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S U M M A R Y
3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a
common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key
part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial
detail still remains challenging from the computational point of view. We present a novel,
efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency
is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise
constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage
of the HOP basis allows us to decrease substantially the number of unknowns (preserving the
same accuracy), with corresponding speed increase and memory saving.

Key words: Electromagnetic theory; Geomagnetic induction; Magnetotellurics; Numerical
modelling.

1 I N T RO D U C T I O N

In geophysics, electromagnetic (EM) methods aim to resolve gen-
erally 3-D distributions of subsurface electrical conductivity. Since
conductivity depends on rock type and composition, temperature
and fluid/melt content, these methods are widely used in academia
and industry. To interpret EM data, the EM field which is governed
by Maxwell’s equations needs to be computed for a given model
of 3-D conductivity distribution. Here, we restrict our task by con-
sidering only the frequency-domain formulation. Usually, a large
number of such simulations are required and complex, detailed and
large-scale 3-D models are invoked. Thus, EM (forward) solvers
that are able to deliver fast and accurate computation of the EM
field are essential.

The EM forward solvers can be distinguished by the numerical
techniques utilized. Three basic techniques are used in geoelec-
tromagnetism, namely finite-difference (FD), finite-element (FE)
and volume integral equation (IE) methods. For decades FD-based
solvers (Mackie et al. 1994; Haber & Ascher 2001; Newman &
Alumbaugh 2002; Egbert & Kelbert 2012, among others) domi-
nated in EM due to the rather straightforward implementation of the
FD concept. However, in recent years, FE-based (Schwarzbach et al.
2011; Farquharson & Miensopust 2011; Puzyrev et al. 2013; Ren
et al. 2013; Um et al. 2013; Grayver & Burg 2014, among others)
and IE-based (Avdeev et al. 2002; Hursan & Zhdanov 2002; Singer
2008; Koyama et al. 2008; Kamm & Pedersen 2014; Kruglyakov
et al. 2016, among others) solvers have increased in popularity due
to methodological developments of the latter two methods.

One of the main differences between the FE and IE methods
lies in the structure and size of the resulting system matrices.

In the IE method, one works with compact (but dense) matrices.
The reason for compactness is that boundary conditions are ex-
actly accounted for Green’s functions, and thus the modeling re-
gion is confined only to 3-D conductivity structures (anomalies)
under investigations. By contrast, in the FE method, one has to
discretize a much larger volume laterally and vertically in order to
enable the decay (or stabilization) of the EM field at the bound-
aries of the modeling domain. However, this advantage is coun-
terbalanced by the fact that FE matrices are sparse. Another dis-
tinction between the methods is that the condition number (which
controls the stability of the solution) of system matrices in FE
depends on discretization and frequency, whereas in IE—it does
not, provided a particular class of IE with a contracting kernel
is exploited (Singer 1995; Pankratov et al. 1995; Zhdanov 2002).
On the other hand, the FE method more easily treats the mod-
els with topography or/and bathymetry. It is pertinent to note here
that all previous EM IE solvers (except the solver discussed in
Farquharson & Oldenburg 2002), used the zero-order polynomial
(piecewise constant; PWC) basis to describe the EM field be-
haviour within a modeling domain. Despite this, until recently, they
demonstrated comparable efficiency with FE solvers based on a
trilinear basis, in terms of accuracy and required computational
resources.

Recently, Grayver & Kolev (2015) showed that the usage of the
second-order polynomial basis in FE solvers allows a decrease in
the number of unknowns by several orders of magnitude and thus
greatly speeds up EM field simulations. Inspired by this result,
we developed an IE solver which exploits a high-order polynomial
(HOP) basis, and demonstrate that it indeed outperforms the IE
solver based on a PWC basis.
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(a)

(b)

Figure 1. Fault model. Top (a)—a plan view of the model and bottom (b)—
side view. The dashed line in the upper plot depicts the profile along which
MT apparent resistivities are shown in Fig. 2.

2 I N T E G R A L E Q UAT I O N A P P ROA C H

Let the complex-valued function σ (M), Re σ (M) ≥ 0 be a 3-D
conductivity distribution in space. We search for the electric, E, and
magnetic, H, fields induced by an electric current, Jext, in the model
with conductivity σ (M). These fields obey the system of Maxwell’s

Table 1. Details of successful runs with HOP and PWC IE solvers for the
model depicted in Fig. 1. Ñz stands for the number of unknowns in vertical
direction. In PWC case Ñz = Nz , in HOP case Ñz = 4Nz , where 4 arises
since the third-order polynomial basis is used. Time is that required for two
polarizations modeling.

