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Abstract
Tissue deformation simulations for pre-operative planning or intra-operative guidance

of medical procedures require accurate patient-specific models and are commonly

performed using the Finite Element Method (FEM). Since only a small part of the

entire body is typically observed with medical imaging, the deformation models are

often limited to a relatively small region-of-interest (ROI). Surrounding this ROI,

one then needs to define suitable boundary conditions for an accurate simulation.

Conventionally, boundary conditions are set arbitrarily or heuristically at chosen model

locations; typically as either zero-displacement or -force constraint, which obviously are

suboptimal where ROI borders are neither fixed (e.g. on bone) or free (e.g. skin facing

the air). In this work, we present a novel boundary-condition formulation, called

compliance boundary conditions (CBC), which approximate the effect of anatomy

outside this ROI and augment this onto the ROI border nodes. CBC can be

parametrized from observed tissue displacements, e.g. tracked in ultrasound (US) or

magnetic-resonance imaging (MRI). It is inherently embedded in the FEM deformation

model to be used for computing any interaction response. CBC is a generalization

of conventional boundary constraints, where the typical zero-displacement and -force

constraints are obtained at the two extremes of the given CBC parameter. We

demonstrate CBC for linear- and quadratic-strain FEM models in 2D and 3D numerical

phantoms, for which different element/integration formulations and the effect of noise

are studied. CBC is shown to reduce displacement errors for both 2D and 3D numerical

phantoms by more than 50% compared to conventional boundary conditions. We also

present CBC on tissue-mimicking gelatin phantom experiments from displacements

observed in US images. In an application scenario of simulating needle insertion for

prostate brachytherapy, CBC is shown to reduce seed placement errors by more than

70% compared to conventional boundary conditions.

1. Introduction

Patient-specific tissue deformation simulation is essential for pre-operative planning and

intra-operative guidance of medical interventions and, accordingly, has been a major

research interest in the last decades. Deformable tissue models enable the simulation of

anatomical motion and displacements, which in turn allows for anticipating deviations in
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interventional target locations such as in brachytherapy and biopsy of the breast, liver,

and the prostate. These models include the physical properties and the geometry of an

anatomical region-of-interest (ROI). They enable the computation of tissue deformation,

e.g., due to respiration (Clifford et al. 2002; Eom et al. 2010; Preiswerk et al. 2014) and

medical tool interactions (Dehghan et al. 2008; Misra et al. 2008; Goksel et al. 2011).

In contrast to other deformation models, such as mass-spring mesh models (Harders

et al. 2003; Mollemans et al. 2004) and finite differences (Debunne et al. 2001), the Finite

Element Method (FEM) is a well-established technique based on continuum-mechanics.

In FEM, the continuum is discretized spatially into simpler geometric elements the

mechanical responses of which can easily be computed as integrals (Becker and Teschner

2007; Peterlik et al. 2012). With such discretization (mesh) and its elastic composition

(i.e., Young’s modulus and Poisson’s ratio) as well as boundary conditions on a model,

the deformation outcome can then be found by solving partial differential equations. For

precisely assigning elastic maps to meshes, the anatomical region is often first segmented

from medical images, such as CT, MRI, or US, e.g. Sharma and Aggarwal 2010; Goksel

and Salcudean 2011.

Patient-specific models are often limited to a relatively small region-of-interest

(ROI), since only a smaller part of the entire anatomy can (or is chosen to) be imaged

for practical reasons, e.g., to minimize irradiation in CT, to minimize scan-time in MRI,

or due to the smaller field-of-view of US. Then, a major question becomes how to set the

boundary constraints around such ROI. Note that the boundary constraints on some

regions are easy to define: For instance, it is reasonable to use zero-displacement (fixed)

constraints for the tissue “fixed” to (neighbouring) rigid structures, e.g. bones; and to

use zero-force (free) constraints for the skin (neighbouring the air). Accordingly, the

ideal case is when the anatomy to be simulated is separated from the rest of the body

through natural anatomical constraints, i.e. bones and the skin, within the ROI. For

example, an image of the entire breast including the ribs and the skin would allow for

an effective confined model with boundary constraints that can be precisely defined.

Nevertheless, for most other anatomy, such natural boundaries do not exist or not

lie within typical imaging ROI. For instance, the visceral structures are all in contact

with each other; therefore, even if a small section of viscera is imaged or chosen to be

simulated for numerical reasons, its interaction with the rest of the abdomen and thorax

should be taken into account for an accurate simulation. Many deformation simulations,

however, ignore such interaction outside the ROI by simply using zero-displacement or

-force boundary constraints on the outer surfaces (Ayache et al. 1998; Hensel et al. 2007;

Goksel et al. 2011; Lee et al. 2012; Li et al. 2013).

Some studies pad the ROI with superfluous tissue, in order to vanish simulation

artifacts inside the intended ROI caused by constraints assumed at the outer boundaries

(Lasso et al. 2010; Cui et al. 2014). Not only this adds to computational cost, but it is

also not well-defined how far and with which tissue to pad; besides, no guarantees can

be given on whether and how closely actual ROI deformations can be approximated

with such added margin. An alternative is to use natural anatomical constraints
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mentioned above; e.g. the rib-cage as fixed during breast interventions (Didier et al.

2007). Nevertheless, this can only account for such structures given that they are

entirely within the ROI, and this also requires segmenting these structures, which is an

additional (often burdensome and error-prone) preprocessing step.

There are only few studies on boundary conditions. In Plantefeve et al. 2014, a

statistical atlas is obtained from multiple patients for the organ of interest and the

boundary conditions are defined according to the mean position and variance available

in the atlas. This was introduced for estimating bilateral boundary conditions, but

how to define the boundary constraints for contacts with surrounding organs is an

outstanding question. Despite the potential of population approaches, patient-specific

models are known to be superior and preferred, where possible. In Roose et al. 2008,

the authors propose to iteratively update boundary constraints within a surface and

image-intensity registration framework, but this framework requires segmentations or

landmark points for matching. In Ahmadian et al. 2001, boundary conditions on beam

structures are extracted for a civil engineering application using a boundary stiffness

matrix from characteristic equations by formulating them as non-linear equations from

the measured natural frequencies of the structure.

