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ABSTRACT

A supersolid is a quantum phase of matter that demonstrates both solid
and superfluid properties. In combination with gaseous and liquid super-
fluids it forms the triad of quantum phases analogous to the classical states
of matter: solid, liquid and gas. Despite efforts in a number of systems—
most prominently helium—experimental verification of supersolidity has
remained elusive.

We report on the realization and characterization of a supersolid. A phase
transition from a gaseous Bose-Einstein condensate to the supersolid crys-
tal is induced by photon-mediated interactions among the atoms that are a
result of symmetric coupling with the modes of two optical cavities. At the
critical point, continuous translational symmetry is broken along one direc-
tion and a periodic density pattern with a coherent wave function forms. We
verify both the structure formation and superfluidity by performing matter-
wave interference of the many-body wavefunction.

The phase transition from the superfluid to the supersolid is marked by
the onset of light fields in both optical cavities, whose amplitudes are equiva-
lent to the real and imaginary part of the continuous symmetry. This unique
real-time observable permits extensive studies of the supersolid state and
the phase transition. We demonstrate a high ground-state degeneracy and
observe the associated Higgs and Goldstone modes across the critical point.
Their dynamics are visible as amplitude and phase oscillation in the cav-
ity fields, facilitating studies on their decay and response. Approaching the
phase transition, we examine the critical fluctuations of the density distri-
bution in the vicinity of the critical point by permanently measuring the
photon occupation of both cavities.

The continuous symmetry is the result of symmetry enhancement from
two competing order parameters with underlying discrete symmetries. In
order to explore the crossover region between continuous and discrete sym-
metry breaking, we study the vicinity of the symmetry-enhanced region by
creating a slight asymmetry in the two coupling strengths. We observe an
increasing anisotropy in the distribution of the broken symmetry, accompa-
nied by a rising mass of the Goldstone mode.

The experiments were performed with a new apparatus that was con-
structed in the context of this thesis. The setup is optimized for a fast, ro-
bust preparation sequence of the quantum gas. We introduce a new method
to transport ultracold atoms with focus-tunable lenses, which is superior
to previously established methods in terms of flexibility, stability, costs and
space requirements. Furthermore, the vacuum system features a conceptu-
ally new design including a transfer system that permits one to readily ex-
change the cavity setup. This establishes our experiment as a versatile quan-
tum simulator to engineer atom-light interactions in various optical cavity
environments.
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ZUSAMMENFASSUNG

Ein Suprasolid ist ein Quantenzustand der gleichzeitig feste und flüssige
Eigenschaften aufweist. Gemeinsam mit gasförmigen und flüssigen Supra-
fluiden bildet er eine Dreiheit an Quantenzuständen in Analogie zu den
klassischen Aggregatzuständen Gas, Flüssigkeit und Festkörper. Trotz Be-
strebungen in verschiedenen Systemen – allen voran Helium – konnte ein
Suprasolid noch nicht experimentell nachgewiesen werden.

In dieser Arbeit wird die erste Herstellung und Charakterisierung eines
solchen Suprasolids vorgestellt. Der Phasenübergang von einem gasförmi-
gen Bose-Einstein-Kondensat zu dem suprasoliden Kristall wird von einer
atomaren Wechselwirkung verursacht, die von Photonen aus zwei optischen
Resonatoren getragen wird. Am kritischen Punkt bildet sich ein periodis-
ches Dichtemuster in der kohärenten atomaren Wellenfunktion, das die kon-
tinuierliche Translationssymmetrie des Kondensats entlang einer Richtung
bricht. Wir weisen sowohl die Strukturbildung als auch die Suprafluidität
durch Materiewellen-Interferenz der Vielteilchen-Wellenfunktion nach.

Der Phasenübergang vom Suprafluid zum Suprasolid ist durch die Enste-
hung von Lichtfeldern in beiden Resonatoren gekennzeichnet, deren Am-
plituden dem realen und imaginären Teil der kontinuierlichen Symmetrie
entsprechen. Diese einzigartige Echtzeit-Observable lässt weitreichende Stu-
dien des suprasoliden Zustands und des Phasenübergangs zu. Wir weisen
eine hohe Entartung des Grundzustands nach und beobachten die entsprech-
enden Higgs- und Goldstone-Moden über den kritischen Punkt hinweg.
Ihre Dynamik ist in den Resonatormoden als Amplituden- und Phasenoszil-
lation sichtbar, was Studien zu ihrem Zerfall und Antwortverhalten ermög-
licht. Nah am Phasenübergang untersuchen wir die kritischen Fluktuatio-
nen der Dichtemodulation, indem wir die Photonenbesetzung beider Res-
onatoren messen.

Die kontinuierliche Symmetrie ist das Ergebnis einer Symmetrie-Erweite-
rung aus zwei konkurrierenden Ordnungsparametern mit zugrundeliegen-
den diskreten Symmetrien. Um den Übergang von der kontinuierlichen
zur diskreten Symmetrie zu erforschen, studieren wir die Umgebung der
symmetrie-erweiterten Region indem wir eine geringfügige Asymmetrie in
die Kopplungsstärken einführen. Wir beobachten eine zunehmende Aniso-
tropie in der Verteilung der gebrochenen Symmetrie, begleitet von einer
ansteigenden Masse der Goldstone-Mode.

Die Experimente wurden mit einer neuen Apparatur durchgeführt, die im
Rahmen dieser Arbeit errichtet wurde. Der Aufbau ist auf eine schnelle und
robuste Präparationssequenz des Quantengases ausgerichtet. Wir führen
eine neue Transportmethode für ultrakalte Atome ein, die auf Linsen mit
verstellbarer Brennweite basiert und bisherigen Methoden bezüglich Flexi-
bilität, Stabilität, Kosten und Platzanforderungen überlegen ist. Ferner ze-
ichnet sich das Vakuumsystem durch einen konzeptionell neuen Ansatz
mit einem Transfersystem aus, das es erlaubt den Resonator-Aufbau ohne
Weiteres auszutauschen. Unser Experiment schafft dadurch einen vielseit-
igen Quantensimulator für konstruierte Atom-Licht-Wechselwirkungen in
verschiedenen Resonator-Umgebungen.

vii





CONTENTS

1 Introduction 1

I EXPERIMENTAL SETUP 9

2 A vacuum system with exchangeable science platform 11

3 Preparing and probing a Bose-Einstein condensate 31

4 Two crossed optical cavities 53

II REALIZATION OF A SUPERSOLID 73

5 Self-organization in a rectangular lattice 75

6 Competing orders with two optical cavities 97

7 Supersolid formation in a quantum gas 117

III EXCITATIONS AND FLUCTUATIONS 135

8 Roton mode softening in a rectangular lattice 137

9 Monitoring Higgs and Goldstone modes 153

10 Critical behaviour 173

11 Outlook 187

A Optical cavities 191

B Atom-light interactions 199

LIST OF FIGURES 209

LIST OF TABLES 211

ACRONYMS 214

BIBLIOGRAPHY 215

CURRICULUM VITÆ 241

Detailed tables of contents can be found at the beginning of each chapter.

ix





1I NTRODUCT ION

Together, solids and fluids dominate our surrounding in everyday life, yet
their behaviour is opposite in many respects: solid materials are character- Solids and fluids

behave differentlyized by structural rigidity and resistance to changes of shape, and thus they
form the basis of most created objects. Fluids (including gases), quite the
contrary, adapt their shape to their container and continuously flow under
applied shear stress. In the presence of a force such as gravity, this property
makes them an ideal transport medium, which is central to processes such
as blood circulation, the hydrological cycle, heat conduction or water trans-
port. On the microscopic level, solids and fluids differ by the arrangement of
the constituent particles. The atoms, molecules or ions a solid is composed
of are mostly arranged in a repeating pattern. Knowledge of the position of
one particle and its distance to the adjacent one is in principle sufficient to
predict the position of all others. Fluids do not possess this order and their
particles are equally likely to be found at every position.

Whether a material is solid, liquid or gaseous (or even plasmonic, with the
electrons stripped off the nuclei) depends on the strength of the interactions
among the particles compared to their motional energy. The forces in a solid
are strong enough for the particles to retain their position, whereas thermal
motion in a fluid can overcome these bonds and allow the particles to move
freely. The point where interaction and motion are equally strong marks
the phase transition between a solid and a liquid. An additional state in Phase transitions

driven by thermal...between, which would manifest both properties simultaneously, does not
exist: they are mutually exclusive.

Phase transitions can also occur at absolute zero temperature, where ther-
mal motion is absent. If allowed by quantum statistics, all particles occupy
the motional ground state and share a common wave function with a well-
defined phase. The lack of a finite temperature also results in the absence
of friction. The quantum fluctuations associated with the zero-point energy
persist and their interplay with the interactions among the particles can
drive transitions between different quantum phases , much like thermal ...and by quantum

fluctuationsfluctuations and interactions for classical phases [1]. Yet, the passage from
classical to quantum phases presents an exception in the context of phase
transitions, because it is not interaction driven but a purely quantum statis-
tical effect [2].

The discovery of superfluid helium in 1938 [3, 4] led to the first identifi-
cation of such a quantum phase [5, 6]. It can be created by cooling liquid
helium below 2.17K, the so-called � point. The substance indeed behaves
much like a classical liquid, except that it flows without friction on all sur-
faces. Microscopically this effect can be ascribed to the phase coherence of
the atoms sharing one common ground state. Superfluid helium presents a
quantum liquid, where quantum fluctuations instead of thermal fluctuations
dominate over the interactions among the atoms. Its finding triggered the
search for quantum analogs for the other states of matter. This was soon suc-
cessful for a plasma-type phase, when BCS theory identified the previously
discovered superconductors as a quantum plasma, where phase coherence
among electron pairs leads to dissipation-free charge transport in a metal [7,
8]. A quantum gas had been predicted by Bose and Einstein before [2], and
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Figure 1.1: Phase diagram for crystalline order vs. phase coherence. Whether a supersolid
state exists at low temperature depends on the microscopic details of the interactions,
which are often unknown. a, Scenario without a supersolid. When lowering the
temperature of a material, it can become either solid or superfluid, depending on
the interaction strength among the particles. b, Scenario with a supersolid phase at
low temperatures. It appears as a fourth phase between the superfluid and the solid
phase and combines phase coherence and solid order.

was finally discovered in 1995 with weakly interacting ultracold atoms [9,
10].

Yet, the remaining quantum state of matter, a quantum solid—or super-
solid— remained elusive. In analogy to a classical solid, its constituents
were expected to arrange on a periodic pattern, but at the same time, they
would occupy a common ground-state wave function and therefore exhibit
flow without friction [11, 12]. A supersolid therefore combines structuralThe concept of a

supersolid is
paradoxical

rigidity and frictionless flow, two properties that we normally conceive of
as mutually exclusive. This behaviour makes the supersolid probably the
most paradoxical state among the four fundamental quantum phases. Early
discussions on supersolidity indeed considered the existence of such a state
so absurd that they tried to proof its impossibility, for instance O. Penrose
and L. Onsager [13].

Conceptually, a supersolid can be interpreted in terms of the coexistence
of two different kinds of order: phase coherence and periodic density order.Crystalline order vs.

phase coherence Their interplay is illustrated in Fig. 1.1 with two phase diagrams, whose
topology is generic for the situation of two order parameters. When lower-
ing the temperature of a material, it can become either solid or superfluid,
depending on the interaction strength among the particles. One possibility
is that the phase coherence of a superfluid and the crystalline order of a
solid mutually exclude one another. The other possibility includes a super-
solid state with both orders present. It is expected to exist at low tempera-
ture with interactions strong enough to form a crystal, but weak enough to
maintain phase coherence. Whether the former or the latter scenario applies
in a system depends on the microscopic properties of the material, which
are often unknown.

The speculations on the existence of a supersolid state started with fun-
damental work by D. J. Thouless [11], A. F. Andreev and I. M. Lifshitz [12],
and G. V. Chester [14] describing the various possibilities of a supersolid
state [15]. They concluded that a prerequisite to maintain coherence in a
crystalline material is a large zero-point motion of the particles around theirSupersolidity and

zero-point motion lattice sites. Two concepts seemed plausible as mechanisms for the forma-
tion of a supersolid [15]:

• Quantum fluctuations allow particles to tunnel and to restore phase
coherence

• Vacancies or impurities are sufficiently mobile to undergo Bose-Einstein
condensation
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The search for supersolids hence focussed on materials with large quantum
fluctuations. In a crystal they can be quantified with the dimensionless de-
Boer parameter [16–18]1:

⇤ =
1

2⇡

�dB
�

(1.1)

It compares the interparticle distance � with the de-Broglie wavelength
�dB = h/p, where h is the Planck constant and p the particle momentum.
Among all elements, the de-Boer parameter distinguishes helium as most
promising candidate for a supersolid state with ⇤4He = 0.30, followed by
hydrogen ⇤H2

= 0.19 and deuterium ⇤D2
= 0.14 [15]. The number of ex-

periments investigating the possibility of supersolidity in helium increased
rapidly [19, 20] with different approaches including thermodynamic mea-
surements [21–25], ultrasound studies [26–28], plastic flow [29–31] and mass
flow [32], albeit with negative results.

The most promising route proved to be torsional oscillator experiments, Quest for supersolid
heliumoriginating on a proposal by A. Leggett [33]. He considered a sample of

solid helium that is placed in a cylindrical bucket under high pressure. The
resonant oscillation frequency of the bucket in the presence of a drive de-
pends on its moment of inertia. If the sample exhibited frictionless flow, it
would not contribute to the rotation, resulting in a decreasing moment of
inertia and a reduced oscillation frequency. Despite several attempts with
negative results [34–36], the method ultimately seemed successful with the
experiments of Kim and Chan [37, 38]. Their results were confirmed by
other groups soon after [39–43], and further characterizations of the specific
heat capacity [44, 45] and mass transport [46, 47] supported the interpreta-
tion. However, the enthusiasm was lessened when the number of observed
anomalous effects increased [48–50]. A controversial debate on the existence
of a supersolid began, which culminated in the measurement of the shear
modulus of helium [51]. Its temperature dependence was identical to the
moment of inertia and suggested crystal dislocations as the origin of the
reduced rotational inertia. Indeed, when repeating the torsional oscillator
experiments with a new apparatus that avoided the formation of crystal dis-
locations, Chan found the moment of inertia to remain constant [52] and the
existence of supersolidity in helium again remained elusive.

Quantum gases might seem an unusual supersolid candidate at first sight,
showing much weaker interactions than liquid superfluids such as helium
[9, 10]. Their advantage is, however, the large coherence length paired with
a number of tools to engineer the interaction strength and range. Whilst
contact interactions can be readily adjusted with Feshbach resonances, their
short range compared to the interparticle distance is not sufficient to develop
a density pattern [53]. The challenge for supersolid formation amounts to Engineering

long-range
interactions with
quantum gases

finding a system offering suitable interactions to break the translational
symmetry of the quantum gas while maintaining its phase coherence. As a
consequence, engineering long-range interactions has become an important
objective for experiments with quantum gases, with researchers utilizing a
number of different approaches.

One route employs atomic species with large magnetic dipole moments,
for example chromium [54], dysprosium [55] or erbium [56], which show
dipolar interactions over larger length scales. Interaction effects have been

1 We use the definition introduced in [18], which differs from de Boer’s original definition by a
factor (2π

p
2)−1.
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observed in free space [57] and in optical lattices [58]. The observation of
quantum droplets has proven the interactions to be strong enough to break
the translational symmetry [59–61], however, this comes at the cost of lost
phase coherence among the droplets.

Another approach uses heteronuclear molecules, which show strong elec-
tric dipole moments instead [62]. They have been produced in the quantum
regime by preparing the constituents separately and then coherently trans-
ferring them to the rovibrational ground state, both for bosonic [63–65] and
fermionic [66, 67] combinations as well as in optical lattices [68]. Their in-
teraction strength can even be superior to magnetic dipolar interactions, but
experiments have not yet shown evidence for translational symmetry break-
ing [62].

Rydberg atoms present a further path to long-range interacting quantum
systems, which even allows to adjust the strength by the choice of Rydberg
state [69]. Spatial structures of up to five atoms have been observed [70, 71],
but at the absence of phase coherence among the atoms and at timescales
too short to observe pattern formation from motional interaction. This can
possibly be overcome in the future with Rydberg-dressed atoms, where the
dominant contribution comes from the trapped electronic ground state and
the long-range interactions originate from a weak admixture of the Rydberg
state to the ground state [72, 73].

A complementary route to creating long-range interactions employs atom-
light interactions. In its most simple form, a cold atomic cloud is illumi-Atom-light

interactions nated by a laser beam with a wavelength �p = 2⇡/kp far off-resonance from
the internal atomic transitions [74]. This induces electric dipole moments
in the atoms that can interact with each other with an interaction potential
/ sin(kpr)/r

2, where r is the distance between the atoms. However, due
to incoherent scattering the heating rate is too large to induce a structural
phase transition, independent of the laser frequency.

The coherent scattering can be enhanced compared to incoherent pro-
cesses by placing the atomic cloud inside an optical cavity. While the strengthEnhanced dipole

interactions with
optical cavities

of the interactions can be increased with such an approach, their range ex-
tends over the entire cloud, since all atoms couple equally to the cavity
mode. A single-mode cavity has been observed to break discrete transla-
tional symmetry on the lattice structure predefined by the cavity mode [75],
and presents a realization of the otherwise only theoretically studied lattice
supersolids [76]. A different approach is based on the Talbot effect and has
shown translational symmetry breaking for a thermal cloud [77], yet the
quantum regime was not reached. Further proposals for supersolid forma-
tion with light-matter coupling exist both in free space [78] and for multi-
mode cavities [79].

Here we show how a combination of two optical cavities can break the
continuous translational symmetry of a quantum gas while maintaining its
phase coherence. The strength of the induced photon-mediated interactions
can be tuned over a broad range that allows to create self-organized struc-
tures emerging at arbitrary positions with a lattice constant determined by
the optical wavelength. In analogy to the solid-state scenario, the de-Boer pa-
rameter for our supersolid is typically ⇤ ⇠ 1. We characterize the supersolid
in terms of the zero-temperature phase diagram, the elementary excitations
and its critical behaviour at the phase transition. Furthermore, we go beyond
supersolidity and control the quality of the translational symmetry that is
broken at the phase transition, giving insight into the crossover between
discrete and continuous symmetries.
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The experiments were performed with an apparatus that was constructed
in the course of this thesis. Its vacuum system is conceptually different from A transfer system

with exchangeable
science platform

established quantum gas experiments as it includes a transfer system that
allows one to exchange the cavity setup. The vacuum system with the trans-
fer mechanism is presented in Chap. 2. A load-lock chamber is connected
to the main chamber with a gate valve, through which a new setup can be
inserted without compromising the vacuum of the main chamber. The sci-
ence platform is equipped with diverse electrical and thermal contacts that
increase the flexibility to setups that also involve solid-state devices other
than optical cavities. This enables a rapid exchange of the setup and the
prospect to work with a variety of platforms.

The starting point of the experiments is a BEC of 87Rb atoms. We generate
a new sample in a preparation sequence lasting several seconds, which is Preparation of a

Bose-Einstein
condensate

followed by the actual experiment. The atoms are captured and then cooled
to quantum degeneracy in a combination of different techniques involving
laser beams, magnetic fields and RF fields. The preparation sequence in-
cluding all relevant experimental setups is described in Chap. 3. A unique
feature of the apparatus is the method to transport the cold atoms into the
cavity setup. We steer the focal length of a focus-tunable lens by applying a Optical transport

with focus-tunable
lenses

variable current, which displaces the position of an attractive dipole poten-
tial [80]. This allows us to transport the atomic cloud from the preparation
chamber into the cavity setup over 28 cm. We choose an optical scheme that
displaces the focus position at constant beam radius, providing uniform
trapping conditions over the full transport length.

Our approach to generate a supersolid state is based on the dispersive Two crossed cavities

interaction of a BEC with two cavity modes crossing at an angle of 60�. The
science platform with the cavity setup that was employed in this thesis is
presented in Chap. 4. The mounts for the cavity mirrors are built in a way to
minimize mode displacement during the bakeout and to ensure overlapping
cavity modes. In addition to the cavities, the platform includes mirrors to
reflect the cavity modes onto the optical viewports of the vacuum chamber.
The cavity length (an hence the resonance frequency) can be steered with
piezo components that are included into the mount of each mirror. The prob-
ing and the length stabilization are achieved with laser beams at frequencies
with and without a significant effect on the atoms, respectively. We obtain
full control over all probe and stabilization fields with a laser system that
allows us to steer the frequency of each beam individually.

Experiments on self-organization with a single optical cavity so far have
been limited to density modulations with a chequerboard geometry, since
the system geometry only allowed for an orthogonal angle between the
transverse pump and the cavity axis [81]. Instead, we have studied single- Self-organization in a

rectangular lattice
geometry

mode self-organization with a non-orthogonal transverse pump by coupling
to one of the two cavities with a transverse pump at an angle of 60� with
respect to the cavity axis. This gives rise to a density modulation with rect-
angular lattice geometry and leads to new effects thanks to its reduced sym-
metry compared to a square lattice. Our generalized system requires an ex-
tension of the theoretical framework for self-organization. We study further
phenomena that go beyond the conventional description of self-organization
in optical cavities, such as finite temperature and the interplay and competi-
tion of self-organization and spin transitions. Furthermore, the decay rates
of the two cavity fields differs by approximately a factor five, which makes
it possible to demonstrate the influence of dissipation on the shape of the
phase diagram. The corresponding experiments are discussed in Chap. 5.
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Coupling the atoms to both cavities simultaneously leads to a situation
of competing orders, where two self-organization processes compete withCompeting order

with two cavities each other. This situation is investigated in Chap. 6. It is reminiscent of the
schematic phase diagrams illustrated in Fig. 1.1, but with each order pa-
rameter representing only a discrete symmetry. The competition is driven
by the coupling to each cavity, which we adjust with the detuning of each
cavity resonance from the the transverse pump frequency. We study the
phase diagram and draw comparison to a theoretical model that presents
a two-cavity extension from the previously employed single-cavity descrip-
tion. Our parameter range sets the phase diagram to the limiting scenario,
where simultaneous presence of both orders is neither inhibited nor sup-
ported. The result is a narrow, yet stable region between the two organized
phases in the phase diagram.

This insight forms the basis of Chap. 7. The limiting scenario leads to aSupersolid formation
in a quantum gas situation of symmetry enhancement, if the couplings to both cavities are

identical. The two order parameters with discrete symmetries form a single
one representing a continuous symmetry. When entering the ordered phase,
the position of the atomic density modulation reflects this symmetry and
hence breaks translational invariance of the superfluid quantum gas. This
is the signature of a supersolid state. We study the ground-state degener-
acy and its transition from continuous to discrete symmetry by applying a
mismatch to the couplings.

Most phase transitions are characterized by a critical behaviour of the
thermodynamic quantities [1]. This includes a critical slowing down of the
system timescales and fluctuations at diverging time and length scales. One
signature of critical behaviour is a softening of the lowest excitation at the
phase transition. We first restrict the discussion to a single cavity and studyFrequency softening

of the roton mode the elementary excitations across the self-organization phase transition, as
presented in Chap. 8. The excitation spectrum shows the frequency soften-
ing of a roton mode and a diverging susceptibility upon approaching the
critical point. We present three methods for probing the excitation frequen-
cies, all giving coinciding results while offering a complementary view on
the intricate atom-photon dynamics in the system. All methods are based
on cavity-enhanced Bragg spectroscopy, where the Bragg beams are formed
by the transverse pump beam and a probe beam on the cavity axis. If their
relative detuning matches the resonance condition, processes that create or
annihilate collective excitations in the system are enhanced.

Extending the system to two cavities, we investigate the excitation spec-
trum at the superfluid-supersolid phase transition. These results are dis-
cussed in Chap. 9. The broken continuous symmetry gives rise to two dif-
ferent types of excitations: a Higgs mode with amplitude fluctuations andHiggs and Goldstone

modes in the
supersolid

a Goldstone mode with phase fluctuations. Since the fields form a U(1)-
symmetric order parameter that can be modulated and monitored along
both quadratures in real time, the two excitation types can be distinguished
by correlations and anticorrelations in the light fields. We make use of this
unique access and verify the amplitude and the phase character of the exci-
tations, and observe the dynamics from an impulse response.

We further characterize the critical behaviour by investigating the fluc-
tuations of the order parameter in the vicinity of the critical point. TheFluctuations at the

superfluid-supersolid
phase transition

fluctuations can be accessed in real-time access by detecting the photons
leaking from the cavity. The influence of dissipation on the critical exponent
has been subject to a debate with theoretical and experimental studies. Our
system not only allows to measure the critical behaviour at the superfluid-
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supersolid phase transition, but also study the influence of dissipation on
the critical exponent by performing measurements with the different decay
rate of the two cavities. The results suggest a similar influence of both dis-
sipation rates. We observe increasing fluctuations when matching the cou-
plings to both cavities resulting in a larger critical exponent at the superfluid-
supersolid phase transition compared to the single-mode self-organization.

The presented results set the grounds for further studies of the supersolid
state. The extension to self-organization with multiple cavity modes pro- Outlook

vides a route for creating and studying glassy many-body systems with
controllably lifted ground-state degeneracies, such as supersolids in the
presence of disorder. Beyond supersolidity, our set-up can be interpreted
as identical two-level systems coupled with two quantized light fields, thus
providing access to a new class of quantum optical models that break a
continuous symmetry. Even more possible systems could be studied by ex-
changing the science platform with the transfer system, for instance Rydberg
excitations in optical cavities [82], local perturbation of the self-organized
cloud or cavities with sub-recoil linewidths [83].

The work presented in this thesis has been carried out in collaboration
with Tobias Donner, Moonjoo Lee, Andrea Morales, Philip Zupancic and
Tilman Esslinger.
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EXPER IMENTAL SETUP





2A VACUUM SYSTEM WITH
EXCHANGEABLE SC I ENCE PLATFORM

The vacuum system lies at the heart of any quantum gas experiment. It
allows to isolate the trapped atomic cloud from the environment. The vac-
uum system presented here is exceptional, as it combines the properties of
conventional quantum gas experiments with a load-lock system, where a
science platform can be exchanged. After a brief overview of the design and
construction of the vacuum system, each of its elements is adressed in more
detail. We close with a description of the applied vacuum procedures.

CHAPTER CONTENTS

2.1 Concept of the vacuum system 11

2.1.1 Coupling atoms and cavities 12

2.1.2 Implementation of the bipartite chamber approach 13

2.2 The vacuum chamber 15

2.2.1 2DMOT chamber 15

2.2.2 The main chamber 19

2.3 The transfer system 23

2.3.1 The load-lock chamber 23

2.3.2 The science platform 25

2.3.3 Docking station 26

2.4 Assembly and bakeout 27

The development of hybrid quantum systems, which combine two exper- Hybrid quantum
systemsimental platforms, is driven by the goal of harnessing the advantages and

strengths of both systems [84–86]. This has been motivated in particular by
the fields of quantum information and quantum technology, which rely on
interfaces of a quantum emitter with a coherent electromagnetic field. Exam-
ples for successful implementations include Rydberg atoms in MW cavities
[87], single atoms coupled to optical cavities [88] or optical nanofibers [89],
and superconducting circuits [90]. Atoms and membranes that are coupled
to the field of an optical or MW were used to perform sympathetic cooling
[83, 91–93].

While the studied systems are very different in their properties, these ex-
periments have in common that they are not very versatile and the vacuum
part usually is rather rebuilt than modified. Interfaces with cold atoms re- Lack of flexibility for

the experimental
setup

quire an UHV environment to inhibit collisions with thermal particles, yield-
ing hardly modifiable vacuum chambers that are surrounded by optics to
cool and manipulate the atoms. However, an experimental setup where dif-
ferent systems can be brought into the vauum chamber would be desirable.

2.1 CONCEPT OF THE VACUUM SYSTEM

The vacuum system aims at providing the possibility to rapidly exchange
the setup that is under investigation. The principle is shown in Fig. 2.11. All

1 Our convention for the laboratory coordinate system is different from the physics coordinate
system, in which we will describe the experiments. In the following we identify the laboratory
coordinate system with (xL,yL,zL) and the physics coordinate system with (x,y,z).

11
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Figure 2.1: Concept of the vacuum system. An exchangeable science platform contain-
ing a setup with optical or electronic devices (e. g. optical cavities) can be exchanged
through a load-lock chamber, which is separated from the science chamber by a gate
valve. a, The platform is inserted into the load-lock chamber, which is subsequently
evacuated and baked until UHV conditions are established. b, Once the pressure in
the load-lock chamber and the science chamber are comparable, the gate valve can be
opened and the platform can be translated with a sample manipulator. The vacuum
in the science chamber is not harmed at any time during the exchange procedure.

relevant parts of the setup are included in a science platform that can be
exchanged through a second chamber, the load-lock, which is separated by a
gate valve from the science chamber, where the experiment takes place. TheAn exchangeable

platform to house the
science setup

mechanism is inspired by MBE experiments, where samples are exchanged
on a regular basis through a load-lock chamber without compromising the
vacuum in the science chamber [94, 95]. Transferring this concept to hybrid
quantum systems allows us to perform research that is driven by physi-
cal questions rather than by an existing setup. Simultaneously, the vacuum
chamber has to fulfill all requirements for a quantum gas experiment.

2.1.1 Coupling atoms and cavities

The interaction of a BEC with the mode of an optical cavity has shown
to give rise to diverse phenomena [81], for instance Tavis-Cummings inter-
action [96, 97], optomechanical effects [98, 99] and a phase transition to a
self-organized state [75]. This experiment aims at extending these concepts
along different directions.

The choice of bosonic or fermionic atoms has profound consequences on
the accessible physics. Whereas bosonic quantum gases undergo a phase
transition to a BEC and show a momentum distribution that is sharply
peaked around zero, fermionic atoms either keep a broad momentum dis-
tribution up to the Fermi vector [100] or show condensed properties [101,
102], depending on their two-body interaction strength. These interaction-
dependent properties give rise to new physics when coupling the momen-
tum states of a fermionic quantum gas with light fields [81]. Our apparatusApparatus for both

bosons and fermions should therefore be able to produce both bosonic and fermionic quantum
gases. We aim at a fast preparation time using state-of-the-art cooling and
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87Rb 40K

Natural abundance 27.8 0.01 %

Abundance in the enriched source
[104]

14 %

Radioactive lifetime 4.9⇥ 1010 1.2⇥ 109 y

Atomic mass m 86.91 39.96 amu

Vapour pressure at 20�C 3.1⇥ 10−7 1.3⇥ 10−7 mbar

s-wave scattering length 100 174 a0

K-Rb s-wave scattering length [105,
106]

-185(7) a0

Nuclear spin I 3/2 4

Wavelength of D2 line (vacuum) 780.24 766.70 nm

Wavelength of D1 line (vacuum) 794.98 770.11 nm

Natural linewidth of D2 transition � 2⇡⇥ 6.07 2⇡⇥ 6.04 MHz

Ground state hyperfine splitting 2⇡⇥ 6.83 2⇡⇥ 1.29 GHz

Table 2.1: Bosonic Rubidium 87Rb and fermionic Potassium 40K. The table lists some
relevant properties for each isotope. S-wave scattering lengths are given for zero
magnetic field in terms of the Bohr radius a0. 87Rb and 40K data from [107] and
[108], respectively, if not specified differently.

trapping techniques, which constraints the geometry and the target pressure
for the different regions of the vacuum chamber.

The second key criterion is the flexibility in terms of the studied setup.
Most experiments choose a cavity setup in the first place, which is inserted
into the vacuum chamber before the pumpdown procedure. We choose a
complementary approach and include a mechanism that allows to exchange
the setup at any time while maintaining vacuum conditions in the chamber.
This is achieved with a transfer system that moves a science platform to a
load-lock chamber that is separated from the main chamber by a gate valve.
The science platform houses the studied setup, which includes cavities or
different devices.

2.1.2 Implementation of the bipartite chamber approach

The collision rate of most gas molecules at room temperature and pressure
is around 1010 Hz. In order to produce a quantum gas at temperatures close
to absolute zero it must therefore be well isolated from the environment.
In quantum gas experiments this is achieved by carrying out the genera-
tion of the ultracold sample inside a UHV chamber at pressures around
1⇥ 10−11 mBar, deep in the molecular flow regime [103]. This results in col- Vacuum pressure

requirementslision rates of around 1 per minute, which do not cause significant heating
during one experimental duty cycle of around 10 s for the generation of a
quantum gas.

UHV describes the lowest achievable pressure range and is only required
for few other applications, such as high-quality MBE, material analysis and
particle accelerators [103]. The key requirements for UHV compatible mate-
rials are mechanical rigidity, resistance to corrosion, low vapour pressure,
clean surfaces and a low concentration of external gases. Additionally, the
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Figure 2.2: The vacuum system. Three different stainless steel chambers, separated
by all-metal gate valves, form the vacuum system. The first one is called 2DMOT

chamber and contains the atom sources. In the second chamber, a quantum gas
is produced and the actual experiment takes place. It is divided into the 3DMOT

chamber and the science chamber. The third chamber is the load-lock, where the
science platform can be exchanged.

preparation process and the quantum gas are highly sensitive to external
magnetic fields. As a consequence most vacuum chambers for quantum gas
experiments, including ours, are built out of non-magnetic stainless steel.

We choose 87Rb and 40K as bosonic and fermionic species, respectively.
Some of their properties are listed in Table 2.1. The two isotopes were suc-Two-species

apparatus for Rb and
K

cessfully used in combination previously [109]. Both belong to the group of
alkali metals, whose elements show a simple level structure for the valence
electron with closed dipole transitions at convenient optical wavelengths.
The wavelengths of the D2 transitions at 767nm for 40K and 780nm for
87Rb are close enough for common optical elements, yet far enough sep-
arated to combine and split the optical beam paths with dichroic optical
elements. Additionally, their two-body collisional properties are well-suited
for a fast thermalization of the atomic ensemble and a stable degenerate
quantum gas. The collision rate for 40K as well as the interspecies collision
rate can be tuned with Feshbach resonances at easily attainable magnetic
fields [53, 110]. Furthermore, this choice of isotopes allows extensions for
mixtures [111] or Rydberg atoms [112].

A picture of the entire vacuum system is shown in Fig. 2.2. The trans-
fer rod for the science platform exchange is visible at the right end and
connects to the load-lock chamber. The remainder of the vacuum system isOverview of the

vacuum system dedicated to the production and probing of the quantum gas. An atomic
beam is created at the opposite end of the vacuum system in the 2DMOT

chamber and then sent into the 3DMOT chamber. The actual experiments
are performed in the science chamber after optical transport (cf. Chap. 3).
Optical viewports, coils for magnetic fields and antennae to generate RF

fields are positioned nearby.
The design of the science platform and the exchange mechanism primarily

aims at systems involving optical cavities, but is also well-suited for solid-
state systems that do not require a cryogenic environment. Optical cavities
with a high finesse are highly sensitive to changes in the optical path length
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inside the cavity. Changes of the index of refraction are prohibited thanks
to the UHV environment, but the physical length can in general change due
to material expansion from temperature drifts and mechanical vibrations
from ambient noise. For present-day cavities with finesses up to F ⇠ 106, Requirements for

optical cavitieslength stabilities at optical wavelengths � below �/F ⇠ 1pm are required.
We ensure a high passive stability with mechanically stable mounting and a
multi-layer vibration isolation stage [113]. In addition, the cavity length can
be actively stabilized by mirror mounts including piezo-electric elements.

The driving voltage for the piezo components can be applied through a
contact mechanism to the platform, which is disabled during the exchange
procedure. In addition, the platform offers a number of other contacts to
steer devices for other hybrid systems, such as high voltages for ion detec-
tion with a CEM or a MCP, and SMA contacts for RF signals. A thermal
feedthrough allows to cool the platform or dissipate heat.

The science platform can be exchanged with a sample manipulator, which
is magnetically controlled from outside the vacuum2. It allows to indepen-
dently translate and and rotate the platform. The precise positioning of the
platform is achieved by a docking station. It also serves as a junction for the
contacts from vacuum feedthroughs and connects them with the platform.
During the exchange the path of the science platform is led by a guiding
system.

2.2 THE VACUUM CHAMBER

The entire vacuum system consists of three chambers: the 2DMOT chamber,
the main vacuum chamber with the 3DMOT and the science chambers, and
finally the load-lock chamber. In this section we describe in detail the de-
sign and construction of the former two, whereas the load-lock chamber is
discussed in the context of the transfer system in Sec. 2.3.

2.2.1 2DMOT chamber

A main concern for the design of a quantum gas apparatus is the need to
collect a large number of atoms and yet to achieve a long lifetime for cooled
atoms. The production of a quantum gas requires extremely low pressures
in the UHV regime, whereas the capturing of the atoms is more efficient
at orders of magnitude higher pressures with the background gas ideally
dominated by the desired species. This pressure ratio cannot be overcome
within seconds during the experimental cycle. As a consequence, vacuum
systems in quantum gas experiments typically consist of two parts at differ-
ent pressures. The parts are connected by a differential pumping tube with
sufficiently low conductivity to maintain the pressure ratio, but sufficiently
large to transfer the atoms from one chamber to the other. Several ways ex- 2DMOT as efficient

atom sourceist for addressing this problem [114, 115], among which the 2DMOT stands
out with high loading rates and a compact design [116]. For this reason
we choose this technique to load the atomic cloud. The optimum pressure
lies in the range of around 1⇥ 10−7 mbar. In order to obtain a lifetime of
10− 100 s for the quantum gas, a pressure ratio of 104 has to be maintained
between the 2DMOT chamber and the main vacuum region.

The 2DMOT chamber was originally designed and built to serve as a pure
40K 2DMOT. We modified and extended the components to make it com-

2 A video demonstrating the exchange of the science platform with the transfer system is avail-
able on the website: www.youtube.com/watch?v=CjjNgXaRo6g
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Figure 2.3: The 2DMOT vacuum chamber. a, Picture of the 2DMOT chamber with
chamber body (right), the atom sources for 87Rb and 40K (bellows at the lower right
and the top) and the ion pump (lower left). The valve connection to the main cham-
ber is visible on the right (blue enclosure). b, CAD view of a cut through the 2DMOT

chamber body. A gold-coated differential pumping tube reflects the counterpropa-
gating beam to the axis of the atomic beam. The viewports are sealed to the chamber
with an Indium wire and supported by means of a steel plate. Permanent magnets
are positioned at each of the long chamber edges in a rail system. c, Displayed data
shows the measurement of the magnetic field along the vertical direction in a test
setup with the magnet configuration chosen similarly to the final setup. The fit (solid
line) results in a gradient of 9.2(2)G/cm. d, Obtained gradient for several positions
along the −xL axis with the origin at the center of the chamber. The solid line is
a comparison with the theoretically computed gradient. Error bars from the fit are
smaller than the marker size.

patible for a dual-species 2DMOT for 87Rb and 40K, including push and
counterpropagating beams along the atomic beam axis [116]. Design, con-
struction and tests of the original vacuum chamber with 39K are described
in the diploma and master theses by Roger Gehr [117], Dominik Leitz [118]
and Thomas Uehlinger [119].

A picture and a CAD view of the 2DMOT chamber are shown in Fig. 2.3a,
b. The chamber body was milled from one piece of stainless steel to realize2DMOT chamber

its custom design. It has a cuboid shape with four rectangular openings of
30⇥ 80mm at the long sides for laser cooling beams with a large capture
volume. Along the atomic beam axis, one additional viewport with 30mm
inner diameter gives access to the push beam.

The optical viewports are unmounted fused silica substrates with a sizeOptical viewports

of 40⇥ 90mm from the supplier Lens-Optics. They are connected with the
vacuum chamber by Indium seals. Rectangular stainless-steel frames hold
them in place, separated by teflon sheets to protect the substrate surfaces
from scratches. All viewports are AR coated with a broadband coating for
767− 780nm on the substrate side facing towards air only. A coating on the



2.2 The vacuum chamber | 17

inner surface would risk a chemical reaction of the coating with the Indium
wire that could lead to vacuum leakage.

At one end of the chamber, four CF flanges with DN 40 connections lead
to the section controlling the background pressure. One of the connections
comprises a pressure gauge (Ionivac ITR90 from Leybold), which is a com-
bined Pirani and ion gauge detecting the vacuum pressure both at ambient
pressure and UHV. A second connection goes to a sputter ion pump (25S-DI-
2D-SC-220-N from Gamma Vacuum) with a titanium-tantalum cathode and
a nominal pump speed of 15 l/s. At the back of the ion pump anall-metal
edge valve ("Easy close" from VAT) is included for further extension of the
vacuum region or to connect a turbo-molecular pump. The chamber body
is prevented from overconstraints at multiple support points by a metal bel-
low between the pump and the chamber body. At its inside it is lined with
graphite tubes from the supplier POCO Graphite, which adsorb alkali metals
to protect the ion pump from saturation from the atom sources [120]. The
graphite tubes are held in place horizontally next to the bellow connecting
the ion pump with the main chamber by a stainless steel post with 25mm
diameter from Thorlabs. All tubes and bellows are commercially available
parts from the supplier VACOM.

The atom sources are contained in two more bellows at the remaining
DN40 connections. The 87Rb atom source is an ampoule from Sigma-Aldrich Atom sources

with metallic Rb of > 98% purity at natural abundances and a fill-in-weight
of 5g. It is placed in a DN16 metal bellow with sufficient flexibility to crack
the ampoule following the chamber bakeout. A heating wire wound around
the bellow gives control over the Rb vapour pressure inside the vacuum
chamber, which in our case is optimum at around 40�C. The 40K has been
enriched to 14% and was obtained as 30mg of KCl salt from Trace Sciences
international3. This compound has then been distilled into the ampoule as a
pure metal by Precision Glassblowing, leaving a quantity of around 10mg in
the ampoule. For easier cracking, the ampoule has been scored with a glass
cutter at the center and placed in a mount that allows to conveniently grab
it with the bellow. As the experiment to date has not yet been operated with
fermions, the 40K ampoule remains closed.

A differential pumping tube is connected at the opposite end of the cham-
ber body. It is milled from a single piece of non-magnetic stainless steel, Differential pumping

tubewhich was subsequently welded to two CF flanges on each end. It has a
length of L = 87mm and a conically shaped inner surface with diameters of
r1 = 0.7mm and r2 = 2.1mm at the end towards and away from the 2DMOT

chamber, respectively. The opening angle is adapted to the expected diver-
gence of the atomic beam of ✓ ⇠ vD/vthermal, with vD the Doppler velocity
and vthermal the mean velocity of a thermal atom. The conductivity for a
conical tube in the molecular flow limit is given by [103]

C =
⇡r21v

4

 

1+
r1 + r2

4r22
L

!

l/s. (2.1)

For a mean velocity vH2
⇠ 1900m/s of H2, this results in a conductivity of

C = 5⇥ 10−5 for the differential pumping tube, sufficient for the required
pressure ratio.

In order to inject the counterpropagating laser beam along the axis of the
atomic beam, the front end of the differential pumping tube is built as a

3 This company seems to have stopped the distribution of highly enriched 40K recently. Another
company, American Elements, still offers 40K with concentrations of > 10%.
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Figure 2.4: The main vacuum chamber. The main part of the vacuum is composed of
the 3DMOT chamber (left, partially behind the valve to the 2DMOT chamber) and
the science chamber (center), which are connected by a conical tube. The ion pump
is visible on the right. The entire system is mounted on brass columns.

mirror that is angled by 45�. Similarly to the setup presented in [121], the
surface is first given a mirror finish of 2P quality with a buffing machine.
It is then coated with a gold layer of 150nm for high reflectivity in the
optical domain, followed by a second coating of 100nm with SiO2 to protect
the gold surface. The outer diameter of the tube is 12mm, an optimum
between the size of the counterpropagating beam and the tube intrusion
into the vacuum chamber. Other approaches to inject counterpropagating
beams include polished copper [122] or aluminium surfaces [116], mounted
flat [123] or angled mirrors [120], or mounted prisms [124].

In most setups the magnetic field gradient for the 2DMOT is created
by electromagnetic coils. Here we use a different method with permanent
magnets that are directly mounted onto the vacuum chamber, as shown inPermanent magnets

for the 2DMOT Fig. 2.3. At each long edge of the vacuum chamber, a rail houses up to 6

NdFeB magnets (grade 45M) from www.supermagnete.ch. The rails protrude
the chamber length and ensure a homogeneous magnetic field gradient over
the entire cooling volume. The gradient can be coarse-adjusted in the range
of 5 − 13G/cm by changing the number of magnets in the rails, and can
be fine-tuned by ±0.8G/cm by changing the distance between the mag-
nets with polyamide screws. The screws also allow to adjust the position
of the zero crossing with respect to the center of the chamber. The constant
magnetic field offset from the permanent magnets in the science chamber
is below 1mG and negligible compared to other sources such as the earth
magnetic field. Measurements of the magnetic field gradient along the ra-
dial and longitudinal direction are shown in Fig. 2.3c, d. Further details
on the permanent magnets are described in the semester thesis by Andreas
Herrmann [125].

The 2DMOT chamber is connected to the main chamber with a DN40 all-
metal gate valve from VAT that supports a pressure of 10−11 mbar against
room pressure. The valve allows for changes at the 2DMOT chamber, e.g.
replacing the atom sources or the ion pump, without compromising the
vacuum in the main chamber. The valve is positioned on a brass mount
with a total weight of 7.8kg for high stability of the chamber. The height
of the valve, and thereby of the entire 2DMOT chamber, can be adjusted
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viewport type ↵ subs . thickn. ↵ coat. na

Science chamber top/bottom 46 5 38 0.42

Science chamber aux. top 32 4 24 0.07

Science chamber DN63 73 6 57 0.18

Science DN40 43 6 29 0.10

3DMOT chamber top/bottom 46 5 38 0.76

3DMOT chamber DN40 43 6 29 0.14

Table 2.2: Viewports of the vacuum system. For each viewport type the substrate diam-
eter, the thickness (D), the diameter of the coated area and the NA for the optical
access are listed. The coating area can be off-centred with respect to the centre of the
substrate by up to 1mm due to asymmetric vapour deposition. All length measures
given in mm.

with a fine thread of 0.5mm pitch built into the brass mount. The 2DMOT

chamber with the gate valve is separated from the main chamber by a DN40

metal bellow, enabling the alignment of the atomic beam on the center of
the 3DMOT in the main chamber.

2.2.2 The main chamber

The main chamber of the vacuum system is separated into two chambers
that are dedicated to the cooling and the experiment with the sample, re-
spectively. A picture of the chamber is shown in Fig. 2.4. In the 3DMOT

chamber, the atoms are captured and cooled in a 3DMOT, and then trapped
in a hybrid trap with combined magnetic and optical confinement. Only
close to quantum degeneracy the cloud is transported into the science cham-
ber, where the actual experiment and the probing takes place. The separation
of the preparation and the experimental zone allows for maximum optical
and mechanical access in the science chamber, and for a design optimized
to the needs of the experiment only [126].

The chamber body is custom-welded from commercial non-magnetic stain- Main chamber body

less steel parts of type 316LN by the companies VACOM and Kohler. The two
chamber parts have a vertically oriented cylindric shape with 104mm and
200mm inner diameter, respectively. They are connected by a tube that is
shaped conically to give the maximum conductivity for the available space
at each end. At the opposite side of the science chamber, a T-shaped DN100

tube section gives access to the load-lock chamber and the pumping section.
The diameter and the height of the 3DMOT and the science chambers are

chosen large enough to accomodate viewports at every 45� in the horizon- Optical viewports

tal plane. With the exception of two DN63 viewports in the science chamber,
which are positioned perpendicularly with respect to the long chamber axis,
all horizontal viewports are of DN40 size. In order to achieve high optical
access, the top and bottom flanges are built in a reentrant manner with a cen-
tered viewport at non-standard size, as illustrated in a CAD view in Fig. 2.5a.
Some key dimensions of the viewports are listed in Table 2.2. The substrates
consist of a synthetic fused silica compound named Spectrosil2000 and were
first mounted into their fitting by the special techniques group at Culham
Centre for Fusion Energy, a unit of the United Kingdom atomic energy authority
(UKAEA). Subsequently, the substrates were AR coated on both sides by the
company Laseroptik and then sent back for the final flange assembly. This
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Figure 2.5: Vacuum viewports. a, Top flange of the science chamber including the sci-
ence coil (brown) with aluminium mount (black) and temperature sensor (ochre).
The viewports for the vertical axes of the 3DMOT and the science chambers are
mounted in a reentrant flange, which enhances the optical access. The flange also
provides sufficient space to bring magnetic coils close to the center of the chamber.
b, Designed reflection spectrum for the coating of the viewports. The AR coating ac-
counts for the Rb and K D1 and D2 transmission lines, electronic transitions between
the 5P3/2 and a Rydberg state NS1/2 with large N 2 N for 87Rb, far off-resonant
light for cavity stabilization, as well as bare and frequency-doubled light from an
Nd:YAG laser for attractive and repulsive dipole potentials.

procedure is necessary for optimal coating, because the flange fitting would
reduce the coated area of the substrate and a coating of the bare substrates
causes leakage at the metal-glass transition.

The design transmission spectrum for all vacuum viewports of the main
vacuum chamber is shown in Fig. 2.5b. It takes into account the following
wavelengths (in order of priority):

• Cooling and probing light for the atoms: Rb and K D1 lines at 770nm
and 795nm, and the D2 lines 767nm and at 780nm

• Attractive potentials: Nd:YAG laser light at 1064nm

• Cavity length stabilization: interferometrically with laser light at 830nm

• Repulsive potentials: doubled Nd:YAG laser light at 532nm

• Rydberg atoms: two-photon excitation of 87Rb with 5S1/2 ! 5P3/2

(780nm) and 5P3/2 ! NP3/2 with large N 2 N (480nm)

The connection between the 3DMOT and the science chamber includes
a coaxial feedthrough with a floating shield SMA socket. The inner feed-
through side holds a capton-insulated cable leading to an RF coil that is
placed at the entrance to the 3DMOT chamber4. Further electrical feedthroughs
for the transfer system are placed at the bottom flange and the wall of the sci-
ence chamber, including two SMA, one HV and a 19-pin feedthrough from
the company Accuglassproducts. In addition, a high power connector from
MDC Vacuum Products serves as thermal feedthrough. These feedthroughs
are explained in more detail in Sec. 2.3.

The UHV in the vacuum chamber is maintained by a combination of sev-
eral vacuum pumps. The main pump is an ion pump with a nominal pumpVaccum pumps

speed of 80 l/s (100L-30-6D-SC-N-N from Gamma Vacuum). Its working prin-
ciple is based on a chain reaction of ionizing and accelerating gas molecules

4 A test after the bakeout showed a very small inductance of the connector, likely due to an inter-
nal connection of the wires. This resulted in very weak RF fields. In order to obtain sufficiently
strongRF fields, we integrated an wire loop into the coil holder in the top flange of the 3DMOT

chamber.
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Figure 2.6: Magnetic fields in the 3DMOT and the science chamber. a, The magnetic coils
for the 3DMOT chamber are connected in (quasi) anti-Helmholtz configuration and
can produce gradients of up to 412G/cm along zL at a current of 400A. b, The
coils in the science chamber are connected in (quasi) Helmholtz-configuration with
maximum magnetic field of 686G in the center of the vacuum chamber at a current
of 200A. The curves are obtained from a numerical simulation of conductor loops.

towards the electrodes, where the molecules are adsorbed. This process is
efficient for heavy air particles, e.g. N2, O2 or H2O. Small air particles, in
particular H2, are predominantly pumped by two NEG pumps (CapaciTorr
D100 and CapaciTorr D200 from SAES Getters) by particle adsorption into a
porose TiZrV alloy [127–129]5. They are placed inside the ion pump and at
the connection between the two parts with nominal pump speeds of 200 l/s
and 100 l/s, respectively. In addition, a Mini Ti-ball titanium sublimation
pump from Agilent technologies can be activated to coat the inner surface
of the vacuum chamber with a titanium layer that is reactive and adsorbs
residual gas molecules. Its solid angle excludes the gate valve to ensure that
the closing mechanism is unharmed. However, a titanium layer could form
on the rail system on which the science platform is displaced (cf. Sec. 2.3). It
is unclear if this produces dust when exchanging the platform after a high
number of titanium activation cycles. The vacuum pressure is measured by a
UHV 24-p Extended Range ionization gauge with thorium-iridium filaments
from Agilent technologies, which is placed at the connection tube between
3DMOT and science chamber.

In the molecular flow regime (p ⌧ 10−3 mbar), the expected pressure
in the vacuum chamber can be determined from a calculation analogous Vacuum pressure

estimationto electrical conductances and voltages [103]. When a pump with speed S

and limit pressure plim is connected to a vacuum chamber, the equilibrium
pressure is given by

p =
q

S
+ plim. (2.2)

The total outgassing rate q =
P

i qi is given by the outgassing rates qi

of each element of the chamber, e. g. chamber body, flange connections,
feedthroughs or parts inside the chamber. The outgassing rates are usually
specified by the producer, and for many materials have been measured with
a high precision [134, 135]. If the pump is connected to the vacuum chamber

5 The NEG technology was developed for the accelerator rings at CERN both as a porose pump
material [130, 131] and as a coating of the inner ring surface [132]. Nowadays, the coating is
also commercially available at several particle accelerator centres upon request, e.g. CERN and
GSI [133].
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with a tube of conductance C, its speed is reduced to the effective pumping
speed

Seff =
S

1+ S/C
. (2.3)

The pressure p 0 in a second chamber that is attached to the first one with a
tube of conductance C is

p 0 =
S

C
p. (2.4)

Together with Eq. 2.1 and its limit for constant radius r1 = r2, this is suf-
ficient to estimate the pressures in our vacuum system. We obtain, under
conservative assumptions, pScience ⇠ 7⇥ 10−12 mbar for the science cham-
ber, p3DMOT ⇠ 5 ⇥ 10−11 mbar for the 3DMOT chamber, and p2DMOT ⇠

2 ⇥ 10−7 mbar for the 2DMOT chamber. The calculation excludes the ion
pump in the 2DMOT chamber to simulate a dominant 87Rb vapour pressure.
The reliability of these simple formulas has been confirmed within several
per cent by extensive Monte-Carlo studies [136, 137] and experiments [103],
such that the uncertainty of the estimate for an empty vacuum chamber is
mainly given by imprecise specifications of the vacuum components and
incautious vacuum procedures during assembly.