Run with Ñz Number of unknowns RAM (GB) Time (CPU × hours)

PWC 128 96 × 106 427 17
HOP 8 6 × 106 17 2

equations{
curl H = σE + Jext,

curl E = iωμ0H.
(1)

Here, i = √−1, ω is an angular frequency, and μ0 is the mag-
netic permeability of free space. Time dependence of all fields
is accounted for by e−iωt. Let � ⊂ R

3 be some bounded domain,
σ (M) = σ b(z) for M(x, y, z) �∈ �, and σ (M) = σ a(M) for M ∈ �.
Then, for any M ∈ R

3, the fields E(M) and H(M) are expressed in
terms of the integrals

E(M) = Eb(M) +
∫
�

Ĝ E (M, M0)�σ (M0)E(M0)d�M0 , (2)

H(M) = Hb(M) +
∫
�

Ĝ H (M, M0)�σ (M0)E(M0)d�M0 . (3)

Here, �σ = σ a − σ b and Ĝ E , Ĝ H are electric and magnetic Green’s
tensors, respectively (cf. Pankratov et al. 1995). The fields Eb and
Hb in eqs (2) and (3) are called the background (normal) electric and
magnetic fields and they obey the following system of Maxwell’s
equations{

curl Hb = σb(z)Eb + Jext,

curl Eb = iωμ0Hb.
(4)

Note, that the dependence on frequency of all the above quantities
is omitted but implied. Note also, that Ĝ E and Ĝ H are dependent
on the background conductivity σ b.

Figure 2. Apparent resistivity ρxy (at period 1000 s) along the profile shown in Fig. 1(a). Solid (blue, red and yellow) curves are the results obtained with the
use of the PWC IE solver. The colours distinguish between the results of modelings with different numbers of cells in the vertical direction, Nz. The dashed
curve stands for the results obtained with the use of the HOP IE solver.
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(b)

(a)

Figure 3. COMMEMI3D-2 model. Top (a)—a plan view of the model and
bottom (b)—side view. Dashed line in the top plot depicts the profile along
which MT responses are shown in Figs 4 and 5.

2.1 Outline of Galerkin method

Let us assume, that M ∈ � and rewrite eq. (2) in the following
operator form

(I − GE �σ )E = Eb, (5)

where GE is the integral operator from eq. (2) and I is the identity
operator. To solve eq. (5), we use the Galerkin method (Delves &
Mohamed 1985; Farquharson & Oldenburg 2002; Zhdanov 2002)
which is sketched below.

Let L2[�] be a vector Hilbert functional space with the following
dot product and norm

(V, U) =
∫

�

(
Vx (M)U x (M) + Vy(M)U y(M)

+ Vz(M)U z(M)
)

d�M ,

‖V‖ =
√

(V, V). (6)

Here, the overline above U components denotes their complex con-
jugates.

Let us also assume that vector functions �n, n = 1, . . . , N form
the orthonormal basis in L2[�], denote QN as the linear span of
this basis, and define projection operator PN from L2[�] to QN as
follows

VN = PN V =
N∑

n=1

an�n,

an = (V, �n),

V ∈ L2[�] VN ∈ QN . (7)

By construction
∥∥PN

∥∥ = 1 and VN is the best approximation of
V ∈ L2[�] in terms of norm (6).

The Galerkin method as applied to eq. (5) relies on an approx-
imation of E inside � by a function U ∈ QN , which satisfies the
following N equations

((I − GE �σ ) U, �n) = (Eb, �n) n = 1, . . . , N . (8)

Substituting the expansion U =
N∑

n=1
un�n into eq. (8), we obtain the

system of linear equations for coefficients un

un −
N∑

m=1

um(GE �σ �m, �n) = (Eb, �n). (9)

By using the definition of projection operator PN, we can deduce
that function U obeys the following operator equation in space QN

U − PN GE �σ U = PN Eb. (10)

Equation (10) has a unique solution in QN , and thus the system (9)
also has a unique solution (see more details in Appendix A).

