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The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to
be peculiar in the sense that for entangled polymer melts it monotonically decreases—whereas for
concentrated polymer solutions it increases—with increasing strain rate beyond the inverse Rouse
time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions
and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supple-
mented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of
the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as
the polymer concentration decreases, and the model is seen to capture the experimentally observed
behavior. Additional refinements may supplement the present model to capture very strong flows. We
furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work
builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its
capacity to improve our microscopic understanding of the rheology of entangled polymer melts and
concentrated polymer solutions. Published by AIP Publishing. https://doi.org/10.1063/1.5019337

I. INTRODUCTION

Since the introduction of the tube/reptation model by de
Gennes, Doi, and Edwards,1–3 this mean-field theory has estab-
lished itself as a most capable tool in an attempt to interpret the
dynamical nonequilibrium behavior of entangled (high molec-
ular weight) polymer melts and concentrated polymer solu-
tions. The incorporation of additional mechanisms that were
originally omitted, like contour length fluctuations account-
ing for the dynamical evolution of the primitive path contour
length, and constraint release (CR) accounting for the dynam-
ical release of entanglements,2,4,5 allowed for the precise
description of linear viscoelastic (LVE) properties.4–7 How-
ever, and despite the persevering efforts of polymer scientists
to improve upon it in the non-linear regime, by incorporating,
e.g., chain stretch due to elongation of the tube by the flow,8

finite extensibility,9,10 and convective constraint release (CCR)
accounting for a flow-induced release of entanglements,10–13

it still lacks consistency with available rheological data. In
spite of the overall accepted effectiveness, and partial suc-
cess, of the tube/reptation model, it is not the sole formalism
that aims addressing the molecular origins of high molecu-
lar weight polymeric systems. Curtiss and Bird proposed a
model for entangled polymer melts and concentrated poly-
mer solutions, the tumbling-snake model,14 derived via the
use of the Curtiss-Bird-Hassager phase-space formulation for
the kinetic theory of undiluted polymers,15 and contrary to
Doi and Edwards (DE), it does not invoke a mean-field tube.
The tumbling-snake model bears more similarities with slip-
link models16,17 than with tube models, since slip link chains
tumble. The tumbling-snake model entails, like the original
tube/reptation one, the solution of a Fokker-Planck (FP) for the

single-link distribution function, f (σ, u, t), which describes the
probability that at time t a chain segment at contour position σ
∈ [0, 1] along the chain is oriented in direction u, with u and σ
independent dynamical variables, and u · u = 1. The model
employs the so-called independent alignment assumption
(IAA), according to which chain segments are independently
oriented by the imposed flow field. Reptation is identified as a
one-dimensional diffusion process along the polymer’s back-
bone, counteracting orientational diffusion corresponding to
CR events, whose strength is parameterized by ε′. The extra
stress tensor contains a term due to the anisotropy of the friction
tensor ζ = ζeq[δ − (1 − ε)uu] involving the link tension coef-
ficient ε ∈ [0, 1]; if ε = 0, there is no friction against motion in
the direction u, whereas for ε = 1, the friction tensor is isotropic
as for an individual sphere. Despite the different assump-
tions made by the two formalisms, the original tube/reptation
model is obtained as a special case ε′ = ε = 0 of the
more general FP equation of the tumbling-snake model15,18,19

(see also Ref. 20). Curtiss-Bird and their co-workers had
worked out the analytically tractable non-tumbling model
(when ε′ = 0).15,18,19,21,22 Up to now, an analytic solution
to the complete Curtiss-Bird model (with ε′ > 0) is not
known.

