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A B S T R A C T

background : In recent years, far-reaching technological improvements have vastly
enhanced our ability to gather large amounts of molecular and clinical data. This
wealth of information has been poised to revolutionise computational biology and
medicine. However, reliably and efficiently extracting knowledge from data in these
domains is often a difficult task, as datasets tend to be characterised by very low
sample sizes relative to the number of features and small signal-to-noise ratios. In this
regime, where associations between features and targets tend to be faint, methods
based on classical statistical significance testing have proven to be a powerful tool for
data exploration, allowing to detect salient patterns in the data that can be prioritised
for further study by domain experts. However, owing to the inherent challenges posed
by statistical inference in high-dimensional spaces, most existing methods either rely
on univariate statistical association tests, thus considering the effect of each feature
in isolation from the rest, or utilise sparse linear models, describing the joint effect
of all features as the sum of a small number of individual effects. As a result, these
approaches are unable to detect nonlinear signals due to interactions between features. This
shortcoming has profound implications in many crucial problems including, but not
limited to, accounting for epistasis in genome-wide association studies, modelling
tissue-specific combinatorial transcription factor regulation of gene expression or
discovering patterns of co-occurring mutational events in tumours.

Assessing the statistical significance of all high-order interactions between features
is an exceedingly challenging problem, mainly due to two major difficulties: (i) the
vast number of statistical association tests to be performed would cause an extreme
multiple comparisons problem that goes well beyond what classical tools such as the
Bonferroni correction are able to cope with in practice, and (ii) the computational
complexity of a naive approach would grow exponentially with the number of features.
Nonetheless, despite being long considered an unsolvable problem by many, recent
work has provided a solution for the particular case that all features are discrete, de
facto kickstarting the field of significant pattern mining, the subject of study of this
thesis.

contributions: Significant pattern mining is a young field, offering a myriad
of open problems, some of which severely hinder its applicability to analyse data in
computational biology and medicine. The goal of this thesis is to develop novel significant
pattern mining algorithms, aiming to overcome some of the most crucial limitations of the state
of the art.

The first part of this thesis provides a self-contained introduction to significant
pattern mining, proposing a general formulation that encompasses multiple variations
of the problem and describing the statistical and algorithmic techniques that make
significant pattern mining possible.

Next, original contributions on three different topics of fundamental importance for
applications in the life sciences are presented.
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(i) Many associations between features and targets in biomedical data are weak,
being barely above the noise level. This difficulty is exacerbated when high-order
interactions between features are taken into account, requiring a stringent significance
threshold. However, the search space consisting of all feature interactions is redundant
by construction, inducing strong statistical dependencies between test statistics. In
practice, these reduce the effective number of tests to account for when correcting for
the multiple comparisons problem. One of the contributions in this thesis is a fast and
memory-efficient algorithm that combines significant pattern mining with permutation testing
to estimate a less stringent significance threshold that accounts for the dependencies between
test statistics. Compared to the single existing approach that also aims to exploit this
phenomenon, our method is one to three orders of magnitude faster and requires two
to three orders of magnitude less memory while providing the same improvement in
statistical power.

(ii) Another ubiquitous problem when exploring data in the life sciences is the need
to correct for covariate factors such as age, gender, socioeconomic status or population
structure. Neglecting to account for factors of variation that might have a potentially
confounding effect could create a large number of spurious associations, jeopardising
the reliability of any discoveries reported as a result of the analysis. One of the biggest
limitations of state-of-the-art significant pattern mining algorithms is their inability to
incorporate such covariate factors into the model. A second contribution of this thesis
solves this shortcoming by devising a novel method that uses the Cochran-Mantel-Haenszel
test to correct for a categorical covariate. Computational tractability is achieved by means
of a specialised pruning criterion that can be evaluated in almost-linear time in the
number of categories of the covariate. Results on both synthetic data and genome-wide
association studies of the plant model organism A. thaliana suggest a drastic reduction
in false positives due to confounding effects without sacrificing neither statistical
power nor computational efficiency.

(iii) Genetic heterogeneity, the phenomenon that multiple genomic markers might
affect a phenotype in a similar manner, can be exploited to gain statistical power
in genome-wide association studies. By carrying out association studies at a region
level, as opposed to testing single markers, the (possibly weak) effects of multiple
neighbouring markers can be aggregated into a stronger, easier to detect signal. A
crucial limitation of existing approaches in this domain is their requirement that
the user preselects a priori a small subset of candidate genomic regions. The final
contribution discussed in this thesis is a new family of methods to carry out genome-wide
association studies at a region level based on significant pattern mining. Unlike other
approaches, these methods are able to test all genomic regions, regardless of their
length or position. The resulting resilience to misspecification of the subset of genomic
regions to be tested empirically translates into sharp gains in statistical power in
situations for which reliable prior knowledge about the length or location of the causal
regions is unavailable. This was corroborated by experiments on synthetic data as
well as genome-wide association studies on human and A. thaliana samples.

outlook: We strongly believe that these contributions substantially strengthen
the state of the art in significant pattern mining, particularly in regards to potential
applications in computational biology and medicine. Remarkable challenges still
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lie ahead of this young field, as discussed extensively in the final part of this thesis.
Nevertheless, rapid progress in the development of methods at the intersection be-
tween machine learning, statistical significance testing and data mining suggest that
significant pattern mining will play a key role in knowledge discovery for years to
come.
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R É S U M É

contexte : Les progrès technologiques de ces dernières années ont décuplé notre
capacité de récolter de grandes quantités de données moléculaires et cliniques. Cette
richesse d’information est destinée à révolutionner la biologie computationnelle et la
médecine. Cependant, il est souvent difficile d’extraire des connaissances pertinentes
à partir de ces données car elles présentent des tailles d’échantillon très petites par
rapport au nombre de leurs caractéristiques et ont de petits rapport signal sur bruit.
Dans ce cadre de faibles associations entre caractéristiques et objectifs, les méthodes
basées sur les tests statistiques classiques ont été largement utilisées pour l’exploration
des données, permettant de découvrir des motifs remarquables qui ont donné suite à
des études plus approfondies des effets observés. Néanmoins, à cause des difficultés
causées par l’inférence statistique dans les espaces à haute dimension, la plupart des
méthodes statistiques à disposition sont basées soit sur des tests univariés - qui ne
considèrent que les effets de chaque caractéristique en isolation des autres - soit sur des
modèles linéaires creux - qui décrivent l’effet combiné de plusieurs variables comme la
somme d’un petit nombre d’effets individuels. Par conséquent, ces approches ne sont pas
aptes à détecter des signaux non-linéaires causés par l’interaction de plusieures caractéristiques.
Cette limitation a des conséquences marquées pour de nombreuses applications,
notamment pour la détection d’épistasie dans les études d’association pangénomiques,
la modélisation de la régulation combinatoire de l’expression génétique par les facteurs
de transcriptions ou encore la découverte de mutations co-occurentes dans les tumeurs.

Déterminer la signification statistique de toutes les interactions d’ordre supérieur
entre caractéristiques est un problème excessivement difficile pour deux raisons : (i)
l’immense quantité d’hypothèses qui doivent être testées cause un problème de com-
paraison multiple extrême, qui ne peut être résolu par de simples instruments tels que
la correction de Bonferroni et (ii) la complexité computationnelle d’une approche naïve
grandit exponentiellement avec le nombre de caractéristiques. Toutefois, malgré avoir
été longtemps considéré comme un problème insoluble par de nombreux chercheurs,
des développements récents ont proposé des solutions pour le cas particulier où les
caractéristiques sont discrètes, donnant naissance au domaine de la découverte de motifs
significatifs, le sujet de recherche de cette thèse.

contributions : La découverte de motifs significatifs est un domaine de re-
cherche nouveau qui offre une myriade de problèmes irrésolus, parmis lesquels
certains qui empêchent son application à l’analyse de données médicales ou biolo-
giques. Le but de cette thèse est de développer de nouveaux algorithmes de découverte de
motifs significatifs dépassant les limites actuelles de l’état de la technique.

La première partie de cette thèse propose une introduction au domaine de la
découverte de motifs significatifs et est composée d’une formulation générale du
problème ainsi que d’une description des techniques statistiques et algorithmiques
qui rende la découverte de motifs significatifs possible.
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Ensuite, trois contributions fondamentales pour l’application de ces méthodes dans
les sciences de la vie sont présentées.

(i) De nombreuses associations entre caractéristiques et objectifs dans les données
biomédicales sont faibles, à peine au dessus du niveau du bruit. Les difficultés de
détection s’accroissent lorsque sont considérées les interactions d’ordre supérieur
entre plusieurs caractéristiques, exigeant un seuil de signification plus strict. Ce-
pendant, l’espace de recherche constitué par toutes les interactions entre toutes les
caractéristiques étant redondant par construction, de fortes dépendances statistiques
sont présentes entre les différentes statistiques de test. En pratique, ces dépendances
réduisent le nombre effectif de tests pour lesquels il faut corriger lors de problèmes
de comparaisons multiples. Une des contributions de cette thèse est un algorithme rapide
et efficient en terme d’utilisation de mémoire qui combine la découverte de motifs significatifs
avec le test de permutation pour estimer un seuil de signification moins strict qui tient en
compte les dépendances entre les statistiques de test. Notre méthode est d’un à trois ordres
de magnitude plus rapide et demande entre deux et trois ordres de magnitude moins
de mémoire que la seule autre solution existante, tout en permettant le même gain de
puissance statistique.

(ii) Un autre problème omniprésent lors du traitement de données dans les sciences
de la vie est le besoin de corriger pour différentes covariables telles que l’âge, le genre,
le statut socioéconomique ou la structure d’une population. Ne pas considérer ces
covariables lors des analyses statistiques peut nuire considérablement aux résultats
obtenus, en générant de fausses associations et en compromettant leur analyse. Une des
principales limitations des algorithmes existants de découverte de motifs significatifs
est leur incapacité à considérer des covariables dans leur modèle. Une deuxième
contribution de cette thèse résout cette restriction en présentant une nouvelle méthode qui
utilise le test de Cochran-Mantel-Haenszel pour corriger en tenant compte des covariables
catégoriques. Un critère d’élagage spécialisé qui peut être évalué en un temps quasi-
linéaire par rapport au nombre de catégories de la covariable garantit la faisabilité
computationnelle de l’algorithme. Les résultats obtenus sur des données synthétiques
ainsi que sur des études d’association pangénomiques de l’organisme modèle A.
thaliana suggèrent une réduction drastique du nombre de faux positifs dus aux effets
des covariables sans perdre de puissance statistique ni d’efficience computationnelle.

(iii) L’hétérogénéité génétique, un phénomène pour lequel plusieurs marqueurs
génétiques peuvent influencer d’une manière similaire un seul phénotype, peut être
utilisée pour gagner de la puissance statistique lors d’études d’association pangéno-
miques. Les effets (potentiellement faibles) de plusieurs marqueurs voisins peuvent
être combinés dans un signal plus fort et plus facile à détecter en testant des régions
entières plutôt que des marqueurs uniques. Une limitation cruciale des méthodes
existantes dans ce domaine est qu’elles exigent de recevoir des régions prédéterminées
à l’avance par l’utilisateur. La dernière contribution décrite dans cette thèse est une nouvelle
famille de méthodes basées sur la découverte de motifs significatifs qui permet l’étude d’asso-
ciation pangénomique au niveau des régions. Ces méthodes, contrairement aux solutions
existantes, permettent de tester toutes les régions génomiques, indépendamment de
leur taille ou position. Ceci permet de considérables augmentations de puissance
statistique dans les situations où très peu d’informations à propos des régions causales
sont connues, comme l’ont prouvés nos expériences sur des données synthétiques et
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sur des résultats d’études d’association pangénomiques d’échantillons humains et de
A. thaliana.

perspectives : Nous sommes convaincus que ces contributions renforcent considé-
rablement l’état de la technique de la découverte de motifs significatifs, en particulier
dans les applications pour la biologie computationnelle et la médecine. De nombreux
défis sont encore présents dans ce jeune domaine, comme la partie finale de cette
thèse le témoigne. Néanmoins, le progrès rapide dans le développement de méthodes
à l’intersection de l’apprentissage machine, des tests statistiques significatifs et du
data mining suggère que la découverte de motifs significatifs va jouer un rôle essentiel
dans le domaine de l’extraction de connaissances lors des prochaines années.
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1
I N T R O D U C T I O N

Biomarker discovery, the search for measurable biological indicators of a phenotypic
trait of interest, is a fundamental problem in healthcare and computational biology.
Biomarkers help researchers better understand the biological mechanisms underlying
phenotypic variation and can ultimately lead to significant advances in prevention,
diagnosis and treatment of many medical conditions [1]. In recent years, drastic
improvements in our ability to affordably collect large amounts of molecular data
has led to a rapid growth in data availability. In particular, the past three decades
have shown a (roughly) doubling, every 18 months, of the number of sequenced bases
readily available in public databases [2]; a growth rate that outpaces Moore’s “law” [3].
As a result, large-scale datasets containing millions of biological measurements for
thousands of individuals have now become customary. Perhaps most importantly,
current trends show no indications that this explosion in data availability will slow
down in the foreseeable future [4]. Precision medicine [5–7] aims to make use of
this wealth of molecular data, alongside information about a patient’s lifestyle and
environment, in order to personalise disease prevention and medical treatment. Thus,
developing methods to efficiently and reliably discover promising biomarkers in such
large-scale datasets is of utmost importance to make precision medicine a reality.

From a statistical perspective, biomarker discovery is particularly challenging due
to the nature of the datasets involved [8, 9], typically containing many more features
than samples. For instance, such a dataset may represent the allelic value of millions
of single nucleotide polymorphisms (features or markers) for thousands of individuals
(samples). In this example, the goal would be to identify the single nucleotide
polymorphisms that help us differentiate between individuals of distinct phenotype
(biomarkers). The difficulty of analysing datasets with such a large number of
features relative to the sample size has motivated the development of novel tools for
statistical inference in high-dimensional spaces. Existing work has predominantly
focused on either univariate methods or multivariate linear models with sparsity-
inducing regularisers. Approaches based on univariate association tests (e.g. [10])
consider the effect of each candidate marker in isolation from the others. In contrast,
multivariate linear models with sparsity-inducing regularisers (e.g. [11–15]) jointly
model the effect of all candidate markers as a weighted additive combination of
individual effects. These techniques have been a fundamental part of many successes
in biology and medicine. For instance, they have been widely used to analyse data
in genome-wide association studies, helping discover more than 61,000 variant-trait
associations [16, 17], many of which have led to substantial biological insight and
even clinical applications [18, 19]. However, both families of approaches share a key
limitation: they are unable to discover nonlinear signals due to interactions between features.
For instance, this “blind spot” has been hypothesised as a factor that could account for
at least a fraction of the “missing heritability” in genome-wide association studies [20–
23]. The missing heritability problem, the phenomenon that loci discovered by
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genome-wide association studies only account for a small proportion of the estimated
heritability of the phenotypes, is one of the main open problems in statistical genetics.
In order to test the hypothesis that nonlinear interactions between candidate markers
could explain part of this missing heritability, novel biomarker discovery methods able
to take feature interactions into consideration are necessary. More generally, biological
mechanisms for which feature interactions have been found to play a crucial role
abound in a variety of topics of utmost relevance. For example, the regulation of gene
expression in different tissues is known to be dictated at least in part by combinatorial
interactions among transcription factors [24–26]. Analysing feature interactions has
also proven to be fruitful in oncology, where identifying co-occurring mutational
events from tumour sequence data has facilitated the detection of cancer genes and
pathways [27, 28].

Nevertheless, assessing the statistical association of all high-order feature interac-
tions with a phenotypic trait of interest is an exceedingly difficult problem. The gap
between the number of features and sample size, already large in traditional analyses,
is further exacerbated when all high-order feature interactions are considered, leading
to a combinatorial explosion in the effective number of features in the model. To
give a sense of scale, in a dataset with p = 266 features, which could be considered
a small number by current standards, one could explore up to 2p ≈ 1080 high-order
feature interactions; as many as the estimated number of electrons in the observable
universe [29, Appendix C.4]. Two fundamental difficulties arise from the daunting
number of feature interactions that would need to be tested for association with the
trait of interest:

(i) A statistical challenge, in the form of an extreme instance of the so called multiple
comparisons problem. When such an enormous number of associations tests are
performed, it is extraordinarily difficult to control the probability of reporting
false associations while maintaining enough statistical power to discover the
truly significant feature interactions.

(ii) A computational challenge, caused by the necessity to explore the vast search
space consisting of all candidate feature interactions.

In order to tackle the computational challenge, decades of research have led to a
plethora of data mining algorithms able to quickly navigate the search space of all
candidate feature interactions. Most of these approaches rely on efficient schemes
to enumerate feature interactions in combination with pruning criteria that allow
removing a large proportion of the search space without affecting the validity of
the results (e.g. [30–33]). These discriminative pattern mining algorithms have been
largely successful in many applications, however, they are unable to account for
the multiple comparisons problem. As a consequence, the statistical significance of
their reported associations cannot be evaluated. While this might only be a minor
inconvenience in some domains, strictly assessing the statistical significance of any
positive findings is essential in biomarker discovery. Indeed, in this “big data” era,
the current “reproducibility crisis” in many scientific disciplines [34–39] has made
abundantly clear that, as the role of data science becomes more prominent in most
fields of research, properly accounting for all sources of uncertainty when reporting
any discoveries is extraordinarily important.
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Despite this pressing motivation to develop approaches to correct for the multiple
comparisons problem in discriminative pattern mining, an effective, uncompromising
solution remained elusive for decades. If all candidate feature interactions are taken
into consideration, the resulting multiple comparisons problem is enormous, way
beyond what had been successfully handled in the statistics literature, leading many
field experts to believe that a solution to this problem was unlikely to be found. Early
attempts to account for the multiple comparisons problem in pattern mining were
pioneered by [40, 41]. However, these approaches resorted to imposing limits in the
number of interacting features in order to reduce the total number of candidate feature
interactions in the search space and alleviate the multiple comparisons burden or, al-
ternatively, proposed to randomly split the original dataset into separate “exploratory”
and “holdout” data, leading to a potential loss of statistical power and hindering
reproducibility. Follow-up work [42] proposed a method to soften the hard constraints
in the maximum number of interacting features, effectively allowing to prioritise the
discovery of feature interactions involving a certain number of interacting features at
the expense of decreasing statistical power for other candidate feature interactions.
Nevertheless, recent work presented in [26] showed that it is entirely possible to solve
both the computational and statistical challenges described above while keeping all
candidate feature interactions in the search space. This feat, achieved through a com-
bination of classical discriminative pattern mining algorithms and highly-specialised
techniques for statistical association testing with discrete data, effectively created a
new branch of machine learning which we refer to as significant pattern mining.

The method in [26] was groundbreaking, as it showed for the first time that assessing
the statistical significance of all high-order feature interactions with a target of interest
is, in general, possible. However, the approach is not devoid of limitations, some of
which severely hinder its applicability to biomarker discovery problems. The aim of
this thesis is to propose novel significant pattern mining methods that overcome some
of those limitations, selected on the basis of their crucial importance for biomarker
discovery. Next, we briefly introduce each of our contributions, leaving an in-depth
description for subsequent chapters.

Exploiting the dependence between patterns

Unlike other machine learning problems such as computer vision, speech recogni-
tion and other perceptual tasks, many datasets in computational biology are charac-
terised by containing only extremely faint signals, barely above the noise level. This
partly explains why a large body of work in machine learning for computational
biology focuses on association testing rather than prediction and, most importantly,
why methods to improve statistical power are among the most relevant contributions
a computational scientist might make to the field.

If there is a single characteristic that defines significant pattern mining, it is the
daunting size of the search space that needs to be explored. As discussed above,
this is the source of statistical and computational difficulties that make significant
pattern mining challenging. However, it is also the source of opportunities to improve
upon the state of the art. The exhaustive nature of the search space of all candidate
feature interactions makes it redundant by construction: subset/superset relationships
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between distinct feature interactions induce strong statistical dependencies between
the different association tests that need to be performed. Intuitively, these statistical
dependencies reduce the effective number of tests one must account for when cor-
recting for the multiple comparisons problem. While this offers an opportunity to
significantly increase statistical power, modelling these dependencies appropriately
is difficult, again, due to the enormous number of association tests to be considered.
Consequently, existing approaches opt for ignoring these statistical dependencies
between feature interactions, effectively sacrificing statistical power in exchange for
simplicity. Moreover, the single approach that aims to exploit the dependencies in
the search space [43] is too computationally demanding in practice, both in terms of
runtime and memory usage, making it suitable only for small datasets.

In this thesis, we propose a new method to combine permutation testing with
significant pattern mining. Permutation testing allows empirically estimating the joint
global null distribution of all test statistics, making it possible to compute a tighter
significance threshold that takes the dependence between feature interactions into
account. Compared to the method introduced in [43], our algorithm is one to three
orders of magnitude faster and requires two to three orders of magnitude less memory
without affecting its ability to exploit the dependencies in the search space to improve
statistical power. The resulting approach scales-up to a broader range of datasets, thus
making it applicable to many problems relevant for computational biology.

Correcting for a categorical covariate

The need to account for covariates that might have a potentially confounding effect
is ubiquitous in most applications for medicine and computational biology. If these
covariates are not incorporated in the model, a large number of spurious false positives
whose association signal is exclusively mediated by the confounder might be erro-
neously reported. For instance, some possible sources of confounding in biomarker
discovery are factors such as gender, age, education level, pre-existing conditions or
population structure, among others. Despite the potential that significant pattern
mining has for biomarker discovery, it is unlikely that these methods will ever gain
acceptance among practitioners unless effective ways to correct for confounders are
proposed.

Accounting for covariate factors in significant pattern mining had remained an open
problem since the first significant pattern mining approach was proposed in [26]. This
method heavily relies on low-level properties of some specific statistical association
tests for discrete data, such as Pearson’s χ2 test [44] or Fisher’s exact test [45]. However,
these properties do not apply for tests that have been traditionally used to account
for covariates when testing associations in discrete data, such as the Cochran-Mantel-
Haenszel test [46]. Hence, the framework in [26] cannot be used in combination with
covariate factors, limiting the use of significant pattern mining to datasets for which
confounding effects could be ruled out a priori according to domain knowledge.

A fundamental contribution of this thesis is to propose a significant pattern mining
algorithm that can account for a categorical covariate. Our method makes use of
the Cochran-Mantel-Haenszel test alongside a novel pruning criterion that can be
evaluated in almost-linear time in the number of categories of the covariate. As a
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result, our approach is able to incorporate categorical covariates such as gender, age or
population structure, drastically reducing false positives due to confounding without
sacrificing neither computational efficiency nor statistical power.

Genome-wide association studies at a region level

Genome-wide association studies aim to discover how common genetic variation in
the population can be mapped to phenotypic differences between individuals, hoping
to shed light on the underlying biology and eventually lead to better approaches
for disease prevention and medical treatment. According to the common disease-
common variant hypothesis, phenotypic variation for complex traits might be largely
polygenic, being governed by a considerable number of variants, each accounting
for a exceedingly small proportion of the variation [18]. An alternative hypothesis
postulates that rare variants, i.e. those which occur in less than 1% of the population,
could be the source of phenotypic variability among individuals [47]. This model
expects these variants to have a large effect size. However, their rarity and the fact
that their effects can only be indirectly measured in genome-wide association studies
via linkage with common variants imply that the observed effect sizes would again be
small.

In order to improve statistical power, many approaches have been proposed to
aggregate the (possibly weak) effects of multiple neighbouring variants into a stronger,
easier to detect association signal. Some of these approaches have been successful
in discovering associations that would have been otherwise missed by a univariate
analysis, specially for associations which involve rare variants [48]. Nonetheless, all
these methods share a common limitation: they can only test a relatively small subset
of genomic regions chosen a priori. Practitioners have used multiple criteria to select
which genomic regions to test. For instance, some have used prior knowledge, defining
the regions as either genes or other functional units. Others prefer to perform an
agnostic, genome-wide scan and define the genomic regions to be tested by splitting
the genome into (possibly overlapping) windows of a pre-specified size. Regardless of
the choice, only a small proportion of all possible genomic regions will be covered. If
the windows the genome is split into are chosen too small or too big, or if part of the
signal happens to arise from variants outside the regions chosen according to prior
knowledge, these methods will suffer a sharp loss in statistical power.

This application offers an ideal opportunity to showcase the potential of significant
pattern mining for computational biology. In this thesis, we propose a new family of
methods that are able to test all genomic regions, regardless of their starting position
or size. Unlike competing approaches, our algorithm is robust to misspecification of
the genomic regions to be tested and reduces the number of hyperparameters to be
adjusted by the data analyst, aiding reproducibility.

1.1 organisation of this thesis

The content of this thesis is organised into three parts: (i) introduction and back-
ground, (ii) contributions, and (iii) discussion and outlook.
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The first part comprises a self-contained introduction to the key background con-
cepts the rest of this thesis relies on. In particular, Chapter 2 begins by formalising the
objective of significant pattern mining and describing its two most popular instances:
(i) significant itemset mining, which looks for statistically significant feature interactions
in binary data, and ii) significant subgraph mining, which aims at finding significant
subgraphs in a dataset of graph-structured samples. Statistical association testing for
binary random variables, a fundamental sub-component of significant pattern mining,
is discussed next. The chapter concludes with a detailed introduction to the multiple
comparisons problem and a description of Tarone’s improved Bonferroni correction
for discrete data, the key statistical tool that made it possible to manage the multiple
comparisons problem in significant pattern mining. Finally, Chapter 3 describes
how Tarone’s improved Bonferroni correction can be combined with techniques from
classical discriminative pattern mining to obtain an efficient algorithm for significant
pattern mining.

The next part is devoted to presenting all of the novel contributions of this thesis.
These will be organised as follows:

(i) Chapter 4, which discusses our new approach to exploit the dependence between
patterns to improve statistical power, is based on the following publication:

— Llinares-López, F., Sugiyama, M., Papaxanthos, L. & Borgwardt, K. Fast and memory-
efficient significant pattern mining via permutation testing in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2015), 725–
734

(ii) Chapter 5 describes our method to correct for categorical covariates in significant
pattern mining, allowing practitioners to deal with potential confounding factors.
The work presented in this chapter originates from the following publication,
for which the two first authors contributed equally:

— Papaxanthos, L., Llinares-López, F., Bodenham, D. & Borgwardt, K. Finding significant
combinations of features in the presence of categorical covariates in Advances in Neural
Information Processing Systems (2016), 2271–2279

(iii) Chapter 6 introduces our work on genome-wide association studies at a region
level, proposing a new family of algorithms to test all genomic regions regardless
of size and starting position. This chapter encompasses two distinct publications,
the second of which is also the result of equal contributions by the two first
authors:

— Llinares-López, F., Grimm, D., Bodenham, D., Gieraths, U., Sugiyama, M., Rowan, B. &
Borgwardt, K. Genome-wide detection of intervals of genetic heterogeneity associated
with complex traits. Bioinformatics 31, i240–i249 (2015)

— Llinares-López, F., Papaxanthos, L., Bodenham, D., Roqueiro, D., COPD Investigators
& Borgwardt, K. Genome-wide genetic heterogeneity discovery with categorical
covariates. Bioinformatics 33, i1820–i1828 (2017)

The last part of this thesis, which comprises Chapter 7, synthesises the main concepts
presented throughout this document and provides a detailed outlook on the main
open problems in the field.

How to read this thesis

Chapters in this thesis are not self-contained, hence, they should ideally be read
in order. Nevertheless, in hopes of facilitating selective reading, a self-sufficient
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summary of the essential ideas and results introduced by each chapter can be found
in Appendix A. Additionally, the interested reader can find in Appendix B a brief list
of existing open source software for significant pattern mining.

Finally, we wish it to be known that a book chapter heavily based on this thesis
is currently under preparation. The chapter, preliminarily titled “Machine learning
for biomarker discovery: significant pattern mining”, will be part of an interdisciplinary
textbook aimed at training biological, medical and computational scientists and will
cover both the fundamentals of significant pattern mining as well as a simplified
description of the contributions detailed in Chapters 4 and 5 of this thesis.
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2
S TAT I S T I C A L A S P E C T S O F S I G N I F I C A N T PAT T E R N M I N I N G

2.1 problem statement and terminology

Let D = {(xi, yi)}n
i=1 be a dataset with n distinct observations x and their corre-

sponding labels y, sampled i.i.d. from an unknown joint probability distribution
p(x, y). We consider the case where each observation x exists in a finite input domain
X and belongs to one of two classes, i.e. y ∈ {0, 1}. Throughout this thesis, we will
informally refer to any discrete substructure that might be part of an input sample
x ∈ X as a pattern. The exact notion of pattern depends on the input domain X ; some
of the most common cases will be introduced later in this section.

Given a search spaceM containing all candidate patterns under study, significant
pattern mining aims to discover all patterns S inM whose occurrence within a sample
is statistically significantly associated with the class labels.

We define the pattern occurrence indicator gS (x) as the binary random variable that
indicates whether pattern S is present in an input sample x or not:

gS (x) =

{
1, if S ⊆ x,

0, otherwise.
(2.1)

A pattern S occurs statistically significantly more often in one class of samples than
in another if and only if the class labels y and the indicator gS (x) are statistically
associated.

A precise definition of the search space of candidate patternsM and the concept
of inclusion or occurrence S ⊆ x also depend on the nature of the input domain X .
This abstract framework can be particularised to cover a variety of significant pattern
mining instances; the remaining of this section will be devoted to describe some of
the most relevant.

Significant itemset mining

Perhaps the most widespread instance of significant pattern mining corresponds to
the case where the input samples are p-dimensional binary vectors, i.e. X = {0, 1}p.
Essentially, this means that each input sample x comprises a collection of p different
binary features x = (u1, u2, . . . , up), each of which can be either active (uj = 1) or
inactive (uj = 0).

Datasets arising from a wide variety of problems in computational biology can be
described using this type of representation. For instance, in genome-wide association
studies, the genotype of n individuals at a set of p single nucleotide polymorphisms
can be represented as p binary features using, for example, a dominant/recessive/over-
dominant encoding or prior knowledge such as functional annotations. In functional
genomics, given a set of n distinct genomic regions, each of the p binary features could
be an indicator of whether a certain property of interest, such as exhibiting a particular
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chromatin modification in a given cell type or containing a specific transcription factor
binding motif, applies to a genomic region or not. In a clinical setting, many datasets
contain samples that can be described by high-dimensional binary vectors as well.
For instance, this type of representation can be related to Electronic Health Records
(EHRs). In this case, the active binary features can be used to encode the set of medical
codes from a certain medical ontology (e.g. SNOMED-CT, ICD-9) which apply to
the record, among a vocabulary of p distinct medical terms. Moreover, many clinical
variables can typically be described using a binary feature that indicates whether its
observed value lies within the normal, healthy range or not.
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Figure 2.1. – Illustration of significant itemset mining on a toy dataset with n = 12
samples, divided into n1 = 6 samples belonging to class y = 1 (e.g.
cases) and n0 = 6 samples belonging to class y = 0 (e.g. controls). Each
sample is represented by p = 10 binary features, u1, u2, . . . , u10. Patterns
S1 = {1, 3, 5, 6} (yellow) and S2 = {2, 9, 10} (blue) are highlighted in
the figure alongside their induced feature interactions zS1(x) and zS2(x).
While none of the ten binary features is individually associated with
the class labels, the high-order feature interactions zS1(x) and zS2(x) are
active considerably more often among samples of class y = 1.
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2.1 problem statement and terminology

In significant itemset mining, each pattern S corresponds to a different candidate
feature interaction. Let S ⊆ {1, 2, . . . , p} be the index set of an arbitrary subset of
the p binary features. We define zS (x), the feature interaction induced by S , as the
multiplicative interaction of the features indexed by S , i.e. zS (x) = ∏j∈S uj. In partic-
ular, note that zS (x) = 1 if and only if all features indexed by S are simultaneously
active in the sample x and zS (x) = 0 otherwise. We consider that a pattern S occurs
in a sample x ∈ {0, 1}p, i.e. S ⊆ x, if the feature interaction induced by S is active
(zS (x) = 1). Therefore, the occurrence indicator gS (x) of a pattern S in significant
itemset mining is identical to the feature interaction zS (x) induced by S . In order to
justify this definition, consider the alternative representation of each input sample
x ∈ {0, 1}p given by the set of indices of the features which are active in x. For
instance, the input sample x1 = (1, 0, 1, 1, 0) can be represented as x1 = {1, 3, 4} and
x2 = (0, 1, 0, 1, 0) as x2 = {2, 4}. This defines a one-to-one mapping between the
set of p-dimensional binary vectors {0, 1}p and the set of all subsets of {1, 2, . . . , p},
i.e. the power-set P({1, 2, . . . , p}). Thus, both representations are equivalent and the
input domain can also be defined as X = P({1, 2, . . . , p}). Moreover, S ⊆ x, with
x represented as a set of active features and ⊆ denoting traditional set inclusion,
holds if and only if the feature interaction zS (x) as defined above has value 1. Both
representations of x therefore lead to the same pattern occurrence indicator gS (x).
The latter notation, describing samples as a set of active features or items, is commonly
used in the data mining field, being ultimately responsible for giving this particular
instance of significant pattern mining the name of significant itemset mining.

Whenever all feature interactions are of potential interest, the search space of candi-
date patternsM would contain all possible feature subsets, i.e. M = P({1, 2, . . . , p}),
thus comprising 2p different patterns. This setting is perhaps the most common case;
however, certain forms of prior knowledge can be incorporated into the model simply
by modifying the definition of the search space M. For instance, in the context of
genome-wide association studies, researchers could decide to restrict the analysis to
study only interactions between variants belonging to the same biological pathway
or to the same genomic region. Provided that the design ofM according to domain
knowledge is successful in keeping all relevant feature interactions while discarding
many others, the reduction in the number of candidate patterns prior to the analysis
will lead to improved computational efficiency and statistical power. This opens the
door to the development of novel instances of significant itemset mining, targeting
particular problems in medicine and computational biology.

Figure 2.1 depicts a conceptual illustration of significant itemset mining on a toy
dataset with n = 12 samples, n1 = 6 belonging to class y = 1 (e.g. cases) and
n0 = 6 to class y = 0 (e.g. controls). Each of these samples is represented by a
binary vector with p = 10 features, u1, u2, . . . , u10. Two patterns, S1 = {1, 3, 5, 6}
(yellow) and S2 = {2, 9, 10} (blue), as well as their induced feature interactions,
zS1(x) and zS2(x), are highlighted in the figure. In this example, none of the ten
features is individually associated with the class labels. Thus, univariate analyses
or multivariate additive models would be unable to discover any association in this
dataset. Nevertheless, the feature interactions zS1(x) and zS2(x) are active significantly
more often in samples which belong to class y = 1 than in samples which belong
to class y = 0. This simple example is sufficient to illustrate the fact that, even in
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the absence of univariate associations, nonlinear interactions between features can
strongly correlate with a target of interest. Unless methods to explore such feature
interactions in high-dimensional datasets are developed, many signals of practical
importance might remain undiscovered by existing approaches.

Significant subgraph mining

A different instance of significant pattern mining arises when input samples cor-
respond to graphs. In this case, the input domain X can be defined as X =

{x | x = (V, E, lV,E)}, where V is a set of nodes, E ⊆ V × V a set of edges and
lV,E : V ∪ E → ΣV,E a function that labels each node and edge in the graph with a
categorical value from a finite alphabet ΣV,E. The domain of lV,E can be redefined
to account for graphs without edge or node labels. If neither nodes nor edges are
labelled, lV,E does not need to be included as part of the definition of the input domain
X .

Graphs are general-purpose objects, being able to represent almost any kind of data.
For instance, p-dimensional binary vectors can be modelled as fully-connected graphs
with p nodes, one for each binary feature. These nodes would have binary labels,
indicating the value taken by the corresponding feature in the sample, while edges
would remain unlabelled. Data types such as time-series, images or video can all be
accurately described by a grid-like graph. Each node in the graph would again map
to a distinct input feature while, in this case, the neighbourhood of the node would
represent the corresponding Markov blanket of the feature. This generality is the
primary reason why graphs are among the most important types of structured data.
Graphs are also ubiquitous in applications for the life sciences. As an example, they
are commonly used to describe molecular compounds in chemoinformatics: each atom
is associated with a different node in the graph, labeled by its atomic symbol, and
edges describe atomic bonds, labeled according to the type of bond [53]. Additional
molecular properties (e.g. implicit valence, number of implicit hydrogen atoms,
aromaticity) can also be incorporated as part of the node or edge labels. Many types
of data in computational biology, such as protein structures, biological pathways or
co-expression networks, are customarily represented in the form of graphs. Healthcare
applications are no less abundant with graph-structured data. For instance, they are
commonly used in medicine and neuroscience to describe the result of brain magnetic
resonance imaging (MRI) scans, with edges quantifying the connectivity between a
predefined set of brain regions (nodes) [54, 55]. As a final example, most medical
ontologies, such as those mentioned in the previous section, are structured as directed
acyclic graphs.

While patterns correspond to feature interactions in significant itemset mining, here
each candidate pattern S is identified with a different subgraph of an input sample
in D. Hence, this instance of significant pattern mining is commonly referred to as
significant subgraph mining. A pattern S is said to occur in an input observation x ∈ X ,
i.e. S ⊆ x, if and only if S is an induced subgraph of x. The search space of candidate
patternsM comprises the set of all distinct subgraphs of input graphs present in the
dataset D. While the exact number of candidate patterns inM will vary from dataset
to dataset, it will typically grow combinatorially with the size of the graphs in D.
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Thus, not unlike the case of significant itemset mining, the resulting search spaceM
will contain an enormous number of candidate patterns.

In summary, the goal of significant subgraph mining is to discover all subgraphs S
of graph samples in a dataset D which occur statistically significantly more often in
one class of graph samples than in another.
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Figure 2.2. – Illustration of significant subgraph mining on a toy dataset with n = 8
samples (graphs), divided into n1 = 4 samples belonging to class y = 1
(e.g. successful drugs) and n0 = 4 samples belonging to class y = 0
(e.g. drugs that trigger an adverse reaction). Samples are represented by
graphs with labeled nodes and edges (|ΣV,E| = 5). Two patterns (sub-
graphs) which are associated with the class labels have been highlighted
in the figure, S1 (yellow) and S2 (blue).

Figure 2.2 illustrates significant subgraph mining on a toy dataset with n = 8 graphs,
n1 = 4 belonging to class y = 1 (e.g. successful drugs) and n0 = 4 belonging to class
y = 0 (e.g. drugs which generate an adverse reaction). Each sample (drug) is given
by a graph with labeled nodes and edges (|ΣV,E| = 5). Two different patterns, i.e.
subgraphs, S1 (yellow) and S2 (blue), are highlighted in the figure. Their occurrence
indicators gS1 and gS2 are also shown on the right of the figure, with entries in
the vectors corresponding to graphs in clockwise order for each of the two classes
separately. In this particular example, subgraph S1 is overrepresented in class y = 1
while S2 occurs significantly more often in class y = 0.
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2.2 statistical association testing in significant pattern mining

Irregardless of the type of pattern under study, be it itemsets, subgraphs or any
other kind of discrete substructure, all instances of significant pattern mining represent
a pattern S by its occurrence indicator gS (x). Therefore, from a statistical perspective,
the particular nature of the input domain X does not need to be taken into consider-
ation; what is required is a principled approach to test the statistical association of
two binary random variables, the class labels Y and the pattern occurrence indicator
GS (X), according to the n realisations {(gS (xi), yi)}n

i=1 which can be obtained from
the input dataset D.

Two random variables G and Y are statistically independent, denoted G ⊥⊥ Y, if their
joint probability distribution Pr(G = g, Y = y) factorises as Pr(G = g, Y = y) =

Pr(G = g)Pr(Y = y). This is equivalent to the conditional probability distributions
Pr(G = g | Y = y) and Pr(Y = y | G = g) being equal to the marginal distributions
Pr(G = g) and Pr(Y = y), respectively. In contrast, G and Y are statistically associated,
denoted G 6⊥⊥ Y, if and only if they are not statistically independent. See [56] for an
in-depth, self-contained discussion on statistical independence.

In significant pattern mining, the random variables G and Y both take binary values.
Hence, the joint distribution Pr(G = g, Y = y) consists of only four probabilities:
Pr(G = 0, Y = 0) = p0,0, Pr(G = 0, Y = 1) = p0,1, Pr(G = 1, Y = 0) = p1,0 and
Pr(G = 1, Y = 1) = p1,1. This joint distribution is typically depicted as a 2 × 2
contingency table:

Variables G = 1 G = 0 Row totals
Y = 1 p1,1 p0,1 pY

Y = 0 p1,0 p0,0 1− pY

Col. totals pG 1− pG 1

The marginal distributions of G and Y can be obtained from the joint distribution as
Pr(G = 1) = p1,0 + p1,1 = pG and Pr(Y = 1) = p0,1 + p1,1 = pY.

The challenge in determining whether two random variables G and Y are statistically
independent or statistically associated stems from the fact that the joint distribution
Pr(G = g, Y = y) is generally unknown. In practice, only a set {(gS (xi), yi)}n

i=1 of n
i.i.d. realisations from the joint distribution is available. These n samples can be used to
obtain a frequentist estimate of the unknown joint distribution Pr(GS (X) = g, Y = y)
as the proportion of samples that had the event {GS (x) = g, Y = y} as an outcome,
for each (g, y) ∈ {0, 1}2. This estimation process is also often represented by means of
a 2× 2 contingency table:

Variables gS (x) = 1 gS (x) = 0 Row totals
y = 1 aS bS n1

y = 0 dS cS n0

Col. totals rS qS n

with (1) aS = ∑n
i=1 yigS (xi) being the number of samples for which the event

{GS = 1, Y = 1} occurs; (2) bS = ∑n
i=1 yi(1− gS (xi)) the number of samples for which

the event {GS = 0, Y = 1} occurs; (3) cS = ∑n
i=1 (1− yi)(1− gS (xi)) the number of

samples for which the event {GS = 0, Y = 0} occurs and (4) dS = ∑n
i=1 (1− yi)gS (xi)
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the number of samples for which the event {GS = 1, Y = 0} occurs. The correspond-
ing estimates p̂0,0, p̂0,1, p̂1,0, p̂1,1 of the four unknown probabilities p0,0, p0,1, p1,0, p1,1

can be derived from these counts as: p̂0,0 = cS/n, p̂0,1 = bS/n, p̂1,0 = dS/n and
p̂1,1 = aS/n. The unknown marginal distributions of G and Y can be estimated using
these counts as well: p̂G = (aS + dS )/n = rS/n and p̂Y = (aS + bS )/n = n1/n.

As the empirical estimate of the joint distribution will always incur error due
to random sampling, the definition of statistical independence cannot be readily
applied. Instead, a procedure able to account for the uncertainty introduced by
the approximation is needed. In order to tackle this problem, frequentist statistical
association testing typically relies on the concept of P-value, a certain scalar measure of
association that is calibrated against the stochasticity inherent to the sampling process.
Most frequentist statistical association testing procedures proceed as follows:

1. Choose an appropriate test statistic T. Any function T: {(gS (xi), yi)}n
i=1 → R

which maps the set of n i.i.d. realisations to a scalar value is a valid statistic.
Nevertheless, not all such functions will be equally useful for association testing.
Intuitively, a suitable test statistic should map data samples {(gS (xi), yi)}n

i=1
generated from joint distributions for which GS (X) and Y are statistically inde-
pendent and data samples {(gS (xi), yi)}n

i=1 generated from joint distributions
for which GS (X) and Y are statistically associated to sufficiently distinct values.
In this way, the output of such a test statistic T could be interpreted as an empir-
ical measure of association between GS (X) and Y according to the n observed
samples {(gS (xi), yi)}n

i=1.

2. Compute the null distribution Pr(T = t | H0) of the test statistic T. This is the
probability distribution of the test statistic T under the null hypothesis H0 =

GS (X) ⊥⊥ Y, i.e., under the hypothesis that the sample {(gS (xi), yi)}n
i=1 is

generated from a joint distribution for which GS (X) and Y are statistically
independent.

3. In order to account for the uncertainty due to random sampling, the value t
that the test statistic T takes on the real data sample {(gS (xi), yi)}n

i=1 will be
transformed into a P-value. The P-value is defined as the probability that the
test statistic T takes a value at least as extreme as t, i.e. a value representing
an association at least as strong, under the null hypothesis H0. For most test
statistics, larger values of t are indicative of stronger associations. In these cases,
the P-value would be obtained as p = Pr(T ≥ t | H0).