The final stage of the method is to substitute U instead of E into
the integrands in eqs (2) and (3) in order to obtain Ẽ and H̃ at any
point M ∈ R

3

Ẽ(M) = Eb(M) +
∫

�

Ĝ E (M, M0)�σ (M0)U(M0) d�M0 , (11)

H̃(M) = Hb(M) +
∫

�

Ĝ H (M, M0)�σ (M0)U(M0) d�M0 . (12)

The approximations (11) and (12) guarantee div H̃ = 0 everywhere
by design, irrespective of the choice of basis functions �n. More-
over, eqs (11) and (12) ensure that the components of Ẽ and H̃
tangential to any plane are continuous across this plane.

2.2 Construction of basis functions

It can be shown (see Appendix B) that for E, Ẽ, H and H̃ the
following inequalities hold∣∣Ẽ(M) − E(M)

∣∣ ≤ Cout
E (M)

∥∥E − PN E
∥∥,∣∣H̃(M) − H(M)

∣∣ ≤ Cout
H (M)

∥∥E − PN E
∥∥, (13)

for M �∈ � and∥∥Ẽ − E
∥∥ ≤ C in

E

∥∥E − PN E
∥∥,∥∥H̃ − H

∥∥ ≤ C in
H

∥∥E − PN E
∥∥, (14)

for M ∈ �. Here, Cout
E,H (M) are bounded functions and C in

E , C in
H are

constants, which are all independent of the basis functions �n.
The inequalities (13) and (14) demonstrate rather the obvious but

important fact that the accuracy of the numerical solution depends
on

∥∥E − PN E
∥∥, that is, how well the true electric field E is approx-

imated by its projection to QN . An optimal choice of space QN is
a non-trivial problem, but the insight gained in the FE modeling
community (Schwarzbach et al. 2011; Grayver & Kolev 2015) pro-
motes the idea to use piecewise polynomial approximation of the
electric field.

The estimates above are based on properties of the solution,
without considering efforts to calculate coefficients for system (9)
quickly and accurately. Such a calculation is the main challenge
in any IE approach, even for the PWC basis, where these coef-
ficients are double volumetric integrals of Green’s tensors com-
ponents (Kruglyakov & Bloshanskaya 2017). Note that the first
attempt in the EM geophysical community to use the basis different
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1390 M. Kruglyakov and A. Kuvshinov

Figure 4. Apparent resistivities and phases along the profile shown by the dashed line in Fig. 3(a). Period is 100 s.

from PWC was undertaken by Farquharson & Oldenburg (2002)
who used trilinear approximation. However, the challenge to con-
struct matrix coefficients for this basis compelled authors to use
a Green’s tensor for the simplest background conductivity model,
namely homogeneous space.

In this paper, the calculation of the coefficients for the HOP
basis is based on a generalization of the method proposed in
Kruglyakov & Bloshanskaya (2017). Taking into account that the
partial sum of Fourier–Legendre series provides the best polynomial

approximation in L2[−1, 1], we made an influential decision to use
Legendre-type polynomials. Note, that in general, one can use basis
functions from a wide class of Jacobi polynomials, but this implies
the usage of weighting functions in dot products (GE �σ �m, �n),
which enormously complicates calculation of the matrix coeffi-
cients.

The modeling domain � is split into Nc = NxNyNz non-
overlapping rectangular cells

⋃Nc
n=1 �n = �; Nx,y,z is the number of

cells in the x-, y- and z-directions, respectively, and conductivities
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Figure 5. The same legend as in Fig. 4. Period is 1 s.

σ a,b are constant inside each cell. For every cell �n the finite scalar
basis functions �

nx ,ny ,nz
n (x, y, z) are introduced as follows

�
nx ,ny ,nz
n (x, y, z) = 2

√
2√

hx hyhz

Lnx

(
2

x − xn

hn
x

− 1

)

× Lny

(
2

y − yn

hn
y

− 1

)
× Lnz

(
2

z − zn

hn
z

− 1

)
(15)

where, Lm is the normalized Legendre polynomial of the mth order,
hn

x , hn
y and hn

z are the sizes of �n in x, y and z dimensions, and xn, yn

and zn are the coordinates of a corner of �n, nx,y,z = 0, . . . , N P
x,y,z ,

and N P
x,y,z is the maximum polynomial order along the x-, y- and

z-directions. Note, that �
nx ,ny ,nz
n = 0 outside of �n, n = 1, . . . , Nc.

The vector basis functions �n, n = 1, . . . , N,
N = 3Nc

(
N P

x + 1
) (

N P
y + 1

) (
N P

z + 1
)

are constructed as

� = (�x, �y, �z), where �x, y, z are those of �
nx ,ny ,nz
n .
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1392 M. Kruglyakov and A. Kuvshinov

Figure 6. Magnitude of Ex for x-polarization excitation at z = 0 along the discussed profile over the left half of the conductive block in the COMMEMI3D-2
model at a period of 1 s.

