A latent variable exponential family modeling approach to estimate suppressed demand effects for increasing car travel costs

Author(s):
Schmid, Basil

Publication Date:
2017-09-14

Permanent Link:
https://doi.org/10.3929/ethz-b-000263468

Rights / License:
In Copyright - Non-Commercial Use Permitted
A latent variable exponential family modeling approach to estimate suppressed demand effects for increasing car travel costs

Basil Schmid

IVT
ETH Zurich

6th hEART Symposium
Haifa, September 14, 2017
Post-Car World: A multi-stage travel survey

- Motivation: Understanding travel behavior in a hypothetical world where privately owned cars are substituted by various forms of shared mobility
- Investigation of pricing mechanisms as a driving force to achieve behavioral reactions
 → Main focus: Transition towards (and not actual state of) such a (Pre-)Post-Car World
- One week travel diary and mobility tool data (stage I) as empirical basis for behavioral experiments (stage II & III)
 - Data collection: Canton of Zurich, 2015 - 2016
 - Average response rate: 55%, N = 220 households
Adaptations in daily scheduling

- How would respondents change their daily travel in the **short-run**, given the increase in travel costs?
- Personalized stated adaptation interviews with mode-specific total RP travel cost $R_{tc,n}$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>$R_{tc,n} \cdot 1.5 + 0.4$</td>
<td>$R_{tc,n} \cdot 2 + 0.8$</td>
<td>$R_{tc,n} \cdot 4 + 1.4$</td>
<td>$R_{tc,n} \cdot 8 + 2$</td>
</tr>
<tr>
<td>Moto</td>
<td>$R_{tc,n} \cdot 1.5 + 0.2$</td>
<td>$R_{tc,n} \cdot 12 + 0.4$</td>
<td>$R_{tc,n} \cdot 4 + 0.7$</td>
<td>$R_{tc,n} \cdot 8 + 1$</td>
</tr>
<tr>
<td>PT</td>
<td>$R_{tc,n} \cdot 1.1$</td>
<td>$R_{tc,n} \cdot 1.2$</td>
<td>$R_{tc,n} \cdot 1.3$</td>
<td>$R_{tc,n} \cdot 1.5$</td>
</tr>
<tr>
<td>CS</td>
<td>$R_{tc,n} \cdot 1.1$</td>
<td>$R_{tc,n} \cdot 1.2$</td>
<td>$R_{tc,n} \cdot 1.3$</td>
<td>$R_{tc,n} \cdot 1.5$</td>
</tr>
<tr>
<td>CP</td>
<td>$R_{tc,n} \cdot 1.5$</td>
<td>$R_{tc,n} \cdot 2$</td>
<td>$R_{tc,n} \cdot 4$</td>
<td>$R_{tc,n} \cdot 8$</td>
</tr>
</tbody>
</table>

- Experimental framing:
 - Road tolls, fuel and congestion taxes
 - Future policy developments to reduce MIV usage
 - Promotion of shared mobility (PT, CS, CP)
Adaptations in daily scheduling

Durchschnittlicher OEV-Takt: 3 min.
Zeit zum nächsten Carsharing Fahrzeug: 3 min
Zeit zum nächsten Carpooling Fahrzeug: 3 min