The chamber is fixed on the optical table with massive brass mounts of
50mm diameter and 2.4kg weight each. They support the vacuum chamber
at three points of the science chamber to avoid overconstraints. Additionally,
a fourth identical mount supports the lower flange of the 3DMOT chamber
to minimize vibrations along the long chamber axis.

The reentrant flanges not only house the optical viewports but also in-
clude coils for magnetic field generation. The flange shape allows to po-Magnetic coils

sition the coils close to the atomic cloud and therefore to generate strong
fields. Eddy currents during the switching are also reduced compared to a
mounting at larger distance as the enclosed amount of metal is minimized.
The coils in the science chamber are designed to reach the relevant intra- and
interspecies Feshbach resonances of 40K and 87Rb at 202G, 221G and 543G
[138–140] with a current of below 200A. The coil holders in the 3DMOT

chamber house two coil pairs. The first one is designed to create the mag-
netic field gradient for a strongly confining quadrupole trap. The second
one serves as an offset field to provide a well-defined quantization axis
along the vertical axis during optical pumping and experiments at this po-
sition. It allows to create magnetic fields of up to 37G at a current of 10A.
The electric properties of the coils are listed in Tab. 2.3, and the calculated
magnetic fields at the center of the vacuum chamber are shown in Fig. 2.6.
All coils were wound by the company Oswald in custom-designed holders
that are directly screwed into the vacuum chamber. A slit in each coil holder
prevents the buildup of eddy currents during the switching of the current.
In addition, each holder provides a cut-out for a temperature sensor that
allows to monitor the coil temperature. The coils for the quadrupole trap
and the Feshbach field are wound from a 4⇥ 4mm2 large wire with a hol-
low core of 2.5mm diameter for water cooling. The wire is surrounded by
a 0.4mm thick capton insulation. The offset coils consist of a smaller wire
with a quadratic 1⇥ 1mm2 cross-sectional area without coolant hole.

Further offset coils are directly wound around the vacuum chamber on all
axes in the science chamber and on the two remaining axes of the 3DMOT
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coil n r (m⌦) l (µh)

Science chamber top 73 29.8 231.24

Science chamber bottom 72 29.3 227.35

3DMOT chamber top (gradient) 19 7.1 19.40

3DMOT chamber bottom (gradient) 19 7.0 19.38

3DMOT chamber top (offset) 50 269 176.5

3DMOT chamber bottom (offset) 50 269 177.1

Table 2.3: Electric properties for the coils of the main vacuum chamber. Shown are the
winding number (N), resistance (R) and the inductance (L) at 1kHz. The measure-
ments were done by the company at a temperature of 22 �C and confirmed in our
test measurement.

chamber. The winding number of each coil is chosen such that the magnetic
field from each coil pair is around 1.2G/A at the center of the vacuum
chamber. The capton-insulated wire has a round shape with a diameter of
1mm, limiting the maximum driving current without overheating to around
8A [141].

2.3 THE TRANSFER SYSTEM

We now turn to a description of the transfer system, starting with the load-
lock chamber that is connected to the main chamber. It primarily consists
of the load-lock chamber, the science platform and the docking station. In
order to guarantee a successful and reliable transfer of the science platform,
additional components are placed into both vacuum chambers and ensure
the correct guidance, the positioning and the contact of the science platform
during and after the transfer.

2.3.1 The load-lock chamber

The chamber body for the load-lock chamber is welded from non-magnetic
stainless steel components of type 316LN, which are provided by the sup-
plier VACOM. Its principal component is a DN100 vacuum tube, which ex-
tends the main chamber at an equal diameter. The vacuum tube serves as
the channel through which the science platform can be translated. At one
side of the load-lock chamber, a DN200 flange gives large-space access to
the principal tube in order to exchange the science platform. A NEXTorr500

pump from SAES, which represents a combination of an NEG and an ion
pump [142], is connected at its top and maintains an UHV with a pressure
below 10−11 mbar. An additional DN40 T-shaped tube is welded at the top
of the chamber body and contains connections to a UHV 24-p Extended Range
ionisation gauge from Agilent technologies and an edge valve for pump down
with a TMP. The load-lock and the science chamber are separated by a
DN100 all-metal gate valve from VAT, which provides a sufficiently large
diameter to pass through the science platform during the exchange process.
The valve can be operated manually by a hand wheel, which is mounted at
an angle of around 30� with respect to the vertical axis to reduce the total
height of the vacuum system. Blind flanges opposite to the vacuum pump
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Figure 2.7: Picture of the load-lock chamber. The science platform can be inserted into
the chamber through the DN200 flange shown at the front of the chamber. It is
connected to the transfer rod (on the right, not shown) by a bajonet fastening. The
vacuum in the load-lock chamber is maintainted by a NEXTorr pump. During a
platform exchange, the load-lock chamber is vented through the edge-valve and the
new platform is inserted through the DN200 flange. Then the chamber is pumped
with a TMP connected to the edge valve and once UHV is reached, the gate valve is
opened and the science platform is transferred by displacing the transfer rod with
magnetic rings.

and the opening flange ensure a higher symmetry of the chamber during
the welding process.

The sample manipulator is connected at the opposite side of the gate valve.
It is an all-metal sealed linear-rotary feedthrough, which was customizedThe sample

manipulator by the company Ferrovac based on the model RMDG40. Similar components
are typically employed as sample transporters, e. g. in MBE vacuum systems.
The feedthrough consists of an elongated vacuum tube with a rod inside that
can be translated or rotated thanks to two rings that are attached around
the tube. The rings couple to the rod with the help of two sets of rare earth
magnets on the air and the vacuum sides. The rod consists of an inner and
an outer shaft with equal lengths of 890mm. It is mounted on dry-lube
coated ball bearings for high-precision guidance. The two rings allow to
translate the rod over a distance of 700mm and to independently rotate the
inner and the outer shaft. The magnetic coupling supports a linear force
of up to 70N and a maximum torque of 5Nm. A male bajonet connector
is mounted at the tip of the outer shaft, and a slotted screwdriver extends
from the tip of the inner shaft.

The chamber is lying on top of two sickle-shaped brass mounts that sus-Vacuum chamber
mounts tain the chamber without overconstraining it, as it is already fixed to the

main chamber. However, a third mount is directly fixed to the end of the rod,
correcting a residual angle originating from a deformation during bakeout.
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Figure 2.8: The exchangeable science platform a, Top view of the platform with OFHC

body, angled mirror for optical access along the axis of the platform transfer and
high-resolution optical access along the vertical direction. b, Bottom view of the
platform with PEEK guidance parts and the contact bar providing steering voltages
for electrical devices on the platform. c, CAD view of the platform attached to the
sample manipulator. It has an outer shaft with bajonet fastening and an inner shaft
with a screwdriver that passes through the platform and controls a screw at the
platform front end to attach it to the docking station.

2.3.2 The science platform

Each employed science platform is different and designed according to the
needs of the specific setup. In the following, we show the properties of an
empty platform that contains only the elements required for the transfer
and for positioning and contacting to the docking station. An exemplary
model is shown in Fig. 2.8.

The platform body consists of OFHC copper with a size of 118 ⇥ 80 ⇥ Design of the science
platform20mm3. The center of the vacuum chamber—the position of the quantum

gas—is situated 10mm above the upper surface. A cut-out below the quan-
tum gas position facilitates optical access from below. Its diameter and an-
gle of aperture match the NA of the viewport in the lower reentered flange.
A dove-tail construction made of PEEK ensures a precise guiding into the
docking station with a reproducibility of around 10µm. The required width
was determined with gauge cylinders that allow its reproduction in future
platforms with a high precision, see Fig. 2.9.

The optical access inside the chamber along the axis of the transfer rod
is blocked by the gate valve between the load-lock and the main vacuum
chamber. We retrieve this optical axis by including a mirror into the platform Mirror to retrieve

optical access on the
transport axis

that is mounted at its back with an angle of 45� from the horizontal. It
deflects beams along the axis of the transfer rod to the vertical direction
through a viewport in the top flange, see Sec. 2.2.2. The mirror substrate
has a diameter of 40mm and a thickness of 6mm and is HR coated for
760− 1064nm at 45�. The mirror is fixed with a copper streak and can be
replaced according to the needs.

At its lower back the platform includes a bar with 20 gold-coated OFHC

copper contacts that allow to steer electronic devices on the platform. The Electrical contacts
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Figure 2.9: Technical drawings of the science platform a, Top view with a cut through the
front screw bearing that connects the platform to the docking station. b, Side view
showing the mirror angled at 45� for optical access along the transfer axis. c, Front
view with SMA contacts. The width of the science platform including the angled
dove-tail wings was determined with gauge cylinders. All measures in mm.

contacts connect to the docking station, where cables are guided to two
electrical feedthroughs, see Fig. 2.8. One of the contacts is compatible with
HV up to 10 kV. It is further separated from the other contacts to avoid a
vacuum breakthrough [141]. All other contacts are designed to withstand
voltages up to 500V. The front end of the platform features two SMA con-
nectors that stem from UHV-compatible coaxial cables from the producer
Accuglassproducts, where the cap nut was prised open. They are placed in a
tailored opening and fixed with screws.

Two mechanisms are required for a platform exchange, see Fig. 2.8: the
transfer rod needs to connect with the platform that can be removed after
the exchange, and the platform needs to connect with the docking station
to stay at its well-defined position. The former is achieved with a femaleMechanical

construction of the
transfer rod

bajonet receptor at the back of the platform. It is custom made from non-
magnetic stainless steel and tailored to fit the male part on the transfer rod.
The latter is realised with a slotted screw with M6 thread at the front end
of the platform that connects to a thread in the docking station. It is driven
by a screwdriver at the front end of the transfer rod and placed inside a
bearing made of non-magnetic stainless steel and PEEK. The measures of
the screw mechanism are chosen to minimize the contact of the screwdriver
to only the screw, and the material choice was optimized to prevent dust
production during screwing and insertion of the screwdriver.

As the platform contains a number of parts for electrical insulation, ther-
mal conductance and the guiding system, it is prompt to virtual leaks. The
design minimizes surface contact and incorporates venting channels and
holes wherever necessary [103]. The screw holes are vented equally by an
opening to the thread or a hollow core.

2.3.3 Docking station

The purpose of the docking station is to provide the suitable environment
for positioning, thermal contact, vibration isolation, and electrical connec-
tions of the science platform. Its design is illustrated in Fig. 2.10. The base
consists of two layers of non-magnetic stainless steel, which are designed to
yield a high mass for an efficient vibration isolation. The layers are separatedVibration isolation
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by cylinders made of Viton, a vacuum-compatible fluoroelastomer material.
The cylinders are placed close to the nodes of the lowest eigenmodes of the
structure to suppress the coupling to external noise [113]. Vertical OFHC

cylinders secure the structure from tipping over, e.g. during the platform
exchange. The lowest layer is directly screwed into the bottom flange. The
rings result in masses of 1.2kg and 3.9kg for the lower and the upper layer,
respectively. We can model the transfer function of the system by approxi-
mating its behaviour with coupled damped harmonic oscillators [113]. As
shown in Fig. 2.10, we obtain a resonance at ⇠ 40Hz and a suppression of
more than −60dB at a frequency of 1kHz.

The top layer of the docking station is made of OFHC, providing a good
thermal contact with the front surface of the science platform. A cut-out
clears the view to the viewport in the bottom flange. The thermal environ-
ment can be controlled through an OFHC stranded wire with large thermal
conductivity that connects the platform with a thermal feedthrough. The
electrical connections are combined at a PEEK bar with 20 contacts to capton-
insulated ribbon cables that consist of stranded wire of silver-plated copper
with a thickness of 0.3mm (28 AWG). In addition, two female SMA connec-
tors guide the signal through coaxial cables to the vacuum feedthroughs at
the bottom flange.

The platform is guided by several components to ensure that it reaches Guiding mechanisms

the docking station. Starting from the gate valve, it is supported by a rail
system that catches the runners of the platform and brings the platform to
the appropriate height. At the docking station, the platform is again guided
laterally by two wedged PEEK blocks before it reaches the dove-tail rail. To
fix the platform to the docking station, the screw at the platform top can be
turned into a screw hole.

2.4 ASSEMBLY AND BAKEOUT

The procedures to achieve UHV conditions vary among different research
facilities. In the following, we describe the approach that was followed in
our experiment.

The welded body of the main vacuum chamber and of the load-lock were
electropolished by the company Stalderfinish. This process is an electrochem- Electropolishing

ical abrasion technique, in which the metal is removed by placing the com-
ponent as anode in an electrolyte liquid. As a result, the surface roughness
and thereby the total surface area is reduced.

Subsequently, all parts were cleaned for around 60min in an ultrasonic
bath with a 1:9 mixture of an ultrasound cleaner (Tickopur R60 from Ban-
delin) and tap water. Then the parts were rinsed in deionized water to wash Cleaning procedure

away the soap. The bakeable parts were then baked at 300 �C under air in
an oven. Finally, the components were placed in an ultrasound bath of first
acetone and then methanole (spectroscopic quality with > 99.5% purity) for
⇠ 60min. Large components that do not fit into the bath container were
wiped instead. This two-step cleaning procedure is necessary, because ace-
tone is a strong solvent but leaves residues during evaporation, which then
have to be removed with methanole. The Viton cylinders were prebaked at
200� and 10−5 mbar over two days to reduce the outgassing, and then wiped
with methanole. During cleaning and assembly, all parts were handled with
nitril gloves, since some latex gloves can bear traces of powder. To temporar-
ily protect cleaned parts, we used oil-free alumnium foil from the company
All-foil.
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Figure 2.10: The docking station a, Top view of the docking station. It consists of
stainless-steel rings (gray) separated by Viton (dark gray) and a copper housing for
the platform at the top (red). The contact bar with the capton-insulated wires pro-
vides the steering voltages to the platform. b, The science platform slides into the
decking station with a dove-tail shaped guidance system. c, Cut of the science cham-
ber with docking station. The rail system for guidance towards the docking station
is visible on the right. d, Simulation of the vibration isolation with coupled damped
harmonic oscillators for a two-layer system with 1.2kg und 3.9kg.
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The electrical feedthroughs, the viewports and other fragile components
were closed with annealed copper gaskets, as they require a lower tight-
ening torque. All other flange connections are closed with standard OFHC

gaskets. The screws for flange tightening are of nonmagnetic stainless steel
(grade A4). To inhibit the formation of permanent metal-metal bonds be-
tween screws and nuts, all threads were brushed with vacuum grease from
the company Molykote6. The screws were tightened with plate nuts in a
crisscross pattern with around 90� a time until the flange metal faces would
barely touch. Annealed copper gaskets should be turned less per iteration.

The closed vacuum chamber was then wrapped in alumnium foil, heat
tape and thermal insulation. The temperature was monitored by six sen- Bakeout procedure

for the main and the
load-lock chamber

sors that were directly attached to the chamber body at different positions
and served as feedback for the heat tape current controller. The pressure
during the bakeout procedure was monitored in the science chamber and
the load-lock chamber. After connecting a TMP, we linearly increased the
temperature to 200 �C (limited by the Viton) over 8h, held the temperature
until the desired pressure was reached, and decreased the temperature to
70 �C. Then, the NEG and ion pumps were activated. After a second ramp
to room temperature the pressure fell below the range of the ion gauge. No
measurable leak was detected when applying He to the flange connections.

The 2DMOT chamber was assembled in a second step, after the main
chamber had been baked out7. The cleaning procedure was followed simi- 2DMOT bakeout

procedurelarly to the main chamber, but without the prebaking at 300 �C under air.
The viewports were then connected with an Indium wire with 1mm diame-
ter that was laid into a groove of 0.7⇥ 1mm2. This measure was chosen to
obtain a 5− 15% higher cross section for the wire than for the groove. In-
dium is toxic and therefore should be handled with gloves. The bakeout of
the 2DMOT chamber was performed similar to the main vacuum chamber,
but at a temperature of 80 �C, sufficiently below the melting point of Indium
at 156 �C. Following the bakeout and ion pump activation we obtained a
pressure of 1⇥ 10−9 mbar. A measurement with an RGA identified H2 as
the dominant molecule after bakeout. After breaking the ampoule through
the bellow and heating it to ⇠ 40 �C, the pressure gradually increased up to
1⇥ 10−7 mbar over several days.

6 A cleaner alternative are silver-plated screws.
7 Due to a machining mistake in the welding of the differential pumping tube, the 2DMOT

chamber is rotated by 5− 10� around its long axis.





3PREPAR ING AND PROB ING A
BOSE -E INSTE IN CONDENSATE

Before the actual experiment is performed, the BEC is prepared in an ex-
perimental cycle that includes the trapping, cooling and the transport of the
atomic cloud into the cavity setup. The preparation sequence is designed to
yield a fast cycle time while maintaining a stability that allows the experi-
ment to run without supervision. In future, this will enable us to acquire
large datasets. Here, we first give an overview of the entire experimental
cycle and then separately explain every step of the preparation and probing
process, including a detailed description of the required optical, electrical
and mechanical components. We put particular emphasis on the presenta-
tion of the transport of the atomic cloud, which is based on a new technique
involving focus-tunable lenses.
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The entire experimental cycle for the preparation of the BEC, the experi- Overview of the
experimental cyclement and the probing lasts around 8 s. Fig. 3.1 illustrates the key steps and

shows the cycle on a time bar. The cycle contains the following steps:

mot We create an almost collimated beam of 87Rb atoms in the 2DMOT

chamber and therefrom load atoms into the 3DMOT in the adjacent
chamber with a rate of 2.5 ⇥ 1010 atoms/s. After a loading time of
0.5 s, we capture around 5(1)⇥ 109 atoms at 390(10)µK.

molasses cooling We switch off the gradient field of the 3DMOT and
perform molasses cooling for 5ms. This results in a temperature of
7.4(8)µK without detectable atom loss.

magnetic trap After switching off the repumping laser beams and de-
pumping the atoms into the |F = 1i hyperfine states for 5ms, we switch
off all beams and capture the atoms in a magnetic quadrupole trap
with a field gradient of 90G/cm. Without additional optical pumping,
we capture around 40% of the atoms. We ramp up the magnetic field

31
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Figure 3.1: Overview of the experimental cycle. The pictures a–d show top views of the
chamber at different points of the preparation sequence. a, 87Rb atoms are loaded in
a 3DMOT from an atomic beam created in a 2DMOT, followed by molasses cooling.
b, The laser-cooled atoms are loaded in a magnetic trap and evaporative cooling
with a ramped RF field is performed. c, The atoms are loaded in a dipole trap
and transported into the Science chamber by displacing the trap focus. d, After the
transport, the atoms are loaded in a crossed dipole trap and optically evaporated
until reaching an almost pure BEC. Gravity points along −zL. Adapted from [143].
e, Illustration of the experimental cycle on a time bar. The entire cycle lasts around
8 s.
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to 403G/cm within 0.2 s to increase the atomic collision rate, ending
up at a temperature of 80(5)µK.

rf evaporation We apply an RF field to the tightly trapped atoms that
couples the magnetically trapped |F = 1,mF = −1i state with the un-
trapped |F = 1,mF = 0i state. Within 0.7 s the RF frequency is ramped
from 52MHz to 25MHz to cool the atoms with forced evaporation. We
end up with around 2.5(3)⇥ 108 atoms at a temperature of 35(3)µK.

hybrid trap We now load the atoms into a hybrid trap with axial mag-
netic and radial optic confinement. To this end, we linearly decrease
the magnetic gradient to 25G/cm over 2.2 s. Simultaneously, an opti-
cal dipole beam is ramped up to 3.3W over 1.5 s creating a dipole trap
of U0 = −kB ⇥ 195µK potential depth. At the same time we linearly
decrease the RF frequency to 4MHz to compensate for the weaker
magnetic confinement. We end up with a dense cloud of 1.8(1)⇥ 107

atoms at 9.4(1)µK.

optical transport By gradually switching off the magnetic field gradi-
ent over 0.1 s, the atoms are trapped in a pure dipole potential. We
transfer the cloud from the 3DMOT chamber to the science chamber
by displacing the focus of the dipole beam with a tunable lens in an
s-shaped ramp over 1.6 s. The atom number and temperature does not
change significantly during the transport.

crossed dipole trap We switch on an additional dipole beam along the
xL axis, perpendicular to the transport beam, within 10ms with a
power of 1W, and then lower the power of the transport beam to 1.2W
over 0.3 s in order to achieve similar trap depths of U0 = −kB ⇥ 50µK
for both beams. After 0.1 s free evaporation, we obtain a cloud with
4.1(1)⇥ 106 atoms at 11.3(2)µK. The temperature is further reduced
with two linear evaporation ramps. During the first one, the power of
the transport beam and the crossed dipole beam are linearly lowered
over 0.5 s to 0.12W and 0.14W, respectively, creating a trap depth of
to U0 = −kB ⇥ 14µK with similar contributions from both beams. We
obtain atomic clouds right above the critical point for the BEC with
1.23(6)⇥ 106 atoms at 1.1(1)µK. The second evaporation ramp of 0.8 s
is linear again with a final trap depth of U0 = −kB⇥2.1µK. We achieve
almost pure BECs of 2.13(5)⇥ 105 atoms, which can be increased in
size with longer 3DMOT loading and evaporation ramps.

3.1 INFRASTRUCTURE

The experiment is arranged in a room with an area of 24m2. An optical Laboratory
environmenttable from the company Newport houses the vacuum chamber for capturing,

cooling and probing the atomic cloud as well as the required optical setup.
The table has a size of 240 cm ⇥ 120 cm and is floated with pressurized air
to suppress mechanical vibrations. The laser beams are generated and pre-
pared on a second, equally-sized optical table in the same room and then
guided to the main optical table through PM single-mode optical fibres. A
second room connecting to the main labratory serves as a preparation lab
for new developments, and also houses the dipole trap laser due to space
constrains.

The room temperature is stabilized by an air-conditioning system to a-
round ±0.5� C. A secondary air-conditioning system generates filtered air
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with a set temperature below room temperature. The filtered air exits flow
boxes from the company Camfil, producing a laminar vertical air flow on
the optical tables. The optical tables are enclosed by composite aluminium
panels Alubond, which are mounted in an ITEM structure without mechani-
cal contact to the optical table in order to avoid mechanical vibrations. This
results in an almost dust-free environment with an increased temperature
stability of ±0.05� C. Residual fluctuations of the environmental parameters
are due to the unregulated humidity taking values of between 20− 80%.

All environmental parameters are monitored and logged in an ENVICO

system developed within the group [144]. It consists of a base unit cumulat-Environment control
system ing diverse sensor types. Here, their measurements are read out and stored

in a MySQL database. The base unit also allows to set limits to each sen-
sor and provides a 5V pull-down line that is used as an interlock, e. g. for
cooling water, magnetic coils and high-power lasers.

We use a control system involving five computers in a client-server archi-Experiment control
hardware tecture to control the experiment and acquire data. Each step in the exper-

imental cycle involves the control of 36 analog-output channels, 64 digital-
output channels and further devices steered via a LAN network. All analog
and digital channels are galvanically separated from the steered devices
by opto-couplers or transimpedance amplifiers. The set values in terms of
magnetic fields, laser beam intensities and frequencies are monitored on os-
cilloscopes, frequency counters and a wave-meter (WS7 from HighFinesse).

On a software level, the control framework is based on the language C++
and has been developed within our group [145]. The timing of the experi-Experiment control

software mental cycle can be edited by a control program with a GUI in a matrix-type
representation with timing edges on one axis and hardware channels on the
second axis. Each entry describes a constant or time-dependent value for the
specific hardware channel at the corresponding time edge. The description
is saved in XML format and sent to the main runner computer, which inter-
prets the description and uploads the results into all hardware devices. The
timing of all devices is controlled by TTL pulses with a precision of 100ns,
synchronized by a 10MHz clock that is stabilized with a GPS receiver. If no
changes are made, the last XML file is automatically repeated as an idle se-
quence to ensure thermalization of the experimental setup. The XML file is
shared with three more computers for readout of CCD cameras and SPCMs.
The acquired images and photon data include the XML file as metadata to
allow reconstruction of the employed sequence at a later point.

3.2 LASER COOLING

The first step of the experimental cycle is based on Doppler cooling [146,
147]. In brief, the cooling effect originates from the Doppler shift that brings
the transition frequency of an atom on resonance with a red-detuned beam
propagating opposite to the velocity of the atoms. As a consequence, photon
scattering is enhanced for moving atoms compared to resting atoms. As a
consequence, the recoil momentum from photon absorption establishes an
effective friction force. An additional restoring force of the photon scatter-
ing is achieved by spatially modifying the detuning with a Zeeman shift,
which increases the photon scattering rate with the distance from the trap
center. Counterpropagating beams along all three spatial directions allow
for isotropic cooling and trapping of the atomic cloud in a 3DMOT.Loading a 3DMOT

from a 2DMOT An efficient way to capture the atoms in the 3DMOT is provided by a
2DMOT, which creates an atomic beam of high brilliance by laser cooling
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Figure 3.2: Timeline of the laser cooling stage. All laser cooling beams as well as the
magnetic field gradient are switched on at t = 0. The 3DMOT (I), the molasses
(II) and the depumping stage (III) are separated by dashed lines from left to right.
The traces show a, the power of the cooling light per beam, b, its detuning from
the atomic resonance, c, the power of the repumper light in each beam and d, the
magnetic field gradient.

and trapping the atoms along two directions only [116, 148]. We use an
extended variant, the so-called 2D+MOT, which contains an additional pair
of beams along the axis of the atomic beam to also control the velocity
distribution along the propagation axis. This setup has shown very high
flux rates in previous experiments [116, 120–124, 148–152].

We then switch off the magnetic field gradient and perform laser cooling
with an optical molasses, see e. g. [153, 154]. This technique is based on the Molasses cooling

fact that both the scattering rate and the light shift in a polarization lattice
are not only spatially varying but also depend on the Zeeman sublevel. If
a high photon scattering rate and a positive light potential coincide for the
Zeeman sublevels, a phenomenon called Sisyphos effect takes place, where
the potential energy that the atoms gain from climbing potential hills is re-
moved with scattered photons. This process is fundamentally limited by the
atomic recoil energy and temperatures on the order of 1µK can be achieved,
well below the Doppler limit [154, 155]. At the end of the laser cooling se-
quence we switch off the repumping laser in order to depump all atoms into
the lowest hyperfine states. The entire laser cooling stage is illustrated on a
timeline in Fig. 3.2.

3.2.1 Laser system

Parts of the laser system have been described in [156]. It is based on three
diode lasers [157, 158] at 780nm. Two of them (DL pro by Toptica) achieve
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Figure 3.3: Frequency stabilization for laser cooling and probing. a, Level scheme for the
D2 line of 87Rb with the transitions indicated that are adressed by the lasers. The
frequency of the reference laser is 18.8MHz higher than the |F = 2i ! |F 0 = 2i tran-
sition. The frequency of the cooling laser is near resonant with the |F = 2i ! |F 0 = 3i
transition after passing an AOM, and can be adjusted during the experimental cycle.
The repumping laser adresses the |F = 1i ! |F 0 = 2i transition after passing an AOM.
b, Locking scheme for the laser frequencies. The reference laser is FM locked to the
crossover between the |F = 2i ! |F 0 = 1i and the |F = 2i ! |F 0 = 3i transitions with
a Rb vapour cell. The cooling and repumping lasers are both offset locked to the Ref-
erence laser. c, Electronic setup for frequency locking. For each lock, the error signal
is created by mixing the beat signal from an AC PD with a LO and subsequent low-
pass filtering. The offset lock additionally requires a delay cable to generate the error
signal. The frequencies are then stabilized within a PID loop. In order to increase the
laser frequeny stability, the LOs for reference and cooling lasers are provided by a
GPS stabilized DDS.
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frequency stabilization and beam distribution. In the stabilization part beat notes
between the three lasers are generated and a small part of the light is sent to a wave-
meter to monitor the frequencies. Additionally, the mode profile of the cooling laser
is cleaned with an optical fibre. In the distribution part, the laser beams are split into
several paths. Each beam is mechanically shuttered and its frequency is adjusted
with an AOM before being sent to the experiment table through an optical fibre.

a total output power of 80mW and serve as frequency reference and the
repumping laser. The third laser includes a TA stage (TA pro by Toptica),
which raises the maximum output power to 2.1W. This laser provides the
light for laser cooling and imaging.

The level scheme for the D2 line of 87Rb and the stabilization scheme Level scheme for
rubidiumfor the laser frequencies are shown in Fig. 3.3a. We first lock the reference

laser to a Rb vapour cell using FM spectroscopy [159] with a modulation
frequency of 10.9MHz. We choose the crossover of the |F = 2i ! |F 0 = 1i
and |F = 2i ! |F 0 = 3i transitions as a resonance line, which exhibits higher
signal-to-noise ratio than the bare resonances [160]. We use a DDS as mod-
ulation frequency, yielding an enhanced frequency stability compared to a
VCO.

The frequencies of the other two lasers are stabilized with offset locks to
the reference laser [161], see Fig. 3.3b,c. For the repumping laser, we first Laser lock scheme

record the beat signal with the reference laser on an AC PD and mix it with
a home-built MW source at 6.7GHz. The resulting low-pass filtered signal
has a frequency of 133MHz and is used to generate the lock signal for the
offset lock with the help of a delay cable with fixed time delay and therefore
frequency-dependent phase delay. A PID loop stabilizes the laser then to a
set frequency offset between the two lasers, which is determined by a VCO

signal. The frequency of the cooling laser is stabilized in a similar way, but
with a DDS serving as LO. The beat signal between cooling and reference
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optical setup.

laser lies in the range of 50− 170MHz and does not require down-mixing. It
can be steered via ethernet connection from the computer by adjusting the
setpoint for the DDS frequency with the runner PC.

The optical setup for the laser system consists of two parts, as shown
in Fig. 3.4. The first part serves to stabilizing and monitoring the laser fre-Optical setup of the

laser system quencies. The FM signal from the Rb spectroscopy and the beat signals are
recorded on AC PD (BPX65 from Siemens) with home-built amplification
and filtering electronics. Each laser frequency is monitored on the waveme-
ter. We use the non-amplified auxiliary output of the TA laser for frequency
locking and monitoring. The mode profile of the amplified output is cleaned
with an optical fibre (1m long PM single-mode fibre from Schäffter+Kirchhoff )
to achieve high coupling efficiencies at each point in the further course of
the beam path.

In the second part of the laser system the beams are distributed for the
2DMOT, the 3DMOT and for optical pumping. We use AOMs (ATM-801A2

from IntraAction) for fast switching and frequency separation. To fully sup-
press residual light [162], each beam is additionally switched with a mechan-
ical shutter (SR475 from SRS). Most optical elements, in particular mirrors,
waveplates and PBSs, are from the company Lensoptics. Finally, the beams
are directed into PM single-mode fibres from Schäffter+Kirchhoff and Thor-
labs to transfer the laser beams to the vacuum system on the second optical
table.

3.2.2 2DMOT

The optical setup for the 2DMOT is shown in Fig. 3.5. After exiting the fibreOptical setup on the
experiment table collimators (60FC-L-4-M30-02 from Schäffter+Kirchhoff ) at a 1/e2 beam diam-
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Figure 3.6: Laser cooling properties. a, Atom number during the loading process ob-
tained from the recorded fluorescence signal with push beam (blue) and without
(green). We extract 1/e loading constants of 0.34(1) s with push beam and of 5.74(1) s
without push beam from an exponential fit (solid lines) to the data, corresponding to
loading rates of 2.5⇥ 1010/s and 9⇥ 109/s. b, Width of the molasses-cooled cloud af-
ter different expansion times. We extract the molasses temperature of T = 7.4(8)µK

from a fit with the function �(t) =

q

�20 + kBTt
2/m, where kB is the Boltzmann

constant and �0 the initial cloud size.

eter of 4.8mm, the cooling and the repumping beams for the 2DMOT are
first mixed and split with a PBS into two paths. Each path contains around
170mW cooling and 20mW repumping light. Subsequently, the polarization
of the beams is rendered circular with a �/4 waveplate. Before entering the
chamber, each beam is expanded to an elliptic shape with an aspheric lens
(C560-TME-B from Thorlabs) with focal length 13.9mm and two cylindrical
lenses of 51mm (LJ1728L1-B from Thorlabs) and 150mm (LJ1895L1-B from
Thorlabs) focal length. The resulting 1/e2 beam diameter of each beam is
(2wx, 2wy) = (52, 18)mm. After passing the 2DMOT vacuum chamber, the
beams are retroreflected with prisms from Lensoptics with a chamfer width
< 0.05mm. The double reflection ensures the correct �+ polarization for the
reflected beam without need for an additional �/4 retardation plate.

The push beam and the counterpropagating beam exit from the same Push and
counterpropagating
beams

fibre collimator (60FC-T4-M25-37 from Schäffter+Kirchhoff ) with a 1/e2 beam
diameter of 4.0mm and 50mW optical power. The power is split between
the two paths with variable ratio at a PBS. In the experiment, we did not
see an appreciable improvement of the loading rate when including the
counterpropagating beam and omitted it in the cirrent configuration. The
power of each beam is permanently monitored on a PD. All elements of the
optical setup for the 2DMOT are AR coated at 767− 780nm to support the
D2 lines for both Rb and K.

We optimize the 2DMOT in terms of beam alignment, power ratio, po-
larization and the magnetic field gradient. The fluorescence signal of the
3DMOT gives approximate information on the loaded atom number. We
record the fluorescence light on a PD and calibrate the atom number with
absorption images of the 3DMOT. The resulting loading curve with and
without the push beam is shown in Fig. 3.6a. Presumably, even higher load- Loading rate

ing rates could be achieved with the setup, as neither the detuning of the
2DMOT nor the background pressure has been optimized yet.
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3.2.3 3DMOT and optical molasses

The optical setup for the 3DMOT is shown in Fig. 3.5. The six laser beams for
the 3DMOT are generated by mixing the light for cooling and repumping in
a fibre optical beamport cluster from Schäffter+Kirchhoff. A third, auxiliary
input beam provides light for � pumping for one of the output beams. All
three input beams feature a PD port for power monitoring. The PD signal
for the cooling light is also used to actively stabilize its power with feed-
back on the AOM generated from home-built PID electronics. In order to
obtain a sufficient long-term stability, the fibre cluster has been thermally
cycled several times prior to delivery. The optical elements of the cluster areFibre optical

beamport cluster AR coated for 767− 780nm and the employed waveplates are zero-order at
773nm to be compatible with light at the D2 transitions of both Rb and K.
Each output beam is sent to a fibre collimator (60FC-Q773-4-M150-37 from
Schäffter+Kirchhoff ), which produces a collimated beam with a 1/e2 diameter
of 28mm with adjustable polarization thanks to a built-in �/4 plate.

We optimize the 3DMOT separately from the 2DMOT parameters by first
aligning all six beams until the optical molasses is stable, and then opti-
mizing magnetic field gradient and detuning. The highest loading rate is
obtained for a 3DMOT detuning of −3.2 � and a magnetic field gradient of
(@xB,@yB,@zB) = (4.5, 4.5,−9.0) G/cm. In order to achieve molasses cool-
ing, we suddenly switch off the magnetic field and ramp the detuning to
� = −15 � over 5ms, while the power in each cooling beam is lowered to
4mW. We determine the temperature from the fitted width of the atomicTemperature after

molasses cooling cloud on absorption images with different expansion times, as shown in
Fig. 3.6b. In a final step, we switch off the repumper to depump all atoms
to the |F = 1i manifold. This transfers around 40% of the atoms into the
low-field seeking |F,mFi = |1,−1i state. Optical pumping [126] did not re-
sult in a higher fraction, likely due to residual magnetic fields creating an
ill-defined quantization axis for small offset fields.

3.3 MAGNETIC TRAPPING

The molasses-cooled cloud has a phase space density that is around six
orders of magnitude away from Bose-Einstein condensation. Higher phase-
space densities can be achieved in tight conservative traps, for instance op-
tical dipole traps. However, loading atoms from the molasses directly intoLarge confinement

with magnetic
quadrupole traps

an optical trap requires large laser power, because the beam diameter has
to be chosen according to the cloud size. As a consequence, we first trap
the atoms in a magnetic trap, which makes use of the forces on the perma-
nent magnetic dipole moment of the neutral atoms in an inhomogeneous
magnetic field, and provides large trap depths and capture ranges [163].

3.3.1 Coil circuit and water cooling

The circuit for the gradient coil pair in the 3DMOT chamber and the Fesh-
bach coil pair for offset fields in the science chamber is shown in Fig. 3.7.Electric circuit

The gradient coils are driven by a low-noise power supply (SM 15-400 from
Delta Elektronika), which can produce currents up to 400A resulting in mag-
netic field gradients of 413G/cm. The Feshbach coils are driven by a second
power supply (SM 30-200 from Delta Elektronika) with 200A maximum out-
put, yielding magnetic fields up to 681G. The current in each coil pair is
monitored with a flux sensor (DS600UBSA-10 from Danisense), and the tem-
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Figure 3.7: Electronic and water cooling circuits of the magnetic coils. The circuit for the
coils in the 3DMOT and the science chamber are identical. Each coil pair is driven
by a low-noise power supply, whose output is steered with the set voltage from the
PC. After switching off the fields, the current is dissipated in a high-power resistor.
The cooling water is supplied from one source of 6 bar and is used for both coil pairs
in parallel. The temperature is monitored in each coil separately with temperature
sensors that are connected to the ENVICO system. As soon as a coil temperature or
water flow exceeds the set limits the interlock is activated.

perature is continuously monitored and stored in a database with the Envico
system (see Sec. 3.1). During the experimental cycle, the output current of
each power supply is controlled with an analog input voltage and digitally
switched by acting on the internal interlock of the power supply.

We inject deionized water from the building cooling water circuit into the Water cooling circuit

hollow-core wire out of which the coils are wound. The water has a tempera-
ture of ⇠ 19� C and a long-term stability of around ±1� C. Our cooling water
circuit is implemented with copper tubes and PVC hoses that are connected
with Swagelok and Serto connections. At the source, the standard pressure of
6 bar is reduced to 2 bar with a pressure regulator. The circuit is then split
into two parts that lead to the two coil pairs and recombine at the drain.
Here, the water flow is measured with a flow-switch sensor from the com-
pany ETA. The temperature sensors and the flow sensor are connected to the
pull-down interlock line, which switches off the coils when the temperature
or the water flow are beyond the limits.

The offset coils along each axis in both chambers are driven by low-noise
power supplies from the company Statron without additional circuitry. Their
output currents are steered with a 0− 10V analog input voltage.

3.3.2 Quadrupole trapping

We use the same anti-Helmholtz coil pair as for the 3DMOT to produce a Trapping potential

quadrupole field for magnetic trapping of the form B(r) = (x/2,y/2,−z)B 0

with the magnetic field gradient B 0. Around the trap minimum, the atoms
experience a trapping potential of the form:

V(x,y, z) = −µ ·B(x,y, z) = −gFmFµB |B(x,y, z)| , (3.1)
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where gF is the Landé factor, mF is the magnetic quantum number and µB

the Bohr magneton. As a consequence, only atomic states with a positive
product gFmF (called low-field seekers) can be trapped in a quadrupole field.
After optical depumping the atoms are in the F = 1 state and since gF =

−1/2 we solely capture the fraction in the |F,mFi = |1,−1i state.
The catch gradient after laser cooling is optimized for matching the atomicMode matching the

atoms cloud with the trapped state [126]. We subsequently compress the cloud by
ramping up the magnetic field gradient to 403G/cm in order to maximize
the collision rate for fast thermalization during evaporative cooling.

3.3.3 RF evaporation

Evaporative cooling is achieved by continuously removing atoms from the
trap that have a kinetic energy higher than the ensemble average. The tem-
perature of the remaining atoms after rethermalization is then lower com-
pared to the initial one. This technique has first been realised with spin-
polarised hydrogen [165], and subsequently proved to be key for the first
realization of a BEC [166]. In a magnetic trap, this technique can be applied
by lowering the effective trap depth with RF induced transitions between
the magnetically trapped and untrapped Zeeman sublevels. The quadrupole
trapping potential that we employ is ideally suited for evaporative cooling,
because it allows for runaway evaporation with increasing collision rate dueRunaway regime of

evaporative cooling to its linear potential [166]. Indeed, a characterization of the evaporation
process revealed our setup to work in this limit thanks to a low background
pressure providing a life-time of 65(1) s for the trapped atoms [143]. Bose-
Einstein condensation, however, can not be achieved in a quadrupole trap,
because of loss from Majorana spin flips to untrapped Zeeman sublevels
[126]. They occur at the trap center, when the Larmor frequency!L = |µ|B/ h

is on the order of the instantaneous angular trapping frequency and the
atomic magnetic moment cannot adiabatically follow the direction of the
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magnetic field any more. Different magnetic trap geometries have been de-
velopped to overcome this limit [126].

The setup for forced RF evaporation is shown in Fig. 3.8 and has been
described in [164]. The RF frequency is sent via ethernet to a home-built
DDS, which generates the signal. The DDS output can be digitally switched
with a TTL signal acting on an RF switch. The signal is then amplified to a
power of 30W with an amplifier (LZY-22+ from Mini-Circuits).

We use a single wire loop with a diameter of 44mm as RF coil, which is RF antenna

mounted in the top flange of the 3DMOT chamber 2mm above the optical
viewport and 26mm above the trap center. Because of its high inductance,
the wire is not well impedance-matched over the required RF range of 1−
100MHz. We therefore place a passive high-power attenuator in ⇡-bridge
form (JFW from the supplier Emitec) in front of the antenna, which results in
broadband impedance matching at the expense of an overall smaller signal
strength.

3.4 DIPOLE TRAPPING

Optical dipole traps are based on the AC-Stark effect, which describes the
shift of an atomic resonance frequency in an oscillating electric field E due
to the atomic polarizability ↵, i.e. U / (↵E) ·E. The intensity distribution of
a focussed laser beam can then generate a 3D trapping potential. A review
on optical dipole traps can be found in [167]. For an atom with frequency Light shift in an

oscillating electric
field

!0 and linewidth � of an atomic resonance, the offset for a far off-resonance
laser beam at frequency !L is given by

U(r, z) =
3⇡c2

2!2
0

I(r, z)
�

�
, (3.2)

where � = !L −!0 is the detuning of the laser frequency and I(x,y, z)
the space-dependent intensity. For � < 0 (called red-detuned), the light shift
is negative and a laser beam with finite diameter produces an attractive
potential with a minimum at the point of highest intensity. The opposite
effect is obtained for blue-detuned light with � > 0.

Atoms can be trapped at the focus of a red-detuned laser beam with
Gaussian intensity profile, where the intensity is highest. The corresponding
trapping potential is Trapping potential

for a gaussian beam

U(r, z) ⇡ −U0 +
1

2
m!2

rr
2 +

1

2
m!2

zz
2, (3.3)

with the potential U0 > 0 at the trap minimum and radial and longitudinal

trapping frequencies !r =

q

4U0/mw2
0 and !z =

q

2U0/mz2R, respectively.
The laser beam is characterized by its waist w0 and Rayleigh length zR (see
Appx. A).

Parts of the setup have been described in [143, 168, 169].

3.4.1 Laser system and optical setup

For optical trapping, we use light at a wavelength of 1064nm, which is pro-
duced by a Nd:YAG laser (Mephisto MOPA 36NE from Coherent). The laser
system for the dipole traps is shown in Fig. 3.9. First, the laser beam passes
an optical isolator (FI1060-5SC-BP from Linos) and is collimated with an
achromatic lens (LA1162 from Thorlabs with focal length f = 400mm). The
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Figure 3.9: Laser system for the optical dipole traps. The paths for the transport beam
and the dipole beam X are generated from the same laser and then shifted in fre-
quency by +⌫Y = 80MHz and −⌫X = −80MHz, respectively. They are guided to
the experiment table with optical fibres.

splitting into the beam paths has to be achieved with thin film polarizers
(Laseroptic Garbsen) instead of PBSs due to the high power of up to 40W. We
reflect the majority of the power into the path for the transport beam, where
it passes an AOM (ATM801A2 from IntraAction). To optimize the fibre cou-
pling, a 10 : 3 telescope with spherical lenses of focal lengths f1 = −75mm
and f2 = 250mm (LC4513-B and LA1461-C from Thorlabs) adjusts the beam
diameter to the appropriate size. We then couple the beam with a fibre col-
limator (60FC-SMA-T-4-M25-37 from Schäffter+Kirchhoff ) into a PCF (LMA-
PM-15from NKT Photonics, which supports the high employed optical power
of up to 6W. A smaller fraction of the original laser beam serves as second
dipole beam along the xL axis and is coupled into an optical fibre. We use
opposite diffraction orders of the two AOMs to avoid interference of the two
dipole beams inside the vacuum chamber.

On the experiment table, the transport beam exiting the PCF is collimated
with a fibre collimator (60FC-SMA-T-4-M40-54 from Schäffter+Kirchhoff ) to
a 1/e2 beam radius of 3.9mm. After polarization cleaning with a PBS, a
fraction of the power is directed to a PD with a logarithmic current-voltageIntensity

stabilization with a
logarithmic PD

converter from Texas Instruments. We use a servo controller (LB1005 from
Newport) to stabilize the power over a range of 0.01− 7W without changing
background noise. A second PD has a linear power-voltage characteristic
and is used for monitoring. Before the vacuum chamber, the transport beam
is combined with the imaging beam on a dichroic mirror. The residual light
passing from the transport beam is imaged on a CCD camera to monitor size
and position of the beam before and after the optical transport. Similarly, the
light exiting the vacuum chamber is directed on a beam dump and residual
reflection from the dichroic mirror is monitored on a CCD camera.

A laser beam along xL forms a crossed dipole trap together with the
transport beam. It has an elliptical shape with the short axis along zL to
compensate for gravity. The beam obtains its shape with a fibre collima-
tor (60FC-4-E15x5-1064 from Schäffter+Kirchhoff ), which includes cylindrical
lenses for 1/e2 output beam radii of (wx,wz) = (2.5, 7.5)mm along the hor-
izontal and the vertical axes, respectively. A small fraction of the light is
sent to a PD for intensity stabilization, whereas the remainder of the beam
is focussed into the vacuum chamber with an achromatic lens (AC508-400-B
from Thorlabs) to a 1/e2 radius of (wy,wz) = (54, 18)µm.
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Figure 3.10: Optical setup for the dipole traps. The transport beam from the PCF is
intensity-stabilized with a logarithmic PD and then passes the setup with the tunable
lenses, which produce a displaceable focus inside the vacuum chamber. The beam
position and size is monitored with two CCD cameras. The beam for the crossed
dipole trap obtains an elliptical shape from cylindrical lenses in the fibre collimator
and is then focussed into the vacuum chamber.

3.4.2 Hybrid trap with optical and magnetic confinement

The next step in the preparation process employs a hybrid trap, where the
radial confinement is provided by an optical dipole beam and the axial con-
finement is enhanced by a quadrupole potential whose center is offset by �z
along the direction of gravity to avoid Majorana spin-flips [170]. The com-
bined optical and magnetic potential allows to achieve higher densities and
faster evaporation times. The axial trapping frequency is given by Trapping potential

for the hybrid trap

!y =

s

µBB 0 |mFgF|

4m�z
+

2U0

mz2R
. (3.4)

During the loading of the hybrid trap the quadrupole potential also acts
as a reservoir to directly feed the tightly confining hybrid trap, resulting
in an efficient evaporation process thanks to the advantageous phase-space
density [171, 172]. We obtain a cloud of 1.8((1)⇥ 107 atoms at 9.4(1)µK.

3.4.3 Transport with focus-tunable lenses

Transport of cold atoms between two vacuum chambers has been achieved
first magnetically by displacing the field minimum [173, 174]. Optical trans-
port is typically achieved by translating a focussing lens on an air-bearing
stage [175]. Approaches with optical lattices either only work along the di-
rection of gravity [176] or require the generation of Bessel beams [177].

With our experiment, we introduce a new approach based on focus-tunable
lenses. They are known from a number of techniques in industry [178–181] Optical transport

with focus-tunable
lenses

and provide a simple and compact alternative to the established transport
methods. Parts of this section have been published in:

J. Léonard, M. Lee, A. Morales, T. M. Karg, T. Esslinger and
T. Donner
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Figure 3.11: Timeline of the magnetic trap and the hybrid trap stage. The dashed lines
separate the loading of the quadrupole trap (I), RF evaporation therein (II), transfer
to the hybrid trap (III), RF evaporation in the hybrid trap (IV) and loading of the
optical dipole trap (V). The traces show a, the magnetic field gradient, b, the RF

evaporation frequency and c, the dipole beam power.

Optical transport and manipulation of ultracold atoms using focus-
tunable lenses
New J. Phys. 16, 093028 (2014)

The first generation setup, which is presented in the publication, employs
two focus-tunable lenses of the type EL-10-30 from the company Optotune.
It allows to independently control the position and the size of the focusTwo focus-tunable

lenses by separately adjusting the two focal lengths. Transfer efficiencies of 80−

90% at 1 − 2µK heating can be achieved for atomic clouds consisting of
up to 2 ⇥ 107 atoms at temperatures around 10µK. No lateral drift rate
could be detected, but longitudinally we observed a slow drift, which was
compensated with a current adjustment. The tunable focus size allows to
explore a large range of densities, with possible applications in optimized
trap transfer and novel schemes of evaporative cooling.

Since the implementation of the second generation setup, we instead use
a focus-tunable lens of the type EL-16-40-TC, which offers a number of ad-
vantages over the previous model. The increased lens aperture of 16mmSingle focus-tunable

lens with larger
aperture and

temperature sensor

permits the use of larger beam diameters resulting in smaller trap sizes. Its
tunable focal length lies in the range of (−300, 300)mm through 1, pro-
ducing smaller spherical aberations thanks to the reduced lens curvature.
Furthermore, an integrated temperature sensor can be used to increase the
long-term stability by employing a feed-forward on the focal length.

The working principle is shown in Fig. 3.12a, b. The lens body is filled
with a low-optical absorption liquid and the surface is sealed off with an
elastic polymer membrane. A coil at the lens rim can act on the membrane
by applying a current. As a consequence, the liquid is mechanically pressed
from the outer area to the lens center and the membrane curvature increases.
We mount the lenses with a vertical optical axis in order to reduce the wave-
front errors to 0.1− 0.2 �, with � = 1064nm the wavelength of the trapping
laser.

The optical setup is illustrated in Fig. 3.12c. In principle, a focus displace-Optical setup for
transport at constant

waist size
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Figure 3.12: Optical setup with focus-tunable lenses. a–b, Working principle of the focus-
tunable lenses. When a current is applied to the coil at the lens rim, it acts on the
membrane and presses liquid from the outer area to the lens center, thereby increas-
ing the membrane curvature. Adapted from [182]. c, Lens setup for the optical trans-
port. We choose the separation between the tunable lens fT and the static lens equal
to the focal length f = 400mm of the latter. For this configuration, the divergence
and thus the waist size remains constant.

ment can be achieved using a single tunable lens with positive focal length
fT to focus a collimated beam. However, this comes at the cost of a change in
waist size. We therefore use an additional static lens with f = 400mm. The
diameters in the beam focus before and after transport (Fig. 3.12c) are equal
if their divergences are, which requires the beam sizes at the static lens to
have the same ratio as the focus distances from the lens. This situation can
be achieved by choosing the distance between the two lenses equal to the
focal length f of the static one. Changing the beam diameter at the static
lens by adjusting fT from infinity to negative values therefore displaces the
focus at constant beam diameter.

This behaviour can be derived more rigorously with ray optics. Consider a
ray parallel to the optical axis at distance r0, which enters the focus-tunable
lens. The effective focal length of the tunable lens is fT, and d1 and d2

denote the distances between the two lenses and from the trapping position,
respectively. In the thin lens approximation, the ray propagation T and the Constant beam focus

during transportray diffraction R at a lens can be described with the ray transfer matrices:

T [d] =

 

1 d

0 1

!

, R[f] =

 

1 0

−1/f 1

!

. (3.5)

Starting from the focus-tunable lens, the full propagation through the sys-
tem is described by:

 

r1

↵

!

= T [d2] · R[f] · T [d1] · R[fT ] ·

 

r0

0

!

(3.6)

giving the following condition for the final beam divergence ↵:

↵ = −r0

✓

1− d1/f

fT
+

1

f

◆

. (3.7)
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Figure 3.13: Transport beam properties. a, Measurement of the 1/e2 beam radius
through the focus at the position after transport along the horizontal (blue) and
the vertical (green) axis. The insets display pictures of the beam at −1, 0 and +1mm
from the focus position (from left to right). b, Atom number stability in the BEC

after the optical transport. The data show a long-term measurement of the atom
number with (blue) and without (green) temperature feed forward. An average over
the full measurement with feed forward of 90min results in a mean atom number
of 2.21(9)⇥ 105.