4. The random variables GS (X) and Y are deemed significantly associated if the
corresponding P-value is smaller or equal than a significance threshold α defined
a priori, i.e. if p ≤ α. The significance threshold α can be understood as the
type I error of the procedure; it is the probability that GS (X) and Y are deemed
significantly associated according to a sample {(gS (xi), yi)}n

i=1 generated from a
joint distribution for which GS (X) and Y are however statistically independent.
Decreasing the significance threshold α will reduce type I error. However, it
will likewise decrease statistical power, the probability to correctly identify truly
existing associations. Consequently, the optimal value of α will be in general
application-specific, reflecting the corresponding costs of false positives and false
negatives.
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A sufficiently small P-value merely indicates that the null distribution Pr(T = t | H0)

is a poor fit to the observed value t of the test statistic T. This is most typically inter-
preted as potential evidence against the null hypothesis of independence, supporting
the alternative hypothesis that GS (X) and Y might be statistically associated. Never-
theless, there is a myriad of reasons why the model fit might be poor even in cases
for which GS (X) and Y are indeed statistically independent. For instance, often the
null distribution Pr(T = t | H0) is not known exactly and needs to be approximated.
In these cases, low P-values could also arise due to an insufficiently accurate approx-
imation to the null distribution. Alternatively, the derivation of a null distribution
Pr(T = t | H0) for a certain test statistic T could involve additional assumptions
beyond the null hypothesis of independence, such as postulating a certain parametric
form. If these assumptions are not satisfied by the real data sample, the resulting
P-value could be small even if GS (X) and Y were truly independent. Another common
situation that might spuriously lead to low P-values occurs whenever the n samples
that conform the input dataset D are not obtained via i.i.d sampling. This issue arises
frequently in many biomarker discovery problems as the result of phenomena such as
batch effects, population structure or other confounders.

All techniques discussed throughout this thesis are machine learning methods for
data exploration, which use statistical association testing as means to provide practi-
tioners with tools to ease navigating the overwhelming sea of noise that characterises
typical biomarker discovery datasets. The output of these techniques, in the form
of a set of significantly associated patterns, should therefore not be considered as
definitive, unquestionable discoveries but, rather, as promising findings that ought to
be investigated further.

The remainder of this section will be devoted to introduce Pearson’s χ2 test [44]
and Fisher’s exact test [45], two of the most widespread tests of statistical association
between a pair of binary random variables. A rigorous presentation of both tests
can be found in the original articles [44, 45]. However, this section aims to provide a
self-contained, informal derivation with emphasis on building intuition about both
test statistics.

Pearson’s χ2 test and Fisher’s exact test are both defined in terms of the counts of the
empirical 2× 2 contingency table. In particular, the counts aS , rS and n1 are enough
to describe the data sample without loss of generality. These, together with the sample
size n, uniquely determine all other counts in the contingency table. Pearson’s χ2 test
and Fisher’s exact test both make the assumption that the marginal counts rS and
n1, respectively related to the marginal distributions Pr(GS (X) = g) and Pr(Y = y),
contain little information about the potential existence of an association between the
two binary random variables. Thus, both test statistics will be derived conditioning
on rS and n1, efficiently treating these margins as fixed quantities. This leaves the
count aS as the single random quantity in the model. As a consequence, the null
distribution for both tests will be of the form Pr(T(AS ) = t | RS = rS , N1 = n1, H0);
it is the specific choice of transformation T(AS ) what will differentiate both tests.

The first step to derive the null distributions of Pearson’s χ2 test and Fisher’s exact
test will be to compute the conditional probability distribution Pr(AS = aS | RS =

rS , N1 = n1, H0) under the null hypothesis of independence H0 = GS (X) ⊥⊥ Y. The
result is summarised in the following proposition:
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Proposition 2.1. The conditional probability distribution of AS given that RS = rS , N1 = n1

and sample size n under the null hypothesis of independence H0 = GS (X) ⊥⊥ Y is a
hypergeometric distribution with parameters n, n1 and rS :

Pr(AS = aS | RS = rS , N1 = n1, H0) = Hypergeom(aS | n, n1, rS )

=
(n1

aS
)( n−n1

rS−aS
)

( n
rS
)

. (2.2)

Proof. By definition of conditional probability distribution we have:

Pr(AS = aS | RS = rS , N1 = n1, H0) =
Pr(AS = aS , RS = rS | N1 = n1, H0)

Pr(RS = rS | N1 = n1, H0)
. (2.3)

Since RS = AS + DS , the joint distribution in the numerator can be rewritten as
Pr(AS = aS , RS = rS | N1 = n1, H0) = Pr(AS = aS , DS = rS − aS | N1 = n1, H0).
Note that AS depends only on samples for which yi = 1 while DS depends only on
samples for which yi = 0. Therefore, under the assumption that all n samples are i.i.d.
draws, the random variables AS and DS are statistically independent. This allows the
joint distribution in the numerator to be decomposed as Pr(AS = aS , RS = rS | N1 =

n1, H0) = Pr(AS = aS | N1 = n1, H0)Pr(DS = rS − aS | N1 = n1, H0).
Let p1|0 = Pr(GS = 1 | Y = 0) and p1|1 = Pr(GS = 1 | Y = 1). If the null hypothesis

of independence H0 holds, then p1|1 = p1|0 = pG. If the n samples are obtained as
i.i.d. draws, AS can be modeled as the sum of n1 independent Bernoulli random
variables, each with success probability pG. Hence, Pr(AS = aS | N1 = n1, H0) =

Binomial(aS | n1, pG) = (n1
aS
)paS

G (1− pG)
n−aS . Analogously, DS can be modeled as the

sum of n− n1 independent Bernoulli random variables, each with success probability
pG. Hence, Pr(DS = rS − aS | N1 = n1, H0) = Binomial(rS − aS | n − n1, pG) =

( n−n1
rS−aS

)prS−aS
G (1− pG)

(n−n1)−(rS−aS ). Finally, since RS = AS + DS , with AS ⊥⊥ DS , RS
corresponds to a sum of n Bernoulli variables with success probability pG, leading to
Pr(RS = rS | N1 = n1, H0) = Binomial(rS | n, pG) = ( n

rS
)prS

G (1− pG)
n−rS .

Substituting those distributions into Equation (2.3) leads to the final result. In
particular, the conditioning on RS = rS eliminates the influence of the nuisance
parameter pG, leading to a distributional form that depends only on n1, rS and the
sample size n.

Since Pearson’s χ2 test and Fisher’s exact test can both be written as a transformation
T(AS ) of the count AS , Proposition 2.1 easily leads to the specific null distributions
for each of the two tests, as shown next.

Pearson’s χ2 test

Pearson’s χ2 test can be seen as the square of a Z-score:

Zpearson(aS | n, n1, rS ) =
aS −E[aS | RS = rS , N1 = n1, H0]

Std[aS | RS = rS , N1 = n1, H0]

Tpearson(aS | n, n1, rS ) = Z2
pearson(aS | n, n1, rS ), (2.4)

where E[aS | RS = rS , N1 = n1, H0] = rS n1
n and Std[aS | RS = rS , N1 = n1, H0] =√

rS
n

n−rS
n

n−n1
n−1 n1 are the mean and standard deviation of a hypergeometric distribution
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with parameters n, n1 and rS . Substituting these into (2.4), the following expression
for the test statistic is obtained:

Tpearson(aS | n, n1, rS ) =
(
aS − rS n1

n

)2

rS
n

n−rS
n

n−n1
n−1 n1

. (2.5)

Large values of Tpearson(aS | n, n1, rS ) are less likely to occur under the null hypothesis,
hence hinting at the potential existence of an association.

Provided that the sample size n is sufficiently large, the central limit theorem can be
used to justify approximating the distribution of Zpearson(aS | n, n1, rS ) under the null
hypothesis H0 by a standard normal distribution. Thus, the null distribution of the test
statistic Pr(Tpearson(AS ) = t | RS = rS , N1 = n1, H0) can in turn be approximated as a
χ2

1 distribution for sufficiently large n. Finally, the corresponding two-tailed P-value
can be obtained from the survival function of a χ2

1 distribution, i.e.

ppearson(aS | n, n1, rS ) = 1− Fχ2
1

(
Tpearson(aS | n, n1, rS )

)
, (2.6)

where Fχ2
1
(•) is the cumulative density function of a χ2

1 distribution.

Fisher’s exact test

Multiple approaches have been proposed in the literature to compute two-tailed
P-values for Fisher’s exact test. For the sake of clarity, this section will present only
one such method. Nevertheless, all techniques that will be discussed in subsequent
chapters of this thesis can be readily extended to work with order definitions of
two-tailed P-values for Fisher’s exact test, as well as with one-tailed P-values.

Fisher’s exact test can be motivated by considering the probability Pr(AS = aS |
RS = rS , N1 = n1, H0) to be the test statistic:

Tfisher(aS | n, n1, rS ) = Hypergeom(aS | n, n1, rS ) =
(n1

aS
)( n−n1

rS−aS
)

( n
rS
)

. (2.7)

By definition, Tfisher(aS | n, n1, rS ) will be small for improbable values of aS under the
null distribution Pr(AS = aS | RS = rS , N1 = n1, H0). Therefore, in this particular
case, small values of the test statistic Tfisher(aS | n, n1, rS ) are indicative of a potential
association rather than large values. Hence, a two-tailed P-value will be computed as
p = Pr(T ≤ t | H0).

Formally, define A(aS ) as the set of all possible counts a′S which are at least as
improbable as aS under the null distribution, i.e.,

A(aS ) =
{

a′S | Hypergeom(a′S | n, n1, rS ) ≤ Hypergeom(aS | n, n1, rS )
}

.

Then:
pfisher(aS | n, n1, rS ) = ∑

a′S∈A(aS )
Hypergeom(a′S | n, n1, rS ). (2.8)

As indicated by its name, Fisher’s exact test does not require approximations to
model its null distribution. It is therefore typically preferred over Pearson’s χ2 test,
most notably in situations where the sample size n is too small to justify asymptotic
approximations based on the central limit theorem.
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2.3 the multiple comparisons problem

Significant pattern mining aims to retrieve, among all candidate patterns S in a
search spaceM, the set of informative patterns whose occurrence within a sample
is significantly associated with the class labels. Techniques to test the statistical
association of binary random variables, such as Pearson’s χ2 test and Fisher’s exact test,
provide a principled approach to assess the statistical significance of each pattern S ∈
M according to n labeled observations in an input dataset D = {(xi, yi)}n

i=1. Given
an appropriate test statistic T and a desired significance threshold α, the framework
presented in the previous section could in principle be applied independently to each
pattern S in the search spaceM, leading to a set of P-values {pS | S ∈ M}. These
could then be used to obtain a tentative set of significantly associated patterns M̂sig =

{S ∈ M | pS ≤ α}. Temporarily obviating the evident computational limitations of
such a brute-force approach, this naive application of statistical association testing
to pattern mining would however lead to an even more severe statistical caveat. As
discussed in the previous section, the significance threshold α can be understood
as the type I error of each association test: it is the probability that a pattern S
entirely irrelevant for the purpose of determining which class a sample belongs to is
erroneously deemed significantly associated. Therefore, this naive procedure would
on average produce α|M0| false positives, whereM0 ⊆M denotes the set of patterns
whose occurrence within a sample is statistically independent of the class membership
of the sample. In many practical situations, including the vast majority of biomarker
discovery problems, the search space M contains an enormous number |M| of
candidate patterns, most of which are irrelevant patterns S ∈ M0, i.e. |M0| ≈ |M|.
If the significance threshold α is fixed a priori, irregardless of the number |M| of
association tests being performed, the few truly significant patterns contained in the
output of this hypothetical significant pattern mining algorithm would be interspersed
with billions or even trillions of false positives, drastically compromising the reliability
of all reported findings. The need for more sophisticated statistical association testing
procedures when multiple association tests are carried out simultaneously has long
been understood by statisticians. This phenomenon, traditionally referred to as the
multiple comparisons problem or multiple hypothesis testing problem, has been extensively
studied for several decades (e.g. [57–59]). Nevertheless, the multiple comparisons
problem that arises in significant pattern mining is justifiably unique: never before
had an application required performing such a gigantic number of simultaneous
association tests as significant pattern mining does.

Rather than controlling the per-hypothesis type I error, correcting for the multiple
comparisons problem requires adopting new error measures that instead consider
the entire collection of associations tests. A popular criterion is the Family-Wise Error
Rate (FWER), which is defined as the probability of reporting any false positives in the
entire body of tests. Formally, FWER(δ) = Pr(FP(δ) > 0), where FP(δ) is the number
of false positives at significance threshold δ, i.e., the number of patterns S ∈ M0 for
which pS ≤ δ. A common goal to account for the multiple comparisons problem
is to control the FWER, that is, to guarantee that the FWER is bounded above by
a pre-specified level α. A simple approach to achieve this is to properly adjust the
significance threshold δ. By definition, FWER(δ) is a monotonically increasing function
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of δ. Therefore, the optimal corrected significance threshold δ∗ is given by the largest
value of δ, in order to maximise statistical power, that still satisfies FWER(δ) ≤ α:

δ∗ = max {δ | FWER(δ) ≤ α} . (2.9)

Nevertheless, evaluating the FWER at a certain significance threshold δ is, in general,
an intractable problem. The function FWER(δ) is often exceedingly complex, as it
depends on the unknown joint distribution of the collection of P-values corresponding
to all null hypotheses {pS | S ∈ M0}. Rather than using the exact but generally
unknown function FWER(δ), most existing approaches resort to the introduction of
an easier-to-compute surrogate function F̂WER(δ), most often designed to be a strict
upper bound of FWER(δ). An approximation δ̂∗ of the optimal significance threshold
δ∗ can then be obtained by using the surrogate F̂WER(δ) in place of FWER(δ):

δ̂∗ = max
{

δ | F̂WER(δ) ≤ α
}

. (2.10)

In particular, if F̂WER(δ) is chosen such that FWER(δ) ≤ F̂WER(δ) for all δ ∈ [0, 1],
then F̂WER(δ) ≤ α implies that FWER(δ) ≤ α as well. Thus, a solution of (2.10) would
also control the FWER at level α but could nevertheless lead to a considerable loss of
statistical power if the bound F̂WER(δ) is too loose, i.e. if FWER(δ)� F̂WER(δ).

In the remaining of this section, two distinct procedures for controlling the FWER
will be presented. These differ on the particular form of the upper bound F̂WER(δ),
which ultimately determines both the resulting statistical power and the underlying
computational complexity of each method. The purpose of this discussion is not to
provide a comprehensive review of the state-of-the-art for the multiple comparisons
problem but, rather, to introduce the subset of techniques from this field which are
most relevant for significant pattern mining. In particular, fundamentally important
families of approaches, such as sequential rejection procedures, will not be covered in
this thesis.

The Bonferroni correction

The most widespread approach to control the FWER is the Bonferroni correction [60,
61]. This method approximates the unknown FWER by an extraordinarily simple
surrogate: F̂WER(δ) = δ|M|. This quantity can be interpreted as the expected number
of false positives under the assumption that no pattern truly carries information about
the class labels, in which caseM0 =M would hold. Provided that the total number
of candidate patterns |M| is known, the computational complexity of evaluating
F̂WER(δ) is completely negligible. Most importantly, it can be readily shown that
F̂WER(δ) is an upper bound of FWER(δ):

FWER(δ) = Pr

(
⋃

S∈M0

{pS ≤ δ}
)
≤ ∑
S∈M0

Pr (pS ≤ δ) ≤ δ|M0| ≤ δ|M|, (2.11)

where {pS ≤ δ} is the event that pattern S is deemed significantly associated. Ob-
taining the solution of (2.10) for the choice F̂WER(δ) = δ|M| is trivial. The resulting
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corrected significance threshold, given by δbonf = max {δ | δ|M| ≤ α} = α/|M|,
controls the FWER at level α since F̂WER(δ) is an upper bound of FWER(δ).

In practice, F̂WER(δ) = δ|M| tends to overestimate the real value of FWER(δ) by
a considerable margin. In turn, this causes the corrected significance threshold δbonf
obtained using the Bonferroni correction to be often much smaller than the optimal
significance threshold δ∗, leading to a sharp loss of statistical power. However, as
a direct consequence of its simplicity, the Bonferroni correction has two favourable
properties: (i) it requires no assumptions to guarantee control of the FWER, thus
being readily applicable to any kind of data and (ii) as mentioned above, it does
not introduce any computational overhead. Those aspects have made the Bonferroni
correction the most popular tool to control the FWER, making the loss of statistical
power it entails a price happily paid by many practitioners.

While the Bonferroni correction has been used extensively to rigorously analyse
experimental findings in many distinct disciplines, it is unfortunately unable to cope
with the magnitude of the multiple comparisons problem that arises in significant
pattern mining. The inadequacy of the Bonferroni correction in this setting goes
beyond a mere loss of statistical power. For typical sizes of the search space |M|, the
resulting corrected significance threshold δbonf would be indistinguishable from zero
using standard floating point arithmetic, leading to a trivial algorithm that would
always consider no pattern to be significantly associated. Due to the lack of approaches
able to control the FWER when such an enormous number of associations tests are
simultaneously performed, traditional pattern mining methods resorted to either (1)
ignore the multiple comparisons problem altogether, providing a ranking of patterns
by association without any statistical guarantees [33, 62, 63] or (2) limit the size of the
search spaceM a priori by introducing implicit or explicit constraints in the maximum
pattern size, in order to be able to apply a Bonferroni correction in the much smaller
resulting search space [40–42].

Tarone’s improved Bonferroni correction for discrete data

Controlling the FWER in significant pattern mining while keeping all candidate
patterns in the search space, without any soft or hard constraints in the maximum
pattern size, had remained an open problem until the Limitless-Arity Multiple-testing
Procedure (LAMP) algorithm was proposed [26]. LAMP relies on Tarone’s improved
Bonferroni correction for discrete data [64], an alternative approach to control the
FWER that drastically improves statistical power over the Bonferroni correction in
pattern mining problems.

Tarone’s method exploits the nature of test statistics for discrete data to derive
a novel upper bound of the FWER that is much closer to the real FWER than the
bound provided by a standard Bonferroni correction. Consider a 2× 2 contingency
table summarising n i.i.d. realisations of a pair of binary random variables with the
margins n1 and rS treated as constants. To be consistent with the fixed margins, the
count aS must be smaller or equal than aS ,max = min(n1, rS ) and larger or equal than
aS ,min = max(0, rS − (n−n1)). Therefore, aS can only take aS ,max− aS ,min + 1 different
values. In turn, this implies that there are at most aS ,max − aS ,min + 1 distinct P-values
that can be obtained as an outcome of applying a test statistic such as Pearson’s
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statistical aspects of significant pattern mining

χ2 test or Fisher’s exact test to the 2× 2 contingency table. Since there is a finite
number of P-values that can be observed, the P-values arising from such discrete test
statistics cannot be arbitrarily small. Instead, there exists a minimum attainable P-value,
pS ,min = min {pS (a′S | n, n1, rS ) | a′S ∈ JaS ,min, aS ,maxK} 1, where pS (a′S | n, n1, rS ) is
the P-value obtained by applying the test statistic of choice to a 2× 2 contingency table
with count a′S , margins n1 and rS and sample size n. The existence of a minimum
attainable P-value pS ,min strictly larger than zero is a special property of discrete data.
In contrast, P-values obtained when testing the association between two continuous
random variables could be arbitrarily close to zero. Besides, the minimum attainable
P-value pS ,min depends only on n, n1 and rS . In particular, pS ,min does not depend on
the actual value of the count aS .

The existence of a minimum attainable P-value pS ,min strictly larger than zero has
profound implications. Suppose that the minimum attainable P-value pS ,min is larger
than the corrected significance threshold, pS ,min > δ. By definition, regardless of the
value of aS , the corresponding association cannot be deemed statistically significant.
Thus, it can also never cause a false positive at corrected significance threshold δ.
Patterns S ∈ M that satisfy this property are said to be untestable at level δ while the re-
maining patterns are said to be testable at level δ. LetMtest(δ) = {S ∈ M | pS ,min ≤ δ}
be the set of testable patterns at level δ. Tarone’s improved Bonferroni correction for dis-
crete data substitutes the unknown exact value of FWER(δ) by F̂WER(δ) = δ|Mtest(δ)|,
which is also an upper bound on FWER(δ):

FWER(δ) = Pr

(
⋃

S∈M0

{pS ≤ δ}
)

= Pr


 ⋃

S∈Mtest(δ)

{pS ≤ δ}




≤ ∑
S∈Mtest(δ)

Pr (pS ≤ δ) ≤ δ|Mtest(δ)|, (2.12)

where the first step follows from the fact that untestable patterns S ∈ M\Mtest(δ)

cannot cause a false positive at corrected significance threshold δ. Thus, Tarone’s
method also guarantees FWER control without introducing any additional assump-
tions.

In practice, the number of testable patterns |Mtest(δ)| is drastically smaller than
the total number of candidate patterns |M|. Thus, in significant pattern mining,
Tarone’s concept of testability leads to a corrected significance threshold δtar =

max {δ | δ|Mtest(δ)| ≤ α} which is much closer to the optimal significance thresh-
old δ∗ than δbonf, bringing forth a dramatic gain of statistical power over the standard
Bonferroni correction and making significant pattern mining on the entire search space
M statistically feasible. However, while computing δbonf is straightforward, the com-
putation of δtar is considerably more involved, requiring the use of sophisticated data
mining approaches. It is precisely at the intersection between statistical association
testing for discrete data and classical data mining techniques where significant pattern
mining thrives, as will be discussed in the next chapter.

1. Throughout this thesis, we will use double brackets to denote a range of consecutive integers, i.e.
Ja, bK = {a, a + 1, . . . , b} ⊂ Z, where a ≤ b.
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3
A L G O R I T H M I C A S P E C T S O F S I G N I F I C A N T PAT T E R N M I N I N G

As discussed in the previous chapter, significant pattern mining is statistically
challenging due to the massive multiple comparisons problem it entails. A meaningful
way to compensate for the multiple comparisons problem is to guarantee that the
FWER, the probability of reporting any false positives among all association tests being
performed, is bounded from above by a user-defined level α. Despite the existence of
more sophisticated procedures, its simplicity and generality have helped establish the
Bonferroni correction as the most popular approach to control the FWER across many
scientific disciplines. However, its strengths come at a price: it is an over-conservative
method that sacrifices a considerable amount of statistical power, specially in situations
where the number of simultaneous association tests is large. Significant pattern
mining, which takes the number of association tests to unprecedented extremes, is
thus too much of a challenge for the Bonferroni correction. Tarone’s method drastically
alleviates that limitation by exploiting the notion of testability, the phenomenon that
only a subsetMtest(δ) ⊆ M of all candidate patterns, the so-called testable patterns,
can reach significance and, therefore, cause a false positive. Significant pattern mining
and testability have a specially strong synergy. In practice, a large proportion of the
search space is untestable (|Mtest(δ)| � |M|), making Tarone’s method particularly
effective in this application.

Despite the apparent virtues of Tarone’s method in the context of significant
pattern mining, a fundamental problem remains open. Computing Tarone’s cor-
rected significance threshold δtar requires finding the largest δ ∈ [0, 1] that satisfies
δ|Mtest(δ)| ≤ α. A brute-force approach to evaluate δtar would involve enumerating
every single pattern S in the search spaceM to compute all minimum attainable P-
values {pS ,min | S ∈ M}. Unfortunately, the vast size of the search spaceM renders
this strategy unfeasible except when dealing with extraordinarily small datasets. This
computational challenge acted as a strong deterrent for the use of Tarone’s method
in significant pattern mining. More than 20 years after the publication of Tarone’s
method, the Limitless-Arity Multiple-testing Procedure (LAMP) algorithm [26] proposed
the first effective solution to this problem, de-facto kickstarting the field of significant
pattern mining. LAMP makes use of very specific properties of certain test statistics,
which include Pearson’s χ2 test and Fisher’s exact test, to devise a pruning criterion as
part of a branch-and-bound algorithm to efficiently compute δtar while only explicitly
enumerating a rather small subset of the search spaceM. Since its publication in 2013,
follow-up work [65, 66] has considerably improved the efficiency of the original LAMP
algorithm while still making use of the same core principles, leading to a method that
will be informally referred to as LAMP 2.0.

The goal of this chapter is to present the essential algorithmic aspects of significant
pattern mining, describing a generic algorithm that incorporates all these recent devel-
opments. Thus, this chapter introduces the foundations upon which the contributions
discussed in subsequent chapters have been built.
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3.1 overview

Conceptually, significant pattern mining algorithms can be understood as proceed-
ing in two phases. This idea is represented by the pseudocode in Algorithm 3.1.

Algorithm 3.1 Significant Pattern Mining

Input: Dataset D = {(xi, yi)}n
i=1, target FWER α

Output: {S ∈ M | pS ≤ δtar}
1: (δtar,Mtest(δtar))← tarone_spm(D, α)

2: Return {S ∈ Mtest(δtar) | pS ≤ δtar}

The goal of the first step, carried out by the routine tarone_spm invoked in Line 1

of Algorithm 3.1, is to compute Tarone’s corrected significance threshold δtar. This
routine, described in detail in Algorithm 3.2 below, is the most critical part of the
entire algorithm. It is responsible for exploring the search spaceM using a branch-
and-bound approach in order to efficiently obtain δtar and the resulting set of testable
patternsMtest(δtar). Based on its output, the second phase of Algorithm 3.1, executed
in Line 2, uses a test statistic such as Pearson’s χ2 test or Fisher’s exact test to compute
the P-value pS for all testable patterns S ∈ Mtest(δtar). Finally, the set of testable
patterns deemed significantly associated at level δtar, i.e. {S ∈ Mtest(δtar) | pS ≤ δtar},
is returned as an output. Tarone’s concept of testability implies that untestable patterns
S ∈ M\Mtest(δtar) cannot be significant. Hence, they do not need to be taken into
consideration at this step, greatly alleviating the overall computational burden of this
part of the algorithm.

3.2 pattern enumeration

In order to efficiently explore the search space of candidate patterns M, each
pattern S ∈ M will be arranged as a node of a pattern enumeration tree, which the
routine tarone_spm then traverses recursively. A valid pattern enumeration tree is any
bijective mapping of patterns to nodes of a tree which satisfies the following property:
the descendants S ′ of a pattern S must all be super-patterns of S , i.e., S ⊆ S ′. Pattern
enumeration trees are extensively used in many instances of pattern mining [67],
including both significant itemset mining and significant subgraph mining. As an
example, Figure 3.1 depicts one of the many possible ways to construct a pattern
enumeration tree in a significant itemset mining problem with p = 5 binary features.
In this case, each node in the tree corresponds to a feature interaction S and children
S ′ of a feature interaction S are obtained by incorporating an additional feature to the
interaction. Note that this construction is not unique since, depending on the ordering
of the features, multiple equally valid pattern enumeration trees could be obained.
Analogously, in significant subgraph mining, each node in the tree corresponds to a
subgraph S and children S ′ of S can be obtained by aggregating additional nodes
and edges to subgraph S .

A direct consequence of enumerating patterns by traversing a pattern enumeration
tree is the so-called apriori property of pattern mining. Despite being self-evident
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{1, 2, 3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1} {2} {3} {4} {5}

;

Figure 3.1. – Illustration of a valid pattern enumeration tree for a significant itemset
mining problem with p = 5 binary features. Each of the |M| = 25

feature interactions S ∈ M has been mapped to a distinct node of the
tree satisfying that S ′ ∈ Children(S) implies that S ⊆ S ′ for all patterns
S ∈ M.

to a large extent, this property plays a central role in a myriad of pattern mining
algorithms, including all approaches that will be discussed in this thesis.

Proposition 3.1 (Apriori property). Let S , S ′ ∈ M be two patterns such that S ′ is a
descendant of S in a pattern enumeration tree. Then, rS ′ ≤ rS , where rS and rS ′ are the
marginal occurrence counts of patterns S and S ′ in 2× 2 contingency tables computed from a
dataset D = {(xi, yi)}n

i=1.

Proof. By definition of pattern enumeration tree, if S ′ is a descendant of S then S ⊆ S ′.
Therefore, S ′ ⊆ x implies S ⊆ x or, equivalently, gS ′(x) = 1 implies gS (x) = 1. Since
rS = ∑n

i=1 gS (x) and rS ′ = ∑n
i=1 gS ′(x) the result follows.

The apriori property formalises an intuitive fact. Due to the way the pattern
enumeration tree is constructed, deeper levels of the tree consist of increasingly
complex patterns, which are guaranteed to occur less frequently in an input dataset
D than its simpler antecedents. As will be described next, the routine tarone_spm
combines this property with additional statistical considerations related to the concept
of testability in order to devise a pruning criterion that allows efficiently traversing
the pattern enumeration tree.

The pseudocode of the routine tarone_spm is described in Algorithm 3.2. As
shown in Line 2, the routine commences by initialising the estimate of the corrected
significance threshold δ̂tar to 1, the largest value δtar could possibly take, and the
estimate of the set of testable patterns at level δ̂tar to the empty set, M̂test(δ̂tar)← ∅.
In order to compute δtar = max {δ | δ|Mtest(δ)| ≤ α}, candidate patterns S ∈ M
will be explored recursively by traversing the pattern enumeration tree depth-first.
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Algorithm 3.2 tarone_spm

Input: Dataset D = {(xi, yi)}n
i=1, target FWER α

Output: Corrected significance threshold δtar and corresponding set of testable pat-
ternsMtest(δtar)

1: function tarone_spm(D,α)
2: Initialise global variables δ̂tar ← 1 and M̂test(δ̂tar)← ∅
3: NEXT(∅) . Start pattern enumeration
4: δtar ← δ̂tar andMtest(δtar)← M̂test(δ̂tar)

5: Return δtar andMtest(δtar)

6: end function
7: procedure NEXT(S)
8: Compute the minimum attainable P-value pS ,min . see Section 3.3
9: if pS ,min ≤ δ̂tar then . if pattern S is testable at level δ̂tar then

10: Append S to M̂test(δ̂tar)

11: F̃WER(δ̂tar)← δ̂tar|M̂test(δ̂tar)|
12: while F̃WER(δ̂tar) > α do
13: Decrease δ̂tar

14: M̂test(δ̂tar)←
{
S ′ ∈ M̂test(δ̂tar) | pS ′ ,min ≤ δ̂tar

}

15: F̃WER(δ̂tar)← δ̂tar|M̂test(δ̂tar)|
16: if not pruning_condition(S , δ̂tar) then . see Section 3.4
17: for S ′ ∈ Children(S) do
18: NEXT(S ′) . Recursively visit nodes in the tree depth-first

19: end procedure

The estimates δ̂tar and M̂test(δ̂tar) will be adjusted incrementally as patterns are
enumerated in such a way that, at the end of the execution of the algorithm, δ̂tar = δtar

and M̂test(δ̂tar) =Mtest(δtar) holds. This enumeration procedure is initiated in Line 3

at the root of the tree, which by convention is assumed to represent the empty pattern 1

S = ∅. For each pattern S ∈ M visited during the enumeration process, the following
sequence of steps is carried out.

Firstly, the minimum attainable P-value pS ,min of the pattern S is computed accord-
ing to the samples in the dataset D. This step, performed in Line 8 of the algorithm,
will be described in detail in Section 3.3 below. In the next line, the algorithm verifies
whether the pattern is testable at the current significance threshold δ̂tar (i.e., pS ,min ≤
δ̂tar) or not. If S is testable, it will be aggregated to the estimate of the set of testable
patterns M̂test(δ̂tar) in Line 10. Tarone’s upper bound on the FWER will be evaluated
next in Line 11, using the current estimate M̂test(δ̂tar) of the set of testable patterns
at level δ̂tar. In Line 12, this value is subsequently used by the algorithm to check if
the FWER condition δ̂tar|Mtest(δ̂tar)| = F̂WER(δ̂tar) ≤ α is violated at level δ̂tar. Note
that, as the enumeration process is not yet completed, M̂test(δ̂tar) ⊆Mtest(δ̂tar) holds.
Consequently, the FWER approximation F̃WER(δ̂tar) evaluated in Line 11 satisfies

1. The empty pattern is defined to occur in every input sample, i.e. g∅(x) = 1 for all x ∈ X . Hence,
the empty pattern cannot be statistically significant; its only purpose is to act as the starting point of the
recursive enumeration.

28



3.3 evaluating tarone’s minimum attainable p-value

F̃WER(δ̂tar) = δ̂tar|M̂test(δ̂tar)| ≤ δ̂tar|Mtest(δ̂tar)| = F̂WER(δ̂tar). If F̃WER(δ̂tar) > α,
then it follows that F̂WER(δ̂tar) > α, implying that the current estimate of the corrected
significance threshold δ̂tar is too large and violates the FWER condition for target
FWER α. Thus, in that case, δ̂tar is decreased in Line 13. This in turn causes some
patterns currently in M̂test(δ̂tar) to no longer be testable. These patterns are removed
from M̂test(δ̂tar) in Line 14, thereby reducing F̃WER(δ̂tar), which is re-evaluated in
Line 15. This process is repeated, iteratively reducing δ̂tar and removing untestable pat-
terns from M̂test(δ̂tar), until the FWER condition is satisfied again, i.e. F̃WER(δ̂tar) ≤ α.
Finally, the enumeration process continues recursively by visiting the children of the
pattern S currently being processed (Lines 17-18). Nevertheless, prior to that a pruning
condition is evaluated in Line 16. This step, discussed in detail in Section 3.4 below,
is the key to the computational feasibility of the algorithm. By construction, if the
pruning condition applies, no descendant of pattern S can be testable and, hence, they
do not need to be enumerated, drastically reducing computational complexity. As the
algorithm enumerates patterns, δ̂tar progressively decreases, making more and more
patterns become untestable and the pruning condition in Line 16 to become more
stringent. Eventually, the algorithm terminates its execution when all patterns S ∈ M
that have not been pruned from the search space have been visited. At termination,
δ̂tar = δtar and M̂test(δ̂tar) =Mtest(δ̂tar), allowing the exact value of Tarone’s corrected
significance threshold δtar and the corresponding set of testable patternsMtest(δtar) to
be returned in Line 5.

The significant pattern mining approach described by Algorithms 3.1 and 3.2 can
be applied as long as the search space of patterns M can be arranged as a valid
pattern enumeration tree, allowing to abstract away the specific type of patterns under
consideration, be it itemsets, subgraphs or any other. While the framework is also
in principle agnostic to the choice of test statistic, the two key steps of the algorithm
which remain to be discussed, the computation of minimum attainable P-values pS ,min

and the design of a valid pruning condition, are closely intertwined with the particular
test statistic being used to assess the significance of the occurrence of patterns in a
sample. The remainder of this section will be devoted to discuss in detail each of these
two key steps for the two test statistics that were introduced in Section 2.2: Pearson’s
χ2 test and Fisher’s exact test.

3.3 evaluating tarone’s minimum attainable p-value

As described in Section 2.3, discrete test statistics can only result in a finite number
of distinct P-values, implying the existence of a minimum attainable P-value. In
particular, if a test statistic based on 2 × 2 contingency tables conditions on the
observed margins n1 and rS , modelling them as constants, the cell count aS can
only take values in the range JaS ,min, aS ,maxK, where aS ,min = max(0, rS − (n− n1))

and aS ,max = min(n1, rS ). Any other outcome of aS would be inconsistent with the
observed margins n1 and rS and can be thus be ruled out a priori. Therefore, such a
test can result in at most aS ,max − aS ,min + 1 different P-values, the smallest one being
the minimum attainable P-value:

pS ,min = min
{

pS (a′S | n, n1, rS ) | a′S ∈ JaS ,min, aS ,maxK
}

, (3.1)
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where pS (a′S | n, n1, rS ) is the P-value that results as an outcome of applying the test
statistic to a 2× 2 contingency table with cell count a′S , margins n1 and rS and sample
size n.

Algorithm 3.2 requires computing the minimum attainable P-value pS ,min of every
single pattern S that is enumerated. Hence, billions or even trillions of evaluations of
pS ,min will be necessary in a single execution of the algorithm, rendering the computa-
tional efficiency of this step critical for the overall feasibility of the entire approach.
A naive application of Equation (3.1) would involve computing pS (a′S | n, n1, rS ) for
each a′S ∈ JaS ,min, aS ,maxK, leading to O(n) P-value computations for each evaluation
of pS ,min, constituting an unacceptable computational overhead. This section will be
devoted to introduce closed-form expressions of pS ,min for both Pearson’s χ2 test and
Fisher’s exact test that can be evaluated with O(1) complexity.

The minimum attainable P-value pS ,min is a function of the number rS of occurrences
of pattern S in D, the number n1 of samples in D that belong to the positive class
and the total sample size n. However, given an input dataset D, only rS varies from
pattern to pattern. In order to simplify the notation used in the remainder of this
section, we will therefore simply write pS ,min = pmin(rS ), leaving the dependence of
pS ,min on n1 and n implicit.

As Equation (3.1) suggests, the task of computing pmin(rS ) is equivalent to finding
the minimiser a∗S of pS (a′S | n, n1, rS ) in JaS ,min, aS ,maxK. As a consequence of the way
the P-values for Pearson’s χ2 test (Equation (2.6)) and Fisher’s exact test (Equation (2.8))
are defined, the minimiser a∗S must lie in the boundary of JaS ,min, aS ,maxK, i.e. either
a∗S = aS ,min or a∗S = aS ,max. To derive a closed-form expression of pmin(rS ) for each of
the two test statistics under consideration, all that remains to be shown is which of
the two cases holds for each value of rS .

Proposition 3.2 (Minimum attainable P-value function for Pearson’s χ2 test). Define
na = min(n1, n− n1) and nb = max(n1, n− n1). Then, the minimum attainable P-value
function for Pearson’s χ2 test is given by:

pmin(rS ) =





1− Fχ2
1

(
(n− 1) nb

na

rS
n−rS

)
, if 0 ≤ rS < na,

1− Fχ2
1

(
(n− 1) na

nb

n−rS
rS

)
, if na ≤ rS < n

2 ,

1− Fχ2
1

(
(n− 1) na

nb

rS
n−rS

)
, if n

2 ≤ rS < nb,

1− Fχ2
1

(
(n− 1) nb

na

n−rS
rS

)
, if nb ≤ rS ≤ n.

(3.2)

Proof. Let Tmax(rS ) be the maximum value of Pearson’s χ2 test statistic for a 2× 2
contingency table with sample size n and margins rS and n1. As discussed above,
Tpearson(aS | n, n1, rS ) will be maximised either at a∗S = aS ,min or at a∗S = aS ,max.
Hence:

Tmax(rS ) =
max

((
aS ,min − rS n1

n

)2 ,
(
aS ,max − rS n1

n

)2
)

rS
n

n−rS
n

n−n1
n−1 n1

. (3.3)

Suppose 0 ≤ rS < na. Then, aS ,min = 0 and aS ,max = rS , leading to:

Tmax(rS ) = (n− 1)
rS

n− rS
max2(n1, n− n1)

n1(n− n1)
= (n− 1)

rS
n− rS

nb

na
. (3.4)
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Analogously, if nb ≤ rS ≤ n, then aS ,min = rS − (n− n1) and aS ,max = n1. Thus:

Tmax(rS ) = (n− 1)
n− rS

rS
max2(n1, n− n1)

n1(n− n1)
= (n− 1)

n− rS
rS

nb

na
. (3.5)

Finally, suppose na ≤ rS < nb. This case can be studied separately depending on
whether n1 ≤ n− n1 or n1 > n− n1.

Let n1 ≤ n− n1, then aS ,min = 0 and aS ,max = n1. This leads to:

Tmax(rS ) = (n− 1)
n1

n− n1

max2(rS , n− rS )
rS (n− rS )

= (n− 1)
na

nb

max2(rS , n− rS )
rS (n− rS )

=

{
(n− 1) na

nb

n−rS
rS

, if na ≤ rS < n
2 ,

(n− 1) na
nb

rS
n−rS

, if n
2 ≤ rS < nb.

(3.6)

If n1 > n− n1, then aS ,min = rS − (n− n1) and aS ,max = rS . Therefore:

Tmax(rS ) = (n− 1)
n− n1

n1

max2(rS , n− rS )
rS (n− rS )

= (n− 1)
na

nb

max2(rS , n− rS )
rS (n− rS )

=

{
(n− 1) na

nb

n−rS
rS

, if na ≤ rS < n
2 ,

(n− 1) na
nb

rS
n−rS

, if n
2 ≤ rS < nb.

(3.7)

Since ppearson(aS | n, n1, rS ) = 1 − Fχ2
1

(
Tpearson(aS | n, n1, rS )

)
, this concludes the

proof.

Proposition 3.3 (Minimum attainable P-value function for Fisher’s exact test). Define
na = min(n1, n− n1) and nb = max(n1, n− n1). Then, the minimum attainable P-value
function for Fisher’s exact test is given by:

pmin(rS ) =





(na
rS
)/( n

rS
), if 0 ≤ rS < na,

( nb
n−rS

)/( n
rS
), if na ≤ rS < n

2 ,

(nb
rS
)/( n

rS
), if n

2 ≤ rS < nb,

( na
n−rS

)/( n
rS
), if nb ≤ rS ≤ n.

(3.8)

Proof. Analogously to the proof of Proposition 3.2, pfisher(aS | n, n1, rS ) is minimised
either at a∗S = aS ,min or at a∗S = aS ,max. Therefore:

pmin(rS ) = min
(
Hypergeom(aS ,min | n, n1, rS ), Hypergeom(aS ,max | n, n1, rS )

)
. (3.9)

This implies that:

pmin(rS ) =
min

(
( n1

aS ,min
)( n−n1

rS−aS ,min
), ( n1

aS ,max
)( n−n1

rS−aS ,max
)
)

( n
rS
)

. (3.10)

The problem will be decomposed in three cases, as done for the derivation of the
closed-form expression of the minimum attainable P-value for Pearson’s χ2 test.

Let 0 ≤ rS < na, leading to aS ,min = 0 and aS ,max = rS . Then:

pmin(rS ) =
min

(
(n−n1

rS
), (n1

rS
)
)

( n
rS
)

=
(na

rS
)

( n
rS
)

. (3.11)
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Similarly, if nb ≤ rS ≤ n then aS ,min = rS − (n− n1) and aS ,max = n1. Thus:

pmin(rS ) =
min

(
( n1

rS−(n−n1)
), ( n−n1

rS−n1
)
)

( n
rS
)

=
min

(
( n1

n−rS
), (n−n1

n−rS
)
)

( n
rS
)

=
( na

n−rS
)

( n
rS
)

, (3.12)

where the second step follows from (n
k) = ( n

n−k).
Let na ≤ rS < nb and n1 ≤ n− n1, so that aS ,min = 0 and aS ,max = n1. Hence:
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(3.13)

Alternatively, if na ≤ rS < nb and n1 > n − n1, then aS ,min = rS − (n − n1) and
aS ,max = rS , leading to:

pmin(rS ) =
min

(
( n1

n−rS
), (n1

rS
)
)

( n
rS
)

=





( nb
n−rS

)

( n
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)

, if na ≤ rS < n
2 ,

(nb
rS
)

( n
rS
)
, if n

2 ≤ rS < nb,
(3.14)

where again the identity (n
k) = ( n

n−k) was used. This concludes the proof.

(a) (b)

Figure 3.2. – Minimum attainable P-value pS ,min for Pearson’s χ2 test (blue) and
Fisher’s exact test (orange) as the number rS of occurrences of pattern
S in a dataset D varies. The number of samples in the positive class n1

and the sample size n are n1 = 15, n = 60 in (a) and n1 = 30, n = 60 in
(b), respectively.

Figure 3.2 depicts pS ,min as a function of the number rS of occurrences of pattern
S in a dataset D for Pearson’s χ2 test (blue) and Fisher’s exact test (orange). Two
particular cases are illustrated in Figures 3.2(a) and 3.2(b) depending on the class ratio
n1/n of the dataset: the former exemplifies an unbalanced dataset with n1 = 15 and
n = 60 whereas the latter corresponds to a balanced dataset with n1 = 30 and n = 60.
The qualitative behaviour of pmin(rS ) is identical for both test statistics. As suggested
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3.3 evaluating tarone’s minimum attainable p-value

by the closed-form expressions derived in Propositions 3.2 and 3.3, the minimum
attainable P-value pS ,min as a function of rS is symmetric around rS = n/2 and has
minima at rS = na = min(n1, n − n1) and rS = nb = max(n1, n − n1). Informally,
the fundamental property of pmin(rS ) evidenced by Figure 3.2 is that the minimum
attainable P-value pS ,min is large, indicating lower potential to result in a statistically
significant association, whenever rS is small or rS is large.

(a) (b)

Figure 3.3. – Illustration of the concept of testability at an arbitrary level δ = 10−4.5

when Fisher’s exact test is the test statistic of choice for two 2× 2 contin-
gency tables differing in their class ratios: (a) unbalanced, with n1 = 15,
n = 60 and (b) balanced, with n1 = 30, n = 60. Values of rS in the range
Jrmin(δ), n− rmin(δ)K lead to pattern S being testable at level δ (green),
while rS < rmin(δ) or rS > n− rmin(δ) imply that pattern S is untestable
at level δ (red).