Recently, we provided a simple Brownian Dynamics (BD)
solution scheme for the tumbling-snake model for ε′ > 0
and applied it to both steady-state20 and time-dependent shear
flow14,23 and for steady-state and time-dependent planar elon-
gation.24 This solution scheme entails the numerical inte-
gration of two coupled Itô stochastic differential equations
for the variables Ut (segment unit vector at time t) and σt

∈ [0, 1] (relative contour position at time t) [see Eq. (5) of
Ref. 24]. Given that in the absence of flow both Ut and σt are
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uniform random variables, the tumbling-snake model is in
accordance with the fluctuation-dissipation theorem.25 These
investigations provided ample evidence that the tumbling-
snake model is able to capture the damping behavior of
the transient viscosity in start-up shear experiments at high
rates.26–28 At the same time, it predicts an absence of equally
pronounced undershoots in both normal stress coefficients,
again in accord with experimental data.14,23 The underly-
ing reason for the appearance of this damping behavior was
demonstrated to be caused by the shear-induced rotational
motion of chains,23,28 further supported by non-equilibrium
atomistic simulations.29–31 For this reason, similar under-
shoots are not expected to occur in elongational flows that
are free from rotational contributions to the velocity gradient
tensor.24 We are going to calculate elongational flow proper-
ties using the parameters we employed earlier in a quantitative
comparison with shear rheological data. To this end, the vari-
able link tension coefficient is given as ε = ε0S2

2 ,14,23 where
S2 denotes the 2nd rank uniaxial nematic order parameter
of polymer segments.32 It is worth recalling that the origi-
nal Curtiss-Bird model with constant link tension coefficient
violates the stress-optic rule (SOR), which is expected to hold
close to equilibrium, and for that only small values for ε should
be employed.33 This problem has been eliminated in our work
by using a variable link tension coefficient that automatically
vanishes at equilibrium. Of course, at larger extensional rates,
chain stretch becomes nonlinear and a failure of the SOR is
measured.34

Prior to the BD formulation, other numerical approaches
have been implemented to solve the Curtiss-Bird or tumbling-
snake model with constant ε. One of us35 employed Galerkin’s
method to numerically solve the full, stationary tumbling-
snake model subjected to steady shear flow, where trial
functions were composed of spherical harmonics and Euler
polynomials up to some finite order. A few more studies have
been undertaken36–38 in which Currie’s approximation39 of the
Curtiss-Bird model is solved using a Galerkin’s method. The
use of a BD solution scheme is conceptually much simpler than
these methods; it does not invoke a decoupling approxima-
tion and should therefore be clearly preferred over the earlier
methods.

Experiments on entangled polysterene melts34,40 reveal
that the extensional viscosity of polymer melts is monoton-
ically decreasing with strain rate. On the other hand, the
extensional viscosity of polymer solutions is seen to decrease
below the inverse Rouse time and increase above.28,41–43

Such behavior was not predicted by the tube model even if
the above-mentioned mechanisms, chain stretch, etc., were
included.40,42,44

To remedy this shortcoming, a configuration-dependent
monomeric friction coefficient had been introduced, which
reflects the alignment of polymer chains.45–48 Its physi-
cal relevance may stem from nematic interactions between
flow-aligned polymer chains and their surrounding solvent
molecules. Aligned and strongly elongated chains experi-
ence reduced friction when they are placed parallel to each
other, relative to the randomly oriented state under quies-
cent conditions. To account for this, the monomeric friction
coefficient had been related to the uniaxial order parameter

of the solution as follows: ζ = ζ eq when 0 ≤ S ≤ Sc, whereas
ζ = ζeq(S/Sc)−1.25 when S ≥ Sc; i.e., the monomeric fric-
tion coefficient is reduced only as soon as the order parameter
exceeds a critical value (Sc ≈ 0.14).48 Usually, the order param-
eter is given as S = [φ + (1 − φ)ε̄]S2, where ε̄ is the nematic
interaction parameter that originates from the assumption that
the order parameter of solvent molecules, Ss, is proportional
to the one of polymer segments, Ss = ε̄S2. This modifica-
tion leads to a decrease in the extensional viscosity when
S ≥ Sc.48 Such a modification has proven able of address-
ing the peculiar extensional behavior of polymer melts and
solutions.28,41–43

The underlying idea was not completely new. Giesekus49

was the first to propose a coupling between friction and poly-
mer conformation in polymer melts, followed by Bird and
DeAguiar.50 In their work, it is not the friction coefficient
that is reduced, but it is the friction tensor that becomes
anisotropic. The same idea is reminiscent of the expression
employed by Curtiss and Bird in the tumbling-snake model
mentioned above. Invoking such a concept while deriving a
rheological constitutive model for entangled polymer melts in
the context of non-equilibrium thermodynamics, has shown
promising.10

