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MicroRNA Expression Profiling in 
the Prefrontal Cortex: Putative 
Mechanisms for the Cognitive 
Effects of Adolescent High Fat 
Feeding
Marie A. Labouesse1,2, Marcello Polesel4, Elena Clementi3, Flavia Müller3, Enni Markkanen3, 
Forouhar Mouttet1, Annamaria Cattaneo5,6 & Juliet Richetto3

The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only 
brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful 
events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly 
impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic 
scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this 
maturational period. The nature of this transcriptional reprogramming remains unknown, but may 
include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. 
We used high–throughput screening in the adolescent mouse mPFC and identified 38 microRNAs 
differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the 
functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of 
predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon 
guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance 
molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming 
within the mPFC induced by adolescent HFD. These results will help understanding the contribution of 
microRNAs in the emergence of cognitive deficits following early-life environmental events.

The medial prefrontal cortex (mPFC) is a complex and highly interconnected brain region critically implicated in 
the regulation of higher-order cognitive functions such as working memory, attention or behavioral flexibility1. 
One key feature defining this brain region is its remarkable maturational trajectory; unlike most other cortical 
areas, maturation in the prefrontal cortex continues until late adolescence, thus being the last brain region to 
achieve full maturity in humans2–4 and rodents5–7. Therefore, adolescence is a period of extensive remodeling in 
morphology, functional connectivity and gene expression patterns within the mPFC, and this protracted matura-
tion is thought to confer an extended period of plasticity that supports experience-dependent learning7,8. At the 
same time, however, such plasticity is also thought to provide a basis for developmental disruption by early-life 
environmental insults9. Human and rodent studies both have shown that drug use or psychosocial stress associate 
with a higher risk of developing mental illness or behavioral dysfunctions when the exposure occurs during ado-
lescence10–13. More recent work has shown that unhealthy nutrition during adolescence, in particular consump-
tion of high-fat or high-sugar diets, also associates with deficits in executive functioning, and with a reduction 
in the volumes of frontal cortical regions in humans14–18. This is alarming as the quality of the human diet has 
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deteriorated in the past few decades, now incorporating increasing levels of processed foods, artificial additives, 
refined sugars, and unhealthy dietary fats19,20, which may in turn negatively affect the mPFC. Adolescents in 
particular have a tendency to follow dietary guidelines less closely than adults21–24. Importantly, they are at a 
vulnerable time point in terms of nutritional training, when they begin making their own decisions about what to 
eat, yet are still influenced by peer-pressure and media which tend to favor less healthy nutritional options7,23–26.

In previous studies, our groups and others have shown that mice fed high-fat diets (HFD), or high-fat 
high-sugar diets, develop particularly potent prefrontal-dependent cognitive deficits when the dietary exposure 
begins during adolescence as compared to adulthood27–31. We also showed that adolescent HFD is associated 
with multiple and various changes at the cellular and synaptic scales within the mPFC, including modulation of 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartate (NMDA) neuro-
transmission, impairments in synaptic plasticity, or reductions in interneuron-specific protein levels. Notably, 
some of these neuronal alterations are not observed with a similar dietary exposure during adulthood. Such 
findings suggest that, at the molecular scale, there may be a number of transcriptional reprogramming events that 
occur in response to HFD in the mPFC during adolescence, which in turn would modulate expression levels of 
multiple neuronal proteins and affect mPFC function.

The nature of these transcriptional reprogramming events remains unknown, but could include epigenetic 
mechanisms that allow modifying gene activity without altering the DNA code. Indeed, accumulating evi-
dence32–35 indicates that epigenetic factors represent a key mechanism linking early-life stress or suboptimal nutri-
tion with changes in brain function36. For instance, early exposure to HFDs was shown to recruit such epigenetic 
regulatory machineries and to induce the appearance of metabolic abnormalities37,38; such effects could in turn 
also be valid for the regulation of synaptic and cognitive functions by HFD. The repertoire of epigenetic regulators 
is large and multi-layered, yet key candidates would include microRNAs (miRNAs), a family of small non-coding 
RNAs that regulate gene function by inhibiting the expression of their target mRNAs39,40. MiRNAs play important 
regulatory roles in a variety of cellular and subcellular functions41 and are now recognized as key modulators 
of dendritic and synaptic maturation and synaptic activity42–44, which in turn will modify cognitive perfor-
mance45,46. Several studies have indeed characterized the contribution of prefrontal miRNAs to PFC-dependent 
tasks such as fear extinction and transition to alcohol addiction46,47. For instance, prefrontal mir-128b, whose 
expression dynamically changes across behavioral training in mice, was shown to regulate expression of several 
plasticity-related genes within the mPFC and to regulate behavioral performance on a mPFC-dependent task46.

It is thus highly feasible that prefrontal miRNAs could represent a significant link between early adolescent 
exposure to HFD and prefrontal-dependent cognitive dysfunctions, although such hypothesis has not been exam-
ined yet. We thus set out to identify global miRNA mapping within the mPFC in mice exposed to HFD since 
adolescence using high–throughput screening. We also used global pathway analyses of predicted miRNA targets 
with the aim of identifying novel biological pathways putatively affected by adolescent HFD. Finally, we validated 
these analyses using qPCR to confirm the emergence of miRNA-relevant gene expression changes within a top 
predicted biological pathway, namely Axon Guidance.

Materials and Methods
Animals. C57BL/6 N mice were used throughout the study. C57BL/6 N male and female breeding pairs 
obtained from Charles River (Sulzfeld, Germany) were maintained in our animal facility to generate a sufficient 
number of animals for the different experimental series. All animals were kept in groups (2–3 per cage) in a tem-
perature- and humidity-controlled (21 ± 1 °C, 55 ± 5%) vivarium under a reversed light–dark cycle (lights off: 
0800 to 2000h). Only male mice were included in all experiments to avoid potential confounds arising from sex-
ual dimorphism. All procedures were approved by the Cantonal Veterinary Office of Zurich and are in agreement 
with the principles of laboratory animal care in the Guide for the Care and Use of Laboratory Animals (National 
Institutes of Health Publication No. 86–23, revised 1985).

