2$ the adversary has won the game.

The security of a RR-MHT-PKE scheme is defined with respect to the above security properties.

Definition 7. A multi-homomorphic threshold encryption with reversible-randomization scheme is secure if it is IND-TCPA, and IND-CKCA secure and has the unif-KG property.

3.3.3 RR-MHT-PKE based on DDH

In this section we present a secure RR-MHT-PKE scheme based on the DDH assumption. Our construction can be seen as an extended variant of the ElGamal cryptosystem \[\text{[ElG84]}\].
MHT-PKE-Algorithms.

Let \(\langle G, \cdot \rangle \) be a cyclic group of prime order \(q(\kappa) \) (where the bit length of \(q \) is \(\text{poly}(\kappa) \)) for security parameter \(\kappa \). Denote by \(e_G \) the neutral element of \(G \) and let \(g \) be a generator of \(G \). For our scheme we assume that \((G, q, g) \) is publicly known. To ensure the various homomorphic properties we use \(G \) as message space, public key space, decryption share space, i.e., \(M = PK = DS = G \). Ciphertexts consist of two group elements, i.e., \(C = G \times G \). Moreover, the private-key space is \(SK = \langle \{0, \ldots, p - 1\}, + \rangle \).

The core part of our construction are the following four MHT-PKE algorithms.

Key Generation: Key-generation algorithm \(\text{KeyGen} \) chooses a private-key \(sk \) uniformly at random from \(SK \) and sets the public-key \(pk = g^{sk} \), i.e.,

\[
(g^{sk}, sk) \leftarrow \text{KeyGen}().
\]

Encryption: The encryption algorithm \(\text{Enc} \) encrypts message \(m \) under public-key \(pk \) as \(c := (g^r, pk^r \cdot m) \) where \(r \in \{1, \ldots, p - 1\} \) is chosen uniformly at random.

\[
\text{Enc}(pk, m; r) = (g^r, pk^r \cdot m)
\]

Decryption Shares: Decryption share algorithm \(\text{ShareDecrypt} \) takes a ciphertext \(c = (a, b) \) and a private-key \(sk \) and computes decryption share \(x = a^{-sk} \), i.e.,

\[
\text{ShareDecrypt}(sk, c = (a, b)) = a^{-sk}.
\]

Decode: The decoding algorithm \(\text{Decode} \) takes a ciphertext \(c = (a, b) \) and a decryption share \(x \) and computes message \(m = x \cdot b \), i.e.,

\[
\text{Decode}(x, c = (a, b)) = x \cdot b.
\]

Note also that \(x = m \cdot b^{-1} \), i.e., \(\text{Decode} \) is efficiently invertible.

It is easy to show that those four algorithms satisfy the correctness property required by Definition 2. In the following we assume that decisional Diffie-Hellman (DDH) assumption holds in \(G \) (cf. Section 2.3.1).
A simple choice for G is a Schnorr Group, which is a q-order subgroup of \mathbb{Z}_p^\times where p, q are primes with $p = qr + 1$ for some r. A more efficient and therefore preferred alternative is to use an appropriate elliptic curve group (see, e.g., [Bon98]).

Lemma 1. The above MHT-PKE scheme is IND-TCPA secure if DDH holds for G.

Proof. We give a reduction of DDH to IND-TCPA. Consider a winner \widetilde{W} for the IND-TCPA game (cf. Definition 3). Then the following reduction gives a winner W for DDH.

1. On input of (α, β, γ) from the outside set $pk := \alpha$, choose a random bit b, generate key pairs $(pk_2, sk_2), \ldots, (pk_l, sk_l) \leftarrow \text{KeyGen}$, and set $pk_1 := pk \cdot g^{-sk_2} \cdot \ldots \cdot g^{-sk_l}$. Then send pk, pk_1, \ldots, pk_l and sk_2, \ldots, sk_l to the winner \widetilde{W}.

2. Given the messages m_0 and m_1 from \widetilde{W} return $(\beta, \gamma \cdot m_b)$ to \widetilde{W}.

3. If \widetilde{W} guesses b correctly output 1, else output 0.

If the input (α, β, γ) is of the form (g^a, g^b, g^{ab}) the reduction returns in the second step $(g^b, g^{ab} \cdot m_b) = (g^b, pk^b \cdot m_b)$ to \widetilde{W} which is a valid encryption of m_b under $pk := \alpha$. The winner \widetilde{W} should therefore be able to distinguish between $(\beta, \gamma \cdot m_0)$ and $(\beta, \gamma \cdot m_1)$ with non-negligible advantage. If γ is uniform at random the tuple $(\beta, \gamma \cdot m_b)$ is independent of bit b. The winner \widetilde{W} should therefore have a negligible advantage in guessing the bit correctly.

Lemma 2. The above MHT-PKE scheme has the unif-KG property.

Proof. KeyGen chooses the private-key sk uniformly at random from SK. Thus the output public-key is a uniform random element from PK.

Reversible-Randomization Algorithms.

The final part of our construction are the four (de)randomization algorithms which complete the RR-MHT-PKE scheme. The used de-
randomizer spaces are $\mathcal{RK}_P = \mathcal{RK}_C = \{0, \ldots, p - 1\}$.

Public-Key Randomization: To randomize a public-key pk the key randomization algorithm RandKey generates a key pair $(g^{rk}, rk) \leftarrow \text{KeyGen}$ and multiplies pk with g^{rk}. The private value rk acts as the de-randomizer.

$$(\tilde{pk}, rk) = (g^{rk} \cdot pk, rk) \leftarrow \text{RandKey}(pk)$$

Ciphertext De-Randomization: To de-randomize a given ciphertext \tilde{c} the de-randomization algorithm DerandCipher essentially computes a decryption share for rk and strips it from \tilde{c}.

$\text{DerandCipher}(rk, \tilde{c} = (a, b)) = (a, a^{-rk} \cdot b)$

We observe that DerandCipher is efficiently invertible.

Ciphertext Randomization: To randomize a ciphertext $c = (a, b)$ the algorithm RandCipher chooses a random $r, r' \in G$, and a random $d \in \{1, \ldots, p - 1\}$ and computes $e \in \{1, \ldots, p - 1\}$ with $e \cdot d \equiv 1$. If $a \neq e_G$ it exponentiates a with e, otherwise it replaces a by r.

$$(\hat{c}, rk) = \begin{cases} ((a^e, r'), d) & \text{if } a \neq e_G \\ ((r, r'), 0) & \text{if } a = e_G \end{cases} \leftarrow \text{RandCipher}(c = (a, b))$$

Decryption-Share De-Randomization: To de-randomize a given decryption share \hat{x} the algorithm computes \hat{x}^{rk}.

$\text{DerandShare}(rk, \hat{x}) = \hat{x}^{rk}$

We observe that DerandShare is efficiently invertible.

We can now show that the above algorithms satisfy the correctness properties of Definition 5. For a public key pk let $(\tilde{pk}, rk) \leftarrow \text{RandKey}(pk)$. For any message m consider the encryption $\tilde{c} = \text{Enc}(\tilde{pk}, m; r)$ of m under public-key \tilde{pk} with randomness r. Then we have

$$\text{DerandCipher}(rk, \tilde{c}) = (g^r, (g^r)^{-rk} \cdot g^{rk} \cdot pk^r \cdot m) = (g^r, pk^r \cdot m) = \text{Enc}(pk, m; r).$$

\[9\]This can be done efficiently using the Extended Euclidean algorithm.
Next, for a ciphertext $c = (a, b)$ let $(\hat{c} = (\hat{a}, \hat{b}), \text{rk}) \leftarrow \text{RandCipher}(c)$. For an arbitrary private-key sk let $\hat{x} = \text{ShareDecrypt}(sk, \hat{c})$ be the decryption-share for \hat{c}. Then we have

$$\text{DerandShare}(\text{rk}, \hat{x}) = \hat{x}^{\text{rk}} = \hat{a}^{-sk \cdot \text{rk}}$$

$$= \begin{cases}
 a^{-sk \cdot e \cdot d} = a^{-sk} = \text{ShareDecrypt}(sk, c) & \text{if } a \neq e_G \\
 r^{-sk \cdot 0} = e_G = e_G^{-sk} = \text{ShareDecrypt}(sk, c) & \text{if } a = e_G.
\end{cases}$$

The correctness properties are thus fulfilled. It remains to show that the scheme satisfies the IND-CKCA security property.

Lemma 3. The above RR-MHT-PKE scheme is IND-CKCA secure.

Proof. For any public key pair $(\hat{p}k, pk)$ there exists a $\text{rk} \in \mathcal{RK}_P$ such that $\hat{p}k = g^{\text{rk}} \cdot pk$. The key pair $(\hat{p}k, pk)$ is thus distributed interdependently from b_1. The adversary thus has a negligible advantage in guessing the b_1 correctly. Consider ciphertext pair $(\hat{c} = (\hat{a}, \hat{b}), c = (a, b))$. As long as $a = e_G$ or $\hat{a} \neq e_G$ there exist r, r', d such that $(\hat{c}, \text{rk}) = \text{RandCipher}(c = (a, b); r, r', d)$. In this case the adversary thus has a negligible advantage in guessing the b_2 correctly. If $a = e_G$ and $\hat{a} = e_G$ the ciphertext \hat{c} cannot be the randomization of c and guessing b_2 is easy. However, the probability that $a = e_G$ and $\hat{a} = e_G$ is negligible for $q(\kappa)$ large enough.

Lemma 4. The above RR-MHT-PKE scheme is a secure.

Proof. Follows directly from Definition 7 and Lemmas 1, 2, and 3.

3.4 Topology-Hiding Communication

In this section we present a construction which allows to securely and topology-hidingly realize different types of communication channels using black-box PKE. The section consists of the following four steps, each treated in a separate sub-section.

Topology-Hiding Encryption. In Section 3.4.1, a topology-hiding threshold encryption protocol based on black-box RR-MHT-PKE is presented. More precisely, we provide (1) a distributed setup protocol, (2) an information-transmission protocol, and (3) a distributed decryption protocol.
CHAPTER 3. TOPOLOGY-HIDING COMMUNICATION

Topology-Hiding Boolean-OR. In Section 3.4.2 we present a protocol which, for networks with moderate degree and diameter, securely and topology-hidingly realizes the multi-party Boolean-OR functionality using the topology-hiding threshold encryption protocol from the previous section.

Topology-Hiding Broadcast and Secure Channels. Finally, in Section 3.4.3 we use the Boolean-OR functionality to securely and topology-hidingly realize secure channels and broadcast. The main result of this section is the following theorem.

Theorem 1. Given a network \mathcal{N}_G with diameter D and maximum degree d where $d^D = \text{poly}(\kappa)$ there exists a protocol which securely and topology-hidingly realizes broadcast using black-box RR-MHT-PKE. The protocol communicates at most $(d + 1)^D \cdot n \cdot \lambda$ bits within $5 \cdot D$ rounds, where λ is linear (with small constant, less than 5) in κ.

3.4.1 Topology-Hiding Threshold Encryption

In this section we build a topology-hiding threshold encryption protocol using a secure RR-MHT-PKE scheme. More precisely, we provide (1) a distributed setup protocol, (2) an information-transmission protocol, and (3) a distributed decryption protocol. Looking ahead, those protocols will allow us to topology-hidingly realize the Boolean-OR functionality.

The RR-MHT-PKE Scheme. We assume that the parties have access to a secure RR-MHT-PKE scheme with security parameter κ, where $n = \text{poly}(\kappa)$. In particular, each party has local (black-box) access to the algorithms of the RR-MHT-PKE scheme. We refer to Section 3.3.3 for secure a RR-MHT-PKE scheme based on the DDH assumption.

The Network Graph. A prerequisite for our protocols to work is that the network graph G of \mathcal{N}_G is connected. Otherwise (global) information transmission is not possible. The parties also need to know upper bounds on the maximum degree and the diameter of the network graph. We therefore assume that the parties have access to an initialized network $\mathcal{N}_G^{d,D}$ where the graphs in the family \mathcal{G} are connected, have a maximum degree of $d \leq n$, and a diameter of at most $D \leq n$ where d and D are
publicly known. For simplicity we restrict ourselves to present protocols for d-regular network graphs. We point out that one can extend the presented protocols to the general case where parties may have less than d neighbors. The idea is that a party which has less than d neighbors pretends to have d neighbors by emulating (messages from) virtual neighbors (cf. [MOR15]).

Setup Protocol

In this section we present a protocol which allows to topology-hidingly generate a threshold-setup where each party P_i holds a public key PK_i such that the corresponding private-key is shared among all parties. The high-level idea of our protocol is as follows. We first observe that the D-neighborhood of P_i consists of all parties. The setup provides party P_i with a public key where the corresponding private-key is shared in the D-neighborhood $N_G[i]^D$ of P_i. The setup can be generated recursively. In order to generate a k-neighborhood public-key $PK_i^{(k)}$, P_i asks each of its neighbors to generate a public key where the private key is shared in the neighbor’s $(k - 1)$-neighborhood. It can then compute $PK_i^{(k)}$ by combining the received public-keys.

Definition 8. A setup for topology-hiding threshold encryption over a network $N_G^{d,D}$ consists of the following parts.

Private-Key Shares: Each party P_i holds a vector $(SK_i^{(0)}, \ldots, SK_i^{(D)})$ of $D + 1$ private keys which we call its private-key shares. For any $0 \leq k \leq D$ we denote by $PK_i^{(k)}$ the public key corresponding to $SK_i^{(r)}$.

Public-Keys: Each party P_i holds $D + 1$ public keys $(PK_i^{(0)}, \ldots, PK_i^{(D)})$ where $PK_i^{(0)} = PK_i^{(0)}$ and $\prod_{P_j \in N_G(i)} PK_j^{(k - 1)}$. We call $PK_i^{(k)}$ the level-k public-key of P_i and denote by $SK_i^{(r)}$ the corresponding (shared) private key. The public-key of P_i is $PK_i := PK_i^{(D)}$ and the shared private-key is $SK_i := SK_i^{(D)}$.

Local Pseudonyms: Each party P_i privately holds an injective random function $\nu_i(\cdot) : N_G(i) \to \{1, \ldots, d\}$ which assigns each neighbor $P_j \in N_G(i)$ a unique local identity $\nu_i(j) \in \{1, \ldots, d\}$. W.l.o.g. we will assume that $\nu_i(i) = 0$.
We remark that the condition on the public-keys ensures that any \(0 \leq k \leq D\) the private key \(SK_i^{(k)}\) is properly shared among the \(k\) neighborhood of \(P_i\), i.e., each party in the \(k\)-neighborhood holds a non-trivial share.

Definition 9. A protocol is a secure (topology-hiding) setup protocol over a network \(\mathcal{N}_G^{d,D}\) if it has the following properties.

Correctness: The protocol generates with overwhelming probability a setup for topology-hiding threshold encryption over network \(\mathcal{N}_G^{d,D}\).

Topology-Hiding Simulation: The adversarial view in a protocol execution can be simulated with overwhelming probability given the neighborhood of dishonest parties in \(\mathcal{N}_G^{d,D}\) and the output of dishonest parties, i.e., given the values

\[
\{N_G(i), \nu_i(\cdot), \overline{SK}_i^{(0)}, \ldots, \overline{SK}_i^{(D)}, PK_i^{(0)}, \ldots, PK_i^{(D)}\}_{P_i \in \Pi}
\]

The simulation property ensures in particular that (a) the adversary does not learn more about the network topology and that (b) the adversary does not learn the private key corresponding to the public key \(PK_i^{(k)}\) of party \(P_i\) unless it corrupts the entire \(k\)-neighborhood of \(P_i\).

Protocol GenerateSetup

Require: Parties have access to an initialized \(\mathcal{N}_G^{d,D}\).

1. Each \(P_i\) generates the local identities \(\nu_i(\cdot)\) and sub-key pair \((\overline{PK}_i^{(0)}, \overline{SK}_i^{(0)}) \leftarrow \text{KeyGen}\). Then it sets \(PK_i^{(0)} = \overline{PK}_i^{(0)}\).
2. for \(k = 1, \ldots, D\) do
3. Each \(P_i\) sends \(PK_i^{(k-1)}\) to each \(P_j \in N_G(i)\) using \(N\).
4. Each \(P_i\) generates sub-key pair \((\overline{PK}_i^{(k)}, \overline{SK}_i^{(k)}) \leftarrow \text{KeyGen}\).
5. Each \(P_i\) computes \(PK_i^{(k)} = \overline{PK}_i^{(k)} \cdot \prod_{P_j \in N_G(i)} PK_j^{(k-1)}\).
6. end for

Output: \(P_i\) outputs \(\nu_i(\cdot), (\overline{SK}_i^{(0)}, \ldots, \overline{SK}_i^{(D)}),\) and \((PK_i^{(0)}, \ldots, PK_i^{(D)})\).

Lemma 5. Given a secure RR-MHT-PKE scheme protocol \(\text{GenerateSetup}\) is a secure setup protocol. The protocol communicates \(D \cdot d \cdot n \cdot \log|\mathcal{PK}|\) bits within \(D\) rounds.
Proof. Correctness: It follows directly from protocol inspection that the setup generated by \texttt{GenerateSetup} is valid for \(N_{d,D}^G\).

Topology-Hiding Simulation: The view of the adversary during an actual protocol execution is

\[
\text{view} \left\{ \left\{ N_G(i), \nu_i(\cdot), \left\{ \text{PK}_i^{(k)}, \text{pk}_i^{(k)}, \text{SK}_i^{(k)} \right\} \right\}_{0 \leq r \leq D}, \left\{ \text{PK}_j^{(k)} \right\}_{P_j \in N_G(i), 0 \leq r \leq D-1} \right\}_{P_i \in \overline{H}}.
\]

Now consider the view where public keys \(\left\{ \text{PK}_j^{(k)} \right\}_{P_j \in N_G(i) \cap H, 0 \leq r \leq D-1}\) are replaced by freshly generated public keys using \texttt{KeyGen}, i.e.,

\[
\text{view} \left\{ \left\{ N_G(i), \nu_i(\cdot), \left\{ \text{PK}_i^{(k)}, \text{pk}_i^{(k)}, \text{SK}_i^{(k)} \right\} \right\}_{0 \leq r \leq D}, \left\{ \text{pk}_i^{(k)} \right\}_{P_j \in N_G(i) \cap \overline{H}, 0 \leq r \leq D-1} \right\}_{P_i \in \overline{H}}.
\]

Note that the second view can be easily computed by a simulator given the outputs of dishonest parties. It remains to show that those views are computationally indistinguishable. Note that for any \(P_j \in N_G(\overline{H}) \cap H\) the public-key \(\text{PK}_j^{(k)}\) has the form \(\text{pk}_1 \cdot \text{pk}\) where

\[
\text{pk}_1 = \text{PK}_j^{(k)} \text{ and } \text{pk} = \prod_{P_i \in N_G(j)} \text{PK}_i^{(k-1)}.
\]

The indistinguishability therefore follows from the unif-KG property of the RR-MHT-PKE scheme.

Communication Complexity: The protocol runs for \(D\) rounds and in each round \(n \cdot d\) public-keys are sent. \(\square \)

Information-Transmission Protocol

In this section we present a topology-hiding information-transmission protocol. Here, each party has a message \(m_i\) and a public-key \(\text{pk}_i^{10}\) as input. The output of party \(P_i\) is a ciphertext \(c_i\) under the public key \(\text{pk}_i\).

\(^{10}\text{For notational simplicity we use uppercase letters for public-/private-keys which are part of the setup for } N_{d,D}^G \text{ and lowercase letters for arbitrary public-/private-keys.}\)
If all parties input the 0-message, c_i is an encryption of 0. Otherwise, c_i is an encryption of a random, non-zero message.

The information-transmission protocol has a recursive structure and is thus parametrized by a level k. The protocol requires that parties have generated local pseudonyms. We therefore assume that the parties have access to a setup for topology-hiding threshold encryption over $\mathcal{N}_G^{d,D}$.

Definition 10. A protocol is a level-k (topology-hiding) secure information-transmission protocol over a network $\mathcal{N}_G^{d,D}$ if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-hiding threshold encryption over $\mathcal{N}_G^{d,D}$ (cf. Definition 8). Each party holds as input a message $m_i \in \mathcal{M}$ and a public key $pk_i \in \mathcal{PK}$ (not necessarily part of its setup). The output of each party P_i is a ciphertext $c_i \in \mathcal{C}$.

Correctness: With overwhelming probability the output c_i is the encryption of message s_i under pk_i and randomness ρ_i (i.e. $c_i = \text{Enc}(pk_i, s_i; \rho_i)$) with

$$s_i = \begin{cases}
0 & \text{if } m_j = 0 \text{ for all } P_j \in \mathcal{N}_G[i]^k \\
x_i & \text{if } m_j \neq 0 \text{ for at least one } P_j \in \mathcal{N}_G[i]^k
\end{cases}$$

where $x_i \in \mathcal{M} \setminus \{0\}$ uniform at random.

Topology-Hiding Simulation: The adversarial view in a real protocol-execution can be simulated with overwhelming probability given the following values

$$\left\{ \mathcal{N}_G(i), m_i, pk_i, c_i, \nu_i(\cdot) \right\}_{P_i \in \overline{H}} \cup \left\{ s_i, \rho_i \right\}_{\mathcal{N}_G[i]^k \subseteq \overline{H}}.$$

In other words the simulator gets the neighborhood of dishonest parties (in $\mathcal{N}_G^{d,D}$), their protocol in- and outputs, and their local pseudonyms from the setup. For any party P_i where the whole k-neighborhood is dishonest the simulator is additionally given the content s_i and the randomness ρ_i of output c_i.

The simulation property ensures in particular that (a) the adversary does not learn more about the network topology and that (b) the adversary does not learn the content of ciphertext c_i of party P_i unless it corrupts the entire k-neighborhood of P_i.
3.4. TOPOLOGY-HIDING COMMUNICATION

Require: Parties have access to an initialized $N_{G}^{d,D}$ and have generated local pseudonyms.

Input: Each P_i inputs a message m_i and a public key pk_i.

