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Abstract. Collective states of interacting non-Abelian anyons have recently
been studied mostly in the context of certain fractional quantum Hall states, such
as the Moore–Read state proposed to describe the physics of the quantum Hall
plateau at filling fraction ν = 5/2. In this paper, we further expand this line of
research and present non-unitary generalizations of interacting anyon models. In
particular, we introduce the notion of Yang–Lee anyons, discuss their relation to
the so-called ‘Gaffnian’ quantum Hall wave function and describe an elementary
model for their interactions. A one-dimensional (1D) version of this model—
a non-unitary generalization of the original golden chain model—can be fully
understood in terms of an exact algebraic solution and numerical diagonalization.
We discuss the gapless theories of these chain models for general su(2)k anyonic
theories and their Galois conjugates. We further introduce and solve a 1D version
of the Levin–Wen model for non-unitary Yang–Lee anyons.
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1. Introduction

Over 30 years ago, Leinaas and Myrheim [1] pointed out that in systems confined to two
spatial dimensions, particles with exotic exchange statistics, more general than those of bosons
and fermions, are possible. Such particles with arbitrary exchange statistics were later named
anyons by Wilczek [2]. Today it is widely believed that this possibility is indeed realized in
the fractional quantum Hall effect. An even more intriguing form of statistics has recently
received considerable attention, namely non-Abelian statistics, first proposed in a seminal paper
by Moore and Read [3]. This form of statistics can occur in two-dimensional (2D) systems in
which introducing excitations gives rise to a macroscopic degeneracy of states. Upon braiding
the excitations, the wave functions (or better, the vector of wave functions) describing the
system do not merely acquire an overall phase, but can actually transform into one another,
as described by a unitary braid matrix acting within the degenerate manifold. In general, these
braid matrices do not commute, hence the name non-Abelian statistics. While several systems
have been theoretically proposed to exhibit quasiparticles with non-Abelian statistics, such
as unconventional px + ipy superconductors [4], rotating Bose–Einstein condensates (BEC)
(see e.g. [5]), or certain heterostructures involving a novel class of materials, the so-called
topological insulators [6], the system that is currently under intense experimental scrutiny is
the fractional quantum Hall effect observed at filling fraction ν = 5/2, with some evidence
suggesting that this state is indeed non-Abelian in nature [7, 8].

An early attempt to describe this ν = 5/2 quantum Hall state came in the form of the
so-called Haldane–Rezayi wave function [9], which can be thought of as a d-wave paired
BCS condensate of composite fermions—electrons with, in this case, two flux quanta attached.
A peculiar feature of the Haldane–Rezayi state is that its gapless edge modes are described by
a non-unitary conformal field theory (CFT) [10]–[14] with central charge c = −2. However,
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non-unitary dynamics cannot describe a physical system as it would violate the basic principles
of quantum mechanics. It has therefore been argued that in general the non-unitary nature of an
edge state indicates that the underlying phase is not bulk gapped, but in fact critical [15]–[17]
in which case the edge states lose their identity as they dissipate into the gapless bulk. For
the Haldane–Rezayi state it indeed turns out that it does not describe a gapped topological
phase, but rather the gapless state at a quantum phase transition between two gapped states—
the Moore–Read quantum Hall state [3] and a so-called strong pairing quantum Hall phase [18].
Since the work of Haldane and Rezayi many other wave functions have been proposed, which
appear to have non-unitary edge state theories [19]–[22]. One particularly well-known example
is the so-called ‘Gaffnian state’ [17]. These proposed states typically arise from numerical
studies of model Hamiltonians, for which it is often hard to determine whether they describe
a gapped or gapless phase. The ultimate fate of these newly proposed states has therefore
remained an active field of research.

In this paper, we will study the excitations of the putative quantum liquid described by
such non-unitary wave functions from an ‘anyon-model’ perspective. Thus, we explore the
physics that would occur if one were to assume that such excitations indeed exist and study
in detail the collective behavior that would result. We refer to these excitations as non-unitary
anyons and model the interaction between these anyons in the same way as was done in the
unitary case [23]. It will turn out that the Hamiltonians one is led to consider for the non-unitary
anyons are, not surprisingly, non-Hermitian. Nevertheless, the energy spectrum turns out to be
completely real. One can hope that the results of such a study would shed some light on the
questions surrounding the physical meaning of non-unitary anyons. Of course, in the context
of 2D classical statistical mechanics, models having a non-unitary CFT describing a critical
phase is a situation that often occurs—see, for instance, the (restricted) height models described
in [24], which are generalizations of the ‘restricted solid-on-solid’ (RSOS) models [25]—and is
not problematic.

Before closing this introduction with the outline of the paper, we should mention one
additional point, which motivates the study of non-unitary anyon models: the concept of ‘Galois
conjugation’ of CFTs. In short, the action of the Galois group relates different CFTs, which have
the same number of fields, obeying the same fusion rules. The non-unitary models we encounter
in this paper are in fact Galois conjugates of unitary CFTs, and thus the study of non-unitary
anyons is closely related to the study of Galois conjugation in CFT [26, 27]. For the purposes
of this paper, we will, however, not need to use any details of these connections.

This paper is organized as follows. In section 2, we discuss the Yang–Lee anyonic chains.
We start by giving a review of the derivation of the Hamiltonian of the (ordinary, i.e. unitary)
golden chain [23] of Fibonacci anyons in section 2.1, and a short mathematical description
of the Galois-conjugated model, the so-called Yang–Lee chain in section 2.2, including an
explicit derivation of their non-Hermitian, microscopic Hamiltonians, and discuss their relation
to the ‘golden chain’ models of [23] via Galois conjugation. We continue in section 2.3 with a
discussion of the algebraic structure underlying these microscopic Hamiltonians, which in turn
allows for an analytical identification of their gapless theories in terms of certain non-unitary
minimal models of CFT. We next present a number of exact, numerical results in section 2.4 and
discuss the topological symmetry protecting the critical states in section 2.5 before rounding off
with a discussion of the case of general level k in su(2)k theories in section 2.6.

In section 3, we turn to ‘doubled Yang–Lee’ models and, in particular, a non-unitary
generalization of the (unitary) high-genus ladder model that was previously studied for
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Fibonacci anyons in [28], where we introduce the model in section 3.1. We then discuss
the phase diagram in section 3.2, present the analytical solution at special critical points in
section 3.3 and finish with exact numerical results in section 3.4.

The final section summarizes the results and discusses their relevance to hypothetical non-
unitary topological phases. An appendix contains a detailed discussion of the conformal energy
spectra at the four critical points discussed in the two models.

2. Yang–Lee chains

The focus of this paper is on anyonic models that are certain non-unitary generalizations
of unitary non-Abelian anyon models, which have been extensively studied in the recent
past [23], [28]–[35]. The basic constituents of the generalizations considered here are non-
unitary, non-Abelian anyons. Like their unitary counterparts they carry a quantum number that
corresponds to a generalized angular momentum in so-called su(2)k anyonic theories, which are
certain deformations (see for instance [36]) of SU(2). We first concentrate on an elementary
example where there is only a single anyon type by explicitly considering the anyon theory
su(2)3. In the unitary version of this theory the elementary degrees of freedom are often referred
to as ‘Fibonacci anyons’, and it is their non-unitary counterparts that we term ‘Yang–Lee
anyons’. We will return to a discussion of the non-unitary generalizations for general su(2)k

anyonic theories in section 2.6.
We start by quickly reviewing the basic construction of microscopic (chain) models of

interacting non-Abelian anyons, following the ideas of the ‘golden chain’ model of [23] and
the detailed exposition of [31]. The construction of these models proceeds in two steps. First, we
describe the general structure of the Hilbert space of these models in a particular ‘fusion chain’
representation, which is identical for the unitary and non-unitary models. In a second step, we
turn to the microscopic form of the Hamiltonian capturing interactions between the anyons.
While this second step is quite similar for the unitary and non-unitary cases, the microscopic
Hamiltonians for the two cases are distinct.

2.1. The golden chain

The elementary degrees of freedom in our microscopic model are the particle types (or
generalized angular momenta) of the su(2)3 anyonic theory. In its simplest form (considering
only integer momenta), this theory contains a trivial particle (or vacuum state), which we denote
by 1, and an anyonic particle, which we label as τ . These particles can form combined states
according to the fusion rules

1 × 1 = 1, 1 × τ = τ , τ × τ = 1 + τ. (1)

The non-Abelian nature of the anyonic τ -particle reveals itself in the multiple fusion outcomes
when combining two of these particles.

Our chain model then consists of L such τ particles in a 1D arrangement as depicted on the
top of figure 1, where L denotes the number of sites of the chain. Since pairs of τ -particles can
be fused into more than one state, such a system of L non-Abelian anyons spans a macroscopic
manifold of states, i.e. a vector space whose dimension grows exponentially in the number of
anyons. It is this manifold of states that constitutes the Hilbert space of our microscopic model.
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x1 x2 x3x0 . . .