This property is investigated further in Figure 3.3, which illustrates how it relates to
the concept of testability at a certain corrected significance threshold δ. As a direct
consequence of the functional form of pS ,min, for fixed margin n1, sample size n and
corrected significance threshold δ, there exists a value rmin(δ) such that patterns S
with rS < rmin(δ) or rS > n− rmin(δ) are untestable at level δ, while those for which
rS lies in Jrmin(δ), n− rmin(δ)K are testable 2. This formalises the intuition that patterns
S for which rS is too small or too large, i.e. patterns S that are either too rare or too
common in D, are less likely to be significantly associated. Tarone’s method can thus
be understood as a statistically principled way to turn this intuition into a filtering
criterion to reduce the number of patterns that contribute to the multiple comparisons
problem. However, unlike other alternative approaches, Tarone’s method does not use
an ad-hoc threshold to filter patterns according to their number of occurrences in the
input dataset. Instead, it learns an adaptive threshold in a data-driven manner. As
a consequence, Tarone’s method is able to guarantee that all patterns that have no
chance of resulting in a statistically significant association at level δ, regardless of the

2. Technically, for sufficiently small δ, the set of values of rS that leads to pattern S being testable
could be the union of two disjoint intervals rather than a single interval. Nevertheless, this poses no
additional statistical or algorithmic difficulties. Moreover, this situation is uncommon in practice, as it
corresponds to values of δ that would be too small to be of practical relevance in most applications.
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algorithmic aspects of significant pattern mining

actual realisations of the class labels, will be filtered and that all patterns that could
possibly result in an association will be kept.

3.4 designing a pruning condition

Being able to evaluate the minimum attainable P-value pS ,min efficiently is of utmost
importance for significant pattern mining. However, even if pS ,min can be computed
with O(1) complexity, evaluating the minimum attainable P-value pS ,min of every
single candidate pattern S ∈ M remains computationally intractable in practice due
to the sheer size of the search space. As described in Section 3.2, significant pattern
mining algorithms circumvent this limitation by leveraging a pruning condition, that
is, a way to test if descendants S ′ of a pattern S in the enumeration tree are testable
using only information available in the 2× 2 contingency table of pattern S . The
remainder of this section will describe how specific properties of the function pmin(rS )
for Pearson’s χ2 test and Fisher’s exact test can be combined with the apriori property
of pattern mining (Proposition 3.1) to design a simple yet highly effective pruning
criterion, which is summarised in the following proposition:

Proposition 3.4 (Pruning criterion for Pearson’s χ2 test and Fisher’s exact test). Let
S ∈ M be a pattern satisfying:

(i) pS ,min > δ̂tar, i.e., S is untestable at level δ̂tar,

(ii) rS ≤ na, with na = min(n1, n− n1).

Then, pS ′ ,min > δ̂tar ≥ δtar for all descendants S ′ of S in the pattern enumeration tree, imply-
ing that they can be pruned from the search space. In conclusion, pruning_condition(S , δ̂tar)

in Line 16 of Algorithm 3.2 is true if and only if rS ≤ na and pS ,min > δ̂tar.

Proof. Firstly, for fixed sample size n and number n1 of samples in the positive class, the
minimum attainable P-value pS ,min is a monotonically decreasing function of rS in the
range rS ∈ J0, naK for both Pearson’s χ2 test and Fisher’s exact test, i.e., rS ′ ≤ rS ≤ na

implies pmin(rS ′) ≥ pmin(rS ). This property, which does not necessarily hold for all
test statistics based on contingency tables, can be readily verified from the specific
functional form of pS ,min in the range rS ∈ J0, naK: pmin(rS ) = 1− Fχ2

1

(
(n− 1) nb

na

rS
n−rS

)

for Pearson’s χ2 test and pmin(rS ) = (na
rS
)/( n

rS
) for Fisher’s exact test. Intuitively, this

means that in the range rS ∈ J0, naK, as the pattern S becomes less rare, the minimum
attainable P-value decreases, thereby increasing the potential of pattern S to be
statistically significant. Secondly, due to the apriori property, if S ′ is a descendant of
S, then rS ′ ≤ rS holds.

Combining both facts, if rS ≤ na then pS ′ ,min ≥ pS ,min for all descendants S ′
of S in the enumeration tree. Therefore, pS ,min > δ̂tar implies that pS ′ ,min > δ̂tar

for all descendants S ′ of S . Since δ̂tar ≥ δtar at any point during the execution of
Algorithm 3.2, this proves the result.

The pruning criterion presented in Proposition 3.4 only applies to patterns S ∈ M
satisfying rS ≤ na. While this might seem to be a strong limitation, a large proportion
of all candidate patterns S in the search spaceM are sufficiently rare for this condition
to apply. For any pattern S satisfying this constraint, Proposition 3.4 simply states
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3.5 implementation considerations

{1, 2, 3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1} {2} {3} {4} {5}

;

Figure 3.4. – Illustration of the effect of search space pruning in a significant itemset
mining problem with p = 5 binary features. In this example, it is as-
sumed that patterns S1 and S2 (highlighted in red) satisfy the conditions
of Proposition 3.4, i.e. rS1 ≤ na, rS2 ≤ na and pS1 ,min > δ̂tar, pS2,min > δ̂tar.
Then, all their descendants (highlighted in orange) would be pruned
from the search space, drastically reducing the number of candidate
patterns that need to be enumerated.

that descendants S ′ of an untestable pattern S will also be untestable. As Figure 3.4
illustrates, this can lead to a drastic reduction in computational complexity, allowing
to compute δtar and retrieve the set of testable patternsMtest(δtar) while enumerating
only a small subset of all candidate patterns in the search spaceM.

3.5 implementation considerations

When implementing the state-of-the-art significant pattern mining algorithm de-
scribed in this chapter, some fundamental design choices, not discussed yet for the
sake of clarity, need to be addressed. This section will be devoted to cover each of
these considerations in detail.

Constructing and navigating the pattern enumeration tree

One of the aspects that tends to have the greatest impact on computational efficiency
is the choice of algorithm to build and traverse the pattern enumeration tree. A priori,
this might seem a conceptually simple task. However, the vast size of the search space
quickly renders naive enumeration approaches computationally unfeasible as the size
of the dataset increases, requiring instead the use of sophisticated data structures and
enumeration strategies. Fortunately, the design of efficient algorithms to enumerate
patterns has been a key subject of research in data mining during decades, leading
to a wealth of highly optimised methods that can be readily applied to significant
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algorithmic aspects of significant pattern mining

pattern mining, including both itemset mining (e.g. [31, 68, 69], see [70] for a review)
and subgraph mining (e.g. [71, 72], see [73] for a review).

Iterative refinement of the estimate of Tarone’s corrected significance threshold

On every occasion the FWER condition is found to be violated during the execution
of Algorithm 3.2, the estimate δ̂tar of the corrected significance threshold is decreased
in Line 13. A simple strategy to implement this step is via grid search, be it uniform
(δ̂tar ← δ̂tar − ∆) or logarithmic (δ̂tar ← 10−∆δ̂tar). As long as ∆ is sufficiently small,
both approaches yield good results in practice. Alternatively, it is possible to exploit
the discreteness of the function pmin(rS ) to devise a more efficient strategy. In this case,
the sequence of candidate values for δ̂tar would be obtained by sorting in descending
order the b n

2 c+ 1 different values the minimum attainable P-value function pmin(rS )
can take 3. Every time δ̂tar needs to be decreased, it would be set to the next element
of that sequence. This strategy is optimal in the sense that it adaptively selects the
minimum step size necessary to decrease the estimate of Tarone’s FWER upper bound
F̃WER(δ̂tar).

Eliminating the need to keep the set of testable patterns in memory

Algorithm 3.3 find_significant_patterns

Input: Dataset D = {(xi, yi)}n
i=1, Tarone’s corrected significance threshold δtar

1: function find_significant_patterns(D,δtar)
2: NEXT(∅) . Start pattern enumeration
3: end function
4: procedure NEXT(S)
5: Compute the minimum attainable P-value pS ,min . see Section 3.3
6: if pS ,min ≤ δtar then . if pattern S is testable at level δtar then
7: Compute the P-value pS
8: if pS ≤ δtar then . if pattern S is significant at level δtar then
9: Write S and pS to an output file

10: if not pruning_condition(S , δtar) then . see Section 3.4
11: for S ′ ∈ Children(S) do
12: NEXT(S ′) . Recursively visit nodes in the tree depth-first

13: end procedure

The estimate M̂test(δ̂tar) of the set of testable patterns at level δ̂tar tends to be large in
practice, often containing hundreds of millions or even billions of patterns. Therefore,
explicitly storing this set in memory during the execution of the algorithm can be
a challenge. Moreover, this naive strategy could cause the execution of Line 14 in
Algorithm 3.2 to become a computational bottleneck, as in principle the entire set
M̂test(δ̂tar) would need to be inspected to remove all patterns that become untestable
after having decreased δ̂tar in the previous step of the algorithm. Nevertheless, in order

3. The symmetry of pmin(rS ) around n/2 implies that only b n
2 c+ 1 distinct minimum attainable

P-values can be obtained for fixed n1 and n, rather than n + 1.
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3.5 implementation considerations

to compute the corrected significance threshold δ̂tar, Algorithm 3.2 only requires access
to the total number of testable patterns |M̂test(δ̂tar)|, not the actual patterns themselves.
Define Pmin =

{
pmin(rS ) | rS ∈

q
0, b n

2 c
y}

to be the set of b n
2 c+ 1 distinct values that

pmin(rS ) can take for a given sample size n. Instead of explicitly storing M̂test(δ̂tar)

in memory, an alternative approach is to maintain only the set of b n
2 c+ 1 integers

{c(pS ,min) | pS ,min ∈ Pmin}, where c(pS ,min) is the number of patterns enumerated
so far that have minimum attainable P-value equal to pS ,min. Given any δ̂tar, the total
number |M̂test(δ̂tar)| of testable patterns enumerated so far can be retrieved as:

|M̂test(δ̂tar)| = ∑
pS ,min ∈Pmin | pS ,min≤δ̂tar

c(pS ,min), (3.15)

where the summation includes at most b n
2 c+ 1 counts. This approach allows comput-

ing δtar exactly by executing Algorithm 3.2 until its termination without ever needing
to store the estimate M̂test(δ̂tar) of the set of testable patterns in memory. Moreover,
it also allows executing Line 14 of Algorithm 3.2 with O(1) complexity, avoiding
a potential computational pitfall. However, in order to find the subset of testable
patterns which are significantly associated with the class labels, Line 2 of Algorithm 3.1
does require access to not only the corrected significance threshold δtar but also the
actual set of testable patternsMtest(δtar). To this end, the enumeration process can be
repeated, starting again at the root of the enumeration tree, but with fixed δ̂tar = δtar.
As patterns are enumerated, the P-values pS of patterns testable at level δtar can be
computed on the fly, and those which are deemed significantly associated can be
written to an output file. This approach is summarised in Algorithm 3.3. While this
strategy requires enumerating patterns twice, thus approximately doubling the total
runtime, it completely avoids the need to keep the set of testable patternsMtest(δtar)

in memory, greatly reducing memory usage. As a consequence, this is the preferred
implementation choice in most situations. Finally, it is worth noting that this strategy
is also applicable in situations for which the estimate δ̂tar of the corrected significance
threshold is decreased using grid search. For instance, if a logarithmic grid was used,
it would be possible to define c(i) as the number of patterns enumerated so far that
have minimum attainable P-value pS ,min ∈

[
10−(i−1)∆, 10−i∆

)
for each 1 ≤ i ≤ imax,

where imax is set so that 10−imax∆ is small enough (e.g. 10−30).

Caching the minimum attainable P-value function

In some circumstances, a useful strategy to further speed-up the evaluation of the
minimum attainable P-value function pmin(rS ) is to precompute its output for all n + 1
possible values of rS in the range J0, nK and store the mapping as a look-up table. This
requires only O(n) additional memory, often a negligible amount in comparison to the
size of the entire dataset D, and will virtually eliminate the contribution of minimum
attainable P-value computations to the overall runtime of the algorithm.
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C O N T R I B U T I O N S





4
E X P L O I T I N G T H E D E P E N D E N C E B E T W E E N PAT T E R N S

Perhaps the most influential characteristic of significant pattern mining as a machine
learning task is the daunting size of the search space of candidate patternsM, which
has profound statistical and computational implications. Most notably, during the
first part of this thesis, it was discussed extensively how this causes two fundamental
difficulties: (i) the statistical challenge of dealing with an extreme instance of the
multiple comparisons problem, and (ii) the computational challenge of exploring this
vast search spaceM efficiently. In Chapter 3, it was shown how Tarone’s improved
Bonferroni correction for discrete data can be combined with classical data mining
techniques to design a practical significant pattern mining algorithm that successfully
circumvents those difficulties. The resulting method is able to explore all candidate
patterns in the search spaceM in a computationally efficient manner and exhibits a
considerable amount of statistical power despite guaranteeing FWER control. However,
this approach is not devoid of limitations, opening the door to the development of
novel algorithms to further improve the state of the art in significant pattern mining.

In particular, another defining characteristic of significant pattern mining, com-
pletely overlooked by the approach introduced in Chapter 3, is the fact that the
search space of candidate patternsM is not only extremely large, but also harbours
non-trivial dependencies between the many patternsM contains.

In this chapter we present Westfall-Young light [49], a fast and memory-efficient
significant pattern mining algorithm that models the statistical dependencies between patterns
in the search space, obtaining a more accurate approximation of the FWER than that provided
by Tarone’s method and, ultimately, leading to a gain in statistical power.

The rest of this chapter is organised as follows. Section 4.1 details how the de-
pendence between patterns arises in significant pattern mining, as well as the main
implications of this phenomenon on the correction for the multiple comparisons
problem. Section 4.2 will be devoted to introduce the Westfall-Young permutation testing
procedure, a resampling-based approach to directly estimate the real value of FWER(δ)
without the need to make simplifying independence assumptions. Next, Section 4.3
discusses the challenge of developing significant pattern mining algorithms able to
make use of permutation testing. In particular, Section 4.3.1 introduces the FastWY
algorithm [43], which to the best of our knowledge constitutes the only previously ex-
isting attempt to combine permutation testing and significant pattern mining, whereas
Section 4.3.2 discusses in detail our novel contribution, the Westfall-Young light
algorithm. Finally, a thorough experimental assessment of the computational efficiency
of FastWY and Westfall-Young light is described in Section 4.4.

4.1 introduction

The most evident source of dependencies between patterns inM are subset/superset
relationships. If a pattern S is contained in another pattern S ′, the random variables
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exploiting the dependence between patterns

GS (X) and GS ′(X) that indicate the occurrence of patterns S and S ′ in an input sam-
ple X satisfy GS (X) = 0 ⇒ GS ′(X) = 0 or, equivalently, GS ′(X) = 1 ⇒ GS (X) = 1.
Therefore, GS (X) and GS ′(X) are statistically dependent, being mutually redundant
to some extent. Alternatively, the apriori property of pattern mining, discussed in
Proposition 3.1, can also be used to show that GS (X) and GS ′(X) are statistically
dependent for S ⊂ S ′. The strength of this dependency itself mainly depends on
the probability that the “difference pattern” S ′ \ S occurs in an input sample X. The
more likely it is that this pattern occurs, the more frequently S and S ′ will co-occur,
leading to a stronger association between GS (X) and GS ′(X). Figure 4.1 illustrates this
phenomenon in a toy significant itemset mining problem with n = 12 samples and
p = 10 features. The illustration depicts feature interaction S = {2, 9, 10}, highlighted
in grey, and feature interaction S ′ = S ∪ {7}, highlighted in brown. Since S ′ is formed
by adding an additional feature to S , it satisfies S ⊂ S ′ by construction. In this
example, it can be seen that knowing the value of gS (xi) alone is sufficient to also
know the value of gS ′(xi) for half of the samples {xi}12

i=1 in the dataset. In fact, this
holds true for any S ′ ⊇ S , regardless of the additional features S ′ \ S being added to
the feature interaction. Consequently, GS (X) is statistically dependent of GS ′(X), for
any S ′ ⊇ S .
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Figure 4.1. – Illustration of how dependence between patterns arises in significant
itemset mining due to inclusion relationships S ⊂ S ′ between candidate
patterns S , S ′ ∈ M.
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4.1 introduction

Subset/superset relationships are not the only potential source of dependence
between any two candidate patterns S1, S2 ∈ M. More generally, as long as the two
patterns share some sub-structures, i.e. S1 ∩ S2 6= ∅, the random variables GS1(X)

and GS2(X) might be statistically associated. Since GS1(X) = GS1∩S2(X)GS1\S2
(X)

and GS2(X) = GS1∩S2(X)GS2\S1
(X) holds for any S1, S2 ∈ M, the strength of the

association between GS1(X) and GS2(X) depends on the probability that the shared
sub-structure S1 ∩ S2 occurs in an input sample X, relative to the probability that
the pattern-specific sub-structures S1 \ S2 and S2 \ S1 occur. For example, if S1 \ S2

and S2 \ S1 are both common sub-structures which are present in almost every input
sample X, the probability that S1 and S2 occur in an input sample X will be dominated
by the probability that S1 ∩ S2 is present in X. Therefore, in this situation GS1(X)

and GS2(X) will be strongly associated. On the contrary, if S1 ∩ S2 is a common
sub-structure, the probability that S1 occurs in an input sample X will be mostly
determined by how frequently S1 \ S2 occurs, while the probability that S2 occurs in
an input sample X will mostly depend on how frequently S2 \ S1 occurs. In this case,
GS1(X) and GS2(X) will be approximately independent.

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1} {2} {3} {4} {5}

;

Figure 4.2. – Illustration of how subset/superset relationships between patterns and
the sharing of pattern sub-structures can result in a pattern S ∈ M being
statistically associated with many other patterns in the search space
M. In this significant itemset mining example, a feature interaction
S = {2, 5} (dark green) is related by subset/superset relationships to
9/32 feature interactions (green) and shares features with other 14/32
feature interactions (orange). The intensity of the colour of a node in
the pattern enumeration tree is proportional to the relatedness of the
corresponding feature interaction S ′ with S = {2, 5}.

Due to the combinatorial nature of the search spaceM, these dependencies which
arise as a consequence of subset/superset relationships and the sharing of pattern
sub-structures can lead to any given pattern S being statistically associated with
a large proportion of patterns in the search space M. Figure 4.2 illustrates this
effect in a toy significant itemset mining problem with only p = 5 features. In this
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exploiting the dependence between patterns

example, a given feature interaction S = {2, 5} (highlighted in dark green) is directly
related by subset/superset relationships to 9 out of 32 patterns (highlighted in green)
and shares some sub-structures (in this case, input features) with other 14 out of 32
patterns (highlighted in orange). In summary, in this example, the presence of pattern
S = {2, 5} in an input sample X might be statistically associated with occurrences of
more than half of all patterns in the entire search spaceM.

The existence of this complex web of interdependencies between patterns in the
search space M has profound implications. If the random variables GS1(X) and
GS2(X) are statistically dependent, the corresponding P-values pS1 and pS2 quantifying
the statistical association of GS1(X) and GS2(X) with the class labels Y might be
statistically dependent as well. Suppose that patterns S1, S2 ∈ M are not associated
with the class labels Y, i.e. S1, S2 ∈ M0 as defined in Section 2.3. Then, if the
random variables GS1(X) and GS2(X) are statistically associated, causing pS1 and
pS2 to be statistically dependent, the occurrence of a false positive for pattern S1, i.e.
[pS1 ≤ δ], and the occurrence of a false positive for pattern S2, i.e. [pS2 ≤ δ], will be
statistically dependent too. The implications of this observation can be traced back
to the derivations of the upper bounds on the intractable exact FWER used by the
Bonferroni correction and Tarone’s improved Bonferroni correction for discrete data.
Both approaches make use of the fact that, as a direct consequence of the axioms
of probability, Pr([pS1 ≤ δ] ∪ [pS2 ≤ δ]) = Pr(pS1 ≤ δ) + Pr(pS2 ≤ δ) − Pr(pS1 ≤
δ, pS2 ≤ δ) ≤ Pr(pS1 ≤ δ) + Pr(pS2 ≤ δ). This inequality is exact, i.e. becomes an
equality, if and only if the events [pS1 ≤ δ] and [pS2 ≤ δ] are mutually exclusive,
that is, if and only if Pr(pS1 ≤ δ, pS2 ≤ δ) = 0. Under any other circumstances,
Pr(pS1 ≤ δ) + Pr(pS2 ≤ δ) will overestimate the true value of Pr([pS1 ≤ δ] ∪ [pS2 ≤
δ]). Most importantly, if patterns S1 and S2 are closely related, leading to a high
probability that they co-occur in an input sample X, the random variables GS1(X)

and GS2(X) will be strongly positively correlated 1, causing [pS1 ≤ δ] and [pS2 ≤ δ] to
be positively correlated as well. In this particular case, which is of special relevance
for significant pattern mining, Pr(pS1 ≤ δ, pS2 ≤ δ) ≈ Pr(pS1 ≤ δ) ≈ Pr(pS2 ≤ δ),
implying that Pr([pS1 ≤ δ] ∪ [pS2 ≤ δ]) ≈ Pr(pS1 ≤ δ) ≈ Pr(pS2 ≤ δ). The same
argument can be generalised to any subsetM′ of the search spaceM. If the set of
P-values {pS | S ∈ M′} exhibits extensive positive correlations between subsets of
P-values, possibly extending beyond mere pairwise associations between P-values,
then Pr (

⋃
S∈M′ [pS ≤ δ]) � ∑S∈M′ Pr (pS ≤ δ) will hold. The larger the number of

patterns and the strength of the dependencies between patterns inM′, the bigger the
overestimation gap between ∑S∈M′ Pr (pS ≤ δ) and Pr (

⋃
S∈M′ [pS ≤ δ]) will be.

The Bonferroni correction approximates the intractable exact FWER, FWER(δ) =
Pr (

⋃
S∈M [pS ≤ δ]), with an upper bound F̂WER(δ) = ∑S∈M Pr (pS ≤ δ) = δ|M|.

As discussed in-depth in Section 2.3, this upper bound tends to greatly overestimate
FWER(δ) in significant pattern mining because the Bonferroni correction implicitly
assumes that any pattern in the search spaceM can cause a false positive while, in
reality, only a much smaller subsetMtest(δ) ⊆M of testable patterns can. Tarone’s im-
proved Bonferroni correction for discrete data hinges on that observation, proposing to

1. Two random variables GS1 (X) and GS2 (X) are said to be positively correlated if E(GS1 (X)GS2 (X)) >
E(GS1 (X))E(GS2 (X)). In the particular case that the random variables GS1 (X) and GS2 (X) are binary,
this is equivalent to Pr(GS1 (X) = 1, GS2 (X) = 1) > Pr(GS1 (X) = 1)Pr(GS2 (X) = 1).
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4.2 empirically approximating the fwer via random permutations

use instead an upper bound F̂WER(δ) = ∑S∈Mtest(δ) Pr (pS ≤ δ) = δ|Mtest(δ)|. Since
in practice |Mtest(δ)| � |M|, Tarone’s method drastically reduces the overestimation
gap between F̂WER(δ) and FWER(δ). Nonetheless, both the Bonferroni correction and
Tarone’s improved Bonferroni correction for discrete data rely on the additional sim-
plifying assumptions that the sets of P-values {pS | S ∈ M} and {pS | S ∈ Mtest(δ)}
are statistically independent, respectively. As it was shown above, due to the extensive
statistical dependencies which exist between different patterns in the search space,
both of these assumptions can seldom be expected to be satisfied in significant pattern
mining. Firstly, this observation sheds additional evidence on the inadequacy of the
Bonferroni correction for significant pattern mining. Perhaps most importantly, it also
implies that while Tarone’s improved Bonferroni correction for discrete data might
drastically improve statistical power compared to the Bonferroni correction, the unmet
assumption of joint independence of the P-values of all testable patterns renders it
over-conservative as well. Consequently, Tarone’s method still overestimates the real
FWER, causing the significance threshold δtar resulting from applying this approach
to be still considerably smaller than the significance threshold δ∗ one would obtain if
the real value of FWER(δ) could be computed exactly.

In the next sections we will introduce the Westfall-Young permutation testing
procedure, which allows to bypass the need to make independence assumptions by
directly obtaining an empirical estimate of FWER(δ), and describe how this approach
can be leveraged to improve statistical power in significant pattern mining.

4.2 empirically approximating the fwer via random permutations

Both the Bonferroni correction and Tarone’s method bypass the difficulty to ex-
actly evaluate the FWER at a given significance threshold δ by using an easier-to-
compute upper bound F̂WER(δ) of the FWER as a surrogate of the intractable quantity
FWER(δ). As argued in the previous section, while this paradigm enjoys the benefits
of simplicity and computational efficiency, it necessarily leads to over-conservative es-
timations of the FWER. An alternative approach is to instead try to obtain an empirical
estimate F̂WER(δ) of the exact value of FWER(δ) by using resampling techniques.

One of the most commonly used resampling schemes towards this end consists
of applying random permutations to the class labels [74]. Let D = {(xi, yi)}n

i=1 be
an input dataset with n observations x ∈ X and class labels y ∈ {0, 1}. Suppose
that π : J1, nK → J1, nK is a random permutation, i.e. a permutation of the set J1, nK
selected uniformly at random from the set of all n! permutations of J1, nK. Define

the resampled dataset D̃ =
{(

xi, yπ(i)

)}n

i=1
in such a way that the i−th observation

xi is paired with the class label of observation π(i), for each i = 1, . . . , n. The effect
of obtaining the class labels in the resampled dataset D̃ by randomly permuting
the original labels in D is to assign a random class label to each observation while
keeping the class ratio n1/n unchanged. As a consequence, any statistical dependency
between patterns and labels which might have existed in the original dataset D is
effectively eliminated by the permutation process. While the ground-truth regarding
which patterns S ∈ M are statistically associated with the class labels in the original
dataset D is unknown, in the resampled dataset D̃, no pattern S ∈ M can possibly be
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Figure 4.3. – In this significant itemset mining example, an input dataset D with
p = 10 features and n = 12 samples, shown on the left, has been
resampled by applying a random permutation π : J1, nK→ J1, nK to the
class labels, resulting in a new dataset D̃, shown on the right. While
both datasets share the same observations {xi}n

i=1 and class ratio n1/n,
the mapping of class labels and observations is different. A consequence
of this is that the occurrence of patterns S1 and S2, which is enriched in
observations belonging to class y = 1 in the original dataset D, no longer
show any association with the class labels in the resampled dataset D̃.

associated with the class labels. In other words, the global null hypothesis M0 =M
holds for D̃. Figure 4.3 illustrates the permutation process on a toy significant itemset
mining dataset with n = 12 samples and p = 10 features.

The fact that a resampled dataset D̃ obtained in this manner is known to contain
no associations can be exploited to obtain an empirical estimate of the FWER under
the global null hypothesis that no pattern S ∈ M is associated with the class labels.
Suppose that the resampling process described above is repeated a number jp of

times, leading to a set
{
D̃(k)

}jp

k=1
of jp resampled datasets. Leaving the matter of

computational feasibility temporarily aside, suppose that for each dataset D̃(k), the
P-values p(k)S for all patterns S ∈ M had been obtained. Define p(k)ms to be the P-value

corresponding to the most significant pattern, i.e. p(k)ms = min
{

p(k)S | S ∈ M
}

. By

construction, p(k)ms ≤ p(k)S for all patterns S ∈ M. Hence, if p(k)ms > δ, it follows that no
pattern S ∈ M will be deemed significant in the k-th resampled dataset D̃(k), leading
to no false positives being reported in this resampled dataset, i.e. FP(k)(δ) = 0. On the
contrary, if p(k)ms ≤ δ, there is at least one pattern S ∈ M being deemed significant for
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4.3 permutation testing in significant pattern mining

the k-th resampled dataset. Since D̃(k) is known to contain no associations, this implies
that FP(k)(δ) > 0. Therefore, an empirical estimator of the FWER can be obtained as:

F̂WER(δ) =
1
jp

jp

∑
k=1

1
[

p(k)ms ≤ δ
]
, (4.1)

where 1[•] evaluates to 1 if its input argument is true and to 0 otherwise. Intuitively,
the estimator F̂WER(δ) of the FWER at significance threshold δ is simply given by the
proportion of the jp resampled datasets that contain at least one false positive. If the
number of permutations jp is chosen sufficiently large (e.g. jp ≈ 10, 000), F̂WER(δ) will
be a rather accurate estimate of the true value of FWER(δ). A corrected significance
threshold can then be proposed based on this estimator as:

δwy = max

{
δ | 1

jp

jp

∑
k=1

1
[

p(k)ms ≤ δ
]
≤ α

}
. (4.2)

In other words, the corrected significance threshold δwy can be obtained as the α-

quantile of the set
{

p(k)ms

}jp

k=1
. It can be shown that δwy defined in this way guarantees

weak control of the FWER, i.e. controls the FWER under the global null hypothesis.
Moreover, if the subset pivotality condition [74] holds, then it can be shown that permu-
tation testing also strongly controls the FWER, i.e. controls the FWER when any subset
of hypotheses are allowed to be non-null. Permutation testing has been nonetheless
extensively applied to problems for which the subset pivotality condition cannot be
proven to hold, as is the case of significant pattern mining, while still leading to
successful results.

The empirical estimate of the FWER obtained via permutation testing implicitly
accounts for the dependence structure that might exist between patterns in the search
spaceM. While this can lead to a considerable gain in statistical power with respect
to Tarone’s method, naively applying this procedure to significant pattern mining is
entirely unfeasible. Firstly, evaluating p(k)ms for a single resampled dataset D̃(k) is a
challenging problem on its own. In principle, a naive evaluation of p(k)ms would require
computing the P-value p(k)S of each pattern S ∈ M, which is typically unfeasible due to
the size of the search spaceM. Moreover, in permutation testing, this operation needs
to be repeated between jp = 1, 000 and jp = 10, 000 times if a sufficiently accurate
estimate of the FWER is to be obtained, further exacerbating the computational
challenge.

While making use of Westfall-Young permutation testing in significant pattern
mining might therefore seem to be a hopeless endeavour, the next section will describe
in detail how the concept of the minimum attainable P-value, introduced in Section 2.3
in the context of Tarone’s method, can also be leveraged to design computationally
efficient permutation testing-based significant pattern mining algorithms.

4.3 permutation testing in significant pattern mining

This section builds upon the framework presented in Chapter 3, describing two
novel significant pattern mining algorithms which use the corrected significance
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threshold δwy obtained via permutation testing instead of Tarone’s corrected signifi-
cance threshold δtar, thereby implicitly exploiting the dependence between patterns
in the search space to improve statistical power. Both novel approaches follow the
skeleton of Algorithm 3.1, thus proceeding in two steps. First, a specialised algorithm
is designed to efficiently compute the corrected significance threshold δwy. Then,
Algorithm 3.3 can be invoked to retrieve all patterns in the search space which are sig-
nificantly associated with the class labels at level δwy. Hence, the transition from using
Tarone’s method to permutation testing merely involves substituting Algorithm 3.2 by
a different approach able to compute δwy efficiently. The rest of this section will be
devoted to describe two such approaches.

The first method to be introduced is the FastWY algorithm [43], the only pre-
existing attempt to use Westfall-Young permutation testing in significant pattern
mining. Next, our contribution, the Westfall-Young light algorithm, will be dis-
cussed in detail. Both algorithms are identical from a statistical perspective: they
both exactly compute the corrected significance threshold δwy and retrieve all pat-
terns significantly associated with the class labels at that level. Consequently, FastWY
and Westfall-Young light are indistinguishable in terms of statistical power and
false positive rate. Nonetheless, they radically differ from an algorithmic perspective,
showing vast differences in computational efficiency when applied to real-world data.

4.3.1 Related work: the FastWY algorithm

The idea of using permutation testing to improve statistical power in significant
pattern mining was pioneered by [43]. In their work, the authors explicitly tackle
the problem of efficiently computing p(k)ms for a single resampled dataset D̃(k). Once
p(k)ms has been obtained for each k = 1, . . . , jp, the corrected significance threshold
δwy can be evaluated according to Equation (4.2). In order to avoid computing the

P-values p(k)S for all patterns S ∈ M in the search space, FastWY relies on the concept

of testability. Suppose that p(k)ms(δ) = min
{

p(k)S | S ∈ Mtest(δ)
}

was available for

some δ ∈ (0, 1). Then, since p(k)S ≥ pS ,min > δ for all patterns S ∈ M \Mtest(δ), it
follows that p(k)ms(δ) ≤ δ implies p(k)ms = p(k)ms(δ). In other words, if the P-value p(k)ms(δ)

corresponding to the most significant testable pattern at level δ is known and happens
to be smaller or equal than δ, then none of the patterns which are untestable at level
δ could possibly be more significant. In that case, it would therefore be possible to
compute p(k)ms without the need to evaluate the P-values p(k)S for any pattern S which
is untestable at level δ. The FastWY algorithm exploits this observation, as described
in Algorithm 4.1.

In order to compute δwy, FastWY evaluates
{

p(k)ms

}jp

k=1
by processing each resampled

dataset D̃(k) independently, as shown in Lines 2-4. For a given resampled dataset D̃(k),
the routine compute_pmin, invoked in Line 4, obtains p(k)ms by iteratively computing
p(k)ms(δ) for a sequence of monotonically increasing values of δ. This sequence is
initialised at the smallest attainable P-value, δ0 = min {pmin(rS ) | rS ∈ J0, nK}, where
pmin(rS ) is the minimum attainable P-value function of the test statistic of choice.
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4.3 permutation testing in significant pattern mining

Algorithm 4.1 FastWY

Input: Dataset D = {(xi, yi)}n
i=1, target FWER α, number of permutations jp

Output: Corrected significance threshold δwy

1: function compute_significance_threshold(D,α,jp)
2: for k = 1, 2, . . . , jp do
3: Obtain a random permutation π(k) : J1, nK→ J1, nK
4: p(k)ms ← compute_pmin(D, π(k))

5: δwy ← max
{

δ | 1
jp

∑
jp
k=1 1

[
p(k)ms ≤ δ

]
≤ α

}

6: Return δwy

7: end function
8: function compute_pmin(D,π)
9: Initialise global variable δ← min {pmin(rS ) | rS ∈ J0, nK}

10: pms(δ)← compute_pmin_delta(D, π, δ)

11: while pms(δ) > δ do
12: Increase δ

13: pms(δ)← compute_pmin_delta(D, π, δ)

14: pms ← pms(δ)

15: Return pms

16: end function
17: function compute_pmin_delta(D,π,δ)
18: Initialise global variable p̂ms(δ)← 1
19: NEXT(∅) . Start pattern enumeration
20: pms(δ)← p̂ms(δ)

21: Return pms(δ)

22: end function
23: procedure NEXT(S)
24: Compute the minimum attainable P-value pS ,min . see Section 3.3
25: if pS ,min ≤ δ then . if pattern S is testable at level δ then
26: Compute P-value pS for resampled dataset D̃
27: p̂ms(δ)← min( p̂ms(δ), pS )

28: if not pruning_condition(S , δ) then . see Section 3.4
29: for S ′ ∈ Children(S) do
30: NEXT(S ′) . Recursively visit nodes in the tree depth-first

31: end procedure

This initialisation is justified by the observation thatMtest(δ) = ∅ for any δ < δ0. As
long as p(k)ms(δ) > δ, the algorithm continues to increase δ and recompute p(k)ms(δ), as
shown in Lines 11-13, until the condition p(k)ms(δ) ≤ δ is eventually satisfied. At that
point, as discussed previously, p(k)ms = p(k)ms(δ) holds and the routine compute_pmin can
terminate, returning the exact value of p(k)ms. Each computation of p(k)ms(δ) required
by that process is performed using the routine compute_pmin_delta (Lines 17-31).
Each time this routine is executed, the search spaceM is explored by traversing the
pattern enumeration tree depth-first, making use of the search space pruning criterion
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introduced in Section 3.4 to efficiently retrieve the setMtest(δ) of patterns testable at
level δ. Each time a testable pattern is enumerated, the routine computes its P-value
p(k)S in order to iteratively update p(k)ms(δ). Once all testable patterns have been visited,
the routine terminates, returning the exact value of p(k)ms(δ).

As a consequence, the FastWY algorithm requires enumerating patterns from scratch
each time the routine compute_pmin_delta is invoked to compute p(k)ms(δ) for a certain
value of δ. This might occur a potentially large number of times for any given
resampled dataset D̃(k) but, perhaps most importantly, this entire process must be
repeated for each of the jp ≈ 10, 000 resampled datasets. As a result, even if FastWY

is able to obtain the exact value of p(k)ms while enumerating only a small subset of
patterns in the search space M, the computational overhead of repeating pattern
enumeration such a large number of times limits its applicability to datasets of only
small-to-moderate size.

4.3.2 Contribution: the Westfall-Young light algorithm

Our contribution, the Westfall-Young light algorithm, builds upon the work
in [43] to provide an alternative approach to apply permutation testing in significant
pattern mining. Unlike FastWY, our method processes all resampled datasets simulta-
neously, requiring to enumerate patterns only a single time. In practice, this leads to a
drastic reduction in runtime and memory usage that allows scaling-up permutation
testing-based significant pattern mining to considerably larger datasets.

Pseudocode describing Westfall-Young light is shown in Algorithm 4.2. The
skeleton of the method closely parallels Algorithm 3.2. The search space M of all
candidate patterns is explored in the same manner: recursively traversing a pattern
enumeration tree that satisfies S ′ ∈ Children(S)⇒ S ⊆ S ′ depth-first. The algorithm
begins by initialising the estimate δ̂wy of the corrected significance threshold to 1
(Line 2). Next, in Lines 3-5, for each of the jp resampled datasets, the algorithm
precomputes the random permutation of the class labels and initialises the estimate
p̃(k)ms of the most significant P-value to 1. After the initialisation phase, the algorithm
proceeds to start the pattern enumeration procedure at the root of the tree (Line 6).
For each pattern S visited during the traversal of the enumeration tree, Algorithm 4.2
first computes the minimum attainable P-value pS ,min in Line 11. The algorithm then
proceeds differently depending on the testability of pattern S .

If pattern S is testable at level δ̂wy then, for each of the jp resampled datasets D̃(k),

the algorithm computes the P-value p(k)S and updates the estimate p̃(k)ms of the most
significant P-value for the k-th resampled dataset (Lines 13-15). Next, in Line 16, an
estimate F̃WER(δ̂wy) of the FWER at level δ̂wy is obtained using the estimates p̃(k)ms

of the most significant P-value for each resampled dataset. Since the enumeration
process is not yet completed, p̃(k)ms ≥ p(k)ms holds. This leads to 1

jp
∑

jp
k=1 1

[
p̃(k)ms ≤ δ̂wy

]
=

F̃WER(δ̂wy) being a lower bound of F̂WER(δ̂wy) = 1
jp

∑
jp
k=1 1

[
p(k)ms ≤ δ̂wy

]
. Thus, if

F̃WER(δ̂wy) > α, it follows that F̂WER(δ̂wy) > α as well, implying that the FWER
condition is not satisfied. In Lines 17-19, Algorithm 4.2 checks this condition and, if
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Algorithm 4.2 Westfall-Young light

Input: Dataset D = {(xi, yi)}n
i=1, target FWER α, number of permutations jp

Output: Corrected significance threshold δwy

1: function compute_significance_threshold(D,α,jp)
2: Initialise global variable δ̂wy ← 1
3: for k = 1, 2, . . . , jp do
4: Obtain a random permutation π(k) : J1, nK→ J1, nK
5: Initialise global variable p̃(k)ms ← 1

6: NEXT(∅) . Start pattern enumeration
7: δwy ← max

{
δ ∈ [0, δ̂wy] | 1

jp
∑

jp
k=1 1

[
p̃(k)ms ≤ δ

]
≤ α

}

8: Return δwy

9: end function
10: procedure NEXT(S)
11: Compute the minimum attainable P-value pS ,min . see Section 3.3
12: if pS ,min ≤ δ̂wy then . if pattern S is testable at level δ̂wy then
13: for k = 1, 2, . . . , jp do

14: Compute P-value p(k)S for resampled dataset D̃(k)

15: p̃(k)ms ← min( p̃(k)ms , p(k)S )

16: F̃WER(δ̂wy)← 1
jp

∑
jp
k=1 1

[
p̃(k)ms ≤ δ̂wy

]

17: while F̃WER(δ̂wy) > α do
18: Decrease δ̂wy

19: F̃WER(δ̂wy)← 1
jp

∑
jp
k=1 1

[
p̃(k)ms ≤ δ̂wy

]

20: if not pruning_condition(S , δ̂wy) then . see Section 3.4
21: for S ′ ∈ Children(S) do
22: NEXT(S ′) . Recursively visit nodes in the tree depth-first

23: end procedure

found to be violated, decreases the estimate δ̂wy of the corrected significance threshold
until the FWER condition is satisfied again.

On the contrary, if pattern S is untestable at level δ̂wy, it will not affect the values of

the FWER estimator F̃WER(δ) = 1
jp

∑
jp
k=1 1

[
p̃(k)ms ≤ δ

]
for any δ ≤ δ̂wy. Consequently,

the computation of the P-values p(k)S for k = 1, . . . , jp can be skipped, as well as the

update of the FWER estimator F̃WER(δ̂wy). The fact that untestable patterns cannot

modify the value of F̃WER(δ) follows from the definition of testability. If pS ,min > δ̂wy

and p̃(k)ms > δ̂wy, then min( p̃(k)ms , p(k)S ) > δ̂wy. Moreover, since δ̂wy ≥ δwy at any point
during the execution of the algorithm, it follows that if a pattern S is untestable at
level δ̂wy, then min( p̃(k)ms , p(k)S ) > δwy, leading to pattern S being irrelevant as far as the
permutation testing-based FWER estimator is concerned.

Search space pruning is fundamental to the computational feasibility of Algo-
rithm 4.2, as is for other significant pattern mining algorithms. As shown in Section 3.4,
when Pearson’s χ2 test or Fisher’s exact test are used, descendants S ′ of an untestable
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pattern S will also be untestable provided that rS ≤ min(n1, n − n1). Reiterating
the argument above, this implies that those descendants cannot affect the value of
F̃WER(δ) for any δ ≤ δ̂wy and, thus, can be pruned from the search space. In other
words, the pruning condition of Algorithm 4.2 is identical to that of Algorithm 3.2.
Finally, Lines 21-22 continue the traversal of the tree recursively, visiting the children
of patterns for which the pruning condition does not apply.

As was the case for Algorithm 3.2, δ̂wy progressively decreases as patterns are enu-
merated, leading to less patterns being testable and the pruning condition becoming
more stringent. Eventually, the algorithm ends its execution after all patterns have
either been pruned or visited. A fundamental property of the Westfall-Young light
algorithm is that, at convergence, the estimate p̃(k)ms of the most significant P-value for
the k-th resampled dataset is, in general, not equal to the exact value of p(k)ms. Instead,
when Algorithm 4.2 terminates, p̃(k)ms = min(p(k)ms(δ̂wy), q(k)ms), where:

(i) p(k)ms(δ̂wy) = min
{

p(k)S | S ∈ Mtest(δ̂wy)
}

.

(ii) q(k)ms = min
{

p(k)S | Q(δ̂wy)
}

, with Q(δ̂wy) ⊆ M \Mtest(δ̂wy) being the subset

of untestable patterns at level δ̂wy which the algorithm visited during earlier
iterations.

In particular, this implies that p̃(k)ms ≤ p(k)ms(δ̂wy) and, consequently, 1
[

p̃(k)ms ≤ δ
]
=

1
[

p(k)ms ≤ δ
]

holds for all δ ≤ δ̂wy. This in turn leads to the most remarkable property

of the Westfall-Young light algorithm: it is able to exactly evaluate F̂WER(δ) =
1
jp

∑
jp
k=1 1

[
p(k)ms ≤ δ

]
as F̂WER(δ) = 1

jp
∑

jp
k=1 1

[
p̃(k)ms ≤ δ

]
in the range δ ∈ [0, δ̂wy] despite

not having computed
{

p(k)ms

}jp

k=1
exactly. Since δ̂wy ≥ δwy always holds throughout the

execution of the algorithm, including after its termination, it immediately follows that
the Westfall-Young light algorithm is able to exactly evaluate F̂WER(δ) within the
range of values of δ which are necessary to retrieve δwy, i.e.

δwy = max

{
δ ∈ [0, δ̂wy] |

1
jp

jp

∑
k=1

1
[

p̃(k)ms ≤ δ
]
≤ α

}
(4.3)

holds. This result is used in Line 7 of the algorithm to compute δwy and finally return
it in the next line. Once the corrected significance threshold δwy has been obtained,
Algorithm 3.3 can be used to retrieve all patterns S that are statistically significant at
level δwy.

Implementation considerations

All low-level design choices which were discussed in Section 3.5 in the context of
Algorithm 3.2 also apply to Westfall-Young light:

(i) In order to efficiently navigate the pattern enumeration tree, highly-optimised,
problem-specific pattern mining algorithms can be seamlessly integrated as a
subcomponent of Westfall-Young light.
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(ii) When decreasing the estimate δ̂wy of the corrected significance threshold in
Line 18 of Algorithm 4.2, the b n

2 c distinct values the minimum attainable P-value
function pmin(rS ) takes can be used as the sole candidate values for δ̂wy.