Thus, in this work, we revisit the contradiction between
the rheological data for the extensional viscosity of polymer
melts solutions and show that the link tension coefficient, given
as ε = ε0S2

2 , is able to predict this behavior in a qualita-
tive manner, while the coefficient ε0 decreases as the polymer
concentration increases. The structure of this manuscript is
as follows: In Sec. II, we provide the series expansion of
the uniaxial elongation (UE) viscosity for the tumbling-snake
model in the case of both steady-state and start-up UE for
small, dimensionless elongation rates. In Sec. III, we solve
the model numerically using BD simulations and further com-
pare its predictions with available experimental data. We con-
clude with Sec. IV, where we discuss the significance of this
work.

II. SMALL ELONGATION RATE EXPANSION

The time-dependent (extra or polymeric) stress tensor
τ of the tumbling-snake model for a monodisperse polymer
with polymerization degree N, temperature T, polymer number
density n, subjected to a homogeneous flow field character-
ized by the transposed velocity gradient tensor κ, is given
by15,20

τ(t)
G
= −(1 − ε′)

(
〈uu〉(1)(t) −

1
3
δ

)
− 3ε′0

(
〈uu〉(2)(t) −

1
18

δ

)
− ε B(t), (1)

with modulus G = nkBT (N � 1) and ε′0 = ε′(N − 1)2,
involving the following orientational averages calculated
with the solution of the corresponding FP equation14 for the
single-link orientational distribution function f (σ, u, t)
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〈uu〉(1)(t) =
∫ 1

0
dσ

∫
duf (σ, u, t)uu

〈uu〉(2)(t) =
∫ 1

0
σ(1 − σ)dσ

∫
duf (σ, u, t)uu,

B(t) = λκ :
∫ 1

0
σ(1 − σ)dσ

∫
duf (σ, u, t)uuuu,

(2)

where ∫ du denotes an integral over the unit sphere and λ
is a time constant proportional to ζ eq/kBT, squared bond
length a, and N3+β , where β is the chain constraint expo-
nent. Note that the polymerization degree is related to the
number of entanglements per polymer, Z, employed by DE
via the relation N = 3Z. The so-called reptation of disen-
gagement time is τd = λ/π2. For the case of uniaxial elon-
gational flow at rate ε̇ in direction of unit vector ez, one has
κ = 1

2 ε̇(3ezez − δ).

A. Steady-state uniaxial elongation

We begin by considering a steady-state spherical
harmonics expansion of the single-link distribution func-
tion around equilibrium under steady-state UE, assuming a
constant ε. The methodology employed is described in the
supplementary material (Sec. A), and the final expression for
the expansion, up to 2nd order in the dimensionless Weis-
senberg number Wi = ε̇ λ, is given in Eq. (A6) of the
supplementary material. The regime of strong flows ε̇ τR � 1
with Rouse time τR corresponds to Wi � N. Upon inserting
this expansion into the stress tensor Eq. (1), we obtain the UE
viscosity, ηE = (τzz − τxx)/ε̇ , up to second order in Wi:

ηE

3Gλ
=

1
60

(
1+

2
3
ε

)
+

4
105

(
3
4

+ ε

)
∆1Wi

+
4

245

[(
3
4

+ ε

)
∆2 − 6(1 − ε)∆3

]
Wi2, (3)

or alternatively, if we normalize with the zero-rate value,

ηE

3η0
= 1 +

16

7(1 + 2
3ε)

(
3
4

+ ε

)
∆1Wi

+
48

49(1 + 2
3ε)

[(
3
4

+ ε

)
∆2 − 6(1−ε)∆3

]
Wi2. (4)

Note that the zero-elongation UE viscosity follows Trouton
law, according to which the zero-elongation UE viscosity is
three times the zero-shear-rate viscosity, η0. The following
abbreviations have been introduced for numerical prefactors
appearing in (3) and (4):

