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The effects of past land-cover changes on climate are disputed1,2,3. Prior modelling6

studies generally concluded that the biogeophysical effects of historical deforestation7

have led to an annual mean cooling in the northern mid-latitudes3,4, in line with the8

albedo-induced negative radiative forcing from land cover change since pre-industrial9

time reported in the last IPCC report5. However, further observational and modelling10

studies have highlighted strong seasonal and diurnal contrasts in the temperature11

response to deforestation6,7,8,9,10. Here we show that historical deforestation has led12

to a substantial local warming of hot days over the northern mid-latitudes, in contrast13

with most previous model results11,12. Based on observation-constrained state-of-the-14

art climate model experiments, we estimate that moderate reductions in tree cover in15

these regions have contributed at least one third of the local present-day warming of16

the hottest day of the year since pre-industrial time, and were responsible for most17

of this warming before 1980. Our results emphasise that land-cover changes need to18

be considered when studying past and future changes in heat extremes, and highlight19

a potentially overlooked co-benefit of forest-based carbon mitigation through local20

biogeophysical mechanisms.21

During the industrial period, large areas of primary vegetation like forests and natural grasslands22

were converted into croplands and pastures, in particular in northern mid-latitudes13. These land-23
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cover changes (LCC) have had substantial impacts on climate by altering the carbon stocks, which24

contributed to the increase in the CO2 atmospheric concentration5 (biogeochemical effects), as well25

as by modifying land surface properties such as albedo, evapotranspiration efficiency and roughness,26

affecting the surface energy budget3,6,7,14 (biogeophysical effects). Even if the biogeophysical effects27

likely had limited consequences at the global scale, over some regions that have experienced extensive28

LCC they have impacted annual mean temperature by a similar magnitude as the concomitant29

increase in greenhouse gases3.30

Previous modelling studies indicated significant biogeophysical impacts of historical LCC on hot31

days over mid-latitudes11,12,15. Most of them indicated a cooling effect, nevertheless there exists32

some model disagreement concerning the overall sign of these impacts. For example, three out33

of four climate models that took part in the model intercomparison project LUCID simulated a34

decrease in extremely warm daytime temperatures over the northern mid-latitudes during summer35

due to historical LCC11. However, the remaining model (IPSL) showed the opposite effect, in36

agreement with another similar study using the CSIRO-Mk3L model15. Consistent with the overall37

LUCID results, a detection and attribution study using optimal fingerprinting was conducted with38

the HadGEM2-ES model12, which suggested an LCC-induced cooling trend of extremely warm39

temperatures at the global scale, but especially in northern mid-latitudes over the last half of the40

20th century. This lack of model agreement is not limited to hot days, as the sign of the impacts41

of historical LCC over these regions was found to be consistent between extremely warm daytime42

and mean summer temperatures within individual LUCID models11.43

Recent observational studies enable to re-examine these modelling results under a new light8,9,10.44

In situ observations over North America comparing neighbouring measurement sites located over45

different land cover types indeed indicate that open lands are overall warmer than forests during46

daytime in summer8. Besides, global-scale studies based on satellite remote sensing have confirmed47

this finding9,10. In addition, satellite observations in the center of France showed that the higher48

surface temperatures over open lands compared to forests during daytime were exacerbated during49

heatwaves as opposed to normal summer conditions16. These findings based on spatial compar-50

isons of present-day observations therefore suggest that historical deforestation may have amplified51

extremely warm temperatures during daytime.52

In this study, we use recently released observational data to constrain the historical impact53

of deforestation on hot extremes in 11 models from the Coupled Model Intercomparison Project54