Chronic HFD and CD feeding. Experimental diets included a HFD consisting of 60% of calories from fat 
or a control diet (CD) composed of 10% of calories from fat (SSNIFF Diets, Germany). Diets and water were 
always accessible ad libitum throughout all experiments. Mice had access to HFD or CD starting from postnatal 
day (PND) 28 for 8 weeks, and body weights were measured throughout. Hence, animals were exposed to HFD 
or CD throughout adolescent development, covering pre-pubertal and post-pubertal stages of maturation7 (for 
more detail see Supplementary Information).

Four cohorts of mice were included in the study: experimental series 1 (Cohorts 1 and 2) aimed at assess-
ing behavioral phenotypes of HFD and control mice, while experimental series 2 (Cohort 3) and 3 (Cohort 4) 
determined changes of miRNA expression, and gene expression, respectively, in naïve animals so as to avoid the 
possible confounding effects of repeated behavioral testing. Behavioral and molecular analyses were conducted 
in adulthood.

Spatial working memory in the Y-maze. Working memory is a special short-term memory buffer used 
to hold relevant information temporarily active in order to guide on-going behavior48. The Y-maze apparatus has 
been extensively described previously28, and the test procedure is described in the Supplementary Information.

Discrimination reversal learning in the water T-maze. The apparatus and the test procedure are 
described in detail in the Supplementary Information.

Briefly, during the acquisition training, the animals were required to learn to discriminate the left and right 
goal arms, with only one of them leading to an escape platform hidden at the far end (right arm for half of the 
animals; left arm for the other half). A first habituation session was then followed by 6 trials per day sessions, 
conducted at an intertrial interval of 5 min. Acquisition training continued until an animal had reached criterion 
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performance of 10 correct responses across 2 consecutive days (i.e., 10 correct out of 12 trials). Upon reaching 
the acquisition criterion, the location of the platform was moved to the other, previously incorrect, arm to assess 
reversal learning. Reversal training continued until an animal reached criterion performance once again. The per-
centage of correct arm choices and the errors to criterion were recorded manually and calculated for each animal 
during acquisition and reversal training.

RNA Purification. Animals from Cohort 2 were sacrificed after an 8-week exposure to HFD or CD. Brains 
were immediately extracted from the skull and placed dorsal side up on an ice-chilled plate. The medial PFC was 
dissected as previously established and fully described elsewhere49. Analyses were performed on mPFC tissue 
(Bregma: +2.3 to +1.3) that included both hemispheres of anterior cingulate, prelimbic, and infralimbic subre-
gions. Brain specimens were collected in 96-well microtiter plates kept on dry ice and allowed to freeze before 
storage at −80 °C until further use.

Total RNA was isolated using the Qiagen miRNeasy Mini kit (Qiagen, Italy) according to the manufacturer’s 
instructions, and quantified by spectrophotometric analysis. An aliquot of each sample was then treated with 
DNase to avoid DNA contamination. The Qiagen miRNeasy Mini kit is optimized for isolating total RNA, includ-
ing all RNA molecules from 18 nucleotides upwards (miRNAs).

Genome wide microarray analyses of prefrontal miRNAs. Whole genome microRNA analysis (GEO 
accession number GSE105794) was performed using the Flash Tag Biotin HSR RNA Labeling kit (Affymetrix, 
Italy), and the miRNA 4.1 array strips (Affymetrix), according to the manufacturer’s protocol. After hybridization, 
each strip was washed using the Affymetrix Fluidics Station and then scanned in the Affymetrix Imaging station 
to obtain. CEL files that were then used for further bioinformatics analyses. Affymetrix CEL files were imported 
into Partek Genomics Suite version 6.6 for data visualization, statistical testing and quality control assessment. All 
the samples passed the quality criteria for hybridization controls, labeling controls and 3′/5′ Metrics. Background 
correction was conducted using Robust Multi-strip Average (RMA)50 and normalization was conducted using 
Quantiles Normalization51. Subsequently, a summarization step was conducted using a linear median polish algo-
rithm52 to integrate probe intensities in order to compute the expression levels for each gene transcript.

Statistical analyses were performed using the Robust MultiChip Average ANOVA statistical test to assess treat-
ment effects. Differential miRNA expression was assessed by applying a p-value filter (for attribute) of p < 0.05 
to the ANOVA results. To investigate the effect of HFD, we performed a linear contrast between HFD vs. CD. In 
this comparison, a maximum filter of p < 0.05 and a minimum absolute fold change cut-off of 1.2 was applied. All 
pre-miRNAs (i.e. immature forms of miRNAs) were excluded from further analysis. This yielded 38 dysregulated 
miRNAs.

Bioinformatics analyses. In order to identify the potential gene targets of single miRNAs that were 
observed to be differentially expressed in HFD vs. CD, two different bioinformatics databases were used jointly: 
TargetScanMouse (www.targetscan.org) and miRWalk, (www.umm.uni-heidelberg.de/apps/zmf/mirwalk). As 
the different bioinformatics tools identified different target genes for each miRNA, we performed an overlap of 
the results obtained by TargetScan and miRwalk for each selected miRNA, which yielded a list of predicted targets 
that were identified by both TargetScan and miRwalk. MiRNAs that were not annotated in these two databases 
were excluded from further pathway analysis, yielding a predicted target list for 9 final miRNAs. We then per-
formed single miRNA pathway analysis (using the predicted target gene list identified above by TargetScan and 
miRWalk) with Ingenuity Pathway Analysis software (Ingenuity Systems, www.ingenuity.com).

In addition, top canonical pathways predicted to be affected by the combinatory of all significantly dysregu-
lated (and annotated) miRNAs (N.B. mir-129b was excluded from this analysis, because it was not annotated in 
mirPath) were assessed with mirPath software (DIANA TOOLS, 2014)53.