τ τ τ τ τ

Figure 1. A chain of Fibonacci or Yang–Lee anyons (denoted by the τ ’s in the
upper row). The set of admissible labelings {xi} along the fusion chain (lines)
constitutes the Hilbert space of the Yang–Lee (and Fibonacci) chains.

x1 x2 x3x0 . . .

τ τ τ τ τ

x1 x3x0 . . .
x̃2

τ τ τ τ τ
F

Figure 2. The F-symbol describing the local change of basis.

To enumerate the states in the latter we define a so-called ‘fusion chain’ as illustrated at
the bottom of figure 1. Here the original τ particles constituting the chain are denoted by the
lines that are ‘incoming’ from above. The links in the fusion chain carry labels {xi} that again
correspond to the particle types of the su(2)3 theory. Reading the labels from left to right, a
labeling is called admissible if at each vertex the fusion rules (1) of su(2)3 are obeyed, i.e. a τ

label is followed by either a 1 or τ label, while a 1 label is always followed by a τ label. Every
such admissible labeling then constitutes one state in the Hilbert space of our anyonic chain.
Considering periodic boundary conditions, i.e. xL = x0, it is straightforward to show that the
dimension of the Hilbert space is given in terms of Fibonacci numbers as

dimL = FibL−1 + FibL+1,

where Fibi denotes the i th Fibonacci number, defined by Fibi+1 = Fibi + Fibi−1 and the initial
conditions Fib1 = Fib2 = 1.

We now proceed to the second step of our construction, the derivation of a microscopic
Hamiltonian. In doing so we follow the perspective of the original ‘golden chain’ model [23] in
assuming that interactions between a pair of neighboring τ particles—mediated, for instance,
by topological charge tunneling [37]—will result in an energy splitting of the two possible
fusion outcomes in equation (1). Our Hamiltonian captures this splitting by projecting the fusion
outcome of two neighboring τ particles onto the trivial fusion channel, i.e. assigning an energy
of E1 = −1 to the fusion of two τ particles into the trivial channel and an energy of Eτ = 0
to the fusion into the τ channel. This anyonic Hamiltonian is thus reminiscent of the common
Heisenberg Hamiltonian for SU(2) spins, which, for instance, projects two ordinary spin-1/2’s
onto the singlet channel and assigns a higher energy to the alternative triplet channel.

To explicitly derive the Hamiltonian in the Hilbert space of fusion chain labelings
introduced above, we note that in this basis the fusion of two neighboring τ particles is not
explicit. To get direct access to this fusion channel of two neighboring τ particles, we need to
locally transform the basis as depicted in figure 2. The matrix describing this transformation is
typically called the F-symbol, which can be thought of as an anyonic generalization of Wigner’s
6 j-symbol for ordinary SU(2) spins. Its general form (in the absence of fusion multiplicities) is
given in figure 3.
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=
f

F a,b,cd

e

f
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b c

d

e
f

b c

a d

Figure 3. The general form of the F-symbol.

Assuming that we know the explicit form of the F-symbols (see the next section for more
details), we can now explicitly derive the microscopic Hamiltonian in the fusion chain basis.
After the basis transformation, the fusion channel of the two neighboring anyons is manifest, so
by means of a simple projection we can assign an energy to each of the fusion channels. The
final step left after this projection is to transform back to the original basis, which again employs
the F-symbol.

To make the individual steps of this derivation more explicit, we consider the example of
figure 2 in more detail. Let us specify the five possible labelings of three neighboring fusion
chain labels xi−1, xi , xi+1, where in figure 2 we depicted the case where the site label is i = 2,

|xi−1, xi , xi+1〉 ∈ {|1, τ , 1〉, |1, τ , τ 〉, |τ , τ , 1〉, |τ , 1, τ 〉, |τ , τ , τ 〉}.

After performing the basis transformation shown in figure 2, the following labels satisfy the
fusion rules at each vertex and thus form the new basis

|xi−1, x̃i , xi+1〉 ∈ {|1, 1, 1〉, |1, τ , τ 〉, |τ , τ , 1〉, |τ , 1, τ 〉, |τ , τ , τ 〉},

where x̃i is the fusion channel of the two neighboring τ particles. In the transformed basis, we
can project onto the trivial channel, by means of a projection Pi,1, where the subscript i denotes
that we are acting on anyons i and i + 1, while the label 1 denotes we are projecting onto the 1
channel. So, the part of the Hamiltonian acting on anyons i and i + 1, which we denote by H i ,
acts on the Hilbert space as

H i
|xi−1, xi , xi+1〉 = −

∑
x ′

i =1,τ

(
F xi−1,τ ,τ

xi+1

)xi

1

(
F xi−1,τ ,τ

xi+1

)1

x ′

i

∣∣xi−1, x ′

i , xi+1

〉
. (2)

Here, we have used that for the su(2)k anyonic theories we are considering, the F-symbols
are their own inverses. Moreover, we projected onto the 1 channel, which we favored, because
of the overall minus sign. The total Hamiltonian then simply becomes the sum of (2) over all
positions

H =

L∑
i=1

H i , (3)

where we assume periodic boundary conditions, i.e. xL = x0.
To describe the Hamiltonian of the various types of anyon chains we consider in this

paper, we only have to specify the explicit form of the F-symbols (apart from the fusion rules,
which determine the Hilbert space). The explicit form of the Hamiltonian then follows from
equation (2).
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Re q

Im q

q = e4πi/5

q = e2πi/5
Fibonacci anyons

Yang-Lee anyons

Figure 4. The q-deformation parameters of Fibonacci and Yang–Lee anyons
correspond to different primitive roots of unity.

2.2. Galois conjugation and non-unitary models

Now that we have expressed the Hamiltonian in terms of the F-symbols, we should explain
how to obtain the F-symbols for a given anyon theory. As stated, the F-symbols transform
between two different fusion bases as illustrated in figure 3. As such, the exact form of
these symbols can be determined self-consistently by identifying a circular sequence of basis
transformations, which yield a set of strongly overconstrained nonlinear equations called the
‘pentagon equations’ (for a more detailed exposition see, for instance, [31, 38]). While finding
a solution to these pentagon equations is in general a highly non-trivial task, it has been shown
that they allow only for a finite set of inequivalent solutions, a property that goes under the name
of ‘Ocneanu rigidity’, see for instance [39]. For the su(2)k anyonic theories of interest here, the
complete set of possible F-symbols can be found, e.g., in [40] where they were obtained by
using quantum group techniques.

The different F-symbols are found to have a general form that depends on a single,
so-called ‘deformation parameter’ q only. This deformation parameter has to be chosen
appropriately [40] and it turns out that for the su(2)k anyonic theory it must be one of the
(k + 2)th primitive roots of unity, i.e. of the form

q = e p · 2π i/(k+2), (4)

where the integer index p runs from 16 p 6 (k + 2)/2 (and p and k + 2 are relatively prime).
The process of increasing the index p by one, i.e. going from one root of unity to the next,
is what is usually referred to as Galois conjugation. For our example theory, su(2)3, we can
thus identify two possible values for q, which are illustrated in figure 4. These two Galois-
conjugated theories corresponding to deformation parameters, q = e2π i/5 and q = e4π i/5, then
precisely correspond to the cases of Fibonacci and Yang–Lee anyons, respectively. The explicit
form of the F-symbols and in particular the non-diagonal 2 × 2 matrix for Fτ ,τ ,τ

τ can then be
written [40] in terms of this deformation parameter q as

Fτ ,τ ,τ
τ =


1

q−1 + 1 + q

1√
q−1 + 1 + q

1√
q−1 + 1 + q

q−1
− 1 + q

q−1 + q

 . (5)

For Fibonacci anyons we set q = e2π i/5, in which case q−1 + 1 + q = 1 + 2 cos(2π/5)= (1 +√
5)/2 = φ is the golden ratio, and the F-symbol becomes the unitary matrix

FFibonacci =

(
φ−1 φ−1/2

φ−1/2
−φ−1

)
. (6)
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The golden ratio, of course, is one solution of the equation x2
= 1 + x , which is an algebraic

analogue of the fusion rule τ × τ = 1 + τ of the su(2)3 anyonic theory. The process of taking
the Galois conjugate of the original Fibonacci anyon model corresponds then simply to the
substitution φ → −1/φ, where −1/φ is the other solution to the equation x2

= 1 + x . In
terms of the deformation parameter q, this amounts to choosing the other possible value
of q = e4π i/5, which indeed yields q−1 + 1 + q1

= 1 + 2 cos(4π/5)= −1/φ. The F-symbol for
Yang–Lee anyons thus becomes the (invertible) non-unitary matrix

FYang−Lee =

(
−φ −iφ1/2

−iφ1/2 φ

)
. (7)

Having obtained the F-symbols in both the unitary and the non-unitary case, we can
now write down the Hamiltonians for the Fibonacci and Yang–Lee chains. On the states
|xi−1, xi , xi+1〉 ∈ {|1, τ , 1〉, |1, τ , τ 〉, |τ , τ , 1〉} both Hamiltonians act in the same diagonal
way, H i

= diag{−1, 0, 0}. Acting on the states |xi−1, xi , xi+1〉 ∈ {|τ , 1, τ 〉 , |τ , τ , τ 〉}, the
Hamiltonians take the following forms:6

H i
Fibonacci = −

(
φ−2 φ−3/2

φ−3/2 φ−1

)
,

(8)

H i
Yang−Lee = −

(
φ2 iφ3/2

iφ3/2
−φ

)
.