Phase 5 (CMIP517) that simulate the climate effect of LCC (see model list in Table 1). These55

fully-coupled models were found to be generally able to reproduce the spatial distribution and the56

trend patterns of hot temperature extremes from the gridded observational dataset HadEX218. On57
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the basis of this ensemble, we estimate the local impacts of historical deforestation on mean daily58

maximum surface air temperature (TX) in the warm season, as well as on its yearly maximum59

value (TXx) from 1861 to 2000, compared to a pre-industrial control period. For this purpose, we60

use a recently developed methodology6,7 based on a comparison of historical temperature changes61

over neighbouring areas that have experienced different deforestation rates (see Methods). One62

advantage of the reconstruction method is that it can be directly applied to historical simulations63

considering all climate forcings, without the need for additional factorial experiments isolating the64

effect of the land use forcing. This method compares nevertheless well with results from the more65

classical factorial method (see Supplementary Fig. 1).66

We find that only 5 out of the 11 CMIP5 models show the same sign as in situ observations with67

respect to summer daytime temperature sensitivity to deforestation: CanESM2, IPSL-CM5A-LR,68

IPSL-CM5A-MR, MPI-ESM-LR and MPI-ESM-MR (Table 1 and Supplementary Fig. 2). In the69

rest of this study, we therefore focus on the results of these 5 selected models and their multi-70

model mean (M-M M), on the ground that they capture more realistically the response of summer71

daytime temperature to deforestation, which is most relevant for our investigation of changes in hot72

extremes.73

The constrained M-MM shows that historical deforestation has led to local increases in TXx over74

extensive parts of North America, Eurasia and South Asia, but also southern South America, east-75

ern Australia and southeastern Africa during present-day (1981-2000) compared to pre-industrial76

conditions (Fig. 1). At least three of the five selected models agree that this warming is signifi-77

cant for large areas of North America and Eurasia. In contrast, a few regions have experienced a78

cooling in response to deforestation (mostly southeastern Brazil), but only a minority of models79

indicate that this result is significant. The strongest deforestation-induced warming of TXx has80

occurred over North America and Eurasia, where it reaches 0.3◦C on average (over areas that have81

been at least moderately deforested, encircled in green in Fig. 1), and up to 1◦C locally over the82

Great Plains. The M-M M warming is more moderate over South Asia (0.1◦C), with only the83

CanESM2 model showing significant changes. The sign of the impacts of historical deforestation84

is consistent between TXx and JJA TX within each model. Besides, despite a substantial spread85

between estimates from individual models, there is a tendency among most of the selected models86

to simulate slightly (non-significantly) higher impacts of deforestation on extremely warm than on87

mean summer daytime temperature (Fig. 1).88

Based on the M-M M, we infer a local sensitvity of TXx and mean June-July-August (JJA)89

TX to deforestation of respectively 0.12 ± 0.001◦C and 0.08 ± 0.001◦C for a 10% decrease in tree90

cover over North America and Eurasia (Fig. 2 and Table 2). These figures have remained fairly91
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constant along the industrial period (Supplementary Table 2). In comparison, a recent satellite-92

based study indicated an increase in JJA TX by 0.3-0.6◦C per 10% of deforestation based on93

observations for the 2003-2012 period over temperate, boreal and arid areas10. These observational94

estimates hence constitute further indication that the selected models correctly simulate the sign95

of the response of summer TX to deforestation over mid-latitudes. Besides, they suggest that the96

M-M M sensitivities may be underestimates, although methodological differences in the employed97

reconstruction method as well as in the regions over which results were averaged could impart a98

precise quantitative comparison between the mentioned observational results and ours.99

Extensive deforestation took place early in the industrial period over the northern mid-latitudes.100

By 1920, the resulting M-M M increases in TXx through biogeophysical effects had already reached101

0.3◦C (∼75% of their present-day values) over the most deforested areas of North America and102

Eurasia (Fig. 3). On average before 1920, local deforestation was responsible for most of the103

TXx warming over these regions, while other forcings and internal variability had overall led to104

no changes over North America and to a cooling over Eurasia. Our reconstructions show that the105

deforestation-induced increase in TXx then levelled off over the rest of the 20th century due to the106

slowing down of deforestation in northern mid-latitudes. Over this period, the influence of other107

forcings gradually became more important, leading to a total warming by 1.3◦C over North America108

and 1◦C over Eurasia by present-day (0.9-1.8◦C, respectively 0.5-1.5◦C depending on the models).109