<table>
<thead>
<tr>
<th>Aktivität</th>
<th>Zu Hause</th>
<th>Einkauf iFr. Bedar</th>
<th>Arbeit/Ausbildung</th>
<th>Dienstlich</th>
<th>Zu Hause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ort der Aktivität</td>
<td>Züerich</td>
<td>Züerich</td>
<td>Züerich</td>
<td>Züerich</td>
<td>Züerich</td>
</tr>
<tr>
<td>Straße</td>
<td>Nordstrasse 21</td>
<td>Sihlfeldstrasse 53</td>
<td>Seebahnstrasse 8</td>
<td>Plantaweg 21</td>
<td>Nordstrasse 21</td>
</tr>
<tr>
<td>Stadt</td>
<td>Züerich</td>
<td>Züerich</td>
<td>Züerich</td>
<td>Chur</td>
<td>Züerich</td>
</tr>
<tr>
<td>Ankunftszeit</td>
<td>00:00</td>
<td>08:17</td>
<td>08:24</td>
<td>11:31</td>
<td>14:34</td>
</tr>
<tr>
<td>Laenge der Aktivität</td>
<td>20:05</td>
<td>08:22</td>
<td>10:19</td>
<td>13:11</td>
<td>00:44</td>
</tr>
<tr>
<td>Abfahrtszeit</td>
<td>08:05</td>
<td>08:22</td>
<td>10:19</td>
<td>13:11</td>
<td>15:18</td>
</tr>
<tr>
<td>Zu Fuss</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Auto(Fahrer)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Auto(Mitfahrer)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Velo</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>OEV</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Carpooling(Mitfahrer)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Carsharing</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Motorrad</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Zurueckgelegte Distanz:</td>
<td>2.78</td>
<td>0.88</td>
<td>134.19</td>
<td>134.10</td>
<td>2.43</td>
</tr>
<tr>
<td>Reisefrist:</td>
<td>00:12</td>
<td>00:02</td>
<td>01:12</td>
<td>01:23</td>
<td>00:13</td>
</tr>
<tr>
<td>Reisekosten:</td>
<td>0.00</td>
<td>0.00</td>
<td>36.23</td>
<td>36.21</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Summe Reisekosten (in CHF): 79.04
Adaptations in daily scheduling

Focus of today:
- Suppressed demand effects for MIV (car driver, car passenger, motorbike) usage: What is the effect on daily mileage driven, given the increase in travel costs?
- "Aggregate" response function (given low sample size) using highly disaggregate data (activity-based perspective)
- Assumption: Cost minimizing behavior, given underlying (unobserved) preferences for daily plan
- "Two-step approach" for modeling (unobserved) heterogeneity
Environmental sensitivity / car loving traits ...

envi1: Higher fuel prices should subsidize public transport
envi2: Daily life without car is impossible
envi3: Car driving is bad for the environment
envi4: I could imagine to give up car usage completely
envi5: Zurich without cars is inconceivable
envi6: Environmental problems get too much attention
envi7: The never-ending discussions about the greenhouse effect is exaggerated
envi8: Fuel prices should increase to reduce pollution of the environment
... and socio-demographic characteristics
Data

- N = 162 respondents, 810 initial choice scenarios
- Dependent variable: Distance traveled by MIV $y_{n,t} \equiv km_{n,t}$ after adaptation in current scenario
 - Highly right-skewed data with some zeros (respondents might choose not to use MIV anymore)
 - Pseudo-balanced panel: After drop-out, respondents are excluded (\rightarrow 735 actual choice observations)
- Main explanatory variable: Average MIV travel cost per km $x_{n,t} \equiv \log(CHF_{n,t-1})$ after adaptation in previous scenario
Adaptation patterns in distance traveled
Change in MIV travel cost
Modeling framework: GLM

- Log-linear OLS model is **inconsistent**
 - $\mathbb{E}[\log(\eta_{n,t}|X_{n,t})] \neq 0$ if CEF is exponential ($\eta_{n,t}$ is LN) and presence of heteroscedasticity (*Jensen’s inequality*)
 - Incompatible with mass point at zero
- Exponential family modeling approach using *pseudo* maximum likelihood techniques ([Gourieroux et al., 1984](#))

$$f(Y_{n,t}|X_{n,t}, z_n, \Lambda) = \exp \left(\frac{Y_{n,t} f(X_{n,t}, z_n, \Lambda) - b(f(X_{n,t}, z_n, \Lambda))}{a(\phi)} + c(\phi, Y_{n,t}) \right)$$

→ FOC score vector: GLM **consistent** as long as CEF is correctly specified ([Santos-Silva and Tenreyro, 2006](#))
- Poisson: $\mathbb{E}[Y_{n,t}|X_{n,t}, z_n] = \exp(f(X_{n,t}, z_n, \Lambda))$
- Heterosced.: $\mathbb{E}[Y_{n,t}|X_{n,t}, z_n] = \text{Var}[Y_{n,t}|X_{n,t}, z_n] = \lambda_{n,t}$
- Globally concave, simple and fast in convergence
Modeling framework: Panel structure