(iii) To compute the corrected significance threshold δwy, it is unnecessary to keep
the setMtest(δ̂wy) of testable patterns in memory. Significant patterns at level
δwy can be retrieved by performing pattern enumeration a second time using
Algorithm 3.3.

(iv) The minimum attainable P-value function pmin(rS ) of the test statistic of choice
can be cached in a look-up table to speed-up the execution of the algorithm at
the price of a negligible increase in memory usage.

The fact that Westfall-Young light processes simultaneously all jp resampled
datasets allows to introduce an additional low-level optimisation. Given a pattern
S with rS occurrences in the input dataset D, the number of distinct P-values one
can obtain is of the order O(min(n1, rS )). For many patterns in the search spaceM,
min(n1, rS ) � jp holds. In these cases, it is advantageous to implement Line 14 in
Algorithm 4.2 by pre-computing all attainable P-values and storing them in a look-up
table. This would reduce the computational complexity of computing p(k)S for all jp

resampled datasets from O(jp) to O(min(n1, rS )).

Comparison to FastWY

As previously mentioned, FastWY and Westfall-Young light can be understood as
two different approaches to compute δwy, being thus statistically identical. However,
Westfall-Young light introduces many novel elements that render it considerably
more computationally efficient. In particular:

(i) FastWY uses the search strategy postulated by the original implementation of
the LAMP algorithm [26]: δ is initialised to the smallest value it could take, being
then increased in each iteration of the algorithm until convergence. Nonethe-
less, subsequent work [65, 66] has shown that the opposite search strategy,
namely, initialising δ to 1 and proceeding instead by decreasing it in each it-
eration, reduces the runtime of the algorithm by several orders of magnitude.
Westfall-Young light uses this vastly more efficient search strategy, as does
the LAMP 2.0 algorithm [65] described in Chapter 3.

(ii) In order to compute the corrected significance threshold δwy, the Westfall-Young
light algorithm needs to traverse the pattern enumeration tree only once. In
contrast, FastWY needs to repeat this process jp times. This leads to either a vast
increase in runtime, if the enumeration is repeated naively, or a vast increase
in memory usage, if all intermediate computations are cached in memory to
reduce the runtime overhead.

(iii) FastWY requires computing the most significant P-values
{

p(k)ms

}jp

k=1
of all jp re-

sampled datasets. In particular, resampled datasets for which p(k)ms ends up being
large require exploring a larger proportion of the search spaceM, dominating
the overall runtime of the algorithm. On the contrary, the Westfall-Young light
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algorithm does not need to compute
{

p(k)ms

}jp

k=1
exactly, effectively eliminating

this undesirable effect entirely.

As a result of these improvements, Westfall-Young light drastically outperforms
FastWY in terms of runtime and memory usage, as will be shown in Section 4.4.

Comparison to LAMP 2.0

Compared to the LAMP 2.0 algorithm described in Algorithm 3.2, Westfall-Young
light will exhibit more statistical power due to the use of permutation testing to
obtain a better approximation of the FWER. However, it is a more computationally
demanding approach, as jp P-values need to be computed for each pattern deemed
testable during the pattern enumeration procedure. In short, Westfall-Young light
allows to trade off computational complexity for statistical power, an option that might
be desirable in applications where signals are too weak to be detected by LAMP 2.0.

4.4 experiments

In this section we compare our contribution, the Westfall-Young light algorithm,
to the current state of the art for permutation testing-based significant pattern mining,
the FastWY algorithm. In order to make a comprehensive evaluation of both ap-
proaches, a wide range of real-world datasets will be used, including both significant
itemset mining and significant subgraph mining experiments.

4.4.1 Experimental Setup

Our implementation of Westfall-Young light was written in C/C++. While the
original implementation of FastWY was written in Python by its authors, in this section
we compare to our own version of FastWY, written in C/C++ to allow for a fair
comparison. This new implementation of FastWY used as a baseline is about two to
three orders of magnitude faster and reduces the amount of memory used by one
to two orders of magnitude compared to the original Python version. In order to
alleviate the impact of having to repeat pattern enumeration jp times, the original
implementation of FastWY stores intermediate computations in memory, sacrificing
memory usage to be able to analyse datasets of small-to-moderate size in a feasible
amount of time. For the sake of consistency, our C/C++ implementation of FastWY
resorted to the same strategy.

The significant itemset mining instances of both Westfall-Young light and FastWY
use LCM version 3 [69] as the underlying itemset mining algorithm to traverse the
enumeration tree. LCM is widely considered one of the most efficient itemset mining
algorithms, having won the FIMI’04 frequent itemset mining competition [75]. The
code was compiled using Intel C++ compiler version 14.0.1 with -O3 optimisation and
executed on a single thread of a 2.7 GHz Intel Xeon CPU with 256 GB of memory
available. Similarly, the significant subgraph mining instances of Westfall-Young
light and FastWY make use of Gaston [72], reported to be one of the fastest subgraph
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mining algorithms [76]. The code was compiled using gcc 4.8.2 with -O3 optimisation
and run on a single thread of a 2.5 GHz Intel Xeon CPU with 256 GB of memory.

Significant Itemset Mining Datasets

Table 4.1. – Characteristics of the significant itemset mining datasets. n and n1 are the
total number of samples and the number of samples in the positive class,
respectively; p is the number of features (items) and p̄act is the average
number of active features per sample. The ratio n/n1 is shown only for
labeled datasets.

Dataset n n/n1 p p̄act

TicTacToe 958 2.89 18 6.93
Chess 3, 196 − 75 37.00
Inetads 3, 279 7.14 1, 554 12.00
Mushroom 8, 124 2.08 117 22.00
Breast cancer 12, 773 11.31 1, 129 6.70
Pumsb-star 49, 046 − 7, 117 50.48
Connect 67, 557 − 129 43.00
BmsWebview 77, 512 − 3, 340 4.62
Retail 88, 162 − 16, 470 10.31
T10I4D100K 100, 000 − 870 10.10
T40I10D100K 100, 000 − 942 39.61
Bmspos 515, 597 − 1, 657 6.53

Our significant itemset mining experiments include four labeled datasets: TicTac-
Toe 2, Inetads 3, Mushroom 4, and Breast cancer. The first three datasets are widely
studied datasets from the UCI repository [77] whereas the Breast cancer dataset
is described in [43]. Additionally, our experiments were extended by including
eight unlabelled datasets commonly used to benchmark frequent itemset mining
algorithms [75]: Bmspos, BmsWebview, Retail, T10I4D100K, T40-I10D100K, Chess,
Connect and Pumsb-star. In order to use these unlabelled datasets in our experiments,
we exploit the observation that Algorithms 4.1 and 4.2 only depend on the class labels
via n1, the number of samples in the positive class. Two representative scenarios were
considered for each unlabelled dataset: (i) a case with balanced classes, n/n1 = 2 and
(ii) a case with highly unbalanced classes, n/n1 = 10. The main properties of each
dataset are summarised in Table 4.1.

Significant Subgraph Mining Datasets

Our significant subgraph mining experiments include 12 labelled graph datasets:
four PTC (Predictive Toxicology Challenge) datasets 5, four NCI (National Cancer

2. https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
3. https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
4. https://archive.ics.uci.edu/ml/datasets/mushroom
5. http://www.predictive-toxicology.org/ptc/

55

https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
https://archive.ics.uci.edu/ml/datasets/mushroom
http://www.predictive-toxicology.org/ptc/


exploiting the dependence between patterns

Table 4.2. – Characteristics of the significant subgraph mining datasets, where |V| and
|E| denote the number of vertices and edges, respectively.

Dataset n n/n1 max |V| max |E|
PTC (MR) 584 3.23 181 181
PTC (FR) 583 3.74 181 181
PTC (MM) 576 3.18 181 181
PTC (FM) 563 3.15 181 181
MUTAG 188 2.98 28 66
ENZYMES 600 2.00 126 149
D&D 1, 178 2.42 5, 748 14, 267
NCI1 4, 208 2, 00 462 468
NCI41 27, 965 17.23 462 468
NCI109 4, 256 2.00 462 468
NCI167 80, 581 8.38 482 478
NCI220 900 3.10 239 255

Institute) datasets 6, MUTAG, ENZYMES and D&D 7. Graphs in ENZYMES and D&D
contain no edge labels and represent proteins whereas in all other datasets they
contain both node and edge labels and represent chemical compounds. In the four
PTC datasets, we follow the setting of [78] and assign graphs labelled as CE, SE, or
P to the positive class while graphs labelled NE or N were assigned to the negative
class. The main properties of each dataset are summarised in Table 4.2.

In order to be able to run FastWY until termination, the maximum size of subgraphs
in the search space had to be artificially limited. For example, considering subgraphs
of up-to ten nodes as candidate patterns, the FastWY algorithm had not finished its
execution on the ENZYMES dataset after two weeks of computation. In contrast,
Westfall-Young light took only 3.6 hours to complete the same analysis. As a result,
the number of nodes in candidate subgraphs was limited to: (i) 15 in NCI1, NCI109,
and NCI220; (ii) 10 in MUTAG, NCI41, and NCI167; and (iii) 8 in ENZYMES. In D&D
and the four PTC datasets, limiting the size of candidate subgraphs was unnecessary
to allow FastWY to complete its execution.

4.4.2 Runtime and memory usage

The main experimental result in this chapter is an exhaustive comparison of the
overall runtime and memory usage of our proposed approach, the Westfall-Young
light algorithm, and the baseline method, the FastWY algorithm, for 20 significant
itemset mining and 12 significant subgraph mining datasets. In all cases, jp = 10, 000
random permutations were used to empirically estimate the FWER and obtain a
corrected significance threshold δwy that upper-bounds the FWER by α = 0.05, a
standard choice across many scientific disciplines. Figures 4.4 and 4.5 depict the
results for significant itemset mining and significant subgraph mining, respectively.

6. https://pubchem.ncbi.nlm.nih.gov/
7. The datasets MUTAG, ENZYMES, and D&D were obtained from http://mlcb.is.tuebingen.

mpg.de/Mitarbeiter/Nino/Graphkernels/data.zip
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(a) Runtime

(b) Peak memory usage

Figure 4.4. – Comparison of runtime and memory usage between Westfall-Young
light and FastWY in 20 significant itemset mining experiments, using
jp = 10, 000 random permutations. Numbers attached to (unlabelled)
dataset names denote the ratio n/n1.

In terms of runtime, our proposed approach Westfall-Young light can be seen
to be two to three orders of magnitude faster than the baseline FastWY across the
significant itemset mining experiments and one to two orders of magnitude faster
in the significant subgraph mining experiments. The runtime gap between both
approaches appears to be heavily dataset-dependent; however, there is a clear trend
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(a) Runtime

(b) Peak memory usage

Figure 4.5. – Comparison of runtime and memory usage between Westfall-Young
light and FastWY in 12 significant subgraph mining experiments, using
jp = 10, 000 random permutations.

indicating that the size of this gap increases with the absolute execution time required
to analyse the dataset. This strongly suggests that Westfall-Young light scales more
gently than FastWY in terms of runtime when analysing real-world datasets.

Figures 4.4 and 4.5 reveal two different qualitative scenarios as far as memory usage
is concerned:

1. In 17 out of 32 experiments, Westfall-Young light and FastWY seem to use
approximately the same amount of memory. It is worth noting that precisely
in these cases for which both approaches exhibit the same memory footprint,
simply running the pattern mining algorithm (i.e. LCM or Gaston) also leads to the
same memory usage. Therefore, memory usage in these datasets is dominated
by the underlying pattern mining algorithm rather than the significant pattern

58



4.4 experiments

mining-specific subroutines, leaving little room for improvement and justifying
why Westfall-Young light and FastWY have essentially the same performance.

2. In all other 15 out of 32 experiments, FastWY requires a vastly larger amount
of memory that Westfall-Young light. Perhaps even most importantly, in 6
out of these 15 cases, the memory usage of FastWY soars up to the point where
the algorithm is unable to complete the analysis. This phenomenon occurred
when applying FastWY to the datasets Chess, Pumsb-star and Connect. The
memory usage of FastWY reported in Figure 4.4(b) for these three datasets is
a conservative lower bound 8 on the actual amount; the true memory usage
if the analysis had been successfully completed could have been much larger.
In contrast, the Westfall-Young light algorithm could complete the analysis
under the exact same circumstances without further difficulties.

The extreme behaviour of FastWY in terms of memory usage is caused by its need
to store intermediate computations in memory to alleviate the runtime overhead
of repeating pattern enumeration jp times. In particular, FastWY resorts to storing
in memory the values of {gS (xi)}n

i=1 for each pattern S that is enumerated by the
algorithm, thus avoiding the need to recompute {gS (xi)}n

i=1 the next time the pattern
is enumerated in a different resampled dataset. While this design choice allows
FastWY to complete the analysis of small-sized datasets in a reasonable amount of
time, it makes the storage complexity of FastWY directly proportional to the number of
testable patterns in the dataset, explaining the poor scaling with dataset size observed
during the experiments. The Westfall-Young light algorithm completely does away
with this need, leading to a much more manageable scaling of memory usage with
dataset size despite being also considerably faster.

In conclusion, our experiments suggest that the FastWY algorithm can only handle
successfully small-to-moderate sized problems, exhibiting poor scaling characteristics
in larger datasets. Our contribution, the Westfall-Young light algorithm, offers a
considerable improvement in terms of runtime and memory usage, allowing larger
datasets to be analysed. Nevertheless, despite this evident progress, Figures 4.4 and 4.5
clearly indicate that permutation testing-based significant pattern mining is still a
highly computationally-demanding task; scaling these algorithms to handle datasets
with millions of features remains an open problem.

4.4.3 Final support for pattern mining

The number rS of samples in a dataset D for which a pattern S is present is
often referred to as the support of the pattern in D. As detailed in Section 3.4, when
using Pearson’s χ2 test or Fisher’s exact test, if an untestable pattern S has support
rS ≤ min(n1, n − n1) then all of its descendants in the pattern enumeration tree
must be untestable as well. Exploiting the fact that the minimum attainable P-value

8. This lower bound was computed by estimating the memory overhead incurred by FastWY under
the assumption that it would enumerate the same number of patterns as Westfall-Young light. This is
a conservative lower bound for two reasons: (i) FastWY enumerates a much larger number of patterns
than Westfall-Young light, due to its need to compute the most significant P-value of all jp resampled
datasets and (ii) it completely neglects the memory usage of LCM, the underlying pattern mining algorithm,
which can itself account for a large proportion of the total memory usage.
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function pmin(rS ) corresponding to both test statistics is monotonically decreasing
for rS ∈ J0, min(n1, n− n1)K, one can compactly rewrite the pruning condition for a
pattern S in terms of the support rS of the pattern: for each δ ∈ [0, 1] there exists
a minimum support rmin(δ) ∈ J0, min(n1, n− n1)K such that the pruning condition of
Section 3.4 evaluates to true at level δ if and only if rS < rmin(δ). Moreover, the
minimum support rmin(δ) at level δ clearly satisfies that rmin(δ′) ≤ rmin(δ) whenever
δ ≤ δ′.

The runtime of significant pattern mining algorithms, including LAMP 2.0 (Al-
gorithm 3.2), FastWY (Algorithm 4.1) and Westfall-Young light (Algorithm 4.2),
depends mostly on the total number of patterns enumerated by the algorithm. In
particular, this means that the computational complexity incurred by analysing a
dataset D with LAMP 2.0 is approximately proportional to the total number of patterns
S ∈ M that have a support rS ≥ rmin(δtar) in D. Similarly, using Westfall-Young
light instead leads to a computational complexity proportional to the number of
patterns S ∈ M that have a support rS ≥ rmin(δwy) in D. However, the analysis
for FastWY is more complex. Even under the assumption that intermediate computa-
tions are stored in memory, thus eliminating the overhead due to repeating pattern
enumeration jp times in exchange for increased memory usage, FastWY still needs

to compute
{

p(k)ms

}jp

k=1
exactly for all jp resampled datasets. As a consequence, its

runtime is loosely proportional to the total number of patterns S ∈ M that have
a support rS ≥ rmin(δ̃fastwy) in D, where δ̃fastwy = max

{
p(k)ms | k = 1, . . . , jp

}
. Since

δwy � δ̃fastwy holds in practice, the final support rmin(δ̃fastwy) of FastWY is often much
smaller than the final support rmin(δwy) of Westfall-Young light.

This phenomenon is described quantitatively in Figure 4.6, which compares the
final support of both approaches when analysing all datasets described in the previous
section. The empirical results clearly support the theoretical intuition: the final
support of FastWY is often much smaller than that of Westfall-Young light. This
has profound implications for the difference in computational efficiency between
both approaches. Since most real-world datasets obey a power-law distribution [79],
which makes patterns with low supports much more abundant than those with large
supports, even just a small decrease in the final support might drastically increase
the number of patterns that need to be enumerated by the algorithm and, hence, the
overall runtime. Therefore, the results depicted in Figure 4.6 offer at least a partial
explanation for the vast difference in runtime between Westfall-Young light and
FastWY observed in the previous section.

4.4.4 Statistical power

A useful proxy to compare the statistical power of distinct FWER-controlling ap-
proaches is to measure the resulting FWER when applied to a dataset for which
the global null hypothesis holds. An optimal method, able to exactly compute
δ∗ = max {δ | FWER(δ) ≤ α}, will attain a FWER virtually identical to the target
FWER α. However, suboptimal approaches will in general obtain a corrected sig-
nificance threshold δ̂ < δ∗, leading to a loss of statistical power as well as to the
resulting FWER being strictly smaller than α. Therefore, by measuring how close
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(a) Itemset mining.

(b) Subgraph mining.

Figure 4.6. – Comparison of the final support corresponding to Westfall-Young
light and FastWY. Datasets for which FastWY was unable to complete its
execution due to memory limitations were excluded from the figure.

the resulting FWER is to α, one can estimate how close a certain method is to the
optimal behaviour among all single-step FWER-controlling approaches in terms of
statistical power. In this section, we compare the resulting FWER of permutation
testing-based significant pattern mining methods to that of the LAMP algorithm [26],
which uses Tarone’s improved Bonferroni correction for discrete data to obtain a
corrected significance threshold that controls the FWER.

The parameter of most relevance for this experiment is the number jp of random
permutations used to estimate the FWER. Increasing jp reduces the variance of the
FWER estimator, leading to more stable performance at the expense of increased
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runtime and storage complexity. To investigate the effect of varying the number jp of
random permutations, Westfall-Young light was executed for 10 different values of
jp between jp = 1, 000 and jp = 10, 000 in steps of ∆jp = 1, 000. For each pair (dataset,
jp), the experiment was repeated a total of 100 times to obtain the median empirical
FWER as a function of jp, as well as the corresponding 5%–95% confidence interval.
In all experiments, the target FWER was set to α = 0.05.

(a) BmsWebview (n/n1 = 2) (b) T40I10D100K (n/n1 = 2)

Figure 4.7. – Empirical FWER versus jp for two representative significant itemset
mining datasets.

(a) ENZYMES. (b) NCI220.

Figure 4.8. – Empirical FWER versus jp for two representative significant subgraph
mining datasets.

Figures 4.7 and 4.8 depict the results for two representative significant itemset
mining datasets (BmsWebview and T40I10D100K) and two representative significant
subgraph mining datasets (ENZYMES and NCI220), respectively. The most salient
feature of these experiments is that the LAMP algorithm, which employs Tarone’s
method to control the FWER, is still a considerably over-conservative approach. Its
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resulting FWER oscillates between α/2 and α/100, depending on the dataset. In
contrast, Westfall-Young light attains a median FWER close to α, regardless of the
number jp of random permutations used, thus being in a sense close to optimal
in terms of statistical power among single-step FWER-controlling procedures. The
performance of Westfall-Young light is particularly robust to the choice of jp. At
the lower end of the range, i.e. jp = 1, 000, the resulting FWER of Westfall-Young
light does exhibit some variability across repetitions of the experiment. Nevertheless,
even the worst outcomes can be seen to be considerably closer to α than even the best
realisations of LAMP. Moreover, if increasing the computational complexity by a factor
of 10 is feasible, using jp = 10, 000 yields a very narrow range of variability across
repetitions.

In summary, our experimental results confirm the intuition that permutation testing-
based significant pattern mining can drastically outperform approaches based on
Tarone’s method in terms of statistical power. Nonetheless, this enhancement comes
at the price of a sharp increase in computational complexity. The optimal choice of
approach will therefore be heavily application-dependent.
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5
C O R R E C T I N G F O R A C AT E G O R I C A L C O VA R I AT E

The need to incorporate into the model covariate factors that might have a con-
founding effect is an ubiquitous problem in computational biology and clinical data
analysis. By neglecting to account for such covariates, an algorithm might discover
many spurious patterns whose association with the class labels is entirely mediated
by confounding.

In this chapter we present the Fast Automatic Conditional Search (FACS) algorithm [50], a
novel significant pattern mining approach that can account for a categorical covariate with an
arbitrary number of categories, allowing to drastically reduce spurious false positives due to
confounding effects without sacrificing neither computational efficiency nor statistical power.

The remainder of this chapter is organised as follows. Section 5.1 states the problem
of correcting for a confounding covariate in significant pattern mining and further
elaborates on the motivations to come up with an efficient solution. Section 5.2 extends
the background on statistical association testing provided in Section 2.2 by introducing
the Cochran-Mantel-Haenszel (CMH) test [46], which generalises Pearson’s χ2 test
to conditional association testing. Next, Sections 5.3 and 5.4 present the theoretical
foundation of our contribution, the FACS algorithm. In particular, Section 5.3 details
the derivation of the minimum attainable P-value for the CMH test whereas Section 5.4
introduces a valid, computationally efficient pruning condition. Section 5.5 discusses
low-level implementation considerations, explains how to extend FACS to permutation
testing-based significant pattern mining and gives pointers to related work. Finally,
the results of an experimental study to assess the computational efficiency, statistical
power and false discovery rate of the FACS algorithm are described in Section 5.6.

5.1 introduction

Let GS (X) denote the binary random variable indicating the occurrence of pattern S
in an input sample X, Y the binary class label and C be a random variable representing
a covariate factor that takes values in a domain C. We say that the covariate C has a
confounding effect on the statistical association between GS (X) and Y when:

(i) GS (X) and Y are marginally statistically associated, i.e., GS (X) 6⊥⊥ Y. As dis-
cussed in Section 2.2, this is the case if and only if Pr(GS (X) = gS (x), Y = y) 6=
Pr(GS (X) = gS (x))Pr(Y = y) for some (gS (x), y) ∈ {0, 1}2.

(ii) GS (X) and Y are conditionally independent given C, i.e., GS (X) ⊥⊥ Y | C. This
occurs if and only if Pr(GS (X) = gS (x), Y = y | C = c) = Pr(GS (X) = gS (x) |
C = c)Pr(Y = y | C = c) for all c ∈ C and (gS (x), y) ∈ {0, 1}2.

Intuitively, condition (i) above implies that GS (X) and Y are statistically associated in
the absence of information about C. However, condition (ii) also implies that, once the
value c taken by the covariate C is known, GS (X) carries no further information about
Y and, therefore, can be discarded. In most applications, patterns S ∈ M satisfying
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conditions (i) and (ii) are spurious findings that should not be retrieved by a mining
algorithm.

These patterns will be of little use to the practitioner, as they provide no additional
information about the class membership of an input sample beyond the information
that is already contained in the covariate. In many applications, the covariates
are quantities that can be measured more easily than the input samples x ∈ X .
For example, while x might represent the genotype of a patient at a set of single
nucleotide polymorphisms or describe the measured expression levels of a set of genes,
the covariate C often contains simple information such as age, gender, socioeconomic
status or genetic ancestry. Thus, from a practical point of view, if a marginally
associated pattern S ∈ M is redundant with such a covariate, it might be preferable
to simply make use of the covariate when trying to predict the class label Y.

Moreover, not only are patterns satisfying conditions (i) and (ii) of little practical use
but, on many occasions, they might represent misleading associations. A particularly
common example are spurious associations between genotype and phenotype which
arise in genome-wide association studies due to population structure [80]. Often, a
phenotype might be strongly associated with the genetic ancestry of an individual,
which is obviously itself associated with that individual’s genotype. Therefore, if
population structure is unaccounted for in a genome-wide association study containing
individuals with diverse genetic ancestries, a large number of apparently significant
patterns might be retrieved. However, a practitioner might later find that, in fact, most
of these patterns simply reflect genotypic motifs that differ between individuals with
distinct genetic ancestries and provide no additional insight about the phenotype.

The effect of confounding is illustrated in Figure 5.1, which revisits the significant
itemset mining dataset first introduced in Figure 2.1 of Section 2.1. In this example,
patterns S1 and S2 are both marginally associated with the class labels, being enriched
among samples of class Y = 1. However, Figure 5.1 incorporates a factor not present
in the original example: a categorical covariate C with k = 2 categories, describing
the genetic ancestry of a sample. The inclusion of C changes the interpretation of the
associations that patterns S1 and S2 represent. While the occurrence of pattern S1 still
carries additional information not contained in the covariate C, pattern S2 can be seen
to be entirely redundant with C. Thus, following the discussion above, pattern S2

might be considered a spurious association that should not be retrieved.
All methods that have been discussed in this thesis so far aim at finding all pat-

terns S ∈ M that are (marginally) statistically associated with the class labels, i.e.
they look for the set of patterns {S ∈ M | GS (X) 6⊥⊥ Y}. However, an approach
able to correct for the effect of a covariate C would aim to find the set of patterns
{S ∈ M | GS (X) 6⊥⊥ Y | C} instead. In particular, a pattern S ∈ M satisfying condi-
tions (i) and (ii) above would not be retrieved by the latter formulation yet it would
be deemed significant by the former. Consequently, significant pattern mining ap-
proaches such as LAMP 2.0 (Algorithm 3.2) and Westfall-Young light (Algorithm 4.2)
are prone to discover many spurious patterns due to confounding, severely limiting
their applicability in computational biology and clinical data analysis.

The FACS algorithm, which constitutes the main focus of this chapter, can be un-
derstood as an extension of LAMP 2.0, described in Section 3.2. However, in order
to incorporate the covariate C into the model, FACS replaces Pearson’s χ2 test or
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Figure 5.1. – An illustration of the effect of confounding on a toy significant itemset
mining problem. A categorical covariate C with k = 2 categories (orange
and purple) has been introduced. Two patterns, S1 and S2, are marginally
associated with the class labels Y. Pattern S1 remains associated with Y
given the covariate C. On the contrary, pattern S2 carries no information
about Y given that the value of C is known, i.e. S2 is conditionally
independent of Y given C.

Fisher’s exact test by the CMH test. Unlike the former two, the CMH test allows
assessing the conditional association of two binary random variables GS (X) and Y
given a categorical random variable C with k categories, making it an ideal choice
for this task. Nevertheless, replacing the test statistic has profound implications for
Tarone’s method and its integration into the pattern mining algorithm. In particular, it
is necessary to:

(i) Prove that a minimum attainable P-value exists for the CMH test and devise a
tractable expression to evaluate it.

(ii) Propose a novel search space pruning criterion that applies to the CMH test.

In the next sections we will introduce the CMH test and describe techniques to
solve each of these two open problems, culminating in our proposed approach, the
FACS algorithm.
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5.2 conditional association testing in significant pattern mining

Section 2.2 introduced Pearson’s χ2 test and Fisher’s exact test, two test statistics
able to assess the statistical association between two binary random variables. Given
an input dataset D = {(xi, yi)}n

i=1, these can be used to test the (marginal) association
between the class labels Y and the binary random variable GS (X) indicating the
occurrence of a pattern S ∈ M in an input sample X.

This section however concerns the case in which we are given a dataset D =

{(xi, yi, ci)}n
i=1, consisting of n observations x ∈ X belonging to one of two classes

y ∈ {0, 1}. Additionally, each of the n observations is now also tagged with a
categorical covariate c ∈ {1, 2, . . . , k}, where k is the number of distinct categories that
an outcome of random variable C can belong to. Unlike in the setting of Section 2.2,
the new goal is to test the conditional association between GS (X) and Y given C. This
is precisely what the CMH test was designed for.

Intuitively, the CMH test can be seen as a way to tackle this problem by reducing it
to a set of k instances of Pearson’s χ2 test and then combining the k resulting statistics
appropriately. By definition, GS (X) and Y are conditionally independent given C
and, therefore, not conditionally associated given C, if Pr(GS (X) = gS (x), Y = y |
C = c) = Pr(GS (X) = gS (x) | C = c)Pr(Y = y | C = c) ∀ c ∈ {1, 2, . . . , k}. For
each c = 1, 2, . . . , k, let D(c) = {(xi, yi) ∈ D | ci = c} be the set of samples in D
for which the categorical covariate takes value c. The (unknown) joint distribution
Pr(GS (X) = gS (x), Y = y | C = c) can be empirically approximated using counts
derived from the samples in D(c):

Variables gS (x) = 1 gS (x) = 0 Row totals
y = 1 aS ,c bS ,c n1,c

y = 0 dS ,c cS ,c n0,c

Col. totals rS ,c qS ,c nc

The interpretation of these counts is analogous to the unconditional case described
in Section 2.2. For instance, aS ,c is the number of samples in D(c) belonging to
class y = 1 for which pattern S occurs or, equivalently, the number of samples in D
belonging to class y = 1 for which pattern S occurs and the covariate takes value c.
Thus, an empirical estimate of Pr(GS (X) = 1, Y = 1 | C = c) could be obtained as
aS ,c/nc for each c ∈ {1, 2, . . . , k}. The remaining counts can be described in a similar
manner.

As a consequence of Proposition 2.1 in Section 2.2, if GS (X) is conditionally in-
dependent of Y given C, the random variable AS ,c given margins n1,c and rS ,c and
sample size nc follows a hypergeometric distribution with parameters nc, n1,c and rS ,c
for all c ∈ {1, 2, . . . , k}. Furthermore, under the assumption that all n samples in D
are obtained as i.i.d. draws, it follows that AS ,c is statistically independent of AS ,c′

for any c 6= c′, since D(c) ∩D(c′) = ∅. Paralleling the derivation of Pearson’s χ2 test
described in Section 2.2, the following Z-score can be proposed as a way to additively
aggregate the individual Z-scores of the k distinct 2× 2 contingency tables:

Zcmh(aS | n, n1, rS ) =
∑k

c=1 aS ,c −E[aS ,c | RS ,c = rS ,c, N1,c = n1,c, H0]√
∑k

c=1 Var[aS ,c | RS ,c = rS ,c, N1,c = n1,c, H0]
, (5.1)
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where the term in the denominator follows from the fact that the variance of a sum of
independent random variables equals the sum of the variances of each random variable
participating in the sum. To simplify the notation, the vectors aS = (aS ,1, . . . , aS ,k),
n = (n1, . . . , nk), n1 = (n1,1, . . . , n1,k) and rS = (rS ,1, . . . , rS ,k), which contain the
values of aS ,c, nc, n1,c and rS ,c for all k different 2 × 2 contingency tables, were
introduced. The final expression for the CMH test can be obtained by squaring
this Z-score and plugging in the values of E[aS ,c | RS ,c = rS ,c, N1,c = n1,c, H0] and
Var[aS ,c | RS ,c = rS ,c, N1,c = n1,c, H0] as the mean and variance of a hypergeometric
distribution with parameters nc, n1,c and rS ,c, resulting in:

Tcmh(aS | n, n1, rS ) =

(
∑k

c=1 aS ,c − rS ,c
n1,c
nc

)2

∑k
c=1

rS ,c
nc

nc−rS ,c
nc

nc−n1,c
nc−1 n1,c

. (5.2)

The CMH test statistic Tcmh(aS | n, n1, rS ) aggregates evidence against the null
hypothesis H0 that GS (X) is conditionally independent of Y given C across all k
distinct 2× 2 contingency tables. Large values of Tcmh(aS | n, n1, rS ) are less likely to
occur if the null hypothesis holds.

The null distribution of the CMH test statistic can be approximated in a similar way
as the null distribution of the Pearson’s χ2 test statistic. Provided that the sample
size n is sufficiently large, Zcmh(aS | n, n1, rS ) will be approximately distributed
as a standard normal under the null hypothesis H0. Thus, the null distribution of
Tcmh(aS | n, n1, rS ) can be approximated as a χ2

1 distribution, with a two-tailed P-value

pcmh(aS | n, n1, rS ) = 1− Fχ2
1
(Tcmh(aS | n, n1, rS )) , (5.3)

where Fχ2
1
(•) is the cumulative density function of a χ2

1 distribution.
Figure 5.2 depicts the result of applying the CMH test to assess the statistical

significance of pattern S2 in the dataset shown previously in Figure 5.1. The 2× 2
contingency table built using all samples in the dataset D, shown at the top of the
figure (light blue), suggests a (marginal) association between GS2(X) and Y. Indeed, if
Pearson’s χ2 test is used to compute a P-value, one obtains ppearson(aS2 | n, n1, rS2) =

0.021, a rather significant result taking into consideration that the sample size is only
n = 12. However, if this contingency table is split into k = 2 distinct tables according to
the value of the categorical covariate C, leading to the orange and purple contingency
tables shown at the bottom of the figure, this association can be seen to disappear. In
particular, those tables are so extreme that only one outcome for aS2,c is possible in
each case, i.e. aS2,c,min = aS2,c,max holds for both contingency tables. As a consequence,
the CMH test leads to an entirely non-significant P-value pcmh(aS2 | n, n1, rS2) = 1,
successfully eliminating the confounding effect of the covariate. In contrast, it can be
readily verified that if this analysis is repeated for pattern S1, which is not affected
by confounding in the example of Figure 5.1, the CMH test still returns a rather
significant P-value, pcmh(aS1 | n, n1, rS1) = 0.029.

5.3 the minimum attainable p-value for the cmh test

As Pearson’s χ2 test and Fisher’s exact test, the CMH test is based on discrete
data and, as a consequence, it can only attain a finite number of distinct values. As
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gS2(x) = 1 gS2(x) = 0
y = 1 5 1 6
y = 0 1 5 6

6 6 12

gS2(x) = 1 gS2(x) = 0
y = 1 0 1 1
y = 0 0 5 5

0 6 6

gS2(x) = 1 gS2(x) = 0
y = 1 5 0 5
y = 0 1 0 1

6 0 6

ppearson(S2) = 0.021 6= pcmh(S2) = 1.000

Figure 5.2. – Application of the CMH test to the toy significant pattern mining dataset
in Figure 5.1. This example shows an assessment of the statistical associ-
ation between the class labels Y and the occurrence of pattern S2 in the
input samples, given the categorical covariate C. The contingency table
shown at the top of the figure (blue) is constructed using all samples
in the dataset D. In contrast, the two contingency tables shown at the
bottom of the figure are obtained from the stratified datasets D(1), which
contains only samples of African ancestry (orange), and D(2), which
comprises only samples of Australian ancestry (purple).

discussed in Section 2.3, this property implies the existence of a minimum attainable P-
value strictly larger than zero, allowing one to leverage Tarone’s concept of testability.
This observation is summarised in the following proposition:

Proposition 5.1 (Minimum attainable P-value function for the CMH test). Let aS ,min

and aS ,max be k-dimensional vectors defined as:

aS ,min = (aS ,1,min, aS ,2,min, . . . , aS ,k,min), (5.4)

aS ,max = (aS ,1,max, aS ,2,max, . . . , aS ,k,max), (5.5)

where aS ,c,min = max(0, rS ,c − (nc − n1,c)) and aS ,c,max = min(n1,c, rS ,c) for each c =

1, 2, . . . , k. Then, the minimum attainable P-value function for the CMH test is given by:

pmin(rS ) = 1− Fχ2
1

(
max

(
Tcmh(aS ,min | n, n1, rS ), Tcmh(aS ,max | n, n1, rS )

))
. (5.6)

In particular, this implies that pmin(rS ) can be evaluated in O(k) time, where k is the
number of categories for the categorical covariate C.
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Proof. Equation (5.2) can be rewritten as:

Tcmh(aS | n, n1, rS ) =

(
aS ,tot −∑k

c=1 rS ,c
n1,c
nc

)2

∑k
c=1

rS ,c
nc

nc−rS ,c
nc

nc−n1,c
nc−1 n1,c

, (5.7)

where aS ,tot = ∑k
c=1 aS ,c has been introduced. As described in Section 2.3, given fixed

margins n1,c, rS ,c and sample size nc, each count aS ,c can only take values in the
set aS ,c ∈ JaS ,c,min, aS ,c,maxK, where aS ,c,min = max(0, rS ,c − (nc − n1,c)) and aS ,c,min =

min(n1,c, rS ,c). Thus, aS ,tot ∈ JaS ,tot,min, aS ,tot,maxK, where aS ,tot,min = ∑k
c=1 aS ,c,min

and aS ,tot,max = ∑k
c=1 aS ,c,max. Equation (5.7) clearly shows that Tcmh(aS | n, n1, rS )

is a strictly convex function of aS ,tot. Therefore, it will be maximised and, hence,
pcmh(aS | n, n1, rS ) minimised, either when aS ,tot = aS ,tot,min or aS ,tot = aS ,tot,max.
Equivalently, this occurs when aS = aS ,min or aS = aS ,max, thus proving Equation (5.6).
Finally, note that evaluating Tcmh(aS | n, n1, rS ) for an arbitrary aS requires O(k)
operations. Since pmin(rS ) can be computed by evaluating Tcmh(aS | n, n1, rS ) at two
distinct values of aS , namely aS ,min and aS ,max, pmin(rS ) can be computed with O(k)
operations as well, thus concluding the proof.

Proposition 5.1 above offers a solution to the first of the two challenges mentioned
at the beginning of this chapter: providing a computationally tractable expression to
evaluate the minimum attainable P-value function pmin(rS ) for the CMH test. This is,
to the best of our knowledge, the first result concerning the use of Tarone’s concept
of testability in conjunction with the CMH test. From an algorithmic perspective,
Proposition 5.1 also suggests the first of the two key modifications that need to be
performed to Algorithm 3.2 in order to obtain our novel FACS algorithm: Line 8, which
is responsible for evaluating the minimum attainable P-value pS ,min of a pattern S ,
must now follow Equation (5.6) rather than the formulae described in Section 3.3.

5.4 a search space pruning condition for the cmh test

In Section 3.4, a search space pruning condition valid for Pearson’s χ2 test and
Fisher’s exact test was derived. The fundamental principle on which that pruning
criterion relies is that, for fixed n1 and n, the minimum attainable P-value for these
test statistics is a monotonically decreasing function pmin(rS ) of rS in the range
rS ∈ J0, min(n1, n− n1)K. This implies that, if a pattern S is untestable at level δ and
satisfies rS ≤ min(n1, n− n1), all its descendants S ′ in the pattern enumeration tree
will be untestable at level δ as well and can be pruned from the search space. In
this section, an alternative pruning condition which is valid for the CMH test will be
proposed.

The first key observation is that, for fixed n and n1, the minimum attainable P-value
pS ,min of a pattern S when using the CMH test can be obtained as a multivariate
function of k variables: rS ,1, rS ,2, . . . , rS ,k. This will be denoted by pS ,min = pmin(rS ),
where the dependence of pS ,min on n and n1 is kept implicit to avoid cluttering the
notation. By applying the apriori property of pattern mining, stated in Proposition 3.1,
it can be shown that if S ′ is a descendant of S in the pattern enumeration tree, then
rS ′ ,c ≤ rS ,c will hold for all c = 1, 2, . . . , k. Using identical arguments as those exploited
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in Section 3.4, a majority of patterns S in the search space of candidate patternsM
will be relatively rare, satisfying rS ,c ≤ min(n1,c, nc − n1,c) for all c = 1, 2, . . . , k. This
naturally leads to the fundamental question of whether, given that rS ,c ≤ min(n1,c, nc−
n1,c) for all c = 1, 2, . . . , k, the fact that rS ′ ,c ≤ rS ,c for all c = 1, 2, . . . , k implies that
pmin(rS ′) ≥ pmin(rS ) or not. If the answer to this question was affirmative, a pruning
condition entirely analogous to the one used for Pearson’s χ2 test and Fisher’s exact
test would also be valid for the CMH test.

(a) (b)

Figure 5.3. – Minimum attainable P-value function pmin(rS ) for the CMH test in
a problem with k = 2 categories for the covariate. In this example,
n1 = n2 = 100 and n1,1 = 25, n1,2 = 75. Thus, category c = 1 has
a class ratio of 1/4 while category c = 2 has a class ratio of 3/4. (a)
Minimum attainable P-value pmin(rS ) function over the entire domain
J0, n1K× J0, n2K. (b) Minimum attainable P-value function pmin(rS ) over
the region J0, na,1K× J0, na,2K, where na,1 = min(n1,1, n1− n1,1) and na,2 =

min(n1,2, n2 − n1,2).

Unfortunately, it is easy to come up with non-pathological counterexamples which
show that this property does not hold in general. As an example, Figure 5.3 depicts
the minimum attainable P-value function pmin(rS ) for the CMH test in a problem with
k = 2 categories for the covariate. In particular, Figure 5.3(b) illustrates the behaviour
of pS ,min as a function of rS ,1 and rS ,2 over the region J0, min(n1,1, n1 − n1,1)K ×
J0, min(n1,2, n2− n1,2)K. While the function is approximately monotonic when rS ,1 and
rS ,2 are both sufficiently far from zero, pmin(rS ) is not monotonically decreasing when
one of its arguments is small enough, as can be appreciated from the level curves.
This has profound implications for the development of a valid pruning criterion, as in
principle there is no simple way to make a statement about the minimum attainable
P-value pS ′ ,min of a descendant S ′ of a pattern S based on pS ,min and rS alone.

In order to solve this problem, the FACS algorithm uses a monotonically decreasing
lower bound of the minimum attainable P-value as a surrogate of pS ,min in its pruning
criterion. This surrogate will be referred to as the lower envelope of the minimum
attainable P-value.
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Definition 5.2. Let S ∈ M be a pattern satisfying rS ,c ≤ min(n1,c, nc − n1,c) for all
c = 1, 2, . . . , k. The lower envelope of the minimum attainable P-value pS ,min is defined
as:

p̃S ,min = min
S ′⊇S

pS ′ ,min. (5.8)

Equivalently, let B(rS ) = J0, rS ,1K× J0, rS ,2K× · · · J0, rS ,kK be the set of all rS ′ satisfying
rS ′ ,c ≤ rS ,c for all c = 1, 2, . . . , k. Then, as a consequence of the apriori property of
pattern mining, p̃S ,min can be expressed as the following function p̃min(rS ) of rS :

p̃min(rS ) = min
rS′∈B(rS )

pmin(rS ′), (5.9)

where the dependence of the minimum attainable P-value pS ,min and its lower envelope
p̃S ,min on rS has been made explicit.

Intuitively, p̃min(rS ) is defined as the tightest lower bound of the minimum at-
tainable P-value function pmin(rS ), hence the term “lower envelope”, that satisfies
rS ′ ∈ B(rS ) ⇒ p̃min(rS ′) ≥ p̃min(rS ). This notion is illustrated in Figure 5.4 with a
conceptual example.

rS0,2

rS0,1

(rS,1, rS,2)

pmin(rS) = min
rS02B(rS)

pmin(rS0)

epmin(rS)

pmin(rS)

rS

B(rS)

Figure 5.4. – Illustration of the lower envelope p̃S ,min of the minimum attainable P-
value pS ,min. To evaluate p̃min(rS ), the minimum of pmin(rS ′) over the
region B(rS ) needs to be computed. In this example, this corresponds
to minimising pmin(rS ′) over the region shaded in blue on the left of
the figure. As a result of this definition, p̃min(rS ) is the tightest lower
bound of pmin(rS ) that satisfies rS ′ ∈ B(rS ) ⇒ p̃min(rS ′) ≥ p̃min(rS ) or,
equivalently, that rS ′ ,c ≤ rS ,c for all c = 1, 2, . . . , k implies that p̃min(rS ′) ≥
p̃min(rS ). This is illustrated, along a one-dimensional slice of B(rS ), on
the right of the figure.

The lower envelope p̃S ,min is a lower bound of the minimum attainable P-value
pS ,min by construction. Also, the fact that p̃min(rS ) is monotonically decreasing on
rS , i.e. that rS ′ ∈ B(rS ) ⇒ p̃min(rS ′) ≥ p̃min(rS ), is a direct consequence of the
way p̃S ,min is defined. If rS ′ ∈ B(rS ), then it follows that B(rS ′) ⊆ B(rS ). Thus,
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p̃min(rS ′) = min
rS′′∈B(rS′ )

pmin(rS ′′) ≥ min
rS′′∈B(rS )

pmin(rS ′′) = p̃min(rS ) must hold. These two

properties of p̃S ,min allow proposing the following search space pruning criterion for
the CMH test.

Proposition 5.3. [Pruning criterion for the CMH test] Let S ∈ M be a pattern satisfying:

(i) p̃S ,min > δ̂tar, i.e. the lower envelope of the minimum attainable P-value is larger than
δ̂tar,

(ii) rS ,c ≤ na,c for all c = 1, 2, . . . , k, where na,c = min(n1,c, nc − n1,c).