The relative contribution of the biogeophysical effects of deforestation still remained as high as110

56% (20-115%) over North America and 32% (between 22% and 7 times higher, depending on the111

models) over Eurasia on average between 1920 and 1980. It decreased to ∼30% on average over112

the more recent 1981-2000 period, although this estimate is very much model-dependent (Fig. 1).113

Considering additionally that forest removal accounted globally for 30% of the cumulative carbon114

emissions since 185019,20, deforestation was responsible for at least another 20% of the increase in115

TXx between 1861 and 2000 over the considered regions, according to the M-M M (see Methods for116

more details).117

The local warming signal of deforestation presented in this study is based on modelling evi-118

dence constrained by present-day observations. An open question is the possibility of its direct119

identification in observational records. However, this still requires overcoming the following issues:120

the absence of long-term temperature measurements over forests (because weather stations are121

required to be located over short vegetation types), the high internal variability that prevails at122

regional scale21, uncertainties in both climate records and land-use reconstructions for the early123

industrial period13,22, as well as the intertwining of the historical deforestation signal with that of124

other related processes such as irrigation or land management. These were indeed shown to have125
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strongly influenced historical trends in regional temperatures23,24,25, but are often not represented126

in current climate models. Therefore, the development of appropriate tools to identify the local127

signature of deforestation in observations constitutes an important challenge, in particular for the128

detection and attribution community.129

Our analysis also confirms the difficulty to capture the biogeophysical impacts of LCC on tem-130

perature using global metrics such as the Radiative Forcing Framework14,26. This framework –131

which is classically used to compare climate forcings – indeed only considers albedo changes fol-132

lowing deforestation, which have a cooling impact3,7. It thus fails to capture the non-radiative133

effects (such as changes in the partitioning of turbulent fluxes), which play a dominant role in the134

summer response to deforestation7. The historical deforestation-induced increase in the intensity of135

hot days described in this study does not align either with the associated albedo decrease reported136

over the same period5, and therefore reaffirms that the Radiative Forcing framework is of limited137

usefulness when investigating the climate consequences of land-use practices.138

In conclusion, our results shed new light on the importance of LCC for the historical evolution139

of hot extremes at regional scales. Contrary to many previous studies which suggested that the140

biogeophysical effects of historical deforestation had mitigated daytime hot extremes over mid-141

latitudinal regions11,12, this observation-constrained analysis of CMIP5 models shows that they142

have actually led to significant local increases in TXx over many areas in the world. They were143

responsible for at least half of the warming of TXx over most-deforested mid-latitudinal regions by144

as far as 1980. Besides our best estimate suggests that the present-day contribution of deforestation145

to the TXx increase over this region still equals at least 50% once the warming entailed by the LCC-146

induced carbon emissions is also considered. This also has implications for future land-use policies.147

In fact, although a small biogeophysical increase of annual mean temperature in temperate regions148

has previously been mentioned as a possible consequence of afforestation or reforestation policies149

that would be primarily designed for carbon dioxide removal27,28,29, our study suggests that they150

could locally help reduce the intensity of heat extremes. It is thus of critical importance to better151

account for biogeophysical effects of LCC in historical simulations and climate projections, as well152

as in upcoming IPCC assessments.153
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Methods154

CMIP5 simulations155

We analyse historical ("all-forcings") as well as pre-industrial control (piControl) simulations from156

11 CMIP5 models for which daily maximum surface air temperature values at daily resolution as157

well as land cover information are available. The ensemble size and the references for each model158

are indicated in Supplementary Table 1. We first compute mean TXx and JJA TX values over each159

land grid cell and for seven 20-year periods: 1861-1880, 1881-1900, 1901-1920, 1921-1940, 1941-1960,160

1961-1980 and 1981-2000. We then compare them to their average values over the first 200 years161

of the piControl simulations. After calculation of the reconstructed effects of deforestation, the162

results from each model were regridded on a common 2.5◦ × 2.5◦ grid using a bilinear interpolation163

method. Because IPSL-CM5A-LR and IPSL-CM5A-MR are two versions of the same model, we164

have assigned to them only half of the weight given to CanESM2 in the calculation of the M-M M.165