∆j ≡ 24
∞∑

ν=1,odd

1

(πν)4kj(ν)
( j = 1, 2, 3), (5)

with the kernels k1(ν) = K2, k2(ν) = K2
2 , and k3(ν) = K2K4

that depend on both ε′ and ε′0 via

Kj ≡ (1 − ε′)(πν)2 + j(j + 1)ε′0. (6)

It is instructive to verify Eq. (4) for two limiting cases.
In the first limit, ε′ = 0, implying K j(ν) = (πν)2, the ∆j are
readily evaluated,∆1 = 1/40 and∆2 =∆3 = 17/6720, and results

should reduce to the tumbling-snake model with ε′ = 0. We
obtain

ηE

3Gλ
=

1
60

(
1 +

2
3
ε

)
+

1
1050

(
3
4

+ ε

)
Wi

+
17

58 800

(
ε −

3
4

)
Wi2, (7)

which is indeed identical to Eq. (19.6-16) in Ref. 15 (consid-
ering a monodisperse system) and Eq. (29) in Ref. 22. The
expression (7) further reduces to the DE result1 for ε = 0. In
the second limit, ε′ = 1 with N = 2, the chain reduces to a
rigid dumbbell. For this case, K j(ν) = j(j + 1) and all kernels
kj are independent of ν, leading to ∆1 = 1/24, ∆2 = 1/144, and
∆3 = 1/480. We thus obtain from Eq. (3)

ηE

3Grdλrd
=

3
5

(
1 +

2
3
ε

)
+

12
35

(
3
4

+ ε

)
Wird

+
72
175

(
ε −

3
8

)
Wi2rd, (8)

with Wird ≡ ε̇ λrd, or alternatively,

ηE

3η0, rd
= 1 +

4

7(1 + 2
3ε)

(
3
4

+ ε

)
Wird

+
24

35(1 + 2
3ε)

(
ε −

3
8

)
Wi2rd, (9)

where η0,rd is the corresponding zero-rate viscosity for the
rigid rod given by [see Eq. (11) of Ref. 20 for Wi = 0]

η0, rd

Grdλrd
=

3
5

(
1+

2
3
ε

)
. (10)

Here, as in Ref. 20, G = 6Grd and λ = 6λrd. For ε = 1, Eq. (8)
is also identical to Eq. (16.5) by Bird et al.51 for a rigid dumb-
bell. Our result, Eq. (8), generalizes the expression by Bird
et al.51 when hydrodynamic interaction is taken into account
by identifying ε = λ(2)

2 /λ(1)
2 .20

If, instead of a constant link tension coefficient, we con-
sider a variable link tension coefficient, given as ε = ε0S2

2 ,14,23

then, up to second-order terms, we obtain

ε = ε0
4
25

(Γ1Wi)2, (11)

where Γ1 is defined in Supplementary Eq. (A1b) of Ref. 23.
Then, the UE viscosity is given as

ηE

3Gλ
=

1
60

+
∆1

35
Wi +

4
245

(
3
4
∆2 − 6∆3

)
Wi2

+
2ε0

1125
(Γ1Wi)2. (12)

B. Transient uniaxial elongation

Next, we consider a time-dependent spherical harmon-
ics expansion of the single-link distribution function around
equilibrium to be able to obtain the LVE analytical predictions
for constant ε; the procedure is described in the supplemen-
tary material (Sec. A); the final expression for the expansion
of the time-dependent single-link distribution function, up to
first order in Wi, is given by Eq. (A4) of the supplementary
material. Inserting Eq. (A4) of the supplementary material into

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
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the stress tensor expression (1), we obtain analytical expres-
sions for the time-dependent UE viscosity, η+

E(t), which turns
out to be three times the time-dependent shear viscosity (first
presented in Ref. 14)

η+
E(t)

3Gλ
=

1
60

(
1+

2
3
ε

)
−

1
15
∆0(t), (13)

where the following abbreviation has been introduced:

∆0(t) = 24
∞∑

ν=1,odd

exp(−K2t/λ)

(πν)4
. (14)

Taking the rigid dumbbell limit, ε′ = 1 and N = 2, Eq. (13)
becomes

η+
E(t)

3Grdλrd
=

3
5

(
1+

2
3
ε

)
−

3
5

exp(−t/λrd) (15)

and reduces further to Eq. (18.9) of Ref. 51 for ε = 1. Our
Eq. (15) thus generalizes the expression by Bird et al.51 when
hydrodynamic interaction is taken into account by identifying
ε as in Sec. II A.