Elasticity parameterization of FEM models has been extensively studied using both

image registration and biomechanical elastography techniques. In contrast, to the best

of our knowledge, modeling boundaries conditions for biomechanical simulations has

received little to no attention in the literature, despite boundary conditions being

arguably more important for deformation response than the elasticity parameters,

discretization, and the choice of the model (Koch et al. 1996; Misra et al. 2009). In

order to demonstrate this with a motivating example, we compared the displacements

of different setups with an inclusion phantom seen in Fig.1(a). The model was assumed

to have zero-displacement constraint (fixed) at the bottom surface. In Fig.1(b), two

different elasticity parameters are used with half and double the Young’s modulus

for the inclusion. In Fig.1(c), a coarser mesh is used to model the discretization

errors. In Fig.1(d), geometrical and material non-linearity are simulated separately

for comparison with the linear case. In Fig.1(e), different boundary conditions are

compared using additional sliding displacement constraints on the side surfaces, as well

as only the corners being constrained. Change of mean displacements normalized with

the maximum displacement, ∆, is computed for different setups as shown in the figure

titles. It is observed in this example that different boundary condition settings have

significantly more impact on the deformation response than any other model parameter.

Artificial boundary conditions have been studied as absorbing boundaries for

acoustic propagation and to limit numerical computations in areas such as seismology,

weather prediction and fluid dynamics, e. g. Engquist and Majda 1977; Engquist

and Majda 1979; Nataf 2013; Sauter and Schanz 2017. Nevertheless, to the best of

our knowledge, modeling boundaries has received little attention for deformable solid

simulation, such as in medical applications.
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(a) Ground-truth (b) Elasticity parameters (c) Mesh

(d) Non-linearity (e) Boundary Conditions

Figure 1. (a) A baseline simulation of 80 × 120 mm numerical phantom of 20 kPa

Young’s modulus, 0.49 Poisson’s ratio, 10 mm depth, and displacement-constrained at

bottom surface; having a 10 kPa 40 × 40 mm inclusion, modeled using plane-stress

assumption and linear Hookean response with a triangular (TRI3) discretization with

213 nodes. We compare different model parameters and choices: (b) inclusion elasticity

parameters of 20 kPa and 5 kPa; (c) a coarser mesh of 145-node TRI3 elements;

(d) quadratic TRI6 elements for geometric non-linearity and nonlinear stress-strain

model for material nonlinearity; and (e) different boundary conditions with sliding

side surfaces or only the two corners fixed. Boundary condition choice is seen to make

the largest difference in deformation response.

In this work, we study compliance boundary conditions (CBC), which can be

naturally represented and solved in the standard FEM framework by embedding their

representation into the well-known stiffness matrix formulation. Preliminary results of

this work was presented at a conference (Ozkan and Goksel 2015) with basic simulation

experiments for elastic materials. Herein, we present CBC for various 2D and 3D FEM

element formulations as well as for a nonlinear (hyperelastic) material formulation. We

also show results from a tissue-mimicking phantom with deformation data acquired by

ultrasound imaging.

2. Methods

Conventionally, deformation boundary conditions are set arbitrarily or hand-crafted for

a given simulation scenario. The work-flow of proposed CBC is shown in Fig. 2, where
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Conventional Method

+

FEM
Deformation

Model

×

input
(e.g. force)

output
(e.g. disps)
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BC

(a)

Observations
CBC

Estimation

Proposed Method

+

FEM
Deformation

Model

Augmented

FEM Model
×

input
(e.g. force)

output

(e.g. disps)

CBC

(b)

Figure 2. FEM with (a) conventional boundary conditions and (a) our compliance

boundary conditions (CBC).

the deformation effects of boundaries are modeled from observations, with which the

deformation model is augmented to incorporate their effect.

2.1. Simulating Tissue Deformation

Let an anatomical region be discretized by N mesh nodes into finite elements. This

model is then characterized by FEM through the following linear system

Ku = f , (1)

where K ∈ RDN×DN is the sparse positive-definite symmetric stiffness matrix dependent

on the geometry and biomechanical properties of the elements, u ∈ RDN is the vector of

nodal displacements and f ∈ RDN is the vector of nodal forces with D being the spatial

dimension. Boundary constraints are then imposed on such model, and subsequently

the deformation can be estimated by solving the system of equations.

To generate K, local elasticity distribution in tissue has to be known. These maps

for deformation simulation are often generated by segmenting the anatomy to assign

generic elasticity properties within each major structure (Hensel et al. 2007; Lasso et al.

2010; Goksel et al. 2011; Cui et al. 2014). Alternatively, elastography is an emerging

technique to reconstruct local elasticity parameters that make up K (Kallel and Ophir

1997; Doyley et al. 2000; Manduca et al. 2001; Eskandari et al. 2008). As this is not the

focus of this paper, we assume below that an approximate elasticity distribution in the

ROI is given, i.e. K is known. Accordingly, we focus instead on estimating boundary

conditions from deformation observations for a given elasticity distribution.

2.2. Relation Between Full and Limited ROI Model

To illustrate the problem, consider that an accurate FEM model of the entire body

(not only of the ROI) exists and is available to us. As mentioned above, this is

often unlikely due to limited imaging field-of-view, imaging time constraints, radiation

exposure, etc. Nevertheless, this assumption will facilitate below the formulation of the
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relation between the ROI boundary conditions and the full anatomical model, and in

turn the derivation of CBC parametrization as an approximation of such relation.

Without loss of generality, the nodes of full FEM model Kf can be reordered with

the observed nodes (inside ROI) first, followed by the unobserved nodes (outside ROI).

The full-model linear system can then be rewritten as

Kfuf =

[
Koo Kou

KT
ou Kuu

][
uo

uu

]
=

[
fo
fu

]
= ff, (2)

⇒
{

Koouo + Kouuu = fo (3)

KT
ouuo + Kuuuu = fu (4)

where uo and uu contain the displacements at, respectively, the observed ROI and

unobserved outer nodes. From (4), it follows that uu = K-1
uu(fu −KT

ouuo). Using this

equation in (3) and algebraic manipulations yield the force-displacement relationship

for observed ROI nodes as

fo −KouK
-1
uufu︸ ︷︷ ︸

f̃o

= (Koo −KouK
-1
uuK

T
ou)︸ ︷︷ ︸

K̃oo

uo, (5)

where K̃oo is the so-called condensed stiffness matrix (Bro-Nielsen and Cotin 1996). A

sample condensed stiffness matrix for the ROI mesh in Fig. 3(a) is depicted in Fig. 3(b).