Requiring that the divergence ↵ is independent from the focus position (and
thus fT) results in the condition d1 = f.

We observe a slightly astigmatic beam profile away from the focus to-
gether with the typical asymmetric beam divergence, as shown in Fig. 3.13a.
This does, however, not affect the trapping potential in the focus. In addition,Temperature sensor

for current
feed-forward

the focal length of the tunable lens is sensitive to the ambient temperature,
which causes long-term drifts of the atom number. We use the integrated
temperature sensor of the lens to read out its temperature and feed forward
on the current driver. The result is an improved atom number stability that
shows relative fluctuations of 3− 4% over several hours. Without the feed-
forward, similar stabilities are only maintained for a thermalized apparatus
over 10− 30min.

3.4.4 Optical evaporation in a crossed dipole trap

Forced evaporation in an optical dipole trap can be achieved by lowering
the trap depth with the optical beam power. According to Eqns. 3.2 andOptical evaporation

3.3, the intensity is directly proportional to the trap depth, U0 / I, but at
the same time the trapping frequencies are reduced as !r,!z /

p
I. This

leads to a reduction of the collision rate despite the increasing phase space
density and the runaway regime is essentially inaccessible, except with the
introduction of additional techniques like dimple traps [183], compressing
dipole traps [184] or magnetic field gradients [185].

Optical evaporation presents the last step of the preparation sequence.
We load the atomic cloud into the crossed dipole trap by first instanta-
neously switching on the crossed dipole beam and lowering the transport
beam power to a similar trap depth. After 0.1 s free evaporation, we obtain
4.1(1) ⇥ 106 atoms at a temperature of 11.3(2)µK. We approximate the theo-
retically expected exponential evaporation ramp with two linear ramps over
0.5 s and 0.8 s and obtain almost pure condensates with 2.13(5)⇥ 105 atoms.
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Figure 3.14: Timeline of the dipole trap stage. The dashed lines separate the optical
transport (I), the crossed dipole trap loading (II), free evaporation in the crossed
dipole trap (III) and finally two linear ramps for forced evaporation (IV-V). The
traces show a, the focus position of the transport beam, b, the power in the transport
beam along yL and c, the power in the crossed dipole beam along xL.

3.5 IMAGING

The main imaging method that is applied in the experiment is absorption
imaging. In brief, a resonant laser beam is sent to the atomic cloud and the
shadow cast from light absorption is imaged onto a CCD camera. In the limit
of probe beam intensities small compared to the saturation intensity [107],
the absorption is proportional to the atomic density and the intensity profile
after passing the atomic cloud follows the Lambert-Beer law [126]: Absorption imaging

I(x,y) = I0(x,y) exp
✓

−�0

Z

n(x,y, z)dz
◆

(3.8)

Here, I0(x,y) describes the initial transverse intensity profile and �0 =

3�2/2⇡ is the resonant atom-photon scattering cross-section for the wave-
length �. This expression allows to deduce the integrated line density from
the intensity ratio:

n̄ =

Z

n(x,y, z)dz = −

1

�0
log


I(x,y)
I0(x,y)

�

(3.9)

We take two successive pictures with and without the atomic cloud at the
end of each sequence to obtain I(x,y) and I0(x,y). A third image, called
dark, is subtracted from the other two to account for stray light.

In addition to the in situ density distribution, we can also image the
atomic cloud after releasing it from the trap and letting it expand ballis-
tically. When choosing an expansion time t that is long compared to the
inverse trapping frequency, this converts the initial density distribution to a
momentum-distribution [126].

The laser system for the imaging beams is shown in Fig. 3.15. We use light Laser system for
absorption imaging
beams

on the |F = 2i ! |F 0 = 3i transition, which requires additional repumping
light on the |F = 1i ! |F 0 = 2i transition to transfer the atoms to the higher
hyperfine state. The optical power from the path with the cycling transition
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Figure 3.15: Laser system for imaging. The imaging light on the |F = 2i ! |F 0 = 3i
transition is provided by the cooling laser. It is shifted in frequency with an AOM

and then split into four paths for imaging along all axes in the science chamber, as
well as along the yL axis in the 3DMOT chamber. In order to transfer the atoms to
the |F = 2i state prior to the imaging sequence, they are exposed to repumping light
on the |F = 1i ! |F 0 = 2i transition. This light is split off the repumping laser and
can be applied on the xL and the zL axis in the science chamber, perpendicularly to
the chosen imaging axis.

Camera Res. Magn. Eff. pixel size

Imaging X GX-FW-28S5M-C 4.8µm 2.2 2.07µm

Imaging Y FL2G-13S2M-C 11.1µm 0.9 4.21µm

Imaging Z GX-FW-28S5M-C 4.4µm 2.2 2.05µm

MOT X FL2-03S2M-C 7.5µm 2.0 3.62µm

MOT Y FL2-03S2M 10.2µm 0.7 10.72µm

Table 3.1: Properties of the imaging systems. The table includes the amera type, the
resolution, of the imaging system, the magnification factor and the effective pixel
size in the object plane (pixel size divided by magnification). All cameras are from
the company PointGrey.

passes an AOM and is then split into four beams. The repumping beam
must not copropagate with the imaging beam, because its light would be
captured by the camera and affect the recorded density distribution. We
therefore prepare two separate ports for rempumping beams along the xL
and zL direction in the science chamber.

The optical setup on the experiment table is shown in Fig. 3.16. ImagingImaging system on
the experiment table systems on all three axes in the science chamber (as well as along the trans-

port axis in the 3DMOT chamber) provide access to the cloud along all direc-
tions. Additionally, the cloud can be imaged along xL in the 3DMOT cham-
ber with fluorescence imaging. The vertically travelling Imaging Z beam is
focussed into the aspheric lens of the cavity setup to retrieve a collimated
imaging beam (see Sec. 4.1).
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4TWO CROSSED OPT ICAL CAV IT I E S

The central setting of quantum optics consists of a two-level system inter-
acting with a quantized light field, for instance an atom in an optical cavity.
Extensions of this system to multiple optical cavities have so far been ham-
pered by the challenging technical demands to maintain a sufficiently high
atom-light coupling. In this chapter we describe the construction, imple-
mentation and characterization of a setup with two optical cavities whose
modes cross at an angle of 60�. After presenting all setup components in-
dividually, we turn towards the frequency stabilization and the probing of
the cavities. We conclude with a characterization of the cavity setup and
the interaction with a BEC. The relevant properties of optical cavities are
described in Appx. A, and an introduction to atom-light interactions can be
found in Appx. B.
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Coupling single or multiple atoms to an optical cavity has shown to give
rise to numerous phenomena, both for the internal [186] and the external
degrees of freedom [81]. A long-standing goal is the extension of this set-
ting to two or more cavity modes. One approach consists of coupling to Extending quantum

optics to two
independent modes

several modes in a single cavity, for instance with orthogonally polarized or
higher order transverse modes [81]. However, such a system comes at the
drawback of lacking control over the mode properties, including the reso-
nance frequencies, mode shapes directions and decay rates. This could be
overcome by simultaneously coupling to the modes of different optical cav-
ities. Here we present the development of a setup with two crossed cavities.
The main technical challenges are: Technical challenges

• Compact design: In principle, two mirrors can be approached arbitrar-
ily close until a mode volume is achieved that is small enough for
strong light-matter interaction. This regime is routinely reached in
cavity QED. When crossing two cavities, the minimal cavity length
is given by the mirror diameter. This required the mirrors to have a
smaller size than commercially available substrates.

• Mode overlap: The cavity mirrors have to be aligned with a high preci-
sion to ensure that the modes are not skew. In particular in the disper-
sive interaction regime, where the cavity photons give rise to a dipole

53
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Figure 4.1: The crossed cavities setup. a, The optical cavities consist of two mirror
pairs crossing at 60�. The cavity axes are accessed with four auxiliary mirrors that
reflect the cavity in- and outputs towards optical viewports. A 1D lattice potential
can be formed by retroreflecting a laser beam at the transverse pump mirror. The
atomic cloud is transported into the setup in the focus of a dipole beam along the
horizontal direction. Two mirrors protect the setup from thermal expansion due to
absorbed light from this beam. Shaded arrows illustrate the beam paths for the cavity
in- and output. b, Side view of the complete setup including the aspheric lens for
high-resolution imaging.

potential, skew cavity axes not only reduce the interaction strength
but also induce shear forces on the atomic cloud.

• Crossing angle: For dispersively coupled atoms, the emerging dipole po-
tential is set by the geometry of the setup. Choosing a crossing angle of
60� rather than orthogonal cavity modes offers a much wider range of
accessible phenomena, because the interference patterns of both cavity
fields with a third standing wave, the transverse pump, that mediates
the coupling are mutually compatible. The vacuum chamber, as for
most quantum gas setups, only exhibits viewports at angles of every
45�.

The cavity setup presented here meets all three challenges. It constitutes
the first science setup that was successfully inserted into the vacuum cham-
ber using the transfer system presented in Chap. 2.
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Figure 4.2: Machining of the cavity mirrors. a, The design curve for the dielectric
coating for 0� AOI has a transmission minimum around a wavelength of 780nm
with 2ppm transmission. At 830nm the transmission is around 15ppm. b, Technical
drawing of the target substrate dimensions. c, Substrate in the titanium mount be-
fore machining. It is enclosed by the mount with a pocket tailored to fit the mirror,
and additionally fixed with glue at the top and the bottom (white triangle). d, The
cavity mirrors were machined with a fine-grained diamond wheel mounted on a
mill. e, Wedged substrate after machining. The wedging reduces the mirror surface
to a thin vertical stripe. f, Image of the mirror surface in dark-field microscopy after
substrate machining. The edges show a width of around 50µm.

4.1 THE CAVITY SETUP

A sketch of the cavity setup is shown in Fig. 4.1. The cavities consist of two
pairs of mirrors with a cylindrically formed substrate. To approach them
closely and increase the atom-photon interaction we optimized their shape
by milling down the coated surface to the minimum diameter required to
support the cavity mode.

The mirror mounts are built in a way to favour a matching mode height
for the two cavities. The overlap of the cavity modes was maximized prior
to inserting the setup into the vacuum, and it was reconfirmed after the
bakeout from the alignment procedures (see Sec. 4.3.2. Since the vacuum
chamber does not feature viewports on the cavity axes, the cavities have
to be coupled in vacuo with four coupling mirrors. A fifth mirror with its
optical axis at 60� from each cavity axis serves as a retroreflector for a 1D

lattice potential, which will be used as a transverse pump (see Chap. 5).
Finally, two high-power mirrors protect the cavity setup from thermal ex-
pansion due to absorbed light from the transport laser beam. The setup is
completed by an aspheric lens for high-resolution imaging.
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In the following, the design and assembly of the setup is described for
each component individually.

4.1.1 Mirror machining

The cavity mirrors consist of a superpolished BK7 substrate from the com-
pany Research Electro-Optics with 3mm diameter and 4mm length. The sub-Mirror substrates

strate curvature has a radius of 75mm and is centered with respect to the
substrate axis with a tolerance of 20µm. The substrates are coated with a
stack of SiO2/TiO2 layers with a 40nm wide reflection band centered at
780nm, see Fig. 4.2a. The cavity mirrors stem from the same coating badge
as the ones used in the setup described in [187, 188].

Most experiments choose short cavity geometries to increase the vacuum
Rabi coupling (see Appx. A). In order to approach the cavity mirrors as close
as possible, we machine the substrate with a mill, similarly to the technique
applied in previous work with a single cavity [189]. We choose an edge-
type target shape for the substrate, providing a mirror surface diameter of
0.45(5)mm and an opening angle of 56(1)�, slightly smaller than the angle of
60� between the cavity axes (see Fig. 4.2b). A further reduction of the mirror
surface would compromise the finesse for the fundamental Gaussian mode.
Shorter crossed cavities would be feasible only with reduced mode diameter
by choosing higher mirror curvature, for example with fiber cavities [190,
191].

The milling procedure is shown in Fig. 4.2c-f. In order to securely place
the workpiece in the mill vice, the substrate was already framed into the
final mirror mount of the cavity setup and screwed to an aluminium block.
The mirror substrate is additionally glued to the mount at two points at
the top and the bottom. Here and for all purposes in the following, we
used the vacuum-compatible glue Masterbond EP21TCHT-1. We start with
the bare substrates and protect the mirror surface by applying FirstContact
polymer solution on the coating. The mirrors are machined on a commercialMilling procedure

mill (A50F65 V from Golay-Buchel) with a diamond wheel of grit size D30

(i. e. a micro grain size below 30µm) and 6mm diameter from the company
Haefeli. We cut off the substrate material in slices of 10µm at the highest pos-
sible spinning frequency of 4000 rpm. No water was used during the milling
in order to avoid dissolving the polymer. Instead, the diamond wheel was
cleaned with a humid tissue after every 3− 5 ground slices.

The cavity mirrors are in- and outcoupled with four auxiliary mirrors that
reflect beams on the cavity axes towards two DN63 viewports along the xLAuxiliary mirrors

axis. We use substrates from Lens-Optics with 4mm diameter and an HR

coating at 780− 830nm with equal phase shift for s- and p-polarised light
for the AOI of 30�. Due to geometric constraints, we reduce the substrate
diameter symmetrically with a similar procedure as for the cavity mirror
substrates. The substrate is mounted on a circularly rotatable platform that
allows to remove the material until a cylindrical shape with 2.8mm diameter
is reached.

We also machine the shape of two protective mirrors shielding the cavi-Protective mirrors

ties from the transport beam. They consist of a fused silica substrate from
Laseroptik Garbsen with an HR coating for 1030− 1090nm at 0− 45� AOI. The
coating resists high powers up to 500kW/cm2. The machined mirrors are
prism-shaped with an angle of 22.5� between the mirror and the optical axis
to reflect the beam out of the chamber through the viewports at 45� from
the yL axis. The base of the prism is triangular with an acute angle close
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Figure 4.3: Mirror mounts for the cavity setup. a, Side view of the cavity mirror mount.
The top part contains the cavity mirror in a circular pocket of tailored diameter. It
is glued on top of a piezo component, which in turn is glued on the base part of
the mount. b, Front view of the cavity mirror mount. The reflective mirror surface
is visible at the centre with an elongated rectangular shape. c, Isometric view of the
pump mirror mount. In contrast to the cavity mirrors, this mirror is fixed to the
mount with an M1-threaded screw. d, Mount for the mirrors for protection from the
transport beam. The shape of the machined substrate is illustrated in white at the
upper right of the picture. The reflective surface is at the long side of the triangle.
White and brown parts on the back side of the left mirror are residues of the vacuum-
compatible glue. e, Mount for the input mirror. The mirror is fixed with an M1-
threaded screw. The overhanging design separates the axes of the input and output
beams. f, Mount for the output mirror. The mirror is fixed with an M1-threaded
screw.

to the optical axis of the transport beam to inhibit light scattering from the
uncoated surface. Pictures of the machined mirrors and an illustration of
the prism base shape is shown in Fig. 4.3. During the milling process the
mirror surface was protected with the same polymer and the substrate was
fixed on a stainless steel mount with vacuum compatible glue. The mount
was removed after the machining by slowly heating it to the melting point
of the glue at around 100� C.

4.1.2 Mirror mounting on the base plate

During the bakeout it is crucial that the cavity setup recovers its initial di-
mensions on a micrometer scale. Prior to builing this setup, a first version
was developped with the mirrors fixed by a layer of vacuum compatible
glue of 1mm height. As glue can deform and shrink during the curing pro-
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cess, this led to displaced cavity mirrors with a mode distance of ⇠ 200µm,
larger than the 1/e2 mode diameter of ⇠ 100µm. A central design criterion
for the new setup was to minimize possible drifts of the cavity modes and
ensure the mode overlap to persist after the vacuum bakeout.

The mount for the cavity mirrors consists of two titanium parts with aCavity mirror mount

piezo component in between, see Fig. 4.3. The top part houses the cavity
mirror and also serves as holding support during the milling. The diameter
of each substrate was determined with a calliper with a precision of 2µm,
according to which a hole was then drilled to fit the substrate with a toler-
ance of 5µm. Two triangular pockets give space for vacuum-compatible glue
to fix the mirrors. The pocket position at the top and the bottom predefines
the axis of potential birefringence that arises from stress during substrate
machining. The mounts are built from a single titanium block, which is first
prepared as a whole and only divided into several pieces in a last step. This
method reduces the uncertainty of the relative heights for the cavity mirrors.

The top part with the mirror is glued to the piezo component after ma-Piezo elements

chining. All employed piezo elements are NCE51 shear plate actuators from
Noliac with 0.5mm height and 2µm stroke over a range of ±320V . We ob-
tained an increased precision in the height of the piezo elements by cutting
them all from the same sheet. Their shape is custom-made and matches
the size of the top mirror mount except for additional space at the back
for the soldering connection to the driving voltage cables. The cables are
UHV compatible capton-insulated stranded wires, which are soldered to the
piezo element with a silver connection. The mount presents a pocket at its
bottom side as well as a vertical hole through the entire part, which allow
the glue to expand without influencing the height of the cavity mirror. Each
cable is guided to a contact plate of the science platform to steer the piezo
components with electrical feedthroughs.

In the final step the top part together with the piezo actuator is glued to
the base part, which includes a similar pocket for glue. The relative position-
ing of the titanium parts is set by a mechanical limit stop, which is attached
to the structure during the curing of the glue. Pictures of the assembled
mount are shown in Fig. 4.3a, b.

The substrate for the transverse pump mirror is made of BK7 with a diam-Transverse pump
mirror eter of 4mm. The surface pointing towards the cavity mirrors is AR coated

at 1064nm and for a reflection of 95(1)% at 767− 830nm and 0� AOI. The
opposite side is AR coated for both wavelength ranges. This coating choice
allows to insert a number of beams along a single axis, although the in vacuo
mirror in principle blocks the optical access: an attractive dipole potential
at 1064nm, imaging light at 780nm, repumping light for the imaging at
780nm and a retro-reflected transverse pump lattice at 785nm. The mirror
mount is similar to the cavity mirror mounts and likewise features a piezo
component to control its longitudinal position.

The coupling mirrors are inserted into titanium mirror mounts and fixed
with M1-threaded screws, which hold the mirror at the cavity mode height.
The mirror axes are set to an angle of 30� with respect to the cavity axes,
such that the reflected beams meet the vacuum viewports perpendicularly.
The protective mirrors for the transport beam are fit into a custom mount
with limit stops that define their distance. They were ensured to be parallel
by inserting a plate of 0.40mm width between the substrates during the
glue curing. Afterwards, the slit width was measured with a microscope to
be 0.42(5)mm. This value is chosen slightly smaller than the design space of
0.47mm between two cavity mirrors to prevent stray light on the side areas,
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Figure 4.4: Matching the vertical mode positions. Transmission of the fundamental mode
for cavity 1 (red) and 2 (yellow) for different heights of a needle. We extract a mode
height difference of 11.6(3)µm from an error function fit to the data (solid lines).

but as large as possible to avoid cutting the dipole beam during transport
into the setup.

All mirrors as well as all other elements are positioned on a titanium base
plate with a size of 40⇥ 30mm2 and a height of 5mm. Each cavity mirror
mount is fixed on the base plate with several M1 screws. Its position is de-
fined by mechanical limit stops integrated into the base plate with position
tolerances of 5µm. The positions of all other mirror mounts are set by pock-
ets in the base plate and cannot be adjusted further. Finally, the entire base
plate is integrated into the platform body with three M2 screws at positions
chosen for eigenmode suppression [113].

The high-precision mounts ensure that the cavities are in principle verti- Mode alignment

cally positioned with a combined tolerance of only 12µm and no further
alignment would be necessary. However, in case of additional misalignment
the modular design of the setup allows to readily readjust the cavity mir-
rors by unscrewing the mounts and inserting thin pieces of foil between the
mount and the base plate. We determine the mode heights of the cavities
by recording the cavity transmission while lowering a tip into the modes,
as shown in Fig. 4.4. The tip consists of a steel wire with 100µm diame-
ter, which is vertically mounted on a 3D translational stage. The recorded
light signal drops at a height difference that is equal to the mode height
mismatch. We first observe a mismatch of around 100µm, possibly due to
misalignment when glueing the piezo or an off-centered mirror curvature
beyond the specifications. By inserting a 100µm thick molybdenum foil be-
low the lower pair of cavity mirrors, we could compensate for this mismatch.
We ensured that the mount did not misalign during the final bakeout by
thermally cycling the setup to 120�C at UHV. After the thermal cycling, we
measure a residual mismatch of 11.6(3)µm, far below the mode diameters
of ⇡ 100µm (cf. Tab. 4.3).

The science platform that houses the setup is built identically compared
to the one presented in Chap. 2, except for the setup presented here. The
top surface features a pocket and three holes with M2 threads for the base
plate.
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Figure 4.5: Point-spread function of the imaging system. a, Image of the point-like source
from the FIB test target on a test setup with 38nm effective pixel size. Two rings from
the Airy pattern can be distinguished. b, The data points show an azimuthal average
of the picture in (a). Fitting an Airy pattern to the data confirms a diffraction limited
Rayleigh resolution of 860nm after deconvolution with the test target size.

4.1.3 The aspheric lens

The setup is completed by an aspheric lens that allows for high-resolution
imaging of the in situ density sdistribution. The lens (A12-10HPX-U-B-Ultra
from Asphericon) has a focal length of 10mm and a working distance of
7.6mm at the design wavelength of 780nm. Its NA of 0.55 is chosen ac-
cording to the available optical access to the cavity setup along the vertical
direction. Prior to including the lens into the setup, its properties were stud-
ied in a test setup by imaging a point-like source from a test target that was
produced in an FIB setup. The knowledge of the PSF is sufficient to com-
pletely characterize an imaging system since the underlying Fourier opticsOptical

characterization is linear. The intensity distribution of the Airy pattern is given by [192]

I(⇢) /
✓

2j1(⇢)

⇢

◆2

, (4.1)

with j1(⇢) the first order Bessel function of first kind and ⇢ = 3.8/r0 the ra-
dial distance scaled by the resolution r0. The Rayleigh resolution is defined
as the first zero of I(⇢). A measurement of the PSF at 780nm is shown in
Fig. 4.5. The corresponding resolution is consistent with the diffraction limit.
The alignment of the aspheric lens to the point source tolerates a lateral dis-
placement up to 20µm and an axial displacement up to 100µm without
considerable loss in resolution.

The lens is framed in a titanium mount that is positioned on top of theLens mount

cavity setup. We verify its position with respect to the cavity mode crossing
similarly as before by the drop in the cavity transmission. We then displace
the tip until an electric contact to the ground plate signals the travelled
distance. An offset of 50µm in the vertical distance was then corrected with
molybdenum sheets below the lens mount.

4.2 LOCKING AND PROBING THE CAVITIES

In the experiment, the BEC is exposed to probe fields on each cavity axis
and in the transverse direction along xL. Performing experiments with the
optical cavities requires independent control of all three probe field frequen-
cies as well as the resonance frequency of each cavity. This demands for a
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laser system that provides five different laser frequencies whose frequencies
can all be tuned independently with respect to each other. The tuning range
is set by the free spectral range, which describes the frequency difference to
the adjacent fundamental mode, see Appx. A. From the dimensions of our
science cavities we expect ⌫FSR ⇡ 50GHz.

Active stabilization of an optical cavity is typically obtained interferomet-
rically with the PDH locking technique [193, 194]. The technique makes use Pound-Drever-Hall

techniqueof the frequency-dependent phase shift of the light reflected from a cavity
across its resonance. When modulating the incoming laser frequency ⌫ with
a frequency ⌫mod, the resulting error signal shows three zero crossings, at ⌫
and at ⌫± ⌫mod.

Different research groups employ a number of methods to stabilize the
cavity resonance frequency without affecting the atomic dynamics. One pos-
sibility is a spatial separation of the stabilization light from the atoms by us-
ing a higher order TEM mode with vanishing electric field amplitude on the
cavity axis [83, 195]. Another option is to weakly drive a fundamental gaus-
sian mode that is sufficiently far off-resonance with the atomic transitions
to create a potential that is small compared to the chemical potential of the
cloud. This requires the cavity mirrors to be reflective at a frequency other
than the probe frequency, often resulting in a compromise between the two
frequencies. A convenient choice is a probe laser that is frequency-doubled
with respect to the stabilization laser [196].

We choose a stabilization laser with a wavelength of 830nm. The trans-
mission of the cavity mirrors at this wavelength is ten times larger than at
780nm (see Fig. 4.2), sufficiently low to achieve a cavity resonance stabiliza- Length stabilization

tion that is small compared to the linewidth at the probe frequency. As the
stabilization frequency is rather close to the atomic D1 and D2 lines, it is
crucial to work at very low intracavity powers in order to avoid an influence
on the atomic density distribution. A similar stabilization scheme is used in
[188, 197]

The probing and the stabilization of the science cavities consists of two
steps. First, the frequency-tunable light beams for stabilizing and probing
each cavity are generated with a laser system on a separate table. This light
is then guided to the science cavities, where it is coupled and its intensity is
read out for stabilization and probing of the cavities.

4.2.1 The cavity laser system

The schematics of the locking scheme are illustrated in Fig. 4.6a. The pas-
sively stable frequency reference for probe and stabilization laser is pro-
vided by a transfer cavity [198–200]. Its long-term stability of 100MHz/day
can be further increased by stabilizing its resonance frequency with respect
to a rubidium vapour cell or a wavemeter. Both lasers are locked to a fun-
damental gaussian mode of the transfer cavity. Their frequencies can be
displaced in parallel by changing the length of the transfer cavity. For con-
trol of their relative detuning, the probe light is phase-modulated and the
1st sideband is locked to the transfer cavity. We recover a monochromatic
laser beam by passing it through a second cavity, the cleaning cavity, which
is placed before the transfer cavity. The cleaning cavity is necessary in or-
der to be able to freely adjust the laser frequency without influencing the
transfer cavity error signal. Its resonance frequency is locked to the first
sideband, thereby reflecting the carrier and the -1st sideband. Tuning the
modulation frequency leaves the sideband frequency constant but changes
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Figure 4.6: Lock setup for the cavity laser system. a, Schematic view of the lock setup.
The stabilization laser at a wavelength of 830nm and the probe laser at 785nm are
locked on a passively stable transfer cavity with the PDH technique. The passive
frequency stability of the transfer cavity can be increased by a FM lock to a rubid-
ium vapour cell or an offset lock to a wave meter. b, Electronic setup of the laser
system. In order to shift the probe laser frequency ⌫ with respect to the stabilization
laser frequency µ, the former is first phase-modulated with frequency ⌫F1 and one
sideband is filtered by a cleaning cavity. The feedback for the cleaning cavity lock
is generated in a PID circuit, the locks to the transfer cavity are processed by FALC

units for distributed feedback to piezo and current of the lasers. Two beams from
the stabilization laser are then send to the science cavities after passing FEOMs that
create frequency-tunable sidebands µF1 and µF2 to which their resonance frequen-
cies are stabilized. The cavity probe frequencies are adjusted relative to each other
by another FEOM with frequency ⌫F2 for cavity 2.
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Figure 4.7: Optial setup of the cavity laser system. The setup consists of two parts for
locking and distribution of the laser beams, respectively. In the first part, the error
signals for the cleaning and the transfer cavity locks are generated. Part of the laser
power is sent to a wavemeter for frequency monitoring. In the second part, the light
from the probe and the lock laser are split and mixed in all required paths and each
beam can be switched with a mechanical shutter. Power ratios at the NPBSs are
always given as reflection:transmission. Laser frequency separation is achieved with
dichroic mirrors.

the laser frequency. Finally, the light for probing and stabilizing each cavity
is generated by splitting the main laser beams and producing frequency-
shifted sidebands by separately phase-modulating the light in each path.

The RF signals are generated with self-built DDSs that are synchronized
with a 10MHz clock with GPS stability. We adjust the relative frequencies
of the probe and stabilization beams with FEOMs (NIR-MPX-800 from Phot-
line), which allow for phase modulation with a band-width of 0− 12GHz.
They are mounted on a copper plate that is temperature stabilized to 55� C
for an increased stability in the sideband power. The modulation frequencies
are generated by frequency-tunable MW sources (HMC-T2220 from Hittite),
which can be programmed via LAN. The feedback signals for the transfer
cavity locks are generated with FALC units from the company Thorlabs.

The optical setup is illustrated in Fig. 4.7. The probe and stabilization light Optical setup

is generated by two tunable diode lasers (DL pro from Toptica) at wavelengths
of 785nm and 830nm, respectively. A part of the probe laser is split off the
main beam and sent to an FEOM, which adds frequency sidebands at ±⌫F2

by phase-modulation. Before reaching the cleaning cavity, the beam is mod-
ulated with an EOM [201] at a fixed frequency of ⌫CC = 90MHz for PDH

locking of the cleaning cavity to the positive sideband at +⌫F2. Transmission
and reflection are again recorded on PDs. The beam passes an optical isola-
tor, which suppresses the buildup of an interference with the backreflection
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Transfer cavity Cleaning cavity

Free spectral range 1.144(1) 34.49(1) GHz

Cavity length 131.1(1) 4.349(1) mm

Mirror radius of curvature 500 30 mm

Mirror reflectivity 99.84 99.84 %

Transverse mode spacing 23.4(1) 5910(10) MHz

Finesse F 2530(30) 1885(10)

Linewidth 0.453(5) 18.3(1) MHz

Table 4.1: Properties of the transfer and the cleaning cavity. All quantities are derived
from measurements at a wavelength of 785nm. The transfer cavity linewidth at
830nm is 0.720(8)MHz, resulting in a reduced Finesse of F = 1590(20).

from the transfer cavity. An empty port offers the option to actively stabilize
the transfer cavity with a spectroscopy cell or a wavemeter. The beam is then
combined with a part of the stabilization laser and both beams are phase-
modulated at ⌫TC = 77MHz with an EOM for PDH locking to the transfer
cavity. For each wavelength, the transmission and reflection are recorded on
PDs for monitoring and error signal generation, respectively.

The transfer and the cleaning cavity are mounted on a 24 kg stainless steel
suspension block. For passive mechanical stability, the block is supportedTransfer and

cleaning cavities and damped with sorbothane hemispheres at three points and shielded
from acoustic noise by a wooden enclosure. The transfer cavity is built with
a carbon fiber tube as a spacer between the two mirror substrates in order
to minimize thermal expansion [202]. Its length is chosen to obtain a FSR

of ⌫FSR ⇠ 1GHz, small compared to the tuning range of the FEOMs. The
transfer cavity linewidths of 453(5)kHz and 720(8)kHz for probe and sta-
bilization light are on the order of the expected science cavity linewidths.
The cleaning cavity is built from two separately mounted mirrors and has
a linewidth of 18.3(1)MHz, in between the laser linewidth and the FEOM

modulation frequencies. The optical properties of the transfer and the clean-
ing cavities are listed in Tab. 4.1.

The long-term stability of the transfer cavity is limited by environmen-Susceptibility to
environmental

parameters
tal parameters ↵i, like temperature, pressure and humidity. In case one of
these parameters changes, the PDH lock counteracts changes of the optical
path length at 780nm by changing the cavity length. At 830nm, the index
of refraction might have changed by a different amount and therefore the
frequency of the 830nm laser is displaced. The change is given by [203]

@f

@↵i
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@n1

@↵i
n2 −

@n2

@↵i
n1

◆

f

n1n2
(4.2)

where n1 and n2 are the refractive index at 780nm and 830nm, respec-
tively. For standard atmospheric conditions, this results in drifts of around
−0.4MHz/�C and 0.1MHz/mbar. The stability of the environmental pa-
rameters in the lab reduces the drift to around 0.1MHz, acceptable for the
experiment. In order to fully suppress the drift, the transfer cavity could be
placed in vacuum. An according setup has already been prepared for our
experiment [204].

In the second stage, the light from the probe and the stabilization laser is
divided and distributed. The stabilization light is split into two paths each
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Figure 4.8: Electronic setup for frequency stabilization of the science cavities. Each science
cavity is locked to the stabilization beam with the PDH locking technique. The low-
pass filters with 50Hz cut-off frequency separate the high-frequency feedback signal
from the DC voltage, which is then amplified to achieve a voltage span that is suf-
ficient to reach several FSR. The recombined signal is then fed back to the piezo of
a cavity mirror. The feedback for the lock of cavity 1 has an additional band-pass
filter for enhanced feedback around a mechanical resonance of the cavity setup at
1.8kHz.

containing an FEOM to separately shift the two cavity frequencies. Each
beam then passes an AOM for intensity stabilization and an EOM for PDH

locking to the science cavities. The probe beam is divided into light for each
cavity axis and for the transverse pump. Their relative frequencies can be ad-
justed with AOMs in double-pass configuration [205]. For relative frequency
differences higher than the AOM double-pass bandwidth of 2⇥ 40MHz, the
probe beam of cavity 1 is phase-modulated with a FEOM and the cavity can
be probed with the sideband. Each beam can be switched with a mechanical
shutter.

4.2.2 Science cavity lock

Each science cavity is locked to the stabilization beam sideband from phase-
modulation with the FEOM using the PDH locking technique. This allows
to control the resonance frequency by adjusting the FEOM frequency. A
schematic view of the electronic setup is shown in Fig. 4.8. For each lock, the
beat signal is recorded with a C30902EH PD with a bias voltage of ⇠ 200V
for increased sensitivity. The error signal is then created by mixing down the
signal with the modulation frequency for the EOM on the preparation table
and subsequently amplified. The modulation frequency is provided by a
GPS-stabilized DDS. The feedback signal is created in a PID box (with domi-
nating proportional and integral terms) with ±10V output. This voltage has
to be amplified, since the piezo stroke for one FSR is around 200V. In order
to avoid compromised lock characteristics from amplified noise, we only
amplify the DC output voltage up to 50Hz and leave the high-frequency
feedback signal unaffected.

For cavity 1, we observe a mechanical resonance at 1.8kHz, which couples Mechanical
resonanceto acoustic noise and creates a modulation of the cavity resonance frequency.

We suppress the resonance by adding a second PID loop (with dominating
derivative term) whose feedback signal is filtered with an active band pass
filter of Sallen-Key type [206], which is centred at the resonance frequency.
We apply the feedback to the second piezo mirror and observe much lower
spectral noise when recording the transmission of the cavity. The feedback
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Figure 4.9: Science lock performance. a, Power spectral density (PSD) of the transmis-
sion for cavity 1 (red) and 2 (yellow) at 780nm. The cavity resonance is detuned
by one half-linewidth with respect to the probing frequency, such that fluctuations
in the resonance frequency convert into power fluctuations. The shaded red line
shows the behaviour without the second feedback loop. b, Variance of the photon
number from an average of different bin sizes. The linear scaling indicates a shot
noise-limited performance.

to cavity 2 consists of a single PID loop only since mechanical resonances
are negligible.

The lock characteristics for both cavities are shown in Fig. 4.9. The noise
spectrum is obtained with a Fourier transform of the photon traces recorded
on the SPCMs. We observe a flat distribution over the full range of the piezo
bandwidth of 0 − 20 kHz. We can further analyze the lock behaviour by
calculating the variance of the photon number averaged over different bin
sizes of the recorded photon trace. We observe a linear scaling for both
cavities, as is characteristic for shot noise-limited performance.

The optical setup for the science cavity lock is shown in Fig. 4.10. ForOptical setup

each cavity, the lock light exits from an optical fiber from Schäffter+Kirchhoff
and is first polarization-cleaned at a PBS. Subsequently, 90% of the light
is reflected at a NPBS and sent to two PDs for intensity stabilization with
a servo controller (LB1005 from Newport). The beam then passes a second
NPBS with 10% transmission, which reflects 90% of the light travelling back
from the science cavity after reflection. The reflection from the NPBS is then
directed to a fast PD to generate the lock signal. At the cavity output, the
transmission of the lock light is recorded on a high-gain PD. The beam is
focussed into the cavities and recollimated at the output with achromatic
lenses of 300mm focal length (AC254-300-B from Thorlabs).

4.2.3 Probe light and photon detection

The probe light exits from the same optical fiber as the stabilization light andSetup for cavity
probe light shares the beam path until reaching the science cavities. Before the science

cavities, the beam passes two wave-plates with �/2 and �/4 retardation for
light at 785nm and � retardation for light at 830nm. This allows to change
the input polarization for the probe light without altering the electronic lock
signal. Custom-made band-pass filters from Semrock with HT at 830nm and
10% or 1% transmission at 785nm allow us to attenuate the probe light
to intracavity photon numbers n ⇠ 10−3 without substantial noise on the
intensity regulation.

The optical setup for the transverse pump lattice is shown in Fig. 4.10.Transverse pump
setup
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Beam Frequency

Probe laser ⌫ (785nm) 384.66085THz

Probe transfer cavity ⌫+ ⌫F2

Probe cavity 1 ⌫+ ⌫F1 + 2⌫1

Probe cavity 2 ⌫+ 2⌫2

Probe transverse pump ⌫+ 2⌫TP

Probe local oscillator ⌫+ ⌫LO

Lock laser µ (830nm) 361.64287THz

Lock transfer cavity µ

Lock cavity 1 µ+ µF1 − µEOM1 + µ1

Lock cavity 2 µ− µF2 + µEOM2 + µ2

Table 4.2: Frequencies for the cavity laser system. The frequencies ⌫ of the probe laser
and µ of the stabilization laser are modified by a number of elements. The probe
light for the cavities and the transverse pump passes AOMs in double-pass configu-
ration, causing frequency offsets ⌫F1, ⌫F2 and ⌫TP, respectively. All probe frequencies
are adjusted with respect to the stabilization frequencies with a FEOM at ⌫F2 and
the probe frequency for cavity 1 is additionally controlled with ⌫F1 with respect to
the others. The cavity resonance frequencies are determined by the tunable FEOM

frequencies µF1 and µF2, as well as by the fixed frequencies ⌫EOM1, ⌫EOM2 of the
EOMs and ⌫1, ⌫2 of the AOMs.

The beam exiting the fiber is collimated to a 1/e2 diameter of 2.7mm. After
a PBS for polarization cleaning 10% of the power is directed to a PD for
intensity stabilization. The beam then passes an achromatic lens with f =

250mm focal length (AC254-250-B from Thorlabs), which focusses the beam
into the vacuum on the plane of the transverse pump mirror. The beam
polarization is set to V, such that it can be combined with the imaging beam
in a PBS. The retroreflected beam is aligned by maximizing the power that
is coupled back through the optical fiber.

At each cavity output, the leaking light is directly guided to a fiber- Photon detection

coupled SPCM (COUNT-100C-FC from LaserComponents). Photon detection
is signalled by a TTL pulse generated from an internal avalanche PD and
high-speed electronics. At 785nm, they provide a high quantum-efficiency
of 60% with a maximum photon count rate of 20 ⇥ 106 photons/s and a
dark count rate of 100photons/s. The TTL pulses are sent to a digitizer unit
(MCS6 from FAST ComTec). We then read out the stored arrival times with
a home-built software environment based on the programming languages
Python, C and Matlab. The software is an extension of the version described
in [207].

4.3 CHARACTERIZATION OF THE SCIENCE CAVITIES

4.3.1 Cavity properties

After inserting the cavity setup into the vacuum chamber we determine the
key cavity properties from transmission scans with probe light. For these
measurements the cavity resonance remains constant, while a weak probe
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Figure 4.10: Optical setup for the science cavities. For each cavity, the light for probing
and stabilization exits a common optical fibre. One part is reflected on PDs for in-
tensity stabilization, whereas the remainders are directed to the science cavity. The
input polarization of the probe light is controlled with wave plates. After being re-
flected at the science cavity, the stabilization light is sent to a PD to create the error
signal. Alternatively, the transmitted stabilization light can be detected on a DC PD.
The cavity output light is recorded on a fiber-coupled SPCM. The transverse pump
beam is also intensity-staibilized with the signal recorded on a PD after the fibre
output. The remainder of the beam is subsequently focussed to the position of the
retroreflecting mirror inside the vacuum. Power ratios at the NPBSs are always given
as reflection:transmission. Laser frequency separation is achieved with dichroic mir-
rors.

beam is ramped across the cavity resonance by applying a time-dependent
AOM frequency.

• FSR: The FSR is determined by measuring the cavity transmission for
two consecutive longitudinal modes while stabilizing its length. This
allows us to infer the cavity length L with a high precision from the
connection ⌫FSR = c/2L. We measure the FSR at the probe wavelength
785nm. The cavity length can differ by ⇠ 1µm for the lock laser light,
because of the wavelength-dependent intrusion of the cavity field into
the substrate [208].

• Linewidth: We obtain the cavity linewidth �⌫ from a Lorentzian fit
to the photons recorded at a resonance scan with the probe laser. It
allows to deduce the photon decay rate  = 2⇡�⌫/2 and, from the
cavity length, the Finesse F. The measured value constitutes an upper
bound, since the resonance is convolved with the laser linewidth and
the stability of the resonance frequency. This influence could be elimi-
nated by measuring the cavity decay rate in a ringdown measurement
[209].

• Birefringence: The birefringence of the s- and the p-polarized eigen-
modes of the cavity is obtained from a similar resonance scan. By
recording the transmission for different input polarizations we can
determine the eigenaxes of the cavity modes.

A summary of the key properties can be found in Tab. 4.3. The input cou-
pling fraction and mirror loss rates are of main interest for the photon de-
tection efficiency, which is treated in Sec. 4.3.3.
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Cavity 1 Cavity 2

FSR 61.26(1) 53.49(1) GHz

Length 2448.8(5) 2804.2(5) µm

Decay rate  2⇡⇥ 147(4) 2⇡⇥ 800(11) kHz

Finesse F 208(6)⇥ 103 33.4(5)⇥ 103

Mirror radius of curvature 75 75 mm

Transverse mode spacing 4.99 4.67 GHz

TEM00 mode waist w0 48.7 50.4 µm

Vacuum Rabi coupling g0 2⇡⇥ 1.95 2⇡⇥ 1.77 MHz

Q-factor 1.30(4)⇥ 109 0.24(1)⇥ 109

Purcell factor 10.45(31) 1.57(2)

Single atom cooperativity 4.5 0.7

Birefringence of TEM00 3.88(6) 4.17(3) MHz

Table 4.3: Properties of the science cavities. All values are deduced from the specified
mirror curvature and the measurements of the FSR, cavity linewidth and birefrin-
gence. The eigenmodes of the both cavities are close to H and V. The V polarized
mode has the higher frequency.

4.3.2 Positioning a quantum gas at the mode crossing

When preparing the BEC inside the science cavity setup, an alignment pro-
cedure is required that gives a position uncertainty small compared to all
beam diameters. We employ a method that is based on the dispersive effect Alignment procedure

of the probe light on the atoms. On-axis probe light with a frequency that is
red-detuned from the atomic resonance frequency gives rise to an attractive
potential with the shape of the cavity mode. As a consequence, the mini-
mum position of the atomic trap is displaced for any intracavity light field
if the trap is not centered on the cavity mode. We convert this displacement
into a momentum by applying a probe pulse on the cavity axis that has a
length of 1ms, which is on the order of T/4, where T is the trap oscillation
time. Following the pulse, we switch off all potentials and perform absorp-
tion imaging after ballistic expansion.

The result is shown in Fig. 4.11. We observe an opposite displacement
for positive and negative misalignment from the cavity mode center. The
center-of-mass momentum is most strongly affected when positioning the
cloud around one 1/e2 mode radius away from the center. We can perform
these mesurements along all axes and align the cloud until no momentum
is transferred along any direction when probing either of the cavities.

This method is ideal as long as the collective dispersive shift is smaller
than the cavity linewidth. If the cavity resonance frequency is significantly
shifted by the atoms, the potential from the probe light and the position
of the atoms depend on each other and the method is more challenging to
apply. Alternative alignment approaches are base on the critical point for
self-organization (see Chap. 5) Kapitza-Dirac diffraction or the dispersive
shift. However, none of these methods shows a zero-crossing at the ideal
alignment position, in contrast to the technique presented above.
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Figure 4.11: Aligning the BEC to the cavity mode center. We apply a probe pulse of 1ms
length along the cavity axis and measure the position of the atomic cloud after 25ms
ballistic expansion. The data points show the displacement as a function of the trap
position. The solid line shows a fit to the data, where the fit function is the derivative
of a Gaussian.

4.3.3 Measuring intracavity photon numbers

We use the dispersive interaction with the atoms to calibrate the intracav-
ity photon number. Our method is based on determining the lattice depth
per intracavity photon. A number of techniques exist to calibrate the lattice
depth of optical lattice potentials [210]. We use Kapitza-Dirac diffraction,Kapitza-Dirac

diffraction where the atomic cloud is exposed to a lattice pulse of length ⌧, which cre-
ates the potential V = V0 cos(kx2) wich V0 < 0. In the Raman-Nath regime
with ⌧⌧ 1/!rec [211], we can neglect the kinetic energy and the time evolu-
tion for a BEC in the motional ground state |0i is only given by the potential:

| (t)i = exp
✓

−

i
 h

Zt

0
Vdt 0

◆

|0i = exp
✓

−

iV0t

2 h
cos(2kx̂)

◆

|0i . (4.3)

We have ignored a constant phase factor exp (V0⌧/2 h). With the identity
exp(ia cos(b)) =

P
ν2Z

= iνjν(a)e
iνb for the Bessel functions of the first

kind jν, the atomic wave function takes the form

| (t)i =
X

ν2Z

iνjν

✓

V0t

2 h

◆

|2 hk⌫i . (4.4)

The fraction of atoms in the momentum state |2 hk⌫i is therefore given by
pν = ‚ν(V0t/2 h)

2. We can record the atomic momentum distribution from
absorption images after ballistic expansion and determine the probabilities
pν for different lattice depths.

The result is shown in Fig. 4.12. We determine the lattice depth per beam
power in the probe pulse from a fit of Eq. 4.4 to the data. A second measure-
ment of the photon count rate per probe pulse with the SPCM suffices to
extract the lattice depth per intracavity photon.

The lattice depth per intracavity photon is given by U0 =
g2
0

∆a
with the de-

tuning �a = !p −!a between the laser frequency and the atomic resonance
(see Appx. A). Comparing the photon counting rate on the SPCM with the
above measurement of the intracavity lattice depth, we can infer the detec-
tion efficiency for an intracavity photon as (⌘1,⌘2) = (9.7(4)%, 2.0(1)%.
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Figure 4.12: Intracavity lattice depth calibration. We expose the atomic cloud to a short
pulse of 10µs length after a short expansion time of 1ms to reduce the density
and ensure a ballistic expansion. The momentum distribution is then measured after
additional 24ms of ballistic expansion. The occupation probability in the momentum
ground state (circles) and the momentum state at |±2 hki (squares) are shown for
cavity 1 (red) and 2 (yellow). The images are obtained in absorption imaging after
25ms ballistic expansion (including 1ms before the lattice pulse).
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5SELF -ORGAN IZAT ION IN A
RECTANGULAR LATT ICE

Atoms dispersively coupled with the light field of an optical cavity can un-
dergo a phase transition to a self-organized state. In previous realizations
the coupling was mediated by a transverse pump beam orthogonal to the
cavity axis. In our system, the pump has a non-orthogonal angle, which
changes the situation qualitatively. The first part of this chapter contains
a theoretical description of the system, followed by measurements of the
phase transition to the self-ordered state. Finally, we present studies on its
sensitivity to dissipation, temperature and magnetic field.
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The interaction of an atomic ensemble with a cavity mode gives rise to
a number of collective effects [81]. In the following we focus on a partic-
ular phenomenon called self-organization, which occurs when the atoms
are coherently driven transversely to the cavity field. For sufficiently strong
driving strength, the system undergoes a phase transition to a crystalline
state, accompanied by the onset of a light field in the cavity [75, 212].

In order to develop an intuitive picture of this effect, we start by consider-
ing photon scattering processes at a single atom at position r in free space.
The atom is illuminated by an off-resonant light field that coherently scatters
photons into any direction with a phase / eik·r inherited from the incoming Photon scattering in

free spacelight field with wave-vector k [213]. The phase becomes restricted to 0 or ⇡
when considering a standing-wave with an electric field / cos(k · r) instead,
because the function is real-valued. For two atoms, the spatial phase depen-
dence of the scattered light leads to a position-dependent interference of
the scattering amplitudes. The situation is illustrated in Fig. 5.1. Analogous
to Young’s interference experiment [192], the scattering amplitudes from an
incoming plane wave of wavelength � interfere constructively for angles ✓,
where the distance between the atoms is �/ cos(✓) and multiples thereof.
Correspondingly, destructive interference occurs for distances in between.
Extending the situation to higher atom numbers and two dimensions with
an incoming standing wave field, the transverse pump, creates a situation
similar to the Bragg condition for light scattering from a crystal lattice.

75
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2nλ
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/2 (2n+1)λ

p
/2a b

Figure 5.1: Coherent light scattering of two atoms. a, Two atoms separated by 2n�p/2

(n 2 N) scatter photons from an incoming plane wave with wavelength �p. The
scattering amplitudes interfere constructively for the perpendicular direction. b, In
contrast, for a distance (2n+ 1)�p/2, no light is scattered in the perpendicular direc-
tion, since the scattering amplitudes interfere destructively.

Coherent light scattering of cold atoms has been studied in free space
[214] and with optical lattices [215–220]. In these systems, the scattering
amplitude is proportional to the amplitude of the incoming light. The situa-
tion changes when a threshold mechanism is present that favors a homoge-
nous atomic distribution with no light scattering, for instance by placing an
atomic ensemble in an optical cavity, as illustrated in Fig. 5.2. This results inPhoton scattering in

optical cavities two effects: first, the preferred angle for the light scattering is set by the cav-
ity mode thanks to the Purcell effect [221], thereby suppressing every atomic
order that is incommensurate with the lattice constant allowed by the Bragg
condition for the cavity angle. Second, the cavity is frequency-selective by
its eigenmode and scattering light at a frequency below the cavity resonance
costs energy proportional to the detuning (see Appx. A).

In terms of the involved energy scales, the process can be interpreted
as a competition between the kinetic energy associated with the scattering
processes and the potential energy that the atoms gain from the attractive
potential of the light fields. While the former favors a homogeneous density
distribution without wavefunction curvature, the latter pulls the atoms to-
wards the potential minima and creates a periodic modulation. We obtain
a threshold behaviour with two different qualitative situations: for small
coupling strengths the atomic distribution remains flat and no cavity field is
present. As soon as the coupling strength exceeds a critical value, the kinetic
energy associated with the density modulation of the atomic wave function
is overcome and the system enters a self-organized phase with periodic or-Phase transition to a

self-organized state dering and macroscopic population of the cavity mode. This corresponds to
a second order phase transition. In the case of orthogonal transverse pump
beam, the phase transition has been studied for thermal atoms [212, 222], as
well as with a BEC for coupling with a single [75, 223, 224] and with several
cavity modes [79, 225]. A similar mechanism is also present for atoms in
free space with feedback based on the Talbot effect [77].

5.1 THEORETICAL FRAMEWORK

The previous qualitative description can be captured by a quantum opti-
cal description of a BEC that is dispersively coupled to an optical cavity.
This situation has only been studied in the case of an orthogonal transverse
pump. Since the transverse pump is not orthogonal to the cavity modes in
our setup, in the following we develop a general framework for arbitrary an-
gles between the cavity mode and the transverse pump lattice and discuss
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Figure 5.2: Self-organization in an optical cavity. a, A BEC is placed inside an optical
cavity and illuminated by a transverse pump lattice. The angle between the cavity
and the transverse pump lattice is ✓. b, Site positions of the interference lattice of the
transverse pump and the cavity fields for a relative phase of 0 (blue) or ⇡ (white).
The density modulations are displaced by half a lattice constant, which is set by
the transverse pump wavelength �p. No other relative phases between the two light
fields are possible due to the boundary conditions of the cavity mirrors.

its implications on the self-organization phase transition. Furthermore, we
give an alternative description of the system in terms of photon-mediated
interactions between the atoms. Finally, the limit of an orthogonal pump is
recovered, thereby connecting the results to previous work.

5.1.1 Phase transition with discrete symmetry breaking

In this section, we will use a mean-field expansion (or �4 theory) to describe
the self-organization phase transition in a general language. This approach
was originally developed by Landau for thermal phase transitions [226] and
presents a powerful tool for describing phase transitions in various field the-
oretical contexts [1]. However, fluctuations are neglected by Landau theory,
which can play an important role in the vicinity of the phase transition. Lan-
dau’s theory was therefore soon extended: first by Ginzburg in the context
of superconductors [227] to also incorporate local fluctuations, and then by
Wilson, who used renormalization group theory to incorporate the univer-
sal character of spatial and temporal fluctuations around the critical point
[228, 229]. For our system, the global atom-cavity coupling suppresses the
universal spatial fluctuations, and a non-local description is sufficient. How-
ever, since we are considering a system at zero temperature, the mean-field
expansion has no temperature dependence. Although the expansion instead
dependson the coupling parameter �we use the term Landau theory in anal-
ogy to the original expansion.