Before discussing these anyonic models in further detail, we note that while Galois conjugation
changes some aspects of these models, i.e. the parameters in their respective Hamiltonians get
‘Galois conjugated’, this turns out to be a rather mild change, since the underlying algebraic
structure of these models remains largely untouched. As a consequence, the non-unitary
Yang–Lee chains allow for an analytic solution similar to their unitary counterparts as first
obtained for the ‘golden chain’ model in [23]. We will discuss the details of this analytical
solution and its resulting gapless theories in the next section.

2.3. Algebraic structure and analytical solution

In the original golden chain paper [23], it was shown that the Hamiltonian (3) based on the
unitary F-symbols (6) can be exactly solved. Following a similar sequence of steps as in the
unitary case, we show here that all non-unitary models allow for an exact analytical solution as
well. We briefly outline these steps in the following; for a more detailed discussion, see [23, 31].

As a first step, it was noted that the operators H i , i.e. the summands of the Hamiltonian,
form (upon suitable normalization) a known representation [41] of the Temperley–Lieb
algebra [42] with ‘d-isotopy’-parameter d , namely ei = −d H i , where d = φ. These operators
satisfy the Temperley–Lieb algebra

e2
i = dei , ei ei±1ei = ei , [ei , e j ] = 0 for |i − j |> 2. (9)

To show that this is the case, we will first map the Fibonacci and Yang–Lee chains onto so-
called RSOS or ‘height’ models [25]. To do this, we first note that one can relate the Fibonacci

6 We note that in a different gauge, the F-matrix (5) takes the form Fτ ,τ ,τ
τ =

(
1
q + q − 1 1

q + q + 1

2( 1
q + q)− 3 −( 1

q + q)+ 1

)
. This

F-matrix leads to different forms of the Fibonacci and Yang–Lee Hamiltonians as given in equation (8), but they
nevertheless have identical energy spectra.
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Table 1. Fusion rules of the su(2)3 theory.

× 0 1/2 1 3/2

0 0 1/2 1 3/2
1/2 0 + 1 1/2 + 3/2 1
1 0 + 1 1/2
3/2 0

k

2
1
2

k − 1
2

k − 2
2

0 1

Figure 5. The allowed ‘height’ configurations of the chain models. This diagram
is the Dynkin diagram of the Lie algebra Ak+1 = su(k + 2). The Fibonacci and
Yang–Lee anyons correspond to k = 3.

anyons to the anyonic theory su(2)3, a theory with four particles (see section 2.6 for the more
general case of su(2)k), which can be labeled by their ‘spin’ j = 0, 1/2, 1, 3/2. The fusion rules
of these particles are given in table 1. One immediately notes that the particle with j = 1 has the
same fusion rules as the Fibonacci anyon. Indeed, the Fibonacci anyon model can be viewed as
the ‘integer subset’ of the su(2)3 theory. In addition, one notes that fusing a particle j with the
particle 3/2, one finds j × 3/2 = 3/2 − j , swapping integer ‘spin’ to half-integer ‘spin’. This
allows one to map the Fibonacci chain, consisting of ‘spin’-1 particles, to a chain of ‘spin’-1/2
particles, by fusing the labels x2i−1 of the odd sites with the particle 3/2. In this way, the new
labels are constant labelings of a chain consisting of ‘spin’-1/2 particles. Performing this map
is advantageous, because the transformed Fibonacci chain can now directly be mapped onto a
height model, in which the allowed heights take the values 0, 1/2, 1 and 3/2, which can be seen
as the nodes of the Dynkin diagram A4, which is given in figure 5.

The well-known Jones representation of the Temperley–Lieb algebra, acting on the Hilbert
space of the (transformed) Fibonacci chain, can now be obtained by using the so-called modular
S-matrix [41]. Explicitly, this representation is known to take on the following form:

ei |xi−1, xi , xi+1〉 =

∑
x ′

i

(
(ei)

xi+1
xi−1

)x ′

i

xi

∣∣x ′

i−1, x ′

i , x ′

i+1

〉
,

(10)(
(ei)

xi+1
xi−1

)x ′

i

xi
= δxi−1,x ′

i−1
δxi+1,x ′

i+1

√
S0,xi

√
S0,x ′

i√
S0,xi−1

√
S0,xi+1

,

where S j1, j2 is the modular S-matrix of the su(2)3 theory, and the labels j1, j2 are the ‘spins’ of
the corresponding particles, which in general take the values 0, 1/2, 1, . . . , k/2, and in terms of
these, the S-matrix elements read

S j1, j2 =

√
2

k + 2
sin

(
(2 j1 + 1)(2 j2 + 1)π

k + 2

)
. (11)

In equation (10), the row label j1 of the S-matrix elements which appears here takes on the
value j1 = 0, which is the correct value in the case of the (unitary) Fibonacci chain. In taking
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W[2i+ 1]

x2i−1

x2i−1

x2i

x2i

x2i+1

x2i+1

W[2i]

Figure 6. The two-row transfer matrix of the RSOS models.

the Galois conjugate, one has to replace this row label j1 = 0 by the label j1 = 1 (corresponding
to a τ particle (see also section 2.6)).

The action of the ei ’s on the height states precisely corresponds to the action of the part
of the Hamiltonian acting on the ket |xi−1, xi , xi+1〉, which shows that the operators of the
Hamiltonian of the Fibonacci chain indeed form a representation of the Temperley–Lieb algebra.

We will now employ this observation, and map the Fibonacci chain to an integrable, 2D
statistical mechanics model, namely an RSOS model, which in the present case is based on the
Dynkin diagram A4—see figure 5. In an RSOS model, the degrees of freedom are the heights
(or nodes of the Dynkin diagram). These heights live on the vertices of the lattice, with the
constraint that heights of neighboring vertices correspond to nodes of the graph that are linked.

The two-row transfer matrix of the RSOS model (depicted in figure 6) can be written in
terms of the plaquette weights of the square lattice, namely T = T2T1, with

T1 =

∏
i

W[2i], T2 =

∏
i

W[2i + 1], (12)

where the plaquette weights are of the form

W[i]Ex ′

Ex =

(
sin( pπ

k+2 − u)

sin( pπ
k+2)

1Ex ′

Ex +
sin(u)

sin( pπ
k+2)

e[i]Ex ′

Ex

)
, (13)

e[i]Ex ′

Ex =

∏
j 6=i

δx ′

j ,x j

((ei)
xi+1
xi−1

)x ′

i

xi
, (14)

with 1Ex ′

Ex =

(∏
j δx ′

j ,x j

)
being the identity operator.

The new feature of the non-unitary models consists in the fact that equations (13) and (14)
for the plaquette weight in the transfer matrix now involve a general integer p = 2 j1 + 1 labeling
the primitive root of unity (4) beyond the unitary case of p = 1 (corresponding to j1 = 0) studied
earlier. For a general value of p, the Hamiltonian associated with this lattice model can be
obtained by taking the extreme anisotropic limit, namely u → 0+ (see for instance [43]). One
has

T = exp(−a(H + c1)+ O(a2)), (15)

with a =
u

d sin(pπ/(k+2)) � 1 and c1 an unimportant constant, which indeed gives that the

Hamiltonian is of the form H = −
1
d

∑
i ei , establishing the mapping from the chain to the RSOS

models.
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We can now use the known results about the phases of the RSOS models, to find the
behavior of the chain models. In the case of the Fibonacci anyons (i.e. when k = 3 and p = 1,
which appear in the plaquette weights W and the parameter a), the antiferromagnetic golden
chain Hamiltonian (Favouring the trivial fusion channel) can be obtained by taking the limit
u → 0 with u positive. The corresponding (exactly integrable) RSOS model [25] is critical and
is known [25, 44] to be in the universality class of the tri-critical Ising model described by the
minimal modelM(4, 5) of CFT. For the ferromagnetic golden chain, which is obtained from the
RSOS models with 0< |u| � 1 and u negative, the critical behavior then turns out [25, 44] to
be in the universality class of the Z3 parafermions corresponding to the minimal model variant7

M̃(5, 6).
In the case of the Galois-conjugated Yang–Lee anyonic chains (corresponding to k = 3

and p = 2), the same sequence of steps as above results in a mapping to another family of
exactly integrable RSOS models [24] and in this case the gapless theories turn out be non-
unitary minimal models [45, 46]. In this non-unitary case, the Hamiltonian can be obtained from
the two-row transfer matrices, but in this case, both the antiferromagnetic and the ferromagnetic
chains are obtained in the limit u → 0 with positive u. The difference in the Hamiltonians stems
from the sign-changes in the isotopy parameter d, namely from positive (but not necessarily
bigger than one) in the antiferromagnetic case, to negative in the ferromagnetic case. The critical
behavior in these two cases is then described by the (non-unitary) minimal modelsM(3, 5) and
M(2, 5), respectively.