Validation of regulated miRNAs by qRT-PCR. Affymetrix results were validated by perform-
ing qRT-PCR on selected candidate miRNAs. cDNA was synthesized by using 10 ng of total RNA with 
TaqMan-specific RT primers (TaqMan MicroRNA Assay, Applied Biosystems) and a TaqMan miRNA reverse 
transcription kit (Applied Biosystems) according to the manufacturers’ instructions. Thereafter, quantitative 
real-time PCR was performed using predesigned assays (TaqMan MicroRNA Assays - Applied Biosystems). PCR 
reactions were performed as follows: 50 °C for 2 minutes, 95 °C for 10 minutes, followed by 40 cycles of 95 °C for 
15 seconds and 60 °C for 1 minute. Relative target gene expression was calculated according to the 2(-Delta Delta 
C(T)) method, using RnU6 as internal standard. The samples and standard curves were analyzed in triplicate. 
miRNA fold change data obtained by qRT-PCR was then correlated against miRNA fold change obtained by 
microarray on a selected 9 miRNAs that included both upregulated and downregulated miRNAs.

Luciferase assay. The reporter plasmid was constructed by inserting Ephrin A3 (EFNA3) mRNA 3′UTR 
(NM_010108.1) downstream of the Firefly luciferase gene in the pEZX-MT06 vector (GeneCopoeia, Rockville, 
USA). HEK293T or HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 
10% fetal bovine serum (FBS) and Pen-Strep 1x (Gibco) and plated 24 h before transfection in 96-well plates 
at 10e5 cells/well. Cells were transfected with 100 ng of pEZX-MT06/EFNA3-3′UTR or pEZX-MT06 and 10 
pmol of mir-30e-5p (#4464066) and negative control (#4464058) miRNAs mimics (mirVana™, Life Technologies, 
Zug, Switzerland) per well using Lipofectamine RNAiMAX reagent (Invitrogen) according to the manufacturer’s 
instructions. Two wells of each specific condition were transfected to obtain a mean luciferase activity. All the 
experiments were performed in triplicate (3 assays for HEK293T and 3 assays for HeLa cells). Luciferase activ-
ity was measured 24 h after transfection using the Luc-Pair Duo-Luciferase Assay Kit 2.0 (GeneCopoeia) in a 
Luminometer (Dynex Magellan Biosciences) according to the manufacturer’s instructions. Normalization of the 
data included two sequential steps. (1) normalization of Firefly luciferase activity to Renilla luciferase activity 

http://www.targetscan.org
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(transfection control); (2) normalization against (a) the cellular effects (e.g., RNA binding proteins, endogenous 
miRNAs, etc.) on luciferase activity and (b) against the exogenous effects of mir-30e-5p on the luciferase coding 
sequences (see Supplementary Methods for more details and54.

Quantitative Real-Time RT-PCR Analyses. mRNA levels of specific genes from the Axon Guidance 
pathway were quantified by SYBR Green qRT-PCR (CFX384 real-time system, Bio-Rad Laboratories) using the 
SsoAdvanced Universal SYBR Green supermix (Bio-Rad Laboratories), following retrotranscription with the 
iScript cDNA synthesis kit (Bio-Rad Laboratories), as described in the Supplementary Information.

Statistical analyses. All data were analyzed by Student’s t tests or by parametric analysis of variance 
(ANOVA) followed by Fisher’s least significant difference (LSD) post-hoc comparisons whenever appropriate. 
Statistical significance was set at p < 0.05. All statistical analyses were performed using the statistical software 
StatView (version 5.0), unless otherwise specified.

In the first experimental series (cohort 1), percent time in the novel arm was analyzed using an independent 
Student’s t test (two-tailed). Percent correct trials in the acquisition phase of the T-maze, and in the reversal 
phase, were analyzed using a 2 × 4 (diet × days) parametric ANOVA and 2 × 6 (diet × days) parametric ANOVA, 
respectively.

In the second experimental series (cohort 2), fold change in miRNA levels obtained by microarray data was 
analyzed using an overall ANOVA within the Affymetrix software, as described in the previous paragraph. Fold 
change in mir-30e-5p levels obtained by qRT-PCR analyses was analyzed using a Student’s t test (two-tailed). 
Correlative analyses between mean fold change obtained by qRT-PCR and miRNA fold change obtained by 
microarray were performed using Pearson’s product moment correlations on 9 selected miRNAs. The luciferase 
gene reporter assay was analyzed using a one-sample t-test to determine whether percent change in luciferase 
activity due to mir-30e-5p/EFNA3-3′UTR was significantly different from zero.

In the third experimental series (cohort 3), relative gene expression of each target gene was analyzed using a 
repeated measures 2 × 8 (diet × genes) ANOVA followed by a priori post-hoc comparisons.

Data availability. The datasets pertaining to the miRNA profiling of the prefrontal cortex are available in the 
GEO repository (accession number GSE105794). The remaining datasets are available from the corresponding 
author on request.

Results
Chronic HFD throughout adolescence leads to cognitive disturbances. As expected, chronic HFD 
led to an increase in body weight over time compared to control CD animals, as indicated by a significant effect 
of diet following 8 weeks on CD or HFD (F(1,28) = 11.33, p < 0.01), following a significant interaction between 
time and diet (F(2,56) = 6.77, p < 0.01) (Cohorts 3 and 4) (Fig. 1a). We then investigated the effects of HFD on 
different cognitive paradigms that depend on the integrity of the mPFC. Spatial novelty recognition memory 
in the Y-maze is a behavioral test that uses the natural tendency of rodents to explore novel over familiar spa-
tial environments and that relies on (dorsal) hippocampal55,56 and prefrontal57–60 circuits. As shown in Fig. 1b, 
HFD throughout adolescence disrupted novel recognition as indexed by the percent time spent in the novel arm 
(t(13) = 8.96, p < 0.05). Whilst CD control offspring exhibited a score of ∼51%, the recognition score of HFD-fed 
mice fell close to chance level (39%). These effects were not confounded by potential changes in locomotor activ-
ity, as total distance moved was unchanged by HFD (sample phase) (Fig. 1b).

