How do unanticipated discoveries of oil fields affect the oil price?

Author(s):
Leinert, Lisa

Publication Date:
2010-10

Permanent Link:
https://doi.org/10.3929/ethz-a-006184358

Rights / License:
In Copyright - Non-Commercial Use Permitted
How do unanticipated discoveries of oil fields affect the oil price?

L. Leinert

Working Paper 10/140
October 2010

Economics Working Paper Series
How do unanticipated discoveries of oil fields affect the oil price?

Lisa Leinert*

October 12, 2010

Abstract

The Hotelling rule argues that the price for a nonrenewable resource adjusts to the shadow value of the resource, reflecting the remaining availability of the resource. We empirically test the Hotelling rule on the effect of unanticipated oil field discoveries. We do not find evidence for a significant adjustment of the price of crude oil to news about greater resource availability and therefore conclude that the price for crude oil does not follow the theoretically optimal price path.

Keywords: Nonrenewable Resource, Oil Price, Exhaustible Resources, Information Acquisition

JEL Code: Q31, Q41, G14

*Swiss Federal Institute of Technology Zurich. Zurichbergstrasse 18, 8092 Zurich, Switzerland. Tel.: +41 (0) 44 632 8207. Fax: +41 (0) 44 632 13 62. Email: leinert@ethz.ch
1 Introduction

The welfare maximizing solution for extracting a nonrenewable resource by Hotelling (1931) requires two conditions to hold: First, the static efficiency condition claims that the value of extraction from the resource stock is equal to the shadow value. This price component reflects the opportunity cost of using one unit of the resource today rather than tomorrow and arises only due to the fact that the supply of the resource is finite. Second, the dynamic efficiency condition states that the optimally extracted quantity adjusts such that the shadow value increases at a rate of return comparable to an alternative investment.

Unanticipated discoveries of additional resource reservoirs change the current perception of scarcity and induce the often cited chain-saw pattern of resource prices (Dasgupta and Heal, 1979; Krautkraemer, 1998; Perman, 2003): the shadow value of the resource instantaneously drops, indicating the lower opportunity cost of using the unit today, ceteris paribus. The rate of increase in the shadow price, however, must not change as the rate of return from holding the alternative investment has not changed. Testing the Hotelling rule therefore reduces to testing whether a drop in the price of a nonrenewable resource on the day of an unanticipated discovery indeed takes place (Dasgupta and Heal, 1979). Such an example of using comparative statics to test the Hotelling rule avoids an error-prone reconstruction of the evolution of scarcity rent (Slade, 1982; Stollery, 1983; Farrow, 1985; Young, 1992).

The crucial step for our test is the identification of an unanticipated discovery. While expectations in the market are usually inferred from analyst forecasts, no such information exists on the likeliness and size of future oil field discoveries. We solve this problem by using stock price reactions of oil companies involved in the discovery process to learn about the degree of anticipation of an oil field finding in the market. The following identification mechanism is applied: If the stock price of an involved company shows an abnormal return to news about a discovery, the announcement contains new information. We conclude that the discovery has not been anticipated by market participants (Fama, 1970).

2 Empirical setup

2.1 Identifying the degree of unanticipation

We apply the event study methodology to identify the degree of anticipation in discovery announcements as it is the primary tool to test the value of
new information in markets. We determine the benchmark return following (Fama et al., 1969) and introduce dummy variables around discovery days to measure a significant deviation from the benchmark (Mckenzie et al., 2004). A significant estimate of the dummy variable coefficient is interpreted as an abnormal return. In detail, we estimate the following regression:

$$R_{k,t} = \alpha_k + \beta_k R_{mk,t} + \sum_{i=1}^{L_k} \gamma_{i,k} D_{i,k,t} + e_{k,t}. \quad (1)$$

R_t is the return at time t for the stock of company $k = 1, ..., K$. R_{mk} is the market index corresponding to the primary listing of the company stock. The dummy variable D_k takes the value of one on the discovery day of field i, denoted as $t = t_i^*$, if company k has participated in the discovery of field i and zero otherwise. L_k denotes the total amount of discoveries company k has participated in. The error term follows an AR(1) process with $e_{k,t} = \rho_k e_{k,t-1} + u_t$ where $u_t \sim N(0,1)$. α, β and γ are coefficients and are estimated with the GLS Prais-Winsten procedure (Greene, 2008).