1: if $k = 0$ then
2: Each P_i computes $c_i = \text{Enc}(pk_i, 0)$ if $m_i = 0$ or $c_i = \text{Enc}(pk_i, x_i)$ if $m_i \neq 0$ where $x_i \in M \setminus \{0\}$ uniform at random.
3: else
4: Each P_i computes $(\tilde{pk}_i, rk_i) \leftarrow \text{RandKey}(pk_i)$ and sends \tilde{pk}_i to each $P_j \in N_G[i]$ which denotes the received key by $pk_{j,\nu_j(i)}$.
5: for $l = 0, \ldots, d$ do
6: The parties compute ciphertexts $(\tilde{c}_{1,l}, \ldots, \tilde{c}_{n,l})$ by invoking $\text{InfoTransmission}(k - 1, (m_1, pk_1,l), \ldots, (m_n, pk_n,l))$.
7: end for
8: Each P_i sends $\tilde{c}_{i,\nu_i(j)}$ to $P_j \in N_G[i]$.
9: Each P_i computes $c_i = \left(\prod_{P_j \in N_G[i]} \text{DerandCipher}(rk_i, \tilde{c}_{j,\nu_j(i)}) \right)^{r_i}$ for a uniform random $r_i \in \{1, \ldots, |M| - 1\}$.
10: end if

Output: Each P_i outputs c_i.

Lemma 6. Given a secure RR-MHT-PKE scheme and for any parameter $0 \leq k \leq D$ with $d^k = \text{poly}(\kappa)$, protocol $\text{InfoTransmission}(k, (m_1, pk_1), \ldots, (m_n, pk_n))$ is a secure level-k information-transmission protocol. The protocol communicates at most $(d + 1)^k \cdot n \cdot (\log|PK| + \log|C|)$ bits within $2k$ rounds.

Proof. (sketch) Correctness: For $k = 0$ each party locally computes c_i as specified by the correctness property. The protocol thus achieves correctness perfectly. For $k > 0$ assume that the protocol achieves correctness for $(k - 1)$. More precisely, the output of a party P_j for parameter $(k - 1)$ is computed perfectly correct if all $(k - 1)$-neighbors have input 0. Otherwise, the output of P_j for parameter $(k - 1)$ is computed correctly except with error probability ε_{k-1}. First, we consider the case where all parties in the k-neighborhood of P_i have input 0. The assumption for $(k - 1)$ implies that all $\tilde{c}_{i,\nu_i(j)}$ contain 0. The properties of the RR-MHT-PKE scheme imply that $s_i = r_i \cdot 0 = 0$. In the second case at least one party in the k-neighborhood of P_i has a non-zero input. This implies that at least one $\tilde{c}_{i,\nu_i(j)}$ contains a uniform random, non-zero
message (with error probability of at most ε_{k-1}). The properties of the RR-MHT-PKE thus ensure that c_i contains a uniform random, non-zero message (except with error probability $\varepsilon_k := \varepsilon_{k-1} + \frac{1}{|M|}$). This implies an overall success probability of at least $1 - (\frac{kn}{|M|})$.

Topology-Hiding Simulation: To simulate the view of the adversary the simulator is given

$$\{N_G(i), m_i, p_{k_i}, c_i, \nu_i(i)\}_{P_i \in \overline{H}} \cup \{s_i, \rho_i\}_{N_G[i]k \subseteq \overline{H}}.$$

For $k = 0$ those values correspond exactly to the view of the adversary during an actual protocol execution. Simulation is thus easy. For the case $k > 0$ assume that the view of the adversary can be simulated for $k' < k$. The view of the adversary can now be simulated as follows. At the beginning, the simulator generates all public keys and de-randomizers seen by the adversary. For each dishonest P_i the simulator computes r_k, \tilde{p}_{k_i} using RandKey. For each honest P_j in the neighborhood of \overline{H} the simulator sets \tilde{p}_{k_j} to a random public-key using KeyGen. Due to the IND-CKCA property of the RR-MHT-PKE scheme these public keys are indistinguishable from the corresponding public-keys seen by the adversary in an actual protocol-execution. The above values also determine all keys $p_{k_i,\nu_i(j)}$ for $P_i \in \overline{H}$ and $P_j \in N_G(i)$. Now, we consider the ciphertexts seen by the adversary in the second part of the protocol. In essence the simulator must generate all $\tilde{c}_{j,\nu_j(i)}$ where P_i and/or P_j is dishonest. If the whole $(k-1)$-neighborhood of P_j is dishonest the simulator must also provide the content and the randomness of $\tilde{c}_{j,\nu_j(i)}$ which are required for the sub-simulation of the recursive protocol invocations. We recall that RandCipher is efficiently invertible if the de-randomizer is known. First, simulator generates a random $r_i \in \{1, \ldots, |M| - 1\}$ for each dishonest P_i. If the whole k-neighborhood of P_i is dishonest (i.e., $N_G[i]k \subseteq \overline{H}$) the simulator is additionally given s_i and ρ_i. This allows the simulator to compute for each neighbor $P_j \in N_G[i]$ a valid $s_{j,\nu_j(i)}$, randomness $\rho_{j,\nu_j(i)}$, and an encryption $\tilde{c}_{j,\nu_j(i)} = \text{Enc}(\tilde{p}_{k_i}, s_{j,\nu_j(i)}; \rho_{j,\nu_j(i)})$ such that $c_i = (\prod_{P_j \in N_G[i]} \text{RandCipher}(r_k, \tilde{c}_{j,\nu_j(i)}))^{r_i}$. If there exists a honest party in the k-neighborhood of P_i, the simulator is not given s_i and ρ_i. However, in this case there is at least one P_j in $N_G[i]$ such that $N_G[j]k-1 \not\subseteq \overline{H}$. This allows the simulator to first generate all $s_{j,\nu_j(i)}$, $\rho_{j,\nu_j(i)}$ and $\tilde{c}_{j,\nu_j(i)} = \text{Enc}(\tilde{p}_{k_i}, s_{j,\nu_j(i)}; \rho_{j,\nu_j(i)})$ where $N_G[j]k-1 \subseteq \overline{H}$. Then it chooses the remaining $\tilde{c}_{j,\nu_j(i)}$ randomly under
3.4. TOPOLOGY-HIDING COMMUNICATION

the constraint that \(c_i = \left(\prod_{j \in N_G[i]} \text{DerandCipher}(r_k_i, \tilde{c}_j, \nu_j(i)) \right)^{r_i} \). In a final step the adversary generates for any honest \(P_j \in N_G[i] \) the values \(s_{i,\nu_i(j)}, \rho_{i,\nu_i(j)} \) and \(\tilde{c}_{i,\nu_i(j)} = \text{Enc}(\tilde{p}_k_j, s_{i,\nu_i(j)}; \rho_{i,\nu_i(j)}) \). The IND-CPA property of the RR-MHT-PKE scheme and the correctness property of the protocol ensure that the generated ciphertexts are indistinguishable from the ones seen by the adversary in an actual protocol execution. Now all values required for the simulation of the \(d + 1 \) invocations of \text{InfoTransmisson} with parameter \((k - 1) \) are given. The simulator can thus use the sub-simulator to generate the view of the adversary in the middle part of the protocol.

Communication Complexity: Let \(f(k) \) be the communication complexity of \text{InfoTransmisson} \((k, \ldots)\). Then we have \(f(0) = 0 \) and \(f(k) = d \cdot n \cdot (\log|\mathcal{P}| + \log|\mathcal{C}|) + (d + 1) \cdot f(k - 1) \). This results in a communication complexity of at most \((d + 1)^k \cdot n \cdot (\log|\mathcal{P}| + \log|\mathcal{C}|)\) bits. The round complexity follows from the observation that one can invoke the subprotocols \text{InfoTransmisson} \((k - 1, \ldots)\) in parallel.

Decryption Protocol

In this section we describe a distributed decryption protocol which allows each party \(P_i \) to decrypt a ciphertext \(c_i \) under its shared private-key \(SK_i \) which has been generated by the setup protocol. The decryption protocol consists of two parts. First the parties jointly compute for each ciphertext \(c_i \) a decryption-share \(x_i \) under the shared private-key of \(P_i \). In a second phase each party \(P_i \) can locally decrypt \(c_i \) using the decryption share \(x_i \). First, we present a subprotocol which allows to compute the required decryption shares. The key-idea is to use the homomorphic property of decryption-shares which allows a recursive computation. The subprotocol is therefore parametrized by \(k \).

Definition 11. A protocol is a secure level-\(k \) (topology-hiding) decryption-share protocol over a network \(\mathcal{N}_{G}^{d,D} \) if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-hiding threshold encryption over \(\mathcal{N}_{G}^{d,D} \) (cf. Definition 8). Each party \(P_i \) inputs a ciphertext \(c_i \in \mathcal{C} \). The output of party \(P_i \) is a decryption share \(x_i \in \mathcal{DS} \).
Correctness: With overwhelming probability $x_i = \text{ShareDecrypt}(SK_i^{(k)}, c_i)$ where $SK_i^{(k)}$ is the level-k shared private-key of P_i from the setup.

Topology-Hiding Simulation: The adversarial view in a real protocol-execution can be simulated with overwhelming probability given the following values

$$\{N_G(i), c_i, x_i, \nu_i, \overline{SK}^{(0)}_i, \ldots, \overline{SK}^{(k)}_i\}_{P_i \in \mathcal{H}}$$

In other words the simulator gets the neighborhood of dishonest parties (in $N_G^{d,D}$), their protocol in- and outputs, their local pseudonyms, and their private-key shares (up to level-k) of the assumed setup.

The simulation property ensures in particular that the adversary does not learn more about the network topology.

Protocol DecShares

Require: Parties have access to an initialized $N_G^{d,D}$ and have generated a setup for topology-hiding threshold encryption over $N_G^{d,D}$.

Input: Each P_i inputs a ciphertext c_i.

1: if $k = 0$ then
2: each P_i computes $x_i = \text{ShareDecrypt}(\overline{SK}^{(0)}_i, c_i)$.
3: else
4: each P_i computes $(r_k, \widehat{c}_i) = \text{RandCipher}(c_i)$ and sends \widehat{c}_i to each $P_j \in N_G(i)$ which denotes the received value by $c_j, \nu_j(i)$.
5: for $l = 1, \ldots, d$ do
6: parties jointly compute $(x_{1,l}, \ldots, x_{n,l}) = \text{DecShares}(k-1, c_{1,l}, \ldots, c_{n,l})$.
7: end for
8: each P_i sends $x_i, \nu_i(j)$ to each $P_j \in N_G(i)$.
9: each P_i computes first $\widehat{x}_i = \prod_{P_j \in N_G(i)} x_{j,\nu_j(i)}$ and then $x_i = \text{DerandShare}(r_k, \widehat{x}_i) \cdot \text{ShareDecrypt}(\overline{SK}^{(k)}_i, c_i)$.
10: end if

Output: Each P_i outputs x_i.

Lemma 7. Given a secure RR-MHT-PKE scheme and for any parameter $0 \leq k \leq D$ with $d^k = \text{poly}(\kappa)$ the above protocol $\text{DecShares}(k, c_1, \ldots, c_n)$
is a secure level-k decryption-share protocol. The protocol communicates $d^k \cdot n \cdot (\log|\mathcal{DS}| + \log|\mathcal{C}|)$ bits within $2k$ rounds.

Proof. (sketch) Correctness: The correctness essentially follows from the structure of the assumed setup and from the properties of the RR-MHT-PKE scheme. In the case $k = 0$ we have $\text{SK}_i^{(0)} = \overline{\text{SK}}_i$ which implies $x_i = \text{ShareDecrypt}(\overline{\text{SK}}_i, c_i)$. For $k > 0$ we have $\text{SK}_i^{(k)} = \overline{\text{SK}}_i^{(k)} + \sum_{P_j \in \mathcal{N}_G(i)} \text{SK}_i^{(k-1)}$. The properties of the RR-MHT-PKE scheme thus imply that $x_i = \text{ShareDecrypt}(\overline{\text{SK}}_i^{(k)}, c_i)$ (c.f. protocol line 9).

Topology-Hiding Simulation: In the case $k = 0$ the view of the adversary is directly determined by values given to the simulator. Simulation is therefore easy to achieve. In the case $k > 0$ the simulation of the adversarial view works similar as for the information-transmission protocol (we recall that DerandShare is efficiently invertible if the de-randomizer is known). The simulator essentially emulates the protocol run. The IND-CKCA property of the RR-MHT-PKE scheme allows the simulator to choose random ciphertexts for $c_{i,\nu_i(j)}$ of honest P_j. Moreover, the decryption shares $x_{j,\nu_j(i)}$ for honest P_j can also be chosen randomly (where the distribution is conditioned on the outputs of dishonest parties). The view during the executions of DecShares with parameter $k - 1$ can be generated using the $(k - 1)$-subsimulator guaranteed by the induction hypothesis.

Communication Complexity: Denote by $f(k)$ be the communication complexity of DecShares(k, \ldots). Then we have $f(0) = 0$ and $f(k) = n \cdot d \cdot (\log|\mathcal{DS}| + \log|\mathcal{C}|) + d \cdot f(k-1)$. This results in a communication complexity of $f(k) = d^k \cdot n \cdot (\log|\mathcal{DS}| + \log|\mathcal{C}|)$. The round complexity follows from the observation that one can invoke the subprotocols DecShares$(k-1, \ldots)$ in parallel.

Definition 12. A protocol is a secure (topology-hiding) threshold decryption protocol for network $\mathcal{N}^{d,D}_G$ if it has the following properties.

Setup, Inputs and Outputs: The parties initially hold a setup for topology-hiding threshold encryption over $\mathcal{N}^{d,D}_G$ (cf. Definition 8). Each party P_i inputs a ciphertext $c_i \in \mathcal{C}$. The output of party P_i is a message m_i.

Correctness: With overwhelming probability it holds for each party P_i
that \(m_i = \text{Decode}(\text{ShareDecrypt}(SK_i, c_i)) \) where \(SK_i \) is the shared private-key of \(P_i \).

Topology-Hiding Simulation: The adversarial view in a real-protocol execution can be simulated with overwhelming probability given the following values

\[
\{ N_G(i), c_i, m_i, \nu_i(\cdot), \overline{SK}_i^{(0)}, \ldots, \overline{SK}_i^{(D)} \}_{P_i \in \mathcal{H}}
\]

In other words, the simulator gets the neighborhood of dishonest parties (in \(N_G^{d,D} \)), their protocol in- and outputs, their local pseudonyms, and their private-key shares of the assumed setup.

Protocol Decryption \((c_1, \ldots, c_n) \)

Require: Parties have access to an initialized \(N_G^{d,D} \) and have generated a setup for topology-hiding threshold encryption over \(N_G^{d,D} \).

Input: Each \(P_i \) inputs a ciphertext \(c_i \).

1: The parties compute \((x_1, \ldots, x_n) = \text{DecShares}(D, c_1, \ldots, c_n) \).

Output: Each \(P_i \) outputs \(\text{Decode}(x_i, c_i) \).

Lemma 8. Decryption \((k, c_1, \ldots, c_n) \) is a secure threshold decryption protocol given a secure RR-MHT-PKE scheme. The protocol communicates \(d^D \cdot n \cdot (\log|DS| + \log|C|) \) bits within 2\(D \) rounds.

Proof. (sketch) **Correctness:** The correctness follows from Lemma 7 and the properties of the RR-MHT-PKE scheme.

Topology-Hiding Simulation: The adversarial view in a real protocol execution can be simulated as follows (recall that \(\text{Decode} \) is efficiently invertible). First the simulator computes for each pair \((c_i, m_i) \) a decryption share \(x_i \) such that \(m_i = \text{Decode}(x_i, c_i) \). The rest of the view can then be generated using the sub-simulator for \(\text{DecShares}(D, \ldots) \).

Communication Complexity: The communication complexity and the number of rounds follows directly from the invocation of \(\text{DecShares} \) with parameter \(D \). \(\square\)
3.4. TOPOLOGY-HIDING COMMUNICATION

3.4.2 Multi-Party Boolean OR

In this section we present a protocol which securely and topology-hidingly realizes the multi-party Boolean-OR functionality F_{OR} using the topology-hiding threshold encryption protocol from the previous section. The functionality F_{OR} takes from each party P_i an input bit b_i and computes the OR of those bit, i.e., $b = b_1 \lor \cdots \lor b_n$.

Functionality F_{OR}

1. Every party P_i (and the adversary on behalf of corrupted parties) sends (input) bit b_i; if P_i does not submit a valid input, then F_{OR} adopts $b_i = 0$.
2. Every party P_i receives (output) $b = b_1 \lor \cdots \lor b_n$.

Assumptions. We assume in the following that the parties have access to a secure RR-MHT-PKE scheme with security parameter κ, where $n = \text{poly}(\kappa)$. Moreover, parties are given the network $N_{G}^{d,D}$ where the graphs in the family \mathcal{G} are connected, have a maximum degree of $d \leq n$, and a diameter of at most $D \leq n$ where d and D are publicly known.

Protocol Boolean-OR(b_1, \ldots, b_n)

Initialization:
1: Each party P_i inputs its neighborhood $N_G[i]$ into $N_{G}^{d,D}$.
2: The parties generate a setup for topology-hiding threshold encryption over $N_{G}^{d,D}$ using GenerateSetup.

Computation:

Input: Each party P_i inputs a bit b_i.
1: Each party P_i sets $m_i = 0$ if $b_i = 0$. Otherwise, its sets m_i to an arbitrary message in $\mathcal{M} \setminus \{0\}$.
2: The parties compute $(c_1, \ldots, c_n) = \text{InfoTransmission}(D_1, (m_1, PK_1), \ldots, (m_n, PK_n))$.
3: The parties compute $(m'_1, \ldots, m'_n) = \text{Decryption}(c_1, \ldots, c_n)$.

Output: If $m'_i = 0$ P_i outputs 0. Otherwise it outputs 1.
Lemma 9. Given a secure RR-MHT-PKE scheme and for d, D with $d^D = \text{poly}(\kappa)$ the protocol $\text{Boolean-OR}(b_1, \ldots, b_n)$ securely and topology-hidingly realizes \mathcal{F}_{OR} (in the $\mathcal{N}_{g,D}^\cdot$-hybrid model). In the initialization phase the protocol $\text{Boolean-OR}(b_1, \ldots, b_n)$ communicates $D \cdot d \cdot n \cdot \log|\mathcal{P}K|$ bits within D rounds. In the computation phase the protocol communicates at most $(d + 1)^{D} \cdot n \cdot (\log|\mathcal{D}S| + \log|\mathcal{P}K| + 2\log|\mathcal{C}|)$ bits within $4 \cdot D$ rounds.

Proof. Correctness: We assume the condition $d^D = \text{poly}(\kappa)$. The correctness thus follows directly from the properties of Lemmas 5, 6, and 8 as the information-transmission protocol essentially allows to compute Boolean-ORs.

Topology-Hiding Simulation: Given the values $\{N_G(i), b_i, b\}_{P_i \in \mathcal{H}}$ the view of the adversary can be simulated as follows. First the simulator generates a setup for $\mathcal{N}_{G,D}^\cdot$. Next, for each dishonest P_i the simulator computes the messages m_i and m'_i. It generates the corresponding ciphertext c_i (including the randomness). With those values the simulator now runs the sub-simulators for GenerateSetup, $\text{InfoTransmission}(D, \ldots)$, and $\text{Decryption}(\ldots)$. The properties of Lemmas 5, 6, and 8 ensure that the generated view is indistinguishable (for the adversary) from a real protocol execution.

Communication Complexity: The claimed communication complexity follows directly from the used subprotocols.

Remark. If the RR-MHT-PKE is instantiated using the DDH based construction from Section 3.3.3, the computation complexity of the protocol Boolean-OR is similar to its communication complexity.

3.4.3 Topology-Hiding Broadcast

In this section we describe a protocol which securely realizes the (bit) broadcast functionality $\mathcal{F}_{\text{BC}}^s$, while making black-box use of the \mathcal{F}_{OR} functionality from the previous section. The functionality $\mathcal{F}_{\text{BC}}^s$ allows sender P_s to input a bit b_s which is output to all parties. This result directly implies that one can securely and topology-hidingly realize secure channels and broadcast using black-box RR-MHT-PKE.
3.5. APPLICATIONS

Lemma 10. The protocol $\text{Broadcast}(P_s, b_s)$ securely realizes the F_{BC} functionality in the F_{OR}-hybrid model.

Proof. We have that $b = 0 \lor \cdots \lor b_s \lor \cdots \lor 0 = b_s$ which implies correctness. The view of the adversary in an actual protocol execution consists of inputs and outputs of dishonest parties and is therefore easy to simulate. \hfill \blacksquare

This implies the following Corollary.

Corollary 1. For d, D with $dD = \text{poly}(\kappa)$ one can securely and topology-hidingly realize F_{BC}^s (in the $N_{d, D}^{\text{hybrid}}$-hybrid model) given a secure black-box RR-MHT-PKE scheme while communicating at most $(d+1)^D \cdot n \cdot (\log|DS| + \log|PK| + 2\log|C|) + D \cdot d \cdot n \cdot \log|PK|$ bits within $5 \cdot D$ rounds per invocation.

Moreover, parties can simply realize secure channels given broadcast. First the receiver generates a key pair and broadcasts the public-key. The sender then broadcasts his message encrypted under this public-key.

Corollary 2. For d, D with $dD = \text{poly}(\kappa)$ one can securely and topology-hidingly realize secure channels (in the $N_{d, D}^{\text{hybrid}}$-hybrid model) using black-box RR-MHT-PKE. The communication complexity is twice the one of the broadcast protocol.

3.5 Applications

In this section we provide two applications of our network-hiding communication protocols. Namely, one can securely and topology-hidingly realize MPC and anonymous broadcast.

3.5.1 Topology-Hiding Secure MPC

The protocols from the previous section allow parties to topology-hidingly realize a complete network of secure channels (including broadcast channels). They can then use this network to execute a multi-party protocol.
of their choice, e.g., \cite{GMW87, Pas04}. This easily proves the following result.

Theorem 2. For \(d, D\) with \(d^D = \text{poly}(\kappa)\) one can securely and topology-hidingly realize any given multi-party functionality (in the \(N^d,D\)-hybrid model) using black-box RR-MHT-PKE.

Proof. This directly follows from Corollaries 1 and 2.

3.5.2 Anonymous Broadcast

Theorem 2 implies that one can topology-hidingly realize anonymous channels given black-box access to a RR-MHT-PKE scheme. But using generic MPC to achieve an anonymous channel is expensive in terms of communication complexity. We therefore provide a protocol in the \(\mathcal{F}_{\text{OR}}\)-hybrid model which directly realizes anonymous broadcast \(\mathcal{F}_{\text{ABC}}\).