2.4. Numerical results

We have numerically studied the excitation spectra of the Yang–Lee chains by exact
diagonalization of systems with up to L = 32 anyons, typically using periodic boundary
conditions. These excitation spectra not only allow for an independent identification of the
CFT describing the gapless collective state, as discussed in the previous section, but also reveal
further details of the correspondence between continuous fields and microscopic observables.
In particular, the low-energy states of a conformally invariant system can be identified with
conformal fields and the excitation spectrum is expected to take the form

E = E1L +
2πv

L
·

(
−

c

12
+ h + h̄

)
, (16)

where h and h̄ are the (holomorphic and anti-holomorphic) conformal weights of a given CFT
with central charge c. E1 is a non-universal number, v a non-universal scale factor, and L the
length of the chain. To match the excitation spectra of the Yang–Lee chains to these CFT
predictions, we consider the family of so-called minimal models M(p, p′) (where p and p′

are mutually prime) with central charge

c = 1 −
6(p − p′)2

pp′
,

and conformal weights

h(r, s)=
(r p − sp′)2 − (p − p′)2

4pp′
, (17)

7 The minimal model variants M̃(p, p′) are discussed in more detail in section 3.2.
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Figure 7. Conformal excitation spectrum of the ‘antiferromagnetic’ Yang–Lee
chain. The spectrum matches the non-unitary minimal model M(3, 5) with
central charge c = −3/5, which is often referred to as ‘Gaffnian’ theory. Primary
fields I, σ, ε, ψ of this CFT are indicated by squares and descendant fields by
circles. We also indicate the ‘topological flux’ of each energy eigenstate, which
indicates the topological symmetry sector.

where the indices r and s are limited to 16 r < p′ and 16 s < p. We note that the labels (r, s)
and (p′

− r, p − s) correspond to the same field.
In the following, we will discuss our numerically obtained excitation spectra for

‘antiferromagnetic’ and ‘ferromagnetic’ couplings, which are plotted in figures 7 and 8,
respectively.

The antiferromagnetic chain. We first turn to the ‘antiferromagnetic’ chain, for which the
pairwise anyon–anyon interaction energetically favors the trivial fusion channel

τ × τ → 1.

The CFT describing the critical behavior of this model is the non-unitary minimal model
M(3, 5) with central charge c = −3/5, which is also referred to as the ‘Gaffnian’ theory [17].
The four primary fields of this CFT and their respective scaling dimensions 1= h + h̄ are

σ I ε ψ

1 −1/10 0 2/5 3/2
(18)

with the non-trivial fusion rules

σ × σ = I + ε σ × ε = σ +ψ σ ×ψ = ε

ε× ε = I + ε ε×ψ = σ

ψ ×ψ = I.
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Figure 8. Conformal excitation spectrum of the ‘ferromagnetic’ Yang–Lee chain.
The spectrum matches the non-unitary minimal model M(2, 5) with central
charge c = −22/5, which is commonly referred to as ‘Yang–Lee’ theory. The
primary fields I, ε of this CFT are indicated by squares and descendant fields by
circles. We also indicate the ‘topological flux’ of each energy eigenstate, which
indicates the topological symmetry sector.

Table 2. Kac table of conformal weights for the non-unitary minimal model
M(3, 5) and M(2, 5). We only displayed fields with odd r labels, to avoid
duplicates.

M(3, 5) M(2, 5)
h(r, s) s = 1 2 s = 1

r = 1 0 3/4 0
3 1/5 −1/20 −1/5

For completeness, we give the conformal dimensions of the fields (with minimal model labeling)
in table 2, and note that this model is a particular Galois conjugate of the su(2)3 CFT.

To identify the gapless theory numerically, we typically perform the following procedure:
we first look at the two lowest energy eigenvalues in the spectrum, E0 and E1, and by identifying
the energy gap1E = E1 − E0 with the difference of the two lowest scaling dimensions, we can
identify the non-universal scale factor 2πv/L in (16), which we subsequently set to 1, thereby
rescaling the entire energy spectrum. This identification of the two lowest-energy eigenvalues
with conformal operators also allows us to identify an overall energy shift, e.g. setting the
energy of the trivial operator I with scaling dimension h(1, 1)+ h̄(1, 1)= 0 to zero. In the
case at hand, there is only one negative scaling dimension, so the lowest energy corresponds to
−2hmin = −1/10, while the second lowest state corresponds to the identity operator, with zero
energy. At this point, all the energies are fixed, and indeed the rescaled and shifted numerical
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spectrum is found to reproduce the position of the (other) primary fields (indicated by green
squares in figure 7), as well as a number of descendants (indicated by red circles in figure 7).

The ferromagnetic chain. We now turn to the ‘ferromagnetic’ chain, for which the pairwise
anyon–anyon interaction energetically favors the τ -fusion channel

τ × τ → τ.

The critical theory is the non-unitary minimal modelM(2, 5) with central charge c = −22/5,
which is commonly referred to as the ‘Yang–Lee’ theory [47, 48]. The two primary fields of this
CFT and their respective scaling dimensions 1= h + h̄ are

I ε

1 0 −2/5
(19)

with the non-trivial fusion rule

ε× ε = I + ε.

Again we give the conformal dimensions of the fields (with minimal model labeling) in table 2
for completeness.

The spectrum of this theory, after the appropriate shift and rescaling of the energy, is
displayed in figure 8, which beautifully reproduces the primary fields as well as descendants
to a high level, constituting the spectrum of the Yang–Lee model.

2.5. Topological symmetry

Before considering further generalizations of the Yang–Lee chains, we wish to mention another
peculiarity of these anyonic chains. Like their unitary counterparts the Yang–Lee chains exhibit
an unusual, non-local symmetry. This symmetry, which was dubbed a ‘topological symmetry’
in the context of the golden chain model [23], corresponds to the operation of commuting a τ

particle through all particles of the chain. The so-defined operator, which we denote by Y , is
found to commute with the Hamiltonian and for the su(2)3 theory has two distinct eigenvalues,
thus defining two symmetry sectors. Its matrix form is given by

〈x ′

0, . . . , x ′

L−1|Y |x0, . . . , xL−1〉 =

L−1∏
i=0

(
Fτ xi τ

x ′

i+1

)x ′

i

xi+1

. (20)

This definition solely in terms of the F-symbols immediately suggests a generalization of this
symmetry to the case of the non-unitary Yang–Lee models studied above by simply replacing the
F-symbols with their non-unitary counterparts (7). For both the unitary and non-unitary variants
the two eigenvalues of the respective topological symmetry operator are y1 = φ and y2 = −1/φ.
In the unitary case these are identified as no-flux or τ -flux symmetry sectors, respectively. This
assignment is simply reversed in the Galois-conjugated, non-unitary case.

For the unitary models it has been demonstrated that this topological symmetry protects the
gapless ground state of the interacting anyon chain model [34]: it was shown that all relevant
operators (in a renormalization group sense) that have otherwise identical quantum numbers
as the ground state, e.g. the same momentum, fall into different topological symmetry sectors.
We have performed a similar symmetry analysis for the Yang–Lee chains at hand. For chains
with either antiferromagnetic or ferromagnetic couplings, we have evaluated the eigenvalue
of the topological symmetry Y for all eigenvectors of the Hamiltonian and thereby assigned
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topological symmetry sectors to the primary fields of the CFT describing their energy spectrum.
These assignments are given in figures 7 and 8 for antiferromagnetic and ferromagnetic chain
couplings, respectively. A situation similar to the unitary models emerges: for both signs of the
coupling the ground state with conformal dimension h + h̄ < 0 is found to be in the topologically
non-trivial (or τ -flux) sector, while all other primary fields with the same momentum are found
to be in the topologically trivial (or no-flux) sector.

For the unitary anyon chains, this topological protection mechanism has subsequently
been cast in a broader physical picture [34] interpreting the gapless modes of the anyonic
chains as edge states at the spatial interface of two topological liquids, and the conclusion
that anyon–anyon interactions result in a splitting of the topological degeneracy for a set of
non-Abelian anyons and the nucleation of a distinct topological liquid within the parent liquid
of which the anyons are quasiparticle excitations [34, 35]. The similarity of our results for the
topological symmetry properties of the non-unitary anyon chains thus raises the question as to
whether a similar interpretation would also hold for the non-unitary systems at hand.

2.6. su(2)k theories and generalized Galois conjugation

While we have focused our discussion in the preceding sections on the Fibonacci/Yang–Lee
anyonic theories for which k = 3, our results can be readily generalized to a much larger class of
anyonic theories, the so-called su(2)k Chern–Simons theories. These theories, which are certain
quantum deformations [36] of SU(2), have a finite number of representations that are identified
with the (anyonic) particle content of the theory. For a given (integer) deformation parameter k
these representations/particles are labeled by a generalized angular momentum

j = 0,
1

2
, 1, . . . ,

k − 1

2
,

k

2
.