This condensed system in (5) can then model ROI deformation exactly as if the full

anatomical model were present.

Since the geometry and elasticity parameters of the full model are not always

observable as mentioned earlier, the condensed stiffness matrix K̃oo cannot be deduced

directly in practice. Nevertheless, if the incremental difference C between such

condensed system and an (isolated) ROI model K can be approximated, then the

condensed system could be reconstructed as

K̃oo = K + C . (6)

Our approach is to approximate C from deformation observations. This will then

enable the known K to be augmented into an approximate condensed system, using

which any interaction response can be computed similarly to the expected deformation

response of the (unknown) full model Kf. Such C would in essence “encode” the effect

of the full model onto the boundary nodes of the smaller ROI model. For example,

for the 2D example in Fig. 3(a), such difference C should look like Fig. 3(c), where the

non-zero elements are at rows/columns corresponding to ROI boundary nodes. These

elements than represent neither zero-displacement nor zero-force constraints, but rather

act like compliant (spring-like) due to the lumped effect of surrounding soft tissue; thus,

we call this augmentation compliance boundary conditions (CBC).

2.3. Estimating Compliance Boundary Conditions

Assuming no external force is applied on unobserved nodes, i.e. fu = 0, then (5) becomes

fo = K̃oo uo = (K + C) uo. Consider that the nodes of the augmented ROI stiffness
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(a) (b) (c) (d)

Figure 3. (a) An (unobserved) full model in orange and the (observed) ROI in green,

where the entire bottom surface is fixed and the top surface of ROI is compressed

diagonally. Element-wise magnitude of (b) a condensed stiffness matrix K̃oo and

(c) an incremental difference matrix C are shown. (d) CBC for diag approximation is

illustrated to correspond to an axis-aligned spring model.

matrix K̃oo are ordered with the boundary ROI nodes first, followed by the internal ROI

nodes. The linear system can then be rewritten as a block matrix system as follows

K̃oouo =

[
Kbb + Cbb Kbi + Cbi

KT
bi + CT

bi Kii + Cii

][
ub

ui

]
=

[
fb
fi

]
= fo, (7)

where ub and ui contain the displacements at the boundary and internal ROI nodes,

respectively. Since C has non-zero elements only at rows and columns corresponding to

the boundary ROI nodes, as also shown in Fig. 3(c), the block matrices Cbi and Cii are

zero matrices. Accordingly, it follows from (7) that

fb = (Kbb + Cbb)ub + Kbiui. (8)

Note that the nodal forces are zero on all boundary nodes except for the interacted

ROI nodes. Then, by using prime to indicate matrices where the rows corresponding

to manipulated ROI boundary nodes are removed, (8) can be rewritten as

(K′bb + C′bb)ub + K′biui = 0 (9)

C′bbub = − (K′bbub + K′biui) . (10)

For known region geometry and elasticity parametrization within the ROI, the stiffness

matrices K′bb and K′bi are known. Then, if we can observe a deformed state, therewith

the displacement vectors ub and ui, we can then compute the right-hand-side of (10),

hereafter represented with the column vector b = − (K′bbub + K′biui). The left-hand-

side of (10) can then be rewritten for knowns ub and unknowns C′bb, and given sufficient

number of observations this system of equations can be solved.

2.4. Approximations to Compliance Boundary Conditions

Assuming a ROI model with n boundary nodes, Cbb ∈ RDn×Dn, and despite its

sparsity in practice, Cbb may then have up to (Dn)2 unknowns. Since the displacement

observations cannot be arbitrarily many and Dn linearly-independent observations are
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not practical, a robust reconstruction of the full Cbb matrix is thus not realistic in

practice. Nevertheless, one can observe in Fig. 3(c) that many nonzero elements lie on

the block diagonal of Cbb. For instance, the block diagonal of Cbb has 51% of the

`1-norm of entire Cbb. Accordingly, we propose to approximate this matrix purely as

a block-diagonal matrix, calling this approximation “block”. As such, each boundary

node in (10) is then assumed to be linearly independent from one another, leading to a

CBC reconstruction of boundary node j in 3D ascj,1 cj,4 cj,5
cj,4 cj,2 cj,6
cj,5 cj,6 cj,3


︸ ︷︷ ︸

Cj

uj,xuj,y
uj,z

 =

bj,xbj,y
bj,z

 , (11)

where symmetric semi-definite Cj contains 6 unique elements encoding the compliance

constraints for boundary node j. The displacement vector [uj,x, uj,y, uj,z]
T contains

displacements of boundary node j in x-, y-, and z- directions, respectively. Estimating

the compliance constraints in (11) can be written as linear problem

uj,x 0 0 uj,y uj,z 0

0 uj,y 0 uj,x 0 uj,z
0 0 uj,z 0 uj,x uj,y


︸ ︷︷ ︸

Aj,m



cj,1
cj,2
cj,3
cj,4
cj,5
cj,6


︸ ︷︷ ︸

cj

=

bj,xbj,y
bj,z


︸ ︷︷ ︸
bj,m

. (12)

where m represents a particular deformation observation. Then, from a total of M

displacement observations with m ∈ {1, ..,M}, the elements of cj can be approximated

robustly in a least-squares sense using pseudo-inverse, i.e.

cj = (AT
j Aj)

−1AT
j bj (13)

where Aj = [AT
j,1 · · ·AT

j,M ]T and bj = [bT
j,1 · · ·bT

j,M ]T . At least D linearly independent

deformation observations are needed to uniquely solve for block unknowns. For example,

observations of two compressions at the same surface point and in the same direction

but with different magnitudes will not be linearly independent.

We observed that the largest elements of Cbb actually lie along the diagonal itself.