The functionality \(\mathcal{F}_{\text{ABC}}\) generates for each party a unique but random pseudonym. In the subsequent communication rounds each party can publish messages under its pseudonym. Message are linkable which means that parties can relate messages to pseudonyms. If desired, parties can prevent this by generating fresh pseudonyms (e.g., after each communication round).

Functionality \(\mathcal{F}_{\text{ABC}}\)

Initialization:

1: The functionality generates a random permutation \(\sigma\) of \(n\) elements.
2: Each party \(P_i\) gets output \(\sigma(i)\).

Communication Step:

Require: Each party \(P_i\) inputs a bit \(b_i\).

Output: The parties get the vector \((o_1, \ldots, o_n)\) as output where \(o_{\sigma(i)} = b_i\).

Anonymous Broadcast Protocol. The high-level idea of our construction is as follows. In a scheduling phase each party gets a random (but unique) communication slot \(\sigma(i)\) assigned. In a communication round
for each slot $\sigma(i)$ the F_{OR} functionality is invoked which allows P_i to broadcast its bit.

The major challenge is to compute the slot assignment. We solve this issue with a scheduling loop\footnote{A similar idea was used recently in [KNS16].}. At the beginning each party selects a random slot. Then over several scheduling rounds the parties resolve colliding selections by computing a reservation matrix. The size of this matrix (parametrized by m) determines the collision detection probability. A larger m means a faster expected run time at the cost of increased communication costs per round.

\begin{protocol}{AssignSlots(m)}
\begin{enumerate}
 \item Each party P_i chooses a random slot $s_i \in \{1, \ldots, n\}$.
 \item repeat
 \hspace{1em} Each party P_i chooses a random token $r_i \in \{1, \ldots, m\}$ and computes the $n \times m$-matrix $A^{(i)} = (a^{(i)}_{x,y})$ where $a^{(i)}_{s_i,r_i} = 1$ and $a^{(i)}_{x,y} = 0$ otherwise.
 \hspace{1em} The parties compute the matrix $A = (a_{x,y})$ where $a_{x,y} = a^{(1)}_{x,y} \lor \cdots \lor a^{(n)}_{x,y}$ by invoking F_{OR}.
 \hspace{1em} If there exists an $r < r_i$ such that $a_{s_i,r} = 1$ party P_i chooses a new random slot $s_i \in \{1, \ldots, n\}$ such that s_i-th row of A contains only zeros.
 \item until Each row of A contains exactly one 1.
 \item Output: Each party P_i outputs s_i.
\end{enumerate}
\end{protocol}

Lemma 11. The protocol $AssignSlots(m)$ for the F_{OR}-hybrid model securely computes a random permutation σ of n elements where each party P_i learns $\sigma(i)$. The expected number of rounds the protocol requires to compute the permutation is bounded by $\frac{m}{m-1} \cdot n$ where F_{OR} is invoked $n \cdot m$ times per round.

Proof. Correctness: The protocol terminates if each row of A contains exactly one non-zero entry. Thus each slot in $\{1, \ldots, n\}$ has been chosen at least by one party. As there are n parties this also means that no slot was chosen twice. The output is therefore a valid permutation. Inspection of the protocol also reveals that the permutation is chosen uniform at
random (we consider passive security).

Termination: Next, we show that the protocol eventually terminates. Each slot is in one of three states. Either its empty, or its selected by multiple parties, or it is assigned to a single party. We observe that the state transition function for slots is monotone. A selected slot cannot become empty and an assigned slot stays assigned to the same party. In each round where a collision is detected at least one empty slot becomes assigned. After at most n such rounds there are no empty slots left. But this also means that each slot is selected by at least one party and the protocol terminates.

Round Complexity: The above argument also leads to a crude upper bound on the number of expected rounds. We observe that a collision between two parties is detected with a probability of at least $p = (1 - \frac{1}{m})$. The expected number of rounds required to detect a collision is therefore at most $\frac{1}{p} = \frac{m}{m-1}$ (geometric distribution). The number of expected rounds is thus bounded by $\frac{m}{m-1} \cdot n$.

Simulation: It remains to consider the simulation of the adversarial view. We observe that the (current) slot selection of dishonest parties is enough to simulate the view of the adversary in a scheduling round. The simulator can therefore essentially emulate the protocol (conditioned on the final slots of dishonest parties).

We can now combine this scheduling protocol with the broadcast protocol from Section 3.4.3 to build a protocol which achieves anonymous broadcast.

Protocol Anonymous Broadcast(m)

Initialization:
1: The parties compute $(\sigma(1), \ldots, \sigma(n)) = \text{AssignSlots}(m)$.

Communication Step:

Require: Each party P_i inputs a bit b_i.
1: for $s = 1, \ldots, n$ do
2: The parties compute
\[(o_s, \ldots, o_s) = \text{Boolean-OR}(0, \ldots, b_{\sigma^{-1}(s)}, \ldots, 0).\]
3: end for
Output: Each party P_i outputs vector (o_1, \ldots, o_n).

Lemma 12. The protocol Anonymous Broadcast(m) securely realizes the functionality F_{ABC} in the F_{OR}-hybrid model.

Proof. The statement follows directly from Lemmas 11 and 10.

Corollary 3. For d, D with $d^D = \text{poly}(\kappa)$ one can securely and topology-hidingly realize F_{ABC} (in the $N_{G}^{d,D}$-hybrid model) given a secure black-box RR-MHT-PKE scheme.
Chapter 4

Classification of Consistency Specifications

The content of this chapter is based on the works [LMT16] and [LMT17].

4.1 Introduction

The seminal result of [LSP82] and [KY84] states that given authenticated channels, broadcast can be achieved if and only if strictly less than $\frac{n}{3}$ of the involved parties behave dishonestly, even if an error probability of less than $\frac{1}{3}$ were tolerated. This raises questions such as “What is required to construct broadcast if more parties are dishonest?” and “What are the consistency guarantees one can achieve with authenticated channels?”. Broadcast itself guarantees a very strong form of consistency. The study of primitives with a weaker form of consistency guarantee is well-motivated for two different reasons described below.

First, as argued by Lamport in [Lam83], there are settings of practical relevance where a weaker form of broadcast is sufficient. Specifically, in the transaction commit problem, a database transaction is coordinated by some (not necessarily honest) party P_1 who decides whether a transaction...
should be committed or aborted. A single dishonest party P_i may be enough to cause the transaction to be aborted, but in this case, the honest parties must agree on whether to abort the transaction, or to commit to it. To formalize this setting, [Lam83] introduced a weaker form of broadcast, which we will henceforth refer to as a weak broadcast channel. This channel behaves like a regular broadcast channel if all parties are honest, but requires the validity condition to hold only if every party is honest. Such a guarantee may be achievable even if broadcast is not achievable.

Second, such a weaker primitive might be assumed to be available, and one can ask whether a stronger primitive (e.g. a broadcast channel) can be achieved by a protocol that not only can use authenticated channels, but also has access to the weaker primitive. A result of this type, proved in [FM00], is that broadcast is achievable up to $\frac{n}{2}$ cheaters, assuming that each party can broadcast to any two other parties.

The ultimate goal of a theory in this field is a characterization of various levels of consistency guarantees as well as the hierarchy between them.

4.1.1 Contribution and Outline

In this chapter, we are concerned with refining the hierarchy between different types of consistency guarantees.

We proceed as follows. In Section 4.2, we revisit the notion of consistency specifications introduced in [Mau04]. A consistency specification captures, for every set H of (assumed) honest parties and for every tuple of input values of these honest parties, which tuples of output values are possible, no matter what the other parties do. In other words, a specification guarantees that no adversarial behavior can result in the honest parties’ output values to be outside the specified set of tuples. Note that while this concept captures consistency guarantees in the most general form, it (intentionally) does not capture secrecy guarantees. In this section we provide rigorous definitions of the basic concepts and introduce different flavors of constructions. We also extend the framework of [Mau04] to include probabilistic protocols (rather than only deterministic ones).

Next in Section 4.3, we investigate a stronger form of the broadcast impossibility result shown in [LSP82]. As it is common for impossibility results in distributed computing, we show all of our results in the setting of
three parties. We prove that even if two of the three parties can broadcast values, there is no protocol that would allow the third party to broadcast a value. The proof of this result requires a generalized version of so called “scenario”-proofs (see, e.g., [PLM85]) where additional primitives are given. This contribution, which is used throughout the chapter, is of independent interest beyond the specific results of this work.

Section 4.4 deals with the classification of consistency specifications. Here, one considers the closure of a given set of consistency specifications, i.e., all consistency specifications which one can construct from this set. This leads to a natural classification where two specifications are in the same class if they have the same closure. As an example we give a complete classification of three-party specifications where a fixed party can give a binary input and the other two parties each have a binary output.

In Section 4.5 we investigate the hierarchy of consistency primitives between authenticated channels and broadcast. To this end, we propose an intermediate level specification for three-parties which we call XOR-cast. This channel takes a bit b_i from P_i and a bit b_j from P_j as input. If all parties behave correctly, the value of $b_i \oplus b_j$ should be output by all parties. If one of the parties P_i or P_j is dishonest, the honest parties must output the same value. If the third P_k is dishonest, the remaining parties must output $b_i \oplus b_j$. We show a strong separation between authenticated channels and broadcast by proving two strong impossibility results, where we call an impossibility strong if it holds even if a constant error probability is tolerated and even if an arbitrary number of communication rounds are allowed. First, it is strongly impossible to achieve XOR-cast from authenticated communication. Second, it is strongly impossible to achieve broadcast from XOR-cast and authenticated communication. This demonstrates that the hierarchy of primitives has a more complex structure than previously known.

4.1.2 Related Work

Results on the possibility and impossibility of achieving broadcast when other primitives (stronger than authenticated communication) are available were proved in [BGP89, PW96, CFF+05, HMR14, Ray15]. In a related line of work, [JMS12, RMS+04] derive combinatorial lower bounds on the number of partial broadcast channels among a set of parties needed in order to still be able to achieve broadcast. The general problem of
constructing consistency primitives from assumed such primitives was proposed and formalized in [Mau04]. The notion of consistency specifications does not allow to model secrecy requirements. A consistency specification thus corresponds to a trusted party which enables dishonest parties to learn the inputs of honest parties. For a more general setting where secrecy matters, one may use security frameworks such as the universal composition framework [Can01] or the constructive cryptography framework presented in [MR11] and [Mau11].

In [Lam83, FLM85] it is shown that there exists no perfectly secure protocol which constructs weak broadcast from authenticated channels in a finite number of rounds if \(n > \frac{3}{2} \) or more of the parties behave dishonestly. On the other hand, Lamport provides a protocol which achieves weak broadcast, but requires an infinite amount of runtime. This suggests that weak broadcast is in some sense weaker than broadcast; namely, the result in [LSP82] implies that there exists no such approximation protocol for broadcast. However, in distributed computing or MPC one is mostly interested in protocols which run for a fixed number of rounds (or at least terminate eventually). Here, Lamport’s results show that both weak broadcast and broadcast cannot be achieved with zero error probability given authenticated channels. If one allows protocols with an error probability negligible in the number of rounds, the impossibility for broadcast still holds. On the other hand, it was shown in [FGH+02] that weak broadcast can be achieved from authenticated channels with arbitrary small error probability. Moreover, [LSP82, Lam83, FGH+02] do not consider the relation between weak broadcast and broadcast. Especially, it is not shown whether broadcast can be achieved given weak broadcast.

Upper bounds on the success probability for probabilistic broadcast and Byzantine agreement were also studied in [KY84, GY89]. The work of Karlin and Yao [KY84] gives an upper bound of \(\frac{2}{3} \) for the fully synchronous, round-based setting. Somewhat surprisingly, the work of Graham and Yao [GY89] considers a synchronous model with a rushing adversary that can observe the inputs of all other parties in each round before deciding on its own input for the round. In this setting, [GY89] show the stronger bound of \((\sqrt{5} - 1)/2 \) and also give protocols that match this bound. Such a stronger bound is possible only because the guarantee is stronger and includes a secrecy guarantee: the adversary must not learn the output too early.
4.2 Preliminaries

In this chapter we assume that the honest parties in \mathcal{P} will execute protocol instructions whereas dishonest parties can deviate arbitrarily from the protocol.

4.2.1 Consistency Specifications

Primitives, such as a broadcast channel, provide the honest parties with consistency guarantees. That is, for every set H of honest parties and every possible choice \bar{x}_H of their inputs the consistency guarantees restrict the set of possible outputs of the honest parties. Consistency guarantees limit the influence of dishonest parties on the possible outputs of honest parties. We thus model such primitives as functions called *consistency specifications* that map a set of honest parties along with their inputs, to a non-empty set of possible outputs of those parties. Here, a smaller set of potential outputs implies a stronger guarantee offered by the consistency specification, since the uncertainty over the actual output is smaller. More formally, a consistency specification (introduced in [Mau04]) with input domain \mathcal{D} and output domain \mathcal{R} is defined as follows.

Definition 13. A consistency specification with input domain \mathcal{D} and output domain \mathcal{R} is a function which assigns every non-empty subset $H \subseteq \mathcal{P}$ and every input tuple $\bar{x}_H \in \mathcal{D}^H$ a non-empty set $\mathcal{C}(H, \bar{x}_H) \subseteq \mathcal{R}^H$ of output tuples. It satisfies the following monotonicity constraint: For any non-empty subsets $H' \subseteq H \subseteq \mathcal{P}$

$$\mathcal{C}(H, \bar{x}_H)|_{H'} \subseteq \mathcal{C}(H', \bar{x}_{H'|H'}).$$ \hspace{1cm} (4.1)

The monotonicity constraint models the fact that dishonest parties can in particular behave correctly. This implies that larger sets of honest parties cannot have weaker consistency guarantees.

Remark. Our definition of a consistency specification differs slightly from the original version in [Mau04] where parties may have different input (or output) domains. Here, parties are not allowed to have different input (or output) domains. However, this is not a limitation. If parties should have different input (resp. output) domains the actual input (resp. output) domain of the consistency specification can be set to the union of all those
domains and inputs outside a party’s input domain can be mapped to a default input. Moreover, if all parties are dishonest, i.e., $H = \emptyset$, there are no consistency guarantees to be formulated. We therefore restrict the domain of consistency specifications to non-empty subsets $H \subseteq \mathcal{P}$.

Examples of Consistency Specifications. We consider two important examples of consistency specifications that we will use throughout this chapter. In both examples the input and output domain are bits, i.e., $D = R = \{0, 1\}$.

Example 1. A bit broadcast channel BC_i for sender P_i is the following consistency specification:

$$BC_i(H, \vec{x}_H) = \left\{ \vec{y}_H \in \{0, 1\}^H \mid \exists v \left((\forall j \in H : \vec{y}_H|\{j\} = v) \land (i \in H \Rightarrow v = \vec{x}_H|\{i\}) \right) \right\}.$$

Example 2. An authenticated bit-channel $Auth_{i,j}$ from P_i to P_j guarantees that P_j’s output is equal to the input of P_i if both of them are honest:

$$Auth_{i,j}(H, x_H) = \left\{ \vec{y}_H \in \{0, 1\}^H \mid i, j \in H \Rightarrow \vec{y}_H|\{j\} = \vec{x}_H|\{i\} \right\}.$$

Parties without Input or Output. Formally, a consistency specification requires that any (honest) party has (to provide) an input and has (to receive) an output. However, in the above example inputs of all (honest) parties except P_i have no influence on the consistency guarantee. We say that such parties have no input. Similarly, for the authenticated channel $Auth_{i,j}$ the output of all parties except P_j provide no information (they are arbitrary). We say that such parties have no output.

Definition 14. Let C be a consistency specification with input domain D and output domain R. A party P_i has no input if for every H with $P_i \in H$ and all $\vec{a}_H, \vec{b}_H \in D^H$ with $\vec{a}_H|_{H\setminus\{i\}} = \vec{b}_H|_{H\setminus\{i\}}$ it holds that $C(H, \vec{a}_H) = C(H, \vec{b}_H)$. A party P_i has no output if for every H with $P_i \in H$ and all \vec{x}_H it holds that $C(H, \vec{x}_H)|_{\{i\}} = R$.

For simplicity, we omit the (formal) input (resp. output) of parties with no input (resp. no output). For instance, in the broadcast specification BC_i we only give the input of (honest) P_i.
Parallel Composition. The parallel composition of consistency specifications allows to model the situation where parties have access to multiple specifications at once. More formally, consider consistency specifications $C^{(1)}, \ldots, C^{(\ell)}$ with input domain D and output domain R.

Definition 15. The parallel composition of $C^{(1)}, \ldots, C^{(\ell)}$ is consistency specification $[C^{(1)}, \ldots, C^{(\ell)}]$ with input domain D^{ℓ} and output domain R^{ℓ} where for every $H \subseteq P$ and all $\vec{x}_H = ((x_{ij})_{j \in [\ell]})_{i \in H} \in D$ it holds that

$$C(H, \vec{x}_H) = \left\{ \vec{y}_H \in R^{\ell H} \mid \vec{y}_H = ((y_{ij})_{j \in [\ell]})_{i \in H} \land \forall j (y_{ij})_{i \in H} \in C^{(j)}(H, (x_{ij})_{i \in H}) \right\}.$$

Example 3. The parallel composition of multiple authenticated channels $\text{Auth}_{i,j}$ for all $i, j \in P$ forms the complete network Auth.

4.2.2 Protocols and Constructions

A protocol allows the parties to construct a new consistency specification. In each protocol round parties (locally) compute inputs a consistency specification using their protocol input and outputs from previously invoked consistency specifications. At the end of the protocol execution each party computes its protocol output as a function of its protocol input and all the outputs it received from invoked specifications.

Deterministic Protocols. A deterministic protocols runs for $\ell \geq 0$ rounds. In each round r, party P_i uses the deterministic round function $f_i^{(r)}$ to compute its input for the round specification $C^{(r)}$ which has input domain D_r and output domain R_r. At the end of the last round, party P_i uses its output function g_i to compute its protocol output. Denote by $\vec{C} = (C^{(r)})_{r \in 1, \ldots, \ell}$ the tuple of invoked specifications. Then we can define a deterministic protocol as follows.

Definition 16 ([Mau04]). A deterministic ℓ-round protocol Π for tuple \vec{C} with input domains D and output domains R consists of round functions $f_i^{(r)} : D \times R_1 \times \cdots \times R_{r-1} \rightarrow D_r \quad \forall i \in P \quad \forall r \in [\ell]$ and output functions $g_i : D \times R_1 \times \cdots \times R_{\ell} \rightarrow R \quad \forall i \in P$.

We explicitly allow zero-round protocols where no consistency specifications are invoked. By executing the protocol Π using tuple \vec{C}, the parties achieve a new consistency specification denoted by $\Pi \vec{C}$. More formally, the output of $\Pi \vec{C}$ is computed by iteratively applying the round functions of Π to the input tuple \vec{x}_H.

Definition 17. For a protocol Π and the corresponding tuple \vec{C} the protocol specification $\Pi \vec{C}$ is the following consistency specification, such that for every $H \subseteq P$ and $\vec{x}_H = (x_i)_{i \in H} \in D^H$

$$\Pi \vec{C}(H, \vec{x}_H) = \begin{cases} (y_i)_{i \in H} \in R^H & \forall r \in [\ell] \, \exists (x_{ir})_{i \in H} \in D^H_r \, \exists (y_{ir})_{i \in H} \in R^H_r \\ \forall i \in H: \ x_{ir} = f_i^{(r)}(x_i, y_{i1}, \ldots, y_{ir-1}) \\ \land (y_{ir})_{i \in H} \in C^{(r)}(H, (x_{ir})_{i \in H}) \\ \land \forall i \in H: y_i = g_i(x_i, y_{i1}, \ldots, y_{i\ell}) \end{cases}.$$

The goal of a protocol execution is to achieve consistency guarantees which are at least as strong as the guarantees of some target specification C. This is the case, if the consistency guarantees of the protocol specification $\Pi \vec{C}$ are at least as strong as the ones of the target specification C. As already argued above, the consistency guarantee becomes stronger, as the set of possible outputs becomes smaller. We therefore say that a protocol Π constructs a consistency specification C from the tuple \vec{C}, if the set of possible outputs of the protocol specification $\Pi \vec{C}(H, \vec{x}_H)$ for arbitrary inputs H, \vec{x}_H is a subset of the corresponding set of possible outputs $C(H, \vec{x}_H)$ of the target specification C.

Definition 18. A protocol Π constructs a specification C from the tuple \vec{C} if we have for all $H \subseteq P$ and all $\vec{x}_H \Pi \vec{C}(H, \vec{x}_H) \subseteq C(H, \vec{x}_H)$.

Often, one is interested in a broader notion of construction where specifications from a set \mathcal{C} may be invoked arbitrarily often during a protocol execution.

Definition 19. A specification C can be constructed from a set of specifications \mathcal{C}, denoted by $\mathcal{C} \rightarrow C$, if there exists a tuple \vec{C} of specifications from \mathcal{C} (parallel composition allowed) which allows to construct C.

The above definition naturally extends to a construction notion among sets of consistency specifications: A set of consistency specifications \mathcal{C}' is
constructible from \mathcal{C}, denoted by $\mathcal{C} \rightarrow \mathcal{C}'$ if all $C \in \mathcal{C}'$ can be constructed from \mathcal{C}. We note that this notion of construction is transitive in the straight-forward sense.

Lemma 13. Let $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$ be sets of consistency specifications for \mathcal{P}. Suppose $\mathcal{C}_1 \rightarrow \mathcal{C}_2$ and $\mathcal{C}_2 \rightarrow \mathcal{C}_3$. Then $\mathcal{C}_1 \rightarrow \mathcal{C}_3$.

Proof. For any $C_3 \in \mathcal{C}_3$ exists a tuple \tilde{C}_2 of specifications in \mathcal{C}_2 such that $\tilde{C}_2 \rightarrow C_3$. And for any $C \in \tilde{C}_2$ exists a tuple \tilde{C}_1 such that $\tilde{C}_1 \rightarrow C$. Now consider the protocol for $\tilde{C}_2 \rightarrow C_3$. Each time the parties want to invoke a $C \in \tilde{C}_2$, they could instead execute the protocol which constructs C. This results in an overall protocol which constructs C_3 from specifications in \mathcal{C}_1.