The fusion rules for combining two of these momenta (or their associated particles) then
resemble the tensor product rules of ordinary SU(2) angular momenta and explicitly read

j1 × j2 =

min( j1+ j2,k− j1− j2)∑
j3=| j1− j2|

j3. (21)

For all k 6 2 the first non-trivial fusion rule (i.e. a fusion rule with multiple fusion outcomes)
is encountered for the particle carrying generalized angular momentum j = 1/2, for which one
finds

1
2 ×

1
2 = 0 + 1. (22)

Upon further inspection of the fusion rules (see table 1 for an example), one notes that
for anyonic theories with odd k one can map all half-integer representations onto integer
representations by fusing the half-integer representations with the highest representation of the
theory, the so-called ‘simple current’ with angular momentum k

2 . In particular, this mapping
identifies the fusion rules of the particle carrying angular momentum j = 1/2 with those of the
particle carrying angular momentum j = (k − 1)/2 and equation (22) becomes

k − 1

2
×

k − 1

2
= 0 + 1. (23)
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Note that for odd k the fusion rules are now given entirely in terms of integer representations8.
For the su(2)k=3 theory this mapping thus turns the fusion rules of the j = 1/2 particle into
those of the j = 1 particle, i.e. 1 × 1 = 0 + 1, which is the momentum representation of the
non-trivial fusion rule in equation (1). One can thus equally identify the τ particle of the
Fibonacci/Yang–Lee theories with both the j = 1 and j = 1/2 angular momenta in su(2)3.

The su(2)k generalizations of the Fibonacci/Yang–Lee chains, which we want to consider
in the following, are chains of particles carrying angular momentum j = 1/2, which we
can alternatively identify with particles carrying angular momentum j = (k − 1)/2. The
microscopic chain model is then constructed in an identical way to what we outlined for the case
of the Fibonacci/Yang–Lee theories in section 2, i.e. we first build a Hilbert space by considering
admissible labelings of the fusion chain basis for an incoming j = 1/2 (or j = (k − 1)/2)
particle and then derive a Hamiltonian via the local projection onto one of the two fusion
outcomes in equation (22) or (23), respectively. Our notion for the sign of the interaction
also remains unchanged, with ‘antiferromagnetic’ interactions favoring fusion of neighboring
particles into a total j = 0 state and ‘ferromagnetic’ interactions favoring fusion into a total
j = 1 state.

Unitary models. For the unitary case, such su(2)k generalizations of the golden chain model
were first discussed in [23] and further explored in [34]. Like their su(2)3 counterpart these
generalized anyon chains are found to be exactly solvable and their gapless collective states
can be described in terms of CFTs. To be specific, the critical theory for the generalized
antiferromagnetic chains is known to be the minimal modelM(k + 1, k + 2) with central charge
c = 1 − 6/((k + 1)(k + 2)), while for ferromagnetic chains it is known to be the Zk parafermion
theory with central charge c = 2(k − 1)/(k + 2). In both cases, the terms in the Hamiltonian are
found to form a Temperley–Lieb algebra with isotopy parameter d = 2cos(π/(k + 2)).

Non-unitary models. In turning to the Galois-conjugated models of these unitary su(2)k anyon
chains, we first recall that for a given su(2)k anyonic theory there are several allowed q
deformation parameters (see also section 2.2)

q = e p · 2π i/(k+2), (24)

as illustrated in figure 9. For each integer index 16 p 6 (k + 2)/2 (and the further restriction
that p and k + 2 are relatively prime) the corresponding q deformation parameter establishes
a solution of the pentagon equations of the underlying su(2)k theory and defines the explicit
form of the F-symbols. All the unitary su(2)k models discussed above correspond to the first
primitive root, i.e. p = 1, in this sequence. The other primitive roots (with p > 2) then give rise
to the Galois-conjugated models with non-unitary F-symbols and non-Hermitian microscopic
Hamiltonians constructed using these F-symbols. In particular, we note that for k = 2 there is
no such Galois-conjugated theory, for k = 3 there is exactly one Galois-conjugated theory (the
Yang–Lee theory discussed above) and for k > 4 there are in general multiple Galois-conjugated
theories.

Like their unitary counterparts all Galois-conjugated su(2)k chain models permit an
analytical solution. Since the line of argument closely follows the one given in section 2.3
for k = 3, we will be brief here, and merely state the main arguments and results. To simplify
the presentation we will further focus our arguments to anyonic theories with odd k, which

8 More generally, one finds that the integer representations form a closed subset under the fusion rules of
equation (21).

New Journal of Physics 13 (2011) 045006 (http://www.njp.org/)

http://www.njp.org/


17

Re q
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q = e2πi/11

q = e4πi/11q = e6πi/11

q = e8πi/11

q = e10πi/11

Figure 9. The q-deformation parameters for a general su(2)k theory correspond
to different primitive roots of unity. Only the first primitive root in this sequence,
e.g. q = e2π i/11 in the illustrated example of k = 9, gives rise to a unitary model.

allows us to restrict the discussion to those which possess only integer (not half-integer)
values of ‘angular momenta’ j . (Even values of k work in an analogous manner.) The Galois-
conjugated su(2)k chain models can then be directly mapped onto the height representations
of certain RSOS models where the heights take the values 0, 1/2, . . . , k/2 in the Dynkin
diagram Ak illustrated in figure 5. The Hamiltonian terms acting in this height representation
then again form a Temperley–Lieb algebra [41] with an isotopy parameter that now turns
out to depend on the sign of the interactions. For antiferromagnetic coupling this generalized
isotopy parameter is found to be d = 2 cos(pπ/(k + 2)) and the conformal theory describing
the gapless interacting system is the non-unitary minimal model M(k + 2 − p, k + 2) with
central charge9 c = 1 −

6p2

(k+2)(k+2−p) . For ferromagnetic couplings the isotopy parameter becomes

d = 2 cos ( (k+2−p)π
k+2 ) and the gapless theory is the non-unitary minimal model M(p, k + 2)

with central charge c = 1 −
6(k+2−p)2

p(k+2) . In the case of the Galois-conjugated models, the central
charges are related to the quantum dimensions in the following way [41, 49, 50]. Writing the
quantum dimension as d = 2 cos(pπ/(k + 2))= 2 cos(π/δ) (where δ is a fraction for the Galois-
conjugated models), one can obtain the central charge via c = 1 −

6
δ(δ−1) . Note that this is also

the correct result for the antiferromagnetic unitary chain with p = 1, but the central charge for
the ferromagnetic unitary chains is given by c = 2 − 6/δ.

Our results for unitary and non-unitary models are summarized in table 3. We note that for
p = 2 and k = 3, we exactly reproduce the results for the Yang–Lee chains discussed above.

3. Doubled Yang–Lee models

3.1. The ladder Hamiltonian

In this section, we turn to ‘quantum double’ variants of the anyonic chains discussed in section 2.
The unitary incarnations of these quantum double models have been introduced in the context of
exotic quantum phase transitions in time-reversal invariant systems that are driven by topology
fluctuations [28]. The specific model is defined on a ladder geometry, shown in figure 10.

9 The identification of the critical theories between regions III and IV in the Forrester–Baxter RSOS model [24]
with these non-unitary minimal models was obtained in [45, 46].
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Table 3. Overview of the gapless theories for the various chain models.

Coupling CFT Central charge d-isotopy

su(2)k chains
AFM M(k + 1, k + 2) c = 1 −

6
(k+1)(k+2) 2 cos

(
π

k+2

)
FM Zk parafermion c = 2 k−1

k+2 2 cos
(
π

k+2

)
Yang–Lee chains

AFM M(k, k + 2) c = 1 −
24

k(k+2) 2 cos
(

2π
k+2

)
FM M(2, k + 2) c = 1 −

3k2

k+2 2 cos
(

kπ
k+2

)
Generalized Galois conjugates
with 26 p < (k + 2)/2

AFM M(k + 2 − p, k + 2) c = 1 −
6p2

(k+2−p)(k+2) 2 cos
( pπ

k+2

)
FM M(p, k + 2) c = 1 −

6(k+2−p)2

p(k+2) 2 cos
(
(k+2−p)π

k+2

)

Figure 10. The geometry of the Fibonacci and Yang–Lee ladders. To discuss the
physics, it is enlightening to ‘thicken’ the ladder and consider the 2D surface
thus obtained.

The Hamiltonian

Hladder = −Jr

∑
rungs r

δl(r),1 − Jp

∑
plaquettes p

δφ(p),1 (25)

consists of two competing terms.
The first term favors the trivial label 1 on each rung of the ladder, while the second

term favors the no-flux state for all plaquettes. As shown in [28], the projector onto the flux
through a square plaquette can be expressed in terms of the unitary/non-unitary F-matrices
in equations (6) and (7). This term is equivalent to the plaquette term in the Levin–Wen
models [51], which are defined on a different lattice, the honeycomb lattice.