Table 2. Details of successful modeling runs with HOP and PWC IE solvers
for the COMMEMI3D-2 model. NH stands for a number of cells in every
lateral direction. N P

H is the polynomial order used in the lateral direction.
Time is that required for modeling two polarizations.

Run with NH N P
H

Number of
unknowns RAM (GB)

Time
(CPU × s)

HOP (100 s) 4 5 27 648 1.5 195
HOP (1 s) 16 3 196 608 3.5 714
PWC 128 2457 600 10 1260

The orthonormality of �n follows from the orthonormality of (nor-
malized) Legendre polynomials.

In the terminology of FE, we use the discontinuous Galerkin
method, with basis functions that do not guarantee continuity of U
at �n boundaries. However, the continuity of tangential components
of Ẽ and H̃ across the cells’ boundaries is secured by eqs (11) and
(12), as well as zero divergence of H̃.

Figure 7. COMMEMI3D-3 model. Left-hand plots show side views of the model and right-hand plots show the plane view.
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Using HOP basis in IE based forward modeling 1393

Table 3. Details of modeling runs for COMMEMI3D-3 model with HOP and PWC IE solvers. N P
H and N P

z stand for polynomial orders used in lateral
and vertical directions, respectively.

Legend Run with Discretization N P
H N P

z Number of unknowns

PWC coarse PWC hx = hy = 100 m, hz from 25 to 250 m 177 408
PWC fine PWC hx = hy = hz = 12.5 m 111648 768
PWC best PWC hx = hy = hz = 6.25 m 893190 144
HOP N P

H = 1 HOP hx = hy = 200 m, hz from 102 to 103 m 1 3 177 408
HOP N P

H = 2 HOP hx = hy = 200 m, hz from 102 to 103 m 2 3 399 168

Figure 8. Apparent resistivities ρxy, ρyx (above) and impedance phases ϕxy, ϕyx (below) along the profile y = 3830. Period is 1 s.
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1394 M. Kruglyakov and A. Kuvshinov

Figure 9. Real (left) and imaginary (right) parts of tippers component Wxz, Wyz along the profile y = 3830. Period is 1 s.

3 C O N V E RG E N C E R AT E O F T H E
M E T H O D

The inequalities (13) and (14) are formulated in terms of∥∥E − PN E
∥∥. We can make a step further and estimate

∥∥E − PN E
∥∥

in terms of the maximum cell diameter d and the minimum polyno-
mial order N P = min{N P

x , N P
y , N P

z }
∥∥E − PN E

∥∥
L2[�]

≤ Ad N P +1, (16)

where A is a constant independent of d (but dependent on NP and
E). This result is a corollary from the Bramble–Hilbert lemma
(Brenner & Scott 2008), if one recalls that PN E is the best polyno-
mial approximation in L2[�n] by design.

Substituting inequality (16) into the right-hand side of inequali-
ties (13) and (14), we obtain that for the fixed polynomial order NP

the method converges with NP + 1 order.

4 R E M A R K S O N I M P L E M E N TAT I O N

The main challenges of any IE-based solver are computation of
matrix coefficients [see eq. (9)] and (dense) matrix handling. These
challenges have been addressed by using the approaches introduced
by Kruglyakov & Bloshanskaya (2017). More specifically, the in-
tegrals in the vertical direction are computed analytically by gen-
eralization of the approach of Kruglyakov & Bloshanskaya (2017,
appendix B), whereas for the horizontal integration special digi-
tal filters are constructed (appendix C of the same paper). However,
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Using HOP basis in IE based forward modeling 1395

Figure 10. Apparent resistivities ρxy, ρyx (above) and impedance phases ϕxy, ϕyx (below) along the profile x = 1900. Period is 1 s.

the analytical transformations involved at these stages are extremely
complex and we used the computer algebra system Maxima (2017)
to obtain the correct expressions and to generate proper Fortran
code.

A standard IE numerical scheme is invoked, based on a uniform
discretization in lateral directions. It yields a block-Toeplitz sys-
tem matrix, thus decreasing memory requirements and accelerating
matrix-vector multiplication by using a 2-D fast Fourier transform
(cf. Avdeev et al. 1997). In addition, system matrix symmetries and
antisymmetries were utilized to further reduce computational and
memory loads as in Kruglyakov & Bloshanskaya (2017).