Probabilistic Protocols. In a probabilistic protocol, the parties may additionally use local randomness during the protocol execution. Formally, probabilistic protocols are modeled as distributions over deterministic protocols.

Definition 20. A probabilistic protocol ℓ-round Π for tuple \vec{C}_Π with input domains \mathcal{D} and output domains \mathcal{R} is a random variable (for some distribution) over a set of deterministic protocols of at most ℓ-rounds for tuple \vec{C}_Π with input domains \mathcal{D} and output domains \mathcal{R}.

Note that our definition allows for protocols where parties have access to correlated randomness. We denote by $\Pi \vec{C}_\Pi$ the random variable over the protocol specifications for Π and \vec{C}_Π. A protocol constructs a target specification C within ϵ if with probability strictly larger than $1 - \epsilon$ $\Pi \vec{C}_\Pi$ provides better consistency guarantees than C.

Definition 21. A probabilistic protocol Π for tuple \vec{C}_Π constructs C within ϵ if

$$\min_{H,\vec{x}_H} \mathbb{P}(\Pi \vec{C}_\Pi(H,\vec{x}_H) \subseteq C(H,\vec{x}_H)) > 1 - \epsilon.$$

A construction is called perfect if $\epsilon = 0$. A specification \mathcal{C} can be constructed within ϵ from a set \mathcal{C}, denoted by $\mathcal{C} \rightarrow^\epsilon \mathcal{C}$, if there exists a tuple \vec{C}_Π from \mathcal{C} which allows to construct C within ϵ.

Note that any deterministic construction is a perfect construction.
4.3 Impossibility Proofs

In this section, we consider a generalized version of so called “scenario”-proofs (see, e.g., [FLM85]). This proof technique, a special type of proof by contradiction, is normally used to prove that a specification, e.g., broadcast, cannot be constructed from authenticated channels within some ϵ. Here, we extend “scenario”-proofs to the setting where parties are given additional setup. This means we want to prove statements of the form “There is no construction of a specification C from given specifications \mathcal{C} within ϵ” where \mathcal{C} is (an arbitrary) set of specification which contains at least the complete network of authenticated channels.

The general proof strategy is as follows. Assume that we want to prove that C cannot be constructed from \mathcal{C} within $\frac{1}{k}$ where $\text{Auth} \in \mathcal{C}$. The corresponding “scenario”-proof works as follows.

Towards a contradiction, assume that there exists a protocol Π which allows to construct C from \mathcal{C} within $\frac{1}{k}$. This implies that for each party P_i and for each input x_i, there exists a corresponding (probabilistic) protocol system $\Pi^{x_i}_i$ which executes the protocol part of P_i for input x_i. The protocol system of a party has for any other party an interface where it expects to communicate with the other parties’ protocol system. This models that parties are pair-wise connected via authenticated channels. If the parties are given additional specifications in \mathcal{C} (e.g., broadcast channels for some parties) during the protocol execution, this is modeled via a system R that provides the functionality of this specification. In this case, the protocol systems have an additional interface where they expect to be connected to R.

Next, the assumed protocol systems are connected to form a specific configuration S. We consider the output (vector) of selected systems in S which we denote by the random variable Y. Our goal is to show that the properties of Y contradict the assumption that there exists a construction of C within $\frac{1}{k}$.

We use k different scenarios to obtain conditions on the outcome of Y. Each scenario describes S as a protocol execution among three parties where exactly one of them is dishonest. With the exception of two systems (for the two honest parties) all parts of S are considered to be the ‘attack strategy’ of the dishonest party. The initial assumption

1Such a system can be instantiated, for example, as an interactive Turing machine.
implies that the outputs of the two honest parties in this scenario must satisfy some consistency guarantee with probability strictly more than $1 - \frac{1}{k}$. This directly translates into a condition on Y. Namely, one finds a set A_i such that $P(Y \in A_i) > 1 - \frac{1}{k}$. The k scenarios are chosen such that the intersection of all A_i’s is empty and therefore $P(Y \in \bigcap_{i=1}^{k} A_i) = 0$. In this case, the following lemma implies that for at least one A_i, it must hold that $P(Y \in A_i) \leq 1 - \frac{1}{k}$, thus contradicting the fact that for all i, $P(Y \in A_i) > 1 - \frac{1}{k}$ (as required by the assumption of a construction within $\epsilon = \frac{1}{k}$).

Lemma 14. Let A_1, \ldots, A_k be sets with non-empty union $A = \bigcup_{i=1}^{k} A_i$ and let Y be a random variable over some set $U \supseteq A$ such that $P(Y \in \bigcap_{i=1}^{k} A_i) = 0$. Then $\min_i P(Y \in A_i) \leq 1 - \frac{1}{k}$.

Proof. For convenience we denote for any set B by $P(B)$ the probability $P(Y \in B)$. We denote by \overline{B} the complement of B in U. Using elementary set operations and the union bound we get

$$P(\bigcap_{i=1}^{k} A_i) = 1 - P(\bigcup_{i=1}^{k} A_i) = 1 - \sum_{i=1}^{k} P(A_i) = 1 - \sum_{i=1}^{k} (1 - P(A_i)) = 1 - k + \sum_{i=1}^{k} P(A_i).$$

(4.2)

As the minimum over all $P(Y \in A_i)$ is smaller than the average we finally get

$$\min_i P(Y \in A_i) \leq \frac{1}{k} \sum_{i=1}^{k} P(A_i) \leq \frac{1}{k} (k - 1 + P(\bigcap_{i=1}^{k} A_i)) = 1 - \frac{1}{k}.$$

(4.3)

4.3.1 Broadcast Impossibility

In this section we prove as the well-known result from [KY84] that broadcast cannot be constructed from authenticated channels within $\frac{1}{3}$.
Lemma 15. \([\text{KY}84]\) \(\text{Auth} \xrightarrow{\epsilon} \text{BC}_1\).

Proof. Towards a contradiction, let us assume that there exists a protocol \(\Pi\) which allows to construct \(\text{BC}_1\) from \(\text{Auth}\) within \(\epsilon = \frac{1}{3}\). Then there exist protocol systems \(\Pi_0^1, \Pi_1^1, \Pi_2, \Pi_3\). Note that only the system of \(P_1\) has an input. Each of these systems has two interfaces where it expects to be connected to the systems of the other two parties.

We consider the configuration \(S\) in Figure 4.1a where all four systems are arranged in a circle. The random variable \(Y\) describes the output behavior of systems \(\Pi_2\) and \(\Pi_3\). This means that \(Y\) maps to bit-tuples where the first component represents the output of \(\Pi_2\).

We examine the distribution of \(Y\) using different protocol execution scenarios. First, we consider the scenario where \(P_2\) and \(P_3\) are honest while \(P_1\) is dishonest, i.e., \(H = \{P_2, P_3\}\). In this scenario, consistency of broadcast ensures that the outputs of \(P_2\) and \(P_3\) are with probability strictly larger than \(1 - \frac{1}{3}\) the same (independently of the behavior of \(P_1\)). In the configuration \(S\), this corresponds to the scenario where the system of \(P_1\) consists of the two left-most systems (cf. Figure 4.1b). This implies that \(Y\) is in \(A_1 = \{(0,0), (1,1)\}\) with probability strictly larger than \(1 - \frac{1}{3}\).

Next, we consider the scenario where \(P_1\) and \(P_3\) are honest (\(H = \{P_1, P_3\}\)) and \(P_1\) has input 1. In our configuration \(S\), we can perceive the two systems on the top as the system of the dishonest \(P_2\) (cf. Figure 4.1c). This implies (validity of broadcast) that \(P(\text{Y} \in A_2) > 1 - \frac{1}{3}\) for \(A_2 = \{(0,1), (1,1)\}\). Finally, we consider the case \(H = \{P_1, P_3\}\) where \(P_1\) has input 0. In our configuration \(S\), we can perceive the two systems at the bottom as the system of the dishonest \(P_3\) (cf. Figure 4.1d). This implies (validity of broadcast) that \(P(\text{Y} \in A_3) > 1 - \frac{1}{3}\) for \(A_3 = \{(0,0), (0,1)\}\).

We observe that \(A_1 \cap A_2 \cap A_3 = \emptyset\) and thus \(P(\text{Y} \in \bigcap_{i=1}^{3} A_i) = 0\). This implies with Lemma 14 that for at least one \(A_i\), \(P(\text{Y} \in A_i) \leq 1 - \frac{1}{3}\). This is a contradiction to the fact that \(P(\text{Y} \in A_i) > 1 - \frac{1}{3}\) for all \(A_i\), as required by the definition of a construction within \(\epsilon = \frac{1}{3}\). Thus, there exists no \(\epsilon\)-construction of broadcast for \(\epsilon \leq \frac{1}{3}\). \(\square\)

4.3.2 Strong Broadcast Impossibility

In this section we prove a stronger impossibility for the construction of broadcast. That is, we show that broadcast channels, e.g. \(\text{BC}_1\), cannot
4.3. IMPOSSIBILITY PROOFS

be constructed within \(\frac{1}{3} \) even if all other broadcast channels are available. Note that the result implies Lemma 15.

Theorem 3. \(\{\text{Auth, BC}_2, \text{BC}_3\} \nrightarrow BC_1 \).

Proof. To prove this result we use the “scenario”-proof technique introduced above. Assume therefore that there exists a probabilistic protocol \(\Pi \) which allows to construct \(BC_1 \) from \(\{\text{Auth, BC}_2, \text{BC}_3\} \) within \(\epsilon = \frac{1}{3} \). Thus there exist protocol systems \(\Pi_1^b, \Pi_2, \Pi_3 \) where \(b \) denotes the input bit of \(P_1 \). Additionally there exists a system \([\text{BC}_2, \text{BC}_3]\) which corresponds to the given broadcast channels for \(P_2 \) and \(P_3 \).

We first show how to construct a system \(BC \) from system \([\text{BC}_2, \text{BC}_3]\). This system \(BC \) will be used to build the configuration \(S \), rather than \([\text{BC}_2, \text{BC}_3]\) directly. System \(BC \) is essentially the same as \([\text{BC}_2, \text{BC}_3]\)
except that the interface of P_1 is cloned.

System \overline{BC} can be built from $[BC_2, BC_3]$ in three different ways. First, one can build it by adding a system e_1 to the P_1-interface of $[BC_2, BC_3]$ which relays the outputs of this interface to the two P_1-interfaces of \overline{BC}. Second, one can build \overline{BC} from $[BC_2, BC_3]$ by adding a system e_2 to the P_2-interface of $[BC_2, BC_3]$. System e_2 relays any input at the \overline{BC} P_2-interface to $[BC_2, BC_3]$. Any output at the P_2-interface of $[BC_2, BC_3]$ is relayed to the \overline{BC} P_1-interface and the \overline{BC} P_2-interface of e_2. Analogously, one can build \overline{BC} from $[BC_2, BC_3]$ by adding a system e_3 to the P_3-interface of $[BC_2, BC_3]$. In summary we have that the systems \overline{BC}, $e_1[BC_2, BC_3]$, $e_2[BC_2, BC_3]$, and $e_3[BC_2, BC_3]$ are all equivalent, i.e., the have exactly the same input/output behavior.

We consider now the configuration S in Figure 4.2a where the four protocol systems Π^0_1, Π^1_1, Π_3, and Π_2 form a ring and are all connected to \overline{BC}. We, denote by Y of systems Π_2 and Π_3. It follows from the above argumentation that systems Π_2 and Π_3 in the configurations in Figures 4.2b-4.2d must have the same output behavior Y as the systems Π_2 and Π_3 in configuration S.

We examine the distribution of Y using different protocol execution scenarios. First, we consider the scenario where P_1 is dishonest, i.e, $H = \{P_2, P_3\}$. The consistency of BC_1 implies that with probability strictly larger $1 - \frac{1}{3}$ the outputs of P_2 and P_3 are the same. In this scenario P_1 could use a system consisting of the three left-most systems in Figure 4.2b. The consistency of broadcast thus implies for S that $P(Y \in A_1) > 1 - \frac{1}{3}$ for $A_1 = \{(0,0), (1,1)\}$. Next, we consider the scenario $H = \{P_1, P_3\}$ where P_1 has input 1. Here, dishonest P_2 could run the top-three systems in Figure 4.2c. The validity of BC_1 thus implies that $P(Y \in A_2) > 1 - \frac{1}{3}$ for $A_2 = \{(0,1), (1,1)\}$. Finally, we consider the scenario $H = \{P_1, P_2\}$ where P_1 has input 0. Here, dishonest P_3 could run the bottom-three systems in Figure 4.2d. The validity of BC_1 thus implies that $P(Y \in A_3) > 1 - \frac{1}{3}$ for $A_3 = \{(0,0), (0,1)\}$. The intersection $A_1 \cap A_2 \cap A_3$ is empty and hence $P(Y \in A_1 \cap A_2 \cap A_3) = 0$. This implies with Lemma 14 that for at least one A_i, $P(Y \in A_i) \leq 1 - \frac{1}{3}$. This is a contradiction to the fact that $P(Y \in A_i) > 1 - \frac{1}{3}$ for all A_i as required by the definition of a construction within $\epsilon = \frac{1}{3}$. This implies that there cannot exist a construction of broadcast BC_1 from $\{\text{Auth, } BC_2, BC_3\}$ within $\epsilon = \frac{1}{3}$.

\qed
4.4 Classification of Specifications

This section considers the classification of (sets of) consistency specifications according to their closures. The closure of a consistency specification set \mathcal{C} with respect to a consistency specification set \mathcal{T} contains all specifications in \mathcal{T} which can be constructed from \mathcal{C}.

Definition 22. The (relative) closure of \mathcal{C} with respect to \mathcal{T} is defined as $\langle \mathcal{C} \rangle_\mathcal{T} := \{ \mathcal{C} \in \mathcal{T} | \mathcal{C} \rightarrow \mathcal{C} \}$.

The closure is monotone, i.e., for $\mathcal{C}' \subseteq \mathcal{C}$ it holds that $\langle \mathcal{C}' \rangle_\mathcal{T} \subseteq \langle \mathcal{C} \rangle_\mathcal{T}$. We will omit \mathcal{T}, if clear from the context, and simply write $\langle \mathcal{C} \rangle$.

Figure 4.2: The configuration S and the three scenarios.
a collection $S = \{C_1, \ldots, C_k\}$ of consistency specification sets with respect to \mathfrak{T} one can consider the different closures of the sets in S.

Definition 23. A classification of a collection S of consistency specification sets with respect to \mathfrak{T} is the set $\{\langle C \rangle_\mathfrak{T} | C \in S\}$. Two sets $C, C' \in S$ realize the same class if $\langle C \rangle_\mathfrak{T} = \langle C' \rangle_\mathfrak{T}$.

Remark. For simplicity, we classify specifications according to perfect constructions, i.e., for constructions within $\epsilon = 0$. However, the classification presented in Section 4.4 would remain the same even if one allows for constructions within $\epsilon \leq \frac{1}{3}$.

4.4.1 Classification of Single-Input Specifications

The goal of this section is to provide a motivating example of a consistency specifications classification. For this purpose we consider specifications for three parties $P = \{P_1, P_2, P_3\}$ where P_1 has a binary input and the other two parties have binary outputs. We denote the set of all those specifications by \mathfrak{T}_1. For simplicity, we will omit the formal inputs (resp. outputs) of parties which have no input (resp. no output). For example, we will write $b \in C(P_1, P_2, b)$ where b is the input of P_1.

We denote by $\widehat{BC}_1 \in \mathfrak{T}_1$ the broadcast channel for P_1 where (in contrast to BC_1) party P_1 gets no output. More formally, we have

$$\widehat{BC}_1(H, \bar{x}_H) = \left\{ \tilde{y}_H \in \{0, 1\}^H \left| \exists v \left((\forall j \in H \setminus \{1\} : \tilde{y}_H[j] = v) \land (1 \in H \Rightarrow v = \bar{x}_H[1]) \right) \right. \right\}.$$

for all $H \in \{P_1, P_2, P_3\}$ and all input vectors \bar{x}_H.

For the classification we assume that parties are pairwise connected by authenticated channels and have additionally access to a subset of specifications from \mathfrak{T}_1. Formally we thus consider a classification of the collection $S := \{C \cup \text{AUTH} | C \subseteq \mathfrak{T}_1\}$ with respect to \mathfrak{T}_1 where AUTH is the set of all authenticated channels for P. We will show that \mathfrak{T}_1 is divided into two classes. First, we have the class $\langle \text{AUTH} \rangle$ consisting of all specifications which can be constructed from authenticated channels. Second, we have the complement $\mathfrak{T}_1 \setminus \langle \text{AUTH} \rangle$ which consists of all specifications which allow to construct broadcast \widehat{BC}_1 given authenticated channels.
Theorem 4. Given authenticated channels and a set of specifications $\mathcal{C} \subseteq \mathcal{T}$ one can either construct everything or just specifications which can be constructed from authenticated channels. In other words either $\langle \mathcal{C} \cup \text{Auth} \rangle = \langle \{\hat{\mathcal{B}}\mathcal{C}_1\} \rangle = \mathcal{T}$ or $\langle \mathcal{C} \cup \text{Auth} \rangle = \langle \text{Auth} \rangle$.

Closure of Authenticated Channels. A sufficient and necessary condition for $\mathcal{C} \in \langle \text{Auth} \rangle$ can be found by looking at the possible outputs of \mathcal{C} in the case of two honest parties. To this end we define the following five sets of binary tuples.

$$M_\mathcal{C} = \{(y_2, y_3) \mid (y_2, y_3) \in \mathcal{C}(\{P_2, P_3\})\}$$

$$M_{2,\mathcal{C}}^{(b)} = \{(y_2, y_3) \mid y_2 \in \mathcal{C}(\{P_1, P_2\}, b)\} \quad \forall b \in \{0, 1\}$$

$$M_{3,\mathcal{C}}^{(b)} = \{(y_2, y_3) \mid y_3 \in \mathcal{C}(\{P_1, P_3\}, b)\} \quad \forall b \in \{0, 1\}$$

A specification \mathcal{C} is in $\langle \text{Auth} \rangle$ if and only if

$$M_{2,\mathcal{C}}^{(0)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(1)} \neq \emptyset \quad \text{and} \quad M_{2,\mathcal{C}}^{(1)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(0)} \neq \emptyset. \quad (4.5)$$

We prove this condition in the following two lemmata.

Lemma 16. A specification $\mathcal{C} \in \mathcal{T}$ can be constructed from authenticated channels, i.e., $\mathcal{C} \in \langle \text{Auth} \rangle$, if condition (4.5) holds.

Proof. To construct \mathcal{C} from authenticated channels consider the following protocol Π. First, party P_1 sends its input bit to the other parties which exchange the received bits (cf. Figure 4.3). The output of P_2 is $g_2(b_2, b_{2,3})$ for a function $g_2 : \{0, 1\}^2 \to \{0, 1\}$ where b_2 and $b_{2,3}$ are the bits received from P_1 and P_3. Analogously, P_3 outputs $g_3(b_{3,2}, b_3)$. As we have

$$M_{2,\mathcal{C}}^{(0)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(1)} \neq \emptyset \quad \text{and} \quad M_{2,\mathcal{C}}^{(1)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(0)} \neq \emptyset.$$

we can define g_2 and g_3 as follows. For any bit $b \in \{0, 1\}$ let

$$(g_2(b, b), g_3(b, b)) \in \mathcal{C}(\{P_1, P_2, P_3\}, b) \quad (4.6)$$

and

$$(g_2(b, 1-b), g_3(b, 1-b)) \in M_{2,\mathcal{C}}^{(b)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(1-b)}. \quad (4.7)$$

Note that for any $b \in \{0, 1\}$ we have $\mathcal{C}(\{P_1, P_2, P_3\}, b) \subseteq M_{2,\mathcal{C}}^{(b)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(b)}$ and thus $M_{2,\mathcal{C}}^{(x)} \cap M_\mathcal{C} \cap M_{3,\mathcal{C}}^{(y)} \neq \emptyset$ for any $x, y \in \{0, 1\}$. Consider now the
following cases. If everyone is honest, we have $b = b_2 = b_3 = b_{2,3} = b_{3,2}$.

The output of P_2 and P_3 is thus $(g_2(b,b), g_3(b,b)) \in \mathcal{C}(\{P_1, P_2, P_3\}, b)$. For $H = \{P_1, P_2\}$ we have $b_2 = b$ and the output of P_2 is therefore $g_2(b,b_{2,3}) \in (M_{2,C}^{(b)} \cap M_C \cap M_{3,C}^{(b_{2,3})})|_{P_2}$. Thus by the definition of $M_{2,C}^{(b)}$ it holds that $g_2(b,b_{2,3}) \in \mathcal{C}(\{P_1, P_2\}, b)$. For $H = \{P_1, P_3\}$ it similarly holds that $b_3 = b$ and $g_3(b_{3,2}, b) \in \mathcal{C}(\{P_1, P_3\}, b)$. If $H = \{P_2, P_3\}$, it holds that $b_2 = b_{3,2}$ and $b_3 = b_{2,3}$. The output of the parties is therefore $(g_2(b_2, b_3), g_3(b_2, b_3)) \in M_{2,C}^{(b_2)} \cap M_C \cap M_{3,C}^{(b_3)}$ and thus $(g_2(b_2, b_3), g_3(b_2, b_3)) \in M_C = \mathcal{C}(\{P_2, P_3\})$. All the other cases follow directly from the monotonicity of \mathcal{C}. The protocol Π therefore constructs \mathcal{C} from authenticated channels.

Next, we show that Condition (4.5) is also necessary for $\mathcal{C} \in \langle \text{Auth} \rangle$.

Lemma 17. A specification $\mathcal{C} \in \mathfrak{S}_1$ with $M_{2,C}^{(0)} \cap M_C \cap M_{3,C}^{(1)} = \emptyset$ or $M_{2,C}^{(1)} \cap M_C \cap M_{3,C}^{(0)} = \emptyset$ cannot be constructed from authenticated channels (within $\frac{1}{3}$), i.e., $\mathcal{C} \notin \langle \text{Auth} \rangle$.