We then tested the effects of HFD on discrimination reversal learning, a behavioral task that is known to be 
highly dependent on prefrontal cortex functioning61–63. No changes in performance were detected in the acqui-
sition phase of the test, in which percent correct trials and total errors to criterion were similar in both treat-
ment groups. A significant impairment in discrimination reversal learning was however detected in HFD vs. CD 
mice, as revealed by a main effect of diet (F(1,13) = 5.83, p < 0.05) as well as a significant diet × trial interaction 
(F(6,78) = 2.34, p < 0.05). Post-hoc comparisons confirmed that performance of HFD animals was decreased on 
the second trial of the reversal learning phase (F(1,13) = 5.39, p < 0.05) with a trend on the third trial (F(1,13) = 4.37, 
p = 0.057). This was further corroborated by the presence of a significant difference in the total errors to criterion 
between CD and HFD mice during the reversal phase of the test (t(13) = 5.83, p < 0.05) (Fig. 1c).

Cognitive deficits after adolescent HFD associate with changes in the expression of miRNAs in 
the prefrontal cortex. Next, we used genome wide assessment of miRNA expression in order to identify 
possible alterations in miRNA levels after chronic adolescent HFD. As listed in Table 1, we identified 38 mature 
miRNAs that were differentially expressed in the mPFC (fold change cutoff: ±1.2%; p < 0.05), including 22 signif-
icantly downregulated and 16 upregulated miRNAs. Figure 2a shows hierarchical clustering of miRNA expression 
changes induced by HFD.

We validated microarray results using qRT-PCR on 9 selected miRNAs that spanned expression fold change 
levels from 0.3 to 1.5. Pearson’s product-moment correlations revealed a highly significant positive correlation 
between miRNA fold changes obtained by qRT-PCR and by microarray (r = 0.97, df = 7), n = 9, p < 0.001), thus 
providing statistical confirmation for the validity of the microarray results (Fig. 2b).

Adolescent HFD reduces the expression of mir-30e-5p, a miRNA with predicted gene targets 
involved in axon guidance and cognition. In order to identify the potential gene targets of single miR-
NAs we found to be differentially expressed in HFD vs CD, we performed an overlap of two different bioinfor-
matics databases jointly: TargetScanMouse and miRWalk, that yielded a predicted target list (Supplementary 
Table 2) derived from the overlap of those gene lists for each miRNA that was annotated in both softwares. We 
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then performed single miRNA Ingenuity Pathway Analysis (IPA) generating a canonical pathway analysis for 
each miRNA (data not shown).

Among the miRNAs that we analyzed, miR-30e-5p was particularly interesting when considering the association 
between HFD and cognition. Both microarray (Fig. 2a, see MIMAT0000248) and qRT-PCR (Fig. 3a, F(1,10) = 5.75, 
p < 0.05) analyses revealed that miR-30e-5p was significantly downregulated by adolescent HFD. Among the top-5 
significant canonical pathways revealed by IPA analysis, 3 were related to neuronal functions, namely Axon guid-
ance Signaling, Insulin Growth-Factor 1 (IGF 1) Signaling and Nerve Growth-Factor (NGF) Signaling (Table 2). We 
first aimed at providing a proof-of-principle validation for the predicted targets of miR-30e-5p. We performed a 
luciferase gene reporter assay so as to evaluate the effects of miR-30e-5p on the expression of Ephrin A3 (EFNA3), 
an axon guidance molecule. We focused on EFNA3 because it was one of three axon guidance genes (top-1 canon-
ical pathway) that was a predicted target of mir-30e-5p. The EFNA3 molecule itself also has a demonstrated role in 
cognition and behavior based on previous studies64,65 and regulation of EFNA3 expression is known to depend on 
microRNA-mediated mechanisms66. We found that mir-30e-5p led to a significant downregulation of the EFNA3 
gene found in both HEK cells and HeLa cells (t(2) = 9.55, p < 0.05 and t(2) = 5.42, p < 0.05); Fig. 3b and Supplementary 
Table 3), thus in line with the predictions of the bioinformatics analyses.

Furthermore, when further investigating IPA analysis for miR-30e-5p, we found that, although there is no 
functional evidence in the literature or experimental data regarding the correlation between miR-30e-5p and 
cognition, IPA reported ‘behavior’ as the second top biological function affected by the targets of miR-30e-5p 
(Table 2). Further detailed analysis of individual functions belonging to the behavioral network indicated that tar-
gets of miR-30e-5p are significantly implicated in cognition and learning and memory functions. Moreover, the 
IPA software indicated miR-30e-5p as the first upstream regulator of target-genes implicated in cognition (“IPA 
cognition network”), as 60 genes (out of 63) from the IPA cognition network were predicted target molecules of 
miR-30e-5p. Predicted targets of miR-30e-5p, which also belong to the cognition network, are reported in Fig. 3c. 
MiR-30e-5p thus represents a very interesting miRNA that might be implicated in some of the cognitive deficits 
induced by adolescent HFD.