Landau theory forms the basis of a group-theoretical description of phase
transitions. In this theory, we introduce an order parameter that distin-
guishes two phases by measuring the degree of order: while the order pa-
rameter is zero in the normal phase, it acquires a nonzero value in the or-
dered phase past the critical point. From a group-theoretical perspective, the
order parameter is associated with one of the irreducible representations of
a subgroup of the system symmetry in the high-symmetry phase [230]. Let
H be the symmetry group describing the normal (high-symmetry) and L the
symmetry group describing the ordered (low-symmetry) phase. Then L is a
subgroup of H and the order parameter presents an irreducible representa-
tion of the group G with G� L = H. The symmetry of G is called broken and
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Figure 5.3: Effective potential for a scalar order parameter. a, The effective potential qual-
itatively changes across the phase transition. In the normal phase with � < �cr, the
effective potential has one minimum at the origin. When entering the ordered phase
with � > �cr, two minima at finite expectation value appear symmetrically around
the origin. b, The order parameter acquires a finite expectation value when the sys-
tem enters the ordered phase. It has two different solutions with Z2 symmetry.

the number of elements of G corresponds to the number of ground states
among which the system picks one upon entering the ordered phase.

In Landau theory, the free energy is expanded in powers of the order pa-
rameter. The order parameter values at the minima of the effective potential
determine the allowed groups of the ordered phase. Since we are dealing
with a quantum phase transition at zero temperature, the concept of free
energy reduces to the mean-field energy. Instead of the temperature, the ex-
pansion coefficients then depend on the coupling � that controls the phase
transition [231]. The order parameter ⇥ is scalar for our system, since the
atoms can form a density modulation on either the even or the odd sites of
the chequerboard lattice (see Fig. 5.2). At the absence of a symmetry break-
ing field, the mean-field expansion of the mean-field Hamiltonian Hλ only
contains even powers of ⇥ and we obtain the following expansion up to
fourth order:

Hλ(⇥) =
r

2
⇥2 +

g

4
⇥4 +O(⇥6), (5.1)

with r, g functions of �. The expectation value of ⇥ in equilibrium is deter-
mined by the global minimum of Hλ(⇥) and ⇥ hence follows the condition

@Hλ(⇥)

@⇥

�

�

�

�

λ=const
= 0. (5.2)

This equation has two solutions, ⇥ = ±

p

−r/g if −r/g > 0, and only one
solution, ⇥ = 0, elsewhere. The critical point �cr is therefore marked by
−r/g = 0. We interpret this result by considering the shape of the effective
potential across the phase transition, as illustrated in Fig. 5.3. The coefficientEffective potential

across the phase
transition

r remains positive throughout the normal phase with � < �cr and the shape
is determined by the parabolic contribution. A single minimum exists at
⇥ = 0. The situation changes if r < 0, where the inverted parabola causes
the effective potential to exhibit two minima symmetrically around zero. The
order parameter acquires a finite expectation value throughout the ordered
phase with � > �cr.

The Landau expansion shows a parity symmetry with the Z2 symmetry
group, since it stays invariant under ⇥ ! −⇥. When crossing the phase
transition and entering the ordered phase, the system has to choose among
the two solutions for the order parameter. It is therefore not Z2-invariantOrder parameter

with parity
symmetry
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Figure 5.4: Unit cell in real and momentum space. a, The density modulation from the
self-organization is periodic with the lattice vectors a1 and a2. The corresponding
Wigner-Seitz cell has a rectangular shape. b, The reciprocal lattice is spanned by the
vectors b1 and b2. The shape of the Brillouin zone is inverted with respect to the
Wigner-Seitz cell.

any longer and shows a lower symmetry than the underlying Hamiltonian.
This process is called spontaneous symmetry breaking. Experimentally, the sys-
tem is always subject to symmetry breaking fields that can be included by
odd powers of ⇥ in the Hamiltonian expansion. Even if their amplitudes
are small, they can be dominant close to the critical point and determine the
outcome of the order parameter [232].

5.1.2 Momentum mode expansion

We now switch from a phenomenological description of the phase transi-
tion to a microscopic picture that is specific to our system. The following
description is restricted to the x-y plane, which is spanned by the cavity
and the transverse pump lattice, as illustrated in Fig. 5.2. We can construct Wigner-Seitz cell

the Wigner-Seitz cell from the geometry of the interference pattern between
transverse pump and cavity mode, see Fig. 5.4. It is spanned by the lattice
vectors:

a1 = −

�p

2

sin(✓)
1+ cos(✓)

ex +
�p

2
ey, (5.3)

a2 =
�p

2

sin(✓)
1− cos(✓)

ex +
�p

2
ey, (5.4)

where ✓ 2 [0,⇡] is the angle between the transverse pump and the cavity, �p
is the wavelength of the transverse pump, and ex and ey are the unit vectors
pointing along x and y, respectively. The Wigner-Seitz cell is rectangular,
since the two vectors are orthogonal and have different lengths. Its area is

A = |a1 ⇥a2| =
�2p

2

sin(✓)
1− cos2(✓)

. (5.5)

For the reciprocal lattice, the Brillouin zone can be constructed from the
atomic momentum modes that are accessible by photon scattering processes.
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The transverse pump and the cavity mode can be described by the wave
vectors

kp = key (5.6)

kc = −k sin(✓)ex + k cos(✓)ey, (5.7)

where k = 2⇡/�p is the wavenumber for all photons. In lowest order, the
momentum states that are accessible from the ground state at zero momen-
tum are the combinations |±kp ± kci. We can construct the reciprocal latticeBrillouin zone

from the basis vectors:

b1 = kp + kc = −k sin(✓)ex + k (1+ cos(✓))ey, (5.8)

b2 = kp − kc = k sin(✓)ex + k (1− cos(✓))ey. (5.9)

The area of the Brillouin zone is accordingly

ABZ = |b1 ⇥b2| = 2k2 sin(✓). (5.10)

The real and reciprocal lattice vectors fulfill the relation ai · bj = 2⇡�ij for
i, j 2 {1, 2}, confirming the phase-space condition AABZ = (2⇡)2.

The self-organization phase transition for a BEC in an optical cavity can
be described in terms of photon scattering processes. The following deriva-
tion presents a generalization of the existing theoretical framework [81] to
arbitrary angles between transverse pump and cavity. The dispersive inter-Dispersive

atom-light
interaction

action of an atom with the quantized field of an optical cavity is described
in Appx. A. Here we start with the many-body Hamiltonian for an atomic

Many-body
localization ensemble that is coupled to an optical cavity and transversely pumped by a

standing-wave lattice:

Ĥmb =−
 h�câ

†â

+

Z

A

dr ̂†(r)

"

p̂2

2m
+ V(r) +  h

h(r)g(r)

�a
(â† + â)

+  h
g2(r)

�a
â†â+  h

h2(r)

�a

#

 ̂(r)

+
U

2

Z

A

drdr0 ̂†(r) ̂†(r0) ̂(r0) ̂(r)

(5.11)

Here, �c = !p −!c is the detuning of the transverse pump at frequency !p
from the cavity mode at frequency !c, and �a = !p −!a is the detuning
from the atomic resonance at !a. Cavity photons are created (annihilated)
by the operator â† (â) and  ̂†(r) ( ̂(r)) is the atomic field operator that
creates (annihilates) an atom at position r = (x,y).

The cavity mode and the transverse pump are described by the mode
profiles g(r) = g0 cos(kc · r) and h(r) = ⌦p cos(kp · r), respectively. The
Gaussian envelope of both modes can be ignored since the cloud diameter
is small compared to the mode diameter. p is the momentum of an atom
and m its mass. Atomic collisions are captured with the rescaled 2D contact
interaction U2D = AnU, rescaled from the 3D interaction U = 4⇡ h2a/m

with the s-wave scattering length a and the 3D atomic density n [2]. The
reduction to s-wave scattering is valid in our experimental regime at ultra-
low temperatures, since all higher order scattering processes are negligible.

We now give a brief physical interpretation of each term in the Hamilto-Hamiltonian terms



5.1 Theoretical framework | 81

a

ħk
p
x

p
y

b

0

ω

ω
-

ω
+

ω
a

ω
a
+Δ

a

|–〉

|+〉

|0〉

|±k
p
〉 |±k

c
〉

Ω
p

Ω
p

g
0

g
0

Figure 5.5: Three-mode expansion in momentum space. a, Atoms from the ground-state
BEC at |pi = |0i (blue) are coupled to excited momentum states (red) by two-photon
scattering processes. Solid (dashed) lines correspond to the absorption (emission)
of a transverse pump photon and the creation (annihilation) of a cavity photon. The
inverse processes occur equally but are not shown for clarity. We combine the excited
momentum states to two standing-wave modes |+i and |−i at high and low kinetic
energy, respectively. b, The scattering paths can be visualized as Raman channels
whose coupling ⌘ = −⌦pg0/�a is set by the transverse pump Rabi frequency ⌦p,
the cavity vacuum Rabi frequency g0 and the atom-pump detuning �a.

nian. The part p̂2

2m + V(r) describes the free evolution of the atoms in the
trapping potential V(r), and −

 h�c characterizes the evolution of the cavity
mode in a frame rotating with the transverse pump frequency (see Appx. A).
Atomic collisions are captured by the last term. The remaining three terms
reflect the atom-light interactions in terms of two-photon processes with

amplitudes Uc =  h
g2(r)
∆a

, Up =  h
h2(r)
∆a

and Ui =  h
h(r)g(r)

∆a
for cavity-cavity,

pump-pump and pump-cavity photon scattering, respectively. They can be
interpreted as the lattice potentials created by the cavity field, the transverse
pump field and interference between the two.

The key part of the Hamiltonian is the latter term, describing the pump-
cavity interaction. The process can be interpreted as follows: first, a pump Photon scattering

between pump and
cavity

photon is virtually absorbed by an atom, which thereby gains one photon
momentum along the pump axis in the direction of the photon. In a second
step, the photon is scattered into the cavity mode, yielding an atomic mo-
mentum kick along the cavity axis in the direction opposite to the emitted
photon. Since both the transverse pump and the cavity mode are standing
waves, both directions are possible for the transferred momentum in each
of the two steps. All atoms in the BEC start in the momentum state |pi = |0i Expansion in

momentum modesand can be transferred to the excited momentum states |±kp ± kci depend-
ing on the scattering direction. The reverse processes are equally possible,
where a cavity photon is virtually absorbed and subsequently emitted into
the transverse pump beam. The momenta of the excited states are illustrated
in Fig. 5.5a. They form two pairs of equal absolute momentum with oppo-
site direction. Pump-cavity photon scattering at an acute angle results in
a smaller absolute momentum at lower kinetic energy  h!

−
than photon

scattering at an obtuse angle at kinetic energy  h!+.
The standing-wave character of both involved light fields eliminates infor-

mation about the photon direction and the scattering processes couple to
a coherent superposition of all excited momentum states instead. For sym-
metry reasons momentum states at the same kinetic energy are expected to
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equally contribute to the superposition state. This allows to combine each
pair of momentum states to a single one:

|+i = 1p
2
(| hkp +  hkci+ |− hkp −

 hkci) (5.12)

|−i = 1p
2
(| hkp −

 hkci+ |− hkp +  hkci) . (5.13)

The constituents of these states each have one photon momentum along the
cavity and pump axis. Whereas the individual momentum states have run-
ning wave character, |+i and |−i describe standing waves with the reciprocalStanding-wave

character of excited
states

lattice vectors b1 and b2 and kinetic energies  h!+ and  h!
−

, respectively.
Including the initial state at zero momentum, the momentum states can be
described by the real-space wave-functions

 0 =

r

1

A
(5.14)

 + =

r

2

A
cos [(kp + kc) · r] =

r

2

A
cos(b1 · r) (5.15)

 
−
=

r

2

A
cos [(kp − kc) · r] =

r

2

A
cos(b2 · r) (5.16)

All states are normalized to
R

A dr| i|
2 = 1 with i 2 {0,+,−}. The small

number of accessible momentum states allows to restrict the Hilbert space
by expanding the atomic field operator in this basis

 ̂(r) =  0ĉ0 + +ĉ+ + 
−
ĉ
−

. (5.17)

The operators ĉ
†
0 (ĉ0) and ĉ

†
± (ĉ±) create (annihilate) an atom in the mo-

tional ground and excited states, respectively. We insert the expression in
Eq. 5.17 into the many-body Hamiltonian in Eq. 5.11, similar to [233]. In
the following analytical discussion, the external trapping potential and the
atomic collisions are neglected as they only lead to minor quantitative mod-
ifications of the results.

We now evaluate the integral for each term separately. The kinetic energyKinetic energy

results in
Z

A

dr ̂† p̂
2

2m
 ̂ = 2 (1+ cos ✓)  h!recĉ

†
+ĉ+ + 2 (1− cos ✓)  h!recĉ

†
−
ĉ
−

, (5.18)

with the recoil frequency !rec =  hk2/2m for an atom of mass m. The two
terms show the kinetic energies  h!+ = 2(1+ cos ✓) h!rec and  h!

−
= 2(1−

cos ✓) h!rec for the high- and low-energetic momentum states. Equivalently,
the results for the kinetic energies can be obtained from  h!+ =  h2b2

1/2m

and  h!
−
=  h2b2

2/2m.
The next term is the cavity potential:Cavity potential

Z

A

dr ̂†
 hUc cos2(kc · r) ̂ = h

Uc

2
(ĉ

†
0ĉ0 + ĉ

†
+ĉ+ + ĉ

†
−
ĉ
−
)

+  h
Uc

4

⇣

ĉ
†
+ĉ− + ĉ

†
−
ĉ+

⌘

(5.19)

Since the total atom number N = ĉ
†
0ĉ0 + ĉ

†
+ĉ+ + ĉ

†
−
ĉ
−

is constant, this term
corresponds to a shift of the cavity resonance thanks to the atomic cloud
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acting as a dispersive medium. It effectively renormalizes the detuning from
the cavity resonance to �̃c = �c −NUc/2. The term in the second line creates
a remixture of the high and low-energetic states, but its influence is weak
for our parameter choice.

The term describing the transverse pump potential yields a constant en- Transverse pump
potentialergy offset, which can be discarded:

Z

A

dr ̂†
h

 hUp cos2(kp · r)
i

 ̂ =  hUp. (5.20)

The remaining expression describes the scattering of pump photons into
the cavity mode and vice versa. After performing the integration we obtain Pump-cavity

interaction
Z

A

dr ̂†
h

 h⌘(â† + â) cos(kp · r) cos(kc · r)
i

 ̂ =  h
⌘

2
p
2
(ĉ

†
+ĉ0+ ĉ

†
−
ĉ0+h.c.)

(5.21)

We use the scattering rate ⌘ = −

Ωpg0

∆a
. In summary, the resulting Hamilto-

nian with all considered terms is given by

Ĥ =−
 h�̃câ

†â+  h!+ĉ
†
+ĉ+ +  h!

−
ĉ
†
−
ĉ
−

+  h
�p
N
(ĉ

†
+ĉ0 + ĉ

†
−
ĉ0 + h.c.),

(5.22)

where we made use of the short notation � = ⌘
p
N/2

p
2 for the Raman

coupling. This Hamiltonian is exact in the limit of weak atomic contact in-
teractions and weak driving, where higher order momentum modes are not
populated yet.

We now study the ground state of this Hamiltonian. The time evolution of

each operator Â is governed by its Heisenberg equation i h@Â/@t =
h

Â, Ĥ
i

, Heisenberg equations

yielding the equations:

i
@â

@t
= −�̃câ+

�p
N

⇣

ĉ
†
−
ĉ0 + ĉ

†
+ĉ0 + h.c.

⌘

i
@ĉ±

@t
= !±ĉ± +

�p
N
ĉ0

⇣

â† + â
⌘

i
@ĉ0
@t

=
�p
N

(ĉ
−
+ ĉ+)

⇣

â† + â
⌘

(5.23)

In steady-state the time evolution of each operator vanishes and we obtain a
set of coupled equations that determine the ground state expectation value
for each operator. The equations do not have an analytic solution, but can
be solved numerically.

We can, however extract the critical point analytically by analyzing the
Hessian of the Hamiltonian with respect to the expectation values of the
operators [234, 235]. The Hessian is positive definite (i.e., all eigenvalues are
positive) in the normal phase and becomes indefinite at the critical point. Critical point

Using the minor criterion for definite matrices, we obtain the condition:

!+!−
+ (!+ +!

−
)
4�2

�̃c
> 0, (5.24)
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which shows the range of � for the normal phase. The critical point is there-
fore

�cr =

s

−�̃c!̄

4
. (5.25)

The reduced frequency ! is defined as !−1 = !−1
+ +!−1

−
. For a cavity-

pump angle of 60�, it takes the value !̄ =
p
3!rec/2.

Let us consider the symmetry breaking at the phase transition. The Hamil-
tonian in Eq. 5.22. manifests a parity symmetry for the simultaneous trans-
formation (âi, ĉi±) ! −(âi, ĉi±) on the photonic and atomic field opera-
tors [234, 236]. It is generated by the operator Ĉ = â†â+

P
s=± ĉ

†
sĉs, whichSymmetry breaking

at the phase
transition

describes the total number of excitations in the system. The operators for
the photonic and atomic fields transform under the corresponding unitary
transformation U = eiθC as follows:

â ! ÛâÛ† = eiθâ (5.26)

ĉ± ! Ûĉ±Û† = eiθĉ± (5.27)

As a consequence, the Hamiltonian transforms as:

Ĥ ! ÛĤÛ†

= −
 h�̃câ

†â+  h!+ĉ
†
+ĉ+ +  h!

−
ĉ
†
−
ĉ
−

+  h
�p
N

⇣

eiθâ† + e−iθâ
⌘⇣

eiθĉ
†
+ĉ0 + eiθĉ

†
−
ĉ0 + h.c.

⌘

= Ĥ if ✓ 2 {0,⇡}

(5.28)

We see that the Hamiltonian stays invariant under the unitary transforma-
tion Û only if ✓ 2 {0,⇡}. The underlying symmetry group is Z2. This sym-
metry is broken at the phase transition, where the sign of the field operators
amounts to 0 or ⇡ for the phase of the light field or, equivalently, to atoms
crystallizing on odd or even sites of a chequerboard lattice with rectangular
geometry.

In our setup, the angle between transverse pump and cavity axis is ✓ =

60�, resulting in !+ = 3!rec and !
−

= !rec. We work with a BEC ofExperimental
parameter regime typically N = 2⇥ 105 87Rb atoms and transverse pump lattice depths up to

70 h!rec. The detuning �a from the atomic resonance is around 2.57THz and
the vacuum Rabi frequency of the cavity is 2⇡⇥ 1.95MHz, corresponding
to a dispersive shift of Uc ⇠ 2⇡⇥ 1.48Hz per atom. �c/2⇡ is typically ad-
justed in the range from resonance to −10MHz, either by tuning the pump
frequency !p or by changing the cavity length and thereby !c. A list of
relevant cavity parameters is given in Chap. 4.

5.1.3 Photon-mediated interactions

The atom-cavity coupling can be reinterpreted in terms of photon-mediated
interactions [237]. The dynamics of the photonic and the atomic fields takes
place at well separated time scales, since !+,!

−
⌧ |�c|. For the parametersSeparation of atomic

and photonic time
scales

of our system, the ratio is around two orders of magnitude and the light
field hence adiabatically follows the atomic motion. The evolution of the
light field for the general field operator is

i
@â

@t
= −�̃câ+ ⌘

Z

A

dr ̂†(r) cos(kp · r) cos(kc · r) ̂(r). (5.29)



5.1 Theoretical framework | 85

0.0 0.5 1.0 1.5 2.0

Interparticle distance rrel (λp)

−1

0

1

U
in

t(
x

-
x

� )
 (

|V
in

t|
)

0.0 0.5 1.0 1.5 2.0

Centre of mass R (λp)

−1

0

1

U
in

t(
x

+
x

� )
 (

|V
in

t|
)

a b

Figure 5.6: Photon-mediated interactions in an optical cavity. a, Interaction potential for
the relative position of two particles along x for y = 0 for Vint < 0. The interactions
favour a distance of �p/ cos(✓), thereby selectively enhancing periodic density corre-
lations. b, The interactions also depend on the center of mass of the two particles.
The potential pins the periodic sample on a grating with half the periodicity. This is
a direct consequence of the discrete nature of the symmetry breaking at the phase
transition.

The separation of timescales for the photonic and the atomic evolution al-
lows to set @â/@t ⇡ 0 and to eliminate the light field from the many-body Adiabatic elimination

of the photon fieldHamiltonian in Eq. 5.11. We obtain a reduced Hamiltonian with an effective
photon-mediated interaction among the atoms:

Ĥint =

Z

A

 ̂†(r)
p2

2m
 ̂(r)dr

=

Z

A

Z

A

 ̂†(r) ̂†(r0)Uint(r, r0) ̂(r0) ̂(r)drdr0
(5.30)

with the interaction potential

Uint(r, r0) = Vint cos(kp · r) cos(kc · r) cos(kp · r0) cos(kc · r
0), (5.31)

where Vint = 2 h�2/N�̃c is the strength of the interaction. In our experiments
we typically set �̃c < 0, yielding Vint < 0. Let us consider the spatial char-
acter of this interaction potential for the case of two particles. Eq. 5.31 can
be rewritten in terms of their distance rrel = r− r0 and their center of mass
R = (r+ r0) /2:

Uint(r, r0) =
Vint

4

⇥

cos(2kp ·R) + cos(kp · rrel)
⇤

[cos(2kc ·R) + cos(kc · rrel)] .

(5.32)

The spatial character along x for negative interaction strength is shown in
Fig. 5.6. We can see that it shows a minimum for a relative distance �p/ cos ✓ Spatial character of

the interaction
potential

between the particles. Such a minimum is required for a structural phase
transition, as it induces the particles to arrange on a regular pattern with
the corresponding lattice constant. However, two properties of the potential
let it stand out among other interaction potentials between particles: first,
the potential is periodic in �p/ cos ✓, hence creating a potential that extends
over the entire cavity mode. Second, the potential also influences the center
of mass of the particles. Only two positions per lattice constant exist, which
is equivalent to the Z2 symmetry breaking of the phase transition.

If instead Vint > 0, the graphs in Fig. 5.6 are inverted for Vint > 0. In this
case, the potential shows minima for relative positions (n + 1/2)�p/ cos ✓.
This condition can be fulfilled for two particles only, since a third particle
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would be separated from either of the particles by an even number of lat-
tice constants. The situation is therefore frustrated and also for a system
with larger particle numbers no phase transition takes place, since periodic
density correlations are suppressed.

5.1.4 Limit of orthogonal transverse pump

In the case of an orthogonal transverse pump with ✓ = 0�, all four ex-
cited momentum states have the same kinetic energy 2 h!rec. This allows
to combine them to a single state with equal contributions |± hk,± hki =
P

µ,ν2{+,−} = |µ hk,⌫ hki /2. The real-space wave-functions take the form:Two-mode
description

 0 =

r

1

A
(5.33)

 1 =

r

1

A
cos(kx) cos(ky) (5.34)

We can therefore expand the field operator by  ̂ =  0ĉ0 + 1ĉ1. This re-
duces the Hamiltonian to

Ĥ? =−
 h�̃câ

†â+ 2 h!recĉ
†
1ĉ1 +  h

Uc

4
â†âĉ

†
1ĉ1

+  h
⌘

2

⇣

â† + â
⌘⇣

ĉ
†
1ĉ0 + ĉ

†
0ĉ1

⌘
(5.35)

Analogous to the non-orthogonal situation, the Hamiltonian breaks a Z2

symmetry at the critical point �cr =
p

!!0/4. The Heisenberg equations
even allow for an analytical solution for the expectation values [234]. Alter-
natively the system can be described as a macroscopic spin-1/2 system, by
employing the Schwinger representation for the spin algebra [75, 233]:

Ŝ
−
= ĉ

†
0ĉ1 (5.36)

Ŝ+ = ĉ
†
1ĉ0 (5.37)

Ŝz =
1

2

⇣

ĉ
†
1ĉ1 − ĉ

†
0ĉ0

⌘

(5.38)

This results in the Hamiltonian

Ĥ? =  h!â†â+  h!0Ŝz +  h
�?p
N

⇣

â† + â
⌘

�

Ŝ+ + Ŝ
−

�

+
N h!0

2
+  h

Uc

4

✓

Ŝz +
N

2
â†â

◆ (5.39)

We have used the notation ! = −�̃c, !0 = 2!rec and �? = ⌘
p
N/2. The

first line corresponds to the Dicke Hamiltonian, which was originally in-Dicke Hamiltonian

troduced to describe the collective interaction of an ensemble of two-level
systems with a single mode of an electromagnetic field [238]. Here the two
level-system is provided by the ground and the excited momentum states,
which are coupled by Raman processes instead of a direct electromagnetic
transition. This allows to reach the coupling strengths required to enter the
superradiant phase [81]. The terms in the second line are negligible whenDicke quantum phase

transition the population in the excited state is small compared to the total particle
number. This is always the case in the regime where the two-mode expan-
sion is valid and hence these terms can be neglected. More details on the
realization of the Dicke phase transition with a BEC coupled to an optical
cavity can be found in [207].
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We see from the term  hUcŜz/4 that the dispersive shift depends on the
excited state population, in contrast to the situation with a non-orthogonal
transverse pump. If ! is chosen small enough, the interplay with this so-
called optomechanical term is expected to show chaotic effects, limit cycles
and superfluid phase slips [234, 236, 239].

5.2 THE PHASE DIAGRAM

In this section we consider the phase diagram of the self-organization phase
transition in terms of the the coupling strength � and the pump-caity detun-
ing �c. We start with a numerical analysis of the expectation values for the
excited momentum states and the light fields and then turn to a comparison
with the experimentally measured phase diagram.

5.2.1 Numerical mean-field solution

In order to describe the self-organization phase transition, we define the
order parameter Order parameter

⇥ =
1

N
h ̂| cos(kp · r) cos(kc · r) | ̂i , (5.40)

which measures the overlap of the atomic density with the interference pat-
tern of the cavity mode and the transverse pump. The order parameter re-
mains in the range −1 6 ⇥ 6 1. It is zero throughout the normal phase and
takes a positive (negative) value when the wave function has larger contribu-
tion on the even (odd) sites of the interference pattern. In a classical picture
of localized atoms, the order parameter counts the imbalance of atoms on
the even and odd sites. In the three-mode description, the order parameter
reads:

⇥ =
1

N
h ̂| ĉ†+ĉ0 + ĉ

†
−
ĉ0 + h.c. | ̂i , (5.41)

The order parameter can be determined by solving the Heisenberg equa-
tions in Eq. 5.23. To that end, we are interested in the expectation value
of the operators, which we define as hâi =

p
N↵ and hĉii =

p
N i for

i 2 {+,−, 0}. This is equivalent to directly starting from the Hamiltonian in
mean-field approximation. The expectation values of the atomic fields are
normalized as  2

+ + 2
−
+ 2

0 = 1 to account for atom number conservation.
As a consequence of the Z2 symmetry breaking, the expectation values can
only take real values up to a global phase that can be ignored.

We perform a numerical simulation in the (�, �c) plane. Apart from the
atom-light interactions, it also takes into account cavity decay by adding a
dissipation term −â to Eq. 5.23. Furthermore we account for atomic con-
tact interactions with a collision term  2

iNg for i 2 {0,+,−}. The result Phase diagram

for the numerically obtained phase diagram is shown in Fig. 5.7. For con-
stant �c, we observe that the excited momentum states are macroscopically
populated for coupling strengths � beyond the critical point (Fig. 5.7a). The
population of the !

−
momentum state is consistently higher than for the

!+ state. For increasing �c the critical point is displaced to higher coupling
strengths (Fig. 5.7c). An exception is the region close to the cavity resonance,
where the critical point diverges again, because the influence of cavity dissi-
pation increases (see Sec. 5.3.1).
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Figure 5.7: Mean-field simulation of the phase diagram. Numerical solution of the mean-
field equations for the experimental parameters described at the end of Sec. , and
including dissipation and atomic collisions. a, Atomic order parameter across the
phase transition for �c/2⇡ = 2.5MHz. The contributions from the  + (orange) and
the  

−
(green) mode are shown individually. b, Mean photon number across the

phase transition. c, Full phase diagram for the order parameter. d, Phase diagram
for the intracavity photon number n̄ (in logarithmic scale).

The order parameter is directly linked to the intracavity light field ↵ with

↵ =
⌘⇥

�̃c
(5.42)

This becomes clear by setting @â/@t = 0 in Eq. 5.29 and taking the expecta-
tion value on both sides. Indeed, we find in the numerical simulation that
the phase boundary for the atomic order parameter and the intracavity light
field coincide (Fig. 5.7b,d). The connection allows us to extract information
about the strength of the density modulation from the cavity light field in
real time.

5.2.2 Observing the phase transition

We start the experiment with a BEC prepared as described in Chap. 3.
The transverse pump frequency is set to a negative detuning of �c/2⇡ =

−2.0MHz from the cavity resonance. We can adjust the Raman coupling
strength with the transverse pump power, because of the relation � / ⌦p.
To observe the onset of self-organization, we gradually increase the pump
power over time. Simultaneously, we record the photons leaking from the
cavity on an SPCM and infer the intracavity photon number. The corre-
sponding photon trace is shown in Fig. 5.8a. For small lattice depths weSuperradiance at the

critical point record no light at the cavity output. Once the pump power reaches the crit-
ical value, the intracavity photon number abruptly increases, signalling the
onset of self-organization.
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Figure 5.8: Observation of the self-organization phase transition. a, Recorded photon num-
ber n for a linear ramp over 100ms of the pump lattice depth up to 43(1)  h!rec at
�c = −1.8MHz. The photon number shows the sudden onset of the phase transition
by a macroscopic population of the cavity mode. The data are binned in intervals
of 1ms. b, Order parameter across the phase transition, deduced from the photon
trace with Eq. 5.42. c-e, Pictures of the atomic momentum distribution recorded with
absorption imaging after 25ms ballistic expansion. The distribution depends on the
pump lattice depth and shows only zero momentum without any transverse pump
(c), two additional momentum peaks at ± hkp in the normal phase (d) and four
additional momentum maxima within the self-organized phase (e), signalling the
presence of a density modulation.

The connection between the intracavity light field and the density mod-
ulation allows us to extract the order parameter. We infer the intracavity
light field as |↵| =

p
n and use Eq. 5.42 to obtain ⇥. The result is shown

in Fig. 5.8b. In contrast to the cavity field, the order parameter saturates
already shortly after the critical point, indicating a strongly self-organized
cloud or increased heating deep in the organized phase.

We can also access the atomic momentum distribution directly from ab-
sorption imaging after a free expansion of the cloud. We stop the trans- Atomic density order

verse pump ramp at different lattice depths, then suddenly turn off all
trapping potentials and allow the atomic wavefunction to freely expand.
This translates the initial momentum distribution to a real-space distribu-
tion (see Sec. 3.5), which can be imaged on a CCD camera. Throughout
the normal phase, we observe the expected momentum distribution of a
condensate loaded into a lattice potential (Fig. 5.8c,d). Upon entering the
self-organized phase, the momentum distribution qualitatively changes and
four additional interference maxima at p = ±kp ± kc appear (Fig. 5.8e).
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Figure 5.9: Composition to the excited momentum state. a, Picture from absorption imag-
ing after 25ms ballistic expansion. We observe a larger fraction of the atoms in the
!

−
mode (shaded blue) than in the !+ mode (shaded green). b, Occupation num-

bers for the !
−

mode (blue) and the !+ mode (green) as a function of the pump
lattice depth. We observe a consistently higher population in the low-energetic mode.

This provides evidence for the acquired density modulation according to
the interference pattern of the transverse pump and the cavity fields.

We study the population of the !+ and the !
−

momentum modes sepa-Unequal population
of the momentum

modes
rately as a function of pump lattice depths by interrupting the ramp at dif-
ferent lattice depths and recording absorption images of the atomic cloud.
We deduce the fraction of atoms in each mode by counting the atoms in each
interference maxima. The result is shown in Fig. 5.9. The number of atoms
in the !

−
mode is consistently higher than in the !+ mode, in agreement

with our theoretical model.

5.2.3 Mapping out the phase diagram

Eq. 5.25 predicts that the critical point shifts towards higher pump lattice
depths when the pump frequency is further detuned from the cavity res-
onance. We can experimentally map out the phase boundary by gradually
increasing the power for different values of �c and recording the photons
at the cavity output. The deduced intracavity photon numbers are shown in
Fig. 5.10.

A sharp phase boundary is visible over a wide range of the pump-cavity
detuning �c. The critical pump lattice depth Vcr / �2cr scales approximately
linearly with the detuning �c, in agreement with the expected self-organiza-
tion threshold. We do not observe light scattering for detunings in the range
|�c| < N|Uc|/2 ⇠ 2⇡⇥ 0.1kHz, where the dispersive shift displaces the cavity
resonance by N|Uc|/2 such that �̃c > 0 and scattering becomes energetically
unfavourable. The intracavity photon numbers increase as the pump-cavity
detuning �c aproaches the shifted resonance frequency from below.

We compare our measurements with the phase boundary that is obtained
numerically from the mean-field description, including the cavity decay and
the atomic contact interaction. We obtain good agreement between the mea-
surements and the theoretical model.
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Figure 5.10: Phase diagram for self-organization with a single cavity. We map out the
phase diagram by recording the intracavity photon number in lines of constant de-
tuning �c with transverse pump ramp up to a lattice depth of 43(1)  h!rec. All data
are binned in intervals of 0.5ms.

5.3 ASPECTS BEYOND SELF-ORGANIZATION

In this section we go beyond the standard description of self-organization in
terms of a few-mode expansion at zero temperature. We study the influence
of three effects on the phase diagram: photon dissipation, finite temperature,
and the birefringence of the cavity mode.

5.3.1 Dissipation of the cavity photons

Atomic self-organization in an optical cavity realizes a driven-dissipative
system, where energy flows in terms of photons from the transverse pump
via the atoms into the cavity and eventually leaves the system by cavity
dissipation. We have so far neglected this property, except for the numerical Driven-dissipatice

systemsimulation shown in Fig. 5.7. In the Heisenberg equation, this can be taken
into account by introducing a finite cavity decay rate :

i
@â

@t
= (−�̃c − i)â+

�p
N

⇣

ĉ
†
−
ĉ0 + ĉ

†
+ĉ0 + h.c.

⌘

. (5.43)

The connection between the order parameter and the cavity field is accord-
ingly modified to

↵ =
⌘⇥

�̃c + i
. (5.44)

We deduce from this expression that the cavity field is not strictly in phase
with the transverse pump lattice, but acquires a phase delay when its fre-
quency approaches the cavity resonance. Furthermore, its magnitude is de-
creased compared to the dissipationless situation.

For our system, the atomic and the photonic time scales remain well sepa-
rated since !+,!

−
⌧ . Similarly as in Eq. 5.25 we can analyze the Hessian

matrix and obtain the critical coupling in the presence of dissipation

�cr =

s

(�̃2
c + 2)!

−4�̃c
. (5.45)



92 | Self-organization in a rectangular lattice

0 10 20 30 40 50

Pump lattice depth (Erec)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Δ c
/2
π 

(M
H

z
)

10-2 100 102

Cavity 2, n

Figure 5.11: Influence of cavity dissipation on the phase diagram. We map out the phase
diagram for cavity 2, which has a decay rate of 2 = 2⇡⇥ 800(11)kHz, around five
times more than cavity 1. The measurements are taken in lines of constant detuning
�c with a linear ramp of the transverse pump over 100ms. In comparison to Fig. 5.10,
the critical point is displaced towards higher coupling strengths over the entire range
of detunings from the transverse pump. All data are binned in intervals of 1ms.

We can infer that the phase boundary is displaced towards higher critical
couplings for  > 0. The critical point with the smallest coupling strengthInfluence of

dissipation on the
phase boundary

can be found at �̃min
c = − with the coupling �cr(�̃

min
c ) =

p

!/2. This is in
contrast to the dissipationless situation without minimum. We can recover
Eq. 5.25 from this formula in the limit of ⌧

�

��̃c
�

�.
All measurements shown so far were performed with cavity 1, which has

a decay rate of 1 = 2⇡⇥ 147(4)kHz (see Chap. 4). We perform the same
measurements with the second cavity of the science setup, whose decay rate
2 = 2⇡⇥ 800(11)kHz is approximately a factor of five larger. The resulting
phase diagram is shown in Fig. 5.11. We observe an overall displacement
of the critical point towards higher coupling strengths in comparison to the
phase diagram for cavity 1 in Fig. 5.10. As expected from the above discus-
sion, the critical point with the smallest coupling strength can be found at
�̃c ⇡ −.

5.3.2 Finite temperature

Similar to fluctuations from photon dissipation, thermal fluctuations also
shift the the critical point to higher coupling strengths. This was first derived
for the Dicke phase transition [240] and can be extended to the present
situation with self-organization in a rectangular lattice:

�cr =

s

−�̃c!

4 tanh(� h!/2)
. (5.46)

Here � = 1/kBT with the temperature T and the Boltzmann constant kB.
For constant �̃c the critical point is displaced to higher values at T > 0.
This result is slightly modified when taking into account beyond mean-fieldHigher critical

couplings at finite
temperature

effects [241].
We study the temperature dependence of the critical point by measur-

ing the self-organization phase transition with atomic ensembles at differ-
ent temperatures, across the critical temperature of the BEC. Experimentally
this is achieved by varying the duration and the laser power of the evapo-
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Figure 5.12: Self-organization at finite temperature. a, Phase boundary for T > 0, ac-
cording to Eq. 5.46. The horizontal axis is normalized to the critical point at T = 0.
b, Measurement of the phase diagram at finite temperature. The horizontal axis is
renormalized by the atom number N/Nmin, with the smallest atom number Nmin
among the measurements. The intervals for the data binning are in the range of
1.0− 1.6ms.

rative cooling sequence. The atom numbers vary between N = 1.6− 2.6 ⇥
105, which we take into account by renormalizing the lattice depth V with
N/Nmin, because of the scaling relation ⌘ /

p
NV . The result is presented in

Fig. 5.12 and shows qualitative agreement with the theoretical prediction.

5.3.3 Spin-dependent order and instability

Our description so far considers a single ground state at zero momentum
that is coupled to a single photon field. However, the modes of an optical
cavity always come in pairs of orthogonal polarization and in general the
atomic coupling to both modes has to be accounted for. The mode frequen-
cies are degenerate for rotationally symmetric mirrors, but show a frequency
difference in the presence of a birefringence. The machined substrate and
the mount of the cavity mirrors predefine the polarization axes within few
degrees to the x-y plane (H) and the z axis (V) with a birefringence frequency
splitting of 3.88(6)MHz for cavity 1 (see Chap. 4).

Let us consider the coupling to both polarization modes for different di-
rections of the quantization axes. We always choose the transverse pump Vertical quantization

axispolarization along V . For a vertical quantization axis along z, the differential
cross section vanishes for the H polarized cavity mode and is maximum for
the V polarized mode. As a consequence, self-organization to the H mode
is expected to be strongly suppressed and only self-organization to the V

mode should appear.
The situation changes for a quantization axis in the x-y plane. If the quan- Rotated quantization

axistization axis is parallel to the transverse pump beam, along the y axis, the
transverse pump can drive � transitions between different Zeeman sublevels.
The amplitude for scattering to both cavity modes is finite but strongly sup-
pressed, circularly polarized photons have a much smaller differential cross-
section at 60� than along the quantization axis. No scattering occurs if the
quantization axis points along y, since the V-polarized transverse pump
light cannot excite the atoms.

We study this effect by measuring the phase diagram for different mag-
netic field strengths, as shown in Fig. 5.13. At the absence of a magnetic
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Figure 5.13: Spin-dependent self-organization. We record the phase diagram by ramping
the transverse pump lattice depth up to 60 Erec over 100ms for different pump-cavity
detunings �c. The panels show measurements at different magnetic fields along the
z axis with a, at Bz = 0G, b, at Bz ⇡ 0.01G, c, at Bz ⇡ 0.05G, d, at Bz ⇡ 0.1G, e, at
Bz = 0.2G and f, at Bz = 1G. Values for the low magnetic field strengths are only
approximate, because of a residual offset of in the current regulation. All data are
binned in intervals of 1ms.

field, the exact direction of the quantization axis is unknown since it points
along the earth magnetic field, or along residual magnetic fields that are
present at the position of the atoms. When applying no magnetic field, weTransitions among

the Zeeman sublevels observe self-organization separately to the H and the V polarised cavity
mode when the detuning �c is set to small negative values for the respec-
tive resonance. A slope change of the phase boundary shows the suppres-
sion of self-organization at �c/2⇡ ⇡ −3MHz, where the detuning is small
and positive with respect to the V-polarised cavity mode. The critical point
for self-organization into the V polarised cavity mode increases when apply-
ing a magnetic field, signalling a rotation of the quantization axis towards
z. For a magnetic field of Bz = 1G, no spin-dependent self-organization is
visible over the entire range covered by the measurements.

The two-photon scattering process from the V polarised transverse pump
into the H polarised cavity mode involves a �+ transition between the Zee-
man sublevels |F = 1,mF = −1i ! |F = 1,mF = 0i, followed by � transitions
among all three Zeeman sublevels. We can detect the atomic spin state by
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Stern-Gerlach separation with a magnetic field gradient [126] and observe
similar occupation numbers in all three Zeeman states.

The disappearance of the V polarised self-organization is accompanied
by the onset of an instability boundary at detunings resonant with the H Instability boundary

polarised cavity mode. This behaviour is reminiscent to the observation of
a superradiant instability for atom-cavity scattering from a running wave
[242]. We interpret this observation in an analogous way for the spin degree
of freedom, similar to optical pumping. This interpretation is supported
by the observed atom occupation in all spin components after the ramp,
and by the fact that the feature shifts to higher frequencies when applying
a magnetic field gradient because of the Zeeman shift. Self-organization
involving the spin degree of freedom has been explored theoretically [243]
and experimentally [244, 245] before, but without considering competition
of two birefringent cavity modes.

In order to ensure that spin transitions are fully suppressed, we per-
formed all measurements presented in this thesis at a magnetic field strength
of B = 34G and the description with a single cavity mode remains valid.





6COMPET ING ORDERS W ITH TWO
OPT ICAL CAV IT I E S

Competing order parameters and their corresponding symmetries are an
intriguing concept that appears in systems of different physical context. We
study competing orders by coupling a BEC to two crossed cavities, where
the density orders associated with self-organization to each cavity compete.
We start with a general discussion of competing order within the Landau
framework, before showing on a microscopic level that competing order can
be realized in our setup. Independent adjustment of the coupling to each
cavity allows us to map out the full phase diagram, which we put into the
context of the previously presented theory. We close the chapter by showing
the relation of the system to other quantum-optical models.
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At a phase transition, the thermodynamic properties of a system change
abruptly, mostly accompanied by a change in the ground-state symmetry.
This behaviour can be captured by an order parameter, which signals the
transition from a normal to an ordered phase when acquiring a non-zero
expectation value. The order parameter can be interpreted as the represen-
tation of a symmetry group corresponding to the symmetry that is broken
at the phase transition.

An interesting situation arises in systems exhibiting two different types
of order that can be controlled individually. When both control parameters Two competing order

parametersare set to similar values, the interaction between the two orders becomes
relevant and determines the number of phases in the phase diagram. As
illustrated in Fig. 6.1, two qualitatively different situations can arise [246]:

• Repulsive scenario (three phases): Apart from the normal phase with-
out any order two more phases exist, each showing non-zero expection
value for one order parameter. The two ordered phases are separated
by a first-order phase transition.

• Attractive scenario (four phases): In addition to the previous three
phases a fourth phase exists, where both order parameters have non-
zero expectation value. All phase boundaries are continuous phase
transitions.

97
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Figure 6.1: Schematic phase diagram for competing order. When two order parameters
compete, two different situations can arise. a, Repulsive scenario: Apart from the
normal, disordered phase two more phases exist, each showing non-zero expecta-
tion value for one order parameter. The two order parameters are hence mutually
exclusive. b, Attractive scenario: In addition, a fourth phase with intertwined order
exists, where both order parameters have nonzero expectation value.

The physics in the vicinity of the multicritical point, where both control
parameters are set to their critical couplings, is referred to as competing or-
ders [246]. Models with competing order parameters were first studied in
the context of supersolid helium [247], where the existence of multicritical
points was pointed out, at which different phases meet. The repulsive sce-
nario features a tricritical point, which separates the two ordered phases and
the normal phase. In contrast, four transition lines intersect in the attractive
scenario and form a tetracritical point. In general, the multicritical point is
of particular interest from a group theoretical perspective, as it combines
the symmetries that are broken separately at the phase transition to each
ordered phase [248–251] and can exhibit anomalous behaviour [252].

We investigate this situation by studying the competing order associated
to self-organization with two optical cavities. Since the underlying processesCompeting order

with two cavities can be described by a quantum-optical model, this allows to connect the
microscopic theory of atom-photon interactions with an effective Landau
theory, which is solely based on symmetry arguments. This is different from
most applications of competing order, such as supersolidity [247] and SO(5)
theory [253].

Parts of this chapter have been published as:

J. Léonard, A. Morales, P. Zupancic, T. Esslinger and T. Donner
Supersolid formation in a quantum gas breaking a continuous transla-
tional symmetry
Nature 543, 87-90 (2017)

6.1 THEORETICAL FRAMEWORK

In this section we develop a theoretical description of competing order with
two cavities, first in the generic language of Landau expansion, and then in
a quantum optical picture describing photon scattering. The experimental
setup involving a BEC and two crossed cavities is illustrated in Fig. 6.2.

6.1.1 Competition of two order parameters

Landau theory in its original form, as presented in Chap. 5, considers only aSymmetry groups for
two order parameters single order parameter. However, the formalism can be adapted to account
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Figure 6.2: Setup for competing self-organization with two cavities. A BEC (blue stripes) is
cut into slices by a transverse pump lattice potential (red stripes) and coupled to the
modes of cavity 1 (red) and 2 (yellow). We infer the absolute values of the intracavity
field amplitudes ↵1 and ↵2 from the intracavity photon numbers n1 = |↵1|

2 and
n2 = |↵1|

2, which we measure by recording the photons leaking from the cavities.

for two different order parameters ⇥1 and ⇥2 [254, 255]. In this extension,
the two order parameters are irreducible representations of the subgroups
G1 and G2 of the group H that describes the normal (high-symmetry) phase
[230]. The symmetry group L describing the ordered (low-symmetry) phase
is a subgroup of H with L� (G1 �G2) = H. Generally, the symmetries asso-
ciated to G1 and G2 can be broken individually or simultaneously, leaving
the system in a phase with the correspondingly reduced symmetry.

Similarly to Eq. 5.1, we expand the mean-field energy as a function of the Mean-field expansion

two order parameters ⇥1 and ⇥2. Both are scalar order parameters, since
they describe self-organization with the two cavity fields. The expansion of
the Hamiltonian in even powers up to fourth order contains the following
terms:

H(⇥1,⇥2) =
r1
2
⇥2
1 +

r2
2
⇥2
2

+
g1
4
⇥4
1 +

g2
4
⇥4
2 +

g12
4
⇥2
1⇥

2
2 + O(⇥m

1 ⇥
n
2 )|m+n=6 .

(6.1)

In general, the coefficients r1, r2, g1, g2 and g12 are all functions of �1
and �2. The mean-field energy is invariant under the two inversion trans-
formations ⇥i ! −⇥i and therefore exhibits a Z2 � Z2 symmetry. This
symmetry group is isomorph to the Klein four group K4, since both can be
represented by the pairs {e,a,b, c} = {(1, 1), (1,−1), (−1, 1), (−1,−1)} under
component-wise multiplication. Another example for the Klein four group is
the symmetry group of a non-quadratic rectangle. The Klein four group is
not cyclic, since it cannot be created as the powers of a single element. For
symmetric coupling −r1/g1 = −r2/g2, however, the mean-field energy is
additionally invariant under the transformation ⇥1 ! ⇥2. This extends the
Klein group to the cyclic group C4, which is the symmetry group of a square
(represented by the rotation group {0�, 90�, 180�, 270�}).

The expectation values of ⇥1 and ⇥2 in equilibrium are determined by
the global minimum of H(⇥1,⇥2) and ⇥1 and ⇥2. It is set by the condition
@H(⇥1,⇥2)/@⇥i = 0, yielding the system of equations:

⇥1

⇣

r1 + g1⇥
2
1 +

g12
2
⇥2
2

⌘

= 0

⇥2

⇣

r2 + g2⇥
2
2 +

g12
2
⇥2
1

⌘

= 0
(6.2)

This set of equations has several solutions. One solution is that both ⇥1 =

0 and ⇥2 = 0, as is the case in the normal phase, where no symmetry
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is broken. −ri/gi > 0 for either i = 1 or i + 2, the corresponding order
parameter ⇥i acquires the nonzero value ⇥i = ±

p

−ri/gi, whereas the
other one remains at zero value. This breaks the Z2 symmetry associated toGround-state

solutions for the
order parameters

⇥i and leaves the system in a state with reduced symmetry L�Gj (j 6= i).
The outcome of the last solution with ⇥1,⇥2 6= 0 depends on the values

of the coefficients. Let us divide the two equations by the prefactors and
require the terms in brackets to disappear. They form a system of two equa-
tions that are linear in ⇥2

1 and ⇥2
2. Its determinant � = g1g2 − g212/4 defines

the number of minima for the mean-field energy. We obtain three different
scenarios depending on the value of �, as illustrated in Fig. 6.3 [251]:

• � < 0: No solution exists with both order parameters being nonzero si-
multaneously. The phase diagram spanned by �1 and �2 shows three
regions: the normal phase with ⇥1 = ⇥2 = 0, a phase with ⇥1 6=
⇥2 = 0 (Ordered 1) and a phase with ⇥2 6= ⇥1 = 0 (Ordered 2). In
the ordered 1 phase, the mean-field energy has two global minima
along the ⇥1 axis. Upon approaching the symmetrically coupled situ-
ation of −r1/g1 = −r2/g2, two additional local minima along the ⇥2

axis appear, which become global minima as soon as the point with
symmetric coupling is crossed. The coefficient � determined the range
over which the system supports four minima, and therefore also sets
the width of the hysteresis loop for a closed path in the phase diagram,
as well as the latent heat involved in crossing the phase boundary. As
a consequence, the two ordered phases are separated by a first order
phase transition. Such a system corresponds to the repulsive scenario
in Fig. 6.1):

• � > 0: Four solutions exist with both order parameters being nonzero
simultaneously with the values ⇥1 = ±

p

(g2r1 − g12r2) /� and ⇥2 =

±

p

(g1r2 − g12r1) /�. In this scenario, the order parameters are said
to intertwine. For symmetric coupling −r1/g1 = −r2/g2, the minima
are positioned along the diagonal and the anti-diagonals on a square
in the ⇥1-⇥2 plane, symmetrically to the origin. When coupling asym-
metrically, the square side along the more weakly coupled order pa-
rameter shortens until the minima merge pairwise and the ordered
phase with only two different ground states is entered. The coefficient
� determines the extent of the intertwined phase in the phase diagram.
Such a system corresponds to the attractive scenario in Fig. 6.1.

• � = 0: If the determinant of the system of equations vanishes, neither
phase separation nor intertwining occurs. Instead, the two Z2 sym-
metries give rise to an enhanced U(1) symmetry if the couplings are
symmetric, i. e. −r1/g1 = −r2/g2. In terms of the effective potential,
this can be pictured by a rotation in the ⇥1-⇥2 plane. As soon as the
coupling acquires a finite asymmetry, the rotational symmetry is lost
and the effective potential only presents two minima along the axis of
the more strongly coupled order parameter. This is the limiting case
between the other two scenarios and will be the subject of Chap. 7.

This straightforward expansion for G � H models forms the basis to a
number of effects in physics. Apart from the well-studied examples men-
tioned at the beginning of the chapter, there are connections to matrix mod-
els that play a role in condensed matter, nuclear physics, QCD physics and
2D quantum gravity [256]. For � < 0 and two Z2 symmetric order parame-
ters, the first order phase transition is identical with the Coleman-Weinberg
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Figure 6.3: Scenarios for competing orders. The topology of the phase diagram and the
Landau potential are determined by the value of �. a, Phase diagrams as a function
of the two couplings �1 and �2, which are monotonous in r1 and r2, respectively.
If � < 0, the order parameters are mutually exclusive and the two ordered phases
are separated by a first order phase transition. If � > 0, an additional phase exists
with both order parameters at nonzero values. All phase transitions are continuous.
In the special case of � = 0, an enhanced symmetry is present along the phase
boundary at �1 = �2. b, Effective potential for two Z2 symmetries and identical
couplings � = �1 = �2. In the normal phase with � < �cr, the effective potential has
a parabolic shape with a single minimum at ⇥1 = ⇥2 = 0. For � > �cr, the potential
depends on the determinant �. If � < 0, the minima are positioned on the ⇥1 and
⇥2 axes, prohibiting common order for both order parameters. If � > 0, the minima
are rotated to the diagonal and the anti-diagonal, allowing for simultaneous order
in both ⇥1 and ⇥2. The limiting case occurs if � = 0 and the number of solutions is
infinite thanks to an enhanced U(1) symmetry.
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mechanism for mass generation through spontaneous symmetry breaking
beyond the standard model [257, 258].