Corporate media announcements of Giant oil field discoveries since 1990 are selected as events. Hook et al. (2009) notes that Giant oil fields are crucial for the worldwide supply of oil but are rarely found. The names of Giant oil fields were taken from Mann et al. (2007) and Halbouty (2003). We consider only those fields where at least one of the oil companies involved in the discovery is listed at any stock exchange in the world. The precise discovery day was determined as the day at which at least one of the involved companies officially announced the finding of the particular field. This announcement had to appear in Platt’s Oilgram News and in either the London Stock Exchange Aggregated Regulatory News Service or Thomson Financial News to ensure oil as well as stock market investors to have read the news. The announcement had to contain an estimate of the size of the field or a statement from which the finding of a Giant could be inferred. For 35 fields, it was possible to collect an announcement that satisfied the above criteria. A total of 38 publicly traded companies participated in the discovery of these fields. The stock price series for these companies are taken from datstream and consist of end-of-the-day data. As stock market indices, the country-specific Dow-Jones index series is used.

1 $R_t = ln(P_t) − ln(P_{t-1})$ with settlement price P.
2 As usual for event studies, we build an event window around the actual event:

$$D_{i,t} = \begin{cases}
1 & \text{if } t_i^* - 1 \leq t \leq t_i^* + 1 \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

3 Giant oil fields are defined to contain a minimum of 500 million barrels of ultimately recoverable barrels of oil.
Table 1 shows that 20 out of 35 fields have resulted in an abnormal return on the stock price of at least one involved company. Having identified these discoveries as unanticipated, we turn to estimating the existence of an abnormal return on the price of crude oil for these days.

2.2 Does the oil price drop on the day of unanticipated discoveries?

We determine the impact of unanticipated discovery announcements on the price of crude oil in two steps: First, we investigate whether the unanticipated discoveries have resulted in an abnormal return that is significantly different from zero on average. The following regression is estimated:

\[R_{j,t} = \alpha_j + \beta_j R_{m,t} + \gamma_j D_{j,t} + e_{j,t} \]

(3)

\(j \in [s, f] \) denotes the spot and futures price series, respectively. \(R_m \) is the commodity market index. The dummy variable \(D \) takes the value of one on any day that was identified as unanticipated in 2.1 and zero otherwise. The remaining model characteristics are as given in (1) and estimated using the GLS-Prais Winsten procedure (PW-GLS). As robustness check, a fixed effects model is estimated.

In a second step, equation (1) is re-run for the spot and futures price series of oil. As a robustness check, an AR(3)-model of the endogenous variable is estimated (ARMA):\(^4\)

\[R_{j,t} = \alpha_j + \beta_{1,j} R_{j,t-1} + \beta_{2,j} R_{j,t-2} + \beta_{3,j} R_{j,t-3} + \sum_{i=1}^{20} \gamma_{i,j} D_{i,j,t} + e_{j,t}. \]

(4)

The optimal lag length of three was determined using the varsoc command in Stata.

The results of the first step (Table 2) show that the average abnormal return on days of unanticipated discoveries is not significantly different from zero in any model specification: the coefficient of the dummy variable takes on values between 0.001 and 0.002. Thus, on average, we do not find a significant price movement for crude oil after discovery announcements.

\(^4\)The optimal lag length of three was determined using the varsoc command in Stata.
Investigating the impact for each field individually (Table 3), we find that only a single announcement has resulted in a significantly negative abnormal return. However, the result is not robust as the coefficient is not significantly different from zero in the ARMA model. Some announcements have resulted in positive abnormal returns in the PW-GLS model but they are unsupported by the ARMA model. Overall, the results deny the existence of a systematic drop in the price of crude oil around the days of unanticipated discovery announcements.

3 Discussion & Conclusion

The asymmetric price impact of news cannot be explained by the time lag between discovery and production start as companies face the same time horizon between discovery and actual production start with the risk faced by an individual company being much higher.

Furthermore, news about oil field discoveries renders more precise the availability of crude oil in the nearer future and further clarifies the opportunity cost of using oil today rather than tomorrow. Therefore, the shadow price resembling this opportunity cost consideration should adjust on the day where such information becomes public even if one expects a lot of oil still to exist in the ground.

However, the analysis cannot clarify whether the detected oil field is still too small to result in a significant price movement. In order to disprove this argument we would need to determine the minimum quantity found that leads to a significant shift in prices. As fears about a soon ending of oil frequently hit the headlines, it is surprising that news of greater availability of crude oil do not result in any significant value for the public, at all.