Figure 1. Cognitive effects of adolescent high fat diet (HFD). (a) Body weight of HFD and low fat diet (CD) 
animals at postnatal (P) day 28 (start of HFD), 56 and 84. **p < 0.01 at P84 by post-hoc comparison following 
significant time x diet interaction (*p < 0.01). n = 15 per diet (b) Left panel: Working memory indexed by the 
percent time spent in the novel arm during a Y-maze spatial recognition test. *p < 0.05, based on a Student’s 
t-test analysis. Right panel: Locomotor activity indexed by the total distance moved in Phase 1 of the test. 
n = 6–8 per diet (c) Cognitive flexibility assessed in a water T-maze left-right discrimination task. Left panel: 
Number of percent correct trials during the acquisition and reversal phase. *p < 0.05 indicating a main effect of 
diet in the reversal phase; #p < 0.05 on trial 2 of the reversal phase, based on Fisher’s LSD post-hoc comparisons 
following the presence of a significant diet × trial interaction (p < 0.05). Right panel: Total errors to criterion 
in the two phases. *p < 0.05 indicating a main effect of diet in the reversal phase. n = 7–8 per diet. All data are 
means ± S.E.M.
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Global pathways analysis of all HFD-regulated miRNAs identifies biological pathways involved 
in brain related functions. To further identify biological events putatively affected by global miRNome 
changes after adolescent HFD, we used mirPath software (DIANA TOOLS) (Vlachos et al.53) on a combinatory 
of all significantly dysregulated miRNAs. To this purpose, only annotated miRNAs (i.e. miRNAs with known 
targets) were used and included 23 different miRNAs as listed in Supplementary Table 4. Such analysis allowed 
the identification of the top 20 canonical pathways predicted to be affected by HFD via miRNAs-related mech-
anisms, as shown in Table 3. Different disease-related pathways (particularly cancer-related) that are composed 
of a number of more specific signaling pathways were omitted from the pathway list as performed by others67, 
to avoid any bias in the interpretation of pathway analyses. Interestingly, Axon guidance (p = 1.3 E-25) yielded 
the highest score, with 51 genes in the pathway being potential targets of the listed miRNAs. Pathways with 
important roles for central nervous system (CNS) such as intracellular signaling (mTOR Signaling, PI3K-Akt 
Signaling, MAPK Signaling, Neurotrophin Signaling, Wnt Signaling), assembly and organization of nervous tissue 
(e.g., Regulation of Actin Cytoskeleton, Focal Adhesion, Gap Junction) and glutamatergic-related synaptic signaling 

Accession Number Transcript ID p-value Fold-Change (HFD vs. CD)

Significantly upregulated miRNAs - n = 16

MIMAT0027855 mmu-miR-6976–3p 0.0429968 1.20323

MIMAT0025165 mmu-miR-6412 0.0423496 1.20987

MIMAT0020627 mmu-miR-5119 0.0296401 1.21053

MIMAT0025117 mmu-miR-6373 0.0136909 1.21548

MIMAT0003170 mmu-miR-541-5p 0.0324367 1.21786

MIMAT0000748 mmu-miR-383-5p 0.0117387 1.22856

MIMAT0004628 mmu-miR-21a-3p 0.0281818 1.25431

MIMAT0029871 mmu-miR-7678-3p 0.0202582 1.25933

MIMAT0031418 mmu-miR-8112 0.0389069 1.26337

MIMAT0001420 mmu-miR-433-3p 0.0145485 1.27067

MIMAT0004826 mmu-miR-146b-3p 0.0128916 1.27534

MIMAT0027709 mmu-miR-6904-3p 0.0035105 1.30778

MIMAT0025146 mmu-miR-6395 0.0411032 1.32443

MIMAT0003452 mmu-miR-678 0.0369783 1.32879

MIMAT0017275 mmu-miR-467c-3p 0.0260913 1.41821

MIMAT0017052 mmu-miR-210-5p 0.0311217 1.51463

Significantly downregulated miRNAs - n = 22 (1/2)

MIMAT0001632 mmu-miR-451a 0.00716281 −1.73801

MIMAT0017281 mmu-miR-511-3p 0.0232533 −1.67302

MIMAT0029863 mmu-miR-129b-3p 0.032611 −1.64229

MIMAT0014928 mmu-miR-344c-3p 0.0336578 −1.58691

MIMAT0017209 mmu-miR-541-3p 0.0216328 −1.53285

MIMAT0003469 mmu-miR-690 0.00618111 −1.52981

MIMAT0027718 mmu-miR-6909-5p 0.0147535 −1.46981

MIMAT0017040 mmu-miR-350-5p 0.0245193 −1.34234

MIMAT0014864 mmu-miR-3078-5p 0.0416764 −1.33395

Significantly downregulated miRNAs (2/2)

MIMAT0003485 mmu-miR-455-5p 0.00250818 −1.31711

MIMAT0004850 mmu-miR-883b-5p 0.0340633 −1.31545

MIMAT0027804 mmu-miR-6952-5p 0.0158051 −1.30762

MIMAT0027800 mmu-miR-6950-5p 0.0299551 −1.29758

MIMAT0025131 mmu-miR-6385 0.0406697 −1.283

MIMAT0017210 mmu-miR-547-5p 0.0313436 −1.26247

MIMAT0000648 mmu-miR-10a-5p 0.0437868 −1.25814

MIMAT0016988 mmu-miR-144-5p 0.0121198 −1.25327

MIMAT0027813 mmu-miR-6956-3p 0.00668782 −1.25066

MIMAT0027882 mmu-miR-6990-5p 0.0367154 −1.24339

MIMAT0029903 mmu-miR-7687-3p 0.0348489 −1.23791

MIMAT0028072 mmu-miR-7083-5p 0.0130252 −1.22978

MIMAT0000248 mmu-miR-30e-5p 0.0303815 −1.20456

Table 1. List of significantly affected miRNAs in the PFC induced by adolescent high fat diet (HFD) treatment 
using a genome wide assessment of miRNA expression by Affymetrix microarray. Using a fold change cutoff 
value of ±1.2% and a p-value cut-off value of p < 0.05, 38 mature miRNAs were identified as being differentially 
expressed in the PFC. n = 6 per dietary treatment.
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(Long-Term Depression, Glutamatergic Synapse) resulted as the most significant. Finally, pathway analysis also 
included immune-related pathways (T-cell Receptor Signaling, TGF-beta Signaling, B-cell Receptor Signaling) 
and pathways related to protein processing (Ubiquitin Mediated Proteolysis, Protein Processing in Endoplasmic 
Reticulum) (see Table 3).

Gene expression analyses confirm downregulation of Axon guidance molecules by adolescent 
HFD. To provide experimental validation for our bioinformatics analyses, we then decided to evaluate whether 
the expression levels of genes involved in Axon Guidance signaling, which resulted to be the most significant 
pathway affected by the modulated miRNAs, were indeed affected by HFD. To do so, we performed qRT-PCR on 
prefrontal tissue of HFD and CD animals on selected genes involved in this pathway.