6.1.2 Momentum mode expansion

Before unifying the self-organization to both cavities in a single description,
let us investigate the shape of the unit cell. The rectangular Wigner-Seitz
cells for the two density modulation (see Fig. 5.4) do not match as they areCommon unit cell for

both density orders mirrored with respect to the y axis. We can construct an extended unit cell
including two sites, but which is compatible with both density orders. One
possibility is the cell spanned by the lattice vectors:

a1 = −

�p

2

2 sin(✓)
1+ cos(✓)

ex +
�p

2
ey, (6.3)

a2 =
�p

2

2 sin(✓)
1+ cos(✓)

ex +
�p

2
ey, (6.4)

where ✓ 2 [0, 180�] is the angle between the transverse pump and the cavity,
�p is the wavelength of the transverse pump and ex and ey are the unit
vectors pointing along x and y, respectively. The cell is symmetric with re-
spect to the y axis, because a1 · ex = −a2 · ex. Since the two vectors have
the same length but are not orthogonal it has a rhombic shape, as displayed
in Fig. 6.4. The area of the cell is:

A = |a1 ⇥a2| =
�2p

2

sin(✓)
1+ cos(✓)

. (6.5)

The unit cell of the reciprocal lattice can be constructed from the atomicReciprocal unit cell

momentum modes that are accessible by photon scattering processes. We
describe the transverse pump and the cavity mode by the wavevectors

kp = key (6.6)

k1 = −k sin(✓)ex + k cos(✓)ey (6.7)

k2 = k sin(✓)ex + k cos(✓)ey, (6.8)

where k = 2⇡/�p is the wavenumber for all photons. In lowest order, the mo-
mentum states that are accessible from the ground state at zero momentum
are the combinations |±kp ± kii for each cavity i 2 {1, 2}. We can construct
the reciprocal lattice from the basis vectors:

b1 = kp − k1 = −k sin(✓)ex + k (1− cos(✓))ey, (6.9)

b2 = kp + k2 = k sin(✓)ex + k (1− cos(✓))ey. (6.10)

The area of the Brillouin zone is accordingly

ABZ = |b1 ⇥b2| = 2k2 sin(✓) (1− cos(✓)) . (6.11)

The real and reciprocal lattice vectors fulfill the condition ai ·bj = 2⇡�ij for
i, j 2 {1, 2}, resulting in AABZ = (2⇡)2.

We start the derivation of a theoretical description for competing order
with two cavities by extending the two-cavity many-body Hamiltonian inMany-body

Hamiltonian



6.1 Theoretical framework | 103

a
2

a

c

Unit cell

a
1

a
2

Unit cell

a
1

b

b
1 b

2

Brillouin

zone

d

b
1 b

2

Brillouin

zone

2π/λ
p

z x

y λ
p
/2

Figure 6.4: Extended unit cell in real and momentum space. The unit cell compatible
with the self-organization to each cavity includes two lattice sites. a, The density
modulation from the self-organization to cavity 1 is periodic with the lattice vectors
a1 and a2. The elementary unit cell in real-space has a rhomboid shape with the
same acute angle as between the pump and each cavity axis. b, The reciprocal lattice
is spanned by the vectors b1 and b2. The shape of the Brillouin zone is inverted with
respect to the unit cell. c-d, The density modulation for self-organization to cavity 2

is horizontally (along x) mirrored with respect to cavity 1. Since the unit cell (c) is
symmetric along x, its geometry remains unchanged. The same argument holds for
the reciprocal space (d).
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Eq. 5.11 (cf. Appx. B):

Ĥmb =−

X

i=1,2

 h�iâ
†
i âi

+

Z

A

 ̂†(r)



p̂2

2m
+ V(r)

+
X

i=1,2

⇣

 h
h(r)gi(r)

�a
(â

†
i + âi) +  h

g2i (r)

�a
â
†
i âi

⌘

+  h
g1(r)g2(r)

�a
(â

†
1â2 + â

†
2â1) +  h

h2(r)

�a

�

 ̂(r)dr

+
U2D

2

Z

A

drdr0 ̂†(r) ̂†(r0) ̂(r0) ̂(r).

(6.12)

The index i 2 {1, 2} labels the two cavities.  h is the reduced Planck constant
and r = (x,y) and r0 = (x 0,y 0) are the spatial coordinates that are integrated
over the unit cell with area A. The field operator  ̂† ( ̂) creates (annihilates)
an atom at position r with mass m. The bare atomic dynamics is captured
with the momentum operator p̂, the harmonic trapping potential V(r) and
collisions with the 2D contact interaction U2D = AnU, rescaled from the 3D

interaction U = 4⇡ h2a/m with the s-wave scattering length a and the 3D

atomic density n [2].
The cavity modes are described by the creation (annihilation) operators â†

i

(âi). Their frequencies !i are detuned from the atomic resonance frequency
!a by the negative detuning �a = !p −!a, which is large compared to the
atomic decay rate for the electronically excited state and to the hyperfine
splittings of the D2 transition. The cavity detunings from the transverse
pump frequency are given by �i with �i ⌧ �a. Since the size of the atomic
cloud is small compared to the Gaussian envelopes of the cavity modes, we
approximate the modes by plane waves gi(r) = gi cos(ki · r).

The transverse pump lattice beam has a similar diameter as the cavity
modes and can be equally considered as a plane wave h(r) = ⌦ cos(kp · r+

�) with Rabi frequency ⌦. At this point, we included the spatial phase �
of the transverse pump lattice. When considering only one cavity, the rela-
tive position of the standing waves from the cavity mode and the transverse
pump displaced the interference pattern without any effect on the physical
behaviour. This situation changes when considering two cavities and the
transverse pump lattice, leading to three spatial phases that would overde-
fine the interference pattern in 2D. As a result, we obtain three standing
waves that interfere in two dimensions, out of which only two lead to an
in-plane displacement, but the third can affect the interaction.

Let us discuss the meaning of each term of this Hamiltonian separately.
p2

2m + V(r) describes the free evolution of the atoms in the harmonic trap-
ping potential V(r), and −

 h�i describes the free evolution of each cavity
mode in a frame rotating with the transverse pump frequency (see Appx. A).
The last term describes the atomic contact interaction. The remainder of the
Hamiltonian captures the atom-light interaction in a variety of terms corre-
sponding to all possible combinations of two-photon transitions. The rate
of the cavity-cavity and the pump-pump two-photon processes are set by
 h
g2
i (r)

∆a
and  h

h2(r)
∆a

, respectively. The term  h
h(r)gi(r)

∆a
describes two-photon

processes between the pump and cavity i. Additionnally, two-photon pro-
cesses between the two cavities occur with a rate  h

g1(r)g2(r)
∆a

. Since the in-
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teraction is dispersive, each atom-light interaction term can be reinterpreted
as an attractive lattice potential from the interference of the participating
fields.

Similarly to the discussion in Chap. 5 the Hilbert space can be greatly Expansion in
momentum spacereduced by only considering the momentum states that can be reached to

first order by two-photon processes starting from the momentum ground
state |ki = |0i. The four accessible momentum states from the pump-photon
interaction are

|+ii =
1p
2

�

| hkp +  hkii+ |− hkp −
 hkii

�

|−ii =
1p
2

�

| hkp −
 hkii+ |− hkp +  hkii

�

,
(6.13)

with i 2 {1, 2} denoting the involved cavity. The interaction with each cavity
therefore provides access to one state at kinetic energy  h!+ = 3 h!rec and
one at  h!

−
=  h!rec. The normalized real-space wave-functions of these Real-space wave

functionsstates are

 0 =

r

1

A

 i+ =

r

2

A
cos
⇥

(kp + ki) · r
⇤

 i− =

r

2

A
cos
⇥

(kp − ki) · r
⇤

.

(6.14)

In addition, we have to take into account the cavity-cavity coupling. This
gives rise to two more states

|+i12 =
1p
2
(| hk1 −

 hk2i+ |− hk1 +  hk2i)

|−i12 =
1p
2
(| hk1 +  hk2i+ |− hk1 −

 hk2i)
(6.15)

with the corresponding wave functions

 12+ =

r

2

A
cos [(k1 − k2) · r]

 12− =

r

2

A
cos [(k1 + k2) · r] .

(6.16)

If we neglect higher order scattering processes, the atoms can only occupy
these seven momentum states and we can expand the atomic field operator
in the basis

 ̂ =  0ĉ0 +
X

i2{1,2,12}

�

 i−ĉi− + i+ĉi+
�

. (6.17)

We carry out the integrals in the Hamiltonian of Eq. 6.12 using a similar
nomenclature as in the case of a single cavity. We introduce the lattice depths
 hUi =  hg2i /�A for the cavities and  hUp =  h⌦2

p/�A for the transverse pump
potential. The dispersive shift for each cavity renormalizes the cavity detun-
ings as �̃i = �i −NUi/2. The pump-cavity scattering processes have the
rates �i =

p
N⌘i/2

p
2 with ⌘i = −⌦pgi/�A. Analogously, the cavity-cavity

scattering term has a rate �12 =
p
N⌘12/2

p
2 with ⌘12 = −g1g2/�A. We

choose the negative signs for ⌘i and ⌘12 to obtain positive scattering rates
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Figure 6.5: Seven-mode expansion in momentum space. a, Momentum modes from two-
photon processes involving the transverse pump and cavity 1. The excitation paths
shown as solid (dashed) lines correspond to the creation (annihilation) of a cavity
photon. Light scattering between the pump field and the cavity mode induces Raman
couplings between the zero momentum state |pi = |0i and the excited states |+i and
|−i at energies  h!+ and  h!

−
, respectively. The scattering amplitude is determined

by the transverse pump Rabi frequency ⌦p and the vacuum Rabi frequency g1 of the
cavity. b, Analogous momentum modes for cavity 2. All processes are mirrored with
respect to the py axis. c, Momentum modes from two-photon processes involving
both cavities. The excitation paths shown as solid (dashed) lines correspond to the
annihilation of a photon in cavity 1 (2) and the creation of a photon in cavity 2 (1).
If ⇥ = 60�, the condition k1 + k2 = kp is satisfied and all |−i and all |+i states are
degenerate.
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and coupling strengths, different from the standard notation in the theory
of self-organization with a single cavity [81]. The resulting Hamiltonian is

Ĥ =
X

i=1,2

h

−
 h�̃iâ

†
i âi +  h!+ĉ

†
i+ĉi+ +  h!

−
ĉ
†
i−ĉi−

+
 h�ip
N

⇣

â
†
i + âi

⌘⇣

ĉ
†
i+ĉ0 + ĉ

†
i−ĉ0 + h.c.

⌘i

+  h!+ĉ
†
12+ĉ

†
12− +  h!

−
ĉ
†
12−ĉ

†
12−

+
 h�12p

N

⇣

â
†
1â2 + â

†
2â1

⌘⇣

ĉ
†
12+ĉ0 + ĉ

†
12−ĉ0 + h.c.

⌘

.

(6.18)

6.1.3 Phase transitions of the system

The system dynamics is governed by the set of Heisenberg equations

i
@âi

@t
=− �̃iâi +

�ip
N

⇣

ĉ
†
i−ĉ0 + ĉ

†
i+ĉ0 + h.c.

⌘

+
�12p
N
âj

⇣

ĉ
†
12+ĉ0 + ĉ

†
12−ĉ0 + h.c.

⌘

i
@ĉ0
@t

=
X

i=1,2

�ip
N

(ĉi− + ĉi+)
⇣

â
†
i + âi

⌘

+
�12p
N

⇣

â
†
1â2 + â

†
2â1

⌘

(ĉ12+ + ĉ12−)

i
@ĉi±
@t

=!±ĉi± +
�ip
N
ĉ0

⇣

â
†
i + âi

⌘

i
@ĉ12±
@t

=!±ĉ12± +
�ip
N
ĉ0

⇣

â
†
i + âi

⌘

+
�12p
N
ĉ0

⇣

â
†
1â2 + â

†
2â1

⌘

(6.19)

In the limit of weak cavity-cavity coupling, that is �12 ⌧ �1, �2, we can Critical couplings

derive the critical couplings similarly to the calculation shown in Sec. 5.7
and obtain

�cr,1 =

q

−�̃1!/4

�cr,2 =

q

−�̃2!/4

(6.20)

with !−1 = !−1
+ +!−1

−
.

The Hamiltonian in Eq. 6.18 shows a parity symmetry with respect to
each cavity, that is, it remains unchanged upon the simultaneous transfor-
mation (âi, ĉi±) ! −(âi, ĉi±) on the photonic and atomic field operators.
The symmetries can be captured by the operators

Ĉi = â
†
i âi +

X

s=±

h

ĉ
†
isĉis + ĉ

†
12sĉ12s

i

. (6.21)

The corresponding unitary transformations U = eiθĈi act on the atomic and
photonic operators as follows:

âi ! ÛâiÛ
† = eiθâi (6.22)

ĉµ ! ÛĉµÛ
† = eiθĉµ (6.23)

for i 2 {1, 2} and µ 2 {1+, 1−, 2+, 2−, 12+, 12−} counting all excited momen-
tum modes. We therefore obtain for the full Hamiltonian

Ĥ ! ÛĤÛ† = Ĥ if ✓ 2 {0,⇡} (6.24)
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Figure 6.6: Mean-field solution of the phase diagram. a,b, Mean intracavity photon num-
bers ni = |↵i| for cavity 1 (a) and 2 (b) as a function of the pump–cavity detunings
�1 and �2. c,d Photon traces for cavity 1 (red) and 2 (yellow) as a function of �1, for
�2/2⇡ = −4.0MHz (c) and −2.5MHz (d). The Raman coupling � is fixed to the ex-
perimental value of the transverse pump lattice depth of 38 h!rec and the intercavity
coupling �12 is neglected. The mean-field model includes cavity decay, contact inter-
actions, different vacuum Rabi frequencies gi and the transverse pump potential.

The Hamiltonian remains invariant under the unitary transformation ÛiSymmetries of the
Hamiltonian only if ✓ 2 {0,⇡}. The underlying symmetry groups are Z2. The two symme-

tries can be broken individually at the phase transition to a self-organized
state for each cavity. The choice of sign of the field operators corresponds to
a choice of 0 or ⇡ for the phase of the light field in cavity i, which is equiv-
alent to atoms crystallizing on odd or even sites of a chequerboard lattice
with rhomboid geometry.

6.2 PHASE DIAGRAM

We now turn to the phase diagram determined by the competing orders
of the two cavities. We start with a numerical analysis of the Hamiltonian,
thereby connecting to the generic scenarios presented at the beginning of
the chapter. The simulation is then compared to the experimental measure-
ments.

6.2.1 Numerical results

We define the two order parameters

⇥1 = h ̂| cos(kp · r) cos(k1 · r) | ̂i
⇥2 = h ̂| cos(kp · r) cos(k2 · r) | ̂i ,

(6.25)

each measuring the overlap of the atomic density distribution with the in-Order parameters

terference pattern of the respective cavity mode and the transverse pump. A
nonzero ⇥i signals the presence of self-organization with cavity i 2 {1, 2},
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Figure 6.7: Intertwined order in the two-cavity system. We extract the width of the
phase with intertwined order for different coupling strengths �12 at the detuning
�1 = �2 = −3MHz. The width increases with �12 and shows a negligible size for
our experimental parameters.

remaining in the range −1 6 ⇥i 6 1. We are interested in the expec-
tation value of the atomic and photonic operators, which we define as
hâii =

p
N↵i for the cavity modes i 2 {1, 2} and hĉµi =

p
N µ for the

atomic modes µ 2 {1±, 2±, 12±}. The atomic modes fulfill the normaliza-
tion condition

P
µ 

2
µ = 1. All expectation values can also take real values

due to the Z2 symmetry breaking. In analogy to Eq. 5.42 the atomic order
parameters and the photon fields are connected by the relation

↵1 =
⌘⇥1

�̃1

↵2 =
⌘⇥2

�̃2

.
(6.26)

We numerically calculate ↵1 and ↵2 for our experimental parameters in the
plane spanned by �1 and �2 and include photon dissipation and contact
interactions in the same way as described in Sec. 5.2.1. The result is shown
in Fig. 6.6. Three distinct phases are visible with neither cavity occupied, or
either of the two showing a nonzero photon number. The cavity fields ex- Width of the phase

with intertwined
order

clude each other and a region with finite light fields in both cavities simulta-
neously is not visible. This points either towards the repulsive scenario with
� < 0, or towards � & 0 with an overlap region below the resolution.

We calculate the phase diagram for different values of �12 and extract
the diagonal width of the overlap region each time at �1/2⇡ = �2/2⇡ =

−3MHz. The result is shown in Fig. 6.7. The region with both cavities si-
multaneously occupied grows with increasing �12, signalling a phase with
intertwined order. For our experimental parameters, �12 < 1%, which places
us in a regime with unresolvable intertwined order at � & 0.

6.2.2 Measurement of the phase diagram

We characterize the competing orders in the system by exploring the phase
diagram spanned by the cavity detunings �1 and �2. This is equivalent to
adjusting the couplings �1 and �2, because the critical point depends on
the detuning, see Eq. 6.20. Starting point of the experiment is an optically
trapped BEC exposed to an attractive transverse pump lattice potential with
wavelength �p = 785.3nm and recoil frequency !rec = 2⇡⇥ 3.7kHz, restrict-
ing the motion of the atoms to the x–z plane (for experimental details, see
Methods). While leaving � constant and independently changing the detun-
ings �1 and �2, we simultaneously record the photons leaking from both
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Figure 6.8: Competing orders in the two cavity–system. a–b, Mean intracavity photon
numbers n̄i = |↵|2i as a function of the cavity-pump detunings �1 and �2 for a
constant transverse pump lattice depth of 38(1)  h!rec. Each horizontal line was taken
for both cavities simultaneously in a single run of 25ms. c–d, Photon traces for cavity
1 (red) and 2 (yellow) as a function of �1, for �2/2⇡ = −4.0MHz (c) and −2.5MHz
(d). All data are binned in intervalls of 0.5ms. e–g, Absorption images of the atomic
momentum distribution, recorded along the z–axis after 25ms of ballistic expansion
with the gas prepared inside the normal phase (e) and the self-organized phases to
cavity 1 (f) and 2 (g). Black areas show high atomic densities. The scale bar denotes
the length corresponding to a single photon recoil momentum  hk.

cavities, giving us real-time access to the intracavity light fields. Due to the
concurrence of photonic and atomic excitations, the intracavity light fields
allow us to access the degree of atomic ordering.

The result is shown in Fig. 6.8a, b. For each cavity, we observe a buildup
of the cavity field at a critical point (Fig. 6.8c) indicating the transition to
a self-organized state. Three regions are immediately visible: one normal
phase without an intracavity field, and two self-organized phases to cavity
1 (SO1) and 2 (SO2).

6.2.3 Realization of two lattice supersolids

In order to probe the superfluidity of the atomic cloud, we measure its
phase coherence. We suddenly turn off all trapping potentials and allow theMeasure phase

coherence atomic wavefunction to expand freely. Subsequently, we perform absorption
imaging perpendicular to the cavity plane, see Fig. 6.8 (e-g). The presence
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Figure 6.9: Phase diagram for competing self-organization. The phase boundaries (blue
data points) extracted from the recorded photons separate the normal phase (white),
the SO1 phase (red) and the SO2 phase (yellow). The gray area shows the result of
the numerical simulation including experimental uncertainties.

of narrow interference maxima reflecting the initial momentum distribution
shows the superfluidity of the cloud [109]. In the normal phase, we solely
observe the BEC and the momentum peaks at ±2 hk along the direction
of the transverse pump. For finite intracavity field, additional interference
maxima appear at momenta of the involved scattering processes depicted in
Fig. 6.5c. From the interference maxima we conclude that the observed self-
organized phases are lattice supersolids with periodicity d = �p/ sin(60�).
Their broken parity symmetry corresponds to the Hamiltonian in Eq. 6.18

being invariant under the unitary transformation ai ! −ai and accordingly
for ĉi+ and ĉi− for each cavity i 2 {1, 2}. The presence of a lattice supersolid
is accompanied by an atomic density modulation along the x–axis forming
at discrete positions 0 or d/2.

6.2.4 Extracting the phase boundaries

We distinguish the three phases in the data of Fig. 6.8 by the presence of
photons in either cavity or in neither one. In order to extract the phase
boundaries we calculate the differential mean intracavity photon number
n = n1 − n2. The transition point �cr between the normal phase and each
ordered phase is then determined by approximating the region around the
phase boundary with the fit function ni = max(A(�i −�cr), 0) for positive
(negative) slope A for cavity 1 (2). The transition between the SO1 and the
SO2 phase is determined by min(|n|), i.e. the point where the differential
photon number vanishes.

We establish a phase diagram by combining the determined transition
points. The result is shown in Fig. 6.9. We identify three phases with ↵1 =

↵2 = 0, ↵1 6= 0 = ↵2 and ↵1 = 0 6= ↵2. The critical point between the
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normal and the self-organized phases remains independent of the detuning
from the more weakly coupled cavity. The phase boundary between the self-
organized phases has constant slope and follows the condition �1 ⇡ �2.

We compare the data with the expected phase boundaries from the nu-
merical simulations shown in Fig. 6.6 and find good agreement. The gray
region includes 20% uncertainty of the atom number as well as fluctuations
of the cavity resonance and the transverse pump frequency of 50 kHz each.
The phase boundaries between the normal and the self-organized phases
are not expected to happen at the same detuning due to a difference in the
decay rates of the two cavity fields (see Sec. 5.3.1). This effect also shifts
the phase boundary between the self-organized phases slightly off-diagonal.
We therefore achieve symmetric coupling to both cavities for cavity 2 slightly
closer detuned to the transverse pump frequency than cavity 1.

6.3 RELATION TO OTHER MODELS

We have shown that our system realizes the canonical example of two com-
peting order parameters, which finds application in different contexts of
physics [246]. Here we present a few examples that illustrate the relevance
of the underlying principle for the presented phase diagram and discuss the
close connection to our system.

6.3.1 SO(5) theory

Antiferromagnetismand superconductivity are two states of matter that can
occur next to each other in phase diagrams for strongly correlated systems
and influence their mutual properties [248, 253, 259]. Examples include
high-temperature cuprates, heavy-fermion compounds and organic super-
conductors. An antiferromagnet breaks an SO(3) symmetry, whereas a su-
perconductor breaks the U(1) (or SO(2)) symmetry associated to the phase
invariance.

SO(5) theory unifies these two basic states from symmetry principles,Unifying
antiferromagnetic

and superconducting
order

based on the postulate that a single microscopic interaction gives rise to
both the antiferromagnetic and superconducting order. The phenomenol-
ogy is captured with an expansion of the free energy identical to Eq. 6.1
[253, 260]:

F(�1,�2) =
r1
2
�2
1 +

r2
2
�2
2 +

g1
4
�4
1 +

g2
4
�4
2 +

g12
4
�2
1�

2
2 (6.27)

Here, �1 and �2 are vector order parameters with 2 and 3 components,
respectively. The order parameters can be combined to one superspin order
parameter � = (�1,�2). Despite the fact that the symmetry groups of the or-
der parameters are different from the Z2 symmetries for self-organization,
many aspects of the interplay between the two orders are maintained. In
our system, however, both self-organized phases are indeed caused by the
same microscopic principle, namely photon scattering between the trans-
verse pump and the respective cavity.

Within this framework, the mixing term � = g1g2 − g212/4 (or �12 inPhase transition
types in cuprates Eq. 6.18 determines the type of transition between the antiferromagnetic

and the superconducting phase [253]. The type-1 transition corresponds to
the repulsive scenario with a first order phase transition from the antifer-
romagnetic to the superconducing state. In the attractive scenario (type 2),
the two phases are separated by two second-order phase transitions with
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an additional phase of intertwined order in between. In the limiting case of
� = 0 (type-1.5), the phase with intertwined order has disappeared, but the
transition remains second order as no latent heat is involved yet. The phase
transition shows an enhanced symmetry (see Chap. 7), except if fractional-
ized excitations are present [248].

Setting our system in that context amounts to reinterpreting the situation Simulating doped
and undoped
superconductors

of symmetric coupling with � = �1 = �2 as an undoped superconductor. In
the language of SO(5) theory, the doping corresponds to a rotation of the two
order parameters with respect to each other, i.e. an SO(5) rotation restricted
to a lower symmetry by the individually broken SO(3) and U(1) symmetries.
We can simulate this effect by introducing an asymmetry �1 6= �2 in the
couplings. In the attractive scenario, the order parameters ⇥1 and ⇥2 are ro-
tated by 90� when passing between the SO1 and the SO2 phase through the
mixed intertwined ordered phase. For our experimental parameters with
� ⇡ 0 this rotation happens for any finite asymmetry, but the system in prin-
cipal allows to determine the extend of the intertwined phase, see Chap. 11.
An analogous behaviour occurs in an 2D optical lattice around half filling
[261, 262].

6.3.2 The LMG model

The LMG model originally has been introduced in nuclear physics to de-
scribe phase transitions and giant resonances in nuclei [263]. Later, the
model has been proposed to describe different systems, for instance mag-
netic molecules [264], interacting spin systems [265] or interacting bosons
on a double well [266, 267]. Its simplicity and exact solvability has also
triggered studies investigating the role of entanglement at quantum phase
transitions [268–272].

Conceptually, the model describes an ensemble of N spin-1/2 systems Simulating the XY
model infinite
coordination number

with independent coupling along the x and the y components or, equiva-
lently, the XY model in the limit of infinite coordination number [273]. It
can be described by the Hamiltonian:

HLMG = −
 hhŜz +  h

�1

N
Ŝ2x +  h

�2

N
Ŝ2y (6.28)

with the spin transition frequency h and individual couplings �1 and �2.
For �2 = 0, the system is identical to the Dicke model (see Sec. 5.1.4).

For small coupling �1, �2, the macroscopic spin points down and hŜzi =
−N/2. At the same time, the expectation values for the transverse spin com-
ponents vanish, i. e. hŜxi = 0 and hŜyi = 0. When increasing either of the
coupling strengths past the critical point �cr = h/4, the system undergoes a
phase transition to a state with either hŜxi 6= 0 or hŜyi 6= 0. Consequently,
the system can be interpreted as two competing order parameters each rep-
resenting one spin component.

Self-organization with two cavities is adequately described by the LMG Equivalence to
mean-field LMG
model

model in mean-field approximation. This can be shown by adiabatically
eliminating the photon fields in Eq. 6.18. We neglect the influence of the
momentum modes at energy  h!+ here, since they do not change the quali-
tative discussion, and obtain the Hamiltonian:

Ĥ =
X

i2{1,2}



 h!
−
ĉ
†
i−ĉi− +

 h�2

�i

⇣

ĉ
†
i−ĉ0 + ĉi−ĉ

†
0

⌘2
�

(6.29)
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Figure 6.10: Phase diagram of the LMG model. The LMG model exibits three different
phases with either all spins pointing down (hŜxi = hŜyi = 0), a finite population
along x (hŜxi 6= 0 = hŜyi) or along y (hŜxi = 0 6= hŜyi). All phase transitions are
continuous.

We interpret the atomic ensemble as a spin of length N/2 and identify the
momentum mode operators with a Schwinger-like representation

hŜxi = hĉ†1−ĉ0 + ĉ1−ĉ
†
0i

hŜyi = hĉ†2−ĉ0 + ĉ2−ĉ
†
0i

hŜzi = hĉ†1−ĉ1− + ĉ
†
2−ĉ2−i.

(6.30)

This corresponds to the LMG model with the spin transition frequency −h =

!
−

and the couplings �i = �2/�i. However, the operators themselves do
not form a spin algebra, since

⇥

Ŝx, Ŝy
⇤

= 0. As a consequence, the analogy
is only valid on the mean field level. This is why we have directly used the
expectation values in Eq. 6.30.

The symmetry properties for the LMG model and for the two-cavity self-
organization remain the same, since the relations Ŝx ! −Ŝx, Ŝy ! −Ŝy,
as well as Ŝx ! Ŝy for symmetric coupling �1 = �2 are valid. This results
in a phase diagram with the same topology, as can be seen in Fig. 6.10.
However, the interplay of the order parameters beyond the mean-field level
is different for the two systems. This could be observed, for instance, by
considering spin squeezing and correlations between the two quadratures
[274–276].

6.3.3 Two-mode Dicke models

The fact that the Dicke model only exhibits a discrete symmetry break-
ing has stimulated research to develop quantum optical models that would
show a continuous symmetry breaking instead. Let us reconsider the Dicke
model, as introduced in Sec 5.1.4:

Ĥ =  h!â†â+  h!0Ŝz +
 h�p
N

⇣

â† + â
⌘

�

Ŝ+ + Ŝ
−

�

. (6.31)

It describes the interaction � of an ensemble of N spin-1/2 systems of energy
 h!0 with a photon field of energy  h!, represented by the creation (anni-
hilation) operator â† (â). This model exhibits a Z2 symmetry, but the U(1)
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symmetry is hindered by the counterrotating terms â†Ŝ+ and âŜ
−

. Even Lack of continuous
symmetries in
quantum optics

though these terms are neglected with the rotating wave approximation in
the Jaynes-/Tavis-Cummings model [277], the retrieved U(1) symmetry can-
not be broken without going to coupling strengths that are beyond the valid
range of the approximation. As a result, continuous symmetry breaking is
inhibited.

Several quantum-optical models have been proposed exhibiting a contin-
uous symmetry that can be broken, mostly based on a two-mode extension
of the Dicke model [278–282]. The idea on which these proposals found is
to construct a Dicke-type model with a second discrete symmetry lying in
quadrature to the first one. If the couplings to both quadratures can be in-
dependently adjusted, the situation is analogous to two competing order
parameters. Due to the absence of coupling between the field quadratures,
these models are typically forced to a situation of � = 0 without a phase of
intertwined order, but in exchange allow for squeezing and correlations.

We discuss here exemplary the model studied in [281]. We consider a spin
of length N/2 with transition frequency !0 that is coupled to two photon
modes of equal frequency ! with creation (annihilation) operators â† (â)
and b̂† (b̂). The Hamiltonian reads:

Ĥ = h!â†â+  h!b̂†b̂+  h!0Ĵz

+  h
�1p
N

�

Ĵ+ + Ĵ
−

�

⇣

â† + â
⌘

+  h
�2p
N

�

Ĵ+ − Ĵ
−

�

⇣

b̂† − b̂
⌘

.
(6.32)

Here, Ĵz, Ĵ+ and Ĵ
−

form a spin algebra, and �1 and �2 are coupling con-
stants. Similarly to two-mode self-organization, the Hamiltonian can be di-
vided into two parts, each considering the coupling to one photonic mode.
As a consequence the phase diagram has the same topology and includes
competing orders with an enhanced U(1) symmetry for �1 = �2. However,
the two modes act on the same spin, leading to similar beyond-mean-field
effects as for the LMG model.





7SUPERSOL ID FORMAT ION IN A
QUANTUM GAS

In this chapter, we show how the continuous translational symmetry of a ho-
mogeneous quantum gas can be broken by coupling it with the light fields
of two optical cavities. This realizes a supersolid state, which is character-
ized by the coexistence of spatial order and superfluidity. First, we explain
how the continuous symmetry arises from two discrete ones by coupling
the quantum gas equally to both cavities. We then describe the main results
of the supersolid phase, including the density distribution and its connec-
tion to the light fields. Finally, the degeneracy of the continuous symmetry
is discussed.
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The introduction of optical lattices to quantum gas experiments has led
to the exploration of a wealth of phenomena associated with lattice models
[109]. In the context of condensed matter physics, atoms tunneling in a si-
nusoidal potential simulate mobile electrons that are subject to the periodic
potential of the fixed ions in a solid. Yet, the potential formed by an optical
lattice is not self-consistent, but externally imposed onto the quantum gas.
This intrinsically prevents the simulation of condensed matter effects that
include more than the electronic motion, for instance lattice phonons, dis-
locations or structural phase transitions. Realizing a genuinely self-ordered
solid with a quantum gas has remained a challenge.

In general, structure formation requires an interaction potential showing Structure formation
requires potential
minimum

a minimum at finite distance r0, as illustrated in Fig. 7.1a. The interaction be-
tween two atoms is governed by a competition of the repulsive Pauli block-
ing at short distance and the attractive van-der-Waals interaction at large
distances. The resulting potential causes the atoms to arrange in a periodic
manner when interaction energy dominates over kinetic energy. The min-
imum distance r0 is typically below 1nm. The interparticle distance in a
BEC is typically on the order of 100nm, and the minimum in the interaction
potential is too short-ranged to be of relevance for structure formation. En-
gineering interactions that are as long-ranged as the interparticle distance
has become an important objective for experiments with quantum gases. Long-range

interactions in
quantum gases

The research is driven by the quest for a particular solid: the supersolid. This
long-sought quantum state is thought to combine the properties of a super-

117



118 | Supersolid formation in a quantum gas

V(r)

r

a b V(r)

r
r
0

r
0

Figure 7.1: Long-range interaction potentials a, An interaction potential created by an
atom at position r = 0 is seen by a second atom at finite distance. It exhibits a
minimum at r0, as a consequenc of competition between repulsive Pauli blocking
of the electrons in valence shells and the attractive van-der-Waals interaction. With
cold atoms, the equilibrium distance r0 can be engineered to be on the order of the
interatomic distance. b, The effective interaction from atom-cavity coupling shows a
minimum at finite distance and is tunable in strength. The potential is periodic in
space and extends over the entire cavity mode.

fluid and a solid, in that it shows phase coherence and a periodic density
modulation.

The supersolid has been attempted in a number of cold atoms platforms,
most prominently atoms with strong magnetic dipole moment [54–58], polar
molecules [62–68], Rydberg atoms [69, 70, 72, 73] and atom-light interaction
[77, 283]. None of them has shown a solid phase so far, although first sig-
natures of spatial order in highly excited and short-lived systems have been
observed [71, 77, 284].

Atom-light interaction has proven strong enough for collective effects [81].
The formation of a density modulation has first been observed as self-orga-
nization in a thermal cloud that is coupled to an optical cavity and subject
to a transverse pump beam [212], and then with a BEC [75]. However, the
cavity mode restricts the position of the density modulation to only two,
see Chap. 5. Since in the latter realization the BEC maintains its superfluid-
ity, the self-organized state corresponds to a lattice supersolid with only two
possible crystal positions. Thus, a supersolid that can form at any point in
space has remained elusive.

Here we report on the realization of such a supersolid. The starting point
is a BEC of 87Rb atoms, which has a broken gauge symmetry since it is de-
scribed by a coherent wave function [285] and shows superfluidity [286]. We
induce crystallization of the BEC by coupling the atoms to two optical cavi-
ties that cross at an angle of 60�. This gives rise to a long-range interaction
potential as shown in Fig. 7.1 [237]. The wavelength �p of the cavity photons
determines the length scale of the interactions, and therefore the equilibrium
distance between the atoms is on the order of the interatomic distance. Dif-
ferent from the van-der-Vaals potential, this interaction however is periodic
in space and extends over the full cavity mode (cf. Sec. 7.1.3).

Parts of this chapter have been published in the following publication:

J. Léonard, A. Morales, P. Zupancic, T. Esslinger and T. Donner
Supersolid formation in a quantum gas breaking a continuous transla-
tional symmetry
Nature 543, 86-90 (2017)
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7.1 THEORETICAL FRAMEWORK

The continuous symmetry that is broken at the superfluid-supersolid phase
transition is an enhanced symmetry that emerges from the discrete symme-
tries associated with the two cavities. The fact that a continuous symmetry
can arise from discrete ones might seem counterintuitive at first sight. In this
section, we approach this effect from different perspectives. We start with
the canonical example of the XY model, which can be constructed from
two Ising models. More generally, symmetry enhancement can be revealed
in Landau theory by fine-tuning the coefficients of the mean-field energy
expansion. We then show that the same phenomenon is visible in the mi-
croscopic Hamiltonian for certain Raman coupling strengths, and finally
explain how the symmetry enhancement can be interpreted as a cancelled
centre-of-mass term in the photon-mediated interactions.

7.1.1 Symmetry enhancement from competing orders

Let us consider a Hamiltonian with two competing orders, each character-
ized by an order parameter that is associated with a certain symmetry. At an
enhanced symmetry, the Hamiltonian parameters are fine-tuned such that
the underlying symmetry groups of the two order parameters are extended
to a single one with higher symmetry. It is instructive to illustrate this con-
cept with an intuitive example. We consider the standard Ising spin chain
with transverse field, see Fig. 7.2:

Ĥ = −Jx
X

hi,ji
Ŝxi Ŝ

x
j − h

X

i

Ŝzi , (7.1)

with the transverse field h and the coupling J between each pair hi, ji. This
Hamiltonian has a Z2 symmetry, since it is invariant under Ŝxi ! −Ŝxi . At Symmetry-

enhancement in the
XY model

the critical point, the magnetization hSxi acquires a nonzero value that can
be positive or negative. The symmetry is consequently broken.

We can introduce a second Z2 symmetry in the Hamiltonian by adding a
perpendicular coupling term of equal strength.

Ĥ = −J
X

hi,ji

⇣

Ŝxi Ŝ
x
j + Ŝ

y
i Ŝ

y
j

⌘

− h
X

i

Ŝzi , (7.2)

with J = Jx = Jy. The Hamiltonian is now invariant under Ŝxi ! −Ŝxi and
Ŝ
y
i ! −Ŝ

y
i . When the system crosses the critical point it develops nonzero

magnetizations hŜxi along x and hŜyi along y. However, the symmetry that
is broken is a rotational symmetry rather than two Z2 symmetries, since the
total magnetization hŜi =

�

hŜxi, hŜyi
�

can point along any direction in the
x-y plane, only keeping

�

�hŜi
�

� constant: a continuous symmetry has emerged
from two discrete ones [258].

More generally, symmetry enhancement can be described in Landau the-
ory with two order parameters ⇥1 and ⇥2 associated with the symmetry
groups G1 and G2 [230]. Let us consider the mean-field energy in Eq. 6.1 for
the situation of symmetric coupling to both order parameters, i. e. � = �1 =

�2. The Landau expansion up to fourth order then reads:

H(⇥1,⇥2) =
r

2
(|⇥1|

2 + |⇥2|
2) +

g

4
(|⇥1|

4 + |⇥2|
4) +

g12
4

|⇥1|
2 |⇥2|

2 , (7.3)

with all coefficients r,g,g12 functions of �. The symmetry properties of this
Hamiltonian are inherited from the order parameters, thus it remains in-
variant under transformations in G1 �G2. In the case of self-organization
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Figure 7.2: Symmetry enhancement from competing order. a, Ising-type symmetry break-
ing. At small interaction strength, the magnetization disappears and each spin points
up or down. When increasing the interaction across the critical point, two ground
states appear with all spins either pointing down or up. The magnetization acquires
a non-zero value and the Z2 symmetry of the Hamitonian is broken. b, XY-type
model, constructed from two Ising models with equally strong spin interactions
along two quadratures. In the normal phase the spins are not oriented and the mag-
netization is zero. In the ordered phase, all spins align in the plane, breaking a
continuous (rotational) symmetry.

with two cavities, ⇥1 and ⇥2 are scalar and individually exhibit Z2 with the
transformations ⇥1 ! −⇥1 and ⇥2 ! −⇥2. Since both couplings are iden-
tical, the Hamiltonian is additionally symmetric under exchange of the two
order parameters ⇥1 ! ⇥2, which already extends the symmetry group to
the cyclic group C4.

We can further extend the symmetry group of the Hamiltonian by impos-
ing a second restriction on the coefficients in the expansion. For convenience,
let us use the parametrization

H(⇥1,⇥2) =
r

2
(|⇥1|

2 + |⇥2|
2) +

g

4
(|⇥1|

2 + |⇥2|
2)2 + ⇣ |⇥1|

2 |⇥2|
2 , (7.4)

with the intertwining parameter ⇠ = (g12 − 2g)/4. We can see that for ⇠ = 0

the two Z2 symmetries together form an SO(2) symmetry for the order
parameter ⇥ = (⇥1,⇥2) or, alternatively, a U(1) symmetry with ⇥ = ⇥1 +

i⇥2, since the vector spaces R2 and C are isomorph. We can visualize this
scenario in terms of the effective potential, as illustrated in Fig. 7.2b. In theContinuous

symmetry from two
discrete ones

normal phase, the effective potential has a parabolic shape and exhibits a
single minimum with ⇥1 = ⇥2 = 0. When increasing � across the critical
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Figure 7.3: Setup for creating a supersolid. A BEC (blue stripes) is cut into slices by a
transverse pump lattice potential (red stripes) and coupled to the modes of cavity 1

(red) and 2 (yellow). We infer the absolute values of the intracavity field amplitudes
↵1 and ↵2 from the intracavity photon numbers n1 = |↵1|

2 and n2 = |↵2|
2, which

we measure by recording the photons leaking from the cavities.

point with r(� = �cr) = 0, the potential changes to a ’sombrero’ shape with

an infinite number of ground states at constant radius |⇥| =

q

|⇥1|
2 + |⇥2|

2.
The order parameters are therefore not individually determined but can
only take the values:

⇥1 = cos(✓) |⇥|

⇥2 = sin(✓) |⇥|
(7.5)

with ✓ 2 [0, 2⇡]. The amplitude of the order parameter takes the value |⇥| =
p

−r/g.
In summary, a fine-tuning of the coefficients in the mean-field expansion

can lead to a higher symmetry of the Hamiltonian in a reduced parameter
space. The Z2 � Z2 symmetry in the Hamiltonian was first extended to the
cyclic group K4 and then further to the rotation group SO(2). Geometrically,
this corresponds to extending the symmetry group of a non-quadratic rect-
angle first to a square and then to a circle. These geometries are also reflected
by the minima positions in the effective potential, which are equivalent to
the ground state manifold of the Hamiltonian.

Since enhanced symmetries require to confine the underlying theory to a
lower dimension, they are also called hidden or accidental symmetries [287].
From the perspective of the lower dimensional theory, an enhanced symme-
try can be understood as a residual of a multicritical point in a higher di-
mensional phase diagram. The concept of symmetry enhancement from two
order parameters is central to many aspects in modern physics, for exam-
ple high-temperature superconductors [253, 288], extensions of the standard
model [258, 289, 290] or cosmology [251, 291].

7.1.2 Momentum mode expansion

We consider the setup with a BEC coupled to two optical cavities (see
Fig. 7.3). A microscopic picture of the coupled system is obtained by consid-
ering Raman processes between transverse pump and cavity modes which
coherently transfer atoms between the motional ground state and excited
momentum states, as shown in Fig. 7.4. In Chap. 6 we have seen that for our
parameters cavity-cavity scattering is neglible and �12 ⌧ �1, �2 and there-



122 | Supersolid formation in a quantum gas

a

ħk

p
x

p
y

0

ω

ω
-

ω
+

ω
A

ω
A
+Δ

A

|–〉
1

|+〉
1

|0〉

|±k
p
〉 |±k

1
〉

Ω
p

Ω
p

g
1

g
1

b

0

ω

ω
-

ω
+

ω
A

ω
A
+Δ

A

|–〉
2

|+〉
2

|0〉

|±k
p
〉 |±k

2
〉

Ω
p

Ω
p

g
2

g
2

ħk

p
x

p
y

Figure 7.4: Five-mode expansion in momentum space. a, Momentum modes from two-
photon processes involving the transverse pump and cavity 1. The excitation paths
shown as solid (dashed) lines correspond to the creation (annihilation) of a cavity
photon. Light scattering between the pump field and the cavity mode induces Raman
couplings between the zero momentum state |pi = |0i and the excited states |+i and
|−i at energies  h!+ and  h!

−
, respectively. The scattering amplitude is determined

by the transverse pump Rabi frequency ⌦p and the vacuum Rabi frequency g1 of
the cavity. b, Analogous momentum modes for cavity 2. All processes are mirrored
with respect to the py axis. Since the cavities and the transverse pump all cross at
angles of ⇥ = 60�, the condition k1 + k2 = kp is satisfied and the |−i and the |+i
states are degenerate.

fore h⇥12i = 0. We consider the Hamiltonian in Eq. 6.18 at the absence of
cavity scattering, setting �̃c ⌘ �̃1 = �̃2 and � ⌘ �1 = �2:

Ĥ =
X

i=1,2

h

−
 h�̃câ

†
i âi +  h!+ĉ

†
i+ĉi+ +  h!

−
ĉ
†
i−ĉi−

+
 h�p
N

⇣

â
†
i + âi

⌘⇣

ĉ
†
i+ĉ0 + ĉ

†
i−ĉ0 + h.c.

⌘i

,
(7.6)

where  h is the reduced Planck constant and N is the atom number. The
atoms are described by creation (annihilation) operators ĉ

†
0 (ĉ0) for the mo-

tional ground state as well as for the high- and the low energy states with
ĉ
†
i+ (ĉi+) and ĉ

†
i− (ĉi−), respectively, associated with cavity i 2 {1, 2}. The

photon fields are denoted by â
†
i (âi) with detuning �̃c = !p −!c −NUc/2 <

0 between resonance frequency!c and transverse pump laser frequency!p,
including the dispersive frequency shift Uc/2 per atom.

This Hamiltonian is invariant under the reflection symmetry (âi, ĉi±) !
−(âi, ĉi±), which corresponds to a Z2 symmetry. Together with the invari-
ance of the Hamiltonian under exchange of the two cavities (â1, ĉ1+, ĉ1−) !Rotational symmetry

of the Hamiltonian
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â2, ĉ2+, ĉ2−, this gives rise to a rotational symmetry:

â1 ! â 0
1 = â1 cos ✓− â2 sin ✓

â2 ! â 0
2 = â1 sin ✓+ â2 cos ✓

ĉ1± ! ĉ 01± = ĉ1± cos ✓− ĉ2± sin ✓

ĉ2± ! ĉ 01± = ĉ1± sin ✓+ ĉ2± cos ✓,

(7.7)

for any ✓ 2 [0, 2⇡]. The corresponding generator Ĉ of the symmetry Û(✓) =

eiθĈ is the Hermitian operator

Ĉ = −i
h

â
†
1â2 − â

†
2â1 +

X

s=±

⇣

ĉ
†
1sĉ2s − ĉ

†
2sĉ1s

⌘i

. (7.8)

It satisfies [Ĉ, Ĥ] = 0 and as a result the Hamiltonian Ĥ stays invariant
under Û:

Ĥ ! ÛĤÛ†

=
X

i=1,2

h

−
 h�̃câ

0†
i â 0

i +  h!+ĉ
0†
i+ĉ

0
i+ +  h!

−
ĉ
0†
i−ĉ

0
i−

+
 h�p
N

⇣

â
0†
i + â 0

i

⌘⇣

ĉ
0†
i+ĉ0 + ĉ

0†
i−ĉ0 + h.c.

⌘i

,

= Ĥ

(7.9)

This continuous symmetry is spontaneously broken at the phase transition
when � = �cr. The transformation in Eq. 7.7 shows that the symmetry break-
ing happens both in the atomic and in the photonic fields with the same
angle ✓. We can therefore extract the phase of the atomic order parameter
tan ✓ = h⇥̂2i/h⇥̂1i from the light fields via tan ✓ = hâ2i/hâ1i.

7.1.3 Photon-mediated interactions

Much like for the single cavity system, we can describe the atom-light cou-
pling by an effective photon-mediated interaction between the atoms. The
evolution for the light fields follows from Eq. 6.12:

i
@âi

@t
= −�̃câi + ⌘

Z

A

dr †(r) cos(kp · r+�) cos(ki · r) (r). (7.10)

Since !+,!
−

⌧
�

��̃c
�

�, we can set @âi/@t ⇡ 0 and eliminate the light field Adiabatic elimination
of the light fieldfrom the Hamiltonian:

Ĥlr =

Z

A

 ̂†(r)
p2

2m
 ̂(r)dr

=

Z

A

Z

A

 ̂†(r) ̂†(r0)Ulr(r, r0) ̂(r0) ̂(r)drdr0
(7.11)

with the interaction potential

Uint(r, r0) =
X

i2{1,2}

Vi cos(kp · r+�) cos(ki · r) cos(kp · r0 +�) cos(ki · r
0)

(7.12)

where V1 = Vint cos(✓) and V2 = Vint sin(✓) with the interaction strength
Vint = 2 h�2/N�̃c. For two particles, the interaction potential can be rewrit-
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Figure 7.5: Translationally invariant photon-mediated interactions. a, Interaction poten-
tial for the relative position of two particles along x for y = �/8 and Vint < 0 at the
transverse pump phase � = ⇡/2. The interactions favour a distance of �p/ cos(✓),
thereby selectively enhancing periodic density correlations. b, The interactions do
not depend on the center of mass of the two particles. As a consequence, the den-
sity modulation can form at any position, which represents a prerequisite to break
continuous translational symmetry.

ten in terms of their distance rrel = r − r0 and their center of mass R =

(r+ r0) /2:

Uint(r, r0) =
X

i2{1,2}

Vi

4

⇥

cos(2kp ·R+ 2�) + cos(kp · rrel)
⇤

[cos(2ki ·R) + cos(ki · rrel)] ,

(7.13)

The spatial phases of the standing wave profiles of the two cavity modes
can be neglected, as they lead to a displacement in the x-y plane only. In
general, the spatial character of the interaction potential depends on both
the centre of mass and the relative position of the two particles. Its shape
can be modified with the spatial phase � of the transverse pump.

Let us have a closer look at the interaction potential for � = ⇡/2. We con-
sider only one slice of the transverse pump lattice and restrict the discussion
to the x-axis with y ⌘ �/8. Here the term cos(2kp ·R+ 2�) disappears, since
kp ? ex and cos(2k�/8+⇡) = 0. This leaves only the two terms cos(2ki ·R),
which can be combined as:

1

2
[cos(✓) cos(2k1 ·R) + sin(✓) cos(2k2 ·R)]

= cos(2k1 ·R+ ✓) + cos(2k1 ·R− ✓) + sin(2k2 ·R+ ✓) + sin(2k2 ·R− ✓)

= 0 8✓ 2 [0, 2⇡] .
(7.14)

This is the key difference compared to the interaction potential for a sin-Absence of a
center-of-mass term gle cavity (cf. Fig. 5.6), where the interaction potential has a centre of mass

dependence with two minima per lattice constant. For two cavities, the ab-
sence of a centre-of-mass dependence is the origin of breaking continuous
translational symmetry. The graphs in Fig. 7.5 show the spatial dependence
of the interaction potential for the case of � = ⇡/2 and Vint < 0. The po-
tential shows a minimum at a relative distance of �p/ cos ✓ between the
particles, similar to the situation of a single cavity. Yet, the interaction does
not influence the centre of mass position.

The above discussion does also hold for Vint > 0. In this case, the potential
shows minima for relative positions (n+ 1/2)�p/ cos ✓, which cannot be ful-
filled for more than two particles, since a third particle would be separated
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from either of the particles by an even number of lattice constants. As a re-
sult, the interaction suppresses fluctuations with wavelengths of the lattice
constant.

The lattice structure of the density modulation is perfectly rigid, because
it is determined by the interference potential of the light fields. As a result,
the crystallization is defect-free and homogeneous, because all atoms cou-
ple equally to the cavity modes, and the presence of phonons at nonzero
wavenumbers is inhibited.

7.2 REAL-SPACE DENSITY DISTRIBUTION

In the previous section we have already seen that the effective photon-
mediated interactions do not exhibit a centre-of-mass dependence. This is a
first indication that the continuous symmetry has a spatial component. In
this section, we reveal this connection more directly by considering the inter-
ference pattern that arises when both cavity modes have a finite field ampli-
tude. We will see that the minima of the interference pattern are displaced
for different ratios of the cavity fields, which creates a dipole potential that
influences the atomic distribution.

7.2.1 Supersolid potential

The self-consistent potential in the supersolid phase is formed from the in-
terference between the transverse pump field and the two cavity fields. We
derive here the relation between the ratio of the coherent cavity fields ↵1

and ↵2 and the position of the density pattern. The combined potential can
be written as

U(r) =
 h |⌦(r)|2

�a
(7.15)

with the total field amplitude ⌦(r) at position r. The total field amplitude
consists of contributions from the transverse pump and each cavity mode,

⌦(r) =
X

i2{p,1,2}

⌦i cos(ki · r+�i), (7.16)

where ⌦p is the transverse pump Rabi frequency and ⌦1 = g1↵1,⌦2 =

g2↵2 are the Rabi frequencies of the two cavities fields. They are determined
by the vacuum Rabi frequencies g1, g2 and the intracavity photon numbers
↵1, ↵2.

The temporal phases between the three standing wave lattices do not have
to be considered, since all photons stem from the same transverse pump
frequency and no phase delay is introduced during photon scattering thanks
to the negative detuning, �a < 0, from the atomic resonance [213]. The Spatial phases of the

standing-wave
potentials

spatial phases �i, however, are generally non-zero, since they describe the
relative position of the three standing wave potentials. We set �1 = �2 = 0

by choosing the origin of the coordinate system appropriately. The atomic
spatial distribution is then determined by the phase �p ⌘ � of the transverse
pump standing wave, which we can change with a piezo–electric actuator
attached to the retroreflecting transverse pump mirror (see Ch. 4). For our
experimental parameters Up � U1,U2 such that the atoms are separated
into 2D layers in the x–z plane at ky+� = ⇡n,n 2 Z, where k = 2⇡/�p.
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Figure 7.6: Interference potential for different cavity field ratios. The ground-state mani-
fold for equal couplings and detunings in H is a circle in the space of the cavity fields
↵1 and ↵2. For each combination of fields, the interference potential in Eq. 7.17 be-
tween transverse pump and cavity fields for � = ⇡/2 has its minima at different
positions. Following the circle counter-clockwise, every second line moves left (top
highlighted line) while the others move right (bottom highlighted line).

Within each layer we obtain

U(x) =
 h

�a

�

�⌦p cos(2�)

+⌦c

h

(cos ✓+ sin ✓) cos(�/2) cos(
p
3⇡x)

+ (cos ✓− sin ✓) sin(�/2) sin(
p
3⇡x)

i�

�

�

2
,

(7.17)

where ⌦1 = ⌦c cos ✓ and ⌦2 = ⌦c sin ✓. The angle ✓ is determined by
tan(✓) = ↵1/↵2 and corresponds to the outcome of the symmetry breaking
in terms of the photon fields.