Explicitly, the plaquette term reads

δφ(p),1

∣∣∣∣ α

β

γ

δ

a b

cd

〉
=

∑
s=1,τ

ds

D2

∑
α′,β ′,γ ′,δ′

(
Fα′sδ

a

)δ′
α

(
Fβ ′sα

b

)α′

β

(
Fγ ′sβ

c

)β ′

γ

(
F δ′sγ

d

)γ ′

δ

∣∣∣∣ a b

cd

α

β

γ
δ

〉
,

(26)

where ds denotes the quantum dimension of particle type s, i.e. d1 = 1 and dτ = φ. D denotes

the total quantum dimension, D =

√
d2

1 + d2
τ =

√
2 +φ for Fibonacci (as well as Yang–Lee)
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Figure 11. Phase diagram of the doubled Yang–Lee chain.

anyons. The Latin and Greek labels denote the degrees of freedom, and any of these takes
one of the values {1, τ }. We note that the Hilbert space of the ladder models consists of all
possible labelings of the rungs and the legs, such that at each vertex, the Fibonacci fusion rules
are obeyed.

With this description of the ladder models, we can easily go back and forth between the
Fibonacci anyon ladder and the Yang–Lee anyon ladder, simply by choosing the corresponding
set of F-symbols, namely equation (6) or (7), respectively.

3.2. The phase diagram

To discuss the phase diagram of both the unitary and the Galois-conjugated model, shown in
figure 11, we parameterize the couplings Jr = sin θ and Jp = cos θ in terms of an angle θ .

We start with the first gapped phase, for π/4< θ < π , most easily discussed at the special
point θ = π/2, or Jr = 1 and Jp = 0. In the ground state at this point, all rungs have the trivial
label. In the 2D surface geometry, this means that no τ -fluxes go through the rungs, implying
that the rungs can be completely pinched off, changing the geometry to that of two, disconnected
cylinders, one for each leg of the ladder. Each of the cylinders accommodates two ground states,
either with or without τ -flux, leading to a fourfold ground state degeneracy. The lowest (gapped)
excited state consists of configurations where one rung of the ladder ‘contains’ a τ -flux.

In the other extended gapped phase, for −π/2< θ < π/4, let us discuss the special point
θ = 0, or Jp = 1 and Jr = 0. Here the situation is reversed, and no τ -fluxes go through the
plaquettes. Thus, they can be closed off, giving rise to a geometry consisting of a single cylinder.
Again, this cylinder can accommodate two ground states, with or without flux, resulting in a
twofold degenerate ground state. The lowest (gapped) excited state consists of configurations
with a single τ -flux going through a plaquette, effectively piercing a hole through the
cylinder.
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Figure 12. Basis transformation of the ladder model.

Precisely at the point where both couplings are equal in strength, the gap closes and the
system is critical. At this point, the geometry is fluctuating at all length scales, interpolating
between the two extremes of having one or two cylinders, respectively. In addition, also
precisely at this point, the (critical) model is exactly solvable, as explained in the next section.

Finally, for π < θ < 3π/2, there is an extended critical region, which is characterized by
another exactly solvable point, at θ = 5π/4, where both couplings are again of equal strength,
but negative.

3.3. Analytical solution

The analytic solution of the Fibonacci ladder model at the two exactly solvable points has been
described in detail in (the supplementary material of) [28]. Thus, we will be rather brief here,
and point out some of the crucial steps of the mapping of the ladder model onto an exactly
solved (RSOS) model. We will then quickly mention in which way this solution for the unitary
Fibonacci case is changed, if one takes the Galois conjugate, to go to the case of the Yang–Lee
ladder model. The most important step in the analytic solution of the model is to perform a
basis transformation on the Hilbert space. After this transformation, the model can be mapped
onto an RSOS model, where in this case, the allowed height variables lie on the vertices of the
Dynkin diagram of the Lie algebra D6, as it will turn out. This model is exactly solvable, both
in the original, as well as the Galois-conjugated case.

The basis transformation proceeds as follows. At each rung, one applies an
F-transformation, changing the basis building blocks of the ladder as illustrated in figure 12.
Thus, we can express the Hilbert space in terms of the variables {a2i−1, b2i−1, c2i} or,
equivalently, in terms of the variables {a2i−1, b2i−1, d2i}, as displayed in figure 12. The mapping
to the RSOS model is performed in terms of the latter variables. In particular, one can
determine which ‘values’ the links can take on the even and odd sublattices. The variables
on the even sublattice d2i can take the values {1, τ }, while the combined variables (a2i−1, b2i−1)

can take the values {(1, 1), (1, τ ), (τ , 1), (τ , τ )}, but there are constraints on which values of
(a2i−1, b2i−1) and d2i can occur next to each other. From the fusion rules, it easily follows that
the combinations of variables that are consistent with one another, have to be adjacent on the
‘height graph’, as shown in figure 13.

Hereafter, we will refer to the allowed variables (or pairs of variables on the odd sublattice)
as ‘heights’. The Hilbert space of the ladder model consists of all height configurations on a
chain of length L , in such a way that two heights on neighboring sites also have to be neighbors
(i.e. be connected by a solid line) in the height diagram of figure 13. In this way, the model
can be mapped on the D6 version of the RSOS model and, precisely when Jr = Jp = ±1, the
model is critical, and can be solved exactly. We will not go into the details here (which can
be found in [28]), but we will quickly state the result for this critical behavior in the original,
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(1,1) 1 (τ , τ )

(1, τ )

(τ ,1)

τ

Figure 13. The allowed ‘height’ configurations of the ladder models. This
diagram is the Dynkin diagram of the Lie algebra D6 = so(12).

Fibonacci anyon setting, followed by the results for the Galois-conjugated Yang–Lee ladder.
The details of the phase diagram, which closely mimics the phase diagram of the unitary (‘not
Galois-conjugated’) ladder, and the numerical results will be presented in the next subsection.

As was the case for the chain models, also in the ladder case do the parts of the Hamiltonian
form a representation of the Temperley–Lieb algebra, but in this case, the algebra is that [41]
based on the Dynkin diagram D6. The possible associated values of the d-isotopy parameter are
given by d = 2 cos(m jπ

h ), where h = 10, and the m j are the exponents of the Lie algebra D6,
namely m j = 1, 3, 5, 7, 9, 5. In the original ladder model m j = 1, for both cases Jr = Jp = ±1.
The associated value of the d-isotopy reads d = 2 cos(π/10)=

√
2 +φ. In the antiferromagnetic

case, i.e. Jr = Jp = 1, or in the parameterization Jp = cos θ , Jr = sin θ , the point θ = π/4, the
critical behavior is described by the minimal model M̃(9, 10), which has central charge c =

14/15. With the tilde, we denote that we are considering the (A8, D6)modular invariant [52, 53],
instead of the ‘usual’ (diagonal) (A8, A9) invariant10.

We will now turn our attention to the Galois-conjugated version of the ladder model. The
phase diagram of the Yang–Lee ladder is depicted in figure 11, and the location of the gapped
phases, as well as the critical behavior, is exactly the same as in the Fibonacci ladder model.
Therefore, we will be somewhat brief in the description of these phases (see the introduction of
this section for a brief description of the gapped phases), and focus on the differences, which
occur at the exactly solvable points, namely θ = π/4, 5π/4, where the model is critical, but
with a different critical behavior in comparison to the Fibonacci ladder.

The antiferromagnetic (θ = π/4) critical point. As was the case in the Yang–Lee chains,
the critical behavior of the Galois-conjugated model is obtained by picking a different d-isotopy
parameter, corresponding to the Galois conjugate under consideration. For Fibonacci anyons,
there is only one Galois conjugate, but nevertheless there seem to be different possible values
for the d-isotopy parameter, namely d = 2 cos(m jπ

h ), with h = 10, and m j = 1, 3, 5, 7, 9, 5. In
fact, the value we need is m j = 3, which corresponds to the value obtained from the Fibonacci
case, under Galois conjugation, namely d =

√
2 − 1/φ = 2 cos(3π/10).

It is a simple matter to check that this value corresponds to a model with central charge
c = 8/35, by using the same arguments as those we presented in section 2.6. This central charge
corresponds to the central charge of the non-unitary minimal model M(7, 10). Just as in the
unitary case [28], the critical CFT describing the Yang–Lee model at θ = π/4 is not the usual
(‘diagonal’) modular invariant, but rather the (A, D) invariant or, to be more precise, (A6, D6).
See [53] for information on the different modular invariants of the minimal models. We will
denote this model by M̃(7, 10). The field content of these models is given in tables 5 and 6
below. The details of the spectrum of this model will be discussed in section 3.4.

10 We note that the (A8, D6) invariant minimal model M̃(9, 10) is equivalent to the coset model (G2)1 ×

(G2)1/(G2)2, where (G2)k denotes the Wess–Zumino–Witten CFT at level k based on the Lie algebra G2.

New Journal of Physics 13 (2011) 045006 (http://www.njp.org/)

http://www.njp.org/


22

Table 4. Gapless theories for the ladder models.