For instance, `1-norm of diagonal in Fig. 3(c) is 48% of that of entire matrix. Thus, we

further propose to approximate Cbb as only a diagonal matrix (diag), as a simpler and

more robust alternative to block approximation above. This equates to cj,4=cj,5=cj,6=0,

where the other three constraints can be approximated by simple division, even from a

single observation alone. For more observations, the above pseudo-inverse formulation

can still be used, although such least-squares approximation is equivalent to the mean

of individual observation estimates.

As an intuition for the above, note that the three diagonal elements of Cj in the

diag model represent axis-aligned springs (compliance elements) attached to node j,
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emulating/approximating the (lumped) effect of outer tissue and boundary conditions

on that node, as illustrated in Fig. 3(d). In fact, the division for their approximation

is to find such spring constants from given force (b) and displacements (u) pairs. On

the other hand, the block model represents an arbitrary compliance formulation (not

necessarily axis-aligned). Considering an eigen-decomposition of real symmetric Cj,

three orthogonal eigenvectors yield three directions in which three springs are attached

to boundary node j, each having a spring constant of the corresponding eigenvalue. The

latter naturally is more flexible as a lumped compliance approximation to outside tissue,

while also requiring more measurements to characterize. Indeed, going from diagonal

elements diag to block-diagonal block requires an increase in the number of variables

(e.g., 2n-to-3n in 2D and 3n-to-6n in 3D, considering matrix symmetry), while only

negligibly increasing the additional information represented by the matrix Cbb. For

instance, in the example in Fig. 3(c) block increases the number of variables by 50%

compared to diag, while only representing 51-48=3% more of the boundary effects.

2.5. Estimating CBC for Nonlinear Materials

The above formulations employ linear stress-strain assumption. Although the tissue is

known not to be linearly elastic over large strain ranges, the linear approximation is still

commonly used successfully for small displacements, such as in elastography (Wilson and

Robinson 1982; Eskandari et al. 2008). Nevertheless, for large displacement scenarios,

linearized approximation to nonlinear behaviour might not be accurate (Bathe et al.

1975; Zhuang and Cann 1999; DiMaio and Salcudean 2005). We hereby propose an

extension of CBC for nonlinear material formulations. For such extension, we linearize

the nonlinear stress-strain relation around each operating point in order to estimate

CBC.

We demonstrate this CBC extension herein for a quadratic-strain stiffness matrix

approximation (DiMaio and Salcudean 2005). We can express the stiffness matrix

linearized around a deformation state u, as K(u), where the linearized stiffness matrix

K(u) is a function of the deformed state u. For a given displacement measurement

u, the condensed system in (6) can then be rewritten for nonlinear materials as

K̃oo = K(u) + C , where CBC can be added on such linearized matrix, as it was shown

for the linear stress-strain case above.

For a nonlinear material, C can be approximated from displacement measurements

as follows. For each displacement measurement um with m ∈ {1, ..,M}, we first compute

the linearized stiffness matrix K(um). Following the steps (7)-(9) in Section 2.3 and

using K(um), CBC can be approximated similarly from

C′bb ub,m = − ( K′bb(um) ub,m + K′bi(um) ui,m ) , (14)

where prime indicates the matrices where the rows corresponding to manipulated

ROI boundary nodes are removed. As in (7) for linear stress-strain case, Kbb(um),

Kbi(um), ub,m and ui,m are obtained with ordering the boundary ROI nodes first,
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followed by the internal ROI nodes of K(um) and um, respectively. Similarly to

Section 2.3, the right-hand-side of (14) is known and represented with the column

vector bm = − (K′bb(um)ub,m + K′bi(um)ui,m). The left-hand-side can be reformulated

as a linear problem for known um and unknowns C′bb, and given sufficient number of

displacement observations, this system of equations can again be solved using pseudo-

inverse. Following (11) and using um in (12), we obtain Aj,m for each boundary node

j and displacement measurement m. We then approximate the elements of Cj of a

nonlinear material using Aj = [AT
j,1 · · ·AT

j,M ]T and bj = [bT
j,1 · · ·bT

j,M ]T in (13).

3. Experiments and Results

3.1. Analytical Example

As a typical case with an analytical solution, we simulated in 2D a simple phantom of

size 1×2 m with a depth of 1 m, where the model is assumed to have zero-displacement

constraint in x-direction for left surface and in y-direction for bottom surface as in

Fig. 4(a). Poisson’s ratio was set to 0.4999 and the Young’s modulus to 1 Pa. With

the compression of the upper surface, this model is expected to deform as seen in

Fig. 4(a), where the sideway elongation can be inferred analytically from Poisson’s

ratio and the reaction force relates to Young’s modulus. Consider that only the top half

is observed as the ROI as in Fig. 4(b), then the effect of the bottom half can be thought

of springs acting on the interface nodes, i.e., finite-valued k1y and k3y. Assuming that

the sliding boundary on the left is not observed/seen either, this should appear on the

approximation as “infinite-stiffness” springs, i.e., on k1x and k2x. Indeed, we created

such a numerical phantom, meshed with QUAD4 elements with 6 nodes and 2 elements,

as in Fig. 4(c). For top compression of 5 cm, CBC was then estimated using diag as

given in Fig. 4(d). As seen, CBC-approximated stiffness values are as expected above,

practically modeling the “cushioning” effect from the unobserved tissue below.

3.2. Experimental Setup and Evaluation

For evaluating the proposed block and diag models for CBC, we conducted a simulation

study with 2D and 3D numerical phantoms, as well as experiments with tissue-mimicking

gelatin phantoms using deformation estimated from ultrasound images. In order to

study the effect of boundary conditions, and in particular CBC, on the planning

and execution of a typical computer-assisted procedure, we also simulated prostate

brachytherapy needle interaction on a male pelvic anatomical model and evaluated

needle targeting errors with and without CBC.

For numerical simulations, we considered a large (complete) model Mf of

anatomy/object and applied prescribed interactions on it in order to simulate a

set of deformation observations required for CBC estimation within a smaller ROI.

The interactions were chosen to be physically feasible and non-redundant (linearly

independent). ROI was selected to mimic the imaging modality envisioned to acquire
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(a)

k1x

k2x

k3x

k4x

k4y

k3y

k2y

k1y

(b) (c) (d)

Figure 4. (a) An analytical example. If only the top half is observed as the ROI,

the effect of its surrounding can be approximated as springs shown in (b). Based on

a numerical simulation in (c), we estimated diag CBC as in (d), demonstrating k1x
and k2x being very large successfully approximating the zero-displacement constraints

whereas k2y and k3y having a finite stiffness approximating the “cushioning” effect of

the missing part. Crosses indicate the perturbed DOF where an approximation cannot

be derived (assuming reaction forces being unavailable).

observations, i.e. ROI near the object surface considering ultrasound acquisition herein.