Then, pS ′ ,min > δ̂tar ≥ δtar for all descendants S ′ of S in the pattern enumeration tree,
implying that they can be pruned from the search space. In conclusion, when using the CMH
test, pruning_condition(S , δ̂tar) in Line 16 of Algorithm 3.2 evaluates to true if and only if
rS ,c ≤ na,c for all c = 1, 2, . . . , k and p̃S ,min > δ̂tar.

Proof. If S ′ is a descendant of S in the pattern enumeration tree, rS ′ ∈ B(rS ) by the
apriori property of pattern mining. Hence, as a consequence of the monotonicity of
p̃min(rS ), p̃min(rS ′) ≥ p̃min(rS ). Since the lower envelope p̃S ,min is a lower bound on
the minimum attainable P-value pS ,min and p̃S ,min > δ̂tar by assumption (i), it follows
that pS ′ ,min > δ̂tar. Moreover, since δ̂tar ≥ δtar holds at any point during the execution
of Algorithm 3.2, pS ′ ,min > δtar, proving that pattern S ′ can be pruned from the search
space.

The resulting pruning condition for the CMH test is mostly analogous to the pruning
criterion for Pearson’s χ2 test and Fisher’s exact test described in Proposition 3.4.
However, the minimum attainable P-value pS ,min in condition (i), pS ,min > δ̂tar, is
substituted by the lower envelope p̃S ,min. This allows circumventing the difficulties
which arise as a consequence of the minimum attainable P-value function pmin(rS )
not being monotonically decreasing for the CMH test. While the concept of lower
envelope of the minimum attainable P-value is only used by FACS in the context of
the CMH test, the same principle could be applied to other discrete tests statistics
with a non-monotonic minimum attainable P-value function. This might help develop
new applications of significant pattern mining that require using domain-specific test
statistics.

Nevertheless, an important aspect that remains to be considered is how to efficiently
evaluate p̃S ,min. Obtaining the lower envelope of the minimum attainable P-value
by naively applying Equation 5.8 would require enumerating and evaluating the
minimum attainable P-value pS ′ ,min of all patterns S ′ ⊇ S . In other words, in order to
verify whether the search space pruning condition applies for a pattern S according
to this naive approach, the very same computations the pruning condition is intended
to avoid would have to be performed. Thus, Equation (5.8) is entirely unhelpful from
an algorithmic perspective. Alternatively, Equation (5.9) phrases the evaluation of
p̃S ,min as a combinational optimisation problem. Attempting to solve this problem
by brute force, i.e. by evaluating pmin(rS ′) at each rS ′ in B(rS ), would result in
∏k

c=1 (rS ,c + 1) evaluations of the minimum attainable P-value function. Defining

mS =
(

∏k
c=1 (rS ,c + 1)

) 1
k to be the geometric mean of {rS ,c + 1}k

c=1, it follows that

pmin(rS ′) needs to be evaluated mk
S = O(nk) times. Since the pruning condition is
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assessed for every single pattern S ∈ M that is enumerated along the execution of
the algorithm, this would entail an impractical computational overhead. Without
a computationally tractable approach to exactly compute the lower envelope of the
minimum attainable P-value p̃S ,min, the pruning condition in Proposition 5.3 is nothing
more than a theoretical construct, leaving the problem of accounting for covariates in
significant pattern mining completely unsolved.

In order to design FACS, one of the main contributions of [50] is an algorithm
which solves the optimisation problem defined by Equation (5.9) in only O(k log k)
time, provided that the CMH test is the underlying test statistic 1. Using this novel
approach, the computational overhead incurred by evaluating the lower envelope
of the minimum attainable P-value p̃S ,min for the CMH test becomes negligible,
rendering Proposition 5.3 computationally tractable. The remainder of this section
will be devoted to describe this method in detail and to prove its correctness.

Computing p̃S ,min in O(k log k) time

The goal of this section is to propose a computationally efficient approach to assess
the pruning condition described in Proposition 5.3. Equivalently, the problem that
needs to be solved can be precisely formulated as follows:

Given a k-dimensional vector rS satisfying rS ,c ∈ J0, min(n1,c, nc − n1,c)K for all c =

1, 2, . . . , k, find a minimiser r∗S ′ of the minimum attainable P-value function pmin(rS ′) of the
CMH test in the set B(rS ) = J0, rS ,1K× J0, rS ,2K× · · · × J0, rS ,kK.

According to Proposition 5.1, pmin(rS ′) can be written as

pmin(rS ′) = 1− Fχ2
1

(
max

(
Tl

max(rS ′), Tu
max(rS ′)

))
,

where Tl
max(rS ′) = Tcmh(aS ′ ,min | n, n1, rS ′) and Tu

max(rS ′) = Tcmh(aS ′ ,max | n, n1, rS ′)
will be used as shorthands throughout this section. Then, exploiting the fact that
1− Fχ2

1
(•) is a monotonically decreasing transformation, the following reformulation

of the problem can be obtained:

p̃min(rS ) = min
rS′∈B(rS )

pmin(rS ′) (5.10)

= min
rS′∈B(rS )

1− Fχ2
1

(
max

(
Tl

max(rS ′), Tu
max(rS ′)

))

= 1− Fχ2
1

(
max

rS′∈B(rS )
max

(
Tl

max(rS ′), Tu
max(rS ′)

))

= 1− Fχ2
1

(
max

(
max

rS′∈B(rS )
Tl

max(rS ′), max
rS′∈B(rS )

Tu
max(rS ′)

))
.

As a consequence, if an efficient algorithm to obtain

T̃l
max(rS ) = max

rS′∈B(rS )
Tl

max(rS ′), (5.11)

T̃u
max(rS ) = max

rS′∈B(rS )
Tu

max(rS ′), (5.12)

1. Deriving a more general procedure to efficiently evaluate p̃S ,min regardless of the test statistic of
choice is still an open problem.
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correcting for a categorical covariate

was available, the lower envelope of the minimum attainable P-value for the CMH
test could be simply evaluated as:

p̃min(rS ) = 1− Fχ2
1

(
max

(
T̃l

max(rS ), T̃u
max(rS )

))
. (5.13)

The FACS algorithm adheres to this approach, exploiting specific properties of the
functions Tl

max(rS ′) and Tu
max(rS ′) for the CMH test in order to compute T̃l

max(rS ) and
T̃u

max(rS ), thus also p̃min(rS ), in only O(k log k) time. These properties are highlighted
in the following proposition.

Proposition 5.4. Let rS be an arbitrary k-dimensional vector satisfying

rS ,c ∈ J0, min(n1,c, nc − n1,c)K

for all c = 1, 2, . . . , k. Then, for all rS ′ ∈ B(rS ), the functions Tl
max(rS ′) and Tu

max(rS ′) for
the CMH test satisfy the following three properties:

(i) They can be expressed in closed-form as:

Tl
max(rS ′) =

(
∑k

c=1 γl
crS ′ ,c

)2

∑k
c=1

nc
nc−1 γl

cγu
c rS ′ ,c

(
1− rS′ ,c

nc

) , (5.14)

Tu
max(rS ′) =

(
∑k

c=1 γu
c rS ′ ,c

)2

∑k
c=1

nc
nc−1 γl

cγu
c rS ′ ,c

(
1− rS′ ,c

nc

) , (5.15)

where γl
c =

n1,c
nc

and γu
c = 1− n1,c

nc
for each c = 1, 2, . . . , k.

(ii) If their domain is relaxed from B(rS ) = J0, rS ,1K× · · · × J0, rS ,kK ⊂ Nk to B̃(rS ) =
[0, rS ,1]× · · · × [0, rS ,k] ⊂ Rk

+, they are convex in rS ′ .

(iii) Their maximum value in B(rS ) is attained at a vertex, that is,

rl,∗
S ′ = argmax

rS′∈B(rS )
Tl

max(rS ′), (5.16)

ru,∗
S ′ = argmax

rS′∈B(rS )
Tu

max(rS ′), (5.17)

satisfy rl,∗
S ′ ,c ∈ {0, rS ,c} and ru,∗

S ′ ,c ∈ {0, rS ,c} for each c = 1, 2, . . . , k.

Proof. By assumption, rS ′ ,c ≤ rS ,c ≤ min(n1,c, nc−n1,c), hence aS ′ ,c,min = max(0, rS ′ ,c−
(nc − n1,c)) = 0 and aS ′ ,c,max = min(n1,c, rS ′ ,c) = rS ′ ,c for each c = 1, 2, . . . , k. There-
fore, according to Proposition 5.1, we have that:

Tl
max(rS ′) =

(
∑k

c=1 rS ′ ,c
n1,c
nc

)2

∑k
c=1

rS ,c
nc

nc−rS ,c
nc

nc−n1,c
nc−1 n1,c

, (5.18)

Tu
max(rS ′) =

(
∑k

c=1 rS ′ ,c
(
1− n1,c

nc

))2

∑k
c=1

rS ,c
nc

nc−rS ,c
nc

nc−n1,c
nc−1 n1,c

, (5.19)
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5.4 a search space pruning condition for the cmh test

leading to Equations (5.14) and (5.15).
In order to prove property (ii), it will be shown that a function of the form:

T(rS ′) =

(
∑k

c=1 γcrS ′ ,c
)2

∑k
c=1

nc
nc−1 γc(1− γc)rS ′ ,c

(
1− rS′ ,c

nc

) ,

with domain B̃(rS ) = [0, rS ,1]× · · · × [0, rS ,k] ⊂ Rk
+ is convex in rS ′ provided that

γc ∈ [0, 1] for each c = 1, 2, . . . , k; an assumption which is satisfied by Tl
max(rS ′) and

Tu
max(rS ′). Let D(rS ′) := ∑k

c=1
nc

nc−1 γc(1− γc)rS ′ ,c
(

1− rS′ ,c
nc

)
, F(rS ′) := ∑k

c=1 γcrS ′ ,c

and N(rS ′) := F2(rS ′). By definition, T(rS ′) is convex if T(λr(1)S ′ + (1− λ)r(2)S ′ ) ≤
λT(r(1)S ′ ) + (1 − λ)T(r(2)S ′ ) for any r(1)S ′ , r(2)S ′ ∈ B̃(rS ) and λ ∈ [0, 1]. Since T(rS ′) =

N(rS ′)/D(rS ′), this condition is equivalent to:

λ
N(r(1)S ′ )

D(r(1)S ′ )
+ (1− λ)

N(r(2)S ′ )

D(r(2)S ′ )
≥ N(λr(1)S ′ + (1− λ)r(2)S ′ )

D(λr(1)S ′ + (1− λ)r(2)S ′ )
. (5.20)

It is straightforward to show after some algebraic manipulations that:

N(λr(1)S ′ + (1− λ)r(2)S ′ ) = λN(r(1)S ′ ) + (1− λ)N(r(2)S ′ )

− λ(1− λ)
(

F(r(1)S ′ )− F(r(2)S ′ )
)2, (5.21)

and

D(λr(1)S ′ + (1− λ)r(2)S ′ ) = λD(r(1)S ′ ) + (1− λ)D(r(2)S ′ )

+ λ(1− λ)
k

∑
c=1

γc(1− γc)

nc − 1
(

β
(2)
c − β

(1)
c
)2, (5.22)

hold in general. In particular, this implies that: (i) N(λr(1)S ′ + (1− λ)r(2)S ′ ) ≤ λN(r(1)S ′ ) +
(1− λ)N(r(2)S ′ ), i.e. N(rS ′) is convex in rS ′ , and (ii) D(λr(1)S ′ + (1− λ)r(2)S ′ ) ≥ λD(r(1)S ′ ) +
(1 − λ)D(r(2)S ′ ), i.e. D(rS ′) is concave in rS ′ . For the sake of readability, define:

(a) N1 := N(r(1)S ′ ), N2 := N(r(2)S ′ ), N12 := N(λr(1)S ′ + (1− λ)r(2)S ′ ); (b) D1 := D(r(1)S ′ ),
D2 := D(r(2)S ′ ), D12 := D(λr(1)S ′ + (1− λ)r(2)S ′ ); and (c) F1 := F(r(1)S ′ ), F2 := F(r(1)S ′ ). As
γc ∈ [0, 1] for all c = 1, 2, . . . , k, D(rS ′) is positive for any rS ′ ∈ B̃(rS ). Moreover,
if D(r(0)S ′ ) = 0 for some r(0)S ′ ∈ B̃(rS ), it follows that F(r(0)S ′ ) = 0, N(r(0)S ′ ) = 0 and

T(r(0)S ′ ) = 0 too. As a consequence, if D1, D2 or D12 are zero, Equation (5.20) is trivially
true. Let us consider instead the non-trivial case for which D1 > 0, D2 > 0 and
D12 > 0. Then, multiplying the left-hand and right-hand sides of Equation (5.20) by
D1D2D12 leads to the following alternative characterisation of convexity:

(
λN1D2 + (1− λ)N2D1

)
D12︸ ︷︷ ︸

L

≥ N12D1D2︸ ︷︷ ︸
R

. (5.23)
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Under the aforementioned assumptions, it is easy to show that this condition indeed
holds:

L ≥
(
λN1D2 + (1− λ)N2D1

)(
λD1 + (1− λ)D2

)

=
(
λ2N1 + (1− λ)2N2

)
D1D2 + λ(1− λ)

(
N1D2

2 + N2D2
1
)

=
(
λN1 + (1− λ)N2

)
D1D2 + λ(1− λ)

(
N1D2

2 + N2D2
1 − (N1 + N2)D1D2

)

=
(
λN1 + (1− λ)N2 − λ(1− λ)(F1 − F2)

2)D1D2 + λ(1− λ)
(

F1D2 − F2D1
)2

= N12D1D2 + λ(1− λ)
(

F1D2 − F2D1
)2

≥ N12D1D2 = R, (5.24)

where the first step follows from the fact that D(rS ′) is concave, i.e. D12 ≥ λD1 + (1−
λ)D2, as shown in Equation (5.22), and the penultimate step results from applying
Equation (5.21). This establishes the convexity of Tl

max(rS ′) and Tu
max(rS ′) in B̃(rS ).

Finally, it will be shown that any function T(rS ′) which is convex in B̃(rS ) must
attain its maximum value in B̃(rS ) at a vertex. Since B(rS ) ⊂ B̃(rS ) and all vertices
of B̃(rS ) are also contained in B(rS ), this would imply that the maximum value of
T(rS ′) in B(rS ) must also be attained at a vertex, thus proving property (iii). Indeed,
suppose that r̃∗S ′ = argmax

rS′∈B̃(rS )
T(rS ′) was not a vertex of B̃(rS ). Then, there would exist

some c′ ∈ {1, 2, . . . , k} such that 0 < r̃∗S ′ ,c′ < rS ,c′ . Let r(1)S ′ , r(2)S ′ ∈ B̃(rS ) be defined

as: (i) r(1)S ′ ,c = r(2)S ′ ,c = r̃∗S ′ ,c for all c 6= c′, and (ii) r(1)S ′ ,c′ = 0, r(2)S ′ ,c′ = rS ,c′ . It can be

readily verified that r̃∗S ′ = λr(1)S ′ + (1− λ)r(2)S ′ if λ = 1− r∗S′ ,c′
rS ,c′

. As 0 < r̃∗S ′ ,c′ < rS ,c′ by
assumption, it follows that λ ∈ (0, 1) and, as a consequence of T(rS ′) being convex, we
have that T(r̃∗S ′) ≤ λT(r(1)S ′ ) + (1− λ)T(r(2)S ′ ) ≤ max(T(r(1)S ′ ), T(r(2)S ′ )). In other words,

either r(1)S ′ or r(2)S ′ must be a maximiser of T(rS ′) as well. Inductively applying this
argument to all c′ = 1, 2, . . . , k shows that there exists r∗S ′ ∈ B(rS ) ⊂ B̃(rS ) with
r∗S ′ ,c ∈ {0, rS ,c} for each c = 1, 2, . . . , k such that T(r∗S ′) ≥ T(r̃∗S ′), thus proving the
claim.

Proposition 5.4 has direct algorithmic implications. As Tl
max(rS ′) and Tu

max(rS ′) must
attain their maximum values at a vertex of B(rS ), the combinatorial optimisation
problems defined by Equations (5.11) and (5.12) can be solved with 2k evaluations
of Tl

max(rS ′) and Tu
max(rS ′), respectively. Consequently, Proposition 5.4 provides an

approach to compute p̃min(rS ) with complexity O(2k) instead of O(nk). Nevertheless,
while this improvement might be sufficient to result in a computationally feasible
algorithm if the number k of categories for the covariate is small, e.g. k = 2 or k = 3,
the computational overhead incurred by evaluating p̃min(rS ) still grows exponentially
on k, severely hindering the applicability of the pruning condition described in
Proposition 5.3. The FACS algorithm is built around a vastly more powerful result,
which allows to further reduce the number of evaluations of Tl

max(rS ′) and Tu
max(rS ′)

needed to compute p̃min(rS ) from 2k+1 to only 2k, as described in the following
proposition.

Proposition 5.5. Let rS be an arbitrary k-dimensional vector satisfying

rS ,c ∈ J0, min(n1,c, nc − n1,c)K
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5.4 a search space pruning condition for the cmh test

for all c = 1, 2, . . . , k and consider a function

T(rS ′) =

(
∑k

c=1 γcrS ′ ,c
)2

∑k
c=1

nc
nc−1 γc(1− γc)rS ′ ,c

(
1− rS′ ,c

nc

) , (5.25)

with γc ∈ [0, 1] for all c = 1, 2, . . . , k and domain B(rS ). Furthermore, define

βc =
nc

nc − 1
(1− γc)

(
1− rS ,c

nc

)
(5.26)

for each c = 1, 2, . . . , k and let π : J1, kK → J1, kK be a permutation of J1, kK that sorts
{βc}k

c=1 in ascending order, that is, π satisfies βπ(1) ≤ βπ(2) ≤ . . . ≤ βπ(k). Then:

T∗ = max
rS′∈B(rS )

T(rS ′) = max
κ∈J1,kK

Oκ , (5.27)

where:

Oκ =

(
∑κ

c=1 γπ(c)rS ,π(c)

)2

∑κ
c=1

nπ(c)
nπ(c)−1 γπ(c)(1− γπ(c))rS ,π(c)

(
1− rS ,π(c)

nπ(c)

) . (5.28)

In particular, this implies that T∗ can be obtained with O(k log k) complexity.

Proof. As shown in the proof of Proposition 5.4, T(rS ′) must attain its maximum value
in B(rS ) at a vertex of B(rS ). Consequently:

T∗ = max
rS′∈B(rS )

T(rS ′) = max
q∈{0,1}k

(
∑k

c=1 qc fc

)2

∑k
c=1 qcβc fc

, (5.29)

where fc = γcrS ,c and βc = nc
nc−1 (1 − γc)

(
1− rS ,c

nc

)
as in Equation (5.26). Let π :

J1, kK→ J1, kK be a permutation satisfying the assumptions of the proposition, i.e. a
permutation such that βπ(1) ≤ βπ(2) ≤ . . . ≤ βπ(k) and define:

Tπ,j(q) =

(
∑

j
c=1 qπ(c) fπ(c)

)2

∑
j
c=1 qπ(c)βπ(c) fπ(c)

, (5.30)

for each j = 1, 2, . . . , k. Since T(rS ′) is invariant to permutations of rS ′ , it follows that
T∗π,k = max

q∈{0,1}k
Tπ,k(q) = T∗. In order to prove that T∗ = max

κ∈J1,kK
Oκ, with Oκ as defined

by Equation (5.28), a strategy reminiscent of dynamic programming will be used.
Consider:

Sπ,j(q) =

(
fπ(j+1) + ∑

j
c=1 qπ(c) fπ(c)

)2

βπj+1 fπ(j+1) + ∑
j
c=1 qπ(c)βπ(c) fπ(c)

, (5.31)

so that:
T∗π,j = max

q∈{0,1}k
Tπ,j(q) = max

(
T∗π,j−1, S∗π,j−1

)
, (5.32)
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where S∗π,j−1 = max
q∈{0,1}k

Sπ,j−1(q). Next, it will be shown by induction that T∗π,j =

max
κ∈J1,jK

Oκ for all j = 1, 2, . . . , k, thus proving the proposition.

The base case T∗π,1 = max (0, O1) = O1 trivially holds. Moreover, supposing that the
inductive hypothesis T∗π,j−1 = max

κ∈J1,j−1K
Oκ is satisfied, it follows that:

T∗π,j = max
(

T∗π,j−1, S∗π,j−1

)
= max

(
max

κ∈J1,j−1K
Oκ , S∗π,j−1

)
. (5.33)

The two possible cases (i) S∗π,j−1 ≤ T∗π,j−1, and (ii) S∗π,j−1 > T∗π,j−1 will be considered
separately.

(i) If S∗π,j−1 ≤ T∗π,j−1 holds, then T∗π,j = T∗π,j−1 = max
κ∈J1,j−1K

Oκ, where the last step

follows by the induction hypothesis. Furthermore, as S∗π,j−1 ≥ Oj is true in
general, this would also imply that T∗π,j−1 = max

κ∈J1,j−1K
Oκ ≥ S∗π,j−1 ≥ Oj, leading

to T∗π,j = max
κ∈J1,j−1K

Oκ = max
κ∈J1,jK

Oκ, which would prove the inductive step.

(ii) Suppose instead that S∗π,j−1 > T∗π,j−1 holds, implying that T∗π,j = S∗π,j−1. The
final step of this proof will involve showing that under these circumstances,
S∗π,j−1 = Oj, leading to T∗π,j = Oj = max

κ∈J1,jK
Oκ and thus proving the inductive step

as well.
The claim will be demonstrated by contradiction. Suppose that S∗π,j−1 6= Oj.
Then, according to Equation (5.31), there exists a strict subset Z of {1, 2, . . . , j− 1}
such that:

S∗π,j−1 =

(
fπ(j) + ∑c∈Z fπ(c)

)2

βπ(j) fπ(j) + ∑c∈Z βπ(c) fπ(c)
. (5.34)

For the sake of readability, define F := fπ(j) + ∑c∈Z fπ(c) and D := βπ(j) fπ(j) +

∑c∈Z βπ(c) fπ(c), leading to S∗π,j−1 = F2

D . Additionally, define F¬ := ∑c∈Z¬ fπ(c)
and D¬ := ∑c∈Z¬ βπ(c) fπ(c), where Z¬ = {1, 2, . . . , j− 1} \ Z is a non-empty
subset of {1, 2, . . . , j− 1}.
Since S∗π,j−1 ≥ Oj holds in general and, by assumption, S∗π,j−1 6= Oj, it follows
that S∗π,j−1 must be strictly greater than Oj. Using the notation introduced above,
this condition can be expressed as:

S∗π,j−1 > Oj ⇔
F2

D
>

(F + F¬)
2

D + D¬
⇔ F2 (D + D¬) >

(
F2 + F2

¬ + 2FF2
¬
)

D

⇔ F2 D¬
F¬

> F¬D + 2FD

⇒ F2βπ(j) > F¬D + 2FD, (5.35)

where the second step is valid since D and D + D¬ are both strictly larger than
zero and the last step follows from:

D¬
F¬

= ∑
c∈Z¬

βπ(c)
fπ(c)

F¬
≤ ∑

c∈Z¬
βπ(j)

fπ(c)

F¬
= βπ(j), (5.36)
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which is itself a consequence of the fact that βπ(j) ≥ βπ(c) for all c = 1, 2, . . . , j− 1
due to the way π was defined.
Additionally, it was assumed that S∗π,j−1 > T∗π,j−1 holds. As a direct implication
of the definition of Tπ,j(q), shown in Equation (5.30), it follows that T∗π,j−1 ≥
(F− fπ(j))

2

D−βπ(j) fπ(j)
. This leads to the following condition:

S∗π,j−1 > T∗π,j−1 ⇒
F2

D
>

(
F− fπ(j)

)2

D− βπ(j) fπ(j)

⇔ F2
(

D− βπ(j) fπ(j)

)
>
(

F2 + f 2
π(j) − 2F fπ(j)

)
D

⇔ −F2βπ(j) > fπ(j)D− 2FD, (5.37)

where the second step relies on the fact that D > 0 and D − βπ(j) fπ(j) =

∑c∈Z βπ(c) fπ(c) > 0. In order to show that the latter holds, it must be proven that
Z 6= ∅, which follows from Equation (5.35). Indeed, if Z were empty, F would
be equal to fπ(j) and D to βπ(j) fπ(j), leading to βπ(j) fπ(j) > F¬βπ(j) + 2βπ(j) fπ(j),
which constitutes a clear contradiction.
Finally, the conditions in Equations (5.35) and (5.37) can be combined into a
single inequality, resulting in:

(
F¬ + fπ(j)

)
D < 0. (5.38)

This condition is necessarily false. Hence, it follows that under the assumption
that S∗π,j−1 > T∗π,j−1, S∗π,j−1 = Oj ⇔ Z = {1, 2, . . . , j− 1} ⇔ Z¬ = ∅ must hold,
ultimately implying that T∗π,j = max

κ∈J1,jK
Oκ.

The final statement in the proposition refers to the computational complexity
incurred by obtaining T∗ = max

rS′∈B(rS )
T(rS ′). Since, as it was shown, T∗ = max

κ∈J1,kK
Oκ

holds, in order to compute T∗ it is necessary to:

(i) Compute βc for all c = 1, 2, . . . , k, with complexity O(k).

(ii) Find an appropriate permutation π by sorting {βc}k
c=1 in ascending order, with

complexity O(k log k).

(iii) Compute Oκ for all κ = 1, 2, . . . , k. Since Oκ = F2
κ

Dκ
with Fκ := ∑κ

c=1 fπ(c) =

fπ(κ) + Fκ−1 and Dκ := ∑κ
c=1 βπ(c) fπ(c) = βπ(κ) fπ(κ) + Dκ−1, it follows that this

step can also be accomplished with complexity O(k).

(iv) Retrieve the maximum value of Oκ for all κ = 1, 2, . . . , k, with complexity O(k).

Therefore, the overall computational effort is dominated by the sorting step (ii),
resulting in O(k log k) complexity for the entire procedure.

Proposition 5.5 culminates the developments described in this section, providing
a computationally efficient approach to assess the pruning condition introduced in
Proposition 5.3. The resulting method is summarised in Algorithm 5.1, which describes
the subroutine of FACS that would be executed each time the pruning condition for
the CMH test must be evaluated in Line 16 of Algorithm 3.2.
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Algorithm 5.1 pruning_condition_cmh

Input: Pattern S , estimate of the corrected significance threshold δ̂tar. For simplicity,
the vectors rS , n1 and n are assumed to be available within the scope of the
function

Output: A Boolean indicating whether the search space pruning condition described
in Proposition 5.3 applies to pattern S or not

1: function pruning_condition_cmh(S ,δ̂tar)
2: for c = 1, 2, . . . , k do
3: if rS ,c > min(n1,c, nc − n1,c) then
4: Return false

5: I ← ∅ . c ∈ I if and only if rS ,c > 0
6: for c = 1, 2, . . . , k do
7: γl

c ← n1,c
nc

, γu
c ← 1− γl

c . see Proposition 5.4
8: if rS ,c > 0 then
9: Append c to I

10: T̃l
max(rS )← max_T(

{
γl

c
}k

c=1 , I), T̃u
max(rS )← max_T({γu

c }k
c=1 , I)

11: p̃min(rS )← 1− Fχ2
1

(
max

(
T̃l

max(rS ), T̃u
max(rS )

))

12: if p̃min(rS ) > δ̂tar then
13: Return true

14: Return false
15: end function
16: procedure max_T({γc}k

c=1, I)
17: for c ∈ I do
18: fc ← γcrS ,c, dc ← nc

nc−1 γc(1− γc)rS ,c

(
1− rS ,c

nc

)
, βc ← dc

fc

19: Sort {βc}c∈I in ascending order to obtain π : J1, |I|K → I such that βπ(1) ≤
. . . ≤ βπ(|I|)

20: F0 ← 0, D0 ← 0
21: for κ = 1, . . . , |I| do
22: Fκ ← Fκ−1 + fπ(κ), Dκ ← Dκ−1 + βπ(κ) fπ(κ), Oκ ← F2

κ
Dκ

23: Return max
κ∈J1,|I|K

Oκ

24: end procedure

The algorithm begins by verifying whether condition (ii) of Proposition 5.3 is
satisfied by pattern S , i.e. whether rS ,c ≤ min(n1,c, nc − n1,c) holds for all c =

1, 2, . . . , k, as shown in Lines 2-4. If this was the case, the algorithm would proceed
to verify condition (i) next, which requires computing the lower envelope of the
minimum attainable P-value p̃min(rS ). As discussed in this section, this will be
accomplished by maximising Tl

max(rS ′) and Tu
max(rS ′) in B(rS ), resulting in T̃l

max(rS )
and T̃u

max(rS ), respectively. As shown in Proposition 5.4, the functions Tl
max(rS ′) and

Tu
max(rS ′) have the same functional form, differing only in a set of k parameters

{γc}k
c=1.The corresponding values of

{
γl

c
}k

c=1 and {γu
c }k

c=1 are computed in Lines 6-9.
Moreover, categories for which rS ,c = 0 can be ignored without affecting Tl

max(rS ′)
and Tu

max(rS ′), thus allowing to reduce the effective number of categories and, in turn,
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making the algorithm more computationally efficient. For this reason, the same block
of pseudocode also keeps track of the subset I of categories for which rS ,c 6= 0. Next,
in Line 10, the subroutine max_T is invoked to perform the required maximisations.
Its pseudocode, described in Lines 16-23, is a self-explanatory implementation of the
procedure described in Proposition 5.5, with the sole difference that categories for
which rS ,c = 0, i.e. categories for which c 6∈ I , are effectively ignored. Once T̃l

max(rS )
and T̃u

max(rS ) have been obtained, the lower envelope of the minimum attainable
P-value p̃min(rS ) is evaluated next in Line 11. Finally, this allows to verify condition
(i) of Proposition 5.3 in Line 12 of the algorithm, thus completing the assessment of
the pruning condition for pattern S .

5.5 miscellaneous aspects of the facs algorithm

This section will cover a variety of issues regarding our proposed approach, the
FACS algorithm. In particular, following the example of Chapters 3 and 4, the most
relevant low-level implementation choices that need to be considered will be discussed
first. Next, we will explore the possibility of combining the developments of Chapter 4,
which allow to make an efficient use of permutation testing in significant pattern
mining, with the techniques proposed in this chapter. Finally, we will refer the reader
to an alternative algorithm to account for covariates in significant pattern mining
which was developed in parallel to FACS.

Implementation considerations

From an algorithmic point of view, the structure of FACS closely resembles that of
LAMP 2.0. As a consequence, most aspects discussed in Section 3.5 in the context of
Algorithm 3.2 largely apply to FACS as well. Nevertheless, some subtle differences
which arise as a result of the inclusion of covariates must be brought into consideration:

(i) In previous chapters, we emphasised the practical importance of choosing
an appropriate pattern mining algorithm to efficiently generate and traverse
the pattern enumeration tree. While LAMP 2.0 and Westfall-Young light can
readily make use of virtually any frequent pattern mining algorithm “out-of-
the-box”, FACS requires the ability to compute the support of each enumerated
pattern in k disjoint subsets of the original input dataset D, that is, it needs to
compute rS ,c for each c = 1, 2, . . . , k instead of merely computing rS = ∑k

c=1 rS ,c.
While this is by no means an insurmountable obstacle, as most popular pattern
mining algorithms can be adapted accordingly, it does imply that implementing
the pattern enumeration routines for FACS might be slightly more involved than
implementing them for LAMP 2.0 or Westfall-Young light.

(ii) Section 3.5 described a strategy to exploit the fact that the minimum attainable P-
value function pmin(rS ) for Pearson’s χ2 test and Fisher’s exact test can only take
b n

2 c distinct values, leading to an optimal adjustment of the estimate δ̂tar of the
corrected significance threshold each time Line 13 of Algorithm 3.2 is executed.
While, in principle, the same idea could also be applied to FACS, the number of
distinct values pmin(rS ) can take grows as O(nk) instead of O(n). Consequently,
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this strategy might become impractical for sufficiently large n and k, making
the simpler alternative based on grid search a more appealing implementation
choice for FACS. Analogously, precomputing pmin(rS ) as a look-up table might
be undesirable for very large datasets or covariates with many categories.

(iii) As LAMP 2.0 and Westfall-Young light, the FACS algorithm relies on the dis-
crete nature of the data. More precisely, FACS is based on the CMH test, implying
that it is only able to correct for a single categorical covariate. Nevertheless,
since FACS can handle a large number k of categories for the covariate, it is
possible to correct for multiple categorical covariates C1, C2, . . . , Cd by defining
a new covariate C with k = ∏d

j=1 k j categories. Extending FACS to account for
real-valued covariates is, however, considerably more challenging. Despite this
obvious limitation, our experiments suggest that a heuristic approach based on
discretising continuous covariates can lead to satisfactory results. In particular,
given a d-dimensional, real-valued covariate c ∈ Rd, vector quantisation can
be used to map each observed covariate ci ∈ Rd in an input dataset D to a
single category c̃i ∈ {1, 2, . . . , k} out of a set of k codewords. For instance, as
will be shown in Section 5.6 and Chapter 6, by simply applying the k-means
algorithm [81] to {ci}n

i=1 and defining c̃i as the cluster assignment of ci, we
were able to successfully correct for confounding due to population structure in
genome-wide association studies.

Extensions to permutation testing-based significant pattern mining

Chapter 4 showed how permutation testing could be used as an alternative to
Tarone’s method in significant pattern mining, effectively providing a practical way
to considerably increase statistical power at the expense of computational efficiency.
As evidenced throughout this chapter, the FACS algorithm was designed to make use
of Tarone’s method, discussed in Section 2.3, as the underlying approach to correct
for the multiple comparisons problem. Nevertheless, all derivations described in
Sections 5.3 and 5.4 can be directly applied to the Westfall-Young light algorithm
introduced in Chapter 4. In particular, a version of Westfall-Young light able to
account for a categorical covariate can be obtained by incorporating the following
modifications into Algorithm 4.2:

(i) Since the null hypothesis H0 is no longer GS (X) ⊥⊥ Y but rather GS (X) ⊥⊥
Y | C, the permutation testing procedure described in Section 4.2 needs to be
altered slightly. Given an input dataset D = {(xi, yi, ci)}n

i=1, define J (c) =

{i ∈ J1, nK | ci = c} and D(c) = {(xi, yi)}i∈J (c). In order to obtain a resampled

dataset D̃ which obeys the global null hypothesis that GS (X) ⊥⊥ Y | C for
all S ∈ M, each stratified dataset D(c) can be first resampled separately, i.e.
D̃(c) =

{
(xi, yπc(i))

}
i∈J (c)

with πc : J (c)→ J (c) being a random permutation

of J (c), followed by the aggregation of all resampled datasets, D̃ = ∪k
c=1D̃(c).

Thus, Line 4 of the algorithm needs to be modified accordingly.

(ii) Line 11 should compute the minimum attainable P-value for the CMH test as
described in Section 5.3.
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(iii) Line 20 should implement the pruning condition for the CMH test introduced
in Section 5.4 by means of Algorithm 5.1.

The use of the CMH test in place of Pearson’s χ2 test or Fisher’s exact test will
not alter the qualitative trade-offs incurred by the use of permutation testing in
significant pattern mining; the approach resulting from modifying Algorithm 4.2 as
indicated above will outperform FACS in terms of statistical power but will also be
more computationally-demanding.

Related work

An alternative method to account for the effect of a categorical covariate in significant
pattern mining was developed concurrently by [82]. The main difference with respect
to FACS lies in the choice of test statistic. Rather than making use of the CMH test, the
approach in [82] uses a less widely-known particularisation of logistic regression for
binary samples [83]. By exploiting the discrete nature of the data, this formulation
allows to obtain exact P-values for the logistic regression model, avoiding the need
for large sample approximations. For additional details, we refer the reader to the
original article [82].

5.6 experiments

In this section, our proposed approach, the FACS algorithm, will be evaluated in
terms of computational efficiency, statistical power and ability to correct for confound-
ing covariates by means of simulation experiments with synthetic data. Finally, a
proof-of-principle application of FACS to analyse data from two genome-wide associa-
tion studies in the plant model organism A. thaliana will be presented.

5.6.1 Experimental setup

While FACS is a general-purpose significant pattern mining algorithm, all experi-
ments discussed in this section will focus exclusively on significant itemset mining.
A simplified version of the Eclat algorithm [31, 84], based on an implementation
written by the author of [70], was used as the underlying closed 2 itemset mining
algorithm. FACS and all baseline algorithms were written from scratch in C++ and
compiled using gcc 4.8.2 with -O3 optimisation. Each experiment was executed on
a single thread of a 2.5 GHz Intel Xeon CPU with 64 GB of memory available.

2. A pattern S is said to be closed if rS > rS ′ for all S ′ ⊃ S , where rS = ∑k
c=1 rS ,c is the support of

S in the input dataset D. If a pattern S is not closed, then there exists a closed pattern S ′ ⊃ S such
that gS (xi) = gS ′ (xi) for all observations {xi}n

i=1 in D. Thus, enumerating only closed patterns can be
understood as a way to account for the most extreme instance of dependence due to subset/superset
relationships between patterns, namely, those cases for which the corresponding test statistics would not
merely be statistically dependent but would rather be identical.
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5.6.2 Simulation experiments

The defining characteristic of FACS, which sets it apart from other significant pattern
mining algorithms, is its ability to correct for covariates. This naturally leads to two
fundamental questions, which will be explored in detail via simulation experiments:

(i) Does FACS achieve its goal of reducing the number of false discoveries due to confound-
ing?

(ii) Does incorporating the possibility to account for a categorical covariate affect the perfor-
mance of the method negatively in other aspects such as statistical power or computational
efficiency?

baselines: In order to answer these questions, we will compare FACS with the
following baseline algorithms:

lamp-χ2: The LAMP 2.0 algorithm with Pearson’s χ2 test as the underlying test statistic,
which we will denote as LAMP-χ2 throughout the remainder of this section,
is arguably the comparison partner that can bring the most insight in our
experiments. LAMP-χ2 is virtually identical to FACS from both an algorithmic
and a statistical perspective, with the sole key difference that FACS is designed
to account for a categorical covariate whereas LAMP-χ2 is not. Thus, comparing
FACS to LAMP-χ2 will allow us to obtain an unbiased, empirical answer to the
two questions posed above.

bonf-cmh: With the aim of investigating the effectiveness of Tarone’s method when
applied to conditional association testing, an alternative baseline algorithm,
which we call Bonf-CMH, will be also introduced. Bonf-CMH consists of applying
the CMH test, as described in Section 5.2, in conjunction with a naive Bonferroni
correction. Thus, as FACS, the resulting approach will be able to account for
a categorical covariate, presumably reducing the number of false discoveries
due to confounding. Nevertheless, compared to FACS and LAMP-χ2, it should
in principle lose the computational and statistical advantages that Tarone’s
testability criterion provides.

mk-facs and 2k-facs: In order to study the effectiveness of FACS in dealing with a
large number k of categories for the covariate, two additional baseline algorithms
will be included in the subset of simulation experiments devoted to assess
runtime. The first of them, mk-FACS, is a version of FACS that evaluates the
pruning condition for the CMH test by solving the combinatorial optimisation
problem in Equation (5.9) by brute force, i.e. by evaluating pmin(rS ′) for all mk

S =

O(nk) distinct rS ′ in B(rS ). Finally, 2k-FACS can be considered an “intermediate”
version of FACS that leverages our results in Proposition 5.4 to obtain a solution
of Equation (5.9) by only computing pmin(rS ′) at the 2k vertices of B(rS ), thus
being considerably more efficient than mk-FACS yet still drastically slower than
the full-fledged version of FACS, which solves Equation (5.9) in only O(k log k)
time.

data generation : All simulation experiments in this chapter use synthetic item-
set mining datasets D = {(xi, yi, ci)}n

i=1, consisting of n triplets (xi, yi, ci) sampled
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i.i.d. from a distribution p(x, y, c). As described in Section 5.2, x ∈ X is an ob-
servation, which in itemset mining corresponds to a p-dimensional binary vector
x = (u1, u2, . . . , up) ∈ {0, 1}p, y ∈ {0, 1} is a binary class label and c ∈ {1, 2, . . . , k} a
categorical covariate with k categories. The specific choice of data-generating distribu-
tion p(x, y, c) will depend on the aim of the experiment.

Since the presence or absence of statistical associations between observations, labels
and covariates plays a minor role in determining how computationally demanding
mining significant patterns in a certain dataset will be, we use a fully-factorised data-
generating distribution p(x, y, c) = p(x)p(y)p(c) in all simulation experiments which
aim to assess computational efficiency. In particular, we set p(y) = Bernoulli(y | py),
p(c) = Categorical(c | pc) and, for the sake of simplicity, p(x) is assumed to be a fully-
factorised distribution with identically-distributed features, i.e. p(x) = ∏

p
j=1 p(uj)

with p(uj) = Bernoulli(uj | pu) for each j = 1, 2, . . . , p.
In contrast, the data-generating distribution p(x, y, c) for simulation experiments

intended to evaluate statistical power and the false discovery rate (FDR) is necessarily
more complex, as it must incorporate statistical dependencies between x, y and c.
For these experiments, our generative model first samples uniformly at random
two feature interactions Strue, Sconf ⊆ {1, 2, . . . , p} satisfying |Strue| = ltrue, |Sconf| =
lconf and Strue ∩ Sconf = ∅. As the notation suggests, these two disjoint feature
interactions will represent a truly associated pattern and a confounded pattern,
respectively. In other words, the generative model will be designed to guarantee that
the condition GStrue(X) 6⊥⊥ Y | C holds for Strue whereas the conditions GSconf(X) 6⊥⊥
Y and GSconf(X) ⊥⊥ Y | C hold for Sconf. To accomplish this, we model the joint
distribution p

(
gStrue(x), gSconf(x), y, c

)
as

p
(

gStrue(x), gSconf(x), y, c
)
= p (gStrue(x), y, c) p

(
gSconf(x) | c

)
,

where:

(i) Under the simplifying assumption that the covariate c is binary, i.e. that c ∈
{0, 1} or, equivalently, that k = 2, we make use of the approach described
in [85] to sample from a multivariate Bernoulli distribution p (gStrue(x), y, c) with
specified first and second-order moments. In particular, we set:

(a) E (GStrue(X)) = ptrue, E(Y) = py and E(C) = pc.

(b) Corr
(
Y, GStrue(X)

)
= ρtrue and Corr

(
Y, C

)
= ρconf whereas GStrue(X) and C

are uncorrelated, that is, Corr
(
GStrue(X), C

)
= 0.

(ii) The conditional distribution p
(

gSconf(x) | c
)

relating the occurrences of the con-
founded pattern Sconf in an observation x to the value taken by the confounding
covariate c is defined as a binary symmetric channel [86] with a small error
rate ε. That is, GSconf(X) = C with probability 1− ε and GSconf(X) = 1− C with
probability ε.

After having generated n i.i.d. samples
{(

gStrue(xi), gSconf(xi), yi, ci
)}n

i=1 in this manner,
the final step in our generative model is to obtain n i.i.d. observations {xi}n

i=1 which
are consistent with the values of {gStrue(xi)}n

i=1 and
{

gSconf(xi)
}n

i=1. In order to do so,
the way in which the p binary features u1, u2, . . . , up in x will be sampled depends on
whether j is in Strue ∪ Sconf or not:
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(i) All “background” features
{

uj | j ∈ {1, 2, . . . , p} \ (Strue ∪ Sconf)
}

are obtained
as i.i.d. draws from a Bernoulli distribution, i.e. p(uj) = Bernoulli(uj | pu).

(ii) The features
{

uj | j ∈ Strue
}

which form the truly associated pattern Strue must
satisfy ui,j = 1 for all samples i = 1, 2, . . . , n for which gStrue(xi) = 1, since
gStrue(xi) is defined as gStrue(xi) = ∏j∈Strue

ui,j. Similarly, for all samples i =

1, 2, . . . , n for which gStrue(xi) = 0, there must be at least one j∗(i) ∈ Strue such
that ui,j∗ = 0. Thus, for each i = 1, 2, . . . , n satisfying gStrue(xi) = 0, we sample
a feature index j∗(i) uniformly at random from Strue and set ui,j∗ = 0. The
remaining features

{
ui,j | j ∈ Strue \ {j∗(i)}

}
have no effect on gStrue(xi) and can

therefore take any value. We choose to set ui,j = 1 for all j ∈ Strue \ {j∗(i)}, as
this minimises the univariate statistical association of each feature in Strue with
the class labels, making the discovery of Strue more challenging.

(iii) The features
{

uj | j ∈ Sconf
}

which form the confounded pattern Sconf are sam-
pled analogously as in (ii).