As outlined in Supplementary Table 5, 15 miRNAs altered by HFD had one or several mRNA targets within 
the Axon guidance pathway, totaling up to 51 genes within this pathway. To this end, we chose to analyze Axon 
guidance target genes predicted by our miRNA target analyses (DIANA tools) (represented in Supplementary 
Figure 1). We focused our analyses on Semaphorins and Ephrins (including Ephrin receptors), as these Axon 
guidance families were both strong targets predicted by the pathway analyses. A repeated-measures ANOVA 
over all target genes first confirmed a global impact of HFD on Axon guidance gene expression, illustrated by a 
significant main effect of diet (F(1,16) = 16.56, p < 0.001) but no significant diet × gene interaction. Using a priori 
post-hoc analyses to identify which genes were specifically affected, we found that Ephrin A3 (F(1,16) = 10.05, 
p < 0.01), Ephrin B2 (F(1,16) = 16.98, p < 0.001), Semaphorin 4B (F(1,16) = 11.03, p < 0.01), Semaphorin 6D 
(F(1,16) = 15.35, p < 0.01) and Semaphorin 7A (F(1,16) = 5.26, p < 0.05) were significantly downregulated by HFD 
as compared to controls by an average 15%, while Ephrin Receptor A7, Ephrin Receptor B2 and Semaphorin 3A 
remained unaffected by the manipulation (Fig. 4). These analyses thus provide a proof of concept to suggest that 
miRNAs significantly affected by HFD may have a functional impact on gene expression, through a downregula-
tion of some, but not all, genes within the Axon guidance pathway.

Discussion
Despite the well-established effects of HFD on higher-order cognition68, studies had thus far essentially focused 
on the hippocampus, whereas the effects on the mPFC remained less well understood. Recent work, however, has 
shown that HFD can indeed affect various forms of cognitive functions that depend on the mPFC27–31. In particu-
lar, these studies have shown remarkable effects when HFD begins during adolescence, thus emphasizing that the 
maturing mPFC is particularly sensitive to such dietary treatments. Interestingly, these investigations have shown 
that HFD can affect a variety of synaptic and cellular functions within the mPFC, including interneuron function 
and glutamatergic neurotransmission and plasticity; yet changes at the molecular level within the mPFC remain 
thus far poorly characterized. In particular, given the functional changes induced by HFD within the mPFC, it 
would be important to identify potential regulatory mechanisms underlying such changes at the transcriptional 
level.

The present study first confirmed that chronic HFD consumption throughout adolescent development in mice 
leads to marked abnormalities in a number of cognitive tasks that are partly dependent on prefrontal functioning 

Figure 2. Hierarchical clustering of significantly regulated miRNAs in the PFC in adolescent high fat diet 
(HFD)- and low fat diet (CD)-treated mice and qRT-PCR validation. (a) Hierarchical clustering diagram 
revealing significantly regulated miRNAs using a genome wide assessment of miRNA expression by Affymetrix 
microarray; the analysis comprised all mature miRNAs presented in Table 1, and which were identified 
using a fold change cut-off value of ±1.2% and a p-value cut-off value of p < 0.05. This analysis included 38 
mature miRNAs: 16 significantly upregulated and 22 downregulated miRNAs. (b) Pearson’s product moment 
correlations revealing a highly significant positive correlation between miRNA fold changes obtained by qRT-
PCR and by microarray (r = 0.97, df = 7, p < 0.001) on a selected 9 miRNAs that spanned expression fold 
change levels from 0.3 to 1.5, thus providing statistical confirmation for the validity of microarray results. n = 6 
per diet.
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such as working memory and discrimination reversal learning. Our study then aimed at assessing potential 
changes within the prefrontal miRNome induced by HFD feeding, as miRNAs represent important transcrip-
tional regulators39,40, which could potentially link HFD exposure, mPFC gene expression and, eventually, cog-
nitive dysfunctions. In this study, we provide for the first time a global miRNA profiling of the mPFC induced 
by HFD feeding, showing that HFD leads to an overall remodeling of the prefrontal miRNome. Our study thus 
substantially extends previous reports by identifying a potential novel mechanism involved in the development 
of HFD-induced cognitive dysfunctions. MiRNAs are small 22-nucleotide non-coding RNAs that mediate 
post-transcriptional silencing of gene expression in a sequence specific manner. The capacity of single miRNAs to 
target different mRNAs makes them essential regulators of a variety of cellular functions41. Importantly, miRNAs 
represent critical mediators of a number of synaptic events such as dendritic subcellular localization, arborization 
and synapse formation and maturation42–44 that in turn are essential for information processing during cognitive 
tasks45,46. MiRNAs have also been identified as key epigenetic molecules that can translate environmental dis-
turbances into lasting changes in cellular expression levels, as has been shown in a number of studies involving 

Figure 3. Targets and expression regulation of mir-30e-5p in the PFC induced by adolescent high fat 
diet (HFD) (a) Downregulation of mir-30e-5p expression levels, illustrated by the significantly reduced 
2(-Delta(C(T)) values and revealed by a Student’s t-test analysis: *p < 0.05. n = 6 per diet. (b) Luciferase reporter 
gene assay using mir-30e-5p and EFNA3 3′UTR. Mir-30e-5p leads to a downregulation of EFNA3 (average 
12% reduction in normalized luciferase activity. *P < 0.05, based on a one-sample t-test in HEK and in HeLa 
cells assessing difference of the mean from zero. 2 biological replicates/assay (6 assays). (c) Overlap analysis of 
mir-30e-5p molecular targets and genes belonging to the Ingenuity Pathway Analysis (IPA) ‘cognition’ network, 
revealing that miR-30e-5p is the first upstream regulator of the IPA ‘cognition’ network (60 genes out of 63).
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adolescent exposure to alcohol or cannabis69,70. Our results are thus in line with the current understanding that 
miRNAs could represent important cellular nodes that modulate gene expression following early life events to 
generate anomalies in cognitive functioning.