In brachytherapy the prostate is observed using transrectal ultrasound, so the ROI was

set surrounding the prostate. Using these deformation observations, we then estimated

CBC for a reduced model within the ROI, in order to generate an augmented reduced

model Mr.

For evaluations, we compared deformations predicted by Mr to ground-truth

deformations from Mf . We used a set of interactions realistic to apply and expect

in clinical scenarios (e.g. palpation on skin and insertion of a needle). For each

interaction we computed ground-truth nodal displacements d using Mf and predicted

nodal displacements u using the CBC-augmented Mr. We report herein average error

for all nodes as

e =

∑N
j=1 δj

N
, (15)

where N is the total number of FEM nodes in ROI and δj is the Euclidean distance

between the predicted and ground-truth displacements at node j, i.e. δj = ‖uj − dj‖2.
Since error magnitudes will be a function of overall deformation magnitudes, we

also report errors normalized for each particular interaction to the maximum nodal

displacement (often the palpation/interaction magnitude) d0, i.e.

e% = 100

∑N
j=1 δj

N · d0
. (16)
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(a) (b) (c)

Figure 5. Boundary condition comparison: (a) BotFix : Fixed at the bottom surface,

free on the sides. (b) AllFix : Fixed at the bottom surface, sliding (fixed in normal

direction) for the sides. (c) CBC : Proposed compliance boundary conditions.

3.3. Numerical 2D Phantom

First we evaluated our method in 2D on a 140×160 mm numerical phantom with a depth

of 10 mm, of which 60×80 mm on top is defined as the ROI as seen in Fig. 3(a). Poisson’s

ratio and Young’s modulus were set to 0.49 to 10 kPa, respectively. The full model Mf

was assumed to have zero-displacement constraint at the bottom surface, and free on

the sides. To compare the results with CBC, we also present baseline results with two

conventional BC choices; namely (BotFix ) where the bottom of Mr is fixed, i.e. zero-

displacement constraints for bottom surface in all directions, and (AllFix ) where the

two sides were also displacement constrained in the normal direction. These boundary

condtions and CBC are demonstrated for 2D in Fig. 5.

For observations and evaluations, compressions of 0.3% were applied on the top

surface, allowing for small-strain linear approximations for the numerical experiments.

To study any effect of FEM discretization and integration choice, we used both triangular

and rectangular FEM elements, both with linear and quadratic basis functions. Number

of FEM nodes for each model are listed in Table 1, where TRI3 and TRI6 represent 3-

and 6-node triangular, and QUAD4 and QUAD9 represent 4- and 9-node quadrilateral

elements, respectively.

We first tested an ideal scenario, where we used the same surface nodes for

both observations and the evaluation (called sOE in results). Arrows indicate

the manipulated nodes. Note that, for a linear deformation model, the response

for interactions on the same nodes scales linearly, so estimated displacement would

simply be a linear combination of deformation observations; equivalently but without

Table 1. Number of nodes in full (Mf) and reduced (Mr) FEM model for palpation

experiments in 2D.

Model TRI3 TRI6 QUAD4 QUAD9

Mf 479 1853 255 957

Mr 111 413 63 221
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(a) (b) (c)

Figure 6. Different interaction scenarios for experiments are shown. (a) Same nodes

(sOE ) and (b) different nodes (dOE ) are manipulated for observations and evaluation.

(c) Multiple locations (mOE ) are manipulated for observations, also different than

evaluation.

explicitly estimating CBC. We next evaluated a more realistic scenario where the

interaction location is different for observations and the evaluation (dOE ). Note

that, since each observation is a linear combination of M−1 others, increasing M

does not yield more linearly-independent observations. Finally, to study the effect of

increased linearly-independent observations, we acquired observations from interactions

at multiple locations (mOE ). The experimental scenarios above are demonstrated in

Fig. 6 considering a mesh setup with 7 ROI surface nodes.

To simulate interactions for observations or evaluations, we applied several

compressions sj = [sj,x, sj,y]
T at selected surface nodes. To apply S compressions

systematically in different directions, we chose sj = d0 [cos(πj/S), sin(πj/S)]T, where

d0 is the interaction magnitude and j={1, .., S}.
To simulate noise in displacement observations in real applications, e.g. due to

imaging and motion estimation errors, we additionally studied each scenario by adding

a 20 dB uniform noise on displacement observations used for CBC reconstruction.

Table 2 shows normalized average error for CBC and conventional BC settings for

different FEM element formulations. We computed S = 10 different compressions, and

used M = 3 of those ten as observations (measurements) while using the remaining 7

compression experiments for evaluation by reporting their average error. The results for

sOE experiment are given here as a form of lower-bound for error, since the observations

and evaluations are from interactions at exact same points, which should anyhow

correlate linearly. The sOE errors then represent best case fitting errors for a given

model and experimental setup. Errors in all tests were lower with mOE compared to

dOE, as expected, due to the higher number of observations with the latter. Comparing

CBC estimation alternatives, diag in general yields satisfactory results, with lower

errors than block for sOE and dOE setups, whereas the more expressive block model

performs better with increasing number of linearly-independent observations in the mOE

experiment. Note that block model has higher degrees-of-freedom, which requires a

higher number of independent observations to estimate boundary conditions robustly.

Errors for different FEM element types were observed to be similar, indicating that the

proposed method generalizes well to different FEM element types. For evaluating the

effect of noise, mean and standard deviation (in brackets) of the normalized average
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Figure 7. Normalized average error (e%) for different number of observations for

estimating CBC in 2D using TET3 elements for (a) sOE, (b) dOE, and (c) mOE.

error of 10 different noise realizations were reported in the table. Note that increasing

the number of observations is expected to have a more substantial effect for noisy

observations due to the least-squares parameter estimation: Normalized average error

for changing number of M is shown in Fig. 8 for 2D.