The same procedure was applied to MPI-ESM-LR and MPI-ESM-MR.166

Local impacts of deforestation on temperature167

We reconstruct the local impacts of historical deforestation on mean JJA TX and on TXx by168

fitting linear regressions between the simulated temporal changes in these variables and those in169

tree fraction within spatially moving windows encompassing 5 × 5 model grid cells (also called170

"big boxes"). This method assumes that LCC constitute a spatially heterogeneous forcing which171

mostly impacts temperature in each grid cell individually, in contrast to other climate forcings like172

greenhouse gases (GHG) which affect temperature similarly in all grid cells from a same big box.173

Similar methodologies based on this same assumption were already employed to analyse CMIP5174

models6,7.175

In practical terms, to derive the changes in TXx due to local deforestation over a given land176

grid cell i (δTXxdef(i)), we consider a big box of a size of 5 X 5 grid cells centered over i. Within177

this big box, for every 20-year period the total changes in TXx (δTXx ) for each land grid cell are178

modelled by linear regression using four spatial predictors: the deforestation rate experienced by179

the grid cells between the pre-industrial period and the period of interest (defrate), their latitude180

(lat), longitude (lon) and elevation (elev), such that:181

δTXx = β0 + β1 × defrate+ β2 × lat+ β3 × lon+ β4 × elev . (1)

defrate, lat, lon and elev are here vectors containing up to 25 values, while the β coefficients182
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are specific to each 20-year period and each particular big box. δTXxdef (i) is then obtained by183

scaling the results of this local regression with the deforestation rate experienced over i (compared184

to pre-industrial):185

δTXxdef(i) = β1 × defrate(i) . (2)

We apply the same method to simulate changes in mean JJA TX. Previous studies based on186

similar methodologies employed another approach to separate the grid cells within each big box in187

two bins. They indeed used an ad hoc threshold corresponding to a critical change in either crop6
188

or tree fraction7. The suitability of the threshold-based method to investigate the local impacts189

of historical LCC on seasonal mean albedo, surface heat fluxes and surface air temperature was190

previously demonstrated7, showing that it gives similar results to the more commonly used factorial191

experiment method (i.e. the difference between a model experiment in which the land-cover forcing192

is applied and a control one). Here we apply the regression-based reconstruction method over each193

land grid cell for which the corresponding big box contains at least 15 land grid cells, which is an194

advantage compared to the threshold-based approach that could only be applied to grid cells where195

the intensity of historical LCC exceeded the specified ad hoc threshold. We chose to use three spatial196

predictors (latitude, longitude, and elevation) in addition to the deforestation rate experienced by197

the grid cells, because we found that this limits the reconstruction of false deforestation signals or198

artefacts, which are in reality due to natural climatic gradients within the big boxes and not related199

to variations in the LCC forcing. We find that the regression-based reconstruction method tends to200

estimate smaller deforestation-induced temperature changes compared to the factorial experiment201

approach, for some of the models for which both methods are applicable (Supplementary Fig.202

1). This tendency had already been noted for the threshold-based method7. Besides, our results203

indicate that the reconstruction method is less subject to internal variability than the factorial204

experiment one (Supplementary Fig. 1).205

Estimating uncertainty of the reconstruction method206

An uncertainty range for the reconstructed signal is computed by applying the regression to each207

ensemble simulation of a given model. In addition, for each ensemble simulation and each big box208

a jackknife resampling is also conducted: Alternatively, and as many times as there are land grid209

cells with non-missing values in the big box, the values from one grid cell are systematically left out210

before the regression is computed again based on this new sample30. Depending on the number of211

land grid cells in the big box, we thus obtain betwen 16 and 26 estimates of δTXxdef and δTXJJA
def212
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for each land grid cell of each ensemble simulation. We then retain the median of these estimates,213

which increases the robustness of our results by eliminating strong dependences on single model214

grid cells. The confidence intervals shown in Fig. 1 were also derived from this jackknife resampling215