Although we did not investigate the cognitive implication of miRNA changes after HFD, we identify a number 
of miRNAs as potential targets for future studies. Of the 38 significantly affected miRNAs (Table 1 and Fig. 2a), 
mir30e-5p, mir-433-3p and mir-690 are particularly interesting because they are predicted regulators of three 
biological pathways with essential roles for proper neural functioning, namely Axon guidance, Ephrin Receptor 
Signaling and Neurotrophin Signaling. In particular, given its strong (predicted) capacity to regulate the expres-
sion of numerous genes implicated in cognition (see Fig. 3), mir-30e-5p emerges as one of the most interesting 
candidate regulators of gene expression and cognitive function after HFD exposure. Interestingly, mir-30e-5p 
was shown to be similarly down-regulated in an animal model of temporal lobe epilepsy71, whereas mir-30e-5p 
precursor variants were shown to associate with schizophrenia72,73, supporting the relevance of this miRNA for 
neurological and neuropsychiatric disease. Examining the functional role of mir-30e-5p in the emergence of 
HFD-induced cognitive abnormalities would thus represent an interesting extension of the present study and 
a potential promising avenue for the understanding of cognitive deficits in diseases with prefrontal anomalies.

Furthermore, our study delineates molecular pathways putatively affected by miRNA events, some of which 
are critically involved in cognitive function. Notably, our results indicate that Axon guidance is the top-1 pre-
dicted pathway targeted by miRNAs after HFD. Importantly, we also identified multiple gene expression changes 
within Axon guidance molecules, in particular ephrins and semaphorins, thus providing proof-of-concept data 
suggesting that individual miRNA molecules affected by HFD may have functional effects on gene expression. We 
also provided a direct validation that mir-30e-5p (mentioned above) downregulates one of its predicted targets 
within the axon guidance pathway: Ephrin A3. Of note when looking at gene expression changes in the mouse 
mPFC after HFD, we find that although mir-30e-5p expression is reduced (Fig. 3a), EFNA3 expression is also 
reduced (Fig. 4), even though EFNA3 expression was downregulated by mir-30e-5p in a luciferase cell culture 
assay. However this seeming contradiction can easily be explained by the fact that multiple miRNAs can regulate 
the expression of one given mRNA molecule74. Also, it is important to remember that other mechanisms are 
likely to be involved in gene expression regulation in the in-vivo setting including DNA methylation and histone 
modifications75,76.

Name p-Value # Molecules

Canonical Pathways

Axon guidance Signaling 3.88E-11 57/432

IGF-1 Signaling 1.66E-06 18/97

NGF Signaling 2.73E-05 17/107

PKCΘ Signaling in T Lymphocytes 2.82E-05 18/118

Cardiac Hypertrophy Signaling 7.11E-05 26/223

Diseases and Disorders

Cancer 1.91E-24−4.60E-04 809

Gastrointestinal Disease 1.61E-17−4.59E-04 425

Organismal Injury and Abnormalities 6.23E-11−4.59E-04 419

Reproductive System Disease 6.23E-11−4.01E-04 360

Neurological Disease 3.32E-09–4.79E-04 288

Physiological System Development and Function

Organismal Survival 2.77E-21–4.85E-04 278

Behavior* 2.25E-15–3.08E-04 141

Nervous System Development and Function 4.41E-15–4.75E-04 277

Tissue Development 4.41E-15–4.75E-04 361

Organismal Development 7.60E-15–4.75E-04 258

*Behavior: Top affected functions

SubCategories Diseases or Functions 
Annotation p-Value

Behavior Behavior 2.25E-15

Behavior Cognition 2.62E-11

Behavior Learning 2.67E-10

Behavior, Nervous System Development and Function Memory 5.40E-09

Table 2. Ingenuity Pathway Analysis (IPA) for mir-30e-5p, a significantly downregulated miRNA in the 
PFC induced by adolescent high fat diet (HFD). IPA analysis: (i) revealed a significant connection between 
the predicted targets of miR-30e-5p and three neuronal-related pathways, namely Axon guidance Signaling, 
IGF-1 Signaling and NGF Signaling, (ii) reported ‘behavior’ as the second top biological function affected 
by the targets of miR-30e-5p, (iii) indicated that targets of miR-30e-5p are implicated in cognition, learning 
and memory functions and (iv) revealed that miR-30e-5p is the first upstream regulator of the IPA cognition 
network by which 60 genes (out of 63) are predicted target molecules of miR-30e-5p (targets detailed in Fig. 3).
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Axon guidance is a tightly regulated process that allows the correct pathfinding of axons during development. 
The majority of Axon guidance events converge during embryonic and early neonatal life77. Nevertheless, Axon 
guidance molecules such as ephrins, semaphorins, slits, netrins and a number of extracellular-matrix (ECM) 
proteins are also found in the adult brain, where they seem to play essential roles in synaptic plasticity, glutama-
tergic signaling, neuroadaptation78–80 or learning and memory functions81,82. Recent work has also shown that 
axon guidance molecules contribute to brain maturation during adolescence, in particular within the mPFC5,83,84. 
Importantly, emerging evidence suggests that axon guidance molecules may also be implicated in the reorgani-
zation of the brain after environmental disturbances such as exposure to drugs of abuse, brain injury83,85–87, and 
now HFD. Interestingly, Axon guidance was selected as one of the top canonical pathways in similar miRNA 
microarray studies involving animal models of temporal-lobe epilepsy67 or Alzheimer’s disease88. Our study thus 
extends such reports, indicating that Axon guidance might also play a role in the regulation of prefrontal function 
by HFD treatments through the involvement of miRNA mechanisms. Future studies are certainly warranted to 
address such possibilities.

The second top canonical pathway identified by our pathway analyses is the mTOR signaling pathway, a bio-
logical pathway involved in the coupling of nutrients and hormones with the regulation of energy-demanding 
cellular functions89. Interestingly, HFD has been shown previously to modulate hippocampal and cortical mTOR 
signaling90,91. In the brain, the mTOR pathway is known to play a role in the regulation of synaptic plasticity and 
cognitive functions89,92. Based on our findings, future studies are therefore warranted to determine a possible link 
between HFD, miRNAs, and mTOR signaling.