Next, we evaluated CBC estimation for nonlinear materials. For this purpose, we

used the same full model Mf , reduced model Mr, Poisson’s ratio, Young’s modulus,

and displacement constraints for Mf as in Section 3.3. CBC was compared with the

same conventional choices, BotFix and AllFix ; again in three different experimental

scenarios, sOE, dOE, and mOE. We simulated five deformations up to a compression

of 25% strain with increments of 5%. Herein, the tissue is assumed to have a quadratic

stress-strain relation in the ground-truth simulations, and we compared CBC estimation

results using linear- or quadratic-strain assumptions for the ROI model Mr. Fig. 8(a)-

Table 2. Average error normalized to the maximum displacement for the 2D numerical

phantom with and without observation noise using different FEM element types for

two conventional methods BotFix and AllFix and our proposed CBC.

TRI3 TRI6

Error: CBC Error: CBC

mean(std) [%] noise-free with noise mean(std) [%] noise-free with noise

BotFix AllFix diag block diag block BotFix AllFix diag block diag block

sOE

19.5 38.9

2.0 2.8 5.4(2.4) 10.5(5.0)

19.1 39.0

2.0 2.2 4.8(2.5) 11.4(5.4)

dOE 8.6 12.3 11.3(4.1) 20.2(8.9) 8.2 9.4 12.0(4.4) 18.4(7.4)

mOE 5.2 4.6 6.5(2.4) 12.6(5.3) 3.6 2.8 5.5(2.5) 14.7(5.9)

QUAD4 QUAD9

Error: CBC Error: CBC

mean(std) [%] noise-free with noise mean(std) [%] noise-free with noise

BotFix AllFix diag block diag block BotFix AllFix diag block diag block

sOE

19.5 38.6

2.1 2.2 4.2(1.8) 6.8(4.3)

19.1 38.8

2.0 2.2 4.1(1.7) 6.7(4.2)

dOE 8.9 10.4 9.0(3.6) 22.4(7.4) 8.3 9.8 10.4(4.2) 26.0(8.2)

mOE 5.2 4.3 4.9(1.6) 10.8(4.1) 3.8 2.9 6.0(2.9) 16.2(6.2)



Compliance Boundary Conditions for Patient-Specific Deformation Simulation 15

5 10 15 20 25

E
r
r
o

r
 m

e
a

n
 (

%
)

0

20

40

60
sOE

(a)
5 10 15 20 25

0

20

40

60
dOE

(b)
5 10 15 20 25

C
B

C
 fo

r

L
in

e
a
r F

E
M

0

20

40

60
mOE

(c)

Compression (%)

5 10 15 20 25

E
r
r
o
r
 m

e
a
n

 (
%

)

0

20

40

60

(d)
Compression (%)

5 10 15 20 25

0

20

40

60

(e)
Compression (%)

5 10 15 20 25

C
B

C
 fo

r

Q
u
a
d
ra

tic
 F

E
M

0

20

40

60

(f)

Figure 8. Normalized average error (e%) for different compression magnitudes for

2D TET3 elements. The full model was simulated using quadratic stress-strain

assumption. For the ROI model, (a)-(c) use (false) linear stress-strain assumption

when estimating CBC, while (d)-(f) use (correct) quadratic stress-strain assumption.

8(c) show normalized average error for linear stress-strain relation. Results demonstrate

that CBC errors increase at higher compression amplitudes due to the incorrect stress-

strain assumption, while the conventional techniques yield a relatively constant error

after normalization. Indeed, after some point (≈> 15% strain) CBC with this false

linear assumption yields poorer deformation estimation than conventional settings. Fig.

8(d)-8(f) show normalized average error for CBC with quadratic stress-strain relation,

with results showing that errors stay low with CBC even at relatively high strains; diag

being the robust option as was also repeatedly shown earlier. This demonstrates that for

nonlinear materials with large compression amplitudes, our nonlinear CBC estimation

technique is required and performs successfully.

3.4. Numerical 3D Phantom

Next, we evaluated a similar scenario in 3D. A 140×140×160 mm numerical phantom

was constructed with linear 4-node tetrahedral (TET4) and 8-node hexahedral (HEX8)

elements, with a 60×60×80 mm section being the ROI. The full model contains 3825

nodes, whereas the reduced model includes 441 nodes. Poisson’s ratio was set to 0.49

and Young’s modulus to 10 kPa. Compressions of 0.3% were applied for observation

and evaluation using linear stress-strain assumption. The full model was assumed to

have zero-displacement constrained at the bottom surface. Same baseline comparisons,

BotFix and AllFix, for ROI were evaluated.

For displacement observations and evaluations, again S compressions each with

magnitude d0 were applied in directions [sin θj cosφk, sin θj sinφk, cos θj] for elevation
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angle θj=(πj/P ) and azimuth angle φk=(2πk/Q) where j={1, . . . , P}, k={1, . . . , Q}
and S=P ·Q. Below, we repeated sOE, dOE, and mOE experiments in 3D, also with

noise.

Normalized average error for P=Q=3 are shown in Table 3 for 3D using TET4 and

HEX8 FEM elements. diag yields the least error error for for all experiments. Increasing

number of linearly-independent observations decreases error for block more significantly

than diag, although the latter still achieving better. Potentially, additional indentation

locations could reduce this error further, even below diag. For evaluating the effect of

noise, results from an average of 10 different noise realizations are also shown in this

results table for 3D. It is seen that for increased number of linearly-independent noisy

observations, diag yields the best results. As in 2D, the normalized average error for

different types of FEM elements are similar, indicating the independence of CBC from

element type.

Note that, boundary estimation in Matlab takes under 10 ms in 2D and under 50ms

in 3D, which is a feasible time-frame to include in intra-operative planning simulations.

3.5. Numerical Simulation of Commercial CIRS Elasticity Phantom

We further evaluated our method with a numerical simulation of CIRS Elasticity QA

Phantom Model 049 (Computerized Imaging Reference Systems, Norvolk, USA). The

aim of this experiment is to evaluate CBC using the known elasticity parameters. A

180×120×95 mm numerical phantom was constructed based on CIRS phantom design

specifications using a mesh generation toolbox Fang and Boas 2009 as in Fig. 9(a).