Let us consider two special cases of this expression. If the position of the
transverse pump standing wave is � = ⇡/2, the expression simplifies to

U(x) =
 h

�a

�

�

�
−⌦p +⌦c cos(✓+

p
3⇡x− ⇡/4)

�

�

�

2
. (7.18)

The position of this potential depends on ✓ and its minima are displacedConnection between
position and cavity

fields
by 2/

p
3�, which is the lattice constant. The lattice depth does not change

with ✓. For � = 3⇡/2 the sign in front of ⌦c changes and accordingly the
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Figure 7.7: Lattice position in the U(1) symmetry. a, The continuous symmetry of the
cavity light fields has a direct connection to the position of the density modulation.
The contour plots show the interference potential for different field combinations
(↵1,↵2). Each phase of the order parameter describes a different point in real space.
b, The position of the lattice minima is monotonous in the order parameter phase
✓ with an approximately linear dependence. Different solid lines show transverse
pump lattice positions of � = ⇡/2, � = 0.8⇥ ⇡/2, � = 0.6⇥ ⇡/2, � = 0.4⇥ ⇡/2 and
� = 0.2⇥ ⇡/2. The range of accessible lattice positions decreases, but the number of
ground states remains infinite, except for � = 0 (dashed line).

minima are displaced in the opposite direction. The potential for different
order parameter phases ✓ is illustrated in Fig. 7.6. Two neighbouring layers
in the center are highlighted, which indeed move in opposite directions, so
that the translation is staggered.

The situation changes for � = 0, for which Eq. 7.17 reduces to:

U(x) =
 h

�a

�

�

�
−⌦p +⌦c (cos ✓+ sin ✓) cos(�/2) cos(

p
3⇡x)

�

�

�
. (7.19)

The potential depth changes with ✓, wheras the position remains constant
since cos(

p
3⇡x) is independent of ✓. We can evaluate the minima position

for different values of � and finite range of lattice positions over which the
continuous symmetry extends for � 6= 0, as shown in Fig. 7.7. The range
increases with �, reaching the lattice constant 2/

p
3� at � = ⇡/2, and then

decreases again until � = ⇡. We choose � ⇡ ⇡/2 in our experiments such
that in the broken U(1) symmetry each realization of cavity fields corre-
sponds to a different translation.

7.2.2 Transverse pump lattice

The fact that the range of accessible lattice positions depends on the trans-
verse pump phase � is a consequence of the geometry of the resulting inter-
ference pattern. The lattice geometry for different phases � at balanced field Possible lattice

geometriesstrengths is shown in Fig. 7.8.
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Figure 7.8: Accessible lattice geometries for balanced field amplitudes. The geometry of
the attractive lattice potential from the interference of the standing waves of the
transverse pump and the cavities depends on their relative positions. The color plots
show the lattice potential for different phase displacement of �. a, For � = 0, the
lattice potential shows a triangular geometry. Between the lattice sites, a shallow
honeycomb pattern is visible. b, Two sites of the honeycomb structure merge into
one with increased depth for 0 < � < ⇡/2, resulting in a staggered honeycomb
lattice. c, At � = ⇡/2, the interference pattern has a symmetric honeycomb geometry.
The process is reversed for � > ⇡/2 until the initial lattice is recovered at � = ⇡.

• For � = ⇡/2, the lattice geometry is regular hexagonal and the unit cell
hosts two minima at equal energy. This configuration was discussed in
the previous section, and we have seen that neigbouring layers move
in opposite direction when the ratio of the cavity fields is changed.
The regular hexagon is only obtained for balanced amplitudes of all
three light fields.

• A triangular lattice geometry appears when choosing the phase � =

0. The triangular symmetry is symmetric for all beam ratios, while
the potential wells between the lattice sites have only equal hight for
balanced field amplitudes. Additionally, a second layer appears at half
the lattice constant whenever one field amplitude is superior to the
others.

• For 0 < � < ⇡/2, the geometry is a staggered hexagonal lattice. We
can see how between the lattice sites a second layer appears that is
congruent with the hexagonal pattern, yet does not have the same
potential depth.

We have access to all three lattice geometries by adjusting the spatial
phase � of the transverse pump standing wave with a piezoelectric actu-
ator at the retroreflecting mirror. The interference potentials as a function of
� have also been studied for our cavity geometry [292].

7.3 REALIZATION OF A SUPERSOLID

We now turn to the experimental studies on the continuous symmetry break-
ing. The situation of symmetrically coupled cavities is presented, including
a verification of the ground-state degeneracy for the continuous symme-
try. Additionally, the independent control over both couplings allows us to
introduce an asymmetry and to study the crossover region to a discrete
symmetry.



7.3 Realization of a supersolid | 129

0 10 20 30

Transverse pump lattice depth (ħωrec)

0

50

100

P
h

o
to

n
 n

u
m

b
e

r 
n̄

ba

ħk

Figure 7.9: Observation of a supersolid. a, Traces of the mean photon numbers in cavity
1 (red) and 2 (yellow) as a function of transverse pump lattice depth for a ramp time
of 100ms at constant �1 = −2.1MHz and �2 = −2.0MHz. The ramp corresponds
to a single scan diagonal in the phase diagram of Fig. 6.9. The traces are binned
in intervalls of 0.5ms. b, Absorption image of the atomic momentum distribution,
recorded along the z–axis after 25ms ballistic expansion. Black areas show high
atomic densities. The eight atomic momentum modes associated to the scattering of
photons from the pump to the cavities are visible.

7.3.1 Symmetric coupling to both cavities

We can investigate the situation, where the coupling to both cavities is sym-
metric by adequately adjusting the pump-cavity detunings �1 and �2 at
constant coupling � set by the pump power. The decay rates of the two cav-
ities are not the same, resulting in �1 ⇡ �2 without being strictly equal (cf.
Sec. 5.3.1).

We set the detunings to constant values �1/2⇡ = −2.1MHz and �2/2⇡ =

−2.0MHz and increase the transverse pump power in a linear ramp up
to 38(1)  h!rec. This corresponds to a diagonal ramp in the phase diagram
for competing order with two cavities (cf. Fig. 6.9). The result is shown in
Fig. 7.9. Past the critical point at a lattice depth of around 17  h!rec we ob- Observing the

supersolid phase
transition

serve finite intracavity photon numbers in both cavities, providing evidence
for a new type of self-organized phase. This is in contrast to the results
in Fig. 6.8, where the two self-organized phases exclude each other. The
presence of a doubly-organized phase is the result of fine-tuned coupling
strengths to reach the symmetry-enhanced line in the phase diagram.

We record the atomic momentum distribution by performing absorption
imaging of the cloud after ballistic expansion. Interference maxima at mo-
menta associated with scattering processes for both cavities are visible. They
correspond to the momentum modes displayed in Fig. 7.4, apart from two
momenta at ±2 hk, which stem from the standing wave potential of the trans-
verse pump lattice.

We use the connection between crystal position and intracavity fields to
characterize the ground state symmetry of the supersolid phase. To this Characterization of

the ground-state
degeneracy

end, we repeat the measurement shown in Fig. 7.9a many times and extract
the mean intracavity photon numbers averaged over 5ms at the end of the
ramp. The square root of the photon numbers, that is the absolute value of
the cavity fields, are shown in Fig. 7.10. Their distribution falls on a quarter
circle, revealing a high ground state degeneracy of the system. Whilst the
U(1) symmetry includes the sign of the cavity field amplitudes, our photon
detection only allows to measure their magnitude. Therefore the full circu-
lar symmetry is folded to the positive quadrant. As the combination of the
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Figure 7.10: Breaking continuous translational symmetry. Field amplitudes for 35 differ-
ent experimental realizations of the ramp in Fig. 7.9a, deduced from the intracavity
photon numbers averaged over 5ms at the end of the ramp. The data reveal the con-
tinuous translational symmetry which is broken in the supersolid. The grey shaded
area contains the systematic uncertainty from the calibration of the intracavity pho-
ton numbers.

intracavity field amplitudes determines the position of the atomic density
modulation along the x–axis, we conclude that in each realization the su-
perfluid crystallizes to a different position. This provides evidence for the
broken continuous translational symmetry of the supersolid.

7.3.2 Transition to a lattice supersolid

The transition between the supersolid and a lattice supersolid amounts to in-
troducing an asymmetric coupling to both cavities (cf. 6.2.2). We study this
transition by starting in the SO2 phase, hence realizing a lattice supersolid
associated with cavity 2, and then approaching the situation of symmetric
couplings. The measurement is shown in Fig. 7.11. We initialize the system
at a pump lattice depth of 38(1)  h!rec and detunings �1/2⇡ = −2.8MHz
and �2/2⇡ = −2.2MHz. Here, the coupling to cavity 2 dominates and is
strong enough for self-organization. We then approach the symmetric sit-
uation by slowly ramping �1 until the phase boundary is reached. There
we keep the detunings fixed and monitor the evolution of both cavity light
fields.

We observe finite mean intracavity photon numbers in both cavities overAnticorrelated
photon numbers the entire duration of the measurement at symmetric coupling. During the

measurement the light fields evolve and show anticorrelations in the cavity
light fields predominantly on the ms time scale. We quantify this evolu-
tion by calculating the Pearson correlation coefficient for fourteen realiza-
tions of the same experiment to −0.82(9), providing evidence for anticorre-
lated behaviour. The mean photon number in cavity 2 immediately turns
to zero when further reducing �1, while the mean photon number in cav-
ity 1 increases further, because the smaller detuning increases the coupling
strength.

We interpret the phase transition between the lattice supersolid and theEffective potential

supersolid in terms of the mean-field energy as a function of the cavity field
amplitudes ↵1 and ↵2, as illustrated in Fig. 7.11c. We start in region (I)
with cavity 2 slightly stronger coupled than cavity 1. Due to the asymmet-
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Figure 7.11: Emergence of a doubly self-organized phase. a, Mean intracavity photon
numbers (binned in intervalls of 0.5ms) for the frequency ramp shown in (b) for
cavity 1 (red) and 2 (yellow) at constant transverse pump lattice depth 38(1)  h!rec.
The simultaneous presence of photons in both cavities signals the transition to a dou-
bly self-organized phase. b, Detuning ramp through the phase diagram. At constant
�2/2⇡ = −2.2MHz, �1 is ramped from far-detuned to reaching the phase boundary,
held there for 25ms and subsequently ramped closer to resonance. c, The mean-field
energy as a function of cavity field amplitudes ↵1 and ↵2 is qualitatively displayed
for three different regions in the phase diagram: inside the self-organized phase to
cavity 2 (I) and 1 (III), and on the phase boundary in between (II).

ric coupling the continuous symmetry is only approximate and the ground
state manifold exhibits two minima on the ↵2 axis at equal distance from
the origin. In terms of the phase diagram explored in Chapter 6, this cor-
responds to the SO2 phase with self-organization only to cavity 2 with a
broken Z2 symmetry. These minima are rotated to the ↵1 axis when the
coupling to cavity 1 is dominant (region III). This situation corresponds to
the SO1 phase with self-organizaion to cavity 1 only. Despite the jump in
the order parameter, the boundary presents a continuous phase transition,
since no latent heat is involved, see Chap. 6.

Only at the point in between, the ground state manifold extends to a
circle that connects both axes (region II), thereby realizing a U(1) symmetry.
A low-energy evolution on the ground state manifold results in the observed
anticorrelated signals in the mean intracavity photon numbers ni = |↵i|

2,
corresponding to a spatial displacement of the density modulation along
the x–axis.

7.3.3 Crossover of discrete and continuous symmetries

The transverse width of the supersolid, that is, the precision of �1 and �2

over which the supersolid phase extends, can be characterized by the region
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Figure 7.12: Transition between discrete and continuous symmetries. Histograms (nor-
malized to unity area) of the angles ✓ describing the position of the crystal lattice,
measured in the same way as the data in Fig. 7.10, but at �1/2⇡ = −2.1MHz (a),
�1/2⇡ = −2.2MHz (b) and �1/2⇡ = −2.3MHz (c). The grey lines show kernel
density estimation analyses with a Gaussian kernel whose bandwidth of 0.13⇥ ⇡/2
was determined from a cross-validation maximum likelihood reconstruction. The
histograms consist of 19-49 realizations each.

where both cavities are populated. Although the supersolid phase theoret-
ically extends only over a line in the phase diagram, we experimentally
observe a finite width of around 100kHz where light fields appear in both
cavities if we keep the couplings and detunings constant for several ms.
We attribute this to two reasons. First, our experimental preparation of a
point in the phase diagram has a finite resolution due to the stability of the
transverse pump frequency and the cavity resonance frequency of around
30− 50 kHz each. Second, the chemical potential of the cloud limits the res-
olution with which we can probe the ground state of the system. Close to
the U(1)-symmetric line, the two minima of the parity symmetry are only
very weakly pronounced. As the chemical potential increases compared to
the depth of the minima, the ground-state manifold approaches a U(1) sym-
metry.

We can further quantify the extension of the supersolid phase by studyingAngular distribution
for asymmetric

coupling
the homogeneity of the U(1) symmetry. We repeat the measurement shown
in Fig. 7.10 for different pairs of (�1,�2) that correspond to deviations from
the situation of symmetric coupling. The extracted angular distribution of
the symmetry breaking is shown in Fig. 7.12 for three different points across
the supersolid phase. Despite of the limited sample sizes, a qualitative dif-
ference between the histograms is visible. While the data taken in the center
of the supersolid phase show an almost homogeneous distribution, a clear
trend towards the effectively more strongly coupled cavity is visible for a
positive or negative change in the detuning �1.

The centre of the distribution changes with the detuning and follows the
more strongly coupled cavity. This is in accordance with the picture of a
rotated minimum in the effective potential from the axis of one cavity to
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Figure 7.13: Statistical analysis of the angular distribution. a, We record histograms of
the position distribution similar to the ones shown in Fig. 7.12 for more detunings
�1/2⇡ around the symmetrically coupled point of �1/2⇡ = −2.1MHz and extract
the mean angle ✓. Across the supersolid phase, the expectation value changes from
close to ⇡/2 (cavity 2 axis in the effective potential) to 0 (cavity 1 axis). b, The cor-
responding standard deviation �✓ shows maximal scattering at the symmetric cou-
pling and decreases rapidly with increasing distance.

the other, as illustrated in Fig. 7.11. We can extract this rotation from the
histograms by computing the mean value ✓ of the angular distribution. The
result is shown in Fig. 7.13. The mean angle is close to ⇡/2 for negative
asymmetries in the couplings, i.e. a more strongly coupled cavity 2, and
close to zero for positive asymmetries. The majority of the rotation takes
place in the window between −0.1MHz and 0.1MHz. This is also visible
from the standard deviation of the histograms, which shows a maximum
at symmetric coupling. The displayed mean angles and standard deviations
are lower bounds, since the lacking sign of the detected cavity field inhibits
a full reconstruction of the circular distribution.
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8ROTON MODE SOFTEN ING IN A
RECTANGULAR LATT ICE

In this chapter we present studies on the collective excitations across the
self-organization phase transition for a BEC coupled to an optical cavity.
The coupling is obtained with a transverse pump beam at 60� with respect
to the cavity axis, which results in a rectangular geometry of the self-ordered
lattice. We start with a theoretical description of the underlying excitation
spectrum and then present different detection methods that give a comple-
mentary view on their nature.
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Structural phase transitions of many-body systems are driven by a dis-
placement of the constituents. The structural character of the phase transi-
tion is inherited by the underlying collective excitations across the critical
point, therefore the modes driving the phase transition are identical with
the phonon modes that describe the lattice dynamics [293]. This is a remark-
able insight, as it connects the high-energetic motion at phonon frequencies
with the low-energetic critical behaviour at phase transitions.

The consequence is a mode softening, where the frequency of the phonon
mode decreases as the critical point is approached until reaching zero at the
phase transition. At this point, the phonon is frozen, i.e. it is no longer dy- Mode-softening at a

phase transitionnamical. Conceptually, it has transformed into a static displacement pattern,
which gives rise to the phase transition. In momentum space, the dispersion
relation close to the phase transition shows a characteristic roton-maxon
spectrum [294], see Fig. 8.1. It shows a parabolic dispersion relation in the
long-wavelength regime, where the phonons remain non-interacting. Close
to the wave vector of the reciprocal lattice associated to the structural tran-
sition, the phonon frequency decreases and the dispersion relation shows
roton minimum. The term roton stems from Landau, whose initial inter-
pretation to attribute the effect with a localized quantized vortex is still
inconclusive [295–298].

After first indications for a mode softening in quartz crystals [300], the
subject attracted attention when it was observed for superfluid helium [295,
299]. The roton minimum occurs at momenta corresponding to a wavelength
of 3Å, close to the interparticle distance of 3.7Å. This points towards an

137
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Figure 8.1: Momentum dispersion of the soft mode frequency. a, Dispersion relation in liq-
uid helium. For small momenta, the phonon dispersion relation shows the parabolic
shape of noninteracting particles. Close to the lattice vector kL, the phonon fre-
quency decreases again, giving rise to the characteristic roton minimum. Adapted
from [299]. b, Dispersion relation for a BEC coupled to an optical cavity. For increas-
ing color depth, the solid lines show the roton minimum in the absence of cavity
coupling and for 0.5 �cr, 0.7 �cr, 0.9 �cr and 1 �cr. The width of the minimum is deter-
mined by the resolution in momentum space due to the finite system size.

origin at the density correlations of the liquid, which are induced by van-
der-Waals interactions among adjacent atoms in the liquid. When the first
dipolar BECs were created, the presence of a roton minimum was predicted
in analogy to helium [57, 74, 294, 301–303], but experimental evidence has
proven challenging. A different approach are spin-orbit coupled BECs [304–
307], where band-structure engineering can create an analogous minimum
[308–310].

A roton mode softening also occurs when a BEC is dispersively coupledRoton mode in a
cavity to an optical cavity with a transverse pump field. The associated structural

phase transition breaks a spatial Z2 symmetry (cf. Chap. 5). For the case of a
chequerboard lattice structure, the mode-softening has been studied theoret-
ically [311] and experimentally [312–314]. Here we consider the situation of
coupling with a non-orthogonal pump field, which gives rise to a structural
phase transition with rectangular lattice geometry.

Parts of this chapter are based on the publication:

J. Léonard, A. Morales, P. Zupancic, T. Donner and T. Esslinger:
Monitoring and manipulating Higgs and Goldstone modes in a super-
solid quantum gas
Science 358, 1415-1418 (2017)

8.1 EXCITATIONS AT A CONTINUOUS PHASE TRANSITION

In this section we give a conceptual introduction to the mode softening at
a continuous phase transition. In mean-field approximation, the excitation
energy can be derived from the effective potential. We then turn to the spe-
cific scenario of self-organization in a cavity. The associated phase transition
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Figure 8.2: Mode-softening and effective potential. a, In the normal phase, the elemen-
tary excitations correspond to oscillations of the order parameter around zero. The
parabolic contribution vanishes when approaching the phase transition and the oscil-
lation frequency softens. b, Within the ordered phase, the order parameter becomes
more and more localized at a nonzero value. The elementary excitations are now
described by an oscillation around a finite order parameter. The curvature of the ef-
fective potential, and hence the excitation energy, rises with increasing distance from
the critical point.

from a superfluid to a self-ordered state constitutes a structural phase tran-
sition, where a special type of mode-softening occurs: the roton minimum.
Finally, the roton dispersion relation is derived from a microscopic descrip-
tion of the involved two-photon scattering processes, confirming the results
from the effective potential.

8.1.1 Effective potential

A mode softening is a necessary but not sufficient condition for a continuous
phase transition. We can understand the mode softening in terms of the Mean-field expansion

Landau expansion (see Eq. 5.1):

Hλ(⇥) =
r

2
⇥2 +

g

4
⇥4 +O(⇥6), (8.1)

where ⇥ is an order parameter with Z2 symmetry and r and g depend on
the coupling strength �. The curvature of the effective potential with respect
to the order parameter gives access to the lowest excitation frequency [293]:

!2 / @2H

@⇥2

�

�

�

�

Θ=Θ0

=

8
<

:

r, if � < �cr

−2r, if � > �cr

. (8.2)

Here ⇥0 is the potential minimum for the order parameter in equilibrium,
which is ⇥0 = 0 for � < �cr in the normal phase and � > �cr for constant � >
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Figure 8.3: Illustration of the experiment. A BEC (blue stripes) cut into slices by a
transverse pump lattice potential (red stripes) enters a supersolid state and breaks
translational symmetry along x by symmetrically coupling it to two optical cavity
modes ↵1 (red) and ↵2 (yellow) with a transverse pump lattice along y. The emerg-
ing Higgs and Goldstone excitations correspond to fluctuations of the strength and
position of the density modulation, as shown in the zoom-in for one slice. They can
be excited and read out with probe pulses on each cavity.

�cr. The proportionality factor is generally determined by the time evolution
of the Hamiltonian and can be deduced from the condition

!(� = 0) = !0, (8.3)

assuming that the time evolution is independent of � over the considered
range. The curvature at the minimum of the effective potential is illustratedCurvature of the

effective potential in Fig. 8.2. In the normal phase, the elementary excitations correspond to
an oscillation of the order parameter around zero. Upon approaching the
phase transition, r vanishes and the excitation frequency accordingly tends
to zero, before rising again in the ordered phase as an oscillation around a
nonzero order parameter.

In order to connect the coefficient r with the coupling strength �, we use
the condition that r vanishes at the critical point and employ the Landau
ansatz r / (�2 − �2cr). The linear relation presents the first term of an expan-
sion of r in odd powers around the critical point. The quadratic scaling of
the coupling strength is chosen without loss of generality to be in line with
the definition applied in Chapters 5-7. Combining Eqs. 8.2 and 8.3, we findElementary

excitations across the
critical point

the dispersion relation for the soft mode in the normal phase

!(�) = !
−

s

1−
�2

�2cr
. (8.4)

Within the ordered phase, we obtain a similar relationship:

!(�) =
p
2!

−

s

�2

�2cr
− 1 (8.5)

The factor of
p
2 between the frequency in the normal and the ordered phase

presents a characteristic scaling relation around the phase transition with
general relevance for amplitude excitations [315].
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Figure 8.4: Spatial character of the roton mode. Shown are the steady state density distri-
bution (blue) and the light-induced interaction potential (solid lines), together with
the fluctuations of the density (shaded blue) and the potential (dashed lines) at the
maximum displacement of the oscillation. a, Below the critical point, the elemen-
tary excitations are roton excitations, which describe fluctuations of a homogeneous
density distribution at a specific wavelength. The position of the nodes and the antin-
odes of the oscillation is determined by the cavity mode. b, Above the critical point,
the excitations correspond to fluctuations of the strength of the density modulation
around a finite steady state value. Depending on when the structural phase transi-
tion was crossed, the roton was "frozen" either at the maxima or the minima of the
roton oscillation, corresponding to a broken Z2 symmetry.

8.1.2 Roton mode softening and self-organization

Let us turn to the system under consideration, namely self-organization
with a single cavity mode, as illustrated in Fig. 8.3. A BEC is coupled to Roton mode and

cavitiesthe cavity mode by a 1D attractive optical lattice, the transverse pump. Its
frequency is far red-detuned from the atomic resonance, but closely red-
detuned from the cavity mode. At a critical coupling strength, which is set
by the transverse pump power and the pump-cavity detuning, the super-
fluid BEC develops a density modulation. Its periodicity is determined by
the transverse pump frequency and its position (see Chap. 5).

The atom-cavity coupling alters the dispersion relation of the free parti-
cles at momenta corresponding to a two-photon process. Upon approaching
the critical point, the excitation energy decreases and a roton minimum in
the dispersion relation develops. The roton mode corresponds to a peri-
odic oscillation of the homogeneous density around its expectation value,
see Fig. 8.4a. Its periodicity is given by the inverse of the roton minimum Roton mode as

oscillating density
modulation

momentum. Two properties of the cavity-induced roton mode are different
from roton modes in most condensed matter systems:

• Discrete position: Since the cavity mode has a standing wave shape,
the density oscillation can only be induced at the position of an antin-
ode in the cavity field. The roton oscillation includes two antinodes
per period, thus the position of the oscillation extrema is pinned to the
cavity mode and neighboring antinodes are oscillating out of phase.

• Global coupling: All atoms couple identically to the cavity mode, there-
fore the roton mode also oscillates with the same amplitude and phase
at any point in space. This inhibites the roton mode from having its
own dispersion relation and only allows for a global oscillation with-
out a finite wavelength.
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Figure 8.5: Setup and mode expansion. a, Schematic view of the setup. A BEC is loaded
into a transverse lattice potential along y, which cuts the cloud into slices in the x-
z plane. The transverse pump lattice also acts as a reservoir for photon scattering
among the atoms. b, The momentum modes from two-photon scattering processes.
The two excitation paths shown as solid and dashed lines correspond to the creation
and annihilation of a cavity photon, respectively.

When the excitation energy approaches zero, the homogeneous density
distribution becomes unstable and a roton instability occurs, a precursor of
a structural phase transition. The roton mode ’freezes’ with the density max-
ima either on the even or on the odd antinodes of the cavity mode. This sets
corresponds to a Z2 symmetry breaking of the translational invariance. Past
the critical point, the elementary excitations describe an oscillation around
the steady-state value of the periodic density distribution, see Fig. 8.4b.

8.1.3 Momentum mode expansion

On a microscopic level, the roton mode softening stems from a couplingMicroscopic origin of
the roton mode

softening
between the momentum ground state at |ki = |0i and a superposition state
of the higher momenta |ki = |±kp ± kii, where kp and ki denote the wave-
vectors of the transverse pump and cavity i, respectively. The coupling is
achieved by Raman scattering processes between the pump and the cavity
fields. The excited momentum states define a reciprocal lattice, and increas-
ing the coupling leads to a softening of the dispersion relation at these mo-
menta. The states fall into two groups with energy either  h!

−
=  h!rec or

 h!+ = 3 h!rec (Fig. 8.5).
In the following we derive the soft mode frequency across the self-orga-

nization phase transition. We start with the microscopic Hamiltonian from
Eq. 5.22, which was derived in Chap. 5:

Ĥ =−
 h�̃câ

†â+  h!+ĉ
†
+ĉ+ +  h!

−
ĉ
†
−
ĉ
−

(8.6)

+  h
�p
N
(ĉ

†
+ĉ0 + ĉ

†
−
ĉ0 + h.c.). (8.7)

The first term describes the cavity field in the frame rotating with the trans-
verse pump, where â† (â) creates (annihilates) a photon with frequency �̃c.
The excited momentum modes have kinetic energy  h!+ and  h!

−
and are

described by the creation (annihilation) operators ĉ
†
+ (ĉ+) and ĉ

†
−

(ĉ
−

), re-
spectively. The last term captures the atom-light interaction with a coupling
strength �.

Whilst the exact eigenenergies of this Hamiltonian can only be computed
numerically, we obtain an approximate analytical description by neglect-
ing the coupling to the high-energy momentum state  h!+, thereby recover-Analytical

connection to the
effective potential
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ing a Hamiltonian similar to self-organization for an orthogonal pump (cf.
Sec. 5.1.4). This does not affect the symmetry properties of the Hamiltonian,
nor does it modify the scaling relations. A comparison with the numerical
results shows that the separation !+ = 3!

−
for a pump-cavity angle of

60� is sufficient to yield differences below 10% in the energy spectrum. The
position of the phase boundaries remains unaffected.

We use this reduced Hamiltonian in the limit !
−
⌧ |�c| and adiabatically

eliminate the light field with the condition @â/@t ⇡ to restrict the descrip-
tion to the atomic excitations:

Ĥ =  h!
−
ĉ
†
−
ĉ
−
+  h

�2

N�c
(ĉ

†
−
ĉ0 + ĉ

†
0ĉ−)

2. (8.8)

The corresponding effective potential follows from a mean-field approxima-
tion with:

hâi =
p
N↵ (8.9)

hĉ
−
i =

p
N 

−
(8.10)

hĉ0i =
s

N−

X

i=1,2

ĉ
†
−
ĉ
−

, (8.11)

and we obtain

H =  h!
−



 2
−

✓

1−
�2

�2cr

◆

+ 4
−

�2

�2cr

�

(8.12)

with the critical coupling �cr =

q

−�̃c!−
/4. The minima of the effective

potential are determined from the condition @H/@ = 0:

 
−
=

8
><

>:

0, if � < �cr
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⌘

, if � > �cr
(8.13)

The eigenfrequency follows from the relation !(�) / @2H/@ 2
�

�

λ
and the

condition !(� = 0) = !
−

to:

!(�) =

8
><

>:

!
−

q

1− λ2

λ2
cr

, if � < �cr
p
2!

−

q

λ2

λ2
cr
− 1, if � > �cr

. (8.14)

Additionally, we obtain the excitation spectrum in a quantized descrip-
tion with a Bogoliubov transformation. All atoms occupy the zero momen-
tum state within the normal phase and we can set hĉ0i =

p
N in Eq. 8.8.

The creation and annihilation operators for the momentum excitations are
replaced by the superposition:

b̂ = µĉ
−
+ ⌫ĉ

†
−

(8.15)

b̂† = µĉ
†
−
+ ⌫ĉ

−
. (8.16)

We assume µ,⌫ 2 R, since the order parameter can only acquire real values.
The Hamiltonian then takes the form Ĥ =  h!(�)b̂†b̂ with the solution from
Eq. 8.14. In the ordered phase, we have to expand the Hamiltonian around
the expectation value [235]:

ĉ
−
=

p
N 

−
+ �ĉ

−

ĉ0 =

q

N− ĉ
†
−
ĉ
−

(8.17)

and then perform the same Bogoliubov transformation to obtain the result
from Eq. 8.14.
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Figure 8.6: Principle of Bragg spectroscopy. a, In free space, an atomic cloud is exposed
to two Bragg beams with frequencies !1, !2. and wave vectors k1, k2. A stimulated
emission of a photon from the first into the second laser beam is resonantly enhanced
if the energy difference  h!2 −

 h!1 and the momentum difference  hk2 −  hk1 match
the energy and the momentum of a quasi-particle. The dispersion relation is probed
along the  hk2 −

 hk1 direction. b, In a cavity, the two Bragg beams are replaced by
two standing waves, the cavity mode and the transverse pump, probing the disper-
sion relation symmetrically around zero momentum ± ( hk2 −

 hk1), as well as at
± ( hk2 +  hk1) (not shown).

8.2 CAVITY-ENHANCED BRAGG SPECTROSCOPY

A standard method to probe the dispersion relation of collective excita-
tions is Bragg spectroscopy. In most condensed matter systems Bragg spec-
troscopy is performed inelastically with neutrons [316] or photons [317–320].
For ultracold atoms, Bragg spectroscopy is typically used as a coherent pro-
cess, which enhances resolution and sensitivity [321, 322].

The measurement principle is shown in Fig. 8.6a. The atomic cloud isPrinciple of Bragg
spectrocopy exposed to two non-parallel laser beams with wave vectors (k1,k2) and fre-

quencies (!1,!2). A stimulated emission of a photon from the first into the
second laser beam involves a recoil momentum of  h�k =  hk2 −

 hk1. The
process is usually suppressed if the laser beams are absent, since the recoil
is mostly associated to a change in kinetic energy. The momentum state at
 h�k is resonantly excited only if the energy difference between the two pho-
tons  h!2−  h!1 equals the energy of a quasi-particle. In a real-space picture,
the two laser beams create a running wave at wavelength 2⇡/ |�k| that os-
cillates in time with frequency �!. This modulation can resonantly excite a
phonon when the oscillation frequency matches the phonon frequency for
this wavelength.

We apply this technique to a BEC that is coupled to an optical cavityBragg spectrocopy in
a cavity with a transverse pump at constant intensity. A schematic of the principle

is shown in Fig. 8.6. We send a probe field along the cavity axis with a fre-
quency difference � from the transverse pump at frequency !p. Compared
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to standard Bragg spectroscopy with quantum gases, this method is charac-
terized by two key differences:

• The transverse pump does not only induce the photon coupling, but
also provides one of the two laser beams involved in the Bragg spec-
troscopy.

• Both Bragg beams, the transverse pump and the probe pulse on the
cavity axis, are standing waves instead of running waves. This in-
creases the number of probed momentum states to four, namely ± hkp ±
 hkc. For our system this is rather advantageous, since the phonon that
drives the structural phase transition is a superposition of these very
momentum states.

We use three different variants of cavity-enhanced Bragg spectroscopy,
among which the former two have been developed previously [312]. The
theoretical framework for the dynamical description during the Bragg pulse
is an extension of the work in [312, 323].

8.2.1 Atomic dynamics

We probe the cavity by applying a weak field with amplitude ⌘pr(t) and Driving Hamiltonian

frequency !pr = !p + �. This is described by the following driving Hamil-
tonian in the frame rotating with the pump frequency:

Ĥ = −
 h⌘pr(t)

⇣

âei(δt+ϕ) + â†ei(δt+ϕ)
⌘

(8.18)

Here ' is the relative phase between probe and pump beam. It depends on
the optical path lengths of the probe beam and the transverse pump and
can vary over several experimental realizations. The probe field gives rise to
the intracavity field amplitude

↵pr(t) = −

⌘pr(t)e
−i(δt+ϕ)

�̃c + i
(8.19)

The probe field can interfere with the transverse pump field and (in the self-
organized phase) with the steady state intracavity field ↵0. This results in a
lattice potential that is modulated in time with frequency �. The perturba-
tion of the probe field on the atomic state is given by

Ĥpr =  h⇠(t)�⇥̂ cos(�t+') (8.20)

The perturbation is proportional to the amplitude ⇠(t) = 2⌘pr

q

npr(t), where

npr =
η2

pr(t)

∆̃2
c +κ2 is the mean intracavity photon number. For simplicity, we ne-

glect again the higher momentum state and write the Hamiltonian in terms
of the atomic mode operators ĉ

−

Ĥpr =  h⇠(t)
p
N
⇣

ĉ
†
−
+ ĉ

−

⌘

cos(�t+') (8.21)

The equation of motion for the operator ĉ
−

under the presence of Ĥexc + Equation of motion
for the atomic fieldĤpr is:

i h
@ĉ

−

@t
= E1ĉ− + 2NV

⇣

ĉ
−
+ ĉ

†
−

⌘

+  h⇠(t)
p
N cos(�t+')− i h�ĉ

−
(8.22)
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Figure 8.7: Probing excitations with atoms We prepare the quantum gas in the normal
phase at �1/2⇡ = −2.0MHz and at a transverse pump lattice depth of 12.8(3)  h!rec.
a,, Atom picture after pulse. b, Evolution of the atom number in the excited state
during the probe pulse. c, We extract the population in the excited atomic state
from pictures taken after 25ms ballistic expansion of the atoms after releasing them
from the trap. The pictures are taken together with the data in (B). The solid line
is a fit of Eq. 8.26 to the data, resulting in a resonance frequency of 2.7(7)kHz. The
dashed lines show the deduced photon number from Bragg scattering off the created
excitations. Shaded areas denote the standard deviation of the fit function from the
average over the phase '.

Here we have included a phenomenological damping term. The damping
rate � accounts for incoherent processes like s-wave scattering with other
momentum modes, trap loss or finite-size dephasing. The solution to the
Heisenberg equation is

ĉ1(t) = 2⌘
p

nnpr,0

✓

!
−

!s
=(Y(t)) + i<(Y(t))

◆

(8.23)

with the soft mode frequency !s. Y(t) is given by the integral:

Y(t) = e(iωs−γ)t

Zt

0
dt 0e−(iωs−γ)t 0

cos(�t 0 +') (8.24)

The population of the excited momentum state is thenExcited state
population

hĉ†
−
ĉ
−
i = 4⌘2npr.0N

"

✓

!
−

!s

◆2

=(Y(t)) +<(Y(t))2

#

(8.25)

We can numerically evaluate this quantity and calculate the excited state
population hĉ†

−
ĉ
−
i during a probe pulse. The result is shown in Fig. 8.7.

The population shows an oscillatory behaviour around a mean value that
increases during the probe pulse. The phase of the oscillation is determined
by '.
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We can measure the atomic population in the excited state by ballistic Probing the atomic
distributionexpansion and absorption imaging after the probe pulse. This projects the

atoms in the collective modes ĉ
−

and ĉ+ onto free-particle states with one
of the four momenta ±kp ± kc. We sum up the number of atoms in all four
states after probe pulses for different detunings. We observe two resonances
symmetrically positioned from zero detuning to the transverse pump. The
resonance at � > 0 corresponds to the creation of a collective excitation by
stimulated scattering of transverse pump photons into the cavity, and vice
versa for � < 0. The resonance widths are Fourier limited by the duration of
the probe pulse of 1ms.

We can compare the expected population of the excited momentum states
after the probe pulse with the theoretical prediction based on Eq. 8.25. The
average population is expected largest for the resonance condition � ⇡ ±!s,
but the oscillatory behaviour causes the atom number at the pulse end to
vary with ', causing intrinsic fluctuations of the population. We can incor-
porate this effect by calculating the phase average of Eq. 8.25:

hĉ†
−
ĉ
−
iϕ =

1

2⇡

Z2π

0
d'hĉ†

−
ĉ
−
i (8.26)

We use this expression to extract the resonance frequency from the data by Fit function for the
measured atomic
spectrum

performing a fit with free amplitude and resonance frequency. Additionally
we allow for an overall offset that accounts for the detection background on
the absorption imaging pictures. The phase average also allows to capture
the intrinsic fluctuations with the standard deviation

�hĉ†
−
ĉ
−
iϕ =

s

1

2⇡

Z2π

0
d'
⇣

hĉ†
−
ĉ
−
i− hĉ†

−
ĉ
−
iϕ
⌘2

(8.27)

which we use as weight for the fitting.

8.2.2 Cavity light field dynamics

The mean intracavity photon number during the probe pulse is [312]:

nph(t) =

�

�

�

�

�

↵0 −

4⌘2
p
nprN

�i + i

✓

!
−

!s

◆

=(Y(t)) +
q

npr(t)e
−i(δt+ϕ)

�

�

�

�

�

2

. (8.28)

The expression contains the interference between the probe pulse, the scat-
tered field and the steady-state light field, which is nonzero in the self-
organized phase only. An exemplary curve is shown in Fig. 8.8a. The intra-
cavity photon number oscillates with increasing amplitude over the entire
duration of the pulse. We can observe this behaviour by determining the
intracavity photon number during the probe pulse from detected photons
that leak from the cavity. A typical trace is shown in Fig. 8.8b.

As for the atoms, the phase of the oscillation of the photon number is
determined by ' and therefore fluctuates over different experimental real-
izations. The oscillation amplitude, and therefore the total photon number Fluctuating phase of

the probe fieldduring the probe pulse, is expected to be maximal at the resonance condi-
tion � ⇡ ±!s show much smaller fluctuations for pulse lengths longer than
the period of the oscillation. We therefore use the mean intracavity photon
number during the probe pulse as an observable for Bragg spectroscopy:

hnphi =
1

⌧

Zτ

0
dtnph(t) (8.29)
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Figure 8.8: Probing excitations with photons. We prepare the quantum gas in the normal
phase at �c = −2.0MHz and at a transverse pump lattice depth of 12.8(3)  h!rec. a,

Single photon trace at � = 3kHz. An oscillation with the beat frequency is visible in
the mean intracavity photon number. b, We can compare the recorded photon traces
with the simulated time evolution during the pulse. c, Each data point corresponds
to the mean photon number during a probe pulse of 1ms length at constant detuning
� with mean photon number n̄1 = 0.07(1) in cavity 1. The solid line shows the fit
with Eq. 8.28, resulting in a resonance frequency of 2.92(5)kHz. The data were taken
together with the pictures in Fig. 8.7. The dashed lines show the deduced photon
number from Bragg scattering off the created excitations. Shaded areas denote the
standard deviation of the fit function from the average over the phase '.

with the probe pulse length ⌧. A measurement of hnphi for different de-
tunings � is shown in Fig. 8.8c. Similarly to the atomic measurement, we
observe two resonances symmetrically positioned from zero detuning to the
transverse pump. The behaviour around � = 0 is different, however, since
even a resonant probe pulse gives rise to a finite intracavity photon number.

We fit the data with the phase-averaged photon number hnphiϕ, leaving
amplitude and resonance frequency as free parameters, and use the stan-Fit function for the

photon spectrum dard deviation �hnphiϕ as weight:

hnphiϕ =
1

2⇡

Z2π

0
d'hnphi,

�hnphiϕ =

s

1

2⇡

Z2π

0
d'(hnphi− hnphiϕ)2

(8.30)

8.2.3 Time-dependent probe frequency

The previous two methods require a number of realizations to extract the
resonance frequency for a single transverse pump coupling strength �. We
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Figure 8.9: Probing excitations with photons in real-time. We prepare the quantum gas
in the normal phase at �c/2⇡ = −2.0MHz and at a transverse pump lattice depth
of 12.8(3)  h!rec. Frequency ramp at a rate of 0.5kHz/ms with mean photon number
n = 0.03(1) in cavity 1. We extract a resonance frequency of 2.97(10)kHz from a
fit with Eq. 8.31 with time-dependent detuning �(t). The dashed lines show the
deduced photon number from Bragg scattering off the created excitations. Shaded
areas denote the standard deviation of the fit function from the average over the
phase '.

can instead take advantage from the real-time access to the intracavity light
field and apply a probe pulse with time-dependent detuning �(t) relative
to the transverse pump frequency. The detuning is scanned linearly in time,
i. e. �(t) = �0 + � 0t with start value �0 and scan rate � 0.

We can describe the intracavity light field by adapting Eq. 8.28 for time- Fit function for the
frequency scandependent �:

nph(t) =

�

�

�

�

�

↵0 −

4⌘2
p
nprN

�i + i
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!
−

!s

◆

=(Y(t)) +
q

npr(t)e
−i(δ0t+δ 0t2+ϕ)
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�

�

�

2

,

(8.31)

with the integral Y(t) now:

Y(t) = e(iωs−γ)t

Zt

0
dt 0e−(iωs−γ)t 0

cos(�0t 0 + � 0t 02 +') (8.32)

The resulting time evolution is more complex than for constant �, because
of the interplay between oscillations from interference of the scattered light
with the probe field and the frequency-dependent scattering amplitude. An Dynamical Bragg

spectroscopyexemplary photon trace is shown in Fig. 8.9. Essentially it combines the
behaviour of the photon number during a pulse at constant � (see Fig. 8.8b)
and its frequency dependence (see Fig. 8.8c): the photon number oscillates
with frequency |�(t)| and acquires an amplitude that itself depends on �(t)
with maximum. The trace shows an asymmetric shape, which originates
from the decay rate �.

An average over several measurements is shown in Fig. 8.9. We observe
two resonances at positive and negative � symmetrically around zero. The
mean and the standard deviation over ' can be used again for a weighted
fit to the data with free resonance frequency and response amplitude. We
attribute the additional sharp resonance at around � = −2.5kHz to a me-
chanical resonance of the lock and exclude the region of [−3.2,−2.5]kHz
from the fit.
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Figure 8.10: Numerical simulation of the soft mode. a, b, Lowest two collective excita-
tions as a function of � for fixed cavity detuning �̃c/2⇡ = 60MHz. The soft mode
starts at !

−
and decreases in frequency upon approaching the critical point. c, d,

Frequency of the lowest two excitations in the phase diagram of the (�, �̃c)-plane.

8.3 MODE SOFTENING AT THE SELF-ORGANIZATION PHASE TRANSI-

TION

We study the collective excitations of the quantum gas across the phase tran-
sition by probing it with cavity-enhanced Bragg spectroscopy, where probe
photons are scattered off collective excitations into the transverse pump and
vice versa.

8.3.1 Numerical mean–field solution

We can numerically obtain the eigenfrequencies of the full Hamiltonian inDiagonalization of
the Hessian matrix Eq. 8.8 (including the excited state at energy  h!+) by expanding each oper-

ator around its expectation value and diagonalizing the Hessian matrix of
the resulting mean–field Hamiltonian. We then inforce the relation

!2
i / (Hd(H))ii , (8.33)

where Hd is the diagonalized Hessian matrix. This allows to extract the
excitation frequencies !i. The result for the lowest two excitations is shown
in Fig. 8.10. Cavity decay and atom–atom contact interactions are taken into
account.

For the lowest mode, we observe a characteristic softening upon approach-
ing the phase transition, which persists over the entire range of detuning �c.
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Figure 8.11: Excitation spectrum across the self-organization phase transition. Shown are
the resonance frequencies extracted from the measured photon traces. Gray shad-
ing shows the theoretical prediction based on numerical solution of the Bogoli-
ubov analysis. The detuning of the cavity resonance from the transverse pump is
�c = −2.0MHz for all data points.

8.3.2 Excitation frequencies across the phase transition

We vary the coupling strength � by preparing the system at different trans-
verse pump lattice depths and study the collective excitations of the quan-
tum gas. The lattice depth is reached in a linear ramp over 50ms. We use
the method with time-dependent probe detuning as described in Sec. 8.2.3
throughout the range covered by our measurements. The speed of the fre-
quency ramp for the probe field is 0.5kHz/ms. For each coupling strength,
we extract the resonance from a fit to the data. Over the entire coupling
range covered by our measurements, we prepare the system in a weakly
driven situation by adjusting the resulting mean intracavity photon num-
bers within a range of n̄1 = 0.03(1)− 0.9(1).

The result is shown in Fig. 8.11. We observe a softening of the excitation Observing the roton
mode softeningfrequency for increasing coupling strength �. The excitation frequency tends

to zero at the critical point for the self-organization phase transition. Here
the soft mode energy is identical with the ground-state energy of the system.
Within the self-organized phase the excitation frequency rises again.

We compare the experimental data to the numerical solution of the Bogoli-
ubov theory. The expected frequency range is shown by the grey-shaded
area. The uncertainties of these experimental parameters are determined
from independent measurements and taken into account by the range of
the shaded area. We find good agreement with the theoretical prediction
over the entire range covered by the measurements.

8.3.3 Response

The amplitude of the intracavity light field contains a measure of the excited Studying the
susceptibilitydensity modulation from the perturbation of the probe pulse. We can use

this connection to study the susceptibility of the system across the phase
transition.
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Figure 8.12: System response across the phase transition. The data points show the den-
sity response in the normal and the self-organized phase. We observe an increased
response close to the phase boundary by around two orders of magnitude. The solid
lines shows the prediction from Feynman’s relation.

We consider the linear expansion of the density operator ⇢̂ =  ̂†(r) ̂(r)

around its expectation value ⇢0 = h⇢̂i:

⇢̂ = ⇢0 + �⇢̂ = N | 0|
2 +

p
N 0(� ̂

† + � ̂). (8.34)

In Fourier space the fluctuations �⇥̂ of the order parameter are

�⇥̂ =
1

4

X

k2±kp±kc

�⇢̂k (8.35)

In analogy to [312], this allows to write the intracavity light field fluctuations
as:

�â =
⌘

4(�c + i)

X

k2±kp±kc

�⇢̂k (8.36)

We determine the total number of scattered photons by integrating over
the entire photon trace. The response is then given by the scattered photon
number normalized to the number of probe photons:

R =
1

Rτ
0 dtnpr(t)

Zτ

0
dt

|h�âi|2
�

�⌘/(4�̃c + i)
�

�

2
(8.37)

The result is shown in Fig. 8.12. We observe a divergence of the density
response when approaching the critical point, which extends over almostDiverging response

at the phase
transition

two orders of magnitude. This points towards increasing density fluctua-
tions with wave vectors ±kp ± kc triggering the phase transition. Inside the
self-organized phase, the response decreases again.

Generally, the density response of a system is described by the static struc-
ture factor S(k). For a homogeneous system with dispersion relation S(k),
the static structure is predicted by Feynman’s relation [324]:

S(k) =
 hk2/2m

!(k)
(8.38)

The relation can be verified by dividing the excitation frequency in the limit
�/�cr ⌧ 1 by its renormalized value. The result is shown in Fig. 8.12 and
shows good agreement with the data.



9MON ITOR ING H IGGS AND GOLDSTONE
MODES

Higgs and Goldstone modes are amplitude and phase excitations of a com-
plex order parameter. In this chapter, we present studies on these modes
across the superfluid-supersolid phase transition. Monitoring the cavity fields
in real time allows us to observe the dynamics of the associated Higgs and
Goldstone modes and reveal their amplitude and phase nature. We use a
spectroscopic method to measure their frequencies and give a tunable mass
to the Goldstone mode by exploring the crossover between continuous and
discrete symmetry. Our experiments link spectroscopic measurements to the
theoretical concept of Higgs and Goldstone modes.
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Collective excitations provide a unifying concept across different subfields
of physics, from condensed matter [315] to particle physics [325] to cos-
mology [291]. The symmetry of the underlying effective Hamiltonian de-
termines the character of the excitations, which changes in a fundamental
way when a continuous symmetry is broken at a phase transition. Major
advances in the description of phase transitions that break continuous sym-
metries originated from the concept of massless and massive excitations, as
introduced by Goldstone in [326, 327].

In the paradigmatic case of models with U(1)-symmetry breaking, the
system can be described by a complex scalar order parameter in an effective
potential as illustrated in Fig. 9.2(a–b) [1]. In the normal phase, the potential
is bowl-shaped with a single minimum at vanishing order parameter, and
correspondingly two orthogonal amplitude excitations. Within the ordered Higgs and Goldstone

modes at continuous
symmetry breaking

phase, the potential shape changes to a ’sombrero’ with an infinite num-
ber of minima on a circle. Here, fluctuations of the order parameter reveal
two different excitations: a Higgs (or amplitude) mode, which stems from
amplitude fluctuations of the order parameter and shows a finite excitation
energy, and a Goldstone (or phase) mode, which stems from phase fluctu-
ations of the order parameter and has zero excitation energy. The former
should yield correlated fluctuations in the two squared quadratures of the
order parameter, whereas the latter should show anticorrelated behavior.

153



154 | Monitoring Higgs and Goldstone modes

Despite their conceptual relevance, Higgs and Goldstone modes are ex-
tremely challenging to detect as amplitude and phase excitations, since this
requires time-resolved access to both the amplitude and the phase of the
order parameter. Instead, spectroscopic measurements in different systems
have shown excitations that were interpreted as Higgs or Goldstone modes
because of their resonance frequencies. Examples include experiments on
the Higgs mode in solid-state systems [328–331] and with cold atoms in 2D

optical lattices [332, 333]. Experiments on the Goldstone mode have been
carried out, for example, in superfluid helium [334] and BECs [335]. Time-
resolved studies have been limited to relaxation measurements of the ampli-
tude of the order parameter in high-temperature superconductors [336], but
without access to the phase of the order parameter.

Parts of this chapter have been published in:

J. Léonard, A. Morales, P. Zupancic, T. Donner and T. Esslinger:
Monitoring and manipulating Higgs and Goldstone modes in a super-
solid quantum gas
Science 358, 1415-1418 (2017)

9.1 THEORETICAL DESCRIPTION

In general, a ’sombrero’ shaped effective potential is not sufficient to support
independent amplitude and phase oscillations. Whether a system with con-
tinuous symmetry breaking actually supports both a Higgs and a Goldstone
mode additionally depends on the time dynamics of the effective action.
In brief, both modes only exist for neutral particles that follow a Lorentz-
invariant time evolution in the vicinity of the phase transition for the low-
energy limit. We will discuss this topic first for the general effective action,
and then consider the excitations that are present across the superfluid-
supersolid phase transition for self-organization in the two-cavity setup.

9.1.1 Effective action

We consider the Landau expansion for two competing order parameters
each with an underlying Z2 symmetry, as introduced in Eq. 7.4:

H(⇥1,⇥2) =
r

2
(|⇥1|

2 + |⇥2|
2) +

g

4
(|⇥1|

2 + |⇥2|
2)2 + � |⇥1|

2 |⇥2|
2 . (9.1)

The Hamiltonian is invariant under ⇥i ! −⇥i and ⇥1 ! ⇥2. In the follow-
ing we restrict ourselves to the situation � = 0, when the ground-state has an
infinite number of minima (cf. Chap. 7). Let us switch to a parametrization
in polar coordinates with ⇥1 = cos(✓) |⇥| and ⇥2 = sin(✓) |⇥| for ✓ 2 [0, 2⇡]

and |⇥| =

q

|⇥1|
2 + |⇥2|

2. The Hamiltonian then takes the simpler form:Landau theory for a
complex order

parameter
H(✓, |⇥|) =

r

2
|⇥|

2 +
g

4
|⇥|

4 . (9.2)

The Hamiltonian is independent of ✓ and therefore shows an SO(2) sym-
metry, or alternatively, a U(1) symmetry with the parametrization ⇥ =

⇥1 + i⇥2. The shape of the effective potential is shown in Fig. 9.1. It ex-
hibits a ’bowl’ shape with a single minimum at |⇥| = 0 in the normal phase,
but acquires a ’sombrero’ shape in the ordered phase with minima on a
circle with radius |⇥|.