If, instead of a constant link tension coefficient, we con-
sider a variable link tension coefficient, given as ε = ε0S2

2 , the
least order expansion gives

ε = ε0
4
25

Wi2[Γ1 − Γ1(t)]2, (16)

where Γ1(t) with Γ1(0) = Γ1 is defined in supplementary Eq.
(A3b) of Ref. 23, which at small times simplifies to

ε = ε0
9
25

(ε̇ t)2. (17)

As the variable link tension coefficient vanishes in the linear
regime, the time-dependent UE viscosity turns out to be

η+
E(t)

3Gλ
=

1
60
−

1
15
∆0(t). (18)

Accordingly, at small times, the UE viscosity varies linearly
with time,

η+
E(t)

3Gλ
=
ε′0 + 2(1 − ε′)

10
t
λ

, (19)

where we have made use of Eq. (B8) of the supplementary
material of Ref. 14.

III. COMPLETE SOLUTION USING BROWNIAN
DYNAMICS SIMULATIONS

The BD algorithm that we employ in this work is identical,
apart from the different choice of flow field, κ, with the one
we had described in detail for both steady-state20 and transient
shear flows.14,23

A. Steady-state uniaxial elongation

The steady-state link tension coefficient as a function of
dimensionless elongation rate Wi for N = 100 (Z ≈ 33) and
various values of ε′0 is shown in Fig. 1. At small elongation
rates, ε is seen to increase quadratically with Wi, in accord
with Eq. (11). On the other hand, at large shear rates, ε→ ε0,
irrespective of the value of ε′0. This is expected since for UE
flow S2 = 〈u2

z − u2
x〉

(1), and as Wi→∞, then 〈u2
z − u2

x〉
(1) → 1.

The model predictions when ε = ε0S2
2 at large elongation rates

FIG. 1. Predictions for the link tension coefficient, ε/ε0, as a function of
dimensionless elongation rate Wi for N = 100 (Z ≈ 33 entanglements) and
various values of ε′0. The thick lines give the predictions of Eq. (11) when
ε′0 = 0 (dark blue) and 0.9 (dark yellow).

are thus identical with the ones for a constant link tension
coefficient.

The reduced steady-state UE viscosity as a function of
the dimensionless elongation rate is presented in Fig. 2. Panel
(a) of this figure shows the variation of UE viscosity upon
changing ε′0 while keeping N = 100 (Z ≈ 33) and ε = 0 fixed.
We first note that, as dictated by Eq. (12), the UE viscosity at
small elongation rates is independent of the value of ε′0 and
follows Trouton’s law. However, the UE viscosity increases
with increasing ε′0 after about Wi ≈ 3 and seems to be passing
from a maximum when ε′0 > 0 (see inset). The power-law part
of the curves is unaffected by the value of ε′0 and is always
equal to �1, as for the DE model.1 In Fig. 2(b), we show the
same variation as in Fig. 2(a) but now with ε0 = 0.1. Again,
the UE viscosity at small elongation rates follows Eq. (12)
and a maximum is seen when ε′0 > 0. All curves after the
maximum reach monotonically, irrespective of the value of ε′0,
the same value of the UE viscosity at large elongation rates.
This value, as first discussed by Bird et al.,22 is simply equal
to

ηE(∞)
3Gλ

=
ε0

18
⇒

ηE(∞)
3η0

=
10ε0

3
, (20)

which for ε0 = 0.1 gives ηE(∞)/(3Gλ) = 1/180. Equation (20)
can be easily derived by noting that as Wi→∞, then

〈u2
z − u2

x〉
(1) → 1,

〈u2
z − u2

x〉
(2) → 1/6,

Bzz − Bxx →Wi/6.