Throughout all simulation experiments, the truly associated and confounded patterns
Strue and Sconf have the same number of interacting features, i.e. ltrue = lconf = l.
Moreover, the correlations ρtrue and ρconf are also set to be identical, that is, ρtrue =

ρconf =
ρ
2 . In this case, ρ ∈ [0, 1] can be interpreted as the proportion of variance of

the class labels which can be jointly explained by the truly associated pattern and the
covariate, i.e. it is the overall signal strength in the dataset.

metrics : Runtime will be used as the objective criterion to benchmark the compu-
tational efficiency of FACS against all baseline algorithms 3. Absolute runtime values
must always be interpreted with care, as they strongly depend on non-algorithmic
factors such as the hardware of the system used to execute the algorithms, the program-
ming language the algorithms were written in or the specific choice of pattern mining
algorithm used to traverse the enumeration tree. However, all methods included in
these simulation experiments have been executed on the same system, programmed
in the same language and use our own implementation of Eclat to enumerate closed
itemsets. Thus, we can reliably interpret relative differences in runtime to provide
a fair assessment of the computational efficiency of the distinct significant pattern
mining algorithms under consideration.

Evaluating statistical power and the FDR is, nevertheless, considerably more in-
volved. Owing to the dependence between patterns in the search space, an aspect
of significant pattern mining which was discussed extensively in Chapter 4, the null
hypothesis GS (X) ⊥⊥ Y | C will not only be violated by Strue, contrary to what our
data generation model might suggest. In practice, there might be many patterns S
which are sufficiently related to Strue to be statistically associated as well. Typical
examples of such patterns include subsets and supersets of Strue, as well as patterns
S for which the intersection between Strue and S is large relative to the size of the
patterns, i.e. patterns S with a large Jaccard similarity with Strue. As a consequence,
defining which patterns should be considered as true positives and which patterns
should be considered as false positives becomes non-trivial. In this chapter, we follow

3. For all practical purposes, the performance of FACS and all baseline algorithms is almost identical
in terms of memory usage.
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a pragmatic approach and introduce heuristic definitions that nonetheless allow us
to compare the relative performance of the approaches under consideration. Let
Msig ⊆M denote the subset of patterns deemed significantly associated by a certain
significant pattern mining algorithm. We will consider a pattern S ∈ Msig to be a
true positive if |S ∩ Strue| > |S|

2 , i.e. if strictly more than half of the features indexed
by S are part of the truly associated feature interaction Strue. Similarly, S ∈ Msig will
be considered a false positive if |S ∩ Strue| < |S|

2 . If |S ∩ Strue| were equal to |S|2 , we
would increment the total number of true positives TP and the total number of false
positives FP by 0.5 each. Using these heuristic definitions of true and false positives,
the FDR will be obtained as usual, i.e.

FDR = E

(
FP

max(TP + FP, 1)

)
.

Finally, in order to define a measure of statistical power for our simulation experiments,
a more stringent notion of true positive will be adopted. In particular, we will define
statistical power as the probability that Strue is deemed significantly associated, i.e.
as the probability that Strue is part ofMsig. While these heuristic definitions of FDR
and statistical power provide substantial insight into the performance of different
significant pattern mining algorithms, developing novel precision and recall metrics
that account for the dependence between patterns in a principled manner remains a
fundamental open problem in significant pattern mining.

FDR and statistical power

To investigate the ability of FACS to correct for a confounding covariate and the
impact this has on its statistical power, we carried out a set of simulation experiments
to evaluate the FDR and resulting statistical power of FACS and two baseline algorithms,
Bonf-CMH and LAMP-χ2, as the overall signal strength ρ varies in the range [0, 1]. For
each value of ρ, we estimated the FDR and the resulting statistical power by averaging
across the results of 100 synthetic datasets, generated according to the model described
above. Each dataset consisted of n = 200 samples, p = 5, 000 features and k = 2
categories for the covariate. Both the truly significant and the confounded patterns
contained l = 5 interacting features. For the sake of simplicity, both class labels and
both categories for the covariate were equiprobable a priori, i.e. py = 0.5 and pc = 0.5.
The probability that the truly associated pattern occurs in an input sample x was also
set to ptrue = 0.5 while, as discussed in the previous section, the presence or absence
of the confounded pattern in each input sample was determined by the value taken by
categorical covariate, with gSconf(xi) = ci occurring with probability 1− ε = 0.95 and
gSconf(xi) = 1− ci occurring with probability ε = 0.05. Finally, the probability pu of a
“background” feature being active, which largely controls the sparsity of the resulting
dataset, was set to 0.1.

Figure 5.5 shows the resulting FDR for all three methods under consideration. The
most striking feature of these results is the confirmation that the two approaches
which use the CMH test to correct for the categorical covariate, FACS and Bonf-CMH,
are able to drastically reduce the FDR compared to LAMP-χ2. In particular, it can be
seen that both FACS and Bonf-CMH control the FDR at level α = 0.05, which is a direct
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Figure 5.5. – FDR as a function of the signal strength ρ for our proposed approach
FACS and two baseline algorithms: Bonf-CMH and LAMP-χ2.

consequence 4 of the fact that both approaches strongly control the FWER at level
α = 0.05. In contrast, as the signal strength ρ approaches 1, half of all discoveries made
by LAMP-χ2 are false positives, in this particular case owing to confounding. Figure 5.6
depicts the resulting statistical power in these simulation experiments, providing a
complementary view of the statistical performance of FACS, LAMP-χ2 and Bonf-CMH.
Firstly, it can be readily seen that FACS and LAMP-χ2, which use Tarone’s testability
criterion to correct for multiple comparisons, vastly outperform Bonf-CMH, which
uses a naive Bonferroni correction instead. This effect is particularly pronounced for
moderate values of the signal strength ρ and holds true despite the fact that, in these
simulation experiments, the search spaceM consists only of closed itemsets, thereby
resulting in a much smaller number of candidate feature interactions than 2p. If that
were not the case, the resulting statistical power of Bonf-CMH would have been trivially
0 regardless of ρ. Perhaps most importantly, the results in Figure 5.6 strongly suggest
that using FACS instead of LAMP-χ2 does not lead to a loss of statistical power, making
FACS an appealing choice to correct for a categorical covariate in significant pattern
mining.

4. Since FP
max(TP+FP,1) ≤ 1 [FP > 0], it follows that the FDR is always bounded from above by the

FWER. Hence, any procedure which controls the FWER at level α also controls the FDR at the same level.
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Figure 5.6. – Statistical power at different values of the signal strength ρ for our
proposed approach FACS and two baseline algorithms: Bonf-CMH and
LAMP-χ2.

Runtime

With the aim of benchmarking the computational efficiency of FACS against all
baseline algorithms under consideration, we studied how the runtime of each method
scales with respect to two key parameters of the input dataset: the number of features
p and the number of categories for the covariate k. In a first set of experiments, we
generated synthetic data with n = 500 samples and k = 2 categories for the covariate
while varying the number of features p. Next, in a second set of experiments, the
number of features was fixed to p = 5, 000 while the number of categories for the
covariate k varied between 2 and 28. The sample size was unchanged with respect
to the first set of experiments, i.e. it was kept at n = 500. In all of these simulation
experiments, both class labels and all categories for the covariate were equiprobable
a priori, that is, py = 0.5 and pc =

1
k 1k. Finally, the probability pu of a “background”

feature being active was 0.1, as in the experiments devoted to evaluate statistical power
and the FDR.

Figure 5.7 shows the resulting runtime as a function of the number of features p
for FACS and all four baseline algorithms, 2k-FACS, mk-FACS, Bonf-CMH and LAMP-χ2.
Most notably, these results highlight the computational virtues of Tarone’s concept of
testability. Relative to all Tarone-based methods, the runtime of Bonf-CMH scales very
poorly with the number of features p, rendering it unsuitable to analyse large datasets.
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Figure 5.7. – Runtime as a function of the number of features p for our proposed ap-
proach FACS and four baseline algorithms: 2k-FACS, mk-FACS, Bonf-CMH
and LAMP-χ2. The discontinuous trace shown for the baseline Bonf-CMH
corresponds to forecasts made using a trend model of the form log10 T =

b + η log10 p rather than values actually measured via experiments.

In contrast, the runtimes of LAMP-χ2 and FACS, as well as of the simplified versions of
FACS, 2k-FACS and mk-FACS, can be seen to increase at the same rate as the number
of features p grows. More precisely, the runtimes of all of these approaches differ
only by a constant amount, which can be attributed to: (i) the overhead of evaluating
the CMH test, with complexity O(k), instead of evaluating Pearson’s χ2 test, with
constant complexity O(1); and (ii) the overhead of evaluating the pruning condition
for the CMH test, with complexity O(k log k) for FACS, O(2k) for 2k-FACS and O(nk)

for mk-FACS, instead of evaluating the pruning condition for Pearson’s χ2 test, again
with constant complexity O(1). Compared to the runtime gap between Bonf-CMH and
all Tarone-based methods, the runtime overhead of FACS over LAMP-χ2 which can be
observed in Figure 5.7 is virtually negligible. Nevertheless, these simulations were
carried out using only k = 2 categories for the covariate. Figure 5.8 complements this
analysis by showing how the runtime of each algorithm increases with the number of
categories for the covariate k. The results depicted in Figure 5.8 emphasise the key role
that Algorithm 5.1 plays in making accounting for a categorical covariate in significant
pattern mining computationally feasible. Indeed, without our efficient approach to
evaluate the pruning condition for the CMH test, mk-FACS actually becomes slower
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Figure 5.8. – Runtime as a function of the number of categories for the covariate k
for our proposed approach FACS and four baseline algorithms: 2k-FACS,
mk-FACS, Bonf-CMH and LAMP-χ2. The discontinuous traces shown for the
baselines 2k-FACS and mk-FACS correspond to forecasts made using two
different trend models of the form log10 T = b + ηk rather than values
actually measured via experiments.

than Bonf-CMH with as few as k = 10 categories for the covariate. In this particular
case, the overhead of evaluating the pruning condition for the CMH test by solving
Equation (5.9) using brute force turns out to be so large that simply applying no
pruning at all is a more efficient strategy. Moreover, while 2k-FACS is definitely faster
than mk-FACS, its scaling with respect to k is still unacceptable. In contrast, the runtime
of the FACS algorithm scales very gently with k, confirming that it is able to account
for a categorical covariate with a large number of categories without being drastically
slower than LAMP-χ2.

5.6.3 Applications to genome-wide association studies

To conclude this chapter, a proof-of-concept application of FACS to discover sig-
nificant high-order feature interactions in genome-wide association studies will be
described. In particular, we will contrast the results obtained by FACS with those of two
baseline algorithms, LAMP-χ2 and Bonf-CMH, when analysing two datasets from the
well-known collection of A. thaliana genome-wide association studies in [87]. Among
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all binary phenotypes available in the collection, we chose LY (yellowing leaves) and
avrB (hypersensitive-response traits) for our experiments. These two phenotypes
have been shown to suffer from confounding due to population structure, making
them a good test-bed for FACS. The original datasets, which we downloaded from
the easyGWAS online resource [88], have sample size n = 95 and n = 87, respectively.
Each of these samples can be represented as a p-dimensional binary vector, where
the number of features is p = 214, 051 for the phenotype LY and p = 214, 032 for the
phenotype avrB. Each of these binary features encodes a different single-nucleotide
polymorphism, a certain position in the genome of the organism (loci) for which two
different values (alleles) are frequently observed in the population. We followed the
convention of representing the minor allele, i.e. the allele which is less frequently
observed in the population, with a value of 1, whereas the major allele, i.e. the most
common allele in the population, was encoded as 0.

data preprocessing: Despite the increase in computing power available and
recent progress in pattern mining, a direct application of significant itemset mining
to genome-wide association studies is still computationally unfeasible. Besides the
high dimensionality of the data, with the number of features p being in the order of
hundreds of thousands or even millions, itemset mining datasets arising from genome-
wide association studies tend to be very dense. For instance, the two datasets we will
be working with in this section have approximately 25% of all entries being active
(i.e. taking value 1). Nevertheless, itemset mining algorithms are typically applied to
considerably sparser data. As a reference, the two most high-dimensional datasets con-
sidered in Chapter 4, Retail (p = 16, 470) and Pumsb-star (p = 7, 117), have only 0.06%
and 0.71% of all entries active, respectively. While recent innovations such as parallel
significant pattern mining algorithms [89] have successfully achieved considerable
speed-ups, being able to quickly analyse dense, extremely high-dimensional datasets
such as those originating from genome-wide association studies remains at large an
open problem for significant pattern mining 5. We will revisit the use of techniques
from significant pattern mining to analyse genome-wide association studies in the next
chapter, where we introduce a new instance of significant pattern mining, inspired
precisely by this target application, which scales to considerably larger and denser
datasets than significant itemset mining. However, our aim in this section is not to
make new discoveries regarding the genetic architecture of the traits LY and avrB
in A. thaliana but, rather, to elucidate the ability of FACS to correct for confounding
also in real-world data. Therefore, we followed a pragmatic approach to bypass the
current computational limitations of significant itemset mining by dividing the two
original datasets into multiple smaller datasets, which we then analysed separately.
As a first simplification, we did not consider interactions between single-nucleotide
polymorphisms located in different chromosomes as candidate feature interactions
in our search space. Since A. thaliana has five chromosomes, this allowed splitting
each of the original datasets into five disjoint datasets. Moreover, we exploited linkage
disequilibrium, the phenomenon that single-nucleotide polymorphisms often exhibit

5. For example, in spite of the efficiency of the parallelisation scheme proposed in [89], which reduces
the runtime by a factor almost identical to the number of cores used, the resulting approach still mainly
handles relatively sparse data, with 1% to at most 10% of all entries being active.
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strong spatial correlations along the genomic sequence, to further divide each of
the resulting datasets into even smaller datasets by downsampling the feature space
by a factor of 20 using 20 different offsets. As a result of this process, each of the
two original datasets was split into 5× 20 = 100 smaller datasets, with each feature
(single-nucleotide polymorphism) in the original datasets being part of exactly one of
these 100 smaller datasets. These preprocessing steps brought down the number of
features per dataset to a value between p = 1, 423 and p = 2, 661, thus considerably
reducing the total runtime required to carry out our experiments.

metrics: Directly assessing statistical power or the FDR in real-world data is
challenging, as we most often lack the ground truth knowledge about which features,
or interactions thereof, are truly associated with the class labels. In order to evaluate
to which extent FACS can correct for confounding due to population structure, we
will use the genomic inflation factor [90], a heuristic measure of confounding which is
nonetheless exceedingly popular in statistical genetics. The genomic inflation factor,
typically denoted as λ, is based on the assumption that the null hypothesis holds for
the majority of association tests being carried out, i.e. that |M0| ≈ |M|, a condition
satisfied by most genome-wide association studies. If that were indeed the case,
the median value of all observed test statistics, i.e. the median of {tS | S ∈ M},
would be dominated by the set {tS | S ∈ M0} of observed test statistics for null
patterns S ∈ M0, thus being close to the median of the theoretical null distribution
Pr(T = t | H0). This motivates defining the genomic inflation factor as the ratio

λ =
median ({tS | S ∈ M})
median (Pr(T = t | H0))

,

where median ({tS | S ∈ M}) is the empirical median of all observed test statistics
and median (Pr(T = t | H0)) is the median of the theoretical null distribution of the
test statistic of choice. Values of λ which differ substantially from one suggest a mis-
match between the empirical distribution of the test statistics and the theoretical null
distribution. Supposing that larger values of T correspond to stronger associations, a
genomic inflation factor λ considerably larger than one indicates that a large fraction
of all test statistics yielded more significant outcomes than expected under the null.
Assuming that |M0| ≈ |M|, a possible explanation for this apparent contradiction
could be that the observed test statistic values are affected by an uncorrected con-
founding covariate. While there are alternative reasons why the genomic inflation
factor could deviate from one, such as the theoretical null distribution Pr(T = t | H0)

not being completely correct due to unmet assumptions made during its derivation
or, simply, the condition |M0| ≈ |M| not being true, a large genomic inflation factor
suggests at the very least that the possibility that confounding played a role in shaping
the results should be carefully studied.

Our experiments will contrast the genomic inflation factors that result from analysing
each dataset using FACS, which corrects for population structure by means of a cate-
gorical covariate, and LAMP-χ2, which can only carry out unconditional association
tests. As both approaches use a test statistic that follows a χ2

1 distribution under the
null, their genomic inflation factors are directly comparable. Moreover, to prevent the
presumably large amount of untestable feature interactions from artificially decreasing
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the genomic inflation factor, λ will be evaluated considering only testable feature
interactions, i.e. the numerator of λ will be defined as median ({tS | S ∈ Mtest(δtar)}).
Apart from the average genomic inflation factor λ̄ across all 100 datasets each of the
two original datasets was divided into, we will also report the total number of “hits”
obtained by each method, i.e. the total number of high-order feature interactions
deemed significantly associated by FACS, LAMP-χ2 and Bonf-CMH. Since the emphasis in
these experiments is on comparing the results of the different approaches rather than
on claiming new discoveries, we made the simplifying choice of only guaranteeing
FWER-control at level α = 0.05 for each dataset individually, as opposed to jointly
controlling the FWER for the entire collection of 100 datasets. Note however that,
if necessary, the latter criterion could have been satisfied by setting the significance
threshold to be two orders of magnitude more stringent for each individual dataset.

categorical covariate : Population structure is a common source of confound-
ing in genome-wide association studies. Confounding due to population structure
tends to occur whenever a study includes individuals with different genetic ancestries
and the proportion of individuals with a particular ancestry differs between cases
and controls. Often the ground truth genetic ancestry of each sample is unknown,
thus making population structure a latent (i.e. unobserved) covariate. In other cases,
the ethnicity of each individual in the study might be known, but a finer-grained
representation of genetic ancestry than provided by ethnicity alone might yield a better
correction for confounding. As a result, most approaches to correct for population
structure in genome-wide association studies infer the confounding covariate from the
data rather than assuming it will be given as an external input. One of the most popular
methods to learn a low-dimensional representation of genetic ancestry in a data-driven
manner is EIGENSTRAT [91], which is loosely based on principal component analysis.
Let {xi}n

i=1 be a set of observations, with xi = (ui,1, ui,2, . . . , ui,p) representing the geno-
type of the i-th individual at p single-nucleotide polymorphisms. Furthermore, for
each j = 1, 2, . . . , p, define µ̂j =

1
n ∑n

i=1 ui,j and σ̂2
j = 1

n−1 ∑n
i=1
(
ui,j − µ̂j

)2 as the empir-
ical mean and variance of the j-th feature. The kinship matrix K ∈ Rn×n is proportional
to the Gram matrix of the set {x̃i}n

i=1 of standardised vectors x̃i = (ũi,1, ũi,2, . . . , ũi,p),
that is, the genetic similarity between individuals i and i′ can be quantified as

Ki,i′ =
1
p
〈x̃i, x̃i′〉 =

1
p

p

∑
j=1

ũi,jũi′ ,j,

where each standardised feature ũi,j =
ui,j−µ̂j

σ̂j
has been mean-centered and scaled to

have standard deviation equal to one. EIGENSTRAT represents the genetic ancestry of
each individual in terms of the eigenvectors of the kinship matrix K. In particular,
since K is self-adjoint, it can be diagonalised as K = VΣVT, with V ∈ Rn×n being a
unitary matrix whose columns are eigenvectors of K and Σ being a diagonal matrix
containing the corresponding eigenvalues. EIGENSTRAT defines a d-dimensional, real-
valued covariate ci ∈ Rd for each sample i = 1, 2, . . . , n as the i-th row of Vd ∈ Rn×d,
a matrix whose columns are the d eigenvectors in V associated with the d largest
eigenvalues. Intuitively, the resulting set of covariates {ci}n

i=1 provides the best
rank-d approximation of the kinship matrix, thus constituting a set of d-dimensional
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embeddings which capture the genetic similarity between individuals. In practice,
the number d of eigenvectors used to represent genetic ancestry can be empirically
determined using the genomic inflation factor λ as a proxy to quantify confounding;
the smallest value of d that provides a satisfactory (i.e. sufficiently close to one)
inflation factor is selected for the final analysis.

As discussed in Section 5.5, the FACS algorithm was designed to correct for a sin-
gle categorical covariate, making it challenging to use the set of covariates {ci}n

i=1
provided by EIGENSTRAT to represent genetic ancestry. To circumvent this limitation,
we clustered the set of d-dimensional vectors {ci}n

i=1 using the k-means algorithm,
resulting in a set of {c̃i}n

i=1 of cluster assignments, with c̃i ∈ {1, 2, . . . , k} for each
i = 1, 2, . . . , n. These cluster assignments can be understood as a data-driven dis-
cretisation of the original covariates into k distinct categories (the cluster centroids),
motivating their use as the categorical covariate that FACS will correct for in order to
account for population structure. In our experiments, we used the d = 5 eigenvectors
corresponding to the five largest eigenvalues of the kinship matrix and selected the
value of k in the range J2, 8K that yielded the lowest average genomic inflation ratio λ̄,
resulting in k∗ = 5 for the phenotype LY and k∗ = 3 for the phenotype avrB.

Table 5.1. – Total number of feature interactions (hits) deemed significantly associated
by LAMP-χ2, FACS and Bonf-CMH and average genomic inflation factor λ̄.
The value of λ̄ for Bonf-CMH is similar to FACS since both methods make
use of the CMH test to correct for the same categorical covariate.

Dataset FACS LAMP-χ2 Bonf-CMH
hits λ̄ hits λ̄ hits

LY 433 1.17 100, 883 3.18 19
avrB 43 1.21 546 2.38 1

results : The outcome of our experiments on A. thaliana is concisely described in
Table 5.1. The most remarkable aspect of these results is the sharp decrease in genomic
inflation that our proposed approach FACS achieves compared to LAMP-χ2, confirming
the ability of FACS to correct for the effect of a confounding categorical covariate also
in real-world data. The collection {tS | S ∈ Mtest(δtar)} of test statistics for testable
feature interactions S ∈ Mtest(δtar) obtained by LAMP-χ2 exhibits severe genomic
inflation, with the empirical median being on average more than twice as large as
expected under the null for the phenotype avrB (λ̄ = 2.38) and more than three times
as large as expected for the phenotype LY (λ̄ = 3.18). In contrast, FACS successfully
eliminates most of the inflation, resulting in average genomic inflation factors of only
λ̄ = 1.21 for avrB and λ̄ = 1.17 for LY. To further investigate the impact that our
discretisation heuristic has on the correction for population structure, we carried out
three univariate analyses using logistic regression in combination with the Likelihood
Ratio Test (LRT) [92]. P-values for each of the p original features were obtained for both
datasets using (i) an uncorrected null model, (ii) a null model that uses the real-valued,
d-dimensional covariates that EIGENSTRAT provides and (iii) a null model that uses the
same categorical covariates as FACS. The results, summarised in Table 5.2, suggest that
discretising the representation of genetic ancestry inferred by EIGENSTRAT does not
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Table 5.2. – Genomic inflation factor λ for different univariate analyses of the two
genome-wide association studies under consideration. Logistic regression
(LogReg) P-values are obtained using the Likelihood Ratio Test (LRT) with
three different null models: (i) only base rate (uncorrected), (ii) real-
valued covariates as obtained by EIGENSTRAT and (iii) the same categorical
covariate used by FACS, encoded using dummy variables. For comparison,
the genomic inflation resulting from applying the CMH test only to
individual features is also included.
Dataset LogReg CMH

Uncorrected EIGENSTRAT Categorical
LY 2.54 1.63 1.54 1.50
avrB 1.64 1.26 1.20 1.17

negatively affect the resulting correction for confounding due to population structure,
if anything, it leads to slightly better results on these two datasets. Consequently, the
faint inflation which remains in our results is not a byproduct of the need to discretise
the covariate, but seems to originate from EIGENSTRAT instead. Presumably, these
inflation values could be further reduced if the sample size was increased, allowing to
infer a more accurate representation of genetic ancestry than possible with less than
100 samples per dataset. Another highlight of the results described in Table 5.1 is the
fact that the decrease in genomic inflation is accompanied by a proportional decrease
in the number of feature interactions deemed significantly associated (“hits”), hinting
towards the possibility that a large majority of the discoveries made by LAMP-χ2 in
these experiments might be merely a product of confounding. Finally, the number
of “hits” shown in Table 5.1 also hints towards Bonf-CMH lacking statistical power in
real-world data, in line with the simulation results depicted in Figure 5.6. Despite
using the same test statistic and correcting for the same categorical covariate as our
method FACS, the number of discoveries made by Bonf-CMH is substantially smaller,
most likely owing to the naive Bonferroni correction used by Bonf-CMH being too
over-conservative compared to Tarone’s method.
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6
G E N O M E - W I D E A S S O C I AT I O N S T U D I E S AT A R E G I O N L E V E L

During the last decade, genome-wide association studies (GWASs) have been used to
systematically detect associations between individual genomic variants, most often
single-nucleotide polymorphisms (SNPs), and a vast array of phenotypic traits (e.g. [93–
95]). As of May 2018, GWASs have led to more than 61,000 novel SNP-trait associations
being discovered [16, 17], substantially enriching our understanding of the biological
mechanisms underlying disease [18, 19, 96] as well as other traits of fundamental
importance (e.g. [97, 98]).

Standard GWASs typically compute correlations between individual SNPs and the
phenotype of interest. As a result, the smaller the sample size is and the weaker the
effect sizes of the associated variants are, the lower the resulting statistical power
will be, thereby causing the detection of novel associations to become increasingly
more challenging. A useful approach to improve the statistical power to detect a
certain kind of weak associations in GWASs is to exploit genetic heterogeneity [99],
the phenomenon that multiple genomic markers might have a similar effect on the
phenotype. For genomic regions for which the assumption of genetic heterogeneity
applies, the aggregation of multiple neighbouring variants into a joint meta-marker
will provide a stronger, easier to detect signal. This leads naturally to the problem of
finding genomic regions which are statistically associated with a phenotypic trait of
interest, as opposed to focusing on individual markers. Nevertheless, given a dataset
with p markers, there are p(p+1)

2 = O(p2) distinct sets of contiguous markers one could
test for association with the phenotype. For instance, in a standard GWAS dataset
with one million SNPs there are more than 500 billion genomic regions one could
potentially inspect. Owing to the substantial computational and statistical difficulties
that performing such a vast number of association tests would entail, most existing
approaches are limited to consider only a relatively small number of genomic regions
chosen a priori. Some methods define the regions to be tested as certain functional
units (e.g. exons, known regulatory regions or entire genes) whereas others aim to be
less reliant on prior knowledge by dividing the genome into (possibly overlapping)
fixed-length windows (e.g. [48, 100]). Nonetheless, regardless of the manner in which
the candidate genomic regions are preselected, these will only cover a small subset
of all possible genomic regions. As a consequence, the ability of these methods to
detect novel associations will be considerably impaired if the set of candidate genomic
regions was misspecified. For example, this would occur if the genome was split into
regions which are not similar in length to the (unknown) truly associated regions
or if the phenotypic variance was partly explained by variants not contained in the
functional units under consideration. For existing approaches, introducing these a
priori assumptions was a necessary sacrifice in order to obtain a manageable number of
association tests. However, the flourishing of significant pattern mining has provided
tools to directly deal with statistical association testing in enormous search spaces,
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thus offering an opportunity to change the way in which genomic regions are assayed
for association with phenotypic traits.

In this chapter we present the Fast Automatic Interval Search (FAIS) [51] and FastCMH [52]
algorithms, two novel methods based on significant pattern mining which allow testing all
genomic regions for association with a binary phenotype of interest. By eliminating the need to
limit the analysis to regions of a certain length or located at certain positions, the resulting
approaches are insensitive to misspecification of the set of candidate genomic regions to be
tested, ultimately leading to a gain in statistical power.

The remainder of this chapter is organised as follows. Section 6.1 introduces our
model of genetic heterogeneity and formalises the problem of testing genomic regions
for association with a phenotypic trait as an instance of significant pattern mining.
Next, Section 6.2 discusses the algorithmic aspects of the resulting formulation,
describing how the methods presented in Chapters 3, 4 and 5 can be adapted to this
specific application. In particular, Section 6.2 will introduce FAIS, our first contribution
to the problem of region-wise GWAS, and FastCMH, an extension of FAIS which allows
to correct for a categorical covariate. Finally, the chapter concludes with an exhaustive
experimental evaluation of our novel approaches on simulated data, several A. thaliana
datasets and a study of Chronic Obstructive Pulmonary Disease (COPD), which will
be presented in Section 6.3.

6.1 introduction

In this chapter we will consider a dataset D = {(xi, yi)}n
i=1 consisting of n observa-

tions x ∈ X and their corresponding class labels y ∈ {0, 1}. We will also consider the
setting discussed in Chapter 5, where each observation-label pair is additionally tagged
by a categorical covariate c with k categories, resulting in a dataset D = {(xi, yi, ci)}n

i=1
with ci ∈ {1, 2, . . . , k} for each sample i = 1, 2, . . . , n. In the previous chapters of this
thesis the specific nature of observations, class labels and categorical covariates (if
available) was deliberately unspecified for the sake of generality. However, all methods
that will be introduced in this chapter aim specifically to analyse data originating
from GWASs. Therefore, we will first provide an in-depth description of such data,
which will then serve as guidance to propose significant region mining, a novel instance
of significant pattern mining designed to carry out GWAS at a region level. Finally,
we will contrast the resulting problem statement with that of burden tests, a widely
used family of approaches for region-wise GWAS, which nevertheless only consider
fixed-length genomic windows as candidate regions.

Data description

Throughout this chapter each observation x will be a representation of the genotype
of a certain individual or specimen based on a set of p genomic markers measured at
different positions (loci) in its genome. However, unlike in significant itemset mining,
these features are not exchangeable but rather have an intrinsic order depending
on the position each marker has along the genome. To emphasise this conceptual
difference, we will modify the notation and explicitly denote x as a sequence instead
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of as a p-dimensional vector. In this way, xi(j) will stand for the value which the
j-th genomic variant takes in the i-th individual. Since GWAS datasets are the main
focus of this chapter, we will consider that the p genomic markers which make up
each observation x are SNPs, specific locations in the genome of an organism where
two different configurations (alleles) are commonly observed in the population under
study. For any given SNP, the least common allele in the population is often denoted
the minor allele whereas the most common allele will be referred to as the major allele.
Since many organisms contain multiple sets of chromosomes, including humans, it is
possible that an individual has the minor allele for some sets of chromosomes and the
major allele for the others. In other words, if an organism had q sets of chromosomes,
each SNP could in principle attain 2q different configurations. In practice, SNP arrays,
the technology that has been used to obtain most existing GWAS datasets, only allow
to measure directly the number of sets of chromosomes which have the minor allele
for each of the p SNPs in the array. As a result, SNP arrays can only distinguish
between q + 1 disjoint sets of configurations for each SNP in the array. For instance,
humans have q = 2 sets of chromosomes, implying that each SNP assayed by a SNP
array can take one of three possible values: (i) two major alleles, typically represented
as 0; (ii) one minor allele and one major allele, denoted as 1; and (iii) two minor
alleles, encoded as 2. In other words, for human GWAS datasets, xi(j) ∈ J0, 2K for each
variant j = 1, 2, . . . , p and individual i = 1, 2, . . . , n. More generally, xi(j) could be
considered to be a count variable with range J0, qK that indicates the number of copies
of the minor allele that the i-th individual has at the j-th SNP. Each observation x will
be accompanied by a binary class label y, used to represent the case/control status of
an individual when studying disease phenotypes or, more generally, the presence or
absence of a certain phenotypic trait of interest. Finally, in the context of GWAS, the
categorical covariate (if any) will be utilised to correct for the potentially confounding
effect of factors such as population structure, age or gender, among others.

Significant Region Mining

The goal of this section is to propose significant region mining, an instance of
significant pattern mining specifically designed to test genomic regions for association
with a phenotype of interest under a model of genetic heterogeneity. Following the
example of Section 2.1, which formally introduced significant itemset mining and
significant subgraph mining, there are three more elements needed to characterise a
certain formulation of significant pattern mining, apart from the type of dataset D
under consideration: (i) the notion of pattern S ; (ii) the search spaceM consisting of
all candidate patterns S to be studied; and (iii) the concept of occurrence of a pattern
S in an observation x.

In significant region mining, each pattern S will correspond to a different genomic
region. Since a genomic region is simply a set of contiguous markers, each pattern S
can be uniquely represented by the starting and ending positions of the corresponding
genomic region, js and je, which must satisfy 1 ≤ js ≤ je ≤ p. In this way, each
pattern S = Jjs, jeK indexes |S| = je − js + 1 contiguous genomic markers, a quantity
we will refer to as the length of the pattern S . The search space M comprises
the set of all possible genomic regions, regardless of starting position and length,
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i.e. M = {Jjs, jeK | 1 ≤ js ≤ je ≤ p}. The resulting search space M thus contains
p(p+1)

2 candidate regions, a much larger number than considered by any competing
approaches for region-wise GWAS. Nevertheless, compared to alternative formulations
of significant pattern mining discussed in this thesis, the size of the search space
increases relatively gently with the number of features p. For example, in significant
region mining the number of patterns only grows quadratically in p, i.e., |M| =
O(p2). In contrast, the size of the search space in significant itemset mining grows
exponentially in p, that is, |M| = O(2p). Consequently, significant region mining can
be applied to considerably larger and denser datasets than significant itemset mining,
allowing to circumvent the scalability limitations that hinder the usefulness of the
latter framework in GWASs.
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Figure 6.1. – An illustration of how genetic heterogeneity can be exploited to gain
statistical power in GWASs. Two genomic regions, S1 = J3, 6K (green)
and S2 = J12, 16K (red), contain markers which are weakly associated
with the phenotype. However, by combining these markers into meta-
markers gS1(x) and gS2(x) that indicate whether the region contains
minor alleles or not, stronger signals emerge. In this particular example,
gS1(x) and gS2(x) are both marginally associated with the phenotype,
while only gS1(x) remains associated once the categorical covariate c is
taken into account.

The notion of occurrence of a pattern S in an observation x will be defined in such
a way that, if the assumption of genetic heterogeneity holds for the genomic region
corresponding to S , the resulting pattern occurrence indicator gS (x) would aggregate
the (possibly weak) effects of all markers indexed by S . Under a model of genetic
heterogeneity, multiple genomic markers in close proximity might have evolved to
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affect the phenotype of interest in a similar way. For example, a certain genomic region
might be particularly sensitive to perturbations, leading to any mutation within the
region causing a disruption of its functionality. Motivated by this interpretation, we
will say that pattern S is present in an observation x if any of the markers indexed by S
have one or more copies of the minor allele. More precisely, let bS (x) = ∑j∈S x(j) be the
burden count, that is, the total number number of minor alleles contained in the genomic
region. Then, the pattern occurrence indicator will be given by gS (x) = 1[bS (x) > 0].
If the assumption of genetic heterogeneity holds for the markers indexed by S and
the effect signs are homogeneous within the region, the meta-marker gS (x) will have
a stronger association with the phenotype than any of the individual markers within
the genomic region. This idea is illustrated in Figure 6.1, which depicts a toy GWAS
dataset with n = 10 individuals (n1 = 5 cases and n− n1 = 5 controls) genotyped
at p = 20 SNPs. In this example, two genomic regions contain markers which are
weakly associated with the phenotype, S1 = J3, 6K (green) and S2 = J12, 16K (red).
However, the meta-markers gS1(x) and gS2(x) that indicate the presence or absence of
minor alleles within the regions exhibit a much stronger association. Moreover, the
example in Figure 6.1 also shows that confounding affects significant region mining
as much as any other instance of significant pattern mining. In particular, while both
meta-markers gS1(x) and gS2(x) are marginally associated with the phenotype, only
gS1(x) remains associated after correcting for the categorical covariate c that represents
the genetic ancestry of each sample.

In summary, significant region mining aims to find all genomic regions, regardless of
starting position or length, for which the presence or absence of any number of minor
alleles within the region is significantly associated (either marginally or conditioned
on a categorical covariate) with a binary phenotypic trait of interest.

Related work: burden tests

Among all existing approaches to carry out GWASs at a region level, burden
tests [48] are the closest to significant region mining. Burden tests also exploit genetic
heterogeneity, proposing a variety of ways to obtain meta-markers for each genomic
region under consideration. In particular, the Cohort Allelic Sums Test (CAST) [101]
aggregates the markers in each region using exactly the same procedure as significant
region mining, i.e. as a binary variable that indicates the presence or absence of minor
alleles in the region. Thus, for a single genomic region, the burden test CAST and
significant region mining are statistically indistinguishable. Nevertheless, what sets
burden tests and our newly proposed framework apart is the way in which the set of
candidate genomic regions to be tested is defined. Burden tests bypass the difficulties
involved in testing all possible genomic regions by requiring the user to specify a priori
a small subset of candidate regions to be tested. For example, gene-based burden tests
make use of domain knowledge, defining candidate regions either as entire genes or
as entire exons (coding regions of genes). A more popular alternative, which allows to
also include in the analysis variants that do not lie in or nearby genes, is to partition
the genome into windows of fixed length, which can be either non-overlapping or
sliding. More precisely, given a dataset with p genomic markers and a desired window
length w, a burden test with non-overlapping windows would consider as candidate
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genomic regions the setM =
{
J(i− 1)w + 1, min(iw, p)K | 1 ≤ i ≤ d p

we
}

. In contrast,
a burden test with sliding windows would extend the set of genomic regions under
consideration to all genomic windows of length w, regardless of starting position, i.e.
M = {Jjs, js + w− 1K | 1 ≤ js ≤ p− w + 1}.

Hence, while significant region mining tests all p(p+1)
2 possible genomic regions,

burden tests introduce a priori assumptions to reduce the number of candidate genomic
regions to d p

we if only non-overlapping windows are considered or p− w + 1 for the
case of sliding windows. As a result, both types of approaches can exhibit drastically
different behaviours, being complementary to some extent. Since burden tests perform
a much smaller number of association tests, the resulting multiple comparisons
correction will be less stringent. Therefore, burden tests will outperform significant
region mining if the truly associated genomic regions satisfy the assumptions made
by the burden tests, e.g. if those regions have a length close to w. However, on
most occasions, the length of the truly associated regions is unknown and could even
vary considerably from one truly associated region to another, leading to difficulties
in choosing a value for the hyperparameter w. Moreover, attempts to select w in a
data-driven manner, for example, by inspecting the results corresponding to different
choices for w and keeping the most promising, would require an additional correction
for multiple comparisons, an observation that might remain unnoticed by practitioners
without a background in statistics. Thus, the need to set the hyperparameter w can lead
to unintentional data dredging, potentially compromising the reproducibility of the
results. In contrast, significant region mining exploits advances in significant pattern
mining to test all genomic regions in a computationally and statistically efficient
manner. Significant region mining approaches are therefore robust to misspecification
of the set of regions to be tested, leading to improved statistical power in situations
where the optimal choice for w is unknown a priori. Besides, by eliminating a key
hyperparameter from the model, the potential to misuse the resulting methods is
considerably reduced.

6.2 method

In the previous section we introduced significant region mining as a novel instance
of significant pattern mining, motivated by the problem of testing genomic regions
for association with a binary phenotype under a model of genetic heterogeneity. We
postulated that, by testing all genomic regions instead of only regions of a prespecified
length, significant region mining has the potential to outperform burden tests in terms
of statistical power whenever the length of the truly associated regions is not known
a priori or might vary considerably throughout the genome. The remainder of this
section will be devoted to show how significant region mining can be formalised as a
restricted instance of significant itemset mining, allowing us to utilise the algorithmic
machinery described in previous chapters of this thesis also in this novel setting.
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Significant region mining as a restricted instance of significant itemset mining

We will consider two variants of significant region mining, depending on whether
we look for marginal associations between genomic regions and the phenotype or for
conditional associations that account for the effect of a categorical covariate. Formally,
let Y be a binary random variable representing a phenotype under study and X a
random sequence with p genomic markers. For each pattern S = Jjs, jeK in the search
spaceM = {Jjs, jeK | 1 ≤ js ≤ je ≤ p}, define GS (X) = 1

[
∑j∈S X(j) > 0

]
as a binary

random variable that indicates whether X contains a non-zero number of copies
of a minor allele in the genomic region corresponding to S . In the first variant of
significant region mining, we aim to find all S ∈ M for which GS (X) 6⊥⊥ Y. In contrast,
in the second variant, the goal is to discover all S ∈ M which satisfy GS (X) 6⊥⊥ Y | C,
where C is a categorical random variable with k categories. Each of these two problem
statements has already been studied in this thesis in the context of general-purpose
significant pattern mining algorithms. In particular, this includes significant itemset
mining, arguably the “classical” instance of significant pattern mining which most
closely resembles significant region mining. The fundamental differences between
these two significant pattern mining paradigms are:

(i) In both cases, a pattern S can be understood as a subset of features, that is,
S ⊆ {1, 2, . . . , p}. However, the collection of patterns (feature subsets) which
make up the search space sets both significant pattern mining formulations
apart. The search space in significant region mining contains only patterns S
such that all features in S have consecutive indices, i.e. S = Jjs, jeK for some
1 ≤ js ≤ je ≤ p. In contrast, the search space in significant itemset mining
contains all possible feature subsets, regardless of whether the features in S are
contiguous or not.

(ii) At first glance, the notion of occurrence of a pattern S in a sample x is completely
different between both paradigms. In significant itemset mining, all features in
x = (u1, u2, . . . , up) are assumed to be binary, and a pattern S is said to occur in
x if and only if all features indexed by S have value one, i.e. gS (x) = ∏j∈S uj.
In contrast, in significant region mining the features in x are integers in J0, qK,
and a pattern S is said to occur in x if and only if the sum ∑j∈S x(j) is non-zero,

i.e. gS (x) = 1
[
∑j∈S x(j) > 0

]
.

The implications of observation (i) above are mainly algorithmic. The search space
in significant itemset mining is enormous, comprising 2p candidate patterns. Moreover,
the number of patterns containing |S| features is ( p

|S|). Intuitively, the width of the
pattern enumeration tree thus grows very rapidly as we descend levels in the tree.
Breadth-first traversal strategies in this setting would require too much memory,
offering a justification as of why all algorithms presented in this thesis so far use
depth-first traversal strategies instead. Nevertheless, this restriction does not apply
to significant region mining. In this instance of significant pattern mining, there are
only p(p+1)

2 patterns in the search space. Moreover, the widest level of the pattern
enumeration tree is the first level, which contains p patterns (regions) of length |S| = 1.
More generally, there are p − |S|+ 1 patterns (regions) containing |S| contiguous
features, implying that the pattern enumeration tree gets narrower as we descend
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levels in the tree. Breadth-first traversal of the pattern enumeration tree is hence
not only feasible in significant region mining, but also advantageous compared to
a depth-first traversal strategy. For each pattern S = Jjs, jeK of length greater than
one, there are exactly two subset patterns in the preceding level, Sl = Jjs + 1, jeK and
Sr = Jjs, je − 1K. Since S is a superset of both Sl and Sr, it can be pruned from the
search space if the appropriate pruning condition (see Sections 3.4 and 5.4) applies
to either Sl or Sr. Breadth-first traversal, which would allow to verify the pruning
condition for both Sl and Sr before visiting pattern S , can therefore prune the search
space more effectively than depth-first traversal, which would only allow to verify the
pruning condition for either Sl or Sr prior to visiting S . Owing to this observation, the
significant region mining algorithms which will be presented in this chapter traverse
the pattern enumeration tree in a breadth-first manner.