Coupling CFT Central charge d-isotopy

Fibonacci ladder
AFM (θ = π/4) M(9, 10) c = 14/15 2 cos(π/10)
FM (θ = 5π/4) Z8 parafermion c = 7/5 2 cos(π/10)

Yang–Lee ladder
AFM (θ = π/4) M̃(7, 10) c = 8/35 2 cos(3π/10)
FM (θ = 5π/4) M̃(3, 10) c = −44/5 2 cos(7π/10)

Table 5. Kac table for the non-unitary minimal modelsM(7, 10) andM(3, 10).
Only odd values of s are displayed, so that each field appears only once.

M(7, 10) M(3, 10)

h(r, s) s = 1 3 5 s = 1

r = 1 0 13/7 46/7 0
2 1/40 247/280 1287/280 −11/40
3 2/5 9/35 104/35 −2/5
4 9/8 −1/56 95/56 −3/8
5 11/5 2/35 27/35 −1/5
6 29/8 27/56 11/56 1/8
7 27/5 44/35 −1/35 3/5
8 301/40 667/280 27/280 49/40
9 10 27/7 4/7 2

The ferromagnetic (θ = 5π/4) critical point. In the non-unitary case, we can obtain the
critical theory for the opposite sign of the interaction, by simply swapping the sign of the d-
isotopy parameter, which hence corresponds to the value d = 2 cos(7π/10)= −

√
2 − (1/φ),

from which it is a simple matter to extract the central charge, which is given by c = −44/5,
corresponding to the minimal model M(3, 10). This minimal model also comes in two
incarnations, one corresponding to the modular invariant (A2, A9), and the other to (A2, D6).
(The field content of these models is also given in tables 5 and 6.) The latter is realized in the
Yang–Lee ladder at θ = 5π/4, and we will describe the spectrum in more detail below. Before
we do that, however, we will first summarize the critical theories of both the Fibonacci and the
Yang–Lee anyon ladders in table 4.

3.4. Numerical results

We finally present the numerical spectra of the conjugated ladder model at the two critical points
discussed in the previous section. The spectrum for the critical point at θ = π/4 is given in
figure 14, where we indicated the locations of the primary fields of M̃(7, 10) (given in table 6)
by green squares, as well as some low-lying descendants with red circles. As usual, there are
only two free parameters to match the numerically obtained spectrum with the result obtained
from CFT, so the fact that the six lowest primaries, as well as several descendants, match to high
precision (limited by finite-size effects) is a very non-trivial check on our results.
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Table 6. Kac table for the ‘(A, D)-modular invariant’ non-unitary minimal
models M̃(7, 10) and M̃(3, 10). The fields with the conformal dimensions in
bold (i.e. those with label r = 5) appear twice.

M̃(7, 10) M̃(3, 10)

h(r, s) s = 1 3 5 s = 1

r = 1 0 13/7 4/7 0
3 2/5 9/35 −1/35 −2/5
5 11/5 2/35 27/35 −1/5
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Figure 14. Conformal energy spectrum of the critical points in the doubled
‘antiferromagnetic’ Yang–Lee chain. The spectrum matches the non-unitary
minimal model M̃(7, 10) with central charge c = 8/35. Primary fields of the
CFT are indicated by green squares, descendant fields by red circles.

In figure 15, we give the numerical spectrum of the ferromagnetic Yang–Lee ladder, at
θ = 5π/4, which is characteristic of the critical phase extending over θ ∈ (π, 3π/2). In this
case, the critical behavior is described by the M̃(3, 10) non-unitary CFT and, as for the
antiferromagnetic case, we were able to identify the primary fields, as well as several low-lying
descendant fields, as indicated in the figure. The fields of the CFT are given in table 6.

4. Discussion and summary

In this paper, we studied the collective states of Yang–Lee anyons, a family of non-unitary, non-
Abelian anyons that are close cousins of the unitary Fibonacci anyons. Non-unitary anyons of
this form have attracted interest in the context of studies of certain quantum Hall wave functions,
including the Gaffnian state [17]. Both Yang–Lee and Fibonacci anyons arise from the same
anyonic theory, su(2)3, and in particular they share the same fusion rules. The key distinction
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Figure 15. Conformal energy spectrum of the critical points in the doubled
‘ferromagnetic’ Yang–Lee chain. The spectrum matches the non-unitary minimal
model M̃(3, 10) with central charge c = −44/5. Primary fields of the CFT are
indicated by green squares and descendant fields by red circles.

between the two anyon types is that Yang–Lee anyons are non-unitary and relate to their unitary
counterparts, the Fibonacci anyons, via ‘Galois conjugation’. We have generalized this concept
to arbitrary su(2)k anyonic theories.

To characterize the collective states formed by a set of anyons in the presence of pairwise
interactions, we have considered 1D models of interacting Yang–Lee anyons similar to the
golden chain model of the unitary case [23]. Analogous to the case of interacting Fibonacci
anyons, the collective states of such chains of Yang–Lee anyons are found to be critical and the
gapless theories are described by certain non-unitary CFTs (which depend on the sign of the
coupling, see table 3).

The non-unitary chain models are found to exhibit rather peculiar features related to the
presence of a non-local, topological symmetry first observed in the unitary models. For the
multicritical gapless theories of these chain models this topological symmetry, whose related
symmetry operator commutes with the Hamiltonian, allows us to classify all operators by a
topology symmetry sector. It turns out that all relevant operators corresponding to (uniform)
perturbations of the gapless system are in a different symmetry sector from the one of the
ground state. In the unitary case, this mechanism that effectively protects the gapless ground
state from local perturbations has led to an interpretation [34] of these gapless modes of a
chain of interacting anyons as edge states of the parent topological liquid of which the anyons
are excitations of. This has further led to the conclusion that interactions between anyons (in
2D arrangements) result in a splitting of the macroscopic degeneracy of a set of non-Abelian
anyons and the nucleation of a new topological liquid inside and spatially separated from the
parent liquid of which the anyons are excitations [34, 35].

For the non-unitary models, studied in this paper, a crucial distinction comes in the
symmetry sector assigned to the ground state. While in the unitary case, the ground state was
found to be in the flux-free (topological trivial) sector, we find that the ground state in the
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non-unitary case exhibits a non-trivial topological flux (i.e. is in the non-trivial topological
symmetry sector). It remains an open question whether such a spontaneous creation of
topological flux can occur in the ground state of a system of interacting anyonic quasiparticles
residing in a bulk-gapped topological liquid, which has no topological flux associated with it.
This may be an indication that the non-unitary anyons are not massive quasiparticles of a gapped
quantum liquid, but in fact excitations of a gapless quantum liquid.

In summary, we have investigated 1D models of non-unitary anyons based on su(2)k

anyonic theories. The collective ground states are found to display critical behavior, similar
to their unitary counterparts to which they are related via a ‘Galois conjugation’. We described
in detail the non-unitary CFTs, capturing their critical behavior, and commented on possible
physical implications of our results in connection with proposed quantum Hall states related to
such non-unitary CFTs. In addition, we also studied the phase diagram of an interacting ladder
model, which is a quasi 1D version of the Levin–Wen model for non-unitary Yang–Lee anyons.
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Appendix. A detailed description of the conformal energy spectra

In this section, we will describe in some detail the structure of the descendant fields present in
the numerically obtained spectra. In the case of the Yang–Lee ladders, this structure is somewhat
different from the ‘usual’ structure. The object containing information about the number of
states at a specific energy and momentum (in the thermodynamic limit) is the partition function,
which we will denote by Z tot.

Modular invariance of the partition function on the torus constrains the possible partition
functions of rational CFTs at a particular central charge [53]. In this paper, we will only be
concerned with the partition functions of minimal models, which are described in terms of
the chiral characters associated with the primary fields. An explicit expression for these chiral
characters associated with the primary fields φ(r,s) of the minimal modelsM(p, p′) is given in,
for instance, chapter 8 of [56].

ch(p,p
′)

(r,s) (q)=
qh(r,s)

(q)∞

∑
k∈Z

(
qk(kpp′+r p−sp′)

− q (kp+s)(kp′+r)
)
, (A.1)

where (q)∞ =
∏

k>0(1 − qk), and h(r,s) =
(pr−p′s)2−(p−p′)2

4pp′ the conformal dimension of the field
φ(r,s).

Dropping the labels (p, p′), all the possible partition functions can be written as

Z tot =

∑
(r,s);(r ′,s′)

M(r,s);(r ′,s′)ch(r,s)ch∗

(r ′,s′). (A.2)

For the minimal models, there is always the so-called ‘diagonal modular invariant’, for which
M is diagonal, M(r,s);(r ′,s′) = δr,r ′δs,s′ , and the sum in the partition function runs over all primary
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fields. However, in general, there exist other modular invariant partition functions. The critical
points of the ladder models realize some of these, as we pointed out in the main text.

In terms of the Virasoro generators L0 and L̄0, the Hamiltonian and momentum operators
can be written (after an appropriate rescaling and shift) as H = L0 + L̄0 and P = (L0 − L̄0). The
partition function can be written as a trace over the Hilbert space, Z tot = tr q L0 q̄ L̄0 , which allows
us to extract both the energies and momenta for each state.