- Large variety in respondents’ characteristics and their daily plans (unobserved heterogeneity)
- Starting point: Poisson regression for a continuous, non-negative dependent variable with mixed effects (Hausman test: H_0 plausible \rightarrow RE more efficient)
- Hausman et al. (1984): Equidispersion assumption further relaxed by the RE specification $\text{Var}[Y_{n,t}|X_{n,t}] = \lambda_{n,t} + \theta \lambda_{n,t}^2$
- Huber/White sandwich estimator for SEs (Arellano, 1987)
Modeling framework: Log-linear index

\[
\lambda_{1,n,t} = \epsilon_n \cdot \exp \left(\alpha + \beta_{COST} \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{\text{dist}_{n,0}}{\text{dist}} \right)^{\omega_{DIST}} \right)
\]

\[
\lambda_{2,n,t} = \epsilon_n \cdot \exp \left(\alpha + \alpha_{INC} \cdot \text{inc}_n + \alpha_{ENVI} \cdot \text{envi}_n + \right.

\left(\beta_{COST} + \beta_{INC} \cdot \text{inc}_n + \beta_{ENVI} \cdot \text{envi}_n \right) \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{\text{dist}_{n,0}}{\text{dist}} \right)^{\omega_{DIST}}
\]

\[
\lambda_{3,n,t} = \epsilon_n \cdot \exp \left(\alpha - \exp(\beta_{COST} + \psi_n) \cdot \log(CHF_{n,t-1}) \cdot \left(\frac{\text{dist}_{n,0}}{\text{dist}} \right)^{\omega_{DIST}} \right)
\]

\[
\lambda_{4,n,t} = \epsilon_n \cdot \exp \left(\alpha + \alpha_{INC} \cdot \text{inc}_n + \alpha_{ENVI} \cdot \text{envi}_n

- \exp(\beta_{COST} + \beta_{INC} \cdot \text{inc}_n + \beta_{ENVI} \cdot \text{envi}_n + \psi_n) \cdot

\log(CHF_{n,t-1}) \cdot \left(\frac{\text{dist}_{n,0}}{\text{dist}} \right)^{\omega_{DIST}} \right)
\]
Modeling framework: Estimation (1)

- **Analytical solution (random intercept):** Assuming that $\epsilon_n \sim \Gamma(1, \theta)$ and $y_{n,t}$ is distributed Poisson with mean $\lambda_{s,n,t} \equiv \lambda_{s,n,t}/\epsilon_n$, the likelihood of observing the sequence $Y_{n,t}$ given $X_{n,t}$ and z_n of respondent n is given by

$$\mathcal{L}_n(Y_{n,t}|X_{n,t}, z_n, \Lambda) = \log \Gamma \left(\frac{1}{\theta} + \sum_{t=1}^{T_n} y_{n,t} \right) - \sum_{t=1}^{T_n} \log \Gamma \left(1 + y_{n,t} \right) - \log \Gamma \left(\frac{1}{\theta} \right) + \frac{1}{\theta} \cdot \log(u_n) + \log(1 - u_n) \sum_{t=1}^{T_n} y_{n,t} +$$

$$\sum_{t=1}^{T_n} y_{n,t} \cdot \log \left(\lambda_{s,n,t} \right) - \left(\sum_{t=1}^{T_n} y_{n,t} \right) \log \left(\sum_{t=1}^{T_n} \lambda_{s,n,t} \right)$$
Modeling framework: Estimation (2)

- Simulation (random coefficient or LV): The expected likelihood $\mathcal{L}_n^*(.)$ over all possible values of ψ_n or LV_n is given by the integral of the exponent of the log-likelihood function over the distribution of ψ_n or LV_n

$$\mathcal{L}_n^*(Y_{n,t}, l_{w,n}|X_{n,t}, z_n, \Omega) = \int_{\psi_n, LV_n} \exp (\mathcal{L}_n(Y_{n,t}|X_{n,t}, z_n, \Lambda, \psi_n)) \, u(l_{w,n}|LV_n, \tau_{l_w}, \sigma_{l_w})$$

$$\times h(\psi_n|R) \, g(LV_n|z_n, \rho_z, \eta_{LV_z}) \, d\psi_n \, dLV_n$$

$$\tilde{\mathcal{L}}_n^*(Y_{n,t}, l_{w,n}|X_{n,t}, z_n, \Omega) = \frac{1}{R} \sum_{r=1}^{R} \exp (\mathcal{L}_n(Y_{n,t}|X_{n,t}, z_n, \Lambda, \psi_n)) \, u(l_{w,n}|LV_n, \tau_{l_w}, \sigma_{l_w})$$

$$\max \tilde{\mathcal{L}}(\Omega) = \sum_{n=1}^{N} \log \left(\tilde{\mathcal{L}}_n^*(Y_{n,t}|X_{n,t}, z_n, \Omega) \right)$$