(21)

When ε0 > 0, the third term in the stress tensor expression,
Eq. (1), dominates at large elongation rates, leading to the
leveling-off of the UE viscosity at a value given by Eq. (20).
Note that both Eqs. (20) and (21) apply also when ε′0 > 0.
Further increasing the value of the parameter ε0, for given
ε′0 and N, keeps the small elongation rate predictions almost
unaffected [Figs. 2(c) and 2(d)]; as noted from Eq. (12), only
second-order terms in Wi are to be affected by the value of ε0.
At large Wi, the curves reach the value of the reduced ηE(∞),
Eq. (20). When the value of ε exceeds 3/10, then ηE(∞) > 3η0

[Fig. 2(d)]. Finally, it should be stressed that the theoretical
expressions given by Eq. (12) not only provide the zero-shear-
rate asymptotes but also the downturn as Wi is further increased
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FIG. 2. Predictions for ηE/(3Gλ) as a function of dimensionless elongation rate Wi for N = 100 and various values of the parameters ε0 and ε′0. The thick lines
give the predictions of Eq. (12).

(see insets in all parts of Fig. 2). The corresponding predictions
when the link tension coefficient is considered constant are
given in Fig. (S1) of the supplementary material.

This feature is important as it predicts the behavior of
polymer solutions, according to which at very high dilutions,
the extensional viscosity increases, and at intermediate con-
centrations, it seems to be reaching a plateau after the inverse
Rouse time28,41–43 (see also Fig. 5). We thus elaborate on it
further. As Wi → ∞, then 〈u2

z 〉
(1) → 1, 〈u2

x〉
(1) → 0, and

ε→ε0, implying ζ zz = ε0ζ eq and ζ xx = ζ eq; for the DE model
(i.e., ε = 0), the friction at the stretching direction is always
zero, whereas in the case of the tumbling-snake model it is
not; note that ζ zz ≈ ζ xx in the limit ε0 → 1. The increase in
the friction in the direction of stretching, controlled by the
parameter ε0, leads to an increase in the extensional viscosity
needed to capture the experimental data (see Sec. III C). We
recall that within the presented theory the friction tensor for
dilute polymer solutions is isotropic only at equilibrium and at
large strain rates, while its maximum anisotropy is achieved at
intermediate Wi because ε = ε0S2

2 changes more quickly than
〈uu〉(1).

B. Transient uniaxial elongation

Next, we inspect the transient link tension coefficient,
ε/ε0, as a function of dimensionless time t/λ for N = 100 and
various values of the parameter ε′0 and dimensionless elonga-
tion rates Wi (Fig. 3). At early times, this coefficient follows

9
25 (ε̇ t)2, irrespective of Wi and ε′0, whereas at larger times it
monotonically approaches the steady-state values.

In Fig. 4, we show the transient UE viscosity as a function
of the dimensionless time for various dimensionless elon-
gation rates along with the LVE prediction, Eq. (18). For
all elongation rates, we notice that as t → 0 the UE vis-
cosity η+

E/(3Gλ) varies linearly with time, as prescribed by
Eq. (19); i.e., it shifts towards smaller times with increasing
ε′0. By using a link tension coefficient given as ε = ε0S2

2 , we
have thus amended the problematic predictions of the original

FIG. 3. Predictions for the link tension coefficient, ε/ε0, as a function of
dimensionless time for N = 100 and various values of the parameter ε′0 and
dimensionless elongation rate Wi. The thick straight lines give the predictions
of 9

25 (ε̇ t)2.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
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FIG. 4. Predictions for η+
E(t)/(3Gλ) as a function of time for N = 100 and various values of the parameter ε0 and dimensionless elongation rate Wi for (a)

ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The thick lines give the predictions of Eq. (18).

tumbling-snake model, employing a constant link tension coef-
ficient, according to which η+