In particular, the energy of a state is given by the sum of the powers of q and q̄. We note that
this energy is measured with respect to the energy corresponding to the energy of the identity
operator 1, which we have set to zero. In addition, the momentum of a state is given by L0 − L̄0,
in units of 2π/L , and measured with respect to the momentum of the corresponding primary
field, which is not determined by CFT, but rather by the specific Hamiltonian realization.

A.1. The ferromagnetic Yang–Lee ladder

The critical theory describing the ferromagnetic Yang–Lee ladder is the (D6, A2) modular
invariant M̃(3, 10). The total partition function of this theory can be written as follows [53]
(we will drop the labels (p, p′)= (3, 10) from the characters for convenience):

Z = |ch(1,1)|
2 + |ch(3,1)|

2 + 2|ch(5,1)|
2 + |ch(7,1)|

2 + |ch(9,1)|
2 + (ch(1,1)ch∗

(1,2) + ch(3,1)ch∗

(3,2) + c.c.).

(A.3)

By expanding the partition function, in terms of q and q̄, we can completely explain the low-
lying part of the spectrum displayed in figure 15. Let us start with the vacuum sector of the
theory, which corresponds to the part of the partition function with integer powers of q and q̄:

Z0 = |ch(1,1)|
2 + |ch(9,1)|

2 + (ch(1,1)ch∗

(1,2) + c.c.)= 1 + 2q2 + 2q̄2 + · · · . (A.4)

The total power of q and q̄ gives the energy of the states, while the difference between the
powers gives the momentum. Thus, the character of the vacuum sector implies the presence of
two states at energy E = 2 and Kx = 2 as well as two states at energy E = 2 and momentum
Kx = −2. Note that we count the states irrespective of their K y sector.

We will continue with the descendants corresponding to the primary field with energy
E = −2/5 and momentum Kx = 0. At this energy and momentum, there are in fact two states.
This sector of the partition function reads

Z−2/5 = 2|ch(5,1)|
2
= 2q−1/5q̄−1/5(1 + q + q̄ + 2q2 + 2q̄2 + qq̄ + · · ·), (A.5)

which implies two states at (E, Kx)= (1 − 2/5, 1) and two at (E, Kx)= (1 − 2/5,−1), as well
as two states at (2 − 2/5, 0) and four at both (2 − 2/5, 2) and (2 − 2/5,−2), all of which is
reproduced (modulo finite size effects) in the spectrum in figure 15.

Finally, we consider the descendants corresponding to the primary field at E = −4/5,
which also has momentum Kx = 0. This sector of the partition function reads

Z−4/5 = |ch(3,1)|
2 + |ch(7,1)|

2 + (ch(3,1)ch∗

(3,2) + c.c.)

= q−2/5q̄−2/5
(
1 + 2q + 2q̄ + 3q2 + 3q̄3 + 4qq̄ + · · ·

)
. (A.6)

This implies the presence of two states at both (E, Kx)= (1 − 4/5, 1) and (1 − 4/5, 1), as well
as three states at both (2 − 4/5, 2) and (2 − 4/5,−2). In addition, there should be four states at
(2 − 4/5, 0). This seems to be at odds with figure 15, but it turns out that the state at Kx = 0 and
K y = π , and energy of approximately E ≈ 2 − 4/5 (or, more precisely, E ≈ 1.214 4495) is in
fact doubly degenerate, so indeed, there are four states, as expected from the partition function.
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A.2. The antiferromagnetic Yang–Lee ladder

A similar analysis can be performed for the antiferromagnetic critical point of the Yang–Lee
ladder. We will be brief here, because the analysis is identical to the one for the ferromagnetic
critical point.

There are nine sectors in this particular case, corresponding to the fields displayed in
table 6, so the partition function can be written as

Z tot = Z0 + Z4/5 + Z22/5 + Z26/7 + Z18/35 + Z4/35 + Z8/7 + Z−2/35 + Z54/35. (A.7)

Although we will not consider all of these sectors (some give rise to states that are too high
in energy to be unambiguously identified, due to finite size effects), we will nevertheless give
the form of the partition function restricted to each of these sectors. We will drop the labels
(p, p′)= (7, 10) from the characters

Z0 = |ch(1,1)|
2 + |ch(9,1)|

2 + (ch(1,1)ch∗

(1,6) + c.c.),

Z4/5 = |ch(3,1)|
2 + |ch(7,1)|

2 + (ch(3,1)ch∗

(3,6) + c.c.),

Z22/5 = 2|ch(5,1)|
2,

Z26/7 = |ch(1,3)|
2 + |ch(9,3)|

2 + (ch(1,3)ch∗

(1,4) + c.c.),

Z18/35 = |ch(3,3)|
2 + |ch(7,3)|

2 + (ch(3,3)ch∗

(3,4) + c.c.),

Z4/35 = 2|ch(5,3)|
2,

Z8/7 = |ch(1,5)|
2 + |ch(9,5)|

2 + (ch(1,5)ch∗

(1,2) + c.c.),

Z−2/35 = |ch(3,5)|
2 + |ch(7,5)|

2 + (ch(3,5)ch∗

(3,2) + c.c.),

Z54/35 = 2|ch(5,5)|
2.

The parts of the partition function read explicitly

Z0 = 1 + q2 + q̄2 + · · ·,

Z4/5 = q2/5q̄2/5
(
1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·

)
,

Z22/5 = 2q11/5q̄11/5
(
1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·

)
,

Z26/7 = q13/7q̄13/7
(
1 + q + q̄ + 3q2 + qq̄ + 3q̄2 + · · ·

)
,

Z18/35 = q9/35q̄9/35
(
1 + 2q + 2q̄ + 3q2 + 4qq̄ + 3q̄2 + · · ·

)
,

Z4/35 = 2q2/35q̄2/35
(
1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·

)
,

Z8/7 = q4/7q̄4/7
(
1 + q + q̄ + q2 + qq̄ + q̄2 + · · ·

)
,

Z−2/35 = q−1/35q̄−1/35
(
1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·

)
,

Z54/35 = 2q27/35q̄27/35
(
1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·

)
.

With this information, it is rather straightforward to check that the primaries and descendant
fields we indicated in figure 14 indeed come with the right multiplicities.
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A.3. The ferromagnetic Yang–Lee chain

After having dealt with the (anti)ferromagnetic Yang–Lee ladders in quite some detail, we will
content ourselves here by giving the (diagonal) partition functions describing the spectra, and
note that for all states where finite size effects allow us to make an identification, we obtain full
agreement with the CFT prediction.

The partition function in the case of the ferromagnetic Yang–Lee chain, the critical model is
given by the diagonal invariant of the modelM(2, 5), whose partition function reads (dropping
the label (2, 5) on the chiral character)

Z = |ch(1,1)|
2 + |ch(3,1)|

2
= Z0 + Z−2/5, (A.8)

with

Z0 = 1 + q2 + q̄2 + q3 + q̄3 + q4 + q2q̄2 + q̄4 + q5 + q3q̄2 + q2q̄3 + q̄5

+ 2q6 + q4q̄2 + q3q̄3 + q2q̄4 + 2q̄6 + · · · , (A.9)

Z−2/5 = q−1/5q̄−1/5(1 + q + q̄ + q2 + qq̄ + q̄2 + q3 + q2q̄ + qq̄2 + q̄3 + 2q4 + q3q̄ + q2q̄2 + qq̄2 + 2q̄4

+ 2q5 + 2q4q̄ + q2q̄3 + q3q̄2 + 2qq̄4 + 2q̄5 + 3q6 + 2q5q̄ + 2q4q̄2

+ q3q̄3 + 2q2q̄4 + 2qq̄5 + 3q̄6 + · · ·). (A.10)

All these states, and in fact quite a few more that we did not give here, are reproduced in the
spectrum of the ferromagnetic Yang–Lee chain, as shown in figure 8.

A.4. The antiferromagnetic Yang–Lee chain

Finally, we deal with the antiferromagnetic Yang–Lee chain, the critical behavior of which is
described by the (diagonal invariant of the) minimal model M(3, 5), which has four primary
fields, as described in the main text. The relevant partition function is given by (again, dropping
the labels (3, 5) on the chiral characters)

Z = |ch(1,1)|
2 + |ch(3,1)|

2 + |ch(1,2)|
2 + |ch(3,2)|

2
= Z0 + Z2/5 + Z3/2 + Z−1/10, (A.11)

with

Z0 = 1 + q2 + q̄2 + · · · ,

Z2/5 = q1/5q̄1/5(1 + q + q̄ + 2q2 + qq̄ + 2q̄2 + · · ·),
(A.12)

Z3/2 = q−3/4q̄−3/4(1 + q + q̄ + · · ·),

Z−1/10 = q1/20q̄1/20(1 + q + q̄ + q2 + qq̄ + q̄2 + 2q3 + q2q̄ + qq̄2 + 2q̄3
· · ·).

We should note that, as can be seen in figure 7, these fields are reproduced, and that (for L = 32
sites), the fields with conformal dimension h = −1/20 and h = 3/4 occur at momentum Kx = 0,
while the identity fields and the field with conformal dimension h = 1/5 occur at momentum
Kx = π .
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