We conclude that the price for crude oil does not adjust to news about lower scarcity and consequently remains on a level too high compared to the optimal price path. Our results provide evidence against an empirical validity of the static efficiency condition and consequently of prices following the Hotelling rule.
A Identification of unanticipated discoveries

<table>
<thead>
<tr>
<th>Field</th>
<th>Company</th>
<th>β_{mk}</th>
<th>$\gamma_{i,k}$</th>
<th>N / R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akpo</td>
<td>Petrobras</td>
<td>1.121*** (0.011)</td>
<td>0.019** (0.008)</td>
<td>4165 / 0.71</td>
</tr>
<tr>
<td>Azar</td>
<td>Lukoil</td>
<td>1.044*** (0.014)</td>
<td>0.007** (0.005)</td>
<td>3136 / 0.87</td>
</tr>
<tr>
<td>Bonga</td>
<td>Eni</td>
<td>0.937*** (0.027)</td>
<td>0.004* (0.002)</td>
<td>3700 / 0.49</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
<td>0.879*** (0.019)</td>
<td>0.005*** (0.002)</td>
<td>4719/0.53</td>
</tr>
<tr>
<td>Buzzard</td>
<td>BG</td>
<td>0.932*** (0.017)</td>
<td>0.003** (0.020)</td>
<td>4720/0.27</td>
</tr>
<tr>
<td>Carioca</td>
<td>Petrobras</td>
<td>0.004* (0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalia</td>
<td>Elf</td>
<td>0.312* (0.143)</td>
<td>0.030** (0.015)</td>
<td>4718 / 0.085</td>
</tr>
<tr>
<td>Erha</td>
<td>Shell</td>
<td>0.212** (0.009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girassol</td>
<td>BP</td>
<td>0.955*** (0.024)</td>
<td>0.009*** (0.002)</td>
<td>4720 / 0.38</td>
</tr>
<tr>
<td></td>
<td>Norskhydro</td>
<td>1.198*** (0.016)</td>
<td>0.007*** (0.003)</td>
<td>7827 / 0.70</td>
</tr>
<tr>
<td>Gumusut</td>
<td>ConocoPhillips</td>
<td>0.008*** (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack</td>
<td>Devon Energy</td>
<td>0.809*** (0.026)</td>
<td>0.025** (0.013)</td>
<td>4720 / 0.17</td>
</tr>
<tr>
<td>Kashagan</td>
<td>ConocoPhillips</td>
<td>0.011* (0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exxon</td>
<td>0.739*** (0.031)</td>
<td>0.011*** (0.002)</td>
<td>4720 / 0.31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.483* (0.211)</td>
<td>0.011* (0.008)</td>
<td>4719 / 0.23</td>
</tr>
<tr>
<td>Kaskida</td>
<td>Anadarko</td>
<td>0.888*** (0.015)</td>
<td>0.006* (0.051)</td>
<td>4720 / 0.19</td>
</tr>
<tr>
<td>Knotty</td>
<td>BHP Billiton</td>
<td>1.319*** (0.020)</td>
<td>0.007*** (0.008)</td>
<td>4720 / 0.49</td>
</tr>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PengLai</td>
<td>ConocoPhillips</td>
<td>0.019** (0.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahiti</td>
<td>Enterprise Oil</td>
<td>-0.004 (0.035)</td>
<td>0.047*** (0.012)</td>
<td>2704 / 0.006</td>
</tr>
<tr>
<td>Tiber</td>
<td>Petrobras</td>
<td>0.014** (0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tupi</td>
<td>BG</td>
<td>0.047*** (0.005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GalpEnergia</td>
<td>0.882*** (0.063)</td>
<td>0.122** (0.062)</td>
<td>855/ 0.36</td>
</tr>
<tr>
<td></td>
<td>Petrobras</td>
<td>0.048*** (0.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursa</td>
<td>ConocoPhillips</td>
<td>0.786*** (0.034)</td>
<td>0.003* (0.002)</td>
<td>4719/ 0.25</td>
</tr>
<tr>
<td>Usan</td>
<td>Esso</td>
<td>0.138 (0.074)</td>
<td>0.009*** (0.003)</td>
<td>4718 / 0.022</td>
</tr>
<tr>
<td>WestSeno</td>
<td>Mobil</td>
<td>0.136** (0.050)</td>
<td>0.006* (0.006)</td>
<td>2061 / 0.006</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Note: only abnormal returns are displayed.