Observation (ii) may initially seem to be the biggest hurdle towards adapting
existing significant itemset mining algorithms to perform significant region mining
instead. Indeed, it can be readily seen that patterns in significant region mining do
not obey the Apriori property of pattern mining (Proposition 3.1), which plays a
fundamental role in the search space pruning conditions used by all significant pattern
mining algorithms covered in this thesis. Instead, the support of patterns in significant
region mining is nondecreasing as we descend levels in the pattern enumeration tree.
That is, in significant region mining, S ′ ⊃ S implies that rS ′ ≥ rS instead of rS ′ ≤ rS .
This discrepancy can however be reconciled in at least two different yet ultimately
equivalent ways. One possibility is to exploit the fact that, as shown in Section 3.3, the
minimum attainable P-value function corresponding to Pearson’s χ2 test and Fisher’s
exact test is symmetric around n

2 , i.e. pmin(rS ) = pmin(n− rS ). This allows to prove
that a valid pruning condition for significant region mining can be obtained by simply
replacing condition (ii) in Proposition 3.4 by (ii′): rS ≥ nb, with nb = max(n1, n− n1).
This derivation, which was used in our first publication on GWASs at a region
level [51], can also be applied to the CMH test by noting that its minimum attainable
P-value function satisfies pmin(rS ) = pmin(n− rS ). Due to the reversal of the Apriori
property of pattern mining in significant region mining, the lower envelope of the
minimum attainable P-value (Definition 5.2) is given by p̃min(rS ) = min

rS′∈Bc(rS )
pmin(rS ′),

where Bc(rS ) = JrS ,1, n1K × JrS ,2, n2K × · · · JrS ,k, nkK is the set of all rS ′ satisfying
rS ′ ,c ≥ rS ,c for all c = 1, 2, . . . , k. However, due to the symmetry of pmin(rS ), we
have that min

rS′∈Bc(rS )
pmin(rS ′) = min

rS′∈B(n−rS )
pmin(rS ′), where the right-hand side equals

p̃min(n− rS ) as defined in Equation (5.9). As a result, all developments presented in
Chapter 5, including Algorithm 5.1, which allows to evaluate the lower envelope of
the minimum attainable P-value with complexity O(k log k), can be readily applied to
significant region mining as well. A second possibility to reconcile both significant
pattern mining paradigms is to exploit the fact that two binary random variables
GS (X) and Y are statistically associated if any only if 1−GS (X) and Y are statistically
associated as well. This holds true for both marginal and conditional associations.
This phenomenon can also be inferred directly from symmetries exhibited by all
test statistics discussed in this thesis. Indeed, the P-value functions for Pearson’s
χ2 test (Equation (2.6)) and Fisher’s exact test (Equation (2.8)) satisfy ppearson(aS |
n, n1, rS ) = ppearson(n1− aS | n, n1, n− rS ) and pfisher(aS | n, n1, rS ) = pfisher(n1− aS |
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n, n1, n − rS ). Analogously, the P-value function of the CMH test (Equation (5.2))
satisfies pcmh(aS | n, n1, rS ) = pcmh(n1 − aS | n, n1, n− rS ). In summary, redefining
the notion of occurrence of a pattern S in a sample x by negating the pattern occurrence
indicator gS (x) does not affect the assessment of the significance of S . Applying this
negation to significant region mining restores the Apriori property of pattern mining,
allowing us to use all derivations and algorithms presented in this thesis unchanged.
This alternative derivation of significant region mining best illustrates how closely
related this formulation of significant pattern mining is to significant itemset mining.
Applying De Morgan’s laws, we have that 1− gS (x) = ∏j∈S 1 [x(j) = 0]. Therefore,
significant region mining is entirely equivalent to significant itemset mining provided
that (i) the search spaceM is restricted to contain only feature subsets for which all
features are contiguous and (ii) the original, integer-valued genomic markers {x(j)}p

j=1

are represented by binary features
{

uj
}p

j=1 defined as uj = 1 if x(j) = 0 and uj = 0
otherwise.

The possibility to view significant region mining as a restricted instance of significant
itemset mining allows us to design algorithms for region-wise GWASs borrowing
from methods already introduced in this thesis. We will use this insight to present
a novel framework for significant region mining using Tarone’s method to correct
for the multiple comparisons problem. This framework encompasses two different
yet closely related approaches, FAIS and FastCMH. FAIS, our first contribution on this
topic, predates the development of techniques to correct for confounding covariates
introduced in Chapter 5 of this thesis. As a result, it was designed to look for
genomic regions marginally associated with the phenotype of interest. FastCMH, a
more recent contribution, combines FAIS with the techniques described in Chapter 5,
allowing to correct for the potentially confounding effect of covariate factors ubiquitous
in GWASs such as population structure, gender or age, among others. However,
from an algorithmic perspective, both approaches are virtually indistinguishable.
The only aspects which differ between both methods are the computation of the
minimum attainable P-value (Sections 3.3 and 5.3), the assessment of the pruning
condition (Sections 3.4 and 5.4) and the calculation of the P-values of testable regions
(Sections 2.2 and 5.2), all of which can be treated as “black boxes” in this chapter.
Therefore, for the sake of clarity, FAIS and FastCMH will be presented next as a unified
approach for significant region mining. The section will then conclude discussing
two extensions of FAIS and FastCMH. First, we will describe how to make use of the
developments introduced in Chapter 4, allowing us to utilise permutation testing to
exploit the dependence between the test statistics of overlapping genomic regions,
thereby improving statistical power. Finally, we will consider a possible generalisation
of our model of genetic heterogeneity that can nonetheless still be tackled with the
same algorithms.

A general algorithm for significant region mining

Given an input dataset D as described in Section 6.1 above and a desired FWER α,
the goal of our significant region mining algorithms is to find a set Msig,filt of non-
overlapping genomic regions which are significantly associated with the phenotype
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of interest. If the dataset D = {(xi, yi)}n
i=1 does not contain a covariate, a situation

which corresponds to FAIS, genomic regions will be surveyed for marginal association
with the phenotype. In contrast, if the dataset D = {(xi, yi, ci)}n

i=1 also contains a
categorical covariate, the association between genomic regions and phenotype will be
assessed conditioned on the covariate, a setting corresponding to FastCMH.

Algorithm 6.1 Significant Region Mining

Input: Dataset D, target FWER α

Output: Set of non-overlapping clusters of overlapping significantly associated ge-
nomic regionsMsig,clustered

1: δ← compute_significance_threshold (D, α)
2: Msig,raw ← retrieve_significant_regions (D, δ)
3: Msig,clustered ← cluster_overlapping_regions

(
Msig,raw

)

4: ReturnMsig,clustered

Regardless of the presence or absence of a covariate, our significant region mining al-
gorithms all proceed in three main steps, as illustrated by Algorithm 6.1. The first step
is to compute the corrected significance threshold δ using Tarone’s method, with the
goal of guaranteeing FWER control at level α. As described in Chapter 3, obtaining δ

requires traversing the pattern enumeration tree while iteratively adjusting an estimate
δ̂ of δ. This procedure is carried out by the routine compute_significance_threshold,
invoked in Line 1 and described in Algorithm 6.2 below. Once the corrected signif-
icance threshold δ has been obtained, the next step is to retrieve the set Msig,raw of
significantly associated genomic regions. According to the discussion in Section 3.5,
we chose to implement this by traversing the pattern enumeration tree a second
time, thus avoiding the need to keep all testable regions in memory at any point
during the execution of Algorithm 6.1. This procedure is performed by the routine
retrieve_significant_regions, invoked in Line 2 and described in Algorithm 6.3
below. While these two first steps fully parallel the general-purpose significant pattern
mining algorithm of Chapter 3, our significant region mining algorithms include an
additional step, aimed at enhancing the interpretability of the results. As extensively
discussed in Chapter 4, related patterns tend to have strongly correlated test statistics.
In particular, if a certain genomic region S were truly associated with the phenotype,
it would be plausible that some genomic regions which overlap with S show a signifi-
cant association as well. Conceptually, this means that the setMsig,raw of significantly
associated genomic regions tends to be composed of disjoint clusters, each comprising
multiple overlapping genomic regions. To eliminate this inherent redundancy and
facilitate the interpretation of the results provided by our significant region mining
algorithms, the routine cluster_overlapping_regions invoked in Line 3 agglutinates
overlapping, significantly associated genomic regions into a setMsig,clustered of disjoint
clusters, as described in Algorithm 6.4.

Out of these three steps, obtaining Tarone’s corrected significance threshold δ

is in practice the most computationally demanding. The routine summarised in
Algorithm 6.2, compute_significance_threshold, performs this task in a virtually
identical manner as Algorithm 3.2. The key difference between both approaches
lies in the way the pattern enumeration tree is traversed. As previously discussed,
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Algorithm 6.2 compute_significance_threshold

Input: Dataset D, target FWER α

Output: Corrected significance threshold δ

1: function compute_significance_threshold(D,α)
2: Initialise global variable δ̂← 1
3: init_specific()
4: Create empty queue region_queue
5: for js = 1, 2, . . . , p do region_queue.enqueue (Jjs, jsK)
6: while region_queue is not empty do
7: S ← region_queue.dequeue() . S = Jjs, jeK
8: Compute the minimum attainable P-value pS ,min . see Sections 3.3 and 5.3
9: if pS ,min ≤ δ̂ then process_region (S)

10: cond← pruning_condition(S , δ̂) . see Sections 3.4 and 5.4
11: if js 6= 1 and js − js,p = 1 and not (cond_p or cond) then
12: region_queue.enqueue (Jjs − 1, jeK)
13: js,p ← js, cond_p← cond

14: Return δ̂

15: end function
16: procedure init_specific()
17: Initialise global variable M̂test(δ̂)← ∅
18: end procedure
19: procedure process_region(S)
20: Append S to M̂test(δ̂)

21: F̃WER(δ̂)← δ̂|M̂test(δ̂)|
22: while F̃WER(δ̂) > α do
23: Decrease δ̂

24: M̂test(δ̂)←
{
S ′ ∈ M̂test(δ̂) | pS ′ ,min ≤ δ̂

}

25: F̃WER(δ̂)← δ̂|M̂test(δ̂)|
26: end procedure

our significant region mining algorithms use a breadth-first traversal strategy, as
opposed to the depth-first traversal strategy used in Algorithm 3.2. The first part of
Algorithm 6.2, its initialisation phase, comprises three actions:

(i) In Line 2, the estimate δ̂ of the corrected significance threshold is set to 1, the
largest value it could take.

(ii) In Line 3, the routine init_specific() is called to initialise the variables specif-
ically related to Tarone’s method. In this case, this includes only the data
structure used to represent the set M̂test(δ̂) of testable genomic regions at level
δ̂. We kindly refer the reader to Section 3.5 for a description of this data struc-
ture and how it can be used to keep the minimal amount of information that
Algorithm 6.2 needs without having to explicitly store all testable regions in
memory.
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(iii) Finally, a “first in, first out” queue that will contain candidate genomic regions
pending to be visited, denoted region_queue, is created in Line 4. After Line 5 is
executed, region_queue will be populated by all genomic regions of length one,
that is, by the set {Jjs, jsK | 1 ≤ js ≤ p} of genomic regions which correspond
to single markers. Moreover, these are appended to the queue sorted by their
position js in ascending order. Together, Lines 4 and 5 initialise the breadth-first
pattern enumeration procedure.

Once the initialisation phase is completed, Algorithm 6.2 begins its iterative, pattern
enumeration phase. As shown in Line 6, Algorithm 6.2 continues its execution
while region_queue contains genomic regions pending to be visited. Due to the way
region_queue is initialised, containing all genomic regions of length one sorted by
their starting position in increasing order, and the manner in which new candidate
genomic regions will be recursively appended to the queue, Algorithm 6.2 guarantees
that genomic regions will be enumerated firstly in ascending order of length and
then of starting position js. Genomic regions are processed one at a time, always
picking the region currently at the head of region_queue (Line 7). Given an arbitrary
region S = Jjs, jeK currently being processed, the first step is to compute its minimum
attainable P-value pS ,min according to the test statistic of choice, as described in
Sections 3.3 (Pearson’s χ2 test and Fisher’s exact test) and 5.3 (CMH test). If region S
is testable at level δ̂, then the routine process_region is invoked in Line 9 to carry
out all actions specifically related to the correction for multiple comparisons. In this
particular case, Algorithm 6.2 utilises Tarone’s improved Bonferroni correction and,
as a result, the steps taken by process_region are entirely identical to Lines 10-15 of
Algorithm 3.2. The last four lines of Algorithm 6.2 are responsible for appending new
candidate genomic regions to region_queue. In Line 10, the search space pruning
condition is assessed for the genomic region currently being processed. The specific
implementation of the pruning condition depends on the corresponding test statistic of
choice. FAIS, which uses Pearson’s χ2 test or Fisher’s exact test, employs the pruning
condition described in Section 3.4 whereas FastCMH, which makes use of the CMH
test, evaluates the pruning condition using Algorithm 5.1. A genomic region Jjs, jeK
of length je − js + 1 is a subset of exactly two genomic regions of length je − js + 2,
namely, Jjs − 1, jeK and Jjs, je + 1K. The only exceptions are genomic regions for which
js = 1, which are only contained in Jjs, je + 1K, and genomic regions for which je = p,
which are only contained in Jjs − 1, jeK. As a result, if the pruning condition evaluates
to true for region Jjs, jeK, there are either one or two genomic regions in the next
level of the pattern enumeration tree which can be pruned from the search space.
Our significant region mining algorithms implement this as part of the breadth-first
enumeration strategy as follows. Since genomic regions are enumerated in increasing
order of length and starting position, when processing genomic region Jjs, jeK, the
outcome of the pruning condition for the preceding region Jjs − 1, je − 1K is already
known. Thus, all information needed to decide whether region Jjs − 1, jeK in the next
level of the pattern enumeration tree should be added to region_queue as a candidate
region or rather be pruned from the search space along all its descendants is readily
available. In particular, three possible cases can be distinguished:

(i) If js = 1, there is simply no region Jjs − 1, jeK to be considered.
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(ii) If the preceding region Jjs − 1, je − 1K was never enumerated, the pruning con-
dition must have evaluated to true for some region S ′ ⊂ Jjs − 1, je − 1K located
in a former level of the pattern enumeration tree. Therefore, the pruning condi-
tion must evaluate to true for region Jjs − 1, je − 1K as well and, consequently,
Jjs − 1, jeK and all its descendants can be pruned from the search space. We
detect this particular situation by keeping track of the starting position js,p of
the genomic region processed immediately before the region currently being
processed. If js − js,p 6= 1, then we know that region Jjs − 1, je − 1K was never
enumerated and, thus, Jjs − 1, jeK should not be appended to region_queue.

(iii) If the preceding region Jjs − 1, je − 1K was enumerated, then region Jjs − 1, jeK
can be pruned from the search space if either the pruning condition for region
Jjs − 1, je − 1K evaluated to true, as indicated by the variable cond_p, or the
pruning condition for the region Jjs, jeK currently being processed evaluated to
true, as indicated by the variable cond.

All these conditions are checked in Line 11
1, leading to region Jjs − 1, jeK being

appended to region_queue if necessary in Line 12. Finally, the variables js,p and
cond_p are updated in Line 13 to be made available for the genomic region being
processed in the next iteration, if any. Owing to condition (ii) above, if a genomic
region is not appended to region_queue, none of its descendants will possibly be
appended either. Thus, the number of genomic regions contained in region_queue
progressively decreases during the execution of Algorithm 6.2 until the queue becomes
empty, indicating that all genomic regions in the search space either have been already
visited or have been pruned from the search space. At that point, the algorithm has
converged and the estimate δ̂ of Tarone’s corrected significance threshold equals its
exact value. Hence, Algorithm 6.2 terminates by returning δ̂ in Line 14.

Once the corrected significance threshold δ has been obtained, the next step in
our significant region mining algorithms is to retrieve all genomic regions which
are significantly associated at level δ. This task is accomplished by the routine
retrieve_significant_regions, summarised in Algorithm 6.3. Following the dis-
cussion in Section 3.5, retrieve_significant_regions traverses the pattern enumer-
ation tree a second time from scratch. The way in which Algorithm 6.3 enumerates
genomic regions is virtually identical to that of Algorithm 6.2. Nevertheless, Algo-
rithm 6.3 uses the exact value δ of the corrected significance threshold from the start
of the execution of the algorithm rather than a progressively decreasing estimate δ̂.
Compared to Algorithm 6.2, this renders search space pruning more effective during
early iterations of the pattern enumeration process. The other relevant distinction
between Algorithm 6.3 and Algorithm 6.2 lies in the actions taken when an enumer-
ated region is found to be testable. Algorithm 6.2 aims to compute the corrected
significance threshold δ and, as a consequence, utilises the newly found testable region
to adjust the current estimate δ̂ of δ, if necessary. In contrast, Algorithm 6.3 aims to
retrieve significantly associated regions. Thus, in Line 9 of the algorithm, the P-value
pS of the (testable) region currently being processed is computed according to the test
statistic of choice. If pS is smaller than δ, the region is significantly associated and is

1. Lazy evaluation was assumed while writing the pseudocode to avoid the need to initialise js,p and
cond_p before the first genomic region is processed by the algorithm.
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Algorithm 6.3 retrieve_significant_regions

Input: Dataset D, corrected significance threshold δ

Output: Set of significantly associated genomic regionsMsig,raw = {S ∈ M | pS ≤ δ}
1: function retrieve_significant_regions(D,α)
2: InitialiseMsig,raw ← ∅
3: Create empty queue region_queue
4: for js = 1, 2, . . . , p do region_queue.enqueue (Jjs, jsK)
5: while region_queue is not empty do
6: S ← region_queue.dequeue() . S = Jjs, jeK
7: Compute the minimum attainable P-value pS ,min . see Sections 3.3 and 5.3
8: if pS ,min ≤ δ then
9: Compute the P-value pS . see Sections 2.2 and 5.2

10: if pS ≤ δ then append S toMsig,raw

11: cond← pruning_condition(S , δ) . see Sections 3.4 and 5.4
12: if js 6= 1 and js − js,p = 1 and not (cond_p or cond) then
13: region_queue.enqueue (Jjs − 1, jeK)
14: js,p ← js, cond_p← cond

15: ReturnMsig,raw

16: end function

appended to the setMsig,raw of significantly associated regions at level δ in Line 10.
Once the enumeration process is completed, the algorithm ends by returningMsig,raw

in Line 15.
The final step in our significant region mining algorithms is to cluster the signifi-

cantly associated genomic regions inMsig,raw, forming a setMsig,clustered of disjoint
clusters, each composed of possibly many overlapping genomic regions. This is car-
ried out by the routine cluster_overlapping_regions, summarised in Algorithm 6.4.
Since Msig,raw is most often a small subset of the set Mtest(δ) of testable genomic
regions, which itself tends to be a small subset of the search spaceM of all candidate
genomic regions, the computational overhead of this final step is negligible in practice.
In Line 2, Algorithm 6.4 begins by creating an empty set of clustersMsig,clustered, which
will eventually become the output of the algorithm. In the next line, the algorithm
considers the trivial case in which no significantly associated regions were retrieved by
Algorithm 6.3, terminating early if this situation occurred. Under the assumption that
Msig,raw is not empty, Algorithm 6.4 next sorts all significantly associated genomic
regions by starting position in ascending order, as shown in Line 4

2. After sorting all
significantly associated regions, in Line 5 Algorithm 6.4 creates an empty cluster Csig

to which the first significantly associated regions will be added. By construction, each
cluster consists of overlapping genomic regions, implying that the union ∪S∈CsigS
of all genomic regions in the cluster is itself a genomic region Jcs, ceK, where cs and
ce are the starting and ending positions of the cluster, respectively. As shown in

2. This is the most computationally intensive part of Algorithm 6.4, with average complexity
O
(
|Msig,raw| log |Msig,raw|

)
. Nevertheless, as mentioned previously, since |Msig,raw| is often much

smaller than |M|, the runtime of Algorithm 6.4 tends to be negligible compared to that of Algorithms 6.2
and 6.3.
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Algorithm 6.4 cluster_overlapping_regions

Input: Set of significantly associated genomic regionsMsig,raw

Output: Set of non-overlapping clusters of overlapping significantly associated ge-
nomic regionsMsig,clustered

1: function cluster_overlapping_regions(Msig,raw)
2: InitialiseMsig,clustered ← ∅
3: ifMsig,raw is empty then returnMsig,clustered
4: SortMsig,raw by starting position in ascending order
5: Create empty cluster Csig of overlapping regions . ∪S∈CsigS = Jcs, ceK
6: for S ∈ Msig,raw do . In ascending order of starting position
7: if Csig is empty or js ≤ ce + 1 then
8: Append S to Csig and update cs and ce

9: else
10: Append current cluster Csig toMsig,clustered
11: Create new cluster Csig containing S
12: Append last cluster Csig toMsig,clustered
13: ReturnMsig,clustered
14: end function

Line 6, Algorithm 6.4 processes one region at a time, proceeding in ascending order
of starting position. For each region S , we are confronted with two possibilities,
managed between Lines 7 and 11. If the starting position js of S is smaller or equal
than the ending position ce of the current cluster plus one, then S either overlaps or is
adjacent to the current cluster Csig and should thus be incorporated to this cluster. In
contrast, if that were not the case, not only does region S not belong to the current
cluster Csig, but no other region not yet processed will belong to it either. This is a
direct consequence of the fact that regions are processed in ascending order of starting
position. As a result, when this occurs, the current cluster Csig is added toMsig,clustered
and a new cluster Csig is created to contain region S . Finally, once the algorithm
has processed all significantly associated regions, the last cluster Csig is added to
Msig,clustered in Line 12, which is then returned as output of the algorithm in the last
line. The region clusters in Msig,clustered provide an alternative, easier-to-interpret
representation of the findings made by the algorithm than the often heavily redundant
set of all significantly associated genomic regions Msig,raw. In particular, for each
cluster Csig inMsig,clustered, there are at least two different ways to summarise the set of
overlapping significantly associated genomic regions belonging to Csig. One possibility
is to provide the region S∗ ∈ Csig with the smallest (i.e. most significant) P-value,
that is, S∗ = argmin

S∈Csig

pS . The other option is to report the genomic region Jcs, ceK

corresponding to the entire cluster, which is equivalent to reporting the union of all
regions belonging to the cluster. Both approaches are complementary in the following
way: the former can often slightly underestimate the length of the truly associated
genomic region, missing a small number of markers, whereas the latter can slightly
overestimate it, including a few additional, noisy markers at the extremes. Since
the output of our algorithms is meant to be used by practitioners as part of a more
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thorough analysis, possibly taking into consideration existing prior knowledge or
performing follow-up experiments to validate the findings, we decided to provide the
user with both forms of summarisation as the output of our significant region mining
algorithms, which also includes the total number |Csig| of significantly associated
overlapping genomic regions included in each cluster.

Extension to permutation testing-based significant pattern mining

Algorithm 6.5 Permutation testing-based procedures for Algorithm 6.2

Input: Number of permutations jp

1: procedure init_specific_wylight_marginal()
2: for h = 1, 2, . . . , jp do
3: Obtain a random permutation π(h) : J1, nK→ J1, nK
4: Initialise global variable p̃(h)ms ← 1

5: end procedure
6: procedure init_specific_wylight_conditional()
7: for c = 1, 2, . . . , k do
8: J (c)← {i ∈ J1, nK | ci = c}
9: for h = 1, 2, . . . , jp do

10: Obtain a random permutation π
(h)
c : J (c)→ J (c)

11: for h = 1, 2, . . . , jp do

12: Define π(h) : J1, nK→ J1, nK as π(h)(i) = π
(h)
ci (i)

13: Initialise global variable p̃(h)ms ← 1

14: end procedure
15: procedure process_region_wylight(S)
16: for h = 1, 2, . . . , jp do

17: Compute P-value p(h)S for resampled dataset D̃(h)

18: p̃(h)ms ← min( p̃(h)ms , p(h)S )

19: F̃WER(δ̂)← 1
jp

∑
jp
k=1 1

[
p̃(h)ms ≤ δ̂

]

20: while F̃WER(δ̂) > α do
21: Decrease δ̂

22: F̃WER(δ̂)← 1
jp

∑
jp
k=1 1

[
p̃(h)ms ≤ δ̂

]

23: end procedure

For the sake of clarity, this chapter has been written under the assumption that
Tarone’s improved Bonferroni correction is utilised to correct for multiple comparisons.
Nevertheless, it is exceedingly simple to modify Algorithm 6.1 to incorporate the
permutation testing-based approach proposed in Chapter 4. In particular, this can be
accomplished by merely modifying the routines init_specific and process_region
in Algorithm 6.2 whereas Algorithms 6.3 and 6.4 would remain intact.

The routine init_specific takes care of initialising all variables and data struc-
tures related to the correction for multiple comparisons. In permutation testing-based
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significant pattern mining, this routine must initialise the estimate p̃(h)ms of the most
significant P-value for the h-th resampled dataset to 1 for each h = 1, 2, . . . , jp, where
jp is the desired number of permutations. Moreover, init_specific must also ob-
tain a permutation π(h) : J1, nK → J1, nK used to define each resampled dataset
D̃(h). However, the way in which this permutation is obtained differs slightly de-
pending on whether there is a categorical covariate to correct for, as in FastCMH,
or not, as in FAIS. The pseudocode corresponding to each of these situations is
shown in Algorithm 6.5 under the names init_specific_wylight_conditional and
init_specific_wylight_marginal, respectively. In the latter case, each of the jp

permutations is obtained as a random permutation π(h) : J1, nK→ J1, nK, sampled uni-
formly from the set of all n! possible permutations of J1, nK. However, as described in
Section 5.5, when a categorical covariate is present the global null hypothesis changes,
requiring a different approach to generate the permutations. Rather than obtaining
a random permutation of J1, nK directly, indices are only shuffled among samples
having an identical value for the categorical covariate. That is, a random permutation
π
(h)
c : J (c) → J (c) of the set J (c) = {i ∈ J1, nK | ci = c} is obtained first, for each

of the k categories of the covariate. Then, the permutation π(h) : J1, nK → J1, nK is
defined by “concatenating” these k “disjoint” permutations as π(h)(i) = π

(h)
ci (i) for

each sample i = 1, 2, . . . , n.

Finally, the routine process_region must also change to accommodate permutation
testing-based significant pattern mining. In particular, as summarised in the procedure
process_region_wylight in Algorithm 6.5, this can be accomplished by using the
same steps as shown between Lines 13 and 19 of Algorithm 4.2.

In summary, combining significant region mining with permutation testing-based
significant pattern mining poses no substantial algorithmic difficulties. Not unlike in
other instances of significant pattern mining, doing so would allow to gain statistical
power at the cost of increased runtime. In applications for which the signal-to-noise
ratio is low and computational constraints are not too stringent, this option might
thus be particularly appealing.

Extensions of the model of genetic heterogeneity

Perhaps the most important design choice in our formal introduction of significant
region mining in Section 6.1 was to define the occurrence of a pattern (region) S in
an observation x as gS (x) = 1[bS (x) > 0], where bS (x) = ∑j∈S x(j) is the burden
count for observation x in the genomic region S . Conceptually, this model assumes
that the presence of one or more copies of a minor allele in the region might be
sufficient to affect its functionality. An obvious generalisation of this model would be
to relax this assumption, introducing a minimum number bmin of copies of a minor
allele needed to see an effect, i.e. it would imply defining gS (x) = 1[bS (x) ≥ bmin]

instead. All algorithms proposed in this section could be applied in this setting
without modifications. Nonetheless, a clear disadvantage of this generalisation is the
introduction of bmin as a hyperparameter that needs to be chosen a priori. Analogously
to our discussion regarding burden tests in Section 6.1, attempting to select bmin in a
data-driven fashion would require an additional correction for multiple comparisons.
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Nevertheless, it would be possible to modify Algorithms 6.2 and 6.3 to perform
significant region mining with multiple candidate values for bmin simultaneously. In
particular, since bmin,1 ≥ bmin,2 implies that 1[bS (x) ≥ bmin,1] ≤ 1[bS (x) ≥ bmin,2],
if the pruning condition evaluates to true for the largest value of bmin among all
candidates, it will also evaluate to true for all others. Thus, the pattern enumeration
process in Algorithms 6.2 and 6.3 would be dictated by the largest value of bmin, while
regions could be processed for all choices of bmin simultaneously during the execution
of the algorithm. Finally, it is worth noting that test statistics corresponding to the
same genomic region but using a distinct value for bmin might be strongly correlated.
As a result, using a permutation testing-based version of significant region mining to
consider jointly the set of test statistics for all candidate values of the hyperparameter
bmin could be particularly beneficial in this setting.

6.3 experiments

In this section, we empirically evaluate the performance of our proposed significant
region mining algorithms compared to several baseline approaches using synthetic
data, for which the evaluation of statistical power and FWER is possible. We will
also present a set of experiments on real-world data which comprise five A. thaliana
datasets and one case/control study of COPD including two different ethnic groups.
For the sake of conciseness, the experiments contained in this thesis are a strict subset
of those described in the original articles upon which this chapter is based [51, 52].
For additional experiments, as well as a more detailed biological annotation and
interpretation of our findings, we kindly refer the reader to the original publications
and their corresponding supplementary materials.

6.3.1 Experimental setup

Compared to other instances of significant pattern mining, the relatively small size
of the search space renders the specific choice of algorithm to enumerate patterns
considerably less critical. Moreover, while there exist itemset mining algorithms that
traverse the pattern enumeration tree breadth-first, such as APRIORI [31], the problem
of enumerating genomic regions is remarkably simpler due to the existence of a natural
ordering of features in this setting. As a result, both of our proposed algorithms,
FAIS and FastCMH, directly implement the pattern enumeration approach described
in Algorithm 6.2 without resorting to using or modifying any established itemset
mining algorithm from the data mining literature. FAIS, FastCMH and all baseline
algorithms were written in C++ and compiled using gcc 4.8.2 with -O3 optimisation.
All experiments were executed on a single thread of a 2.5 GHz Intel Xeon CPU with
64 GB of memory available. The test statistic used to quantify statistical association in
all results reported for FAIS was Pearson’s χ2 test. This choice will be emphasised by
referring to FAIS as FAIS-χ2 throughout the remainder of this section. Since the CMH
test utilised by FastCMH can be understood as a generalisation of Pearson’s χ2 test,
this experimental setup provides a more fair comparison between FAIS and FastCMH
than using Fisher’s exact test would have.
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6.3.2 Simulation experiments

In this chapter, we have proposed significant region mining as a new paradigm
for region-wise GWASs. This section presents a series of simulation experiments to
investigate under which circumstances and to which extent our proposed algorithms
outperform alternative approaches. In particular, we will explore empirically the
following fundamental questions:

(i) Under the assumption that genetic heterogeneity holds, how does the statistical
power and FWER of FAIS-χ2 and FastCMH compare to that of univariate testing?
In other words, how effective is significant region mining in exploiting genetic
heterogeneity?

(ii) Does Tarone’s method continue to bring substantial improvements in statistical
power and computational efficiency compared to a naive Bonferroni correction
in this new instance of significant pattern mining, or does the smaller size of the
search space render naive approaches competitive?

(iii) Under a model of genetic heterogeneity, how does the statistical power of our
significant region mining algorithms compare to traditional region-wise GWASs
approaches such as burden tests?

(iv) Can significant region mining lead to an improvement in statistical power un-
der models other than genetic heterogeneity? More precisely, we compare the
performance of significant region mining and univariate testing under the com-
mon assumption that multiple neighbouring variants are indirectly associated
with the phenotype via linkage disequilibrium with a single unobserved, causal
variant.

Statistical power and FWER

baselines : The first simulation experiment in this chapter aims to answer question
(i) posed above, as well as the statistical considerations of question (ii). To this
end, our proposed significant region mining algorithms, FAIS-χ2 and FastCMH, will
be compared against univariate testing approaches, which we denote Univariate-
χ2 and Univariate-CMH. These baselines simply perform a statistical association
test for each of the p markers, making use of Pearson’s χ2 test and the CMH test
respectively. Thus, while they require a considerably less stringent correction for
multiple comparisons than significant region mining algorithms, these methods are
unable to exploit genetic heterogeneity to improve statistical power. Additionally, in
order to probe the usefulness of Tarone’s improved Bonferroni correction in this new
regime, we also include in our experiments two naive region-wise GWASs methods
that enumerate and test all possible genomic regions using the Bonferroni correction
to account for multiple comparisons, which we refer to as Bonf-χ2 and Bonf-CMH.

data generation: We generate synthetic GWAS datasets D = {(xi, yi, ci)}n
i=1,

containing n triplets (xi, yi, ci) sampled i.i.d. from a distribution p(x, y, c). Following
Section 6.1, each observation x is a sequence of p count-valued genomic markers, i.e.,
xi(j) ∈ J0, qK for all i = 1, 2, . . . , n and j = 1, 2, . . . , p. As shown in Section 6.2, all
approaches considered in this chapter only access these markers through 1 [xi(j) > 0].
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Therefore, we consider that q = 1 without loss of generality 3. Finally, y ∈ {0, 1} is
a binary class label that simulates a case/control phenotype and c ∈ {0, 1} a binary
covariate.

The data-generating distribution p(x, y, c) is closely related to that introduced in
Section 5.6.1. Two non-overlapping genomic regions Strue and Sconf, both of identical
length l, are randomly selected to represent a truly associated and a confounded
region, respectively. Thus, GStrue(X) 6⊥⊥ Y | C will hold for Strue whereas the conditions
GSconf(X) 6⊥⊥ Y and GSconf(X) ⊥⊥ Y | C will hold for Sconf. As in Section 5.6.1, this
is accomplished by specifying a joint distribution p

(
gStrue(x), gSconf(x), y, c

)
factored

as p
(

gStrue(x), gSconf(x), y, c
)
= p (gStrue(x), y, c) p

(
gSconf(x) | c

)
. The first term in the

factorisation, p (gStrue(x), y, c), is designed to have the following first and second order
moments:

(a) E (GStrue(X)) = ptrue, E(Y) = py and E(C) = pc, where we use ptrue = py =

pc = 0.5 for simplicity.

(b) Corr
(
Y, GStrue(X)

)
= ρtrue and Corr

(
Y, C

)
= ρconf whereas GStrue(X) and C are

uncorrelated. Moreover, we consider a balanced experimental setup where
ρtrue = ρconf = ρ

2 , with ρ being the proportion of variance in the class labels
jointly explained by the truly associated region and the covariate.

The second term in the factorisation, p
(

gSconf(x) | c
)
, is defined by setting GSconf(X) =

C with probability 1− ε and GSconf(X) = 1− C with probability ε. We used ε = 0.05
throughout all experiments, leading to GSconf(X) and C being strongly positively
correlated.

For each synthetic GWAS dataset D to be generated,
{(

gStrue(xi), yi, ci
)}n

i=1 were
sampled first as n i.i.d. draws from a multivariate Bernoulli distribution p (gStrue(x), y, c)
with the first and second-order moments specified above using the method in [85].
Next, the corresponding set

{
gSconf(xi)

}n
i=1 of realisations of the pattern occurrence

indicator for the confounded genomic region is obtained as the output of a binary
symmetric channel with error rate ε and input {ci}n

i=1. Finally, a set of n i.i.d. genomic
sequences {xi}n

i=1 consistent with the outcomes of {gStrue(xi)}n
i=1 and

{
gSconf(xi)

}n
i=1

must be generated. The approach we follow here also closely parallels the reasoning
used in Section 5.6.1:

(i) All “background” markers {x(j) | j ∈ J1, pK \ (Strue ∪ Sconf)} are sampled as i.i.d.
draws from a Bernoulli distribution, i.e. p (x(j)) = Bernoulli (x(j) | px,b). In all
our experiments, we set px,b = 0.3 as a rough approximation of the typical levels
of sparsity encountered in real-world GWAS datasets.

(ii) The markers {x(j) | j ∈ Strue} that belong to the truly associated region Strue

must satisfy xi(j) = 0 for all samples i = 1, 2, . . . , n for which gStrue(xi) = 0, since

gStrue(xi) is defined as gStrue(xi) = 1
[
∑j∈Strue

xi(j) > 0
]
. Similarly, for all samples

i = 1, 2, . . . , n for which gStrue(xi) = 1, there must be at least one j∗(i) ∈ Strue

such that xi(j∗) = 1. Thus, for each i = 1, 2, . . . , n satisfying gStrue(xi) = 1, we
sample a position j∗(i) uniformly at random from Strue and set xi(j∗) = 1. The

3. Since both univariate baselines, Univariate-χ2 and Univariate-CMH, are based on tests of associ-
ation between binary variables, this assumption does not provide any advantage for the region-wise
tests.
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remaining markers {xi(j) | j ∈ Strue \ {j∗(i)}} have no effect on gStrue(xi) and
can therefore take any value. We choose to set xi(j) = 0 for all j ∈ Strue \ {j∗(i)}
to emphasise the assumption of genetic heterogeneity.

(iii) The markers {x(j) | j ∈ Sconf} which form the confounded region Sconf are
sampled analogously as in (ii).

metrics: For all of the region-wise GWASs approaches, including FAIS-χ2 and
FastCMH, we will consider that the truly significant region Strue has been successfully
detected in a repetition of the experiment if it is contained within a cluster of overlap-
ping, significantly associated genomic regions, i.e., if there exists Csig inMsig,clustered
such that Strue ⊆ ∪S∈CsigS . To prevent trivial solutions such as reporting the entire
genome as a cluster inMsig,clustered from obtaining good scores under our metrics, we
will consider any cluster Csig in Msig,clustered to be a false positive if more than half
of the markers it spans do not belong to Strue, i.e., if | ∪S∈Csig S \ Strue| ≥ 1

2 | ∪S∈Csig S|.
Using this definition, approaches which appear to achieve satisfactory statistical power
by means of substantially overestimating the length of the truly associated region
will be severely penalised in terms of the FWER. Finally, in order to evaluate the
performance of the univariate testing methods, we consider that the truly associated
region has been detected if at least one of the markers in the region Strue is deemed
statistically significant. Markers deemed significant but which do not belong to Strue

are treated as false positives. All in all, this way of assessing the performance of
the univariate baselines can be considered rather lenient, as unlike the region-wise
GWAS approaches, univariate testing methods ought to identify only one marker in
the region.

results : In this first simulation experiment, we generated synthetic GWAS datasets
as described above, with n = 500 samples, p = 1, 000, 000 markers and truly associated
and confounded regions of length l = 5 markers each. The target FWER was set to
α = 0.05. All results shown were obtained by averaging across 500 repetitions of the
experiment.

In Figure 6.2 we report how the resulting statistical power varies as a function of
the signal strength ρ for all methods under consideration. These results convey two
particularly striking observations. Firstly, while it is unsurprising that the region-
wise GWAS approaches outperform the univariate baselines, since the data was
generated following precisely a model of genetic heterogeneity, the extent by which
their resulting statistical power differs is remarkable. Even in the high signal-to-noise
ratio regime, with ρ close to one, both univariate baselines fail to reliably detect the
truly associated region. In contrast, both significant region mining algorithms, FAIS-χ2

and FastCMH, are able to consistently retrieve the region for moderate-to-high signal
strength. This outcome illustrates how much a strong signal can be diluted among
multiple neighbouring markers under a model of genetic heterogeneity, emphasising
the usefulness of developing algorithms able to exploit this phenomenon. The second
remarkable finding shown in Figure 6.2 is the confirmation that Tarone’s testability
criterion continues to be an instrumental part of significant region mining. Both
baselines based on a naive Bonferroni correction, Bonf-χ2 and Bonf-CMH, perform
considerably more poorly than FAIS-χ2 and FastCMH. The gap in statistical power is
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Figure 6.2. – Statistical power at different values of the signal strength ρ for our
proposed approaches FAIS-χ2 and FastCMH, as well as four baseline
algorithms: Bonf-χ2, Bonf-CMH, Univariate-χ2 and Univariate-CMH.

particularly pronounced for moderate values of the signal strength ρ, a situation of
particular interest for biomarker discovery.

To complement the results depicted in Figure 6.2, the FWER of each method as
a function of the signal strength ρ is shown in Figure 6.3. These additional results
confirm the behaviour to be expected from each approach. All of the methods which
use the CMH test to account for the categorical covariate are able to control the FWER
at the desired level α, as guaranteed in theory. In contrast, the methods based on
Pearson’s χ2 test are by design unable to distinguish the truly associated region and
the confounded region. As a consequence, they no longer control the FWER once the
signal strength ρ is sufficiently large for the confounded region to be detected often.
Therefore, in situations where confounding due to covariate factors is a possibility,
using FAIS-χ2 should be avoided in favour of FastCMH.

Runtime

baselines : The second set of simulation experiments in this chapter deals with the
computational considerations of question (ii), that is, it aims to evaluate the impact of
Tarone’s method in the computational efficiency of significant region mining. To this
end, we compared our proposed approaches FAIS-χ2 and FastCMH with the baselines
Bonf-χ2 and Bonf-CMH introduced in the previous set of experiments. Additionally,
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Figure 6.3. – FWER as a function of the signal strength ρ for our proposed approaches
FAIS-χ2 and FastCMH, as well as four baseline algorithms: Bonf-χ2,
Bonf-CMH, Univariate-χ2 and Univariate-CMH.

to assess the repercussions of the way in which the pruning criterion for the CMH
test is evaluated in significant region mining, we compare FastCMH with 2k-FastCMH, a
baseline which does not use Algorithm 5.1. Instead, 2k-FastCMH evaluates the pruning
criterion by computing 2k values of the minimum attainable P-value function in the
same manner as the baseline algorithm 2k-FACS introduced in Section 5.6.1.

data generation: We generated synthetic GWAS datasets following the same
approach as described for the previous set of experiments. However, in this case, all of
the markers in the genomic sequences were “background” markers, that is, there was
neither a truly associated region nor a confounded region in any of the datasets. We
found this simplification to have no observable effect on the resulting computational
efficiency of any of the approaches included in the experiments.

metrics : The computational efficiency of all approaches under consideration will
be assessed in terms of absolute runtime. Despite the reliance of this criterion on low-
level implementation choices and the specific hardware of the system all experiments
were executed in, all of these factors were identical for all methods included in the
experiments. Thus, relative differences in runtime can be meaningfully interpreted to
provide an evaluation of the computational efficiency of each algorithm.
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Figure 6.4. – Runtime as a function of the number of features p for our proposed ap-
proaches FAIS-χ2 and FastCMH, as well as the baseline Bonf-CMH. Results
for Bonf-χ2 are virtually identical to those of Bonf-CMH and have been
omitted from the figure for the sake of clarity. The discontinuous trace
for Bonf-CMH corresponds to forecasts made using a trend model of the
form log10 T = b + η log10 p rather than values actually measured via
experiments.

results: Figure 6.4 shows how the total runtime of each method varies as a
function of the number of markers p. In this experiment the sample size n was set
to 500 whereas the number of categories for the covariate c was k = 4. The results
depicted in Figure 6.4 clearly indicate that Tarone’s method remains an essential
component of our significant region mining algorithms. Empirically, the runtime of
FAIS-χ2 and FastCMH appears to increase linearly with the number of markers p. In
contrast, the baselines based on the Bonferroni correction are unable to prune the
search space and must test all p(p+1)

2 = O(p2) regions. As a result, their runtime
increases quadratically with p. In particular, for sufficiently large p, this can mean the
difference between the analysis being computationally feasible or not. Finally, it is
worth noting that the runtime overhead of FastCMH compared to FAIS-χ2 which can
be observed in Figure 6.4 is negligible.

Figure 6.5 in turn examines the effect of the sample size n on the total runtime. In
this experiment the number of markers p was set to 100, 000 while the number of
categories for the covariate c remained at k = 4. According to these results, while
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Figure 6.5. – Runtime as a function of the number of samples n for our proposed ap-
proaches FAIS-χ2 and FastCMH, as well as the baseline Bonf-CMH. Results
for Bonf-χ2 are virtually identical to those of Bonf-CMH and have been
omitted from the figure for the sake of clarity.

the Tarone-based algorithms are drastically faster, the runtime of all methods appears
to scale approximately linearly with n. The runtime complexity of processing each
enumerated genomic region is dominated by the computation of the support rS ,
leading to O(n) operations per region. Thus, the linear scaling exhibited in Figure 6.5
is unsurprising for the baseline approaches, which must enumerate and test all
genomic regions. However, the fact that the runtime of FAIS-χ2 and FastCMH also
scales linearly with n in this experiment suggests that the number of testable regions
was insensitive to changes in the sample size n. We hypothesise that this behaviour,
which differs starkly from what can be observed in other instances of significant
pattern mining, is mainly due to the distinctive characteristics of the search space in
significant region mining, namely, the relatively small number of patterns it contains
and the fact that regions of small length are more abundant than large regions.

Finally, Figure 6.6 studies the impact of the method used to evaluate the pruning
condition on the approaches which use the CMH test. To this end, we generated
synthetic GWAS datasets with n = 500 samples and p = 100, 000 markers while
varying the number of categories for the covariate k in the range J1, 30K. These
results reaffirm the findings reported in Chapter 5 in the context of significant itemset
mining: the use of Algorithm 5.1 is a fundamental part of significant pattern mining
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Figure 6.6. – Runtime as a function of the number of categories for the covariate k
for our proposed approach FastCMH and the baseline 2k-FastCMH. The
discontinuous trace for 2k-FastCMH corresponds to forecasts made using
a trend model of the form log10 T = b + ηk rather than values actually
measured via experiments.

algorithms based on the CMH test, also in significant region mining. Without the
help of Algorithm 5.1, the runtime of 2k-FastCMH grows exponentially with k, quickly
rendering the analysis unfeasible. Indeed, with as few as k = 26 categories, almost
a year’s worth of computations would be required to complete a task that FastCMH
completed in barely 10 seconds.

Comparison with burden tests

baselines: The next set of experiments deals with question (iii) posed at the
beginning of this section, namely, comparing the statistical power of significant region
mining with that of burden tests. Burden tests are a popular family of approaches to
exploit genetic heterogeneity in GWASs, making them an ideal comparison partner
for our proposed algorithms. As discussed in Section 6.1, the key difference between
burden tests and significant region mining lies in the selection of the set of candidate
genomic regions to be tested. Burden tests only consider regions of a certain length w
fixed a priori, whereas significant region mining tests all genomic regions regardless of
their length. Compared to burden tests, this paradigm shift frees significant region
mining from the need to choose a value for w, making the resulting algorithms
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robust to misspecification of this hyperparameter. However, this comes at the price of
requiring a considerably more stringent corrected significance threshold to account
for multiple comparisons. In short, the aim of the next experiment is to discern which
of these two opposing forces has a stronger effect on the resulting statistical power,
under the common assumption that the length of the truly associated regions is not
known beforehand, nor necessarily constant throughout the genome.