Proof. We use the proof technique from Section 4.3. Consider a $\mathcal{C} \in \mathfrak{S}_1$ with $M_{2,C}^{(b)} \cap M_C \cap M_{3,C}^{(1-b)} = \emptyset$ for some $b \in \{0, 1\}$. Towards a contradiction, let us assume that there exists a protocol Π which allows to construct \mathcal{C} from Auth within $\frac{1}{3}$. Then there exist systems Π_1, Π_2, Π_3 for parties
4.4. CLASSIFICATION OF SPECIFICATIONS

P_1, P_2, P_3. We consider the configuration in Figure 4.4 where all four systems are arranged in a circle. The random variable Y describes the output behavior of systems Π_2 and Π_3. First, consider $H = \{P_1, P_3\}$

![Figure 4.4: Corruption Scenarios for Lemma 17](image)

where P_1 has input $1-b$ (cf. Figure 4.4a). As we assume that the protocol constructs C, it must hold that $Y \in M_{3,C}^{(1-b)}$. Next, consider $H = \{P_2, P_3\}$ (cf. Figure 4.4b). Here, it must hold that $Y \in M_C$. Finally, consider $H = \{P_1, P_2\}$ where P_1 has input b (cf. Figure 4.4c). Here, it must hold that $Y \in M_{2,C}^{(b)}$. We therefore have $Y \in M_{2,C}^{(b)} \cap M_C \cap M_{3,C}^{(1-b)}$ which is empty by the initial assumption on C. This implies (cf. Lemma 15) that there is no construction of C from authenticated channels (within $\epsilon \leq \frac{1}{3}$).

Specifications Equivalent to Broadcast. Observe that broadcast \hat{BC}_1 does not satisfy Condition (4.5), it can thus not be constructed from authenticated channels. Moreover, any specification in \mathfrak{T}_1 can be constructed from broadcast.

Lemma 18. For any $C \in \mathfrak{T}_1$, $\{\hat{BC}_1\} \rightarrow C$.

Proof. The construction is trivially achieved with the following protocol. First, P_1 broadcasts its input b. Then parties P_2, P_3 output some fixed tuple in $C(\{P_1, P_2, P_3\}, b)$.

In the following we will show that any specification in $C \in \mathfrak{T}_1 \setminus \langle \text{AUTH} \rangle$ in addition to authenticated channels is enough to construct broadcast \hat{BC}_1. This implies that C (in addition of AUTH) allows to construct any specification in \mathfrak{T}_1.
Recall that any specification $C \in \Sigma_1 \setminus \langle \text{Auth} \rangle$ satisfies the condition

$$M_{2,C}^{(0)} \cap MC \cap M_{3,C}^{(1)} = \emptyset \quad \text{or} \quad M_{2,C}^{(1)} \cap MC \cap M_{3,C}^{(0)} = \emptyset \quad (4.8)$$

This condition implies that any $C \in \Sigma_1 \setminus \langle \text{Auth} \rangle$ is equivalent\(^2\) to a $C' \in \Sigma_1 \setminus \langle \text{Auth} \rangle$ with $C'(\{P_1, P_2, P_3\}, b) = \{(b, b)\}$ for $b \in \{0, 1\}$. We can therefore without loss of generality assume that $C(\{P_1, P_2, P_3\}, b) = \{(b, b)\}$ for $b \in \{0, 1\}$. The condition also implies that

$$2 \leq |C(\{P_2, P_3\})| \leq 3,$$

$$C(\{P_1, P_2\}, 0) \neq C(\{P_1, P_2\}, 1), \text{ and}$$

$$C(\{P_1, P_3\}, 0) \neq C(\{P_1, P_3\}, 1).$$

The specification C is thus similar to broadcast \widehat{BC}_1 except that may offer weaker guarantees. More precisely, C can provide weaker validity for P_2, or weaker validity for P_3, or weaker consistency. We describe this weakening of C by a triple (α, β, γ) in $\{\Diamond, 0, 1\}^3$ where \Diamond means that the specific component is not weakened at all.

Definition 24. Let $\alpha, \beta, \gamma \in \{\Diamond, 0, 1\}$. The weak cast (α, β, γ)-WC\(_1\) is defined as follows:

- (α, β, γ)-WC\(_1\)(\{P_1, P_2, P_3\}, b) = \{(b, b)\}$
- (α, β, γ)-WC\(_1\)(\{P_1, P_2\}, b) = \begin{cases} \{b\} & \text{if } b \neq \alpha \\ \{0, 1\} & \text{if } b = \alpha \end{cases}$
- (α, β, γ)-WC\(_1\)(\{P_1, P_3\}, b) = \begin{cases} \{b\} & \text{if } b \neq \beta \\ \{0, 1\} & \text{if } b = \beta \end{cases}$
- $(\alpha, \beta, \Diamond)$-WC\(_1\)(\{P_2, P_3\}) = \{(0, 0), (1, 1)\}
- $(\alpha, \beta, 0)$-WC\(_1\)(\{P_2, P_3\}) = \{(0, 0), (0, 1), (1, 1)\}
- $(\alpha, \beta, 1)$-WC\(_1\)(\{P_2, P_3\}) = \{(0, 0), (1, 0), (1, 1)\}

Any specification in $\Sigma_1 \setminus \langle \text{Auth} \rangle$ is (equivalent) to a weak cast. For instance, $\widehat{BC}_1 = \langle \Diamond, \Diamond, \Diamond \rangle$-WC\(_1\). Another example is $(\Diamond, \Diamond, 0)$-WC\(_1\) which provides the validity condition of normal broadcast, but offers the weaker consistency guarantee $(\Diamond, \Diamond, 0)$-WC\(_1\)(\{P_2, P_3\}) = \{(0, 0), (0, 1), (1, 1)\}$. We observe that not all weak cast are actually in $\Sigma_1 \setminus \langle \text{Auth} \rangle$.

\(^2\)Two specifications C and C' are equivalent if $\langle C \rangle \rightarrow C'$ and $\langle C' \rangle \rightarrow C$.
4.4. CLASSIFICATION OF SPECIFICATIONS

Lemma 19. For any \(x \in \{\hat{\diamond}, 0, 1\} \) and \(y \in \{0, 1\} \) the specifications \((x, y, y)\)-WC\(_1\), \((y, x, 1-y)\)-WC\(_1\), and \((y, y, x)\)-WC\(_1\) are in \(\langle\text{Auth}\rangle\).

Proof. These specifications satisfy Condition (4.5). The statement follows with Lemma 16.

Next, we show that all other weak cast variants (in addition to Auth) allow to construct \(\widehat{\text{BC}}_1\). First, we consider weak casts were only the consistency guarantee is weakened, i.e. we look at \((\hat{\diamond}, \hat{\diamond}, \gamma)\)-WC\(_1\) for \(\gamma \in \{\hat{\diamond}, 0, 1\}\). Such a weak cast does not satisfy Condition (4.5) and is in \(\mathcal{T}_1 \setminus \langle\text{Auth}\rangle\) (cf. Lemma 17).

Lemma 20. For any \(\gamma \in \{\hat{\diamond}, 0, 1\}\),

\[
\text{Auth} \cup \{(\hat{\diamond}, \hat{\diamond}, \gamma)\text{-WC}_1\} \rightarrow \widehat{\text{BC}}_1.
\]

Proof. For \(\gamma = \hat{\diamond}\) we have \(\widehat{\text{BC}}_1 = (\hat{\diamond}, \hat{\diamond}, \hat{\diamond})\text{-WC}_1\). For \(\gamma \neq \hat{\diamond}\) and input bit \(b\) of \(P_1\) consider the following protocol. First, \(P_1\) sends \((b, 1-b)\) to the other parties using two \((\hat{\diamond}, \hat{\diamond}, \gamma)\text{-WC}_1\) invocations. Denote by \((b_2, c_2)\) (resp. \((b_3, c_3)\)) the bits received by \(P_2\) (resp. \(P_3\)). Then \(P_2\) and \(P_3\) exchange their bits using authenticated channels where \(b_{2,3}, c_{2,3}\) (resp. \(b_{3,2}, c_{3,2}\)) denote the bits received by \(P_2\) (resp. \(P_3\)). If \(b_2 \neq c_2\), party \(P_2\) outputs \(b_2\). Otherwise, if \(b_{2,3} \neq c_{2,3}\), \(P_2\) outputs \(b_{2,3}\). Otherwise \(P_2\) outputs 0. The output of \(P_3\) is computed analogous. Consider now the following cases. If everyone is honest, we have \(b_2 = b_3 = b\) and \(c_2 = c_3 = 1-b\). The output of \(P_2, P_3\) is thus \((b_2, b_3) = (b, b)\). For \(H = \{P_1, P_2\}\) we have \(b_2 = b\) and \(c_2 = 1-b\). The output of \(P_2\) is therefore \(b_2 = b\). For \(H = \{P_1, P_3\}\) we have \(b_3 = b\) and \(c_3 = 1-b\). The output of \(P_3\) is therefore \(b_3 = b\). If \(H = \{P_2, P_3\}\), we have \((b_{2,3}, c_{2,3}) = (b_3, c_3)\) and \((b_{3,2}, c_{3,2}) = (b_2, c_2)\). If \(b_2 \neq b_3\), we have \(c_2 = c_3\) as \((1-\gamma, \gamma) \notin (\hat{\diamond}, \hat{\diamond}, \gamma)\text{-WC}_1\). It is now easy to check that \(P_2\) and \(P_3\) will output the same bit.

Almost all weak-broadcast specifications where all three components are weakened are in \(\langle\text{Auth}\rangle\) (cf. Lemma 19). The two exceptions are \((0, 1, 0)\text{-WC}_1\) and \((1, 0, 1)\text{-WC}_1\). Surprisingly one is able to construct broadcast from each of them given authenticated channels.

Lemma 21. Both \((0, 1, 0)\text{-WC}_1\) and \((1, 0, 1)\text{-WC}_1\) (in addition to Auth) allow to construct \(\widehat{\text{BC}}_1\).
Proof. With Lemma 20 it is enough to show that one can construct $(\Diamond, \Diamond, 0)$-WC$_1$ from $(0,1,0)$-WC$_1$ (respectively that one can construct $(\Diamond, \Diamond, 1)$-WC$_1$ from $(1,0,1)$-WC$_1$). We give the proof for the construction of $(\Diamond, \Diamond, 0)$-WC$_1$ from $(0,1,0)$-WC$_1$. To this end, consider the following protocol.

First, P_1 sends its bit b to the other parties using an authenticated channel, where b_2 (resp. b_3) denote the bit received by P_2 (resp. P_3). In the next step P_1 sends b over $(0,1,0)$-WC$_1$, where c_2 (resp. c_3) denotes the bit received by P_2 (resp. P_3). Finally, party P_2 outputs bit o_2 and party P_3 outputs bit o_3 where:

$$o_2 = \begin{cases} 1 & \text{if } (b_2, c_2) = (1,1) \\ 0 & \text{otherwise} \end{cases}$$

and

$$o_3 = \begin{cases} 0 & \text{if } (b_3, c_3) = (0,0) \\ 1 & \text{otherwise} \end{cases}$$

Consider the following cases. If everyone is honest, we have $b_2 = c_2 = b_3 = c_3 = b$ the output of P_2, P_3 is thus $(o_2, o_3) = (b, b)$. For $H = \{P_1, P_2\}$ and $b = 0$ we have $(b_2, c_2) \neq (1,1)$ and thus $o_2 = 0$. If $b = 1$, we have $(b_2, c_2) = (1,1)$ and thus $o_2 = 1$. The case $H = \{P_1, P_3\}$ follows analogously to the case $H = \{P_1, P_2\}$. In the case $H = \{P_2, P_3\}$ the properties of $(0,1,0)$-WC$_1$ imply that $(c_2, c_3) \neq (1,0)$. Thus it can not be that $(b_2, c_2) = (1,1)$ and $(b_3, c_3) = (0,0)$. The output (o_2, o_3) is therefore in $(\Diamond, \Diamond, 0)$-WC$_1(\{P_2, P_3\})$.

We observe that any other weak cast in $\mathcal{T}_1 \setminus \langle \text{Auth} \rangle$ trivially allows to construct $(0,1,0)$-WC$_1$ or $(1,0,1)$-WC$_1$ as it offers stronger consistency guarantees. This implies together with Lemma 21 that one can construct $\overline{\text{BC}}_1$ from such a weak cast.

Lemma 22. Let $\mathcal{C} \in \mathcal{T}_1 \setminus \langle \text{Auth} \rangle$, then $\text{Auth} \cup \{\mathcal{C}\} \rightarrow \overline{\text{BC}}_1$.

Proof. The consistency guarantees of \mathcal{C} are strictly stronger than the ones of either $(0,1,0)$-WC$_1$ or $(1,0,1)$-WC$_1$. This allows to trivially construct at least one of them from \mathcal{C}. Lemma 20 and the transitivity of (deterministic) constructions imply that $\text{Auth} \cup \{\mathcal{C}\} \rightarrow \overline{\text{BC}}_1$ (cf. Lemma 21).
4.5 Strong Separation Results

In this section we consider specifications for party set \(\mathcal{P} = \{P_1, P_2, P_3\} \) where all inputs and outputs are bit-strings. The goal of this section is to prove a strong separation between broadcast and authenticated channels. That is, we present a specification, called XOR-cast, which neither can be constructed from authenticated channels within a constant \(\epsilon \) nor is sufficient to construct broadcast within a constant \(\epsilon \).

4.5.1 XOR-Cast

XOR-cast takes a bit \(b_i \) from \(P_i \) and a bit \(b_j \) from \(P_j \) as input. If all parties behave honestly, the value of \(b_i \oplus b_j \) should be output by all parties. If one of the parties \(P_i, P_j \) is dishonest, the honest parties should output the same value. If the third party \(P_k \) is dishonest, the remaining parties should output \(b_i \oplus b_j \).

Definition 25. Let \(P_i, P_j, P_k \in \mathcal{P} \) be pairwise distinct parties. The XOR-cast specification \(\text{XC}_{i,j} \) for \(P_i \) and \(P_j \) is defined as

\[
\text{XC}_{i,j}(H, \vec{x}_H) = \left\{ \vec{y} \in \{0,1\}^H \mid \exists v \left((\forall \ell \in H : \vec{y}_H|\{\ell\} = v) \land (i,j \in H \Rightarrow v = \vec{x}_H|\{i\} \oplus \vec{x}_H|\{j\}) \right) \right\}.
\]

for all sets of honest parties \(H \) and all honest inputs \(\vec{x}_H \).

We first prove that XOR-cast cannot be constructed from the network of authenticated channels.

Lemma 23. For all \(i \neq j \in \{1,2,3\} \) \{\text{Auth}\} \xrightarrow{\frac{1}{4}} \text{XC}_{i,j}.

Proof. Without loss of generality, we show the statement for \(\text{XC}_{1,2} \) using the “scenario”-proof technique from Section 4.3. Towards a contradiction, assume that there exists a protocol allowing to construct \(\text{XC}_{1,2} \) from \{\text{Auth}\} within \(\frac{1}{4} \). Then there exist protocol systems \(\Pi_1^{x_1}, \Pi_2^{x_2}, \Pi_3 \) for

We note that the availability of authenticated channels is crucial. For instance, one can show that \((\diamond, \diamond, 0)\text{-WC}_1 \) is strictly weaker than \(\text{BC}_1 \), i.e., \(\{(\diamond, \diamond, 0)\text{-WC}_1\} \not\supset \text{BC}_1 \).
parties \(P_1, P_2, P_3 \) where \(x_1 \) denotes the input bit of \(P_1 \) and \(x_2 \) denotes the input bit of \(P_2 \). Consider the pentagon configuration \(S \) in Figure 4.5 and let \(Y \) be the random variable over the output \((a, b, c)\) of the three left-most systems.

We examine the distribution of \(Y \) using four different protocol execution scenarios. First, we consider the scenario where \(P_2 \) and \(P_3 \) are honest \((H = \{P_2, P_3\})\) and \(P_2 \) has input 0. In this scenario, the dishonest \(P_1 \) could run the three systems in the bottom-left in Figure 4.5a. The outputs of \(P_2 \) and \(P_3 \) must be the same. This implies \(P(Y \in A_1) > 1 - \frac{1}{4} \) for \(A_1 = \{(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)\} \). Next, we consider the scenario \(H = \{P_1, P_3\} \) where \(P_1 \) has input 0 (cf. Figure 4.5b). Here, the outputs of \(P_1 \) and \(P_3 \) must be the same. This implies that \(P(Y \in A_2) > 1 - \frac{1}{4} \) for \(A_2 = \{(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)\} \). Next, we consider the scenario \(H = \{P_1, P_2\} \) where both \(P_1 \) and \(P_2 \) have input 0 (cf. Figure 4.5c). Here,
the output of P_1 must be $0 = 0 \oplus 0$. This implies that $\mathbb{P}(Y \in A_3) > 1 - \frac{1}{4}$ for $A_3 = \{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)\}$. Finally, we consider the scenario $H = \{P_1, P_2\}$ where P_1 has input 1 and P_2 has input 0 (cf. Figure 4.5d). Here, the output of P_2 must be $1 = 1 \oplus 0$. This implies that $\mathbb{P}(Y \in A_4) > 1 - \frac{1}{4}$ for $A_4 = \{(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}$.

We observe that the intersection $A_1 \cap A_2 \cap A_3 \cap A_4$ is empty and hence $\mathbb{P}(Y \in \bigcap_{i=1}^{4} A_i) = 0$. This implies with Lemma 14 that for at least one A_i, $\mathbb{P}(Y \in A_i) \leq 1 - \frac{1}{4}$ and for all A_i as required by the definition of a construction within $\varepsilon = \frac{1}{4}$. Thus no construction of $XC_{1,2}$ from AUTH exists within $\frac{1}{4}$.

Next, we show that one can perfectly construct $XC_{i,j}$ given the complete network of authenticated channels and a broadcast channel for P_i or P_j.

Lemma 24. For all $i \neq j \in \{1, 2, 3\}$ \{AUTH, BC\} \rightarrow $XC_{i,j}$.

Proof. Let b_i be the input of P_i and let b_j be the input of P_j and denote by P_k the third party. Consider the following protocol.

1. P_j sends b_j to P_i. Denote by \hat{b}_j the bit received by P_i.

2. P_i broadcasts $b_k := b_i \oplus \hat{b}_j$ using BC\(_i\). Denote by \hat{b}_k the bit received by P_j and P_k.

3. P_i outputs b_k, P_j and P_k both output \hat{b}_k.

If at least P_i and P_j are honest we have $\hat{b}_j = b_j$ and $\hat{b}_k = b_k$. All honest parties will output $b_k = b_i \oplus b_j$ as required by $XC_{i,j}$. On the other hand if $H = \{P_j, P_k\}$ both honest parties will output \hat{b}_k as required by $XC_{i,j}$. If $H = \{P_i, P_k\}$ we have $\hat{b}_k = b_k$. Both honest parties will output b_k as required by $XC_{i,j}$. If at most one party is honest any output is fine, thus the protocol achieves the construction also in those cases. □

Finally, we show that XOR-cast is strictly weaker than broadcast. Even given all three XOR-casts, one cannot construct a single broadcast channel.

Lemma 25. For all $i \in \{1, 2, 3\}$ \{XC\(_{1,2}\), XC\(_{1,3}\), XC\(_{2,3}\), AUTH\} $\not\rightarrow$ BC\(_i\).
Proof. Without loss of generality, we show that one cannot construct BC_1 given all XOR-casts within $\epsilon \leq \frac{1}{3}$. Towards a contradiction, let us assume that one can construct BC_1 given the XOR-casts, i.e.,

$$\{XC_{1,2}, XC_{1,3}, XC_{2,3}, Auth\} \rightarrow BC_1$$

within $\epsilon \leq \frac{1}{3}$. Lemma 24 implies that one can perfectly construct all XOR-casts given broadcast channels BC_2, BC_3. This implies that one can construct BC_1 from $\{BC_2, BC_3, Auth\}$ within $\epsilon \leq \frac{1}{3}$, a contradiction to Lemma 3. \square

The above lemmas directly imply the following theorem.

Theorem 5. Authenticated channels and broadcast are strongly separated by XOR-cast.

\[\xymatrix{ \text{Auth} \ar[r]^{\frac{1}{4}}_{\text{perf.}} & \text{XC} \ar[r]^{\frac{1}{3}}_{\text{perf.}} & \text{BC} } \]

4.5.2 Weak Broadcast

For comparison, we consider *weak broadcast* which was introduced in [Lam83]. This specification provides the same consistency guarantees as broadcast except that validity only holds if all parties are honest.

Definition 26. Let $P_s \in \mathcal{P}$. A weak broadcast-channel wBC_s for sender P_s is a $(\{0,1\}, \{0,1\})$-consistency specification where for every $H \subseteq \mathcal{P}$ and all $\vec{x}_H \in \{0,1\}^H$ it holds that

$$wBC_s(H, \vec{x}_H) = \left\{ \vec{y}_H \in \{0,1\}^H \mid \exists v \left((\forall j \in H : \vec{y}_H|\{j\} = v) \wedge (H = \mathcal{P} \Rightarrow v = \vec{x}_H|\{s\}) \right) \right\}.$$

It was show in [Lam83] that weak broadcast cannot be constructed from authenticated channels using a deterministic protocol.

Lemma 26. [Lam83] There exists no deterministic r-round protocol Π which allows for $\{\text{Auth}\} \rightarrow wBC_i$.

4.5. STRONG SEPARATION RESULTS

Proof. Without loss of generality, let P_1 be the sender. Suppose there exists a deterministic r-round protocol Π which allows to construct wBC_1 from Auth. Then, there exist protocol systems Π_x^x, Π_2, Π_3 for parties P_1, P_2, P_3, where x denotes the input of P_1. Choose $k > r + 1$ as a multiple of 3 and arrange $4k$ such systems in a ring as follows: Start with a system Π_0^0 and continue with systems Π_2, Π_3; each system is connected via authenticated channels to its predecessor and successor. Now repeat this pattern going clockwise, until $2k$ systems have been connected in this manner. Because k is a multiple of three, the last system in this arrangement will be a system Π_3. Now, restart the pattern from the end of this arrangement, but instead of Π_0^0, use Π_1^1. Arrange another $2k$ nodes in this manner, thereby closing the ring.

Consider the system Π_0^0 at “the top” of the ring. As all systems in the ring are deterministic the view of Π_0^0 after r rounds is the same as if the system were run in a triangular configuration (where the triangle consists of Π_0^0, Π_2, Π_3). The validity of weak broadcast implies that the system Π_0^0 must output 0. Similarly, the system Π_1^1 at “the bottom” of the ring must output 1. Now, consider any two adjacent systems in the ring. One can view the rest of the ring as an attack strategy of a corrupted party. Thus by consistency of weak broadcast any two adjacent systems must output the same value. We thus arrive at a contradiction. \hfill \Box

On the other hand, the results of [FGH+02] imply that weak broadcast can be achieved from authenticated channels for any $\epsilon > 0$.