Table 1: Unanticipated discoveries
Average abnormal return

<table>
<thead>
<tr>
<th>Variable</th>
<th>Spot (PW-GLS)</th>
<th>Future (PW-GLS)</th>
<th>Fixed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_j</td>
<td>0.25 (0.02)***</td>
<td>0.22 (0.01)***</td>
<td>0.22 (0.01)***</td>
</tr>
<tr>
<td>γ_j</td>
<td>0.001 (0.002)</td>
<td>0.002 (0.002)</td>
<td>0.002 (0.002)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.31%</td>
<td>0.33%</td>
<td>0.28%</td>
</tr>
<tr>
<td>N</td>
<td>5152</td>
<td>5152</td>
<td>10304</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Table 2: Average abnormal return
C Test for abnormal returns
<table>
<thead>
<tr>
<th>Field</th>
<th>$\gamma_{i,s}$</th>
<th>ARMA</th>
<th>$\gamma_{i,f}$</th>
<th>PW-GLS</th>
<th>ARMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akpo</td>
<td>0.025** (0.010)</td>
<td>0.024 (0.023)</td>
<td>0.024 (0.018)</td>
<td>0.023** (0.010)</td>
<td></td>
</tr>
<tr>
<td>Azar</td>
<td>0.007*** (0.002)</td>
<td>0.010 (0.095)</td>
<td>0.006** (0.003)</td>
<td>0.007 (0.067)</td>
<td></td>
</tr>
<tr>
<td>Bonga</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td></td>
</tr>
<tr>
<td>Buzzard</td>
<td>0.009*** (0.001)</td>
<td>0.011 (0.275)</td>
<td>0.006** (0.003)</td>
<td>0.007 (0.058)</td>
<td></td>
</tr>
<tr>
<td>Carioca</td>
<td>0.013*** (0.003)</td>
<td>0.012 (0.079)</td>
<td>0.013*** (0.005)</td>
<td>0.013 (0.030)</td>
<td></td>
</tr>
<tr>
<td>Dalia</td>
<td>-0.012** (0.005)</td>
<td>-0.012 (0.051)</td>
<td>0.013** (0.005)</td>
<td>0.013 (0.030)</td>
<td></td>
</tr>
<tr>
<td>Erha</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Girassol</td>
<td>-0.041*** (0.008)</td>
<td>-0.031*** (0.008)</td>
<td>-0.041*** (0.008)</td>
<td>-0.031*** (0.008)</td>
<td></td>
</tr>
<tr>
<td>Gumusut</td>
<td>-0.046*** (0.007)</td>
<td>-0.031*** (0.008)</td>
<td>-0.046*** (0.007)</td>
<td>-0.031*** (0.008)</td>
<td></td>
</tr>
<tr>
<td>Jack</td>
<td>-0.012** (0.005)</td>
<td>-0.012 (0.051)</td>
<td>-0.012** (0.005)</td>
<td>-0.012 (0.051)</td>
<td></td>
</tr>
<tr>
<td>Kashagan</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Kaskida</td>
<td>-0.041*** (0.008)</td>
<td>-0.031*** (0.008)</td>
<td>-0.041*** (0.008)</td>
<td>-0.031*** (0.008)</td>
<td></td>
</tr>
<tr>
<td>Knotty</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
<tr>
<td>PengLai</td>
<td>0.013*** (0.005)</td>
<td>0.013 (0.030)</td>
<td>0.013*** (0.005)</td>
<td>0.013 (0.030)</td>
<td></td>
</tr>
<tr>
<td>Tahiti</td>
<td>0.013*** (0.005)</td>
<td>0.013 (0.030)</td>
<td>0.013*** (0.005)</td>
<td>0.013 (0.030)</td>
<td></td>
</tr>
<tr>
<td>Tiber</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Tupi</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td>0.011** (0.005)</td>
<td>0.010 (0.035)</td>
<td></td>
</tr>
<tr>
<td>Ursa</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Usan</td>
<td>-0.012** (0.005)</td>
<td>-0.012 (0.051)</td>
<td>-0.012** (0.005)</td>
<td>-0.012 (0.051)</td>
<td></td>
</tr>
<tr>
<td>WestSeno</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td>0.007*** (0.001)</td>
<td>0.008 (0.008)</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Note: only abnormal returns are displayed.

Table 3: Regression results
Acknowledgements

I would like to thank participants of the 33rd Annual Conference of the International Association for Energy Economics (IAEE) in Brazil, June 2010, and participants of the Monte Verita Winter School 2010 in Ascona for helpful comments. Furthermore, I greatly acknowledge the support by Nick Netzer, Carl Philipp Zinner and Ian MacKenzie.

References

Hotelling, H., 1931. The Economics of exhaustible resources. J Polit Econ 39, 137–175.

Working Papers of the Center of Economic Research at ETH Zurich

(PDF-files of the Working Papers can be downloaded at www.cer.ethz.ch/research).