E/(3Gλ) approaches the constant
value ε/30, irrespective of the value of the parameter ε′0 (see
Sec. B of the supplementary material). As we further increase
the elongation rate (Wi = 100), the UE viscosity goes over the
LVE prediction only when ε0 > 0 but still reaches the steady-
state value without reaching an overshoot, independently of
the value of the parameters ε′0 > 0 and ε0. This behavior can
be contrasted with the predictions of the tumbling-snake model
in simple shear in which a clear undershoot is observed for all
values of the parameters ε′0 > 0 and ε0 (cf. Fig. 1 in Ref. 14
and Fig. 6 in Ref. 23). The same trend is seen at a larger
elongation rate (Wi = 1000), but now the curves depart much
sooner and more intensely from the LVE prediction. It is worth-
while mentioning that identical parameter values are used in
the present Fig. 4 and in Fig. 6 of Ref. 23.

Overall, the major observation is that at large times all
viscosity curves reach monotonically their steady-state values
without presenting an undershoot, irrespective of the value of
ε′0 and Wi. This is noteworthy since ε′0 > 0 in shear flow
produces undershoots at large shear rates due to the tumbling
behavior of polymer chains imposed by the rotational contri-
bution to κ. The absence of a rotational contribution in UE
hinders the appearance of undershoots in the UE viscosity, in
concert with experimental data. The tumbling-snake model
is seen to accurately capture this behavior without further

readjustment even when ε′0 > 0, as required to capture the
behavior of polymer solutions.

Model predictions for constant values of the parameters
ε′0 and ε but with a different number of Kuhn segments N
are found to be identical, for both steady-state and transient
quantities, for large values of N (N ≥ 10), because we have
chosen to scale the UE viscosity with the modulus G and the
relaxation time λ, both of which do depend on N. For this
reason, this comparison is not shown.

C. Comparison with experimental data

To test the steady-state, LVE, and transient predictions, we
here compare against the rheological data (presented at 130 ◦C)
for UE provided by Huang et al.42 for one polystyrene polymer
melt (PS-285k) and two polymer solutions (PS-285k/2k-72
and PS-285k/2k-44; volume fractions given in Table I). The

TABLE I. Parameters Z, λ, and G employed in Figs. 5 and 6, while φ is the
polymer volume fraction.

System φ Z λ (s) G (MPa)

PS-285k 1.00 21.4 35 000 1
PS-285k-2k-72 0.72 15.4 2 000 0.3
PS-285k-2k-44 0.44 9.4 170 0.09

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024818
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FIG. 5. Comparison of experimental data for the polymer melt (PS-285k) and
two polymer solutions (PS-285k/2k-72 and PS-285k/2k-44) of Huang et al.42

at 130 ◦C (symbols) with the tumbling-snake model predictions (lines) for the
dimensionless, steady-state elongation viscosity as a function of WiR = ε̇τR ,
where τR = τd /Z denotes the Rouse time.

values of the number of entanglements Z, the relaxation time
λ, and the modulus G are also included in Table I; the lat-
ter two were selected, for each sample, to obtain a good

FIG. 6. Same as Fig. 5 but for the transient elongational viscosity as a function
of time for (a) PS-285k, (b) PS-285k/2k-72, and (c) PS-285k/2k-44. The thick
light gray lines in (a)–(c) depict the LVE envelopes according to Eq. (18).

comparison with both the steady-state UE viscosity and the
LVE envelope. The selected values for the moduli follow the
expression G(φ) = G(1)φ1+α using α = 1 as proposed by the
same authors.42 We take ε′ = 0 for the polymer melt, in accord
with previous studies;14,20,23 for the polymer solutions, we
consider ε′ = 0.1 for PS-285k/2k-72 and ε′ = 0.5 for PS-
285k/2k-44. Finally, we obtained ε0 by comparing the model
results with the measured steady-state UE viscosity (0.05 for
PS-285k, 0.2 for PS-285k/2k-72, and 0.9 for PS-285k/2k-44).
The comparison with the steady-state UE viscosity is obvi-
ously very satisfactory (Fig. 5). The comparison with the tran-
sient UE viscosity for the polymer melt is also good, as shown
in Fig. 6(a). However, as the polymer concentration decreases,
the approach to the steady-state values is not matched quantita-
tively anymore, and it signals the regime of applicability of the
tumbling-snake model developed for concentrated polymeric
systems.