Lemma 27. [FGH+02] For any $\epsilon > 0$ \{Auth\} $\xrightarrow{\epsilon} wBC_i$.

Finally, we show that weak broadcast is separated from broadcast. More precisely, we show that broadcast allows to construct weak broadcast while on the other hand broadcast cannot be constructed from weak broadcast within $\epsilon \leq \frac{1}{3}$.

Theorem 6. Weak broadcast and broadcast are strongly separated.

The theorem follows from the following two lemmata.

Lemma 28. For all $i \in \{1, 2, 3\}$ \{BC$_i$\} $\rightarrow wBC_i$.

Proof. For all H and all \bar{x}_H it holds that $BC_i(H, \bar{x}_H) \subseteq wBC_i(H, \bar{x}_H)$. This directly implies \{BC$_i$\} $\rightarrow wBC_i$. \hfill \Box
Lemma 29. For all $i \in \{1, 2, 3\}$, $\{\text{wBC}_i, \text{Auth}\} \xrightarrow{\frac{1}{3}} \text{BC}_i$.

Proof. We first show that $\text{XC}_{i,j}$ for $j \neq i$ is enough to construct wBC_i. The following protocol π allows P_i to weak broadcast its bit b using $\text{XC}_{i,j}$.

1. $\text{XC}_{i,j}$ is invoked where P_i inputs b and P_j inputs 0. Denote by b_i, b_j, b_k the bits the parties P_i, P_j, P_k receive as output from $\text{XC}_{i,j}$.
2. P_i outputs b_i, P_j outputs b_j and P_k outputs b_k.

The properties of $\text{XC}_{i,j}$ ensure that honest parties will always output the same bit, as required by the consistency of wBC_i. If at least P_i and P_j are honest, the output of $\text{XC}_{i,j}$ is $b = b \oplus 0$. The protocol thus achieves the validity condition required by wBC_i.

From Lemma 25 we know that $\{\text{XC}_{i,j}, \text{Auth}\} \xrightarrow{\frac{1}{3}} \text{BC}_i$. This implies that BC_i cannot be constructed from $\{\text{wBC}_i, \text{Auth}\}$ within $\epsilon \leq \frac{1}{3}$.

4.6 Discussion and Open Problems

In this chapter we have proposed a classification of consistency specifications according to the consistency guarantees they allow to achieve. As a motivating example we have given a complete classification of specifications where a single party can give a binary input. This classification showed that such a single-input specification can either be constructed from authenticated channels or is enough to construct broadcast. We then considered three-party specifications where more than just one party may have an input. Here, we showed that XOR-cast strongly separates authenticated channels and broadcast. It is an open problem to find a complete classification of three-party specifications where parties have binary inputs and outputs.
Chapter 5

Efficient General-Adversary Multi-Party Computation

The content of this chapter is based on [HT13].

5.1 Introduction

In this chapter, we consider MPC in the presence of an active general-adversary. General adversaries are characterized by an adversary structure \(\mathcal{Z} \) which enumerates all possible set of corrupted parties. Compared to threshold adversaries, general adversaries are more flexible, which is relevant in particular when the set of parties is not very large.

On the other hand, protocols secure against general adversaries are typically by orders of magnitude less efficient than protocols for threshold adversaries. Most threshold protocols communicate \(\text{poly}(n) \) bits per multiplication, where general-adversary protocols require \(|\mathcal{Z}| \) bits which is typically exponential in \(n \). However, in some situations threshold protocols can not provide the necessary flexibility and one must use general adversary protocols. In the design of general adversary protocols the concrete communication complexity is therefore highly relevant. For
Contributions

In the statistically-secure model, one can tolerate at most adversary structures satisfying $Q^2(P, Z)$. The most efficient protocol known to date, which is also optimal in terms of resilience, requires $|Z|^3 \cdot \poly(n, \kappa)$ bits of communication (where κ is the security parameter) [Mau03, HMZ08]. There exists a protocol with communication complexity of $|Z|^2 \cdot \poly(n, \kappa)$ [PSR03]. But this results is non-optimal in terms of resilience, as it tolerates only adversaries satisfying Q^3.

Using a new approach for multiplication, we construct a protocol communicating $|Z| \cdot \poly(n, \kappa)$ bits and tolerating Q^2 adversary structures. This protocol is optimal both in terms of overall efficiency and resilience. We stress that even with cryptographic security, Q^2 is necessary and complexity linear in $|Z|$ is required at least with respect to overall complexity of computation and communication (see [Hir01]).

Furthermore, we present a perfectly secure protocol (with no error probability) with communication complexity of $|Z|^2 \cdot \poly(n)$. It is optimal in terms of resilience (Q^3) and also the most efficient protocol up to date in the model with perfect security.

We refer to Table 5.1 for an overview of the communication complexity of our protocols.

Table 5.1: Communication complexity of different protocols

<table>
<thead>
<tr>
<th>Setting</th>
<th>Cond.</th>
<th>Bits / Mult.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive perfect</td>
<td>Q^2</td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>active perfect</td>
<td>Q^3</td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>active perfect</td>
<td>Q^3</td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>active unconditional</td>
<td>Q^2</td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>active unconditional</td>
<td>Q^3</td>
<td>$</td>
<td>Z</td>
</tr>
<tr>
<td>active unconditional</td>
<td>Q^2</td>
<td>$</td>
<td>Z</td>
</tr>
</tbody>
</table>

Example for $n = 25$, $|Z|$ is expected to be around one million, and a protocol communicating $|Z| \cdot \poly(n)$ might be acceptable, whereas a protocol communicating $|Z|^3 \cdot \poly(n)$ might be useless.
5.2 Preliminaries

We refer to Section 1.1 for a short introduction to secure multi-party computation in general. This section provides additional preliminaries for the case of general adversaries.

Parties and Computation. In this chapter we consider a set \(P \) of \(n \) parties which want to compute a function \(f \) over some finite field \(\mathbb{F} \). The function is specified by a circuit \(C \) consisting of input, output, random, addition, and multiplication gates.

The parties are connected by a complete network of secure channels and have access to authenticated broadcast channels. We note that the broadcast channels can be emulated by the parties (see e.g. \([FM98]\) or \([PW96]\)).

Adversary and Adversary Structure. We consider an unbounded static active adversary \(A \). The corruption choice is limited by means of an adversary structure \(\mathcal{Z} = \{Z_1, \ldots, Z_\ell\} \subseteq 2^P \), i.e. all corrupted parties must be part of an adversary set in \(\mathcal{Z} \). We denote the chosen set by \(Z^* \). Note that \(Z^* \) is not known to the honest parties and is solely used for ease of notation. We say that \(\mathcal{Z} \) satisfies the \(Q^k(P, \mathcal{Z}) \) property if \(\forall Z_1, \ldots, Z_k \in \mathcal{Z} \ P \nsubseteq Z_1 \cup \cdots \cup Z_k \).

Security. A protocol is \(\mathcal{Z} \)-secure if anything the adversary achieves during the execution of the protocol can be achieved in the ideal world as well. More precisely, for every adversary in the real world there exists an adversary in the ideal world such that both the information the adversary gets and the output of honest parties are statistically indistinguishable for perfect security respectively statistically close for unconditional security.

The main result from \([HM97]\) states that \(Q^3(P, \mathcal{Z}) \) resp. \(Q^2(P, \mathcal{Z}) \) are the necessary and sufficient conditions for the existence of perfectly resp. unconditionally \(\mathcal{Z} \)-secure protocols considering active adversaries.

For simplicity we assume that all messages sent during the execution of \(\Pi \) are from the right domain. If a party receives a message where this is not the case, he replaces it with an arbitrary element from the right domain. If a party receives an unexpected message, he ignores it.
5.3 Perfect Protocol

In this section we present a perfectly Z-secure protocol for an arbitrary adversary structure Z satisfying the Q^3 property. The communication complexity of the protocol is quadratic in $|Z|$. The efficiency gain is due to an improved multiplication protocol. The sharing is (up to presentation) the same as in [Mau03].

5.3.1 Secret Sharing

Secret sharing allows a party to distribute a secret value among the party set, such that only qualified subsets of parties are able to reconstruct it. The secret sharing used for our protocol is based on the one from [Mau03] / [BFH+08]. It is characterized by a sharing specification $S = (S_1, \ldots, S_h)$, which is a tuple of subsets of P.

Definition 27. A value s is shared with respect to sharing specification $S = (S_1, \ldots, S_h)$ if the following holds:

a) There exist shares s_1, \ldots, s_h such that $s = \sum_{q=1}^{h} s_q$

b) Each s_q is known to every (honest) parties in S_q

We denote the sharing of a value s by $[s]$ and use $[s]_q$ as notation for s_q, the q-th share. A sharing specification $S = (S_1, \ldots, S_h)$ is called Z-private if for every $Z \in Z$ there is an $S \in S$ such that $Z \cap S = \emptyset$. A sharing specification $S = (S_1, \ldots, S_h)$ and an adversary structure Z satisfy $Q^k(S, Z)$ if $S \not\subseteq Z_1 \cup \cdots \cup Z_k \quad \forall Z_1, \ldots, Z_k \in Z \quad S \in S$. If S is Z-private, a sharing $[s]$ does not leak information to the adversary, as all shares known by the adversary are statistically independent of s. The parties can compute a sharing of any linear combination of shared values (with respect to a sharing specification S) by locally computing the linear combination of their shares. This property is called the linearity of the sharing. The following protocol Share allows a dealer P_D to correctly share value s among the parties in P.
5.3. PERFECT PROTOCOL

Protocol Share\((\mathcal{P}, \mathcal{Z}, \mathcal{S}, P_D, s)\) [Mau03]

0: The dealer \(P_D\) takes \(s\) as input.
1: \(P_D\) splits \(s\) into random shares \(s_1, \ldots, s_{|S|}\) subject to \(s = \sum_{q=1}^{|S|} s_q\).
2: for all \(q \in \{1, \ldots, |S|\}\) do
3: \(P_D\) sends \(s_q\) to every party in \(S_q\).
4: Each party in \(S_q\) forwards the received value to each party in \(S_q\).
5: Each party in \(S_q\) checks that the received values are all the same and broadcasts OK, or NOK accordingly.
6: If a party in \(S_q\) broadcast NOK, the dealer broadcasts \(s_q\) and the parties in \(S_q\) take this value (resp. some default value if the dealer does not broadcast) as share. Otherwise every party in \(S_q\) takes the value it received in Step 3 as share.
7: end for
8: The parties in \(\mathcal{P}\) collectively output \([s]\).

Lemma 30. For any adversary structure \(\mathcal{Z}\) protocol Share\((\mathcal{P}, \mathcal{Z}, \mathcal{S}, P_D, s)\) securely computes a sharing \([s']\). For honest \(P_D\) it holds that \(s' = s\). The protocol communicates at most \(|S|(n^2 + n) \log |\mathbb{F}|\) bits and broadcasts at most \(|S|(|\log |\mathbb{F}| + n)\) bits.

Proof. Correctness: For each \(s_q\) either all the honest parties in \(S_q\) hold the same value after Step 3, or one of them complains and they receive a consistent value in Step 6. Hence the protocol outputs a (consistent) sharing \([s']\). If the dealer is honest he is able to ensure in Steps 3 and 6 that the honest parties use the intended value for \(s_q\) such that \(s = s'\).

Privacy: Let the dealer be honest, as otherwise secrecy is trivially fulfilled. All a party learns beyond his designated output are values broadcast in Step 6. However this does not violate secrecy as these values are already known to the adversary (from Step 3).

Complexity: For each share at most \(n + n^2\) values are sent and at most \(n + \log |\mathbb{F}|\) bits broadcast.

For publicly known value \(s\) the parties can invoke DefaultShare to get a sharing \([s]\) without having to communicate.

Protocol DefaultShare\((\mathcal{P}, \mathcal{Z}, \mathcal{S}, s)\)

0: Every party takes \(s\) as input.
Lemma 31. \textbf{DefaultShare}(\mathcal{P}, \mathcal{Z}, \mathcal{S}, s) securely computes a sharing \([s]\) where \(s\) is a publicly known value. The protocol does not communicate.

\textbf{Proof.} \textit{Correctness:} In Step 1 every honest party in \(\mathcal{S}_q\) takes the same value for share \(s_q\). As the sum of all shares is \(s\), the protocol outputs a consistent sharing \([s]\).

\textit{Privacy:} During the protocol no communication occurs, hence the adversary does not obtain new information. \hfill \Box

The protocol \textbf{ReconstructShare} allows the reconstruction of a share \([s]_q\) to the parties in some set \(R\). This implies that the parties can reconstruct a shared value \([s]\) by invoking \textbf{ReconstructShare} for each share.

\begin{verbatim}
Protocol ReconstructShare(\mathcal{P}, \mathcal{Z}, \mathcal{S}, [s]_q, R)
0: The parties in \(\mathcal{S}_q\) take the share \([s]_q\) as input.
1: Every party \(P_i\) in \(\mathcal{S}_q\) sends \([s]_q\) to every party in \(\mathcal{R}\).
2: For each party \(P_j \in \mathcal{R}\) let \(v_{j,i}\) be the value received from \(P_i\). Then \(P_j\) outputs some value \(v_j\) such that there exists a \(Z \in \mathcal{Z}\) with \(v_{j,i} = v_j\) for all \(P_i \in \mathcal{S}_q \setminus Z\).
\end{verbatim}

Lemma 32. If \(\mathcal{S}_q\) and \(\mathcal{Z}\) satisfy \(Q^2(\mathcal{S}_q, \mathcal{Z})\), the protocol \textbf{ReconstructShare} securely reconstructs the share \([s]_q\) to the parties in \(\mathcal{R}\), such that every (honest) party outputs \([s]_q\). The protocol communicates at most \(n^2 \log |\mathbb{F}|\) bits.

\textbf{Proof.} \textit{Correctness:} In Step 1 all honest parties will send the same value \([s]_q\), which is a suitable choice for \(v_j\) for an (honest) party \(P_j \in R\) in Step 2. For the sake of contradiction suppose there exist two values \(v_1 \neq v_2\) with corresponding \(Z_1, Z_2 \in \mathcal{Z}\) such that the condition of Step 2 holds for both of them. Hence \((\mathcal{S}_q \setminus Z_1) \cap (\mathcal{S}_q \setminus Z_2) = \emptyset\) and thus \(\mathcal{S}_q \subseteq Z_1 \cup Z_2\) which contradicts \(Q^2(\mathcal{S}_q, \mathcal{Z})\). Therefore every honest party outputs the value \([s]_q\).

\textit{Privacy:} The adversary learns at most \([s]_q\) (if a malicious party is part of \(R\)).

\textit{Complexity:} Each party in \(\mathcal{S}_q\) sends his value to at most \(n\) parties. \hfill \Box
5.3. PERFECT PROTOCOL

Protocol Reconstruct($\mathcal{P}, Z, S, [s], R$) [Mau03]

0: The parties in \mathcal{P} take collectively $[s]$ as input.
1: $\forall q \in \{1, \ldots, |S|\}$ protocol ReconstructShare($\mathcal{P}, Z, S, [s]_q, R$) is invoked.
2: The parties in R locally sum up the obtained shares and output the sum s.

Lemma 33. If S and Z satisfy $Q^2(S, Z)$ and $[s]$ is a sharing of the value s, then Reconstruct($\mathcal{P}, Z, S, [s], R$) securely reconstructs s to the parties in R. The protocol communicates at most $|S|n^2 \log |F|$ bits.

Proof. Correctness and privacy follow directly from Lemma 32. As ReconstructShare is invoked $|S|$ times the complexity follows as well. □

5.3.2 Multiplication

We present a protocol for the perfectly-secure computation of the (shared) product of two shared values $[a]$ and $[b]$ (with respect to a sharing specification S). Along the lines of Mau03 the fundamental idea of multiplication is to assign each local product a_pb_q to a party in $S_p \cap S_q$, who computes and shares his designated products. The sum of all these sharings is a sharing of ab as long as no party actively cheated. So each party is mapped to a collection of local products, formalized by a function $I : [n] \rightarrow 2\{(p,q) \mid 1 \leq p,q \leq |Z|\}$ with the constraint that $\forall (p,q) \exists! i$ such that $(p,q) \in I(i)$. W.l.o.g let $I(i) := \{(p,q) \mid P_i = \min P \in S_p \cap S_q\}$.

We first show an optimistic multiplication protocol which takes an additional parameter Z and computes the correct product if the actual adversary set Z^* is a subset of Z. In this protocol local products are assigned to parties in $\mathcal{P} \setminus Z$ only. Clearly this is possible if and only if for each local product a party in $\mathcal{P} \setminus Z$ holds both involved shares, i.e. $\forall S_p, S_q \in S : S_p \cap S_q \setminus Z \neq \emptyset$. So for each $Z \in Z$ let I_Z be a mapping as above with the additional constraint that $\forall P_i \in Z I_Z(i) = \emptyset$. Without loss of generality, let $I_Z(i) := \{(p,q) \mid P_i = \min P \in S_p \cap S_q \setminus Z\}$.

Protocol OptimisticMult($\mathcal{P}, Z, S, [a], [b], Z$)

0: The parties in \mathcal{P} take collectively $[a], [b]$ and Z as input.
CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

1:
 a) Each party $P_i \in P \setminus Z$ (locally) computes his designated products and shares the sum $c_i = \sum_{(p,q) \in I_Z(i)} a_pb_q$.
 b) For each $P_i \in Z$ DefaultShare($P, Z, S, 0$) is invoked to share $c_i = 0$.

2: The parties collectively output $([c_1], \ldots, [c_n])$ and $[c] = \sum_{i=1}^{n}[c_i]$.

Lemma 34. Let $Z \subseteq P$ such that $\forall S_p, S_q \in S : S_p \cap S_q \setminus Z \neq \emptyset$. Then the protocol OptimisticMult securely computes sharings $[c], ([c_1], \ldots, [c_n])$. If no party in $P \setminus Z$ actively cheats (in particular, if $Z^* \subseteq Z$), then $\forall i \ c_i = \sum_{(p,q) \in I_Z(i)} a_pb_q$ and $c = ab$. The protocol communicates at most $O(|S|n^3 \log |F|)$ bits and broadcasts at most $O(|S|(n \log |F| + n^2))$ bits.

Proof. Correctness: The properties of the sharing protocol guarantee that the outputs are valid sharings. If none of the parties in $P \setminus Z$ cheated actively, it holds for each P_i that $c_i = \sum_{(p,q) \in I_Z(i)} a_pb_q$. The condition $\forall S_p, S_q \in S : S_p \cap S_q \setminus Z \neq \emptyset$ guarantees that $ab = \sum_{i=1}^{n} \sum_{(p,q) \in I_Z(i)} a_pb_q$. Hence it follows that $c = ab$.

Privacy and Complexity: Follow directly from Lemmas 30 and 31.

As the parties do not know the actual adversary set Z^*, they invoke OptimisticMult once for each set $Z \in \mathcal{Z}$ (Step 1 of the Multiplication protocol). This guarantees that at least one of the resulting sharings is correct.

By comparing them the parties can determine whether cheating occurred (Step 2 of the Multiplication protocol). If all sharings are equal, no cheating occurred and any of the sharings can serve as sharing of the product. Otherwise at least one party cheated. In this case the (honest) parties can identify him and remove all sharings where he was involved in computation, as these sharings are potentially tampered (Step 3 of the Multiplication protocol).

This checking and removing is repeated until all remaining sharing are equal (and hence correct). As the identification of cheaters does not reveal any information to the adversary, Multiplication allows the secure computation of the product of two shared secret values.
Protocol Multiplication($\mathcal{P}, \mathcal{Z}, \mathcal{S}, [a], [b]$)

0: Set $M = \emptyset$.
1: Invoke OptimisticMult($\mathcal{P}, \mathcal{Z}, \mathcal{S}, [a], [b], Z$) to compute
 $([c_1(Z)], \ldots, [c_n(Z)])$ and $[c(Z)]$ for each $Z \in \mathcal{Z}$.
2: Set $\mathcal{Z}_M := \{Z \in \mathcal{Z} \mid M \subseteq Z\}$, fix some $\tilde{Z} \in \mathcal{Z}_M$ and reconstruct the
 differences $[c(\tilde{Z})] - [c(Z)] \quad \forall Z \in \mathcal{Z}_M$.
3: If all differences are zero, output $[c(\tilde{Z})]$ as sharing of the product.
 Otherwise let $([d_1], \ldots, [d_n]) := ([c_1(\tilde{Z})], \ldots, [c_n(\tilde{Z})])$, $([e_1], \ldots, [e_n]) :=$
 $([c_1(Z)], \ldots, [c_n(Z)])$, $D := I_{\tilde{Z}}$ and $E := I_Z$, where $[c(\tilde{Z})] - [c(Z)] \neq 0$.
 a) Each P_i shares the $2n$ values $d_{i,j} = \sum_{(p,q) \in D(i) \cap E(j)} a_p b_q$ and
 $e_{i,j} = \sum_{(p,q) \in E(i) \cap D(j)} a_p b_q$
 b) For each party P_i reconstruct the differences $[d_i] - \sum_{j=1}^n [d_{i,j}]$
 and $[e_i] - \sum_{j=1}^n [e_{i,j}]$. If one of them is non-zero set
 $M \leftarrow M \cup \{P_i\}$ and continue at Step 2.
 c) For each (ordered) pair (P_i, P_j) of parties reconstruct the difference $[d_{i,j}] - [e_{i,j}]$.
 If it is non-zero, reconstruct $[d_{i,j}], [e_{i,j}]$ and all shares $\{a_p, b_q \mid (p, q) \in D(i) \cap E(j)\}$ to find the cheater
 $P \in \{P_i, P_j\}$. Set $M \leftarrow M \cup \{P\}$ and continue at Step 2.

Lemma 35. If \mathcal{S} and \mathcal{Z} satisfy $Q^2(\mathcal{S}, \mathcal{Z})$ the protocol Multiplication
yields a sharing $[c] = [ab]$. No information is leaked to the adversary. Multiplication
communicates at most $O(|\mathcal{S}| |\mathcal{Z}| n^3 \log |\mathcal{F}| + |\mathcal{S}| n^5 \log |\mathcal{F}|)$ bits
and broadcasts at most $O(|\mathcal{S}| |\mathcal{Z}| (n \log |\mathcal{F}| + n^2) + |\mathcal{S}| (n^3 \log |\mathcal{F}| + n^4))$ bits.