Finally, the resulting system of equations is solved by Krylov
subspace iterations using our own implementation of the FGM-
RES method (Saad 1993). To obtain faster convergence to the so-
lution, we use IE with a contracting kernel approach (Singer 1995;

Pankratov et al. 1995; Zhdanov 2002), hereinafter denoted as con-
tracting IE (CIE). The advantage of using CIE is that the condition
number of the CIE system matrix depends only on the lateral con-
ductivity contrast (cf. Pankratov & Kuvshinov 2016), which permits
use of the HOP method without additional preconditioning of the
system matrix. The only reason we use conventional IE in the equa-
tions above is to simplify the explanation.

5 N U M E R I C A L E X P E R I M E N T S

To explore the performance of the HOP IE-based solver against the
one which uses PWC basis functions, we performed simulations
of magnetotelluric (MT) responses using three different models of
3-D conductivity distribution.
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1396 M. Kruglyakov and A. Kuvshinov

Figure 11. Real (left) and imaginary (right) parts of tippers component Wxz, Wyz along the profile x = 1900. Period is 1 s.

5.1 Fault model

We start with presenting results for a case in which polynomials
are implemented along the vertical direction only. The model taken
from Bakker et al. (2015) mimics a conducting sedimentary basin
surrounded by resistive mountains with a conductive fault beneath
the left flank of the basin. Plane and side views of the model are
shown in the respective upper and lower plots in Fig. 1. We expect
galvanic coupling between the high-conductive sedimentary basin
and the deep conducting basement by the downward leakage of
electric currents within the fault, thus assuming that accurate ap-
proximation of the electric field in the vertical direction is essential.

The need for accurate approximation is clearly seen in Fig. 2,
where the modeling by a PWC IE solver with vertical discretization
Nz = 32 produces an artefact at the right flank of the fault. Increasing
Nz in the course of PWC modeling improves the results, as expected.

The artefact disappears when rather excessive discretization with
Nz = 128 is invoked. Remarkably, the usage of a third-order poly-
nomial basis in the vertical direction gives accurate results already
with Nz = 2. Note that lateral discretization hx = hy = 200 m was
used for all runs, for both PWC and HOP modeling. Details of the
successful runs are summarized in Table 1. It is evident from the
table that in order to reach the same accuracy one needs 16 times
fewer unknowns if the HOP solver is invoked. In terms of com-
putational loads the gains are 25 and 8 for the memory and time,
respectively.

5.2 Two block (COMMEMI3D-2) model

The developed HOP IE solver permits the use of polynomials
up to fifth order in all directions. In this section, we explore the
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Using HOP basis in IE based forward modeling 1397

Figure 12. Apparent resistivities ρxy, ρyx (above) and impedance phases ϕxy, ϕyx (below) with respect to period at point (3975, 3830).

interplay between the order of polynomials in a lateral direction
and lateral discretization of the model. Modelings were performed
using the COMMEMI3D-2 model from Zhdanov et al. (1997) (see
Fig. 3) in the period range between 1 and 100 s. In all HOP simu-
lations, we use third-order polynomials in the vertical direction and
Nz = 4 with vertical cell sizes of 500, 500, 4000 and 5000 m. In the
course of HOP simulations, the following combinations of lateral
discretization of the model, NH, and order of polynomials in the lat-

eral direction, N P
H , were tried: NH = 4, N P

H = 5; NH = 8, N P
H = 5

and NH = 16, N P
H = 3. For all PWC simulations, NH = 128 and

Nz = 50 with vertical cell sizes growing in geometric sequence
from 10 to 845 m. Numerical experiments (not shown here) demon-
strate that this combination of NH and Nz provides accurate PWC
results for all considered periods.

The numerical simulations also show that the efficiency of HOP
may depend on the period. At a period of 100 s (Fig. 4), the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/213/2/1387/4858390 by ETH

 Zürich user on 25 Septem
ber 2023



1398 M. Kruglyakov and A. Kuvshinov

Figure 13. Real (left) and imaginary (right) parts of tippers component Wxz, Wyz (below) with respect to period at point (3975, 3830).

electric field inside a cell is rather smooth and the HOP approach
yields accurate results using a very coarse lateral grid (two cells
per block) provided fifth-order polynomials are used. At the same
time, the PWC solver requires 128 cells in a lateral direction to
obtain results of comparable accuracy. Cumulatively, for a period
of 100 s, by using the HOP solver one needs 100 times fewer un-
knowns to obtain accurate results, and the corresponding gains in
terms of computational loads are 6 and 7 for the memory and time,
respectively.