Moreover, our analyses implicate miRNAs in modulating canonical pathways with known roles in neural 
and cognitive functions. Notably, two related glutamatergic pathways, namely Long-term Depression (LTD) and 
Glutamatergic Synapse, emerged from such analyses, consistent with previous studies identifying defects in gluta-
matergic neurotransmission and plasticity in the mPFC of HFD mice28.

Notably, the present results corroborate previous research delineating the effects of HFD on the miRNome 
of peripheral93 or hypothalamic94 tissues. We identify a number of similarities in the miRNA profiles of hypo-
thalamic and prefrontal tissue after HFD. For example, mir-30e was significantly affected by HFD in both brain 
regions. Moreover, biological pathways implicated in neurodevelopment such as Axon Guidance and Ephrin 
Receptor Signaling, as well as the PI3K/Akt and mTOR signaling pathways were commonly recognized as some of 
the top canonical events putatively affected by miRNAs in these models, suggesting that these cellular pathways 
might be particularly sensitive to miRNA-dependent signaling in CNS tissue after HFD.

Our present findings are also in line with other studies showing the impact of negative environmental events 
during adolescence on the prefrontal miRNome. In a study in mice exposed to cocaine during adolescence87, 
the authors identified similar changes in miRNAs regulating the Axon Guidance and Wnt signaling pathways95. 
Interestingly, both pathways are known to be involved in the development and maturation of the mPFC. Although 
speculative, all these studies together suggest that miRNAs, by affecting brain maturational processes, could 

# KEGG pathway p-value #genes #miRNAs

1 Axon guidance (mmu04360) 1.29E-25 51 15

2 mTOR signaling pathway (mmu04150) 7.44E-18 27 12

3 ErbB signaling pathway (mmu04012) 6.50E-13 31 11

4 T cell receptor signaling pathway (mmu04660) 2.86E-12 34 14

5 PI3K-Akt signaling pathway (mmu04151) 2.86E-12 79 15

6 Regulation of actin cytoskeleton (mmu04810) 1.11E-11 56 15

7 MAPK signaling pathway (mmu04010) 5.98E-10 62 17

8 Ubiquitin mediated proteolysis (mmu04120) 3.65E-09 39 13

9 Neurotrophin signaling pathway (mmu04722) 4.86E-09 34 14

10 Focal adhesion (mmu04510) 4.93E-09 49 15

11 Gap junction (mmu04540) 1.17E-07 23 11

12 TGF-beta signaling pathway (mmu04350) 1.93E-07 26 9

13 Aldosterone-regulated sodium reabsorption(mmu04960) 2.49E-07 14 8

14 B cell receptor signaling pathway (mmu04662) 2.49E-07 23 13

15 Long-term depression (mmu04730) 6.26E-07 19 9

16 Glutamatergic synapse (mmu04724) 1.22E-06 30 13

17 Wnt signaling pathway (mmu04310) 2.47E-06 38 16

18 Osteoclast differentiation (mmu04380) 2.75E-06 3 12

19 Protein processing in endoplasmic reticulum(mmu04141) 3.01E-06 39 17

20 Insulin signaling pathway (mmu04910) 3.78E-06 33 11

Table 3. DIANA Pathway Analysis of significantly regulated miRNAs in the PFC induced by adolescent high fat 
diet (HFD). Analysis was conducted using mirPath software (DIANA TOOLS) (Vlachos et al.53) whereby only 
annotated miRNAs were used. The 23 annotated miRNAs are listed in Supplementary Table 4. Such analysis 
allowed identifying the top 20 canonical pathways predicted to be affected by HFD via miRNA mechanisms. 
Different disease-related pathways (particularly cancer-related) were omitted.
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represent critical contributors to the emergence of behavioral and cognitive deficits following adolescent expo-
sure to environmental disruptors.

Admittedly, our study does not establish a direct causal link between the observed changes in the expression 
levels of miRNAs and cognitive abnormalities. Nonetheless, the use of available bioinformatic tools provided 
valuable insights and allowed us to speculate on potential biological networks possibly affected by miRNAs. 
Also, our luciferase gene reporter assay allowed to provide a proof-of-concept that at least some of the predic-
tions of our bioinformatics analyses are valid; i.e. we showed that EFNA3 is a target for miR-30e-5p. However, 
more targeted approaches to examine the functional contribution of individual miRNAs are clearly necessary to 
fully demonstrate the relevance of distinct miRNAs in the emergence of the cognitive deficits described herein. 
In addition, although beyond the scope of this study, it would be interesting to determine whether changes in 
miRNA expression and miRNA-regulated gene expression induced by HFD would (partly or fully) recover fol-
lowing a return to a regular diet, as recently suggested by others96.

The present study will be relevant to the clinical appreciation and treatment of cognitive dysfunctions in 
obesity and in populations that exhibit poor dietary habits, particularly given the dramatic rise in such phenom-
enon in the past decades97. Notably, our results may have broader implications that reach beyond one’s individ-
ual experience of feeding. Indeed, a number of recent studies have also revealed that the metabolic effects of 
HFD can be transmitted across generations98. Given that epigenetic transmission of behavioral traits are known 
to partly depend on mechanisms involving germ-line non-coding RNAs such as miRNAs99, the cognitive and 
miRNA effects of HFD described herein might potentially be transmitted to subsequent generations, although 
such hypothesis requires investigation.

In conclusion, our results provide the first experimental evidence for the existence of dysregulated prefrontal 
miRNA expression after HFD exposure and identify target biological pathways putatively affected by miRNAs 
that include essential neural functions such as Axon guidance. Although further functional studies are required, 
our findings draw attention to the potential involvement of miRNAs in the development of cognitive deficits, and 
their implications for obesity and for brain disorders with prefrontal components.
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