Proof. Correctness: By invoking OptimisticMult for each $Z \in \mathcal{Z}$ it holds
for Z^* that $[c(Z^*)] = [ab]$ (due to $Q^2(\mathcal{S}, \mathcal{Z}) \forall S_p, S_q \in \mathcal{S} : S_p \cap S_q \setminus Z \neq \emptyset$ holds).
If for every $Z \in \mathcal{Z}_M$ the difference in Step 2 is zero, then
$[c(Z)] = [ab] \quad \forall Z \in \mathcal{Z}_M$ ($M = \emptyset$ at the beginning). Hence the protocol
terminates successfully outputting a sharing of ab. Otherwise there exists
$[c(\tilde{Z})] - [c(Z)] \neq 0$ and thus $\sum_{i=1}^n [d_i] \neq \sum_{i=1}^n [e_i]$. In Step 3a) each party
is supposed to share a partition of his shares. Hence one of the following
cases must occur: There exists a party P_i such that $[d_i] \neq \sum_{j=1}^n [d_{i,j}]$
or $[e_i] \neq \sum_{j=1}^n [e_{i,j}]$. Or there exists a pair of parties (P_i, P_j) such that
$[d_{i,j}] \neq [e_{i,j}]$. In the first case P_i will be detected as cheater in Step 3b).
In the second case the cheater will be detected in Step 3c). In both cases
$M \subseteq \mathcal{P}$ is strictly increased, hence the protocol will terminate after at
most \(n \) iterations. It holds that \(M \subseteq Z^* \) and thus \(Z^* \in \mathcal{Z}_M \). Therefore the correct sharing \([c(Z^*)]\) is always used in Step 2 and the protocol will output the correct result.

Privacy: By the properties of the sharing scheme and Lemma 34 the invocation of Share, Reconstruct, OptimisticMult does not violate privacy. The adversary learns the differences reconstructed in Steps 2 and 3 of Multiplication, which are all zero unless the adversary cheats. In case of cheating the reconstructed values depends solely on the inputs of the adversary and are thus already known to him, thus privacy is not violated. All values further reconstructed in Step 3c) are known to the adversary before, as either \(P_i \) or \(P_j \) is corrupted.

Complexity: Follows from Lemmas 30, 33 and 34 by counting the number of invocations of the corresponding sub-protocols.

5.3.3 MPC Protocol

Combining Share, Reconstruct, and Multiplication the parties can securely compute a circuit \(\mathcal{C} \) over \(\mathbb{F} \), where all intermediate values are shared according to Definition 27.

Protocol MPC\((\mathcal{P}, \mathcal{Z}, \mathcal{C})\)

0: The parties take \(S := \{ \mathcal{P} \setminus Z | Z \in \mathcal{Z} \} \) as sharing specification.

1: For every gate of \(\mathcal{C} \) being evaluated do the following:

- **Input gate for \(P_D \):** Share\((\mathcal{P}, \mathcal{Z}, S, P_D, s)\) is invoked to share \(s \), where \(P_D \) is the input-giving party.

- **Linear gate:** The linear combination of the corresponding shares is computed locally using the linearity of the sharing.

- **Random gate:** Each party shares a random value. The sum of these values is used as output of the gate.

- **Multiplication gate:** Multiplication\((\mathcal{P}, \mathcal{Z}, S, [a], [b])\) is used to multiply \([a]\) and \([b]\).

- **Output gate:** The parties invoke Reconstruct\((\mathcal{P}, \mathcal{Z}, S, [s], R)\) to reconstruct the sharing \([s]\) to parties in \(R \).

Theorem 7. Let \(\mathcal{P} \) be a set of \(n \) parties, \(\mathcal{C} \) a circuit over \(\mathbb{F} \) and \(\mathcal{Z} \) an adversary structure satisfying \(Q^3(\mathcal{P}, \mathcal{Z}) \), then MPC\((\mathcal{P}, \mathcal{Z}, \mathcal{C})\) perfectly
\(\mathcal{Z} \)-securely evaluates \(C \). It communicates \(|\mathcal{C}| |\mathcal{Z}|^2 \cdot \text{poly}(n, \log |\mathcal{F}|) \) bits.

Proof. It is easy to see that \(\mathcal{S} := \{ \mathcal{P} \mid Z \in \mathcal{Z} \} \) is a sharing specification satisfying \(\mathcal{Q}^2(\mathcal{S}, \mathcal{Z}) \). Hence by the properties of the sharing scheme and Lemma 35 the statement follows. The protocol communicates in total \(\mathcal{O}(|\mathcal{C}| |\mathcal{Z}|^2 n^3 \log |\mathcal{F}| + |\mathcal{C}| |\mathcal{Z}| n^5 \log |\mathcal{F}|) \) bits and broadcasts \(\mathcal{O}(|\mathcal{C}| |\mathcal{Z}|^2 (n \log |\mathcal{F}| + n^2) + |\mathcal{C}| |\mathcal{Z}| (n^3 \log |\mathcal{F}| + n^4)) \) bits. Broadcast can be simulated with the protocol in \([\text{FM98}]\), which communicates \(\text{poly}(n) \) bits in order to broadcast one bit. This yields the claimed communication complexity. \(\square \)

5.4 Unconditional Protocol

Our main result is an MPC protocol unconditionally \(\mathcal{Z} \)-secure for an \(\mathcal{Q}^2 \) adversary structure \(\mathcal{Z} \). Its communication complexity is linear in \(|\mathcal{Z}| \). This is the first protocol reaching the optimal lower bound of \(\Omega(|\mathcal{Z}|) \) on the computational complexity (see Section 5.6).

5.4.1 Information Checking

In the perfect model, \(\mathcal{Q}^3 \) enables the honest parties to securely reconstruct shares, as it assures that every share is held by enough honest parties. Here, \(\mathcal{Q}^2 \) only ensures that each share is held by at least one honest party. Correctness is achieved by the use of information checking, a technique that prevents (malicious) parties from announcing wrong values (see \([\text{RB89}, \text{Bea91}, \text{CDD}+99, \text{HMZ08}]\)). The following information-checking protocol is a slight variation of \([\text{CDD}+99]\). It is a three party protocol between a sender \(P_i \), a recipient \(P_j \) and a verifier \(P_k \). The sender \(P_i \) provides \(P_j \) with some authentication tag and \(P_k \) with some verification tag, such that \(P_j \) later can prove the authenticity of a value \(s \) to the verifier \(P_k \). We assume that each pair \(P_i, P_k \) of parties knows a fixed secret value \(\alpha_{i,k} \in \mathcal{F} \).

Definition 28. A vector \((s, y, z, \alpha)\) is \(1 \)-consistent if there exists a polynomial \(f \) of degree 1 over \(\mathcal{F} \) such that \(f(0) = s, f(1) = y, f(\alpha) = z \). We say a value \(s \) is \((P_i, P_j, P_k)\)-authenticated if \(P_j \) knows \(s \) and some authentication tag \(y \) and \(P_k \) knows a verification tag \(z \) such that \((s, y, z, \alpha_{i,k})\) is \(1 \)-consistent. The vector \((y, z, \alpha_{i,k})\) is denoted by \(A_{i,j,k}(s) \).
Lemma 36. A \((P_i, P_j, P_k)\)-authenticated value \(s\) does not leak information to \(P_k\).

Proof. The verification tag \(z\) is statistically independent of value \(s\).

Lemma 37. Let \(s\) be \((P_i, P_j, P_k)\)-authenticated, i.e. \((s, y, z, \alpha_{i,k})\) is 1-consistent. Then for \(P_j\) being able to find an authentication tag \(y'\) for a value \(s' \neq s\) such that \((s', y', z, \alpha_{i,k})\) is 1-consistent is equivalent to finding \(\alpha_{i,k}\).

Proof. If both \((s, y, z, \alpha_{i,k})\) and \((s', y', z, \alpha_{i,k})\) are 1-consistent, then also \((s - s', y - y', 0, \alpha_{i,k})\) is 1-consistent. The corresponding polynomial of degree 1 is not parallel to the \(x\)-axis, as \(s - s' \neq 0\). Thus it has an unique root at \(\alpha_{i,k} = \frac{s - s'}{s - s' - y + y'}\).

Lemma 38. The parties \(P_j\) and \(P_k\) can locally compute an authentication and a verification tag of any linear combination of \((P_i, P_j, P_k)\)-authenticated values (for fixed \(P_i\)). This is called the linearity of the authentication.

Proof. Let \(s_a\) and \(s_b\) be \((P_i, P_j, P_k)\)-authenticated with authentication tags \(y_a, y_b\) and verification tags \(z_a, z_b\) and the (fixed) point \(\alpha_{i,k}\) and let \(L\) be a linear function. Then \(L(s_a, s_b)\) is \((P_i, P_j, P_k)\)-authenticated with authentication tag \(y = L(y_a, y_b)\) and verification tag \(z = L(z_a, z_b)\). This works as the polynomials of degree 1 over \(\mathbb{F}\) form a vector space, hence \((L(s_a, s_b), L(y_a, y_b), L(z_a, z_b), \alpha_{i,k})\) is 1-consistent.

Let \(s\) be a value known to \(P_j\) and \(P_k\). Then these parties can use the protocol \texttt{DefaultAuthenticate} to \((P_i, P_j, P_k)\)-authenticate \(s\) without communication for arbitrary \(P_i\). Note that \(P_i\) does not play an (active) role in this protocol.

\begin{protocol}
0: \(P_j, P_k\) take the value \(s\) as input.
1: \(P_j\) outputs authentication tag \(y = s\). \(P_k\) outputs verification tag \(z = s\).
\end{protocol}

Lemma 39. If the value \(s\) is known to the honest parties in \(\{P_j, P_k\}\) protocol \texttt{DefaultAuthenticate}(\(P_i, P_j, P_k, s\)) securely \((P_i, P_j, P_k)\)-authenticates \(s\) without any communication.
5.4. UNCONDITIONAL PROTOCOL

Proof. Correctness: \((s, s, s, \alpha_{i,k})\) is 1-consistent for any \(\alpha_{i,k}\).

Privacy and Communication: No communication occurs and the adversary does not learn new information. □

The non-robust protocol Authenticate allows to securely \((P_i, P_j, P_k)\)-authenticate a (secret) value \(s\).

Protocol Authenticate\((P_i, P_j, P_k, s)\)

0: \(P_i\) and \(P_j\) take the value \(s\) as input.
1: \(P_i\) chooses random values \((y, z) \in \mathbb{F}\) such that \((s, y, z, \alpha_{i,k})\) is 1-consistent and random values \((s', y', z') \in \mathbb{F}\) such that \((s', y', z', \alpha_{i,k})\) is 1-consistent and sends \((s', y, y')\) to party \(P_j\) and \((z, z')\) to party \(P_k\).
2: \(P_k\) broadcasts random \(r \in \mathbb{F}\).
3: \(P_i\) broadcasts \(s'' = rs + s'\) and \(y'' = ry + y'\).
4: \(P_j\) checks if \(s'' = rs + s'\) and \(y'' = ry + y'\) and broadcast OK or NOK accordingly. If NOK was broadcast the protocol is aborted.
5: \(P_k\) checks if \((s'', y'', rz + z', \alpha_{i,k})\) is 1-consistent. If yes \(P_k\) sends OK to \(P_j\) otherwise he sends \((\alpha_{i,k}, z)\) to \(P_j\), who adjusts \(y\) such that \((s, y, z, \alpha_{i,k})\) is 1-consistent.
6: \(P_j\) outputs \(y\) and \(P_k\) outputs \(z\).

Lemma 40. If \(P_k\) is honest and \(s\) is known to the honest parties in \(\{P_i, P_j\}\). Then the protocol Authenticate\((P_i, P_j, P_k, s)\) either securely \((P_i, P_j, P_k)\)-authenticate \(s\) or aborts except with error probability of at most \(\frac{1}{|\mathbb{F}|}\). In the case of an abort a party in \(\{P_i, P_j\}\) is corrupted. The protocol communicates at most \(7 \log |\mathbb{F}|\) bits and broadcasts at most \(3 \log |\mathbb{F}| + 1\) bits.

Proof. Correctness: If the protocol was aborted, either \(s'' \neq rs + s'\) or \(y'' \neq ry + y'\) meaning \(P_i\) is corrupted, or \(P_j\) misleadingly accused \(P_i\). Otherwise, the parties use some \((s, y, z, \alpha_{i,k})\) as authentication of \(s\). The probability that \((s, y, z, \alpha_{i,k})\) is not 1-consistent is \(|\mathbb{F}|^{-1}\), as for a fixed \(r\) there is exactly one way to choose \(y, z\) such that the inconsistency is not detected.

Privacy: The verification tag \(z\), the values \(s''\) and \(y''\) are statistically independent of the value \(s\). Also \(\alpha_{i,k}\) is sent only to \(P_j\) if either \(P_i\) or \(P_k\) is malicious.
CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

Communication: Seen by counting the number of messages sent or broadcast during the protocol.

Remark. If the (honest) parties P_i and P_j do not know the same s the protocol will abort as well.

Assume that P_k knows a candidate s' for a (P_i, P_j, P_k)-authenticated value s. If P_j wants to prove the authenticity of s' (i.e. that $s' = s$) the parties invoke the protocol Verify. If P_k accepts the proof he outputs s', otherwise he outputs \perp.

Protocol Verify($P_i, P_j, P_k, s', A_{i,j,k}(s)$)

0: Let $A_{i,j,k}(s) = (y, z, \alpha_{i,k})$. P_j takes y as input and P_k takes s', z as input.
1: P_j sends y to P_k
2: P_k outputs s' if $(s', y, z, \alpha_{i,k})$ is 1-consistent otherwise \perp.

Lemma 41. Assume s is (P_i, P_j, P_k)-authenticated and let P_k be an honest party knowing s'. If P_j is honest and $s' = s$, P_k will output s in Verify. Otherwise P_k will output \perp or s except with error probability of at most $\frac{1}{|F|-2}$. The protocol communicates at most $\log|F|$ bits.

Proof. Correctness: Let P_k be an honest party, let $A_{i,j,k}(s) = (y, z, \alpha_{i,k})$ be consistent with s, i.e. $(s, y, z, \alpha_{i,k})$ is 1-consistent and assume that $s' = s$. If P_j sends the right y the vector $(s', y, z, \alpha_{i,k})$ is 1-consistent and P_k will output s. Otherwise P_k always outputs \perp. So assume $s' \neq s$. Then the probability of finding y' such that the vector $(s', y', z, \alpha_{i,k})$ is 1-consistent is at most $\frac{1}{|F|-2}$, thus P_k outputs \perp except with error probability of at most $\frac{1}{|F|-2}$.

Privacy and Communication: No information except y is sent.

5.4.2 Unconditional Secret Sharing

Starting from the secret sharing of Section 5.3.1 we construct a sharing scheme for the Q^2 case using the information-checking scheme of the previous section.

Definition 29. A value s is shared with respect to the sharing specification $S = (S_1, \ldots, S_h)$, if the following holds:
5.4. UNCONDITIONAL PROTOCOL

a) There exist shares \(s_1, \ldots, s_h\) such that \(s = \sum_{q=1}^{h} s_q\)

b) Each \(s_q\) is known to every (honest) party in \(S_q\)

c) \(\forall P_i, P_j \in S_q P_k \in \mathcal{P} s_q\) is \((P_i, P_j, P_k)\)-authenticated.

We denote the sharing of a value \(s\) by \([s]\). Let \([s]_q = (s_q, \{A_{i,j,k}(s_q)\})\), where \(s_q\) is the \(q\)-th share and \(\{A_{i,j,k}(s_q)\}\) the set of all associated authentications. As the perfect sharing from Section 5.3.1 this sharing is linear and does not leak information to the adversary (for a \(\mathcal{Z}\)-private \(S\)).

The following protocol allows a dealer \(P_D\) to securely share a secret value \(s\).

Protocol Share (%(P, Z, S, P_D, s))

0: The dealer \(P_D\) takes \(s\) as input.
1: \(P_D\) splits \(s\) into random shares \(s_1, \ldots, s_{|S|}\) subject to \(s = \sum_{q=1}^{|S|} s_q\).
2: for all \(q \in \{1, \ldots, |S|\}\) do
3: \(P_D\) sends share \(s_q\) to every party in \(S_q\).
4: \(\forall P_i, P_j \in S_q\) and \(\forall P_k \in \mathcal{P}\) invoke \(\text{Authenticate}(P_i, P_j, P_k, s_q)\).
 If (for fixed \(q\)) any \(\text{Authenticate}(P_i, P_j, P_k, s_q)\) was aborted
 \(P_D\) broadcasts \(s_q\), the parties in \(S_q\) replace there share and
 \(\text{DefaultAuthenticate}(P_i, P_j, P_k, s_q)\) is invoked
 \(\forall P_i, P_j \in S_q \forall P_k \in \mathcal{P}\).
5: end for
6: The parties in \(\mathcal{P}\) collectively output \([s]\).

Lemma 42. For any adversary structure \(\mathcal{Z}\) protocol \(\text{Share}((P, Z, S, P_D, s))\) securely computes a sharing \([s']\) except with error probability of at most \(1/|\mathcal{F}| n^3|S|\) and if \(P_D\) is honest \(s' = s\). The protocol communicates at most \(|S|(7n^3 + n) \log |\mathcal{F}|\) bits and broadcasts at most \(|S|((3n^3 + 1) \log |\mathcal{F}| + n^3)\) bits.

Proof. Correctness: Assume that \(P_D\) does not send the same value to the (honest) parties in \(S_q\) (Step 3). In this case at least one invocation of \(\text{Authenticate}\) will abort (see Remark 5.4.1) and \(P_D\) must broadcast the value. Otherwise all (honest) parties use the same value \(s_q\) in Step 3. We have to show that every (honest) \(P_j\) gets his authentications \(A_{i,j,k}(s_q)\). If all instances of \(\text{Authenticate}\) do not abort the statement follows from Lemma 40. Otherwise \(s_q\) is broadcast and the parties use
DefaultAuthenticate resulting in the proper sharing state (c.f. Lemma 39). Note that a single invocation of Authenticate has an error probability of at most $\frac{1}{|\mathbb{F}|}$, so the above upper bound on the error probability follows.

Privacy: We only have to check that broadcasting s_q in Step 4 does not violate privacy. But s_q is only broadcast when at least one Authenticate was aborted. In this case either P_D or a party in S_q is malicious, hence s_q is known to the adversary before the broadcast (Lemma 40 and Remark 5.4.1).

Communication: Follows directly by counting the numbers of messages sent or broadcast (c.f. Lemmas 40 and 39).

If a value is publicly known the party can use DefaultShare to obtain a sharing of it.

Protocol DefaultShare(\mathcal{P}, Z, S, s)

0: Every party takes s as input.
1: The share s_1 is set to s and all other shares are set to 0.
2: DefaultAuthenticate(P_i, P_j, P_k, s_q) is invoked
 $\forall S_q \forall P_i, P_j \in S_q \forall P_k \in \mathcal{P}$.
3: The parties in \mathcal{P} collectively output $[s]$.

Lemma 43. DefaultShare(\mathcal{P}, Z, S, s) securely computes a sharing $[s]$ of s. The protocol does not communicate.

Proof. The statement follows from Lemmas 31 and 39.

The protocol ReconstructShare allows reconstruction of a share from some sharing $[s]$ to parties in $R \subseteq \mathcal{P}$. Hence the parties can reconstruct s by invoking protocol ReconstructShare for each share of $[s]$.

Protocol ReconstructShare($\mathcal{P}, Z, S, [s]_q, R$)

0: The parties in S_q take collectively $[s]_q = (s_q, \{A_{i,j,k}(s_q)\})$ as input.
1: Every party P_j in S_q sends s_q to every party in R.
2: for all $P_j \in S_q, P_k \in R$ do
3: Invoke Verify($P_i, P_j, P_k, s_q^{(j)}, A_{i,j,k}(s_q)\forall P_i \in S_q$ where $s_q^{(j)}$ is the value received by P_k from P_j in Step 1 If P_k output $s_q^{(j)}$ in
each invocation he accepts it as value for s_q.
4: end for
5: Each P_k outputs some value he accepted in Step 3 (or ⊥ if never
accepted a value).

Lemma 44. Assume S_q and Z satisfy $Q^1(S_q, Z)$ and let $[s]_q$ be a consistent share. Every honest party in R outputs s_q in ReconstructShare except with error probability of at most $\frac{1}{|F|-2} n|S_q|$. The protocol communicates at most $(n^3 + n^2) \log |F|$ bits and does not broadcast.

Proof. Correctness: As S_q and Z satisfy $Q^1(S_q, Z)$ there exists at least one honest party P_j in S_q, who sends the right value s_q to $P_k \in R$ in Step 1. Hence every (honest) P_k will accept s_q in Step 3 from P_j, as P_j has a valid authentication for s_q from every party in S_q (c.f. Lemma 41). On the other hand a malicious party does not have a valid authentication for $s_q' \neq s_q$ from every party in S_q (one of them is honest!). So no honest party will accept $s_q' \neq s_q$ in Step 3 and thus P_k output s_q in the last step except with error probability of at most $\frac{1}{|F|-2} n|S_q|$ (c.f. Lemma 41). As there are at most n parties in R the overall error probability follows.

Privacy: Follows from Lemma 41.

Communication: Follows directly by counting the numbers of messages sent (c.f. Lemma 41).

Protocol Reconstruct($P, Z, S, [s], R$)

0: The parties in P take collectively $[s]$ as input.
1: for all $q = 1, \ldots, |S|$ do
2: ReconstructShare($P, Z, S, [s]_q, R$) is invoked.
3: end for
4: The parties locally sum up the shares to obtain and output s.

Lemma 45. Assume S and Z satisfy $Q^1(S, Z)$ and let $[s]$ be a sharing of the value s. Every honest party in R outputs s in Reconstruct except with error probability of at most $\frac{1}{|F|-2} n^2 |S|$. The protocol communicates at most $|S| (n^3 + n^2) \log |F|$ bits and does not broadcast.