→ Posterior analysis of cost elasticity
Estimation results

<table>
<thead>
<tr>
<th></th>
<th>REP</th>
<th>REPS</th>
<th>LVREP</th>
<th>MEP</th>
<th>MEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>3.20***</td>
<td>3.15***</td>
<td>3.06***</td>
<td>3.08***</td>
<td>3.05***</td>
</tr>
<tr>
<td>α_{INC}</td>
<td>—</td>
<td>0.17</td>
<td>0.16</td>
<td>—</td>
<td>0.16</td>
</tr>
<tr>
<td>α_{ENVI}</td>
<td>—</td>
<td>−0.13***</td>
<td>−0.62***</td>
<td>—</td>
<td>−0.11**</td>
</tr>
<tr>
<td>θ</td>
<td>0.65***</td>
<td>0.59***</td>
<td>0.51***</td>
<td>1.32***</td>
<td>1.27***</td>
</tr>
<tr>
<td>β_{COST}</td>
<td>−0.43***</td>
<td>−0.44***</td>
<td>−0.87***</td>
<td>−0.72***</td>
<td>−0.70***</td>
</tr>
<tr>
<td>ω_{DIST}</td>
<td>0.43***</td>
<td>0.47***</td>
<td>0.58***</td>
<td>0.56***</td>
<td>0.58***</td>
</tr>
<tr>
<td>β_{INC}</td>
<td>—</td>
<td>0.03</td>
<td>−0.08</td>
<td>—</td>
<td>−0.28**</td>
</tr>
<tr>
<td>β_{ENVI}</td>
<td>—</td>
<td>−0.05***</td>
<td>0.65***</td>
<td>—</td>
<td>0.08</td>
</tr>
<tr>
<td>σ_{COST}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.09***</td>
<td>1.06***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>8</th>
<th>30</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td># param.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># respond.</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
</tr>
<tr>
<td># obs.</td>
<td>735</td>
<td>735</td>
<td>735</td>
<td>735</td>
<td>735</td>
</tr>
<tr>
<td># draws</td>
<td>—</td>
<td>—</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>$\mathcal{L}\text{LL}{\text{final}}$</td>
<td>−7029</td>
<td>−6911</td>
<td>−6621</td>
<td>−6047</td>
<td>−6039</td>
</tr>
<tr>
<td>AICc</td>
<td>14066</td>
<td>13840</td>
<td>13154</td>
<td>12104</td>
<td>12097</td>
</tr>
</tbody>
</table>

Robust standard errors: *** : $p < 0.01$, ** : $p < 0.05$, * : $p < 0.1$

Note: LV model coefficients not reported in the table.
Results: Distribution of cost elasticities

![Box plot showing posterior distribution of cost elasticities for different groups (REP, REPS, MEP, MEPS, LVREP). The x-axis represents the cost elasticities ranging from -2.5 to 0%, with each group having a distinct distribution. The box plots illustrate the interquartile range, median, and outliers for each group.](image-url)
Results: Distance dependency

![Graph showing distance dependency]
Conclusions

- Median elasticity: If MIV travel costs increase by 1%, distance decreases by ≈ 0.3 to 0.4% (re-weighted by MZMV distances)
- Remaining issues: Potential endogeneity of $dist_{n,0}$
- Strong, positive distance dependency
- Relatively high elasticities compared to related literature; usually between -0.1 (SR) and -0.4 (LR)
 - Sampling bias / low sample size
 - Survey design (daily travel, activity-based approach, etc.)
 - Very high variation in travel cost
- Respondents with pro-environmental traits travel less and show a stronger adaptation behavior
Questions?