A 30×40×45 mm part was defined as the ROI as shown in Fig. 9(b). The full model

contains 24976 nodes and 137220 tetrahedral elements, and the ROI model has 875 nodes

and 3639 tetrahedral elements. The numerical phantom contains two sizes of spheres

(5 mm and 10 mm radius) which are located at two different depths (15 mm and 35 mm).

At each depth there are four spherical inclusions with Young’s modulus of 8 kPa, 14 kPa,

45 kPa, and 80 kPa, respectively, where the background is 25 kPa, according to phantom

specs. Poisson’s ratio was set to 0.49. The full model was zero-displacement constrained

at the bottom surface, and for the sides in the normal direction.

Deformation was applied by indenting selected surface nodes of ROI by a fixed

Table 3. Average error normalized to maximum displacement for the 3D numerical

phantom using different FEM element types for conventional methods and CBC.

TET4 HEX8

Error: CBC Error: CBC

mean(std) [%] noise-free with noise mean(std) [%] noise-free with noise

BotFix AllFix diag block diag block BotFix AllFix diag block diag block

sOE

13.9 29.5

6.7 7.2 7.4(4.8) 33.0(9.2)

13.4 28.0

6.3 7.3 8.6(5.2) 30.7(8.4)

dOE 7.3 9.4 23.8(5.6) 35.1(10.2) 7.3 9.2 19.8(4.6) 36.9(10.1)

mOE 5.9 6.5 6.4(2.7) 15.7(4.5) 5.6 6.6 7.5(3.0) 12.1(4.6)
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(a) (b) (c)

Figure 9. (a) A mesh model of CIRS Elasticity phantom is shown. Blue, yellow,

green, and red spheres, respectively, have Young’s moduli of 8, 14, 45, and 80 kPa.

The defined ROI box is shown in purple. (b) A close-up of ROI. (c) A B-mode US

image showing the ROI.

amplitude in the normal direction, simulating ultrasound probe indentation. For CBC

reconstruction observations, we simulated five deformations up to a compression of

0.25% strain with increments of 0.05%. For evaluations, deformation observations were

collected by indenting ten different ROI surface nodes individually by 0.5% strain. Due

to small displacements, we used CBC estimation with linear-strain stiffness matrix.

Table 4 shows normalized average error. Since for many clinical applications a target

anatomy is of concern, we also evaluated the nodes within the spherical inclusion,

which herein models a target anatomy. Results show that diag yields half the average

error compared to conventional boundary constraint formulations, both for the inclusion

nodels as well as for the entire ROI.

3.6. Gelatin Phantom

Next we evaluated our method using image data. Since the inclusions in CIRS Elasticity

QA Phantom above have by design no contrast in B-mode US images, cf. Fig. 9(c), these

could not be used as internal image features for evaluation. Therefore, we used US

images from a custom-made tissue-mimicking gelatin phantom of size 60× 90× 90 mm.

This had a soft cylindrical inclusion of 25 mm diameter, manufactured as hypoechogenic

using reduced scattering material (cellulose). The phantom was imaged using a linear-

array US transducer, where the acquired images are of size 37.5×70 mm with a resolution

of 220×410 as shown in Fig. 10. Eleven images were acquired, for which the phantom

was compressed with 1 mm increments up to 10 mm compression. Three sample US

Table 4. Normalized average error comparison of conventional boundary conditions

and CBC for the CIRS elasticity QA phantom experiment.

Avg Error [%] Conventional CBC

BotFix AllFix diag block

All ROI nodes 11.8 12.8 5.8 15.2

Only inclusion nodes 9.2 17.0 5.5 6.9
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(a) 0 mm (b) 5 mm (c) 10 mm (d) ROI mesh

Figure 10. US images obtained from a tissue-mimicking gelatin phantom with 0, 5,

and 10 mm indentations are shown, also showing the overlay of a ROI mesh.

images acquired at 0, 5, and 10 mm indentations are shown in Fig.10(a)-(c).

The ROI was modeled from the US image at 0 mm indentation and was meshed

by a 2D meshing toolbox (Engwirda 2015), which yielded 495 nodes and 892

triangular elements shown in Fig. 10(d). For deformation, we used a 2D plane-strain

approximation. Young’s modulus was set to 15 kPa for background and 5 kPa for the

inclusion based on gelatin concentrations used. Poisson’s ratio was set to 0.48. We then

measured displacement fields over the image between all pairs of 11 images using Jones

et al. 2014.

Similarly to earlier experiments, we used displacements from US image pairs both

for obtaining CBC observations and as ground-truth displacements for evaluations in a

leave-one-out fashion: We estimated CBC using observations from nine compressions,

and the excluded US image was used for evaluation with the CBC predicted from

the former. Due to larger displacements in observation and evaluation phases, we

repeated this experiments using linear and nonlinear strain assumptions, the latter as

in Section 2.5. Table 5 shows prediction errors for all ROI nodes as well as for only the

nodes within the soft inclusion. These indicate that diag approximation of CBC yields

superior deformation prediction compared to conventional heuristic boundary settings.

Table 5. Average error comparison of conventional boundary conditions and CBC for

the gelatin phantom.

Linear stiffness matrix

Boundary Normalized Error [%] Error [mm]

Conditions ROI Inclusion ROI Inclusion

Conventional
BotFix 25.6 27.6 1.4 1.5

AllFix 25.6 28.9 1.4 1.6

CBC
diag 17.2 14.8 1.0 0.8

block 45.5 19.8 2.4 1.0
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(a) (b)

Figure 11. (a) Full model of male pelvic anatomy with prostate (green), the bones

(cyan), bladder (red), and soft tissue (white). (b) Reduced ROI model (magenta) also

showing needle insertion.

3.7. Male Pelvic Anatomical Model

Next, we consider a computer-assisted intervention scenario, where the interaction of

a needle and a male pelvic anatomical model is simulated and analyzed using CBC.