We can describe the elementary excitations of the system by allowing theAction density
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Figure 9.1: Collective excitations for continuous symmetry breaking. Effective potential
across the phase transition as a function of the order parameter ⇥ = |⇥| eiφ. a, In
the normal phase, the effective potential has a ’bowl’ shape and the order parameter
can fluctuate along any direction. The oscillation is gapped and decreases in energy
when approaching the critical point, since the curvature of the effective potential
reduces. b,. In the ordered phase, the effective potential acquires a ’sombrero’ shape
with an infinite number of minima on a circle. Higgs and Goldstone modes describe
amplitude (�|⇥|) and phase (��) fluctuations around the finite expectation value of
the order parameter.
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order parameter to change in space and in time, i.e.⇥ ⌘ ⇥(r, t). This extends
the description by a spatial derivative (r⇥⇤)(r⇥) and the time evolution up
to second order, yielding the action density S:

S(⇥, t) =iK1⇥
⇤@t⇥−K2 (@t⇥

⇤) (@t⇥)

+
r

2
|⇥|

2 +
g

4
|⇥|

4 + ⇠2(r⇥⇤)(r⇥).
(9.3)

Here, the constants K1 and K2 govern the first and second order time evo-
lution, respectively, and ⇠ is the characteristic length scale of the system
that determines the spread of correlations. Formally, the action density is
related to the Lagrange density L by the condition S =

R
Ldt, where the

integral follows the minimal action trajectory. The equations of motion for
the fluctuations of ⇥(r, t) are determined by the conditions

@S

@⇥
= 0 (9.4)

@S

@⇥⇤ = 0 (9.5)

In order to obtain the eigenfrequencies of the elementary excitations, weFluctuations of the
order parameter linearize these equations by expanding the order parameter around its equi-

librium value:

⇥(r, t) = ⇥0 + � |⇥(r, t)|+ i⇥0✓(r, t) + ...

= ⇥0 + �a + i�ph✓(r, t) + ...
(9.6)

with the amplitude and phase oscillations �a and �ph, respectively. Trans-
forming to the Fourier space representation in terms of q and !, we obtain
the following linear equations:

 

2r+ ⇠2q2
−K2!

2 iK1!

−iK1! ⇠2q2
−K2!

2

! 

�a

�ph

!

= 0 (9.7)

The dispersion relation is governed by this system of equations. We find thatFirst and second
order time dynamics K2 is diagonal in �a and �ph, whereas K1 couples them. Let us consider the

some important cases for the parameters K1 and K2:

• K1 6= 0, K2 ⇡ 0: This scenario occurs, for instance, in superfluid he-
lium or BECs, whose dynamics are governed by the Gross-Pitaevskii
equation with a first order derivative only [2]. Amplitude and phase
oscillations are coupled, so that no distinct amplitude and phase fluc-
tuations exist. Only one solution exists:

!2 =
1

K2
1

⇣

2r+ ⇠2q2
⌘

⇠2q2 (9.8)

These are the Bogoliubov modes with a linear dispersion in the long-
wavelength limit. The excitation spectrum is gapless, as expected from
Goldstone’s theorem [326, 327].

• K1 ⇡ 0, K2 6= 0: In case the system has particle-hole symmetry, the
action must be invariant under ⇥ ! ⇥⇤. As a consequence, the first
term of the action density in Eq. 9.16 vanishes, leaving a second order
time evolution only. We find that both space and time derivatives are of
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second order, making the action density Lorentz-invariant. We obtain
two distinct excitation branches:

!2 =
1

K2

⇣

2r+ ⇠2q2
⌘

(9.9)

!2 =
1

K2
⇠2q2 (9.10)

The first one describes pure amplitude fluctuations and is called Higgs
mode. Throughout the ordered phase the Higgs mode remains gapped
by �0 =

p

2r/K2. The second branch corresponds to the phase fluctu-
ations and remains gapless, since ! = 0 for q = 0.

• K1 ⌧ K2: A small coupling between amplitude and phase modes
pushes the Higgs-like mode to higher frequenciest:

!q=0 =
1

K2

q

2r+K2
1 (9.11)

Even at the transition point, where r = 0, the Higgs-like mode remains
gapped by �0 = K1/K2.

We conclude that a sombrero potential is not sufficient to obtain both a
Higgs and a Goldstone mode. In particle physics, the Lorentz invariance
naturally imposes K1 = 0. In most condensed matter systems, for instance
superfluids and metals, amplitude and phase fluctuations are coupled and
K1 6= 0. Some systems, however, exhibit a particle-hole symmetry, including
dimer-antiferromagnets and superconductors. For bosons in optical lattices,
a particle-hole symmetry is present as an enhanced symmetry along certain
lines in the chemical potential–interaction phase diagram.

A particle-hole-like symmetry, that is, a symmetry ⇥! ⇥⇤, generally en- Particle-hole-like
symmetryforces a Lorentz-invariant evolution, as can be seen by explicitly calculating

the dynamic terms of the effective action density:

Sdynamic = K1(⇥
⇤@t⇥−⇥@t⇥

⇤) +K2@t⇥
⇤@t⇥. (9.12)

With ⇥ = ⇥1 + i⇥2 we get

Sdynamic = 2iK1(⇥1@t⇥2 −⇥2@t⇥1) +K2

h

(@t⇥1)
2 + (@t⇥2)

2
i

. (9.13)

A particle-hole symmetry requires the action to be invariant under the trans-
formation ⇥1 ! ⇥2, yielding K1 = 0 [315].

A particular situation arises for a charged-matter field obeying Lorentz in-
variance, as in superconductivity or high-energy physics. Here, we have to
include the electromagnetic field and its interaction with ⇥(r, t) in a gauge-
invariant way by the substitution r ! r− ieA/c, where A(r, t) is the vector
potential, e is the elementary charge and c the speed of light. This corre-
sponds to the gauge transformation:

⇥! ⇥eieθA/c (9.14)

A ! A+r✓ (9.15)

The effective action then reads

S(⇥, t) =−K2 (@t⇥
⇤) (@t⇥)

+
r

2
|⇥|

2 +
g

4
|⇥|

4 + ⇠2
⇣h

r+ i
e

c
A
i

⇥⇤
⌘⇣h

r− i
e

c
A
i

⇥
⌘

.
(9.16)
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Figure 9.2: Illustration of the experiment. A Bose-Einstein condensate (blue stripes) cut
into slices by a transverse pump lattice potential (red stripes) enters a supersolid
state and breaks translational symmetry along x by symmetrically coupling it to two
optical cavity modes ↵1 (red) and ↵2 (yellow) with a transverse pump lattice along
y. The emerging Higgs and Goldstone excitations correspond to fluctuations of the
strength and position of the density modulation, as shown in the zoom-in for one
slice. They can be excited and read out with probe pulses on each cavity.

The coupling to the vector potential introduces off-diagonal terms to the
system of linear equations for the amplitude and phase fluctuations. Analo-
gously to the uncharged situation, we obtain the resonance frequencies and
find that the Goldstone mode has acquired a finite frequency:

!2 = ⇠2
✓

e2

K2
+ q2

◆

, (9.17)

which is always nonzero and bound by the plasma frequency!2
p = ⇠2e2/K2

in the limit q
−
! 0. The gapless mode has vanished at the expense of reduc-

ing the global gauge symmetry to a local one. This phenomenon is called
the Anderson-Higgs mechanism. The gauge symmetry is abelian, namely U(1),
in superconductors, but in general the underlying symmetry group can also
be non-abelian, as is the case for weak interactions.

9.1.2 Collective excitations across the critical point

Let us turn to the system under consideration, namely self-organizationSelf-organization
with two cavities with two cavity modes. The experimental situation is illustrated in Fig. 9.2.

A spatial U(1)-symmetry breaking is induced in a setting in which a BEC

is off-resonantly driven by a transverse optical standing wave and degener-
ately coupled to the modes of two optical cavities [337]. Both cavity modes
overlap with the BEC and are oriented in a 60� angle with respect to the
transverse pump lattice, which also provides an attractive 1D standing wave
potential for the atoms. Coherent transitions, induced by a transverse pump
photon plus a cavity photon, couple two states with and without a density-
modulation of the condensate. For small two-photon couplings the system
remains in the normal phase. As soon as the coupling strength exceeds a
critical value, the kinetic energy associated with the density-modulation of
the atomic wave function is overcome and the system enters a self-organized
phase, which is periodically ordered perpendicular to the transverse pump
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a

b

x

c

Figure 9.3: Spatial character of the collective excitations. Shown are the steady state
density distribution (blue) and the light-induced interaction potential (solid lines),
together with the fluctuations of the density (shaded blue) and the potential (dashed
lines) at the maximum displacement of the oscillation. a, Below the critical point, the
elementary excitations are roton excitations, which describe fluctuations of a homo-
geneous density distribution at a specific wavelength. The position of the nodes and
the antinodes of the oscillation is determined by the contribution of the two cavity
modes. b, Above the critical point, Higgs excitations appear, which correspond to
fluctuations of the strength of the density modulation. c, Additionally, a second type
of excitations exists, the Goldstone excitations, which describe oscillations around
the position of the density modulation.

lattice. Due to the symmetric coupling to both cavities, this phase transi-
tion breaks the continuous translational symmetry along the x-axis and a
supersolid phase emerges.

Since the density ordering is driven by light scattering between the trans-
verse pump lattice and the cavities, the phase transition is accompanied by
the appearance of non-zero real-valued field amplitudes in cavity 1 (↵1) and
2 (↵2). Together they form an order parameter ↵ = ↵1+ i↵2 = |↵|eiφ whose Order parameter in

the cavity fieldsamplitude and phase directly map to the strength and the position of the
density modulation. By detecting the photons leaking from the cavities we
can continuously monitor the order parameter along both quadratures.

Rewriting the order parameter as ⇥ = |⇥| eiφ with an amplitude |⇥| and
a phase � allows for an interpretation without falling back to the individ-
ual cavity modes. The amplitude |⇥| determines the overall strength of the
density modulation, that is, the localization of the atoms on the emergent
lattice sites. It is set by the total mean photon number n in the two cavity
modes. The phase � corresponds to the position of the lattice sites and is
determined by the ratio of the mean photon numbers in the two cavities.

With this interpretation we obtain an intuitive picture of the spatial nature Spatial nature of the
excitationsof the collective excitations in the system, as illustrated in Fig. 9.3. In the nor-

mal phase, the excitations correspond to a modulation with the periodicity
of the lattice constant around the equilibrium flat density. Oscillations at any
other wave vector are suppressed, because they form a Bragg grating that
is incommensurate with the cavity geometry and the scattering amplitudes
interfere destructively. The position � of the lattice positions of the oscilla-
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Figure 9.4: Photon scattering and momentum states. a, Coherent scattering processes of
pump photons into cavity 1 (red) or cavity 2 (orange) and back give rise to atomic
momentum states at energies  h!

−
=  h!rec and  h!+ = 3 h!rec. The coordinate

system is with respect to momentum space. b, Absorption image of the atoms in the
supersolid phase after 25ms ballistic expansion. All momentum states highlighted
in (a) are populated. The additional momentum states at py = ±2 hk stem from
pump-pump scattering processes.

tions can take any value, leading to correlated fluctuations of the two cavity
light fields with the contributions depending on �.

The situation is different in the supersolid phase, where the oscillations
occur around a finite expectation value. An oscillation of the amplitude cor-
responds to a modulation of the strength of the density modulation. Within
one oscillation, the many-body wave function is first more strongly local-
ized at the lattice sites, and then more weakly. Correspondingly, the total
mean photon number first increases and then decreases. A phase oscillation
modulates the position of the lattice sites without changing the strength of
the density modulation, thus alternating between a movement to the right
and the left direction. This corresponds to an increasing mean photon num-
ber in one cavity at the expense of the mean photon number in the other
cavity, while the total mean photon number remains constant. The center of
mass of the atomic ensemble remains constant during the entire oscillation
period, solely the underlying lattice structure is displaced.

9.1.3 Microscopic model

Raman scattering between the pump and cavity fields via the atoms couples
the atomic momentum state at |ki = |0i to a superposition state of the higher
momenta |ki = |±kp ± kii, where kp and ki denote the wave-vectors of the
transverse pump and cavity i, respectively. These states fall into two groups
with energy either  h!

−
=  h!rec or  h!+ = 3 h!rec (Fig. 9.4). Our system is

described by the effective Hamiltonian

Ĥ =
X

i=1,2

h

−
 h�iâ

†
i âi +  h!+ĉ

†
i+ĉi+ +  h!

−
ĉ
†
i−ĉi−

+
 h�ip
N

⇣

â
†
i + âi

⌘⇣

ĉ
†
i+ĉ0 + ĉ

†
i−ĉ0 + h.c.

⌘i

.
(9.18)

â
†
i (âi) are the creation (annihilation) operators for a photon in cavity i,

ĉ
†
i± (ĉi±) and ĉ

†
0 (ĉ0) create (annihilate) an atomic momentum excitation

at energy  h!± associated with cavity i and in the atomic ground state,

respectively, N is the atom number and �i =
ηi

p
N

2
p
2

the Raman coupling
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which can be controlled via ⌘i = −

Ωpgi

∆a
with the transverse pump Rabi

frequency ⌦p. The dispersive shift Ng2i /(2�a) ⌧ �i is similar for both
cavities and can be absorbed into �i. Other optomechanical terms can be
discarded for our experimental parameters. As the vacuum Rabi coupling
gi of both cavities are very similar, we use a single coupling � = �i.

When coupling symmetrically to both cavities, i. e. �c = �1 = �2, the
Hamiltonian is symmetric under a simultaneous rotation in the basis of the
light fields and the atomic fields. This can be captured by the generator

Ĉ = −i
h

â
†
1â2 − â

†
2â1 +

X

s=±

⇣

ĉ
†
1sĉ2s − ĉ

†
2sĉ1s

⌘i

. (9.19)

It satisfies [Ĉ, Ĥ] = 0, and, consequently, the Hamiltonian Ĥ stays unchanged
under the transformation Û = eiθĈ for any ✓ 2 [0, 2⇡], i. e. ÛĤÛ† = Ĥ.
This U(1)–symmetry is broken at the phase transition. For arbitrary values
of �, �1 and �2, Eq. 9.18 is instead Z2–symmetric under the operations
(ai, ci+, ci−) ! −(ai, ci+, ci−) for each individual cavity i 2 1, 2.

The Hamiltonian in Eq. 9.18 can be solved numerically. We find that for
cavity i, the state for the lowest eigenvalue has largest contribution from
ĉi−, and the admixture of the ĉi+ mode is maximally 15% in the explored
parameter range, leading to a relative shift of the eigenfrequencies of < 10%
compared to including only the lowest mode. In order to derive an approx-
imate analytic expression for the Higgs and Goldstone modes, we neglect Low-energy

Hamitlonianthe high-energy mode at !+ in the following and consider the reduced
Hamiltonian:

Ĥ =
X

i=1,2

h

−
 h�iâ

†
i âi +  h!

−
ĉ
†
i−ĉi−

+
 h�p
N

⇣

â
†
i + âi

⌘⇣

ĉ
†
i−ĉ0 + ĉ

†
0ĉi−

⌘i

.
(9.20)

We describe the behaviour of the atomic and the light modes by means of Holstein-Primakoff
transformationthe Holstein-Primakoff transformations [235]:

âi =
p
N↵i + �âi

ĉi− =
p
N i− + �ĉi−

ĉ0 =

s

N−

X

i=1,2

ĉ
†
i−ĉi−

(9.21)

where �âi (�ĉi−) describe the photonic (atomic) fluctuations of the sys-
tem around its mean-field values ↵i ( i−). We expand the Hamiltonian in
Eq. 9.20 up to quadratic order in the excitations and use the quadratic part
ĥ(2) = ĥ(2)(�âi, �ĉi−) to determine the excitation spectra of the system. In
the normal phase (↵i =  i− = 0), we obtain two orthogonal massive modes
for the atomic excitations (see Fig. 1A)

!i = !
−

s

1−
�2

�2cr
(9.22)

in the limit !
−

⌧ |�c| with �c = �1 = �2. Within the supersolid phase we
have ↵i, i 6= 0. Performing a rotation in the space of the excitations,

�â1 = cos ✓ �âH + sin ✓ �âG

�â2 = − sin ✓ �âH + cos ✓ �âG

�ĉ1− = cos ✓ �ĉH + sin ✓ �ĉG

�ĉ2− = − sin ✓ �ĉH + cos ✓ �ĉG,

(9.23)
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the quadratic part of the Hamiltonian separates into two contributions from
the new modes (�âG, �âH, �ĉG, �ĉH),

ĥ(2)(�âG, �âH, �ĉG, �ĉH) =

ĥ(2)(�âG, �ĉG) + ĥ(2)(�âH, �ĉH).
(9.24)

where
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G + �ĉG

⌘

,
(9.25)

and

ĥ(2)(�âH, �ĉH) =−��â
†
H�âH + !̃
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�ĉ

†
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+
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−
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†
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(9.26)

with µ = (�cr/�)
2 and !̃

−
= !

−
(1+ µ)/(2µ). ĥ(2)(�âG, �ĉG) is of the form

of the Hamiltonian in the normal phase (↵i =  i = 0) where (!̃2
−
−�2

c )
2 +

16�2
⇥

(1+ µ)/2
⇤

�c!̃−
= (!2

−
+�2

c )
2. From this condition it directly follows

that the excitation energy of this branch is zero [236]. On the other hand,
ĥ(2)(�âH, �ĉH) is of the form of the Hamiltonian that describes fluctuations
around a superradiant phase with nonzero ↵i, i and therefore a non–zero
excitation energy. From this analysis we have shown that the excitation spec-
tra in the supersolid phase separate into a gapped (Higgs) branch and a
gapless (Goldstone) branch.

We can connect to the discussion in the previous section by deriving anEffective potential

effective potential from the microscopic Hamiltonian in Eq. 9.20. We startConnect to effective
potential by inserting the mean-field ansatz hâii =

p
N↵i, hĉi−i =

p
N i and hĉ0i =

q

N
�

1− 2
1 − 2

2

�

=
p
N 0 into the reduced Hamiltonian in Eq. 9.20, with

↵i,  i 2 R. This results in the effective potential

H(↵i, i) =
X

i=1,2

h

−
 h�i↵

2
i +  h!

−
 2
i + 4 h�↵i i 0

i

. (9.27)

As �i � !
−

, the photon fields reach their steady state quasi-instantaneously
with respect to the atomic fields. We can hence adiabatically eliminate the
light fields enforcing the condition ∂H

∂αi
= 0 and obtain

H( 1, 2) =  h!
−
( 2

1 + 2
2) + 4 h�2 2

0

 

 2
1

�1
+
 2
2

�2

!

. (9.28)

For the U(1)–symmetric case with �C = �1 = �2, this simplifies to

H( ) =  h!
−
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where  =  1 + i 2 is a complex atomic order parameter and the critical
coupling strength is �cr =

p

−�c!−
/4. For � < �cr, the potential has a ’bowl’

shape as displayed in Fig. 9.5. For � > �cr, it acquires a ’sombrero’ shape
with a circular manifold of minima at

| 0| =

s

1

2
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(9.30)
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Figure 9.5: Higgs and Goldstone modes for a U(1) symmetry. Effective potential across
the phase transition as a function of the order parameter ↵ = ↵1 + i↵2 = |↵|eiφ. a,

In the normal phase, two excitations, �↵1 and �↵2, correspond to fluctuations of the
order parameter along each quadrature. Both excitations have an amplitude charac-
ter involving one quadrature of the order parameter. b,. In the ordered phase, Higgs
and Goldstone modes describe amplitude (�|↵|) and phase (��) fluctuations around
a finite expectation value of the order parameter. The squares of the quadratures
show either correlations (Higgs) or anticorrelations (Goldstone).

This potential can be probed along  1 and  2 independently thanks to
the expression ↵i = 2� i 0/�c, obtained from the condition ∂H

∂αi
= 0. The

combined cavity field ↵ = ↵1+ i↵2 therefore constitutes an equivalent order
parameter.

The cavity light field amplitudes ↵i = haii are order parameters describ-
ing the different phases of the system. A phase transition from the super-
fluid phase (SF, ↵1 = ↵2 = 0) to a self-organized phase in cavity i (SO1

with ↵1 6= 0 = ↵2 and SO2 with ↵2 6= 0 = ↵1) occurs when the coupling
� crosses the critical coupling �cr

i =
p

−�i!/4, with !−1 = !−1
+ +!−1

−
.

This crossing is obtained by either changing � or �i. The supersolid phase
(↵1,↵2 6= 0) on the phase boundary between the SO1 and the SO2 phase is
identified by the condition �cr

1 = �cr
2 , where the coupling to both cavities is

symmetric.

9.2 MEASURING THE EXCITATION SPECTRUM

9.2.1 Numerical mean–field solution

We numerically obtain the eigenfrequencies of the Hamiltonian in Eq. 9.18

(including ĉi+) by expanding each operator around its expectation value
and diagonalizing the Hessian matrix of the resulting mean–field Hamilto-
nian. The result for the lowest two excitations is shown in Fig. 9.6. Cavity
decay, atom–atom contact interactions and the transverse pump potential
are taken into account.
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Figure 9.6: Numerical mean-field results. Mean-field results for the lowest (a) and the
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−�c!̄/4. In Fig. 2, we probe the system on the diagonal
for �1 = �2. The calculation includes all terms of the Hamiltonian in Eq. 9.18 and
additionally atomic contact interaction, the lattice potential and cavity decay.

9.2.2 Time evolution of the excitations

The Hamiltonian in Eq. 9.20 separates into two parts that each describe one
atomic mode coupled to a light mode. We can adiabatically eliminate the
light fields and obtain the following effective Hamiltonian for each mode
ĉM:

Ĥexc =
X

M2A,B

 h!
−
ĉ
†
MĉM +

 h�2

N�

⇣

ĉ
†
Mĉ0 + ĉMĉ

†
0

⌘2
. (9.31)

The operators ĉM coincide with ĉi− in the normal phase and are rotated in
the ordered phase according to the outcome ✓ of the broken symmetry. In
this section we explicitly include the decay rates i of the cavity fields into
the calculation. A probe field on cavity i 2 {1, 2} can be captured by

Ĥpr =  h⇠(t)
p
N
⇣

ĉ
†
i + ĉi

⌘

cos(�t+�). (9.32)

Here, ⇠(t) = 2⌘npr(t) is the probe field amplitude with mean intracavity

photon number npr(t) =
η2

pr

∆2
c +κ2

i

for a cavity decay rate i. The operator ĉ
†
i

(ĉi) creates (annihilates) an atom in the excited state for cavity i. It can be
decomposed in the excitation basis {ĉA, ĉB}. Similarly to the derivation in
Chap. 8, this results in the time-dependent population of the excited state

hĉ†
−
ĉ
−
i(t) = 4⌘2nprN⇠

"

✓

!
−

!s

◆2

=(Y(t))2 +<(Y(t)2)

#

(9.33)

with mode frequency !s, ĉ
−
= ĉ1− + iĉ2−, and

Y(t) = e(iωs−γ)t

Zt

0
dt 0e−(iωs−γ)t 0

cos(�t 0 +'). (9.34)

The damping rate � is phenomenologically introduced to account for atomic
decay. The corresponding photon field is

nph(t) =

�

�

�

�

↵−

4⌘2
p
nprN

�i + i
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!
−

!s

◆

=(Y(t)) +
q

npr(t)e
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�
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. (9.35)
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Figure 9.7: Measuring the excitation spectrum across the phase transition.(a-c) Response
of the intracavity photon number to the probe field. Shaded red lines show the mean
photon numbers for cavity 1, binned in intervalls of 0.2ms and averaged over at least
ten realizations. Solid lines show fits from a theoretical model. a, Response to a probe
field of n̄1 = 3.4(2) in cavity 1 whose frequency is ramped by 1kHz/ms, measured
at 16.7(4)  h!rec lattice depth. b, Response to a probe field of n̄2 = 3.4(1) in cavity
2 whose frequency is ramped by 1kHz/ms, measured at 35.9(8)  h!rec lattice depth.
The inset displays the inferred negative derivative, representing the response as a
function of � with symmetric resonances at positive and negative detunings. The fit
takes into account the negative resonance only to limit influence from the decaying
order parameter. c, Response to a probe field of n̄1 = 0.06(1) in cavity 1 whose
frequency is ramped by 0.2kHz/ms, measured at 35.9(8)  h!rec lattice depth.

Since the relative phase ' varies between realizations of the experiment,
we perform an average hnph(t)iϕ over ' 2 [0, 2⇡] and use the result as fit
function for the response to a probe field with frequency � relative to the
transverse pump. We sweep � = �(t) = �0 + � 0t over time with rate � 0.

Eq. 9.25 implies that the time evolution for probing the Goldstone mode
on a previously empty cavity is equivalent to probing the system in the
normal phase. We therefore use hnph(t)iϕ as fit function to extract the reso-
nance freqencies !s for the measurements in the normal phase and for the
Goldstone mode in. The fit parameters are !s, pnpr, ⌘ and �. For the Higgs
mode measurements, we use a Gaussian ansatz with free frequency, width,
amplitude and offset.

9.2.3 Extracting the excitation frequencies

The starting point of the experiment is an optically trapped, almost pure
BEC of 2.02(6) ⇥ 105 87Rb atoms that we expose to the transverse pump
with wavelength 785.3nm and variable lattice depth. We study the collec-
tive excitations of the quantum gas across the phase transition by probing Probing method
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Figure 9.8: Excitation spectrum across the phase transition.Resonance frequencies for the
normal phase (circles) and the ordered phase at high (triangles) and low (squares)
frequencies extracted from the response to probe pulses in cavity 1 (red) and 2 (yel-
low). The gray-shaded area shows the ab initio prediction including experimental un-
certainties. Errorbars combine fit errors and the uncertainty of the probe frequency.

it with cavity-enhanced Bragg spectroscopy, where probe photons are scat-
tered off collective excitations into the transverse pump and vice versa. Our
technique takes advantage of two key properties of optical cavities: enhance-
ment of Bragg scattering and real-time access to the intracavity fields from
leaking photons. The energy scale of the excitations is determined by the
corresponding atomic recoil frequency !rec/2⇡ = 3.7kHz for a transverse
pump photon [223]. We prepare the system at a fixed transverse pump lat-
tice depth and subsequently excite one of the two cavities with a probe field
with time-varying detuning � relative to the transverse pump frequency. In
terms of the effective potential, this perturbs the order parameter along the
quadrature of the probed cavity field (Fig. 9.7). We scan � linearly in time
from negative to positive detunings and record the intracavity photon num-
bers. Our technique can be regarded as a frequency-dependent extension of
the method presented in [312].

The probing situation qualitatively changes between the two phases. InProbing situation in
the normal and the

ordered phase
the normal phase, we probe the system on initially empty cavities and ob-
serve symmetric resonances at positive and negative �. These correspond to
two-photon processes of probe and pump photons that involve the creation
or annihilation of a density excitation in the system (Fig. 9.7a). The circum-
stances are different in the ordered phase, in which the probe is applied
on top of a finite order parameter and we observe a decay of the photon
numbers in both cavities at a specific detuning � (Fig. 9.7b). We interpret
this signal as a result of heating from an increased number of decaying
excitations. The loss rate shows a symmetric resonance feature at positive
and negative detunings. In addition, when probing weakly at detunings
� ⌧ !rec, a second resonance pair appears, see Fig. 9.7c. Its visibility is
highest when probing on an initially empty cavity. We therefore first enter
the ordered phase in the presence of a symmetry breaking field along one
quadrature and then ramp it down to zero before applying the probe field.
Over the entire coupling range covered by our measurements, we prepare
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Figure 9.9: Establishing amplitude and phase character. Response of the system at lattice
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numbers for cavity 1 (red) and 2 (yellow). All data are binned in intervals of 0.1ms.

the system in a weakly driven situation by adjusting the resulting mean
intracavity photon numbers within a range of n̄1,2 = 0.06(1)− 3.4(2).

We record excitation spectra for different transverse pump lattice depths Excitation
frequencies across the
phase transition

in the normal and the ordered phase. The signals can be obtained by prob-
ing either of the cavities. The resonance frequencies of the excitations are
extracted from the spectra by fitting the data with a theoretical model. The
combined result is shown in Fig. 9.8. In the normal phase we observe de-
creasing resonance frequencies on approach to the critical point. When enter-
ing the ordered phase, two branches appear, one resonance remaining at fre-
quencies small compared to !rec, and a second one with rising frequencies.
We find good agreement among the measurements for the two cavities over
the entire covered range. The excitation frequencies can be well-described
with a microscopic model, which is related to previous theoretical work on
spin systems with continuous symmetries [280, 281, 338]. The theoretical
prediction is obtained from the calculation in Sec. 9.2.1, where uncertainties
in the experimental parameters lead to the shaded gray area. We consider
a 20% systematic error in the atom numbers, fluctuations of the cavity reso-
nance and the transverse pump laser frequency of 30 kHz each, as well as a
density uncertainty from the trapping frequency measurements.

For the measurements in the superfluid phase and for the Higgs mode,
we fix the detunings at (�eq

1 ,�eq
2 ) and prepare the system at a given coupling

strength by linearly increasing the transverse pump intensity within 50ms
to lattice depths up to 38.5(8)  h!rec, with !rec being the recoil frequency
for a transverse pump photon. The measurements for the Goldstone mode
were taken by first ramping up the transverse pump lattice within 30ms
at an imbalanced detuning of (�1/2⇡,�eq

2 /2⇡) = (−4.0,−2.9)MHz for the
case of probing cavity 1 or (�eq

1 /2⇡,�2/2⇡) = (−3.2,−3.7)MHz for probing
cavity 2, and then approaching the balanced situation at (�eq

1 /2⇡,�eq
2 /2⇡) in

a linear ramp of 20ms length. This effectively creates a symmetry breaking
field during the preparation that sets the order parameter in the supersolid
phase to have only one cavity populated. This way an empty cavity can be
probed, which increases the signal quality. In some realizations the order
parameter evolves during probing, and we post-select for zero order param-
eter in the probed cavity. The speed of the frequency ramp for the probe
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Figure 9.10: Dynamics of Higgs and Goldstone excitations. Response of the system at
lattice depth 38.5(8)  h!rec after a probe pulse of 1ms length with mean photon
number n̄1 = 2.4(2) in cavity 1. a, Evolution following a pulse at �/2⇡ = 2.5kHz.
From the photon traces we extract the real and imaginary part of the order parameter
via |↵i| =

p
n̄i (inset). Transforming the order parameter into polar coordinates,

↵ = ↵1 + ↵2 = |↵| eiφ, reveals an oscillation of the amplitude |↵| at nearly constant
phase �. The order parameter decreases over ⇠ 15ms. b, Evolution after a pulse
at �/2⇡ = 0.5kHz. The coordinate transform in the inset shows phase oscillations
of the order parameter without significant appreciable change of its amplitude. All
data are averaged over an interval of 0.1ms.

field is 0.2kHz/ms for the Goldstone mode measurements and 1kHz/ms
for the other measurements.

9.3 REAL-TIME OBSERVATION OF HIGGS AND GOLDSTONE MODES

9.3.1 Establishing amplitude and phase character

The separation of the excitation frequencies inside the ordered phase into
a high and a low frequency branch suggests an interpretation in terms of
a Higgs and a Goldstone mode. In order to carry out a direct test of the
distinctive amplitude and phase character of the modes, we exploit the fact
that the two cavity fields form the real and the imaginary part of the order
parameter, thereby providing access to both quadratures. We prepare the
system within the ordered phase at 38.5  h!rec transverse pump lattice depth
and apply a frequency-ramped probe field weak enough not to influence
the lifetime of the system. The recorded evolution of the intracavity photon
numbers is shown in Fig. 9.9. We observe correlated signals for |�|/2⇡ &

2.5kHz and anticorrelated signals at smaller probe detunings, consistent
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with the resonance frequencies shown in Fig. 9.8. From their amplitude and
phase character, we identify the excitations as Higgs and Goldstone modes.

With regard to the atomic part of the excitations, these correspond to Correlated and
anticorrelated light
fields

fluctuations in the strength and the position of the density modulation, as
illustrated in Fig. 9.3. The atomic coupling to delocalized cavity photons is
equivalent to an effective atom–atom interaction of global range [81, 237].
As a consequence, Higgs and Goldstone excitations are not inhibited, as it is
the case in short-range interacting low-dimensional systems without long-
range order [1]. The global nature of the interaction furthermore results in
a rigid crystal structure that inhibits the presence of excitations at non-zero
wavenumbers, in contrast to theoretical studies on supersolid helium [247].
The presence of a Higgs mode is ensured by the invariance of the system
under an exchange of ↵1 and ↵2, which enforces a Lorentz-invariant time
evolution analogous to the particle-hole symmetry in e. g. superconductors
and optical lattices at half-filling [315]. Finite-temperature effects are not
expected to overdamp the Goldstone mode [241].

9.3.2 Dynamics after a pulse

Using the direct access to both quadratures of the order parameter we study
the excitation dynamics induced by a strong probe pulse with constant de-
tuning. We first ramp up the transverse pump within 50ms to a lattice
depth of 38.5(8)  h!rec at (�

eq
1 ,�eq

2 ). Following a pulse of 1ms length at
�/2⇡ = 2.5kHz, we observe correlated intracavity photon numbers signal-
ing Higgs excitations, see Fig. 9.10a. The evolution of the light fields shows
a damping of the Higgs modes over ⇠ 15ms, accompanied by a decreasing
order parameter. When applying a pulse at �/2⇡ = 0.5kHz anticorrelated
intracavity photon numbers are visible, showing the presence of Goldstone
excitations, see Fig. 9.10b. We transform the cavity fields to polar coordi-
nates, according to (↵1,↵2) ! (|↵| ,�) to reveal the Higgs and Goldstone
modes as amplitude and phase excitations. The persisting low-frequency
Goldstone mode is overlayed by a second fast-oscillating phase mode that
decays within ⇠ 15ms.

9.4 ENGINEERING A MASSIVE GOLDSTONE MODE

A hallmark of the Goldstone mode is its sensitivity to deviations from the Sensitivity of the
Goldstone mode to
symmetry breaking
fields

continuous symmetry. Goldstone modes only show a vanishing excitation
frequency for perfect symmetries in the absence of symmetry breaking fields
or further interactions. An analogous behavior is known e. g. in the context
of chiral symmetry breaking, approximate symmetries, extra dimensions
and the mass hierarchy problem [339, 340]. The continuous symmetry that
is broken in our system is the result of balanced coupling to two cavities,
which each exhibit parity symmetry only. We can generate an adjustable
symmetry breaking field along each quadrature of the order parameter indi-
vidually by controlling the coupling to each cavity mode through its detun-
ing from the transverse pump frequency. For an imbalance � in the detun-
ings, this results in an asymmetric effective potential with only two ground
states on the axis of the more strongly coupled cavity field. The evolution
of the resonance frequency of the Goldstone mode for various � around the
balanced situation is shown in Fig. 9.11. While it tends to zero for vanishing
�, we observe an increased resonance frequency for larger |�|, approaching
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Figure 9.11: Tunable mass of the Goldstone mode. Resonance frequency as a function of
the detuning imbalance �. For positive (negative) �, the mode couples to a probe
field in cavity 1 (2) and its resonance frequency is shown in red (yellow). The res-
onance frequencies are derived from photon traces similar to Fig. 9.7c, averaged
over at least ten realizations. The gray-shaded area shows the theoretical prediction
including experimental uncertainties. The dashed line illustrates the situation of bal-
anced coupling to both cavities. Error bars combine fit errors and the uncertainty of
the probe frequency.

the soft mode associated to self-organization with a single cavity. The data
are in agreement with our microscopic model.

A measurement for detuning imbalance � corresponds to the cavity de-
tunings (�1/2⇡,�2/2⇡) = (�

eq
1 +�/

p
2,�eq

2 −�/
p
2). To prepare this mea-

surement point, we first ramp up the transverse pump lattice within 30ms
at a far-imbalanced detuning of (�1/2⇡,�2/2⇡) = (�

eq
1 + 0.7MHz,�eq

2 −

0.7MHz) for � > 0 and (�1/2⇡,�2/2⇡) = (�
eq
1 − 0.7MHz,�eq

2 + 0.7MHz)
for � < 0. We then approach the point for the measurement in a linear
ramp. Afterwards, the probe frequency is ramped at a rate of 0.5kHz/ms
from −5kHz to 5kHz.

Thanks to the control over the effective potential landscape, our approach
introduces a model system for studies on discrete and continuous symme-
tries. The unique real-time access to the system dynamics offers exciting
prospects to examine the decay channels and coupling of Higgs and Gold-
stone modes [341].

The spectrocopic measurements in all four phases are summarized inSummary of the
spectroscopic

measurements
Fig. 9.12. The phase boundaries as a function of the transverse pump lat-
tice depth and the detuning imbalance � are shown on the bottom plane
in Fig. 9.12. The spectra observed in Fig. 9.8 and 9.11 can be interpreted
as the excitations for the supersolid phase and the SO1 and SO2 phases,
respectively.
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At the critical point between two states of matter, the relevant time and
length scales show a universal behaviour, independent from the microscopic
details of the phase transition. An active field of research is the influence of
dissipation on the critical behaviour, as well as the multicritical behaviour
arising when the critical points of two phase transitions fall together. In this
chapter, we first describe the framework of critical phenomena in general
and then present measurements of the density fluctuations close to critical
and multicritical points in a driven-dissipative system. In particular, we ex-
tract the critical exponent of the superfluid-supersolid phase transition.
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A phase of a thermodynamic system has uniform physical properties that Phase transitions

can change during a phase transition as a result of a varying external condi-
tion. The change can occur in a continuous or discontinuous manner. While
the specific property that changes depends on the studied system, many
thermodynamic quantities show a similar behaviour at a phase transition.

Phase transitions are classified based on the behaviour of the free energy First order and
continuous phase
transitions

as a function of the external parameter that is adjusted during the transition
[342, 343]. First-order phase transitions involve a latent heat. The system
has to release or add energy when crossing the transition. In contrast, con-
tinuous phase transitions show a vanishing first order derivative of the free
energy during the transition. They exhibit a divergence of the susceptibility
and the characteristic length and time scales.

The first observation of a critical phenomenon was made in a vessel filled Critical behaviour

with carbon dioxide as critical opalescence [344], see Fig. 10.1. Below the
boiling temperature, a liquid and a gaseous state is visible. However, when
approaching the critical point fluctuations are enhanced and increase their
length scale, causing gas bubbles of increasing size. When the size of the fluc-
tuations becomes comparable to optical wavelengths, the light is Rayleigh
scattered and the mixture turns opaque. At the critical point, the distinction
between gas and liquid vanishes and both phases coexist.

This was a first indication for the absence of a length scale. If the correla-
tion length exceeds the system size, critical fluctuations on all length scales
can occur. Similar behaviour has also been observed for other physical quan-
tities, for example the susceptibility and the elementary excitations.
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Figure 10.1: Critical opalescence. a, Two different phases, for instance a fluid and a
gas, are spatially separated. b, As the critical point is approached, the extensions of
the phases begin to fluctuate over increasingly large length scales. c, As the density
fluctuations become of size comparable to optical wavelengths, the light is Rayleigh
scattered and causes the transparent liquid to appear opaque. At the critical point,
the length scale of the diverges and density fluctuations of any size appear. d, Above
the critical point, the length scale of the fluctuations decreases and the two phases
remain separates. e, At temperatures far above the critical point the two phases are
well separated and fluctuations are suppressed.

10.1 CRITICAL BEHAVIOUR AT A PHASE TRANSITION

Critical phenomena occur at a continuous phase transition, but are absent at
first order phase transitions. Their theoretical description has been one of the
most challenging open questions in physics during the last century. In this
section, we develop a quantitative description of the critical behaviour based
on a mean-field expansion, both for classical and quantum phase transitions.
Finally, we discuss the influence of global interactions to the system, which
are present in our experiment.

10.1.1 Classical critical points

We consider a classical phase transition from a normal to the ordered phaseScaling of the
correlation length that is driven by thermal fluctuations. The system is brought from one phase

to the other by changing the temperature T across the critical point at Tc. The
two phases are distinguished by a local order parameter ⇥(r) that is only
nonzero in the ordered phase. Correlations of the order parameter between
different parts of the system usually decay exponentially with distance r,
described by C(r) / e−r/ξ, where ⇠ is the correlation length. The correlation
length is determined by the microscopic properties of the system and is
usually small compared to the system size.

When approaching the critical point, the correlation length shows a diver-
gence according to a power-law scaling

⇠ / |T − Tc|
−ν , (10.1)

where ⌫ is called the critical exponent. The diverging correlation length
modifies the exponential decay to a power law decay of the correlations with
C(r) / r−η with the critical exponent ⌘. The correlations are not determined
by the correlation length any more and the system is scale-free.

The absence of a characteristic length scale is an unusual property for
a system. It indicates that its microscopic properties are irrelevant for the
macroscopic description. As a consequence, critical exponents are not only
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valid for the specific system but are universal quantities that only depend
on few general properties [342]:

• Symmetry relations: most phase transitions are associated with the
breaking of a symmetry. The order parameter is then a representation
of the underlying symmetry group. The type of symmetry that is bro-
ken affects the number of accessible ground states across the phase
transition, which in turn influences the scaling behaviour.

• Dimensionality of space: it is intuitive that the fluctuations of a sys-
tem are reduced when the number of nearest neighbours of the con-
stituents increases. For instance, the XY model shows a phase tran-
sition in 3D with a finite magnetization, whereas fluctuations inhibit
long-range order in 1D and allow for quasi-long-range order in 2D

only [345, 346].

• Interaction range: alternatively, the range of the interaction can change
the critical behaviour. It acts in a similar way as the coordination num-
ber, since an interaction of longer range effectively increases the num-
ber of relevant neighbours.

The so-called universality hypothesis assumes that the critical exponent is de- Universality
hypothesistermined by exactly these three properties. It is motivated and supported

by experimental measurements of systems in very different contexts. It al-
lows to sort all possible phase transitions in a limited number of universality
classes.

Critical scalings go beyond a scaling of the spatial correlations. In the Landau theory

following, we derive the mean-field critical exponents in Landau theory,
based on the free energy potential

F(⇥) =
r

2
⇥2 +

g

4
⇥4. (10.2)

The coefficients r and g are real values with r / |T − Tc| = |t|. Analogously
to the discussion in Sec. 5.1.1, we use the condition @F/@⇥|T=const = 0 to
obtain the order parameter ⇥ = ±

p

−r/g below the critical temperature.
We find the universal relation ⇥ / |t|β with the critical exponent � = 1/2,
while the amplitude is system dependent. The heat capacity is given by the
relation C = −1/T@2F/@T2. It vanishes in the normal phase and acquires
a constant value in the ordered phase, yielding a critical exponent ↵ = 0.
The susceptibility is inversely proportional to the curvature of the effective
potential, �−1 / @2F/@⇥2 / |t|. Rewriting this expression to � / |t|−γ

we obtain � = 1. Finally, the exponent � is associated to the behaviour in
the presence of a symmetry breaking field, captured by an additional term
−h⇥ in the free energy potential. It is defined as ⇥ / h1/δ and describes
the behaviour of the order parameter discontinuity across the coexistence
line, also called the critical isotherm. We minimize the free energy potential
at t = 0, including the symmetry breaking field, and obtain ⇥ / h1/3,
yielding the exponent � = 3.

General scaling arguments as well as experiments suggest that various Scaling relations

critical exponents are not independent but obey certain constraints [347].
One relation involving the first three critical exponents is the Rushbrooke
identity:

↵+ 2�+ � = 2 (10.3)
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Soon thereafter, the Widom identity was found, including also the exponent
for the critical isotherm [348]:

� = �(�− 1) (10.4)

There is also the hyperscaling relation, which additionally involves the dimen-
sion d:

2−↵ = ⌫d (10.5)

Finally, we can connect the critical exponents of the susceptibility with the
correlation length via:

� = ⌫(2− ⌘) (10.6)

These four constraints reduce the number of independent critical exponents
to only two. Although the scaling relations in Eqs. 10.3-10.6 are derived
within the renormalization group approach, the critical exponents predicted
by Landau theory also fulfill the relations.

In a broader context, the scaling relations are the result of certain sym-Conformal field
theories metries that the system exhibits at the critical point, which correspond to

translations, rotations and dilations. They are described by the following
transformations

r ! r+a for a 2 R
d

r ! ↵r for ↵ 2 R

r ! Mr for M 2 SO(d)

(10.7)

These transformations form a symmetry group called the conformal group.
Studies on the underlying field theory that describes the system and inher-
its these symmetries led to the theoretical development of conformal field
theories [349].

10.1.2 Quantum critical points

The scaling behaviour at a critical point is not limited to classical phase tran-
sitions. Very similar scaling is also observed for quantum critical phenom-
ena, which occur at T = 0. However, the exponents are expected to change,
since the critical behaviour is governed by quantum fluctuations instead of
thermal fluctuations. Many systems lacking a microscopic theory benefit
from the scaling relations to make predictions about the critical behaviour
and the localion of critical points.

Landau theory at T = 0 does provide a framework to describe the quan-
tum critical behaviour on a mean-field level, i.e. in the limit of infinite co-
ordination number. This is in good approximation to our system, since the
photon-mediated interactions are of global range. In fact, we have already
encountered some critical exponents in the previous chapters. Let us con-
sider the situation of a single order parameter ⇥ and the Landau expansion
as introduced in Eq. 5.1

Hλ(⇥) =
r

2
⇥2 +

g

4
⇥4 +O(⇥6), (10.8)

with r, g functions of �. The expectation value of ⇥ in equilibrium is given
by the minimum of Hλ(⇥) and we obtain ⇥0 = (−r/g)1/2. The critical ex-Critical exponents

ponents are typically labelled with Greek letters. We expand the coefficient
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r linearly in r / (1− �2/�2cr) and obtain the critical exponent � = 1/2 for
the order parameter. This is in accordance with the analytical solution for
self-organization with orthogonal transverse pump [234, 236].

We already came across a second critical exponent when discussing the
susceptibility in Chapter 8. It is related to the curvature of the effective
potential:

�−1 / @2H

@⇥2
/
✓

1−
�2

�2cr

◆

(10.9)

This gives a critical exponent � = −1 for the susceptibility. Since the soft
mode frequency !2 / �−1, it shows the same critical behaviour as the
order parameter with � = 1/2.

10.1.3 Globally interacting systems

The self-organization phase transitions studied in the context of this thesis Global correlations

can be described as a globally interacting system (see Sec. 5.1.3 and 7.1.3).
The distance between two atoms does not affect the interaction strength
(up to a periodicity set by the wavelength of the cavity mode) and density
modulations triggered by atom-cavity coupling are always global. We can
consider the system in the limit where the correlation length exceeds the
system size. The absence of a finite correlation length is an unusual property
in condensed matter systems. In the following we describe some qualitative
differences compared to phase transitions that are driven by short-range
interactions.

The global nature of the interactions forces the density modulation to have Absence of domains
and defectsthe same strength at each point in space. All variations of the density mod-

ulation happen in a perfectly homogeneous way. This property suppresses
the presence of local structures such as defects or finite size domains. The
value of the order parameter ⇥ is spatially independent, yielding a perfectly
correlated system with all atoms in the same single particle state.

The elementary excitations are restricted to the zero momentum limit, that Only global
excitationsis, the dispersion relation has only a single point at k = 0 (see Chap. 8 and 9.

We can interpret this behaviour as an extremely stiff solid with a high sound
velocity cs at which correlations spread. The dispersion relation ! = csk

diverges for k 6= 0, shifting the associated frequencies to an unreachable
level.

In general, computing critical exponents for long-range interacting sys- Critical exponents

tems is a challenging task. Yet, for global interactions the critical exponents
can be calculated according to Landau theory. The critical exponents � for
the order parameter and � for the susceptibility remain intact, as does the
exponent � for the critical isotherm. However, since the correlation length is
always divergent, the critical exponents ⌫ and ⌘ become obsolete. With that,
the previously discussed scaling relations are not relevant any more, since
they rely on a finite exponent ⌫. Similarly, the connection with conformal
field theories relies on short-range interactions and becomes invalid [350].

Global interactions are equivalent to an infinite dimensionality, since the Effectively infinite
dimensionseffective coordination number (number of nearest neighbours) is infinite

in both cases. In this limit, the mean-field expansion in Landau theory be-
comes exact again and ceases to be an approximation. The effectively infinite
dimensions also make the actual dimensionality of the system irrelevant.
Whether the atoms are confined in one, two or three dimensions does not
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affect the critical behaviour since the effective coordination number remains
the same.

The correlation length ⇠ in the vicinity of the critical point is usually con-Diverging time scale

nected to a diverging time scale ⌧ by the speed of sound, ⇠ ⇠ cs⌧. While
⇠ is infinite for global interactions, the characteristic time scale ⌧ retains its
divergence properties. The reason is that ⌧ is set by the energy of the ele-
mentary excitations, which soften at the phase transition (see Chap. 8 and
9).

10.2 DISSIPATIVE CRITICAL BEHAVIOUR

The concept of phase transitions stems from equilibrium thermodynamics,Equilibrium phase
transistions... which is based on the principle that a system is in its stationary state. We

have seen that a phase transition in an equilibrium system is characterized
by an abrupt change in the ground state, accompanied by a non-analyticity
in certain thermodynamic quantities.

However, the concept of phase transitions can be generalized to non-...vs. non-equilibrium
phase transitions equilibrium systems, which are brought far from both the ground state and

equilibrium conditions. This can be realized either by a sudden change in
the system’s parameters, or by coupling it to an external drive. The existence
of out-of-equilibrium phase transitions has raised the questions whether
these systems also exhibit critical behaviour, and in which way its proper-
ties differ from equilibrium critical behaviour.

10.2.1 Non-equilibrium phase transitions

Non-equilibrium phase transitions are classified into two categories. OnePhase transitions
with unitary

dynamics
type of non-equilibrium phase transitions occurs in systems that are de-
scribed by a hermitian Hamiltonian [351]. Such phase transitions occur in
systems that are initially prepared far from the stationary state and then
approach equilibrium state under unitary dynamics. In the thermodynamic
limit, the time scale to approach equilibrium state can diverge and may
never reach a stationary state. Examples for such phase transitions include
ordering systems, glasses and spin glasses.

In contrast, for the second class of non-equilibrium phase transitions theNon-unitary
dynamics underlying Hamiltonian is not hermitian. Even for a finite size, such systems

may not have a stationary state, for instance, when combining different dy-
namics in reaction-diffusion models or epidemics [351]. These systems are
not related to equilibrium models and are sometimes referred to as genuine
non-equilibrium systems.

We are instead interested in driven-dissipative phase transitions, which oc-
cur in a non-hermitian environment but can reach a stationary state. Such
models can be created by generating external currents with a drive. The sta-
tionary state corresponds then to a situation where drive and dissipation are
balanced. In a dissipative phase transition the steady state abruptly changes
as a system parameter is varied [352]. By tailoring the coupling to the envi-
ronment and the driving it is possible to prepare a desirable steady state in
the non-equilibrium system that behaves reminiscent of a continuous phase
transition.

10.2.2 Dissipative phase transitions

Driven-dissipative phase transitions can be described in an analogous wayAnalogy of
driven-dissipative

and equilibrium
phase transitions
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to quantum phase transitions in closed systems. The ground state | 0(�)i
of a closed system that is described by a Hamiltonian H(�) fulfills the con-
dition H(�) | 0(�)i = E0(�) | 0(�)i, where E0(�) is the ground state energy
and � is a system parameter. As long as H(�) is gapped, that is, the en-
ergy difference between E0(�) and the first excited state is finite, any small
change in � alters the physical properties of | 0(�)i smoothly. Only if the
energy gap closes at a given � = �c, the properties may change abruptly and
a phase transition occurs.

A driven-dissipative system that obeys Markovian dynamics can be de-
scribed by a Lindblad master equation [352]

d⇢

dt
= L⇢ (10.10)

where ⇢ is the density matrix and L is the Liouvillian superoperator [353].
The steady state ⇢0 is then a zero eigenvector to the Liouville superoper-
ator, i. e. L(�)⇢0(�) = 0. We find that this description is analogous to the
quantum phase transition if one replaces H(�)− E0(�) ! L(�). Although
the Hamiltonian and the Liouvillian are different mathematical objects (her-
mitian operator vs. hermiticity-preserving superoperator), the critical point
is identified by a closing gap in their respective spectrum. Although driven-
dissipative systems in general cannot be mapped onto an effective closed
system, the stationary state of a driven-dissipative system may even share
the same mean-field properties as the ground state of an effective Hamilto-
nian [233]. This approach has been applied in the previous chapters.

One active field of research tries to generalize the concept of critical be-
haviour to non-equilibrium quantum phase transitions [354]. Such phase
transitions can occur in driven-dissipative systems at zero temperature. It
remains an open question how vacuum fluctuations from the environment
influence the critical behaviour at a phase transition. The generalization to Influence of

dissipation on the
critical behaviour

driven-dissipative systems requires to introduce new universality classes
with an even larger number than for the equilibrium systems, since time
becomes an extra degree of freedom [352, 355–357].

In general, the coupling to the environment by the drive and the dissipa-
tion channel implies additional fluctuations in the system. Dissipation acts
as an effective temperature and typically shifts the critical point to higher
values of the relevant system parameter [358]. In addition, the critical ex-
ponents and even properties of the phases may be altered by the environ-
ment [354]. Near the critical point, a scale-independent effective tempera-
ture emerges and dominates the critical dynamics [359]. Accordingly, the
coherent dynamics at a quantum phase transition is significantly affected
by the decoherent thermalization. The decoherence exponent cannot be cap-
tured by any equilibrium model and places the driven-dissipative system in
a new universality class beyond the equilibrium classification. It has been
found that the low-frequency spectral properties of the bath are crucial for
the critical dynamics [360]. However, the precise interplay of dissipation,
interactions, dimensionality and symmetry breaking remains currently elu-
sive and further theoretical and experimental effort is required to develop
a classification scheme for universal critical behaviour in driven-dissipative
systems.