At a period of 1 s, accurate results by the HOP are obtained for
the combination NH = 16, N P

H = 3 meaning that a denser lateral
grid is used (Fig. 5). At this period, the electric field varies sharply
inside the conductive block (Fig. 6) and thus the lateral cell’s size
has to be decreased (which is what we did) or the polynomial order
has to be significantly increased.

Despite a denser lateral grid for this period (NH = 16), the HOP
solver still outperforms PWC solver, but the gain is smaller (3 and
1.8 for the memory and time) than for 100 s modeling. However,
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Using HOP basis in IE based forward modeling 1399

Table 4. Details of successful modeling runs for COMMEMI3D-3 model
with HOP and PWC IE solvers. Time is for modeling two polarizations.

Legend Number of unknowns RAM (GB) Time (CPU × hours)

PWC best 893190 144 10 000 4500
HOP N P

H = 1 177 408 2.81 0.8

we note here that the HOP performance can be improved by using
non-regular lateral grids, which is the subject of further research.
Details of successful HOP and PWC modeling runs are summarized
in Table 2.

5.3 Large conductivity contrast (COMMEMI3D-3) model

An accurate computation of electric and magnetic fields in media
with a large conductivity contrast is one of the most challenging
problems of EM modeling. This is due to strong interconnection
between the lateral conductivity contrast and the matrix condition
number (Pankratov & Kuvshinov 2016). The large conductivity con-
trast COMMEMI3D-3 model (Hursan & Zhdanov 2002; Varentsov
et al. 2000) is considered as the third test model for the presented
solver. This model schematically describes the conductivity distri-
bution typical for ore exploration with MT.

The COMMEMI3D-3 model consists of seven rectangular blocks
embedded in a layered medium (Fig. 7). The background section
of the model consists of two layers with conductivities of 10−3,
10−4 S m−1, and a lower half-space with conductivity of 0.1 S m−1.
The thicknesses of the first and the second layers are 1 and 6.5 km,
respectively. The maximum lateral conductivity contrast is 104 in
the first layer and 3.3 × 104 in the second layer.

The MT responses were calculated along two representative pro-
files (Fig. 7) in a period range between 0.01 and 1000 s using dif-
ferent discretizations and polynomial orders (cf. Table 3). The IE
modeled responses (Figs 8–13) were compared with those from the
reference second-order FE solver by Grayver & Kolev (2015).

In all figures, one observes excellent agreement between the HOP
IE and the FE solvers. Note that this agreement is achieved with the
HOP IE solver by using a very moderate number (around 2 × 105)
of unknowns, with bilinear basis in lateral directions and cubic basis
in the vertical direction. Note that the increasing polynomial order
in lateral directions practically does not change the results.

Interestingly, when the HOP solver is used, a rather coarse lateral
grid (with hx = hy = 200 m) is sufficient for accurate modeling of the
responses over the shallow structure. It is quite unexpected, because
the electric field varies non-negligibly inside shallow blocks and
their sizes in the y-direction (from 400 to 600 m) are comparable
with the cell sizes (Figs 10–11).

At the same time, using the PWC IE solver requires around
9 × 108 unknowns to obtain results of comparable accuracy, which
leads to a corresponding difference in computational loads (cf.
Table 4). A coarser discretization does not produce ‘true’ results
in apparent resistivity over the conductive block at periods from 0.1
to 10 s (upper parts of Figs 8 and 12). Nor does it do so for the
phases at any periods (lower parts of Figs 8 and 12). Moreover, even
with the ‘best’ discretization (cubic cells of 6.25 m size), the PWC
impedance phases do not perfectly agree with those from the FE and
HOP solvers. As a final remark, if PWC and HOP discretizations are
comparable (by giving exactly the same number of unknowns), the
PWC results differ considerably from the ‘true’ results, especially
above the high-conductive block, and most prominently in phases
of impedance and tippers (Figs 8–13).

6 C O N C LU D I N G R E M A R K S

We present an IE solver which exploits high- (up to fifth) order
polynomial basis functions. The solver outperforms IE solvers based
on a conventional PWC basis in terms of both memory savings and
acceleration of computations due to a decrease in the number of
unknowns by one to several orders of magnitude. The gain depends
on model and period. In the best scenario presented in the paper,
the gain is four orders of magnitude. Such extreme reduction in
computational loads opens an avenue for using non-uniform grids
in lateral directions which were computationally forbidden in PWC
IE solvers. It will allow, in particular, to use the IE approach for
large-scale regional modeling where complex local 3-D effects from
topography and bathymetry are important.