IV. CONCLUSIONS

In this work, we provided the solution and discussed
the features of the tumbling-snake model for concentrated
solutions and entangled polymer melts subjected to both
steady-state and transient UE. Following our recent work,
we employed a variable link tension coefficient, given by
ε = ε0S2

2 ,14,23 which has amended several shortcomings of a
constant link tension coefficient originally suggested by Bird
et al.15,22 In particular, the UE viscosity does not approach a
finite value as t → 0 with the variable coefficient, because
the system is isotropic at t = 0, and ε0 is proportional to
the squared order parameter. We have demonstrated that the
model is able to capture and interpret recent experimental evi-
dence according to which the extensional viscosity of polymer
solutions is seen to exhibit thinning below the inverse Rouse
time and thickening above, whereas the extensional viscosity
of polymer melts is monotonically decreasing for all strain
rates.28,41–43 To this end, we found that the strength ε0 of the
link tension coefficient increases as the polymer concentra-
tion decreases (see Fig. 5). In other words, the friction tensor
becomes more isotropic with decreasing concentration. While
in the past the observed phenomena had been attributed to
a flow-induced reduction of the monomeric friction coeffi-
cient, the tumbling-snake model keeps the monomeric friction
coefficient constant but assumes a friction tensor that tends
to become more isotropic with increasing ε0 while attaining
its maximum anisotropy at intermediate Wi. Using a friction
tensor that is increasingly becoming isotropic at large strain
rates as the polymer concentration decreases, the model is able
to capture the observed behavior (see Fig. 5). However, the
model fails to predict the experimentally observed behavior
that, in some cases, as the polymer concentration decreases,
the steady-state elongation viscosity first shear-thins and then
reaches a minimum before it shear-thickens (e.g. Ref. 43).
Also, the comparison against the time-dependent elongation
viscosity is seen to become worse as the polymer concen-
tration decreases (see Fig. 6). Such a disagreement may be
due to the omission of mechanisms particularly important for
elongational flows, such as chain stretch.
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Given the known capacity of the tumbling-snake model
to provide a very adequate description of the shear rheo-
logical measurements of entangled polymer melts and con-
centrated polymer solutions,14,20,23 together with the results
of the present study for the case of uniaxial elongation and
those of Ref. 24 for planar elongation, we feel that this model
bears the potential to improve our understanding regarding
the rheological behavior of dense and entangled polymeric
systems. It is now readily solved for arbitrary, including
mixed homogeneous flow fields via BD, and the meaning
and choice of parameters had been discussed in detail for
the extreme cases of academic flows. By properly introduc-
ing more refinements, such as contour length fluctuations,
by considering a σ-dependent curvilinear segment diffusion
along the polymer’s contour (see, e.g., Refs. 6, 52, and 53
and references therein), uplifting the IAA by introducing a
first-order derivative with respect to s and a term proportional
to the single-link distribution function,2,25,54 CCR by allow-
ing for flow-induced relaxation times,10–12,55 flow-induced
alignment of chain ends32,56 via a modification of the bound-
ary conditions for the single-link distribution function, and
chain stretch,8,57 could further improve the tumbling-snake’s
model capacity to favorably predict the rheological response
of entangled polymer melts and concentrated polymer solu-
tions. Especially, the latter is particularly important for strong
elongation flows. All the possible refinements have not been
done here to highlight the properties of the simple, unmod-
ified model for future reference. These modifications to the
tumbling-snake model should be made properly and self-
consistently by following the guidelines of non-equilibrium
thermodynamics.58,59

SUPPLEMENTARY MATERIAL

See supplementary material for the methodology to obtain
the real spherical harmonics expansion of the single-link dis-
tribution function and BD predictions for the elongational
viscosity of the tumbling-snake model when a constant link
tension coefficient is employed.
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24P. S. Stephanou and M. Kröger, Polymers 10, 329 (2018).
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55H. C. Öttinger, J. Non-Newtonian Fluid Mech. 89, 165 (2000).
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