10.2.3 Self-organization and dissipation

The self-organization phase transition in an atom-cavity system constitutes Self-organization as a
driven-dissipative
phase transition
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Figure 10.2: Driven-dissipative atom-cavity system a, Experimental scheme. A trans-
verse pump field (red) couples a BEC in the ground state to an excited momentum
state. The induced phase transition to a self-ordered state is of driven-dissipative
character and can be monitoring in real-time by recording the output photons. b,

Open-system description of the coupled atom-cavity system. The atomic and the
photonic mode are coupled via the transverse pump with strength �. The decay of
the cavity mode can be described as a dissipative coupling to a zero-temperature
bath of electromagnetic vacuum field modes.

a driven-dissipative phase transition. A schematic illustration of the setup
is shown in Fig. 10.2. A BEC is subject to a coherent drive in form of the
transverse pump. The coupling of the condensate to the cavity lead to an
exchange of cavity photons and atomic excitations. Eventually the photons
leave the cavity by leaking through the mirrors, thereby introducing the
dissipative character to the system. The photon decay can be interpreted as
a coupling of the system to a photon bath with zero temperature.

The driven-dissipative character leads to an additional advantage when it
comes to observables of the system, since the photon dissipation providesReal-time access to

density fluctuations a tool to measure the intracavity photon number in real time. We use this
access to measure the incoherent field in the vicinity of the phase transition.

The critical behaviour of the system has been theoretically described with
a quantum Langevin equation [313], and observed in terms of the critical
photon fluctuations as well as the spectrum of the cavity field [314]. The
measured critical exponents of 0.9(1) and 0.7(1), respectively, are to be com-
pared with the theoretical prediction of 1 [361], or possibly lower due to col-
lisional interactions [360]. Our experimental setup includes two optical cavi-
ties whose photon decay rates differ by around a factor of five (see Chap. 4).
This allows us to study the influence of dissipation for two strengths and
benchmark the results with previous measurements.

We start with a measurement of the density fluctuations when approach-
ing the self-organization phase transition with cavity 1. We prepare a BEC

of 87Rb in the two-cavity setup and set the detuning to cavity 2 to �2/2⇡ =

−10.0MHz, far below the critical point for the employed transverse pump
powers. In contrast, the resonance frequency of cavity 1 has a detuning
of �1/2⇡ = −2.5MHz from the transverse pump frequency. We increase
the transverse pump power over 170ms to its final value corresponding to
⇠ 1.1�2/�2c and measure the intracavity photon number through the photons
leaking from the cavity.

The result for an average over 328 realizations is shown in Fig. 10.3a. We
observe a progressively increasing mean intracavity photon number with
increasing transverse pump power until an abrupt rise marks the transition
to the self-ordered phase. The exact transition point depends on the total
atom number, which changes by around 5% between different experimental
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Figure 10.3: Fluctuations at the phase boundary in cavity 1. a, Mean intracavity photon
number n1 in cavity 1 during a ramp of 170ms length up to a transverse pump
lattice depth of 26(1)  h!rec at a pump-cavity detuning of �1/2⇡ = −2.5MHz. The
data are binned in intervalls of 1ms. b, The data between 85− 97% are shown on
a double logarithmic scale. We extract a critical exponent of 1.32(3) from a fit to the
data.

realizations. We therefore first extract the critical point separately in each
realization, convert the time axis to increasing coupling and finally average
over all realizations.

The same data is displayed in Fig. 10.3b on a double logarithmic scale
for the range of 85 − 97% of the critical coupling. The data at lower cou-
pling strengths has been excluded because of significant background noise.
A power-law fit to the data reveals a critical exponent of � = 1.32(3), signif-
icantly higher than in previous measurements [313, 314].

We repeat the measurement for cavity 2 by adjusting the resonance fre-
quency for the other cavity far enough from the transverse pump to sup-
press the coupling. Again, we linearly increase the transverse pump lattice
depth, but this time with the detunings �1/2⇡ = −10MHz and �2/2⇡ =

−2.4MHz, thereby suppressing the coupling to cavity 1. The result is shown
in Fig. 10.4. The power-law fit to the same data range yields a critical expo-
nent of 1.36(7), consistent with the measurement of cavity 1.

We conclude that we do not find evidence for a change in the critical
behaviour when the dissipation rate changes. A possible explanation is that
in both cases the dissipation rate was above the other relevant time scales.

10.3 MULTI-CRITICAL BEHAVIOUR

Research on driven-dissipative phase transitions is an active field of research,
but theoretical and experimental studies have focussed on systems with a
single order parameter [313, 362–365]. The interplay of two order parameters
has been studied extensively in the classical limit for equilibrium phase
transitions, where the simultaneous criticality of two order parameters at
a multicritical point is expected to cause a change from one universality
class to another [255]. However, extensions of these concepts to quantum
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Figure 10.4: Fluctuations at the phase boundary in cavity 2. a, Mean intracavity photon
number n2 during a ramp of 100ms length up to a transverse pump lattice depth of
38(1)  h!rec at a pump-cavity detuning of �2/2⇡ = −2.5MHz. The data are binned in
intervalls of 1ms. b, The data between 85− 97% are shown on a double logarithmic
scale. We extract a critical exponent of 1.36(7) from a fit to the data.

systems or driven-dissipative systems have proven to be challenging [366,
367]. Experimental evidence has remained elusive, since investigations of a
critical point require both a fine-tuning of the Hamiltonian parameters and
the access to suitable observables to detect the critical dynamics.

10.3.1 Multicritical points

A systematic mean-field analysis of multicritical points was triggered by
the quest for supersolid helium [247], and soon after analyzed in detail for
anisotropic antiferromagnetic systems [260, 368–371]. The presence of multi-
critical points can be explained in the canonical example of two competing
order parameters. Here the phase boundaries separating the normal and the
two ordered phases intersect for one particular choice of control parameters.
At this point, both order parameters become critical simultaneously, and the
system is called multicritical.

Multicritical points are classified according to the total number of inter-Classes of
multicritical points secting boundaries with continuous phase transitions. We distinguish three

different scenarios, as illustrated in Fig. 10.5. If the two ordered phases are
separated by a first order phase transition, the phase boundaries separat-
ing the normal and the two ordered phases are the only critical ones and
a bicritical point is present. A tricritical point emerges if the two ordered
phases are separated by a continuous phase transition. Finally, in case a
mixed phase with intertwined order is present, we find four intersecting
phase boundaries and the system is called tetracritical. Higher order critical
points require the presence of additional order parameters.
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Figure 10.5: Orders of multicritical points. Multicritical points (black dots) are classi-
fied in terms of the number of intersecting phase boundaries of continuous phase
transitions. In the canonical situation of two competing order parameters, the order
of the multicritical point depends on the coupling between the two orders, quanti-
fied by the determinant � (see Eq. 10.11). a, A bicritical point (� < 0) occurs, if the
two ordered phases are separated by a first order phase transition. b, The point turns
into a tricritical point (� = 0), if the ordered phases are separated by a continuous
phase transition. c, In case a mixed phase with the simultaneous presence of both
orders, the point becomes a tetracritical point (� > 0).

We can analyze the different scenarios in a mean-field approximation
around the multicritical point. Let us recall the Landau expansion for two
competing order parameters ⇥1 and ⇥2 from Eq. 6.1:

H(⇥1,⇥2) =
r1
2
⇥2
1 +

r2
2
⇥2
2

+
g1
4
⇥4
1 +

g2
4
⇥4
2 +

g12
4
⇥2
1⇥

2
2

(10.11)

with the coefficients r1, r2, g1, g2 and g12 being functions of �1 and �2.
Whether a multicritical point is bicritical, tricritical or tetracritical depends
on the sign of the determinant � = g1g2 − g212/4 (see Chap. 6). A bicritical
point occurs for � < 0, a tricritical point for � = 0 and a tetracritical point
for � > 0. Reaching a multicritical point in a 2D phase diagram requires fine-
tuning of two control parameters instead of one. In addition, the presence
of a tricritical point requires fine-tuning of the determinant to � = 0, see
Fig. 10.6.

The concept of multicritical points can be extended to higher dimensions.
Consider a system with d control parameters, where each is associated to a
continuous phase transition. The phases are separated by phase boundaries
of dimension d− 1. The union of all points in parameter space for which
the system is critical is called the critical manifold. The intersection points
of different phase boundaries can be of order up to 2n.

Conceptually, multicritical points are of interest from a group theoretical
point of view. If two order parameters are representations of the groups G

and H, the multicritical point is a representation of G�H. This enhances the Symmetries at a
multicritical pointsymmetry of the group, which affects the critical behaviour of the system.

The universality class can therefore change at a multicritical point. When
measuring the critical exponents of a system, we generally expect a change
upon approaching the multicritical point. Again, this change does not de-
pend on the microscopic details of the system, but is solely governed by the
general principles mentioned earlier.

Independently of the determinant � = g1g2 − g212/4, the symmetry is
enhanced at the multicritical point, since all quantities / (1− �2/�cr) disap-
pear. The fact that for � = 0 the symmetry-enhanced region extends over a
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Figure 10.6: Multicritical points in three dimensions. The transition from a bicritical,
to a tricritical and eventually a tetracritical point can be illustrated in a 3D phase
diagram. Each plane shows the phase diagram spanned by the control parameters
�1 and �2. The third parameter, �3, controls the order of the critical point from
bicritical, to tricritical and tetracritical. The presence of a tricritical point requires a
fine-tuning of the parameters to �3 = 0, or � = 0.

line in the phase diagram points towards a higher-dimensional multicritical
point. Indeed, we can interpret � as a third control parameter and find that
the continuous symmetry marks the crossing point of two phase boundaries
at � > 0 that separate the phase with intertwined order from the SO1 and
the SO2 phases. For � < 0, the boundary persists as a first order phase tran-
sition. The continuous symmetry therefore can be interpreted as the end
point of a first order phase transition and the merging point of two second
order phase transitions.

Some phase diagrams show more than four phases and multicritical points
beyond fourth order, despite the presence of only two control parameters.
Such behaviour is only possible if the control parameters are not orthogo-
nal, that is, they simultaneously couple to several order parameters. The 2D

phase diagram can then be interpreted as a (not necessarily flat) plane in
the d-dimensional space spanned by the (potentially unknown) orthogonal
control parameters. An example is the phase diagram of high-temperature
superconductors, where temperature and doping are sufficient to explore
superfluidity, antiferromagnetism and charge order [372, 373].

10.3.2 Fluctuations at a tricritical point

The phase diagram associated with self-organization to two cavities corre-Critical exponent of
the

superfluid-supersolid
transition

sponds to the illustration Fig. 10.5. It exhibits a multicritical point at the
intersection of the two phase boundaries for self-organization to each cav-
ity. For the transverse pump wavelength chosen in the context of this thesis,
� = 0 and the multicritical point is tricritical. This allows us to study the crit-
ical dynamics in the vicinity of the multicritical point in a driven-dissipative
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Figure 10.7: Fluctuations at the supersolid phase transition. a, Total mean intracavity
photon number n as a sum of the mean photon numbers n1 in cavity 1 and n2 in
cavity 2 during a ramp of 170ms length up to a transverse pump lattice depth of
26(1)  h!rec at a pump-cavity detuning of �c/2⇡ = −2.5MHz. The data are binned in
intervalls of 1ms. b, The data between 85− 97% are shown on a double logarithmic
scale. We extract a critical exponent of 0.80(2) from a fit to the data.

system, or, equivalently, the critical exponent of the superfluid-supersolid
phase transition.

We use the same method as in Sec. 10.2 to study critical fluctuations and
monitor the density fluctuations of the quantum gas in the normal phase
while increasing the coupling strength to approach the phase transition. In
contrast to the previous section, we choose the couplings to both cavities to
be equal in order to position ourselves along the diagonal in the phase dia-
gram. This is achieved with pump-cavity detunings of �1/2⇡ = −2.5MHz
and �2/2⇡ = −2.4MHz. We then linearly increase the transverse pump
power over an acquisition time of 170ms to a maximum value of 26(1)  h!rec.

During a single experimental realization we record a full photon trace Measuring the
critical exponentacross the critical point, which shows fluctuations in the photon number

when approaching the critical point, which are distinct from the coherent
onset of a light field inside the self-organized phase. From the photon count
rate we induce the intracavity photon number by calibrating the intracav-
ity lattice depth (cf. Sec. 4.3.3). The exact position of the phase transition
depends on the total number of atoms, which fluctuates by a few percent
between repeated experimental runs. We therefore determine the critical
point of the phase transition from a fit to the data and convert the time axis
into an increasing coupling strength.

The result is shown in Fig. 10.7 as an average over 528 realizations of the
experiment. As for the single-cavity fluctuations in Sec. 10.2, we use the data
between 85% and 97% of the critical point to extract the critical exponent
of the order parameter when approaching the phase transition. A fit to the
data reveals an exponent of � = 0.80(2).

The critical exponent differs significantly from both measurements at the
single cavity self-organization phase transition. Since the measurements are
performed under similar conditions, possible systematic errors are expected
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Figure 10.8: Critical exponent across a tricritical point. Summary of the extracted critical
exponents for different detuning imbalances �/2⇡ = �1/2⇡ − �2/2⇡. We find a
significantly lower critical exponent at the tricritical point, compared to the critical
point for single-cavity self-organization. The results from [313] and [314] for a single
cavity (equivalent to the condition |�| � min{|�1| , |�2|}) are shown as grey dashed
and dotted-dashed lines, respectively.

to be present in all three measurement. Our results suggest a change in the
universality class of the driven-dissipative phase transition when the order
parameter turns from Z2 to U(1). The measurements constitute the first step
to further studies on the multicritical behaviour. For instance, investigating
the effective extent of the multicritical point by performing measurements
of the critical exponents at smaller detuning imbalances. The autocorrela-
tion functions of the two photon fields at the multicritical point could reveal
the diverging time scales and decay rates of the density fluctuations, and
the cross-correlation function between the two fields would shed light on
the interplay between the two cavity fields, which are expected to be corre-
lated, or possibly entangled. A particularly promising research line would
be to investigate the critical behaviour over the transition from a tricritical
point to a tetracritical point by changing the coupling between the two order
parameters.
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The principal motivation of our experiment is to provide a versatile plat- Versatile platform for
many-body
phenomena

form to engineer atom-light interactions that give rise to new many-body
phenomena. The work presented in this thesis marks the first step in this
direction by constructing interactions that are free from any boundary con-
ditions of the cavity mirrors. We have shown that the coupling to photons
induces a structural phase transition that breaks continuous translational
symmetry, yet, the interaction potential remains sufficiently simple to under-
stand the physics with only few modes in momentum space. This contrasts
with most solids, where interaction potentials show a broad momentum
distribution whose precise shape often remains unknown, rendering exact
theoretical calculations unfeasible. Our vision is to extract the essence of
interaction-induced many-body phenomena by recovering the same effect
with a more simple interaction potential. The supersolid presents an basic
example for such a simulation.

In future experiments, the extension to more complex atom-light interac- More complex
atom-light
interactions

tions will lead to more phenomena that may or may not have a counter-
part in solid state physics. Concepts for new types of couplings based on
different cavity geometries can be readily implemented, since the setup is
exchangeable. This establishes our experiment as a flexible quantum simu-
lator to study a wide range of Hamiltonians. The engineered interactions
follow a bottom-up approach: the interaction potential is constructed from
momentum modes, which in turn are determined by the initial momentum
distribution of the atomic cloud, the wave vector of the cavity mode(s) and
of the transverse pump. The interaction range is set by the extension of the
mode profiles of the photon fields, i.e cavities and transverse pumps.

These tools permit the creation of advanced interaction potentials already
for the existing setup. In the following we give some examples for possible
future experiments. First, we discuss some appealing studies of the super-
solid state, which further our understanding of the unique interplay of two
continuous symmetries. We then demonstrate how the interactions can be
adapted to give rise to new phases by changing the frequency of the pho-
tons that mediate the interactions. This is followed by some ideas how the
control over the mode profiles can be used to adjust the range of the inter-
actions. Ultimately, we present a few prospects in a more general context,
proposing candidates for possible future cavity setups.

FURTHER STUDIES ON SUPERSOLIDITY

Thanks to the control, our experiments offer promising prospects for further
studies on the properties of the supersolid state. For instance, the real-time
access to the intracavity light fields allows us to characterize the decay chan- Decay channels of

Higgs and Goldstone
modes

nels of Higgs and Goldstone modes. The connection between the Goldstone
modes associated to the two broken continuous symmetries has triggered
theoretical research and remains an open question. Here we have the oppor-
tunity to study this connection with a simple interaction potential. In addi-
tion, the access to incoherent fluctuations close to the critical point offers a

187
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tool to investigate the multicritical behaviour associated to competing order
from self-organization to the two cavities. Multicritical points play a key role
in our understanding of systems with competing order, since they present
a singularity with enhanced symmetry in the phase diagram [253]. For a
discrete symmetry breaking in a single optical cavity, the fluctuations have
shown to reveal a critical slowdown visible in the autocorrelation function
[313]. Finally, extending the detection tools by a heterodyne setup permits to
measure the phases of the light fields [314], hence to reconstruct the entire
ground-state manifold and study the angular distribution functions.

This thesis presents a characterization of the supersolid phase at zero tem-
perature. By preparing a cold gas at finite temperature, we can access theMelting the

supersolid interplay of crystalline order and phase coherence, which give rise to four
distinct phases: fluid, superfluid, solid and supersolid. The measurements at
finite temperature presented in Chap. 5 have already shown finite tempera-
ture effects for self-organization with a single cavity. Theoretical simulations
for the Z2 crystalline order suggest the two order parameters to influence
each other, to give rise to first and second order phase transitions, changes
in the critical behaviour and the elementary excitations and a restored coher-
ence by the crystalline order [241]. The situation for a continuous symmetry
remains theoretically and experimentally unexplored.

ADDING INTERCAVITY INTERACTIONS

The relative strengths of photon scattering between the pump and each cav-
ity, and intercavity photon scattering is set by the pump Rabi frequency and
the vacuum Rabi frequency of the cavities. This becomes clear by consider-
ing the scaling

�i

�cr
/ ⌦pgi

�a
(11.1)

�12

�cr
/

p
Ng1g2
�a

(11.2)

We cannot adjust the vacuum Rabi frequencies gi of the cavities, since
they are set by the cavity mode volume. The detuning �a from the atomic
resonance in contrast can be set on a wide range by changing the frequency
of the transverse pump. Upon approaching the atomic resonance, both �i/�cr
and �12/�cr increase simultaneously, but the critical point can be reached at
much lower transverse pump Rabi frequency ⌦p. As a result, our experi-
mental parameters permit to adjust the intercavity coupling over a range of
10−3

− 1 compared to the pump-cavity couplings.
Whilst for the work in this thesis the pump frequency was chosen such

that intercavity coupling can be neglected, it is conceivable to increase it
for future experiments. As discussed in Chap. 6 this gives rise to a newCoupling two order

parameters phase with intertwined order and simultaneous self-organization to both
cavities, breaking two Z2 symmetries simultaneously. An exciting extension
is a predicted additional phase close to the intertwined phase, where no
coherent light fields are present yet, but vestigial order in terms of correlated
light fields [374]. lt is characterized by vanishing expectation values of the
two light fields, whereas their combination does not vanish.

Going further, the pump frequency can also be set to a positive detuningChaotic behaviour for
attractive atom-light

interactions
from the atomic resonance. In this regime, the dipole potential created by the
photons is repulsive and the photon-mediated interactions have a positive
sign. The result is a chaotic behaviour, where bifuractions and vortices are
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predicted [239]. A similar situation is also achieved at a pump frequency that
is positive detuned from both the atomic and the cavity resonances [323].
Proper choice of the cavity and transverse pump frequencies should allow
to enter an intermediate regime with opposite sign for the pump-cavity and
the intercavity interactions. The resulting phase diagram is equivalent to
the Coleman-Weinberg mechanism for a mass generation of gauge bosons
beyond the standard model based on higher order quantum corrections [257,
258].

CHANGING THE INTERACTION RANGE

While the potential of the photon-mediated interactions distinguishes itself
by its simplicity, the global range inhibits a number of phenomena that
require a broader momentum distribution, for instance a momentum dis-
persion of elementary excitations, defect formation, and sound propagation.
Such an interaction requires to reach length scales below to extension of the
cloud, which could be realized in our setup with an aspheric lens that is
integrated into the cavity setup (cf. Chap. 4).

One approach is to enhance the number of involved momentum modes Increasing the
number of involved
momentum state

that contribute to the interaction. This could be achieved already with a
single cavity by confining the cloud in a one-dimensional potential that is
oriented at an angle with respect to both the pump and the cavity axes. Such
a potential could be projected through the aspheric lens with a dipole laser
beam. At potential depths in the Lamb-Dicke regime the transferred mo-
mentum is projected on the potential axis [109]. For angles incommensurate
with the pump-cavity angle, multiple momentum modes also below a sin-
gle recoil momentum are involved and coupled via higher-order scattering
processes.

A different route is based on a reduction of the interaction volume to a
subset of the atoms. This can be achieved by reducing the size of either Local transverse

pumpsthe transverse pump or the cavity mode below the diameter of the BEC. In
our setup, this could be realized with a local transverse pump beam that
is focussed into the BEC through the aspheric lens. The illuminated atoms
scatter photons between the pump beam and the cavity mode, whereas the
remaining atoms are insensitive to photon scattering due to a lacking pump.
If the pump beam diameter is comparable to the optical wavelength, the
shape of the interaction potential becomes broader in momentum space and
approaches a Lennard-Jones-type potential. Introducing several local pump
beams results in a situation of an interacting few-body system with tunable
interactions and real-time access through the leaking photons.

INTERACTIONS WITH ADVANCED SCIENCE SETUPS

The flexible approach allows for a plethora of opportunities to engineer
atom-light interactions with a cavity setup that is tailored for the correspond-
ing application. One attractive system is a BEC coupled with a multimode Multimode cavities

cavity, where many transverse modes are degenerate. For such a system,
many-body phenomena like dislocations, frustration and glassiness are pre-
dicted to appear [79, 375]. Whilst coupling to few transverse cavity modes
has been observed with thermal gases in the electronic [376] and with a BEC

in the motional degree of freedom [225], an extension to a sufficient number
of modes to show genuinely new many-body phenomena is within reach.

An exciting direction are Rydberg atoms, which present an interaction Rydberg atoms
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range in between the collisional contact interactions and the global photon-
mediated interaction. The combination of the Rydberg blockade effect and
cavity quantum electrodynamics has been investigated theoretically and is
expected to retrieve an effective Jaynes-Cummings model [82]. Choosing the
blockade radius below the cloud diameter allows to increase the number of
excitations in the system and form cavity-coupled Rydberg crystals, whose
dynamics can be monitored with the optical cavity [377].

Coupling a fermionic quantum gas with an optical cavity would consti-Self-organization
with a fermionic

quantum gas
tute a further experimental path for novel interaction phenomena. Such sys-
tems increase the number of accessible momentum modes not by the scat-
tering processes but by the initial momentum distribution, which forms a
sphere that is filled up to the Fermi surface because of Pauli blocking [378].
Self-organization of the atoms strongly depends on the geometry of the
Fermi surface and can already appear at essentially arbitrarily small thresh-
old thanks to resonant umklapp processes [379]. Proper choice of the cavity
detuning is expected to give rise to topological states from atom-cavity cou-
pling [380–382].



AOPT ICAL CAV IT I E S

The setup that was studied in the context of this thesis consists of two
crossed optical cavities. In order to provide a theoretical basis for the un-
derstanding of the properties of optical cavities, we introduce in the follow-
ing the basic resonator properties that are relevant to describe and under-
stand the performed experiments. We derive the quantized eigenmodes of
an optical cavity, describe their shape and stability conditions, and finish the
discussion by including mirror loss to the formalism.
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A.4 Optical cavities including mirror loss 196

In this introduction, we focus on the shape and spectral properties of the
modes in an optical cavity. For a more detailed discussion on optical cavities
we refer the reader to the literature, e. g. [167, 202, 383, 384].

a.1 SOLUTIONS OF THE PARAXIAL WAVE EQUATION

Strictly speaking, a Fabry-Pérot cavity consists of two parallel mirrors with
a plane surface. Since this would result in an unstable mode, cavities are
mostly built with curved mirror substrates. The cavities used in the context
of this thesis are in the quasi-planar regime, where the mirror curvature is
large compared to the cavity length. We can therefore calculate the electric
field within the paraxial approximation, as is described in the following.

The electric field E(r) in an optical cavity follows the wave equation: Wave equation

r2E(r) + k2E(r) = 0 (A.1)

with wavenumber k = 2⇡/�p and wavelength �p. We start with the ansatz

E(r) =  (r)e−ikz (A.2)

with  (r) the envelope of the electric field. The envelope captures the fi-
nite extent of the beam and distinguishes the mode from a plane wave. We
assume that  (r) varies so slowly along z that we can neglect its second Paraxial

approximationderivative ∂2ψ

∂z2
and obtain:

@2 

@x2
+
@2 

@y2
− 2ik

@ 

@z
= 0 (A.3)

One solution to this equation is of the form:

 (r, z) = u(z) exp i
kr2

2q(z)
(A.4)

where we have switched to cylindrical coordinates with r2 = x2 + y2. The
two complex-valued functions u(z) and q(z) capture the varying amplitude,
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Figure A.1: Propagation of the fundamental Gaussian mode. The mode diameter w(z)

is minimal at the position z = 0 with a diameter w0. The mode diverges symmet-
rically around the origin with a divergence tan ✓ = w0/zR. The Rayleigh length zR
determines the distance from the origin where the mode diameter has increased by
a factor

p
2.

width and phase of the mode during the propagation. Inserting this ansatz
into Eq. A.3 yields two differential equations:

@q

@z
= 1

@u

@z
+

u

q
= 1

(A.5)

The equations have the solutions q(z) = z + z0 + izR and u = izRẼ0/q

with the constants Ẽ0, zR 2 R. We can set z0 ⌘ 0 by choosing the originField distribution of
a Gaussian mode of the coordinate system appropriately. The resulting expression for  (r, z)

reads:

 (r, z) = Ẽ0(z)
w0

w(z)
e
−i
⇣

φ(z)+ k
2R(z)

r2
⌘

−

r2

w(z)2 . (A.6)

Here we have used the beam radius

w(z) = w0

s

1+
z2

z2R
(A.7)

with the Rayleigh length zR = ⇡w2
0/�p. In the limit |z| /zR � 1, the beam

radius becomes w(z) ⇡ �pz/⇡w0. The Gouy phase �(z) is given by

tan�(z) =
z

zR
(A.8)

and the curvature of the wave front is:

R(z) =
z2R
z

+ z. (A.9)

The wave front curvature is maximal at a distance ±zR from the origin, and
it vanishes at the origin and for |z| � zR. The time dependence of the electric
field can be included by  (r, z, t) =  (r, z) exp i(kz−!t).

The expression in Eq. A.6 presents one solution of Eq. A.3 with the prop-
erty that its field profile is the same in every beam cross section, namely a
Gaussian distribution. It is called the fundamental Gaussian mode, and de-
scribes the electric field of many laser beams (see Fig. A.1). There are otherSolutions of paraxial

wave equation
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Figure A.2: Transverse cavity modes. Intensity distribution I(x,y) = |E(x,y)|2 for the
lowest eigenmodes of an optical cavity. a, Hermite-Gauss modes  mn emerge in
a cavity with rectangular boundary conditions. They exhibit m (n) nodes in the
intensity distribution along the horizontal (vertical) direction. b, Laguerre-Gauss are
present in cavities with circular boundary conditions. The radial field distribution is
determined by p, whereas l labels the number of phase windings.

solutions with more complex field distributions, for instance the Laguerre-
Gauss modes with cylindric symmetry, and the Hermite-Gauss with carte-
sian symmetry. Both families form a complete and orthogonal set of solu-
tions to Eq. A.3. Their intensity distributions are shown in Fig. A.2.

The Hermite-Gauss modes are Hermite-Gauss
modes

 mn(x,y, z) = Hm

⇣p
2
x

w

⌘

Hn

⇣p
2
y

w

⌘

Ẽ0(z)
w0

w(z)
e
−i
⇣

φmn(z)+
k

2R(z)
r2
⌘

−

r2

w(z)2 .

(A.10)

The Hermite polynomials Hm, m 2 N are real-valued functions that are
determined by

H0(x) = 1

H1(x) = 2x

Hm+1 = 2xHm(x)− 2mHm−1(x),

(A.11)

and equivalently for Hn(y), n 2 N. The Gouy phase �mn(z) is now given
by

tan
✓

�mn(z)

m+n+ 1

◆

=
z

zR
(A.12)

The radius of curvature R(z) is independent of m and n. The Hermite-Gauss
mode  mn(x,y, z) is characterized by m+ 1 (n+ 1) field antinodes and m

(n) field nodes along the vertical (horizontal) direction. For m = n = 0, we
recover the fundamental Gaussian mode that we discussed previously. The
intensity for the lowest Hermite-Gauss modes is shown in Fig. A.2a.

The Laguerre-Gauss modes are Laguerre-Gauss
modes

 (r,', z) =
⇣p

2
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w
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2
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w(z)
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(A.13)
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The Laguerre polynomials Lp are axially symmetric functions and can be
iteratively calculated according to:

L0(r) = 1

L1(r) = −r+ 1

Lp+1(r) =
2p+ 1− r

p+ 1
Lp(r)−

p

p+ 1
Lp−1(r),

(A.14)

The Gouy phase �pl(z) is now given byGouy phase

tan
✓

�pl(z)

2p+ l+ 1

◆

=
z

zR
(A.15)

The effect of the rotational mode number l is mainly contained in the phase
factor e−ilϕ, which describes a phase winding of l complete 2⇡ phases in
one rotation around the beam. This is the result of orbital angular momen-Modes with orbital

angular momentum tum of the light in that mode, and presents an example of an optical vortex
with the topological charge l.

Further families of modes can be equally considered, depending on the
choice of boundary conditions for Eq. A.3, for instance Ince-Gaussian modes,
Bessel modes or Hypergeometric-Gaussian modes. Their treatment goes be-
yond the scope of this introduction and we refer the reader to [384].

a.2 STABILITY AND UNSTABLE CAVITY GEOMETRIES

The choice of the mirror curvatures and of the cavity length determines
whether the resonator supports stable cavity modes or remains unstable.
In the following we consider a linear cavity with two mirrors at positions
z1, z2 and curvature R1 and R2. By convention, the radii are positive if
the reflective surface inside the cavity is concave. The mirror curvaturesWavefront and

mirror curvatures are required to equal the curvature of the wavefront at the mirror position,
yielding:

R(z1) = −R1 = z1 +
z2R
z1

R(z2) = R2 = z2 +
z2R
z2

(A.16)

The wavefront curvature can be calculated according to Eq. A.9. We define
the cavity length d = z2 − z1, and the mirror parameters g1 = 1− d/R1 and
g2 = 1− d/R2 and obtain:

z2R =
g1g2(1− g1g2)d

2

(g1 + g2 − 2g1g2)2
(A.17)

z1 = −

g2(1− g1)d

g1 + g2 − 2g1g2
(A.18)

z2 =
g1(1− g2)d

g1 + g2 − 2g1g2
(A.19)

We see that zR is not defined if

(1− g1g2) < 0 and g1g2 > 0

(1− g1g2) < 0 and g1g2 > 0

g1 + g2 − 2g1g2 = 0

(A.20)
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Figure A.3: Stability diagram for linear cavities. The existence of a stable cavity mode
depends on the mirror parameters g1 = 1− d/R1 and g2 = 1− d/R2, where d is
the cavity length and R1 and R2 are the radii of curvature for the cavity mirrors.
The stable (unstable) regions are shaded in white (gray). The coplanar, confocal and
concentric cavity geometries are at the stability edge.

or, equivalently, the cavity is only stable if: Condition for a stable
cavity mode

0 < g1g2 < 1 (A.21)

A diagram with the stable regions in the g1-g2 plane and the corresponding
cavity geometries are illustrated in Fig. A.3.

a.3 LONGITUDINAL AND TRANSVERSE MODES OF AN OPTICAL CAVITY

A cavity mode defines a self-consistent field configuration. In a wave beam
picture, a resonator mode can be represented as a wave beam whose pa-
rameters must be the same after one round trip. This condition is used to
calculate the mode parameters. We distinguish two types of resonators: lin-
ear cavities, where the beam that presents the mode travels in both directions
between the mirrors, and ring cavities, where the mode round-trip does not
involve retro-reflection of the beam.

We focus in the following on a linear cavity, formed by two mirrors at z1
and z2 at a distance d = z2 − z1. For a mode to be stable we require the
phase over one round-trip to be a multiple of 2⇡, or, a multiple of ⇡ over the
cavity length. The phase shift is determined by the Gouy phase in Eq. A.8.

kd+�(z1)−�(z2) = kd+ arctan z1/zR − arctan z2/zR = p⇡ (A.22)

with p 2 N. The phase over one round-trip is then 2⇡p. With ! = ck we
obtain the resonance frequencies

!pmn = 2⇡⌫pmn = 2⇡⇥ ⌫FSR [p+ (m+n+ 1)✏] . (A.23)
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Here, the frequency splitting between two successive longitudinal modes is
given by the free spectral range

!FSR = 2⇡⇥ ⌫FSR =
c

2d
(A.24)

and the transverse mode splitting between two families with m+n = const

is

!TEM = 2⇡⇥ ⌫TEM = 2⇡⇥ ✏⌫FSR =
c

d
arccos (

p
g1g2) . (A.25)

Let us consider some specific cavity geometries:Linear cavity
geometries

• Coplanar cavity: If both mirror curvatures are large compared to the
cavity length d, the Gouy phase vanishes throughout the mode, be-
cause d/2 ⌧ zR. All transverse modes are almost degenerate since
✏ ⌧ 1. A strictly coplanar cavity with degenerate modes does not
fulfill the stability criterion in Eq. A.21, since g1g2 = 1

• Concentric cavity: If both mirror curvatures lie on a circle, i. e. each
curvature equals d/2, the Gouy phase is maximum with �(d/2) = ⇡/2,
because d/2 � zR. A concentric cavity exhibits degenerate transverse
modes, but it is also at the stability limit with g1g2 = 1.

• Confocal: If the mirror curvatures equal the cavity length, the Gouy
phase equals �(d/2) = ⇡/4, because zR = d/2. As a consequence,
the free spectral range twice as large as the transverse mode spacing,
�⌫TEM = c

4d . The transverse modes group into two families of degen-
erate modes, one with n+m even and one with n+m odd.

Our cavities are built in the quasi-coplanar regime, where R/L ⌧ 1 and
accordingly �⌫TEM ⌧ ⌫FSR. Additionnally, we work at detunings �c = !p −

!c of the pump from one fundamental mode that are small compared to
�⌫TEM. We can therefore neglect the coupling to any other mode than the
fundamental mode.

a.4 OPTICAL CAVITIES INCLUDING MIRROR LOSS

So far we have dealt with the idealized situation of lossless cavity mirrors
that invoke perfect boundary conditions. We will now discuss how photon
losses at the mirrors affect the cavity mode structure. The cavity mirrors are
characterized by their reflectivity R, their transmissivity T and the losses L,
where R+ T +L = 1. Let us consider an incoming beam with field amplitude
Ein that is partially transmitted by the first cavity mirror. The transmitted
field amplitude is then:

E0 =
p

T1Ein (A.26)

During each round trip, the amplitude is further reduced by the factorAmplitude loss over
one round-trip

grt =
p

R1R2 (A.27)

Also the phase of the electric field is modified after one round-trip, depend-
ing on the propagation length. It reads:Phase shift over one

round-trip

�� = �c −�in = �c
2d

c
(A.28)
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with the frequency detuning �c = !−!c of the incoming beam frequency
! from the resonance frequency !c. In summary, the electric field changes
over one round trip by:

Ej+1 = grte
−iδφEj (A.29)

The cumulative field amplitude circulating in the cavity is then given by Intracavity field

Ec =

1X

j=0

Ej =

1X

j=0

⇣

grte
−iδφ

⌘j
E0 =

E0

1− grte−iδφ
(A.30)

The intracavity power is then given by

Pc =
|E0|

2

(1− grt)
2 + 4grt sin2 (2⇡�cd/c)

=
Pmax

1+ (2F/⇡)2 sin2 (2⇡�cd/c)
,

(A.31)

where we have defined the maximum power Pmax = ✏0c/2 and the finesse Cavity finesse

F = ⇡
p
grt/ (1− grt) . (A.32)

A photon will be reflected F/⇡ times on average before it leaves the cavity.
In the limit of T ,L ⌧ 1, the finesse takes the form F = ⇡/ (T + L).

Around the cavity resonance for �c ⌧ c/d, the intracavity power approxi-
mates a Lorentzian line shape. We can obtain the FWHM �⌫ of the resonance
by the condition Pc = Pmax/2, yielding

�⌫ =
2

⇡
sin−1

⇣ ⇡

2F

⌘

⌫FSR ⇡ ⌫FSR

F
(A.33)

The linewidth of the cavity resonance is directly related to the lifetime of
the cavity field. We consider the situation where an intracavity power P(t =
0) = P0 starts to decay due to mirror loss. The loss rate during one round
trip is given by

dP(t)

dt
= −P(t)(2− R1 − R2)⌫FSR (A.34)

This differential equation has the solution P(t) = P0e
−t/τc with the cavity Cavity ringdown

timeringdown time

⌧c =
1

(2− R1 − R2)⌫FSR
(A.35)

The photon decay rate  then follows with  = 2⇡/⌧c = 2⇡⇥�⌫/2.





BATOM-L IGHT INTERACT IONS

In the following we derive the Hamiltonian that is at the basis of all col-
lective phenomena discussed throughout this thesis. We start with a single
atom that is coupled to a single cavity mode and step by step extend this
model until we arrive at a description of the dispersive interactions of many
atoms with two cavity modes. .
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Parts of the description are based on [207]. An instructive description
with emphasis on a semi-classical view on atom-light interactions is given
in [385].

b.1 A SINGLE ATOM IN AN OPTICAL CAVITY

A two-level system that is coupled to the quantized light field of a cavity
can be described by the Hamiltonian

Ĥ = Ĥa + Ĥa + Ĥint (B.1)

Ĥa describes the atomic evolution, Ĥc the evolution of the cavity field and
Ĥint the atom-light interactions. Let us consider each term individually.

We start with a description of the atom, which we model as a two-level Atom as a two-level
systemsystem of the ground state |gi and the electronically excited state |ei. Transi-

tions between the states are described in terms of the operators

�̂z =
1

2
(|ei he|− |gi hg|)

�̂+ = |ei hg|
�̂
−
= |gi he|

(B.2)

The operators are Pauli matrices that obey a spin algebra with commutators
[�̂

−
, �̂+] = −2�̂z and [�̂

−
, �̂z] = �̂

−
. Setting the transition energy to Ee −

Eg =  h!0 and Ĥa |gi = 0, we obtain the Hamiltonian

Ĥa = Eg hg| |gi+ Ee he| |ei =  h!0�̂+�̂− (B.3)

The light field of a cavity mode with frequency  h! can be described in Quantized light field
as harmonic
oscillator

quantized form by the creation and annihilation operators â† and â obeying
⇥

â, â†
⇤

= 1. This results in the Hamiltonian

Ĥc =  h!câ
†â (B.4)

in analogy to a harmonic oscillator with eigenfrequencies En =  h!c (n+ 1/2)

separated by the photon energy  h!c.
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The remaining term describes the interaction between the atom and theInteraction between
the atom and the

light field
cavity field. The coupling can be caught in terms of the dipole moment d̂

with

d̂ = −er̂ = −

X

i,j2{e,g}

e |ii hi| r̂ |ji hj| = −

X

i,j

D |ii hj| = −D (�̂+ + �̂
−
) (B.5)

With Ê = Emax
�

â† + â
�

and the single-atom coupling strength g0 = DEmax/ h

we obtain the interaction Hamiltonian

Ĥint = −d̂Ê =  hg0 (�̂+ + �̂
−
)
⇣

â† + â
⌘

(B.6)

The resulting Hamiltonian for the description of the entire atom-light sys-
tem is

Ĥ =  h!0�̂+ �̂− +  h!câ
†â+  hg0 (�̂+ + �̂

−
)
⇣

â+ â†
⌘

. (B.7)

b.2 THE JAYNES-CUMMINGS MODEL

The Jaynes-Cummings Hamiltonian is obtained from Eq. B.7 with the ro-
tating wave approximation for the limit !−!0,g0 ⌧ !,!0. We start byRotating wave

approximation introducing the unitary transformation

Û(t) = e(iĤa/ h+iĤc/ h)

= e(iω0tσ̂+σ̂
−
+iωtâ†â)

= e(iω0tσ̂+σ̂
−
)e(−iωtâ†â)

= Û1(t)Û2(t)

(B.8)

Since the commutator
⇥

Û1, Û2

⇤

= 0 vanishes, we can separately consider the
transformation of the Hamiltonian for the photon and the atom operators.
An operator in the Schrödinger picture ÂS is transformed to the interactionInteraction picture

picture as ÂI = ÛÂSÛ
†, and correspondingly a ket via | Ii = Û | Si. The

transformation of the raising operator reads:

�̂+ ! Û�̂+Û
† = Û1�̂+Û1 = eiωaσ̂+σ̂

− �̂+e
−iωaσ̂+σ̂

−

=

1X

n,m=0

(i!a)
n(�̂+�̂−)

n

n!
�̂+

(i!at)
m(�̂+�̂−)

m

m!

=

1X

n=0

(i!at)
n

n!
�̂+�̂

n
−
�̂+ = eiωat�̂+

(B.9)

Analogously, we obtain the transformation �̂
−

! e−iωat�̂
−

. The transfor-
mation for the photonic annihilation operator â can be computed with the
relation eX̂Ŷe−X̂ = Ŷ +

⇥

X̂, Ŷ
⇤

+
⇥

X̂,
⇥

X̂, Ŷ
⇤⇤

/2! + ..., yielding

â ! ÛâÛ† = Û2âÛ
†
2 = eiωctâ

†ââe−iωctâ
†â

= â+
h

i!ctâ
†â, â

i

+
1

2!

h

i!ctâ
†â,
h

i!ctâ
†â, â

ii

= â+ (−i!ct) â+
1

2!
(−i!ct)

2 â+ ... = e−iωctâ

(B.10)
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Figure B.1: Jaynes-Cummings model. a, The atom is modeled as a two-level system
with ground state |gi and excited state |ei. The light field consists of a ladder of
equally spaced energy levels labelled with the photon number |ni. The photon en-
ergy and the atomic transition energy are close to each other. Atom-light coupling
induces a repulsion between adjacent levels with dressed states as new eigenstates
of the system. b, Energy of the dressed states as a function of detuning of the pho-
ton energy and the atomic transition energy. We find an avoided crossing when two
energies approach one another.
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And analogously â† ! Û2â
†Û

†
2 = eiωctâ†. The transformation of the

Hamiltonian to the interaction picture

i h
@

@t
| Ii = i h

@

@t

�

Û | Si
�

= −Ĥ0Û S + i hÛ
@

@t
| Si

= −Ĥ0 I + ÛĤS | Si
= −Ĥ0 I + ÛĤSÛ

†Û | Si
= −Ĥ0 I + ĤI | Ii = Ĥ ⇤ | Ii .

(B.11)

with the transformed Hamiltonian

Ĥ⇤ = hg0

h

�̂
−
â†e−i(ω0−ω)t + �̂+âe

i(ω0−ω)t+

�̂+â
†ei(ω0+ω)t + �̂

−
âe−i(ω0+ω)t

i (B.12)

The relevant timescale is set by g0, which is typically orders of magnitude
below !a and !c. For instance, in our experiment g0/w⇡ ⇡ 106 Hz and
!a/2⇡,!c/2⇡ ⇡ 4⇥ 1014 Hz. The first two terms, which oscillate at a fre-
quency of !a +!c will average on a timescale set by g0 and can be ne-
glected, but the last two terms remain relevant. After transforming back to
the Schrödinger picture we obtain the Jaynes-Cummings HamiltonianJaynes-Cummings

Hamiltonian

Ĥ =  h!0�̂+�̂− +  h!â†â+  hg0

⇣

�̂+â+ �̂
−
â†
⌘

. (B.13)

The Jaynes-Cummings model is a fundamental model in quantum optics.
It presents the most simple non-trivial model to describe the interaction of
an atom with an electromagnetic wave on a quantum mechanical level. A
canonical basis for the first two terms of the Hamiltonian for each photon
number n is given the bare states |e,ni and |g,n+ 1i, labeling the ground
(g) or excited (e) state of the atom. The coupling term introduces a coherent
mixture of these two states, resulting in the eigenenergies E±(n)

E±(n) =  h!c

✓

n+
1

2

◆

±

 h⌦n

2
, (B.14)

with the Rabi frequency ⌦n =

q

4(n+ 1)g20 +�2 and the detuning � =

!c −!a. For resonant light, we obtain an energy splitting E+−E
−
=  h

p
2(n+

1)g0 between each pair of eigenstates, which increases with n. For large de-
tuning |�| � 2(n+ 1)g0, the eigenstates approach the bare states and the
eigenenergies show a characteristic avoided crossing behaviour. The mixing
angle is given byMixing angle

✓ = arctan
✓

2g0
p
n+ 1

�

◆

(B.15)

The experiments that were carried out in the context of this thesis are within
the limit of small mixing angle, since the transverse pump is far detuned
from the atomic resonance. The atoms are subject to the energy shift from
the cavity field, while the fraction in the excited state can be neglected. This
will be taken into account in Sec. B.4.

b.3 MOTIONAL DEGREE OF FREEDOM

We have so far assumed that the position of the atom was fixed with respect
to the cavity mode. This assumption is now dropped and we include atomic
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motion in terms of a trapping potential V(r) and the kinetic energy p̂2/2m.
We also add a transverse pump field that is described by a classical Rabi
frequency h(r) = ⌦pht(r) with mode profile htr and maximum Rabi fre-
quency ⌦p. A driving field along the cavity axis can be taken into account in Transverse pump

fielda similar fashion with  h⌘
�

âeiωpt + â†e−iωpt
�

. An on-axis driving field is
used in Chapters 8 and 9, but dropped here for simplicity. The Hamiltonian
including the atomic motion reads then: Hamiltonian

including atomic
motion

Ĥ =
p̂2

2m
+ Ve(r)�̂+�̂− + Vg�̂−�̂+ +  h!0 h�̂+�̂−

+  hh(r)
⇣

�̂+e
iωpt + �̂

−
e−iωpt

⌘

+  h!â†â+  h⌦c

⇣

âeiωpt + â†e−i!pt
⌘

+  hg(r)
⇣

�̂+â+ �̂
−
â†
⌘

(B.16)

The explicit time dependency can be eliminated by moving to the frame
rotating with the transverse pump frequency. Analogously to the descrip- Transformation to

the rotating frametion in Sec. B.2, this can be achieved with the unitary transformation

Û(t) = exp
h

i!pt
⇣

�̂+�̂− + â†â
⌘i

(B.17)

yielding the transformed Hamiltonian

Ĥ =
p̂2

2m
+ Ve(r)�̂+�̂− + Vg�̂−�̂+ −

 h�a h�̂+�̂−

+  hh(r) (�̂+ + �̂
−
)

−
 h�câ

†â+  h⌦c

⇣

â+ â†
⌘

+  hg(r)
⇣

�̂+â+ �̂
−
â†
⌘

(B.18)

with �c = !p −!c and �a = !p −!a.

b.4 DISPERSIVE ATOM-LIGHT INTERACTIONS

In the next step, we extend the description to N atoms and move to the limit
of dispersive interaction. Let us introduce the atomic field operators  ̂†

g(r) Atomic field
operators( ̂g(r)) and  ̂†

e(r) ( ̂e(r)), which create (annihilate) an atom at position r =

(x,y) in the ground and excited state, respectively. We drop the z coordinate
since none of the light fields has a wave vector that points out of the x-y
plane and we can assume the motion being frozen along this direction. The
operators follow the bosonic commutation relations

h

 ̂i(r),  ̂
†
j (r

0)
i

= �2(r− r0)�ij
⇥

 ̂i(r),  ̂j(r
0)
⇤

= 0
(B.19)

We rewrite the Hamiltonian in Eq. B.18 in terms of the atomic field operators,
yielding Many-body

Hamiltonian
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Ĥ = −
 h�câ

†â+  h⌦c(â
† + â)

+

Z

A

dr



 ̂†
g(r)

✓

−

 h2

2m
r2 + Vg(r)

◆

 ̂g(r)

+  ̂†
e(r)

✓

−

 h2

2m
r2

−
 h�a + Ve(r)

◆

 ̂e(r)

�

+

Z

A

dr
h

 ̂†
g(r)g(r)â

† ̂e(r) +  ̂
†
e(r)g(r)â

† ̂g(r)
i

+

Z

A

dr
h

 ̂†
g(r)h(r) ̂e(r) +  ̂

†
e(r)h(r) ̂g(r)

i

(B.20)

Here, A is the size of the unit cell (see Sec. 5.7). This Hamiltonian describes
the interaction of an arbitrary number of atoms with a cavity, which is sub-
ject to a transverse pump field. Since we have included the kinetic energy
of the atoms, our model captures the interplay of the potential generated by
the light fields and the position of the atoms.

In the present thesis, we have explored the regime of dispersive coupling,
which is realized by a large detuning �a of the light fields from the atomic
resonance frequency. The evolution of the excited state population is deter-
mined by the Heisenberg equation

@ ̂e(r)

@t
= i

✓

 h

2m
r2 +�a

◆

 ̂e(r)− (g(r)â+ h(r))  ̂g(r). (B.21)

We find that the phase of  ̂e essentially evolves at a rate �a, much faster thanTime scales for the
ground and the

excited state
the other relevant time scales. Accordingly, the time average h∂Ψ̂e(r)

∂t i = 0

vanishes on all experimentally accessible time scales. The average excited
state population h ̂eit, however, does not vanish, in agreement with the
non-zero mixing angle in Eq. B.15, and can be obtained from Eq. B.21

h ̂e(r)it =
i

�a
(h(r) + g(r)â(t))  ̂g(r) (B.22)

We use this result to replace  ̂e in Eq. B.20. This procedure is called adiabatic
elimination of the excited state. It is equivalent to the Born-Oppenheimer ap-Adiabatic elimination

of the excited state proximation for atoms in a solid, where the slow and the fast time scales are
set by the ionic and the electronic dynamics, rather than the atomic ground
and excited states. Inserting the result into Eq. B.20 gives the effective Hamil-
tonian:

Ĥmb =−
 h�câ

†â

+

Z

A

dr ̂†(r)

"

p̂2

2m
+ V(r) +  h

h(r)g(r)

�a
(â† + â)

+  h
g2(r)

�a
â†â+  h

h2(r)

�a

#

 ̂(r)

+
U

2

Z

A

drdr0 ̂†(r) ̂†(r0) ̂(r0) ̂(r)

(B.23)

This is the many-body Hamiltonian in Eq. 5.11, with which we start in
Chap. 5.
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b.5 ATOM-LIGHT INTERACTIONS WITH TWO CAVITY MODES

An extension of Eq. B.23 to two cavity modes requires a number of ad-
ditional terms in the Hamiltonian. As previously, we work in the frame
rotating with the transverse pump. The two light fields evolve differently Quantized cavity

fieldsaccording to their detuning from the transverse pump frequency with

Ĥc,i = −
 h�iâ

†
i âi (B.24)

The index i 2 {1, 2} labels the two cavities, â†
i (âi) is the creation (annihila-

tion) operator for a photon in cavity i and �i = !i −!p is the detuning of
cavity i at frequency !i from the transverse pump. The interaction of the Interaction of the

atoms with each
cavity mode

atoms with each mode is captured by

Ĥint,i =

Z

A

 ̂†(r)

"

 h
h(r)gi(r)

�a
(â

†
i + âi) +  h

g2i (r)

�a
â
†
i â

#

 ̂(r)dr (B.25)

Here �a is the detuning from the atomic resonance, gi(r) is the mode profile
of cavity i and r = (x,y) and r0 = (x 0,y 0) are the spatial coordinates that are
integrated over the unit cell with area A. The field operator  ̂† ( ̂) creates
(annihilates) an atom at position r with mass m. In addition, we have to take Cavity-cavity

interactioninto account the effective interaction between the two cavities:

Ĥint,12 =

Z

A

 ̂†(r)



 h
g1(r)g2(r)

�a
(â

†
1â2 + â

†
2â1) +  h

h2(r)

�a

�

 ̂(r)dr (B.26)

Including atomic motion and the contact interaction, we obtain the many-
body Hamiltonian used in Eq. 6.12: Many-body

Hamiltonian for two
cavitiesĤmb =−

X

i=1,2

 h�iâ
†
i âi

+

Z

A

 ̂†(r)



p̂2

2m
+ V(r)

+
X

i=1,2

⇣

 h
h(r)gi(r)

�a
(â

†
i + âi) +  h

g2i (r)

�a
â
†
i âi

⌘

+  h
g1(r)g2(r)

�a
(â

†
1â2 + â

†
2â1) +  h

h2(r)

�a

�

 ̂(r)dr

+
U2D

2

Z

A

drdr0 ̂†(r) ̂†(r0) ̂(r0) ̂(r).

(B.27)

The bare atomic dynamics is captured with the momentum operator p̂, the
harmonic trapping potential V(r) and collisions with the 2D contact interac-
tion U2D = AnU, rescaled from the 3D interaction U = 4⇡ h2a/m with the
s-wave scattering length a and the 3D atomic density n [2].
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