process.216

217

Biogeochemical effects of deforestation218

30% of the present-day increase in TXx over the parts of North America and Eurasia that experi-219

enced at least moderate deforestation (>15%) along the industrial period is due to its biogeophysical220

effects (Fig. 3). The remaining 70% are resulting from other forcings included in CMIP5 (aerosols,221

volcanic emissions, and greenhouse gases17). Because aerosols and volcanic emissions overall have222

a cooling effect5, the greenhouse gas forcing is responsible for at least 70% of this increase. Note223

that this is a very conservative estimate, however the exact contributions from each forcing are224

missing for the 1861-2000 period, and estimating them precisely is out of the scope of this study.225

Furthermore, global assessments of carbon emissions based on bookkeeping methods concluded226

that over the 1861-2000 period land-use changes were responsible for 33% of the cumulative carbon227

emissions19,20 (i.e., the net balance between emissions from all types of land disturbances and forest228

regrowth). Changes in forest area overall acounted for 90% of this flux19,31, which means that net229

deforestation was responsible for 30% of the cumulative carbon emissions between 1861 and 2000.230

The biogeochemical effects of deforestation thus led to 30% of the changes in TXx due to the green-231

house gas forcing. Greenhouse gas emissions from 1861 to 2000 are responsible for at least 70% of232

the total present-day change in TXx over the regions analysed in Fig. 3 (see above), therefore we233

estimate that at least 21% of this change is due to the biogeochemical effects of deforestation. This234

means that the combined biogeophysical and biogeochemical effects have made up for more than235

half of this increase.236
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Figure Legends362

Figure 1: Reconstructed local effects of deforestation on TXx and JJA TX for present-363

day (1981-2000) compared to pre-industrial conditions. The map shows multi-model mean364

(M-M M) estimates of the local changes in the annual maximum value of surface air temperature365

(TXx) due to deforestation, with the stippling indicating areas where at least three models show366

changes of the same sign that are significant at the 5% level. The insets show the average changes367

in mean June-July-August surface air temperature (JJA TX, yellow) and TXx (red) due to de-368

forestation (filled bars) and to other forcings (hatched bars) for each of the selected models and369

the multi-model mean (M-M M), with the black vertical lines indicating 90% of the spread in the370

reconstructions for the individual models, and the model spread in the case of the M-M M. Results371

were averaged over the areas of North America, Eurasia and South Asia that have experienced at372

least 15% of deforestation according to the M-M M (encircled in green).373

Figure 2: Sensitivity of mean daily maximum surface air temperature during June-374

July-August (JJA TX, yellow) and its yearly maximum value (TXx, red) to deforesta-375

tion over North America and Eurasia. The reconstructed local effects of deforestation are376

plotted against the deforestation rate, for each of the selected models and the multi-model mean377

(M-M M). Each dot represents the reconstructed change in one of the temperature indices over one378

grid cell of these regions (shown in black in Fig. 1), averaged over a 20-year period of the full analy-379

sis period (i.e. 1861-1880, 1881-1900, etc.). The yellow and red lines show linear regressions without380

intercept within the data clouds of the corresponding colours (the red dots were plotted over the381

yellow ones). The values of the sensitivities to 10% of deforestation based on these regressions are382

shown in Table 2.383

Figure 3: Importance of the local effects of deforestation in the historical evolution384

of TXx over North America and Eurasia. The red and blue lines indicate the multi-model385

mean estimates of the changes in the hottest surface air temperature of the year (TXx) due to386

deforestation and to all forcings combined, respectively, on average over the regions highlighted in387

green in Fig. 1. The envelopes in light blue and light red show the spread between the selected388

models. The contribution of the deforestation-induced local changes in TXx to its total changes389

are indicated by the green bars in the lower panels.390
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Table 1: Change in June-July-August TXx due to deforestation over North America, in historical

CMIP5 model simulations and in present-day observations8.