We applied the solver to an MT problem. The extension of the
code on the controlled-source case is rather straightforward and is
the topic of ongoing realization. Finally, we note that the presented
solver is designed to work in Cartesian geometry. The extension
of the concept to a spherical geometry is also the topic of future
research.
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A P P E N D I X A : E X I S T E N C E A N D
U N I Q U E N E S S O F T H E I E S O LU T I O N
B A S E D O N G A L E R K I N M E T H O D

The simplest way to prove the existence and uniqueness of the
solution of eq. (10) is to use the CIE approach. Let us make the
natural assumption that Re σb(z) > 0 for M(x, y, z) ∈ � and define
operator Gm

E as follows

Gm
E V =

√
Re σb GE

[
2
√

Re σbV
]

+ V. (A1)

Using eq. (A1), we can express GE as

GE = 1

2
√

Re σb

(
Gm

E − I
) 1√

Re σb

(A2)

and rewrite eq. (10) as(
I − PN Gm

E

b

a

)
Ũ =

√
Re σbEN , (A3)

where

Ũ = aU, a = σa + σb

2
√

Re σb

b = σa − σb

2
√

Re σb

. (A4)

Taking into account that
∥∥PN

∥∥ = 1,
∣∣ b

a

∣∣ < 1, and Gm
E is a contract-

ing operator (Pankratov et al. 1995; Singer 1995), we can construct(
I − PN Gm

E
b
a

)−1
as the following Neumann’s series(

I − PN Gm
E

b

a

)−1

=
∞∑

n=0

(
PN Gm

E

b

a

)n

. (A5)

Using eq. (A5), we obtain∥∥∥∥∥
(

I − PN Gm
E

b

a

)−1
∥∥∥∥∥ ≤

∞∑
n=0

∥∥∥∥PN Gm
E

b

a

∥∥∥∥n

. (A6)

Hence, using definitions (A4), and taking into account that∣∣∣ σa−σb
σa+σb

∣∣∣ < 1 [cf. Pankratov & Kuvshinov (2016)] gives

∞∑
n=0

∥∥∥∥PN Gm
E

b

a

∥∥∥∥n

≤
∞∑

n=0

(
max

�

∣∣∣∣σa − σb

σa + σb

∣∣∣∣)n

= 1

1 − max
�

∣∣∣ σa−σb
σa+σb

∣∣∣ .
(A7)

Using eq. (A1) to express GE in terms of Gm
E , we have

(
I − PN GE �σ

)−1 = 2

√
Re σb

σa + σb

(
I − PN Gm

E

b

a

)−1 √
Re σb. (A8)

Thus, we conclude that operator
(
I − PN GE �σ

)−1
is bounded

∥∥∥(
I − PN GE �σ

)−1
∥∥∥ ≤ S = 2 max

�

√
Re σb

|σa + σb|
max

�

√
Re σb

1 − max
�

∣∣∣ σa−σb
σa+σb

∣∣∣ .
(A9)

and consequently eq. (10) has a unique solution.
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A P P E N D I X B : O B TA I N I N G
I N E Q UA L I T I E S O F S E C T I O N 2 . 2

To obtain error estimations for the proposed method, let us rewrite
eqs (5), (10) and (11) in the following operator form

E − GE �σ E = Eb, (B1)

Ẽ − GE �σ U = Eb, (B2)

U − PN GE �σ U = PN Eb. (B3)

Note, that operators GE �σ , PN GE �σ , (I − GE �σ )−1,(
I − PN GE �σ

)−1
are bounded (see Appendices A and C for

details).
Applying operator PN to eq. (B1), we obtain

PN E − PN GE �σ E = PN Eb. (B4)

Subtracting eq. (B3) from eq. (B1) and adding eq. (B4) gives

E − U − PN GE �σ (E − U) = E − PN E. (B5)

Therefore, E − U = (
I − PN GE �σ

)−1
(E − PN E) and using eq.