Proof. The statement follows directly from Lemma 44, as the parties invoke the protocol ReconstructShare for each share.
5.4.3 Multiplication

We present a protocol for the unconditionally-secure computation of the (shared) product of two shared values \([a]\) and \([b]\). The idea is, as in the perfect case, to use an optimistic multiplication. The protocol \texttt{BasicMult} takes a set \(M\) of (identified) malicious parties as input and outputs the correct product given that no party in \(\mathcal{P} \setminus M\) actively cheated. In a next step a probabilistic check is used to determine whether the product computed in \texttt{BasicMult} is correct. This allows us to detect malicious behavior. If cheating occurred, all involved sharings (from \texttt{BasicMult}) are reconstructed to identify a cheater in \(\mathcal{P} \setminus M\). These reconstructions violate the privacy of the involved factors if the protocol is not used directly in the actual circuit computation. Instead we use it to multiply two random values and make use of circuit randomization from \[Bea92\] for actual multiplication gates.

\begin{center}
\textbf{Protocol BasicMult}(\mathcal{P}, \mathcal{Z}, \mathcal{S}, [a], [b], M)
\end{center}

0: The parties in \(\mathcal{P}\) take collectively \([a]\), \([b]\) and \(M\) as input.
1: \(\forall S_q : S_q \cap M \neq \emptyset\) invoke \texttt{ReconstructShare} to reconstruct \(a_q\) and \(b_q\).
2: a) Each party \(P_i \in \mathcal{P} \setminus M\) (locally) computes his designated products and shares the sum \(c_i = \sum_{(p,q) \in I(i)} a_p b_q\).
 b) For each \(P_i \in M\) \texttt{DefaultShare}(\mathcal{P}, \mathcal{Z}, \mathcal{S}, c_i)\ is invoked where \(c_i = \sum_{(p,q) \in I(i)} a_p b_q\).
3: The parties collectively output \(([c_1], \ldots, [c_n])\) and \([c] = \sum_{i=1}^n [c_i]\).

\textbf{Lemma 46.} Let \(M \subseteq \mathbb{Z}^*\) be a set of (identified) malicious parties and assume that \(\mathcal{Z}\) and \(\mathcal{S}\) satisfy \(Q^1(\mathcal{S}, \mathcal{Z})\). Then \texttt{BasicMult}(\mathcal{P}, \mathcal{Z}, \mathcal{S}, [a], [b], M) securely computes sharings \([c], ([c_1], \ldots, [c_n])\) except with error probability of \(O(\frac{1}{|\mathbb{F}|} n^4 |S|)\). If no party in \(\mathcal{P} \setminus M\) actively cheats, it holds that \(\forall i \ c_i = \sum_{(p,q) \in I_Z(i)} a_p b_q\) and \(c = ab\). The protocol communicates at most \(O(|\mathcal{S}| n^4 \log |\mathbb{F}|)\) bits and broadcasts at most \(O(|\mathcal{S}| n^4 \log |\mathbb{F}|)\) bits.

\textbf{Proof. Correctness:} The properties of the sharing protocol guarantee that the outputs are valid sharings except with error probability of \(O(\frac{1}{|\mathbb{F}|} n^4 |S|)\). The \(Q^1(\mathcal{S}, \mathcal{Z})\) property allows the parties to securely reconstruct shares and grants that there exists a proper assignment of parties in \(\mathcal{P}\) to the local products. If none of the parties in \(\mathcal{P} \setminus M\) cheated, it holds for each
P_i that $c_i = \sum_{(p,q) \in I_z(i)} a_p b_q$ (for parties in M DefaultShare is used on reconstructed values).

Privacy: All reconstructed shares a_q, b_q are known to parties in M.

Complexity: Follow directly from the properties of the sharing scheme (c.f. Lemmas 42, 43 and 44).

Detectable Random Triple Generation

The following unconditionally secure protocol takes a set M of malicious parties as an additional input and computes a random multiplication triple $([a], [b], [c])$ where $c = ab$ given that no party in $P \setminus M$ actively cheats. Otherwise it outputs a set of malicious parties M' such that $M \subsetneq M'$. This protocol uses a probabilistic check to detect cheating. First the parties generate a shared random challenge $[r]$ and a blinding $[b']$. Then they use BasicMult to compute the sharings $[c] = [a][b], [c'] = [a][b']$ and check whether $[a](r[b] + [b']) = (r[c] + [c'])$. If this is the case the multiplication triple $([a], [b], [c])$ is output. Otherwise the parties identify (at least) one cheater in $P \setminus M$ by reconstructing $[a], [b], [b'], [c], [c']$.

Lemma 47. If S and Z satisfy $Q^1(S, Z)$ and $M \subseteq Z^*$, the protocol RandomTriple outputs either a random multiplication triple $([a], [b], [c])$ or set $M' \subseteq Z^*$ where $M \subsetneq M'$ except with error probability of $O\left(\frac{1}{|\mathbb{F}|} |S| n^4\right) + \frac{1}{|\mathbb{F}|}$. No information is leaked to the adversary. RandomTriple communicates at most $O(|S| n^4 \log |\mathbb{F}|)$ bits and broadcasts at most $O(|S| n^4 \log |\mathbb{F}|)$ bits.

Proof. **Correctness:** In Step 2 the parties compute $[c]$ and $[c']$. Given that no party in $P \setminus M$ actively cheated it holds that $c = ab$ and $c' = ab'$. In this case $[a](r[b] + [b']) - r[c] - [c']$, which is computed in Step 3, is zero for all r and the parties reconstruct the random multiplication triple $([a], [b], [c])$. If $c \neq ab$ the difference $[a](r[b] + [b']) - r[c] - [c']$ is non-zero except for at most one r and the parties go to Step 5 with probability at least $(1 - \frac{1}{|\mathbb{F}|})$ (assuming that no errors happen in sharing and reconstruction of values). For at least one party $P_i \in P \setminus M$ it must hold that $r c_i + c'_i \neq \sum_{(p,q) \in I_z(i)} r(a_p b_q) + (a_p b'_q)$. By opening all involved sharing it is easy to find these parties. Thus it holds that $M \subsetneq M'$ and $M' \subseteq Z^*$. The overall error probability is composed of the error
probability of the sharing scheme and the one of the random challenge check in Step 3.

Privacy: Neither the protocol BasicMult nor the sharing scheme do violate privacy (c.f. Lemma 46). The values \(e \) is statistically independent of \(([a], [b], [c])\), as \(b' \) acts as blinding. If no cheating occurred the value \(d \) is always zero. If Step 5 is invoked, the reconstructed values are not used, and privacy is met.

Communication: Follows from counting the number of messages sent (c.f. Lemmas 42, 45 and 46).

Protocol RandomTriple

0: The parties take the set \(M \subseteq P \) as input.
1: The parties generate random shared values \([a], [b], [b'], [r]\) by summing up shared random values (one from each party) for each value.
2: Invoke BasicMult\((P, Z, S, [a], [b], M)\) to compute the sharing \([c]\) and the vector \(([c_1], \ldots, [c_n])\) and invoke BasicMult\((P, Z, S, [a], [b'], M)\) to compute the sharing \([c']\) and the vector \(([c'_1], \ldots, [c'_n])\).
3: Reconstruct \([r]\) and (locally) compute \([e] = r[b] + [b']\) and reconstruct it to obtain \(e \). Then \([d] = e[a] - r[c] - [c']\) is computed (locally) and reconstructed.
4: If the value \(d \) is zero the parties output \(([a], [b], [c])\).
5: Otherwise reconstruct the sharings \([a], [b], [b'], [c_1], \ldots, [c_n], [c'_1], \ldots, [c'_n]\). The parties output \(M' = M \cup \{P_i : rc_i + c'_i \neq \sum_{(p,q) \in I(i)} r(a_pb_q) + (a_pb'_q)\} \).

Multiplication with Circuit Randomization

The actual multiplication is based on circuit randomization [Bea92]. It allows parties to compute the product \([xy]\) of two shared values \([x]\) and \([y]\) at the cost of two reconstructions given a random multiplication triple \(([a], [b], [c])\), where \(ab = c\). The trick is to use that \(xy = ((x-a) + a)((y-b) + b)\). By reconstructing \(d = x-a\) and \(e = y-b\) the parties can compute \([xy]\) as \(de + d[b] + [a]e + [c]\). This does not violate the secrecy of \([x]\) or \([y]\) as the random values \([a]\) and \([b]\) act as blinding.
5.4. UNCONDITIONAL PROTOCOL

Protocol Multiplication($P, Z, S, [x], [y])$

0: The parties in P take collectively $[x], [y]$ as input and set $M := \emptyset$.
1: Invoke RandomTriple(P, Z, S, M). If the protocol outputs a set M', set $M \leftarrow M'$ and repeat Step 1. Otherwise use the output as random multiplication triple $([a], [b], [c])$.
2: Compute and reconstruct $[d_x] = [x] - [a]$ and $[d_y] = [y] - [b]$. Compute $d_x d_y + d_x [b] + d_y [a] + [c] = [xy]$ to obtain a sharing of xy.

Lemma 48. Multiplication($P, Z, S, [x], [y]$) is an unconditional secure multiplication protocol given that S and Z satisfy $Q^1(S, Z)$. The protocol has an error probability of $O(\frac{1}{|F|} |S| n^5)$. The protocol communicates at most $O(|S| n^5 \log |F|)$ bits and broadcasts at most $O(|S| n^5 \log |F|)$ bits.

Proof. Correctness: Assume that RandomTriple in Step 1 outputs a set M', then we have that $M \subseteq M' \subseteq P$. Hence this step is repeated less then n times and results in a random multiplication triple $([a], [b], [c])$ (c.f. Lemma 47). The rest of the protocol is just the multiplication from [Bea92].

Privacy: Follows from [Bea92] and Lemma 47.

Communication: Follows from counting the number of messages sent (cf. Lemmas 45 and 47).

5.4.4 Unconditional MPC Protocol

The combination of the protocols Share, Reconstruct, and Multiplication leads directly to the following unconditionally secure MPC protocol which secure against adversaries satisfying Q^2.

Protocol MPC(P, Z, C)

0: The parties take $S := \{P \setminus Z | Z \in Z\}$ as sharing specification.
1: For every gate of C being evaluated do the following:
 - **Input gate for P_D:** Share(P, Z, S, P_D, s) is invoked to share s
 - **Linear gate:** The linear combination of the corresponding shares is computed locally using the linearity of the sharing.
 - **Random gate:** Each party shares a random value. The sum of these values is used as output of the gate.
CHAPTER 5. EFFICIENT GENERAL-ADVERSARY MPC

- **Multiplication gate:** Multiplication($P, Z, S, [x], [y]$) is used to multiply $[x]$ and $[y]$.

- **Output gate:** The parties invoke Reconstruct($P, Z, S, [s], R$) to reconstruct s for parties in R.

Theorem 8. Let C be a circuit over \mathbb{F}, where $|F| \in \Omega(2^\kappa)$ and κ is a security parameter, and let Z be an adversary structure satisfying $Q^2(P, Z)$, then $\text{MPC}(P, Z, C)$ Z-securely evaluates C with an error probability of $2^{-\kappa} |C||Z| \cdot \text{poly}(n, \kappa)$. It communicates $|C||Z| \cdot \text{poly}(n, \kappa)$ bits and broadcasts $|C||Z| \cdot \text{poly}(n, \kappa)$ bits within $\text{poly}(n, \kappa) \cdot d$ rounds, where d denotes the multiplicative depth of C.

Proof. Correctness: It is easy to see that $S := \{P \setminus Z | Z \in Z\}$ is a sharing specification satisfying $Q^1(S, Z)$. Hence by the properties of the sharing scheme and Lemma 48 correctness and the bound on the error probability follow.

Communication: The claimed communication and broadcast complexity follow directly from the used subprotocols. Inspection of the subprotocols also shows that it is possible to evaluate gates on the same multiplicative depth of C in parallel. As each subprotocol only requires $\text{poly}(n, \kappa)$ rounds, the total number of rounds follows.

Note that broadcast channels can be (unconditionally secure) emulated using the protocol from [PW96], which communicates $\text{poly}(n, \kappa)$ bits in order to broadcast one bit (with error probability of $O(2^{-\kappa})$). This results in an MPC protocol with the same efficiency and error probability as stated in Theorem 8.

The error probability of the presented protocol grows linearly in the size of the adversary structure Z. As $|Z|$ is typically exponential in n, the security parameter κ must be chosen accordingly (such that $|Z| \in \text{poly}(\kappa)$). This results in a huge security parameter and therefore in inefficient protocols.

We therefore provide in the next section an extension of the previous protocol in which the error probability only depends on $\log |Z|$. In this extended version of the protocol a reasonably large security parameter κ is sufficient.
5.5 Unconditional Protocol for Superpolynomial $|\mathcal{Z}|$

The protocol from the previous section has an error probability linear in $|\mathcal{Z}|$, which is problematic for large adversary structures \mathcal{Z}. In this section, we present modifications to the protocol that reduce the dependency to $\log |\mathcal{Z}|$, which is in $\text{poly}(n)$.

The reason for the error probability being dependent on $|\mathcal{Z}|$ is twofold: Firstly, the protocol requires $\Omega(|\mathcal{Z}|)$ probabilistic checks, in each of them a cheating party might remain undetected with probability $2^{-\kappa}$. Secondly, the protocol requires $\Omega(|\mathcal{Z}|)$ broadcasts, each of them having a small probability of failure.

5.5.1 Information Checking

In each invocation of Authenticate / Verify, a cheating attempt of a malicious party P_i is not detected with probability of $\mathcal{O}(\frac{1}{|F|})$ (c.f. Section 5.4.1). As these protocols are invoked $\Theta(|\mathcal{Z}|)$ times per sharing, the resulting error probability depends linearly on $|\mathcal{Z}|$. To avoid this we use local dispute control to deal with detected cheaters.

More formally, each party P_k locally maintains a list \mathcal{L}_k of parties whom he distrusts. At the beginning of the MPC protocol these lists are empty. Protocol Authenticate is modified, such that P_j puts P_i on his list \mathcal{L}_j if the check in Step 4 fails. Once $P_i \in \mathcal{L}_j$, P_j behaves in all future invocations of the protocol as if the check in Step 4 failed independently whether this is the case or not. Similarly P_k puts P_i on his list \mathcal{L}_k if the check in Step 5 fails. As soon as $P_i \in \mathcal{L}_k$, P_k behaves in Step 5 as if the corresponding check failed. Furthermore, in protocol Verify, P_k puts P_j on his list \mathcal{L}_k if the check in Step 2 failed. Again P_k behaves for all $P_j \in \mathcal{L}_k$ as if the check failed independently whether this is the case or not.

In both protocols the adversary has a chance of $\mathcal{O}(\frac{1}{|F|})$ to cheat successfully, but if he fails (with probability $\Omega(1 - \frac{1}{|F|})$) one corrupted party P_i is put on the list \mathcal{L}_k of an honest party P_k. From then on P_i is never able to cheat in instances of both protocols when P_k takes part (in the right position). This means that the adversary actually has at most n^2 attempts to cheat. Hence total error probability of arbitrary many
instances of Verify and Authenticate is at most $O\left(\frac{1}{|\mathbb{F}|}n^2\right)$ and no longer depends on Z.

Note that the parallel invocation of Authenticate, as it is used in Share, requires special care. For example if in one of the parallel invocations of Authenticate (with P_i and P_k) the consistency check fails P_k must assume that all other parallel checks failed. Analogous modifications are made in Verify and Multiplication.

Lemma 49. The modified Authenticate and Verify protocols have a total error probability of $O\left(\frac{1}{|\mathbb{F}|}n^2\right)$ independent of the number of invocations.

5.5.2 Broadcast

Although broadcast is only needed in Share, the total number of broadcast calls is in $\Theta(|Z|)$. If [PW96] is used, the resulting overall error probability depends linearly on $|Z|$. To avoid this problem, the number of broadcast calls must be reduced.

To reach this goal we use the fact that the Share protocol only has constantly many rounds. In each round a party P_S must broadcast $\Theta(|Z|)$ many messages of size $O(\log |\mathbb{F}|)$. Instead of broadcasting these messages in parallel, P_S sends their concatenation to the other parties, who then check that they received the same message. If an inconsistency is detected the protocol is repeated. To limit the number of repetitions we use the concept of dispute control from [BH06] which prevents the malicious parties from repetitive cheating. Dispute control is realized by a publicly known dispute set $\Gamma \subseteq \mathcal{P} \times \mathcal{P}$, a set of unordered pairs of parties. If $\{P_i, P_j\} \in \Gamma$ it means that there is a dispute between P_i and P_j and thus at least one of them is corrupted. Note that from P_i’s view all parties in $\{P_j | \{P_i, P_j\} \in \Gamma\}$ are malicious and thus he no longer trust them. At the beginning of the MPC protocol Γ is empty.

Protocol OptimisticBroadcast(\mathcal{P}, Z, P_S, m)

0: The party P_S takes $m \in \{0, 1\}^w$ as input.
1: $\forall \{P_i, P_S\} \notin \Gamma P_S$ sends m as m_i to P_i.
2: $\forall \{P_i, P_j\} \notin \Gamma P_i$ sends m_i as m_{ij} to P_j.
3: $\forall P_i$ if all received values are the same P_i is happy, otherwise unhappy. P_i broadcasts using [PW96] his happy bit.
4: If all parties are happy, each P_i outputs the value he holds.
Otherwise, an unhappy party P_i (e.g. the one with the smallest
index) broadcasts j, j', z, b where m_{ji} differs from $m_{j'i}$ at
bit-position z and b is the bit of m_{ji} at position z. Then $P_S, P_j, P_{j'}$
broadcast their versions of the bit at position z. Using this
information the parties localize a dispute between two parties of
$\{P_i, P_S, P_j, P_{j'}\}$. Then the protocol is repeated with updated Γ.

Lemma 50. The protocol OptimisticBroadcast(\mathcal{P}, Z, P_S, m) achieves the
broadcast of a message $m' \in \{0, 1\}^w$. The protocol communicates at most
$w \cdot \text{poly}(n, \kappa)$ bits and broadcasts at most $\log w \cdot \text{poly}(n, \kappa)$.

Proof. The properties of Γ guarantee that honest parties will exchange
in Step 2 their received messages from P_S. So if all honest parties are
happy they all will output the same message m'. For an honest P_S this
also ensures that $m' = m$. If a party is unhappy, at least one party
misbehaved. The actions taken in Step 4 then ensure that the honest
parties will find at least one dispute. The protocol will terminate, as the
number of repetition is limited by $n(n - 1)$. As the broadcast of z requires
$\log w$ bits, the communication and broadcast complexities follow. \hfill \Box

For a message of length $\Theta(|Z|)$ the above protocol only needs to
broadcast $\log |Z| \cdot \text{poly}(n, \kappa)$ bits, hence the total number of broadcast
calls per invocation of Share is reduced to $\log |Z| \cdot \text{poly}(n, \kappa)$.

Lemma 51. The modified Share protocol communicates $|C||Z| \cdot \text{poly}(n, \kappa)$
bits and broadcasts $|C| \log |Z| \cdot \text{poly}(n, \kappa)$ bits.

5.5.3 Summary

The combination of the above extension results in the following Lemma:

Theorem 9. Let C be a circuit over \mathbb{F}, where $|\mathbb{F}| \in \Omega(2^{\kappa})$ and κ
is a security parameter, and let Z be an adversary structure satisfying
$Q^2(\mathcal{P}, Z)$, then the modified protocol $\text{MPC}(\mathcal{P}, Z, C)$ Z-securely evaluates
C with an error probability of $2^{-\kappa}|C| \cdot \text{poly}(n, \kappa)$. It communicates $|C||Z| \cdot$
$\text{poly}(n, \kappa)$ bits and broadcasts $|C| \log |Z| \cdot \text{poly}(n, \kappa)$ bits. The number of
rounds is $\text{poly}(n, \kappa) \cdot d$, where d denotes the multiplicative depth of C.

Proof. Follows directly from Theorem 8 and Lemmas 49 and 51. \hfill \Box
By replacing broadcast with the simulated one from [PW96], one gets for $|Z| \in \mathcal{O}(2^n)$ and $|C| \in \text{poly}(\kappa)$ the following theorem.

Theorem 10. Let C be a circuit over \mathbb{F}, where $|\mathbb{F}| \in \Omega(2^\kappa)$ and κ is a security parameter, and let Z be an adversary structure satisfying $Q^2(\mathcal{P}, Z)$, then $\text{MPC}(\mathcal{P}, Z, C)$ Z-securely evaluates C with an error probability of $2^{-\kappa \cdot \text{poly}(n, \kappa)}$. It communicates $|Z| \cdot \text{poly}(n, \kappa)$ bits.

5.6 Lower Bound on the Efficiency

The following theorem states that there exists a family of circuits and Q^2 adversary structures such that the length of unconditionally secure protocols tolerating these adversaries grows exponentially in the number of parties. This implies that the computational complexity of our protocol from the previous section is optimal, as there exists no protocol with a computational complexity in $o(|Z|)$.

Theorem 11. [Hir01] Let C be the circuit which takes inputs from P_1 and P_2 and outputs the product to P_1. Then there exists a family Z_2, Z_3, \ldots of Q^2 adversary structures for party sets $\mathcal{P}_2, \mathcal{P}_3, \ldots$ ($|\mathcal{P}_n| = n$) such that the length of the shortest unconditionally Z_n-secure protocol for C grows exponentially in n.
Bibliography

[CCG+15] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Ostrovsky, and Vassilis Zikas. The

[KSSV06b] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation in peer-to-peer

Curriculum Vitae

Daniel Tschudi
Citizen of Glarus GL and Zürich ZH, Switzerland.
Born on 15 May 1988, in Horgen ZH, Switzerland.

Doctoral Studies 09/2012 - 01/2018
ETH Zürich, Department of Computer Science
Thesis: Selected Topics in Secure Multi-Party Computation
Advisor: Prof. Dr Ueli Maurer
Co-examiners: Prof. Dr. Jesper Buus Nielsen, Dr. Martin Hirt
Degree: Doctor of Sciences (Dr. sc. ETH)

Undergraduate Studies 09/2007 - 09/2012
ETH Zürich, Department of Mathematics
Thesis: Complexity of Multi-Party Computation Secure against General Adversaries
Degree: Master of Science ETH in Mathematics

High School 08/2001 - 08/2012
School: Kantonsschule Freudenberg, Zürich, Switzerland