Model name JJA δTXdef over North

America (◦C)

CanESM2 0.77 [0.59, 0.88]

CCSM4 -0.09 [-0.14, -0.04]

GFDL-CM3 -0.06 [-0.26, 0.13]

GFDL-ESM2-G 0.00 [-0.03, 0.04]

GFDL-ESM2-M -0.04 [-0.07, -0.00]

HadGEM2-ES -0.44 [-0.55, -0.34]

IPSL-CM5A-LR 0.27 [0.15, 0.40]

IPSL-CM5A-MR 0.18 [0.07 0.30]

MPI-ESM-LR 0.12 [-0.01, 0.27]

MPI-ESM-MR 0.22 [0.09, 0.36]

NorESM1-M -0.17 [-0.29, -0.08]

Observations8 1.16 [0.26, 1.85]

Mean model estimates show changes by present-day (1981-2000) compared to pre-industrial, and are cal-

culated over grid cells where the deforestation rate between these two periods has exceeded 15%. The

numbers in brackets indicate 90% of the spread in the reconstructions for the models, and the interquartile

range between individual paired measurement sites for the observations. Models for which the sign of the

impact of deforestation is consistent with observations are highlighted in bold.

Tables391
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Table 2: Sensitivity of June-July-August (JJA) TX and TXx to deforestation over North America

and Eurasia.

Model δTXdef per 10% deforestation (◦C)

JJA TXx

CanESM2 0.25 [0.002] 0.35 [0.002]

IPSL-CM5A-LR 0.11 [0.001] 0.14 [0.001]

IPSL-CM5A-MR 0.10 [0.001] 0.10 [0.001]

MPI-ESM-LR 0.02 [0.001] 0.07 [0.002]

MPI-ESM-MR 0.03 [0.001] 0.06 [0.002]

M-M M 0.08 [0.001] 0.12 [0.001]

Values correspond to the coefficients of the linear regressions presented in Fig. 2. Standard errors are

indicated in brackets.
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Figure 1: Reconstructed local effects of deforestation on TXx and JJA TX for present-

day (1981-2000) compared to pre-industrial conditions. The map shows multi-model mean

(M-M M) estimates of the local changes in the annual maximum value of surface air temperature

(TXx) due to deforestation, with the stippling indicating areas where at least three models show

changes of the same sign that are significant at the 5% level. The insets show the average changes

in mean June-July-August surface air temperature (JJA TX, yellow) and TXx (red) due to defor-

estation (filled bars) and to other forcings (hatched bars) for each of the selected models and the

multi-model mean (M-M M), with the black vertical lines indicating 90% of the spread in the recon-

structions for the individual models, and the model spread in the case of the M-M M. Results were

averaged over the areas of North America, Eurasia and South Asia that have experienced at least

15% of deforestation according to the M-M M (encircled in green). The same areas are considered

in Fig.3, while all the land grid cells within the regions highlighted in black were included in Fig.2.
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Figure 2: Sensitivity of JJA TX and TXx to deforestation over North America and

Eurasia. The reconstructed local effects of deforestation on mean daily maximum surface air

temperature during June-July-August (JJA TX, yellow) and its yearly maximum value (TXx, red)

are plotted against the deforestation rate, for each of the selected models and the multi-model

mean (M-M M). Each dot represents the reconstructed change in one of the temperature indices

over one grid cell of these regions (shown in black in Fig. 1), averaged over a 20-year period of

the full analysis period (i.e. 1861-1880, 1881-1900, etc.). The yellow and red lines show linear

regressions without intercept within the data clouds of the corresponding colours (the red dots were

plotted over the yellow ones). The values of the sensitivities to 10% of deforestation based on these

regressions are shown in Table 2.
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Figure 3: Importance of the local effects of deforestation in the historical evolution of

TXx over North America and Eurasia. The red and blue lines indicate the multi-model mean

estimates of the changes in the hottest temperature of the year (TXx) due to deforestation and to

all forcings combined, respectively, on average over the regions highlighted in green in Fig. 1. The

envelopes in light blue and light red show the spread between the selected models. The contribution

of the deforestation-induced local changes in TXx to its total changes are indicated by the green

bars in the lower panels.
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