Male pelvic model was obtained by 3D meshing segmented MR images using (Fang and

Boas 2009). The full model had an extent of 432×290×273 mm, meshed with 17949

nodes and 93388 tetrahedral elements, including models of the prostate, bladder, and

pelvic and hip bones, as well as the remaining volume filled with periprostatic soft

tissue as seen in Fig. 11(a). For the reduced ROI model, we considered a region from

the skin toward the prostate, within which needle interactions and relevant prostate

deformation occur. This ROI lies superior to where a template is often placed during

prostate interventions. ROI mesh included 1896 nodes and 8363 tetrahedral elements as

in Fig. 11(b). Poisson’s ratio was set to 0.49. Young’s modulus was set to 20 kPa for the

prostate, 10 kPa for the bladder, and 15 kPa for the remaining elements as in Chai et al.

2011. Nodes on the pelvic bone were set as zero-displacement constrained. Patient table

was mimicked using zero-displacement constraints on anterior nodes of the model. Two

baseline comparisons were performed; OnlyBone using zero-displacement constraints on

pelvic bone nodes, and AllFix by additionally fixing all around ROI model similarly to

other experiments.

For displacement observations to estimate CBC, we used M = 10 palpations on the

skin (which theoretically could be performed with a tool or the finger in the operating

room). We then simulated S = 10 needle insertions targeted at random locations within

the prostate by applying some displacement on the nodes along the needle shaft in the

insertion direction. This simulates the static friction between the needle and the tissue

similarly to “stuck state” in (Goksel et al. 2011). We herein distributed this effect to

tissue nodes near the needle shaft within a margin of R, chosen such that the displaced

(contact) nodes along the shaft have a distribution of approximately the tissue mesh

resolution. A given external (insertion) magnitude is then distributed to those nodes

inversely-proportional to their distance to the needle shaft. Table 6 shows average

errors when 2.5 mm displacement is applied. We evaluated displacement errors in the
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entire ROI as well as only at the needle tip, since the needle tip location is important

for many clinical applications such as biopsy and brachytherapy. Results indicate that

diag yields lowest error values for any metric and scenario. Considering needle targeting

errors, CBC results in a quarter to half of the errors compared to conventional boundary

formulations.

4. Discussion and Conclusions

We have demonstrated compliance boundary conditions (CBC) to model boundary

constraints that are parametrized from observed tissue displacements. Our evaluations

using numerical models and real image data show that the proposed method CBC

can estimate deformations more accurately than the conventional boundary condition

settings. Comparing different proposed approximations, the diagonal model diag is seen

to be the more robust approach with accurate deformation simulations.

Note that CBC is a generalization of the boundary conditions introduced in Cotin

et al. 1996, where the springs attached to the boundary nodes have an empirically-set

stiffness and infinite length. In our work, we propose an approach to parametrize those

experimentally by exploiting observed deformations. Our proposed method is also a

generalization of conventional boundary constraints, where zero-displacement and -force

constraints are obtained at the two extremes of the CBC parameter, which acts as a

spring constant. The two extremes, such as zero-displacement for fixed rigid structures

and zero-force for free air can be captured with very large (∞) and infinitesimal (ε)

spring stiffness.

In contrast to conventional approaches, CBC requires deformation observations

and, thus, may be limited by the noise in such measurements. Nevertheless, multiple

observations can be collected by medical imaging as shown in this paper; which help

increase SNR of CBC approximations. Ideally, deformation observations with different

interaction points are needed, which is our mOE experimental setting – also as a realistic

and desirable clinical scenario. In most practical clinical applications such as computer-

assisted interventions, the clinician already interacts with the tissue and different forms

of multiple tissue interactions are fortunately common. Hence, there are natural

scenarios where such displacement observations can be collected in practice. Different

Table 6. Average error comparison of conventional boundary conditions and CBC,

for needle insertion experiments in a male pelvic anatomical model.

Normalized Error [%] Error [mm]

Boundary Conditions Entire ROI Needle tip Entire ROI Needle tip

Conventional
OnlyBone 139.8 105.0 3.5 2.6

AllFix 39.9 50.6 1.0 1.2

CBC
diag 37.1 27.5 0.9 0.7

block 74.7 31.2 1.8 0.8
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forms of multiple tissue interactions are fortunately common (and often a surgical

necessity) in most computer-assisted interventions, hence conducting such observations

is not a major limitation. Although linear-independence of observations is prescribed

for a complete 3D CBC estimation, boundary effects can also still be captured for a

limited range of interactions (e.g., at the same location or in the same direction) only

from observations for that location/direction.

In estimating CBC, we assume that the elasticity distribution within the ROI is

given. In practice, this is typically extracted by segmenting the anatomy (also possibly

automatically) and using elastic properties reported in the literature for each tissue type.

Alternatively, image registration (Soza et al. 2005; Lee et al. 2012) or elastography (Kallel

and Ophir 1997; Doyley et al. 2000; Manduca et al. 2001; Goksel et al. 2013) can be used

to reconstruct patient-specific elastic distributions. Additionally, we treat the anatomy

as a purely compressible medium, although sliding between organs due to breathing

might occur, especially in the viscera (Goksel et al. 2016).

Note that estimating CBC with nonlinear stiffness matrix does not require any

additional information compared to linear stress-stain version, besides an increased

number of observations to robustly capture nonlinear effects. Our results show that, for

nonlinear maaterials with large strains, our nonlinear CBC estimation strategy yields

satisfactory results. Additionally, the formulation in Section 2.5 assumes linear springs

in CBC. This can, nevertheless, be easily extended to nonlinear springs, such as for

quadratic CBC springs ku2=f , each element of Aj,m in (12) needs to be squared for

each measurement before being used in (13) for CBC approximation.

CBC has been shown to yield substantially more accurate deformation estimations,

which are essential for patient-specific tissue deformation simulations for pre-operative

planning and intra-operative guidance of medical interventions. To the best of our

knowledge, our technique is the first for modeling boundary conditions parametrically

to estimate them empirically using medical imaging data. CBC can be embedded into

standard models without increasing computation time, since augmenting a stiffness

matrix with CBC involves mere additions in an offline stage and it does not change the

size of the stiffness matrix. Furthermore, estimating CBC a very quick and constant

time operation for each node, since CBC parametrization of each boundary node is

linearly independent and can be performed in parallel. Note that the proposed CBC

augmentation can be naturally extended to dynamic FEM models, where only the

stiffness matrix is augmented with CBC as given. Investigating CBC in different clinical

application scenarios together with in-vivo experiments will be the focus of future work.
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