(A9), we write

‖E − U‖ ≤ S
∥∥E − PN E

∥∥. (B6)

Subtracting eq. (B2) from eq. (B1), and using eq. (B5), we obtain

Ẽ − E = GE �σ

(
I − PN GE �σ

)−1
(E − PN E). (B7)

Hence,∥∥Ẽ − E
∥∥ ≤ C in

E

∥∥E − PN E
∥∥, (B8)

where

C in
E = ‖GE �σ ‖S. (B9)

The estimation for
∥∥H̃ − H

∥∥ can be obtained in a similar manner
giving∥∥H̃ − H

∥∥ ≤ C in
H

∥∥E − PN E
∥∥, (B10)

where

C in
H = ‖GH �σ ‖S. (B11)

Estimates for upper bounds for ‖GE �σ ‖ and ‖GH �σ ‖ are pre-
sented in Appendix C. Note that the errors in eqs (B8) and (B10)
are estimated in L2 norm, due to the singularities in integral ker-
nels in eqs (2) and (3) when M ∈ �. At the same time for
M �∈ �, these kernels are smooth, so we can obtain pointwise
estimates.

To obtain an estimate for
∣∣Ẽ(M) − E(M)

∣∣ for M �∈ �, let us
subtract eq. (11) from eq. (2)

E(M) − Ẽ(M) =
∫

�

Ĝ E (M, M0)�σ (M0)(E(M0) − U(M0))d�M0 .

(B12)

Then, for tensor Ĝ E (M, M0), we can write

Ĝ E (M, M0) ≤ C ′
E (M) = max

M0∈�

∣∣Ĝ E (M, M0)
∣∣ . (B13)

Finally, using the Schwarz inequality, we arrive at the desired

estimate∣∣Ẽ(M) − E(M)
∣∣ ≤ C ′

E (M) max
�

|�σ |
√

V�‖E − U‖
≤ Cout

E (M)
∥∥E − PN E

∥∥, (B14)

where

Cout
E (M) = C ′

E (M) max
�

|�σ |
√

V�S, (B15)

and where V� is the volume of domain �. The estimate for∣∣H̃(M) − H(M)
∣∣ can be obtained similarly∣∣H̃(M) − H(M)
∣∣ ≤ Cout

H (M)
∥∥E − PN E

∥∥, (B16)

where

Cout
H = C ′

H (M) max
�

|�σ |
√

V�S C ′
H (M) = max

M0∈�

∣∣Ĝ H (M, M0)
∣∣ .

(B17)

A P P E N D I X C : M O R E O N E S T I M AT I O N S
O F O P E R AT O R S ’ N O R M S

Using eq. (A2), we first write

‖GE‖ ≤ 1

min
�

Re σb
. (C1)

Then, taking into account that
∥∥PN

∥∥ = 1 by design, we have

∥∥PN GE �σ

∥∥ ≤ ‖GE �σ ‖ ≤
max

�
|σa − σb|

min
�

Re σb
. (C2)

Obtaining estimates for ‖GH‖ in terms of σ a, σ b and ω is much
more complicated and is beyond the scope of this paper. However,
the boundedness can be proved by using the following property
of elliptic partial differential equations (cf. Gilbarg & Trudinger
2001)

‖U‖W 1
2 [�] ≤ C(�, �′)

(‖U‖L2[�′] + ‖L U‖L2[�′]
)
, (C3)

where L is the elliptic partial differential operator, � ⊃ �′ and C(�,
�′) > 0 is independent of U.

Let us introduce V = GE �σ U, then Vγ is the solution of the
following equation L Vγ = �σ Uγ , γ = {x, y, z}with corresponding
elliptic operator L = � + iωμ0σb (cf. Ward & Hohmann 1988).
Taking into account eqs (C1) and (C3) and expressing GH as GH =

1
iωμo

curl GE, we obtain

‖GH �σ U‖L2[�] = 1

ωμ0
‖curl V‖L2[�] ≤ 1

ωμ0
‖V‖W 1

2 [�]

≤ 1

ωμ0
C

(‖V‖L2[�′] + ‖�σ U‖L2[�′]
)

≤ C

ωμ0
(‖GE‖ + 1) max

�
|σa − σb| ‖U‖L2[�].

(C4)

Note that we can use � in ‖U‖L2[�] in eq. (C4) instead of �′ because
�σ = 0 outside of �. Finally, assuming that Re σb(M) > 0, M ∈
�′ and using eqs (C1) and (C4), we obtain the desired estimate for
‖GH �σ ‖

‖GH �σ ‖ ≤ C(�, �′)
max

�
|σa − σb|
ωμ0

⎛⎝ 1

min
�′ Re σb

+ 1

⎞⎠ . (C5)
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