10/139 H. Gersbach, M. T. Schneider and O. Schneller
Basic Research, Openness, and Convergence

10/138 L. Bretschger and V. Kappel
Market concentration and the likelihood of financial crises

10/137 M. T. Schneider and R. Winkler
Growth and Welfare under Endogenous Lifetime

10/136 V. Hahn
Sequential Aggregation of Verifiable Information

10/135 A. Bommier, M.-L. Leroux and J.-M. Lozachmeur
On the Public Economics of Annuities with Differential Mortality

10/134 A. Bommier, A. Chassagnon and F. Le Grand
Comparative Risk Aversion: A Formal Approach with Applications to Saving Behaviors

10/133 A. Bommier and B. Villeneuve
Risk Aversion and the Value of Risk to Life

10/132 L. Bretschger and S. Valente
Endogenous Growth, Asymmetric Trade and Resource Taxation

10/131 H. Gersbach and N. Surulescu
Default Risk in Stochastic Volatility Models

10/130 F. Schwark
Economics of Endogenous Technical Change in CGE Models - The Role of Gains from Specialization

10/129 L. Bretschger, R. Ramer and F. Schwark
Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model with Heterogeneous Capital

10/128 M. T. Schneider, C. Traeger and R. Winkler
Trading Off Generations: Infinitely-Lived Agent Versus OLG

10/127 V. Kappel
The Effects of Financial Development on Income Inequality and Poverty

10/126 M. T. Schneider
The Larger the Better? The Role of Interest-Group Size in Legislative Lobbying
10/125 A. Ziegler
Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis

10/124 P. F. Peretto and S. Valente
Resource Wealth, Innovation and Growth in the Global Economy

09/123 H. Gersbach and M. T. Schneider
Tax Contracts and Elections

09/122 V. Hahn
Why the Publication of Socially Harmful Information May Be Socially Desirable

09/121 A. Ziegler
Is it Beneficial to be Included in a Sustainability Stock Index? A Panel Data Study for European Firms

09/120 K. Pittel and L. Bretschger
The Implications of Heterogeneous Resource Intensities on Technical Change and Growth

09/119 E. J. Balistreri, R. H. Hillberry and T. F. Rutherford
Trade and Welfare: Does Industrial Organization Matter?

09/118 H. Gersbach, G. Sorger and C. Amon
Hierarchical Growth: Basic and Applied Research

09/117 C. N. Brunnschweiler

09/116 S. Valente
Optimal Policy and Non-Scale Growth with R&D Externalities

09/115 T. Fahrenberger
Short-term Deviations from Simple Majority Voting

09/114 M. Müller
Vote-Share Contracts and Learning-by-Doing

09/113 C. Palmer, M. Ohndorf and I. A. MacKenzie
Life’s a Breach! Ensuring ‘Permanence’ in Forest Carbon Sinks under Incomplete Contract Enforcement

09/112 N. Hanley and I. A. MacKenzie
The Effects of Rent Seeking over Tradable Pollution Permits

09/111 I. A. MacKenzie
Controlling Externalities in the Presence of Rent Seeking
09/110 H. Gersbach and H. Haller
 Club Theory and Household Formation

09/109 H. Gersbach, V. Hahn and S. Imhof
 Constitutional Design: Separation of Financing and Project Decision

09/108 C. N. Brunnschweiler
 Oil and Growth in Transition Countries

09/107 H. Gersbach and V. Hahn
 Banking-on-the-Average Rules

09/106 K. Pittel and D. T. G. Rübbelke
 Decision Processes of a Suicide Bomber – Integrating Economics and Psychology

08/105 A. Ziegler, T. Busch and V. H. Hoffmann
 Corporate Responses to Climate Change and Financial Performance: The Impact of Climate Policy

09/104 S. Valente
 Endogenous Growth, Backstop Technology Adoption and Optimal Jumps

09/103 K. Pittel and D. Rübbelke
 Characteristics of Terrorism

09/102 J. Daubanes
 Taxation of Oil Products and GDP Dynamics of Oil-rich Countries

09/101 S. Valente
 Accumulation Regimes in Dynastic Economies with Resource Dependence and Habit Formation

08/100 A. Ziegler
 Disentangling Specific Subsets of Innovations: A Micro-Econometric Analysis of their Determinants

08/99 M. Bambi and A. Saïdi
 Increasing Returns to Scale and Welfare: Ranking the Multiple Deterministic Equilibria

08/98 M. Bambi
 Unifying time-to-build theory

08/97 H. Gersbach and R. Winkler
 International Emission Permit Markets with Refunding