To this end, we compare FastCMH 4 with the two types of burden tests introduced in
Section 6.1: burden tests with non-overlapping windows and burden tests with sliding
windows. The former only consider regions of length w whose starting position is a
multiple of w plus one whereas the latter include all regions of length w regardless of
their starting position. Thus, burden tests with non-overlapping windows are not only
sensitive to misspecification of the length w, but can also lose statistical power due to
misalignments between the candidate regions in the search space and the (unknown)
truly associated regions. However, they also require the least stringent correction
for multiple comparisons across all methods under consideration. For each of the
two types of burden tests, we use five different choices for the hyperparameter w,
all of them within the range of potential lengths for the truly associated regions that
will be included in the synthetic datasets. For each genomic region S in their search
space, the burden test baselines carry out an association test between the burden
count ∑j∈S X(j) and the class labels Y given the categorical covariate C using the LRT
under a logistic regression model. More precisely, the null model only includes C as
an explanatory variable while the alternative model includes both C and ∑j∈S X(j).
We also experimented with another version of the burden test baselines that made
use of the CMH test to assess the association between GS (X) = 1

[
∑j∈S X(j) > 0

]

and Y given C for each region S to be considered. Under this alternative setting,
FastCMH and the burden test baselines only differ in the definition of the search space.
Thus, while this would perhaps constitute the most fair experimental setup for the
comparison, we observed that the burden tests performed consistently better when the
integer-valued burden count ∑j∈S X(j) was used as an explanatory variable instead
of the indicator of the presence of minor alleles in the region GS (X). Consequently,
despite being based on different explanatory variables, we chose to compare FastCMH
against the best performing version of the burden test baselines.

data generation: The generative model used to simulate synthetic GWAS
datasets is almost identical to that used in the first set of experiments described in this
section. However, there is one significant difference. In order to simulate variability in
the length of the truly associated and confounded genomic regions, each of the two
regions is replicated seven times with lengths l in the set L = {2, 4, 6, 8, 10, 12, 14}.
More precisely, once {gStrue(xi)}n

i=1 and
{

gSconf(xi)
}n

i=1 have been obtained as described
above, we randomly choose seven non-overlapping genomic regions {Strue,l}l∈L that
will satisfy the conditions

{
gStrue,l (xi)

}n
i=1 = {gStrue(xi)}n

i=1 and |Strue,l | = l as well as
other seven non-overlapping genomic regions {Sconf,l}l∈L that will satisfy the con-
ditions

{
gSconf,l (xi)

}n
i=1 =

{
gSconf(xi)

}n
i=1 and |Sconf,l | = l. In a nutshell, each of the

4. As shown in the two previous experiments, FAIS-χ2 performs comparably to FastCMH in terms of
statistical power while not providing the possibility to correct for covariates. Thus, for the remaining
simulation experiments, we mainly focus on FastCMH.
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replicated regions represents the same underlying signal, but scrambled across a
different number of neighbouring markers l. For each region Strue,l and Sconf,l , the
markers xi(j) for j ∈ Strue,l and j ∈ Sconf,l are generated as described in the data gen-
eration section corresponding to the first set of simulation experiments. In particular,
the sampling of j∗(i) for each of the replicated regions is performed independently
of the others. Finally, it is worth noting that while both FastCMH and the burden
test baseline with sliding windows are entirely insensitive to the choice of starting
position for the truly associated and confounded regions, this is not the case for the
burden test baseline with non-overlapping windows. While perhaps the most fair
approach would have been to select the starting position of each region completely
at random, we decided to compare FastCMH against the most favourable scenario for
the burden test baselines. Consequently, we forced the starting position of all seven
truly associated genomic regions and all seven confounded genomic regions to be
randomly chosen among the set of starting positions of the regions in the search
space of the burden test baseline with non-overlapping windows. In other words,
their starting positions are selected at random from the set

{
1 + iw | 0 ≤ i ≤ d p

we
}

. In
particular, this biased experimental setup implies that the version of the burden test
baselines using non-overlapping windows must necessarily outperform the alternative
version using sliding windows. In summary, the appropriate way to interpret our
experimental setup is as follows: we compare FastCMH against burden tests with
sliding windows and against a best-case scenario for burden tests with non-overlapping
windows.

metrics : Statistical power for FastCMH is also assessed in an identical manner as in
the first set of experiments: a truly associated region is considered to be detected if
it is fully contained within a cluster Csig inMsig,clustered. However, we chose a more
lenient way to evaluate statistical power for the burden test baselines. In particular,
for some choices of w, it is possible that some of the truly associated regions Strue,l
are never fully contained in any of the genomic regions tested by the burden test.
To avoid this from placing the baseline approaches at an unfair disadvantage, we
relax the requirement for a truly associated region to be considered detected when
evaluating the burden tests. As long as any region deemed significantly associated by
the burden tests overlaps with a truly associated region, we consider the latter to have
been successfully detected. Statistical power for a single repetition of the experiment
is then defined as the proportion of truly associated regions, out of all seven replicates,
retrieved by the algorithms under consideration.

results : We generated synthetic GWAS datasets as described above, using n = 500
samples and p = 100, 000 markers for each dataset. Figure 6.7 shows the statistical
power 5 for FastCMH and all burden test baselines as a function of the signal strength
ρ, measured by averaging across 200 repetitions of the experiment. The results are
strikingly clear: FastCMH outperforms all burden test baselines by a large margin,
regardless of the choice for the hyperparameter w. For each of the seven truly

5. Results regarding the FWER obtained in these experiments can be found in the original publica-
tion [52]. As already shown in the first set of experiments, these results empirically confirm that FastCMH
is able to control the FWER at the desired level α = 0.05.
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Figure 6.7. – A comparison of the statistical power of FastCMH and several burden
tests with (a) sliding windows and (b) non-overlapping windows. Both
types of burden tests were executed with five different choices for the
hyperparameter w that controls the length of the regions to be tested.

associated regions Strue,l , all of the burden test baselines contain at least one region in
their search space which includes some of the markers in Strue,l . On many occasions,
multiple regions will satisfy that criterion. Nevertheless, the poor performance of
burden tests in this experiment indicates that their statistical power deteriorates
sharply as the mismatch between w and l increases. Since each synthetic GWAS
dataset contains multiple truly associated regions with lengths ranging between 2 and
14, no single choice for w is able to consistently detect all seven truly associated regions.
In contrast, FastCMH showcases the usefulness of defining an exhaustive search space
when coupled with an efficient correction for multiple comparisons. By testing all
genomic regions, it guarantees that the truly associated regions are always included
in the search space rather than only regions that have a partial overlap with them.
Our results show that, despite the need for a more stringent corrected significance
threshold, this inherent trade-off leans clearly in favour of FastCMH. In summary,
the results of this experiment strongly suggest that FastCMH holds the potential to
substantially outperform burden tests in exploratory analyses for which reliable prior
knowledge regarding the length of the associated regions is unavailable.

Statistical power under a model of linkage disequilibrium

baselines: The final set of simulation experiments concerns question (iv) posed
at the beginning of this section. We compare the performance of significant region
mining and univariate approaches under a model of linkage disequilibrium. In this
model, we consider that a single unobserved causal variant harbours the association
signal. However, we also assume that multiple observed neighbouring markers are
correlated with the unobserved causal variant, thus being indirectly associated with
the phenotype. From a statistical perspective, this model differs drastically from the
assumption of genetic heterogeneity that motivated our proposed algorithms. In
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particular, the different markers in the associated regions do not provide independent
(weak) signals to be aggregated. Instead, each of these markers acts as a probe for the
latent causal marker, with the amount of signal preserved depending mostly on the
correlation (linkage disequilibrium) ρld between the observed markers in the region
and the unobserved causal marker. Under this model, univariate approaches are
expected to perform well, specially if ρld is sufficiently large to preserve a substantial
proportion of the association signal. Nevertheless, we postulate that, by aggregating
neighbouring variants as our significant region mining algorithms do, we might partly
eliminate the noise introduced when the correlation ρld is imperfect. If this hypothesis
is true, significant region mining would outperform univariate approaches, specially
for low-to-moderate ρld. In order to verify this, we compare our proposed approach
FastCMH with its corresponding univariate baseline Univariate-CMH. We also include
as a baseline the naive version of significant region mining Bonf-CMH to explore the
importance of Tarone’s method in this new setting.

data generation: To simulate synthetic GWAS datasets under a simplified
model of linkage disequilibrium, we first divide the p markers into b disjoint blocks
of pb = p

b markers each. Within each block, all markers have pairwise correlation
ρld whereas markers belonging to different blocks are uncorrelated. This results in
genomic sequences x which exhibit a block-wise correlation structure, resembling the
spatial correlation patterns which arise in real-world GWAS datasets due to linkage
disequilibrium.

All except two randomly chosen blocks will be populated by “background” markers.
For each marker j in each of these blocks, we first randomly sample a value for the first
order moment E (X(j)) from a uniform distribution in the range [0.01, 0.20]. Using
terminology from statistical genetics, this determines the minor allele frequency of
the j-th marker, MAFj = E (X(j)) ∼ U(0.01, 0.20). Then, we generate all pb markers
in each block using the approach in [85] to obtain i.i.d. draws from a multivariate
Bernoulli distribution with the first order moments sampled previously and second
order moments determined by the condition Corr

(
X(j), X(j′)

)
= ρld for all j 6= j′.

Generating the markers for the two remaining blocks, which carry the truly as-
sociated and confounded signals, is slightly more involved. The key difference lies
in the markers located at the centre of each block, which are used to generate the
case/control labels Y and the covariate C. In particular, Y has correlation ρ

2 with each
of the two central markers, where ρ is the overall signal strength in the dataset. In
turn, the covariate C is obtained as the output of a binary symmetric channel with a
small error rate ε = 0.05 and the central marker of the confounded block as an input.
Thus, the covariate C and the central marker of the confounded block are strongly
positively correlated. Moreover, both central markers, as well as Y and C, have first
order moments set to 0.5.

The final and most crucial step in the generation of the synthetic datasets is the
removal of the central marker of each block, including those which harbour the
signal. As a result, the total number of markers in the dataset decreases to p− b but,
most importantly, this causes the signal to be present in the observed markers only
indirectly.
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metrics: Unlike under a model of genetic heterogeneity, in this new setting the
markers in the truly associated block are merely proxies for the unobserved causal
variant. As previously discussed, all of them reflect the same underlying signal
rather than providing weak but complementary signals. Motivated by this, in this
set of experiments we consider that the truly associated block has been detected as
long as any of the clusters Csig in Msig,clustered has non-zero overlap with the block.
Our definition of detection for the univariate approaches is the same as in previous
experiments: if at least one of the markers in the block is deemed as significant, the
truly associated block will be counted as successfully discovered for these baselines.
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Figure 6.8. – Statistical power at different values of the signal strength ρ for our pro-
posed approach FastCMH, as well as two baseline algorithms: Bonf-CMH
and Univariate-CMH. Four different values of the block-wise linkage
disequilibrium hyperparameter ρld were considered: (a) ρld = 0.175, (b)
ρld = 0.25, (c) ρld = 0.375 and (d) ρld = 0.5.

results: We generated synthetic GWAS datasets using the approach described
above, with n = 500 samples and p = 1, 000, 000 markers divided into b = 10, 000
blocks of pb = 100 markers each. In order to investigate the effect of the strength
of linkage disequilibrium ρld, we repeated the experiments for four values of this
hyperparameter: ρld = {0.175, 0.25, 0.375, 0.5}. Figure 6.8 shows the resulting statisti-
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cal power 6 as a function of the signal strength ρ, measured by averaging across 150
repetitions of the experiment. These results clearly demonstrate that significant region
mining algorithms can also be useful under models other than genetic heterogeneity.
While, as expected, the univariate approaches are competitive under a model of link-
age disequilibrium, specially for large ρld, FastCMH offers the best performance. The
gap in statistical power is particularly pronounced when the linkage disequilibrium
is low-to-moderate, that is, for ρld ∈ [0.25, 0.375]. Moreover, it is also remarkable
that Bonf-CMH underperforms Univariate-CMH for all settings of ρld we considered,
reaffirming the key role that Tarone’s method plays in making significant region
mining practical.

6.3.3 Experiments on real-world human and plant GWAS datasets

In the final section of this chapter, we analyse six real-world GWAS datasets using
both of our proposed significant region mining algorithms, FAIS-χ2 and FastCMH.
In particular, we consider COPDGene, a case/control association study of COPD
including two human cohorts, as well as five GWAS datasets involving five different
dichotomous phenotypes for the plant model organism A. thaliana. In these experi-
ments, we aim to investigate the effectiveness of significant region mining in exploiting
genetic heterogeneity when analysing real-world data. To this end, we performed an
exhaustive comparison of our proposed approaches with several burden test base-
lines. Moreover, we will evaluate the extent to which FastCMH is able to correct for
population structure in significant region mining, contrasting its results with those of
FAIS-χ2. Throughout all experiments, the target FWER was α = 0.05 for all methods
under consideration.

Description of the datasets and preprocessing

human data: We analysed data from the COPDGene study [102], which aims
to discover genetic risk factors for COPD. The individuals which participated in this
study and are included in the dataset we had access to belong to two distinct ethnic
groups: non-Hispanic whites and African Americans. After eliminating samples
for which the case/control status and/or height was unknown, there were 7, 993
individuals in total, 3, 633 of which were cases and 4, 360 of which were controls. For
quality control purposes, we filtered any SNPs which had a minor allele frequency
smaller than 0.01 and/or for which a statistical test for Hardy-Weinberg equilibrium
yielded a P-value smaller or equal than 10−6. We also removed any markers which
were not measured in both cohorts. As a result, we kept a total of 615, 906 SNPs. Any
sporadic missing values were imputed following [103].

plant data: We downloaded A. thaliana GWAS datasets from the well-known
collection described in [87] using the easyGWAS online resource [88]. This collection
includes a total of 107 phenotypes, 21 of which are dichotomous. In this chapter,
we focus specifically on 5 out of those 21 binary traits, which were subjected to a

6. The corresponding FWER results, which confirm that all methods under consideration control the
FWER at the target level α = 0.05, can be found in [52].
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detailed analysis in our second publication on significant region mining [52]. These
five phenotypes were chosen in [52] to be part of the experiments mainly on the basis
of two criteria: (i) being relatively balanced, with the proportion of cases not falling
below 0.2 or exceeding 0.8 and (ii) exhibiting a non-trivial amount of confounding
due to population structure, as measured by the genomic inflation factor [90] (see
metrics in Section 5.6.3). Owing to this selection criteria, we believe that these
phenotypes constitute a good test-bed for evaluating the ability of FastCMH to account
for population structure in real-world data as well as for comparing significant region
mining with the burden test baselines. The five selected phenotypes can be subdivided
into three hypersensitive-response traits (avrB, avrPphB and avrBpm1) and two lesioning
or yellowing leaves traits (LY and LES). The sample size in the five resulting datasets
varies between 84 and 95. In this study, no minor allele frequency filter was applied,
leading to the number of markers ranging from 214, 022 to 214, 051. For additional
experimental results concerning the remaining, less informative 16 binary traits not
discussed in this thesis, we kindly refer the reader to our first publication on significant
region mining [51].

Table 6.1. – Characteristics of the six GWAS datasets used in this chapter.
Dataset and
phenotype

Samples
n

Cases
%

SNPs
p k∗

COPDGene
. COPD 7,993 45.4 615,906 8

A. thaliana
. avrB 87 63.2 214,032 3

. avrRpm1 84 66.7 214,022 3

. avrPphB 90 51.1 214,032 4

. LES 95 22.1 214,051 3

. LY 95 30.5 214,051 5

Definition of the categorical covariates

As extensively discussed in Chapter 5, incorporating into the model covariate factors
that might have a confounding effect is of utmost importance. If unaccounted for,
these could lead to a potentially large number of spurious discoveries, seriously
compromising the reliability of the results. Population structure [104] is an ubiquitous
source of confounding in GWAS. All six datasets covered in our experiments contain
individuals with considerably diverse genetic ancestries. The COPDGene study
includes both a cohort of non-Hispanic white individuals and a cohort of African
American individuals. Similarly, the A. thaliana samples from the collection described
in [87] originate from a large number of locations in Europe and Asia. In order
to account for population structure, we will utilise the ability of FastCMH to correct
for a categorical covariate, contrasting its results with those obtained by FAIS-χ2,
which remains susceptible to confounding due to population structure. In order to
define a categorical covariate that represents population structure, we follow the same
approach introduced in Section 5.6.3. In summary, we first used EIGENSTRAT [91] to
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obtain the three eigenvectors of the kinship matrix corresponding to the three largest
eigenvalues. This results in a real-valued, three-dimensional covariate ci ∈ R3 for each
sample i = 1, 2, . . . , n. Next, we applied the k-means algorithm to the collection of
three-dimensional embeddings {ci}n

i=1, resulting in a set {c̃i}n
i=1 of cluster assignments

satisfying c̃i ∈ {1, 2, . . . , k} for all i. These cluster assignments can be understood as
a discretised version of the original covariates ci ∈ R3 and will be used by FastCMH
to account for population structure. As in Chapter 5, despite the simplicity of this
heuristic vector quantisation approach, we empirically found its performance to be
satisfactory. The number of categories k, which in this case corresponds to the number
of centroids used by k-means, was chosen independently for each dataset as the value
k∗ that resulted in the smallest genomic inflation factor λ. To obtain k∗, we explored
values of k in the range J2, 10K for the COPDGene study and in the range J2, 5K for the
A. thaliana datasets, which have a considerably smaller sample size. Table 6.1 shows
the resulting values of k∗ for each dataset, as well as the sample size n, the percentage
of cases in the dataset and the total number of markers p.
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Figure 6.9. – Visualisation of the three-dimensional embedding ci ∈ R3 obtained by
EIGENSTRAT for each sample in the COPDGene study. Each point has
been coloured according to the ethnicity of the corresponding participant:
blue for African Americans and orange for non-Hispanic whites.

In our original publication [52], we additionally considered a simpler alternative
to define the categorical covariate for the COPDGene study. Since the ethnicity (non-
Hispanic white or African American) of each participant is known, we can define a
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covariate with two categories that indicates the ethnic group each individual belongs
to, hoping that it will suffice to capture population structure. To better understand how
this simple approach relates to the more sophisticated categorical covariate described
above, Figure 6.9 depicts the three-dimensional embedding ci ∈ R3 of each sample
in the COPDGene study obtained using EIGENSTRAT. This visualisation clearly shows
that African American and non-Hispanic white participants are well-separated in this
representation. Using k-means with k ≥ 2 is likely to result in clusters consisting
mostly of individuals of the same ethnicity. Hence, the categorical covariate obtained
by applying k-means to the three-dimensional embeddings inferred with EIGENSTRAT
are likely to recover all information regarding the ethnicity of the samples. Moreover,
Figure 6.9 also shows substantial genetic diversity between individuals of the same
ethnicity, particularly for non-Hispanic white participants. Consequently, merely using
ethnicity as a covariate provides a more coarse representation of population structure
than a categorical covariate obtained by discretising the output of EIGENSTRAT with
k-means. The results in [52] seem to confirm this hypothesis: while ethnicity alone
suffices to drastically reduce confounding due to population structure, the approach
we will discuss in this thesis achieves an even better reduction in genomic inflation.

Finally, it is worth mentioning that in [52] we also investigated the effect of modi-
fying the number d of eigenvectors used by EIGENSTRAT. To this end, we re-analysed
the COPDGene study using all 81 possible settings of (k, d) when each of the two
hyperparameters varies in the range J2, 10K. The main highlight of that experiment,
described in Section S3.2.1 of the Supplementary Material of [52], is that either fixing
the number of eigenvectors d and optimising the number of categories k (as we do
in the experiments described in this thesis by setting d = 3) or, alternatively, fixing
the number of categories k and optimising the number of eigenvectors d, suffices to
achieve almost optimal performance. The only clear exception to this claim occurred
when the number of categories k is fixed to 2. In that case, regardless of the choice
for d, the resulting categorical covariate is almost identical to the ethnicity of the
samples, losing the advantage that the finer representation of population structure
obtained with EIGENSTRAT provides. While the same experiment was not repeated for
the A. thaliana datasets, we do not expect choices other than d = 3 to substantially
outperform the results we provide here.

Results

The results of our analysis of the COPDGene study and all five A. thaliana datasets
will be presented next. First, we explore the impact of confounding due to population
structure in significant region mining by contrasting the results of FastCMH with those
of FAIS-χ2. Secondly, we briefly describe the findings of FastCMH and FAIS-χ2, inves-
tigating to which extent significant region mining is able to find associations between
genotype and phenotype that would be missed by univariate testing approaches.
Finally, we conclude the chapter by comparing these findings to those obtained by a
battery of burden test baselines, with the aim of exploring whether significant region
mining algorithms are also competitive with these popular methods developed by the
statistical genetics community in real-world data.
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Table 6.2. – Summary of the results of our proposed approaches FAIS-χ2 and FastCMH.
The columns λ and “Hits” refer to the genomic inflation factor and the
number of disjoint clusters of overlapping genomic regions deemed sig-
nificantly associated, respectively.

Dataset and
phenotype

FAIS-χ2 FastCMH
λ Hits λ Hits

COPDGene
. COPD 16.70 88,403 1.01 3

A. thaliana
. avrB 1.66 14 1.17 11

. avrRpm1 1.53 15 1.13 13

. avrPphB 1.70 6 1.22 5

. LES 2.05 20 1.21 3

. LY 2.51 26 1.30 1

accounting for population structure: As summarised in Table 6.2, the
genomic inflation factor λ for FAIS-χ2 ranges between 1.53 and 2.51 in the A. thaliana
datasets. This suggests the presence of a moderate-to-high amount of confounding
affecting the discoveries made by FAIS-χ2. In contrast, FastCMH is able to eliminate
most of that inflation, reducing λ to the range 1.13-1.30. The outcome for COPDGene
is even more striking. As shown in Figure 6.9, African American and non-Hispanic
white individuals have markedly different genetic makeups. Moreover, the proportion
of cases differs substantially between both cohorts: only 31.0% of African American
participants are cases compared to 52.6% for non-Hispanic whites. Consequently,
the confounding effect of population structure is particularly strong in this dataset.
Under these conditions, the findings provided by FAIS-χ2 hold virtually no useful
information, as indicated by the extremely large genomic inflation factor λ = 16.70.
However, FastCMH appears to eliminate this inflation almost entirely: the resulting
inflation factor is only λ = 1.01, suggesting a close agreement between the theoretical
and empirical medians of the test statistics.

Figure 6.10 further illustrates the effect of confounding in our real-world experiments
by means of quantile-quantile (Q-Q) plots. In Figure 6.10, the x-axis depicts the
quantiles of the theoretical distribution of P-values under the null hypothesis, i.e. a
U(0, 1) distribution. In turn, the y-axis shows the empirical quantiles obtained using
the P-values computed for all testable genomic regions. To ease the visualisation, these
quantiles have been transformed as − log10(p), making large (less significant) P-values
appear on the bottom/left quadrant of the plot and small (more significant) P-values
on the upper/right quadrant of the plot. If the model chosen for the null distribution
of the test statistic were correct and there was absolutely no signal in the data, be
it due to confounding or due to a truly useful association, the theoretical (expected)
and empirical (observed) quantiles should agree closely. In practice, when analysing
GWAS datasets we expect a large majority of markers/regions to be independent of
the phenotype while a small number of markers/regions might reach significance.
According to our parametrisation of the Q-Q plots, this implies that the expected
and observed quantiles should agree closely in the bottom-left quadrant of the plot,
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Figure 6.10. – Q-Q plots for the P-values of all testable genomic regions obtained with
FAIS-χ2 and FastCMH for six datasets: (a) COPDGene, (b) A. thaliana
avrB, (c) A. thaliana avrRpm1, (d) A. thaliana avrPphB, (e) A. thaliana
LES and (f) A. thaliana LY. Dashed horizontal lines show the corrected
significance thresholds for each of the two approaches.

which corresponds to insignificant P-values, while deviations in the upper-right
could be consistent with “true” hits. However, if the Q-Q plot showed that the
expected and observed quantiles deviate substantially also for P-values of low-to-
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moderate significance, i.e. in the bottom-left quadrant of the plot, the possibility
that confounding is affecting the results should be analysed in detail. The Q-Q plots
shown in Figure 6.10 for all six datasets indicate clearly that the observed quantiles
for FastCMH resemble the expected quantiles much more closely than those of FAIS-χ2

for P-values of low-to-moderate significance, paralleling the observations made by
means of the genomic inflation λ.

Nevertheless, despite vastly improving over FAIS-χ2, it can observed from both
Table 6.2 and Figure 6.10 that a slight residual inflation remains present for the results
of FastCMH in all five A. thaliana datasets. This phenomenon was already observed in
Section 5.6.3 when analysing the datasets corresponding to phenotypes avrB and LY
using FACS. To further explore this effect, we computed the genomic inflation factor λ

obtained by univariate analyses using both the CMH test with the same categorical
covariate as FastCMH and the LRT test under a logistic regression model with the
original (real-valued) embedding provided by EIGENSTRAT as covariates. For both
univariate baselines and all five datasets, the same residual inflation can be observed:
λ ranges between 1.18 and 1.80. Consequently, as in Section 5.6.3, we hypothesise
this to be mainly due to the difficulty in inferring a highly-accurate representation
of population structure with such a small sample size. The COPDGene study, which
has about 100 times more samples than the A. thaliana datasets, does not seem to be
affected by this limitation.

retrieved genomic regions : Table 6.2 also summarises the number of disjoint
clusters of overlapping genomic regions deemed significantly associated (“hits”) by
FAIS-χ2 and FastCMH. Overall, it can be seen that the number of “hits” for FastCMH is
systematically smaller than for FAIS-χ2.

For all A. thaliana datasets, FastCMH found 33 significantly associated clusters in total
while FAIS-χ2 found 81, more than twice as many. Most importantly, the difference
in the number of “hits” appears to correlate with the difference in genomic inflation.
For instance, for the phenotype LY, which suffers the most from confounding due to
population structure (λ = 2.51 for FAIS-χ2), FAIS-χ2 deemed 26 clusters as significant,
while only one was significantly associated after accounting for population structure
with FastCMH. The situation is similar for the phenotype LES, for which the genomic
inflation factor for FAIS-χ2 is the second largest. 20 clusters of genomic regions were
found to be significantly associated with FAIS-χ2 whereas FastCMH only retrieved
three. Out of all 33 clusters of overlapping genomic regions found by FastCMH, only
16 of them contain at least one marker that would have been deemed significantly
associated by a univariate baseline. Even if we considered univariate “hits” up to
ten kilobases apart to be sufficient for having “discovered” a region, a relaxation that
could be justified due to linkage disequilibrium, six clusters retrieved by FastCMH
would still be undetected. All in all, these findings illustrate the potential of significant
region mining to complement the univariate analyses which remain common practice
in the statistical genetics community.

The results obtained for the COPDGene study are once again even more dramatic.
FAIS-χ2, which suffers from an extreme level of genomic inflation in this dataset (λ =

16.70), reports an anomalously large number of “hits” (88,403). The corresponding
results for FastCMH tell a very different story. Only three clusters of overlapping
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significantly associated genomic regions are deemed significant after population
structure is taken into account. Moreover, these three clusters constitute biologically
plausible findings. The regions in each cluster overlap with a distinct gene in a
gene cluster referred to as the (CHRNA5-CHRNA3-CHRNB4) nicotinic acetylcholine
receptor (nAChR), located in chromosome 15q25.1. Other studies have previously
reported association between these genes and COPD [103, 105]. Most importantly,
none of these three clusters contain markers that would have been deemed significantly
associated by a univariate analysis, reaffirming the usefulness of exploiting genetic
heterogeneity to detect faint association signals in real-world data.

Additional information about all genomic regions found to be significant after
correction for population structure by FastCMH, including all markers involved, their
location, gene annotations (when available) and the corresponding P-values can be
found in the Supplementary Material of [52].

comparison with burden test baselines : To conclude this chapter, we com-
pare FastCMH with a battery of burden tests, which, as stated throughout this chapter,
are a related family of approaches from statistical genetics that also aim to exploit
genetic heterogeneity in GWASs by aggregating contiguous markers.

As a first set of baselines, we used gene-based burden tests to analyse the five A.
thaliana datasets as well as the data from the COPDGene study. Each known gene
was defined to be a candidate genomic region, including all observed markers that
lie in the gene or are at a distance of ten kilobases or less from the gene boundary.
This led to a total of 24, 426 candidate regions for the plant datasets and 17, 817 re-
gions for the human dataset. Moreover, we considered three variants of the burden
test baselines, two of which were based on the LRT test and one on the CMH test.
The latter performed tests of association between the pattern occurrence indicator
GS (X) = 1

[
∑j∈S X(j) > 0

]
and the phenotype Y given the categorical covariate C,

thus being statistically analogous to FastCMH for genomic regions that are present in the
search space of both approaches. For the two burden test baselines based on the LRT
test, we used a logistic regression model with the covariate C represented as k dummy
explanatory variables, which are present in both the null and alternative models. The
alternative models additionally include as explanatory variables either the burden
count ∑j∈S X(j) or the pattern occurrence indicator GS (X) = 1

[
∑j∈S X(j) > 0

]
. Fur-

thermore, for the five A. thaliana datasets, for which it was previously shown that
correcting for population structure is particularly challenging due to their small sam-
ple size, we considered yet another modification of the burden test baselines. For both
LRT-based burden tests, we also repeated the analysis using the real-valued covariates
provided by EIGENSTRAT as explanatory variables. The Bonferroni correction was used
to account for multiple comparisons in all cases, with a target FWER of α = 0.05.

As a result for A. thaliana, if we take the union of all regions deemed significantly
associated by any of the five gene-based burden test baselines, we find that 21%
of the regions they recover are also found by FastCMH, including those which are
most significant. Moreover, gene-based burden tests are by design unable to discover
associations between the phenotype and any marker or region that does not overlap
or is near a gene. This causes up to 45% of all the SNPs discovered by FastCMH to
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be missed by the gene-based burden test baselines. Overall, 40% of all significantly
associated regions are only retrieved by FastCMH. The genomic inflation factor for the
burden test baselines was highly variable and, on many occasions, was substantially
higher than that of FastCMH. For example, for the phenotypes LES and LY, the results
for some of the burden test baselines had genomic inflation factors higher than
1.6. Hence, it is plausible that some of the “hits” obtained with these baselines are
conflated by population structure. Also, it is worth noting that we found considerable
discrepancies between the results of the different five burden test baselines, suggesting
that choosing a statistical model and representation for the covariate is non-trivial for
these methods. Rather than simply taking the union of all “hits”, a more conservative
approach would have required an additional correction for multiple comparisons.
Nevertheless, we chose to overlook this limitation, resulting in a more challenging
comparison for our proposed approach.

Concerning the COPDGene study, none of the three genes (CHRNA5-CHRNA3-
CHRNB4) found by FastCMH was significant when using any of the three gene-based
burden test baselines. Taking the minimum (most significant) P-value across all three
baselines, only the gene CHRNB4 was relatively close to being deemed significantly
associated, with a P-value of 5.72 · 10−6. In contrast, the genes CHRNA5 and CHRNA3

had minimum P-values of 0.24 and 0.41, respectively. This apparent discrepancy owes
to the fact that the significantly associated genomic regions found by FastCMH do
not span the entire genes. By using candidate genomic regions which are too large,
the truly associated subset of markers in the genes is mixed with other irrelevant
features, making the association signal undetectable for these burden test baselines.
FastCMH successfully circumvents this problem, as it is able to test all genomic regions
regardless of their length. Nevertheless, the gene-based burden tests found the
gene ZRANB3 to be significantly associated, with a minimum P-value of 1.56 · 10−6.
FastCMH assigns a similar level of significance to this gene, with a P-value of 2.31 · 10−6.
However, under the more stringent corrected significance threshold necessitated by
FastCMH, P-values of the order of 10−6 are not sufficiently extreme to be deemed
significant.

Finally, we also analysed all six datasets using burden tests with non-overlapping
windows of two different sizes: 500 kilobases and one megabase. The statistical models
and representations for the covariate C used for this study were the same as for the
gene-based burden tests. For the COPDGene dataset, the results for these baselines
mostly coincide with their gene-based counterparts: burden tests were still unable to
retrieve any of the three genes in the nicotinic acetylcholine receptor (nAChR), but
some of them found ZRANB3 to be significant. In A. thaliana, once again we observed
substantial variability across the different versions of the burden test baselines, and
also between the gene-based burden tests and the burden tests with non-overlapping
windows. Nevertheless, the same qualitative assessment remains valid: the burden
test baselines are unable to retrieve many of the findings of FastCMH but also deem
some regions not found by FastCMH as significant.

In summary, our results in real-world data illustrate the complementary nature of
univariate tests, burden tests and significant region mining. None of these approaches
appears to be intrinsically superior. Rather, when considered together, these methods
provide the user the possibility to perform analyses at different levels of granularity.
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Univariate methods are simple, computationally efficient and easy to interpret. They
also suffice to pick up moderate-to-strong association signals, making them a good
starting point when analysing a GWAS dataset. Burden tests and significant region
mining are able to exploit genetic heterogeneity, allowing to detect weaker associations
that would be missed by univariate tests. This effect is particularly relevant when
analysing rare variants, and could become increasingly important in GWASs as
the price of whole-genome sequencing continues to plummet. Burden tests are
particularly useful when prior knowledge is available to select a small subset of
promising candidate genomic regions. As burden tests often require not-too-stringent
corrected significance thresholds, if the choice of candidate regions is adequate, they
can discover associations that significant region mining algorithms would miss. In
contrast, significant region mining makes it possible to carry out an exhaustive scan
of the genome, being completely agnostic about the length or location of the truly
associated regions. We believe this makes significant pattern mining a promising tool
for situations in which sufficiently reliable prior knowledge is not available.
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7
S U M M A RY A N D O U T L O O K

This final chapter will be devoted to summarise the main ideas, contributions and
results presented throughout this thesis, as well as discuss what in our opinion are
some of the most pressing open problems in significant pattern mining.

7.1 summary

Significant pattern mining combines techniques from statistical association testing
and data mining to efficiently discover patterns in data which occur statistically
significantly more often in one class of samples than in another. What sets significant
pattern mining apart from other approaches is its unprecedented ability to cope with
enormous search spaces, possibly containing trillions of candidate hypotheses, while
guaranteeing strict FWER control and exhibiting substantial statistical power. For
example, significant itemset mining algorithms allow to assess the statistical association
of all high-order interactions between binary features with a target of interest. In
the context of biomarker discovery, these methods are a powerful complement to the
univariate association tests and additive models commonly used by domain experts in
computational biology and medicine, as interactions are known to play a key role in
many biological mechanisms. Other instances of significant pattern mining considered
in this thesis include significant subgraph mining, which aims to discover subgraphs
whose occurrence is statistically significantly more common in one specific class of
graphs, and significant region mining, which aims to discover genomic regions for
which the presence of one or more copies of a minor allele is statistically significantly
enriched in cases or controls.

According to the general formulation proposed in the first part of this thesis, an
instance or variant of significant pattern mining can be defined on the basis of: (i)
the type of data under consideration, more precisely, the input domain X in which
observations x lie; (ii) the notion of pattern S and the search spaceM containing all
candidate patterns S under study; and (iii) the concept of occurrence of a pattern S in
an observation x ∈ X . As an example, significant itemset mining can be characterised
by: (i) the input domain is X = {0, 1}p, the set of all p-dimensional binary vectors;
(ii) any subset of features S ⊆ {1, 2, . . . , p} constitutes a pattern, leading to the search
space M being the power set of {1, 2, . . . , p}; and (iii) a pattern S occurs in an
observation x = (u1, u2, . . . , up) if the multiplicative interaction of the binary features
indexed by S , zS (x) = ∏j∈S uj, is non-zero. Both significant subgraph mining and
significant region mining can also be characterised analogously. Irregardless of the
data-specific aspects of the pattern mining problem, the goal of significant pattern
mining can be stated simply using this abstract formulation. We aim to find all
patterns S in the search spaceM for which the binary random variable GS (X) that
indicates the presence or absence of S in a (random) observation X ∈ X is statistically
associated with the binary random variable Y that represents the class label of X.
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This problem statement highlights the crucial role that statistical association testing
plays in significant pattern mining. Techniques such as Pearson’s χ2 test and Fisher’s
exact test, proposed almost a century ago, can be readily used to assess the statistical
association between GS (X) and Y based on a dataset D = {(xi, yi)}n

i=1 with n i.i.d.
realisations of (X, Y). However, what poses an extraordinary challenge in this setting
is the tremendous number of simultaneous association tests that need to be performed.
In other words, significant pattern mining algorithms must handle an extreme instance
of the multiple comparisons problem. A common criterion to account for the fact
that many hypotheses are being tested in parallel is to control the FWER, defined
as the probability of reporting any false positives in the entire collection of tests.
Well-known techniques to control the FWER, such as the Bonferroni correction, rely
on introducing a corrected significance threshold δ that becomes more stringent as
the number of tests |M| being performed increases. Nevertheless, these techniques
completely break down when applied to significant pattern mining, which involves an
unprecedented number of association tests. In this extreme regime, methods like the
Bonferroni correction would result in virtually no statistical power to detect the true
associations present in the data. The solution to this conundrum, which has deterred
the development of significant pattern mining for decades, relies on exploiting special
properties of discrete data. In particular, Tarone’s improved Bonferroni correction
for discrete data, introduced by R. E. Tarone in 1990, lies at the core of significant
pattern mining. Tarone’s method is based on the observation that, when assessing the
statistical association between two discrete random variables, there exists a minimum
attainable P-value strictly larger than zero. Consequently, it can be shown that
many candidate patterns in the search space are untestable, that is, they can neither be
deemed significant nor cause a false positive. By proving that the corrected significance
threshold δ must only be adjusted to account for the number of testable patterns,
which in practice comprise only a small proportion of the entire search space, Tarone’s
method provides an elegant way to solve the main statistical difficulties that significant
pattern mining entails.

Despite being arguably the single most important concept in significant pattern
mining, Tarone’s idea of testability was first proposed in a very different context. The
original publication considered applications, such as clinical trials, which required
fewer than fifty simultaneous association tests. In this setting, Tarone’s method
was shown to outperform a naive Bonferroni correction. However, the difference
between both approaches in the small-scale regime is nowhere as dramatic as it turned
out to be in problems involving trillions of hypotheses, such as significant pattern
mining. Perhaps most importantly, the applications considered in the original article
did not necessitate a computationally efficient approach to compute the corrected
significance threshold δtar resulting from Tarone’s method. A naive strategy, based on
explicitly computing the minimum attainable P-value for every single hypothesis, was
feasible and used instead. As a result, the enormous potential of Tarone’s method for
significant pattern mining remained unnoticed until 2013, when the authors of the
LAMP algorithm showed that a computationally tractable implementation of Tarone’s
method for significant pattern mining was possible and, in doing so, that Tarone’s
method held the key to successfully correct for multiple comparisons in significant
pattern mining. LAMP can be understood as a combination of Tarone’s concept of
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testability and classical techniques from discriminative pattern mining. In particular,
computational tractability is achieved by means of a carefully designed search space
pruning criterion, which allows to exactly compute δtar without the need to neither
enumerate the majority of patterns in the search space nor evaluate their respective
minimum attainable P-values. This pruning criterion relies on specific properties of
the minimum attainable P-value which results from certain statistical association tests,
including both Pearson’s χ2 test and Fisher’s exact test. Given a certain input dataset,
with fixed sample size n and number of samples in the positive class n1, it can be
shown that the minimum attainable P-value pS ,min of a pattern S can be computed as a
function pmin(rS ) of the support rS of S , that is, as a function of the number of samples
in which pattern S occurs. This finding is not only remarkable because it provides a
computationally efficient way to compute pS ,min. Its most important consequence is
that, by additionally proving that the function pmin(rS ) is monotonically decreasing
for any rS ≤ min(n1, n− n1), the well-known Apriori property of pattern mining can
be invoked to design a valid search space pruning criterion: if rS ≤ min(n1, n− n1)

and S is untestable, that is, pS ,min > δ, then pS ′ ,min > δ necessarily holds for any
S ′ ⊇ S . In summary, provided that rS ≤ min(n1, n− n1), i.e. that pattern S is “rare
enough”, S being untestable implies that all supersets of S must also be untestable
and can be pruned from the search space. By incorporating this pruning criterion as
part of the pattern enumeration process, Tarone’s corrected significance threshold δtar

can be efficiently computed in practice.

The LAMP algorithm was originally proposed as a method to find arbitrary combi-
nations of transcription factors which are statistically associated with up-regulation
of gene expression. However, by solving that problem, the authors of LAMP proved
that assessing the statistical association of all high-order interactions between binary
features with a target of interest was, after all, a solvable problem. In spite of this
achievement, the original LAMP algorithm is not devoid of limitations. The main
contributions of this thesis precisely aimed at addressing what we believe were some
of the most pressing shortcomings of the state of the art in significant pattern mining.

A key limitation of Tarone’s improved Bonferroni correction for discrete data and,
consequently, of the LAMP algorithm, is its inability to exploit the existence of statistical
dependencies between the test statistics corresponding to different patterns. The search
space in significant pattern mining is not only enormous, but also heavily redundant.
Perhaps the most evident source of statistical dependence are subset/superset rela-
tionships between patterns. If S ′ ⊇ S then, except in pathological cases, it follows
that the pattern occurrence indicators GS (X) and GS ′(X) are positively correlated
random variables. More generally, the same phenomenon might take place when
any two patterns S1, S2 ∈ M share a common substructure, i.e. when S1 ∩ S2 6= ∅.
GS (X) and GS ′(X) being positively correlated has profound implications, namely,
false positives for S will tend to co-occur with false positives for S ′. Since any given
candidate pattern S in the search space might be related in this manner to many
other candidate patterns, the effective number of tests one must account for in or-
der to guarantee FWER control might be drastically smaller than the total number
of (testable) patterns. This offers an ideal opportunity to improve statistical power
compared to simpler, more conservative approaches which ignore this phenomenon.
Westfall-Young permutation testing is a popular resampling-based procedure that
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can be used to empirically estimate a corrected significance threshold that accounts

for the dependence between test statistics. First, jp resampled datasets
{
D̃(k)

}jp

k=1
are

obtained by randomly permuting the class labels with respect to the observations, that

is, D̃(k) =
{(

xi, yπ(k)(i)

)}n

i=1
, where π(k) : J1, nK → J1, nK is a random permutation

of J1, nK. By construction, the global null hypothesis that no pattern is statistically
associated with the (randomly permuted) class labels holds for all resampled datasets{
D̃(k)

}jp

k=1
. Hence, the FWER at an arbitrary corrected significance threshold δ can

be estimated as the proportion of resampled datasets for which one or more patterns
were erroneously deemed significantly associated with the permuted class labels at
level δ. If p(k)ms denotes the smallest, i.e. most significant, P-value among all patterns in
the search space for the k-th resampled dataset, the resulting corrected significance
threshold would be given by δwy = max

{
δ | 1

jp
∑

jp
k=1 1

[
p(k)ms ≤ δ

]
≤ α

}
. Provided that

jp is sufficiently large, e.g. in the order of 10, 000, the estimate δwy will be robust in
practice. Unfortunately, naively applying permutation testing in significant pattern
mining is computationally unfeasible. Finding p(k)ms via brute force is not computation-
ally tractable even for a single resampled dataset, let alone for jp ≈ 10, 000 of them.
FastWY, the only previously existing permutation testing-based significant pattern
mining algorithm, uses Tarone’s concept of testability to compute p(k)ms efficiently for
each resampled dataset. However, even though FastWY can obtain p(k)ms while enumer-
ating only a small subset of patterns in the search space, it is severely hindered by
the need to repeat the entire pattern enumeration process from scratch for each of
the jp resampled datasets. In this thesis we proposed Westfall-Young light, a novel
permutation testing-based significant pattern mining algorithm that computes δwy

exactly while enumerating patterns only once. FastWY and Westfall-Young light
are statistically indistinguishable but differ vastly in terms of computational efficiency.
A comprehensive empirical study comprising 12 itemset mining datasets and other 12
subgraph mining databases showed that Westfall-Young light is one to three orders
of magnitude faster than FastWY. Even most importantly, the runtime gap appears
to increase with the absolute runtime needed to analyse the dataset, hinting at the
possibility that Westfall-Young light scales more gently than FastWY in practice.
Both approaches also exhibit stark differences in memory usage, specially for the
largest datasets considered in our experiments. For these, Westfall-Young light was
often found to use two to three orders of magnitude less memory. In particular, three
of the itemset mining datasets could not be analysed using FastWY due to its memory
requirements, which exceeded the 256 GB our server was equipped with by a large
margin. In contrast, our proposed approach Westfall-Young light did not have the
same problem, being able to run until completion for all 24 datasets included in our
study.

Perhaps the single most pressing limitation of the first generation of significant
pattern mining algorithms is the impossibility to model external covariate factors. The
need to account for factors of variation that could have a confounding effect is an
ubiquitous problem when exploring data for the life sciences. Given a covariate C that
takes values in a domain C, we say that C has a confounding effect on the association
between GS (X) and Y if these two random variables are (marginally) statistically
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associated yet are statistically independent given C. Intuitively, this situation implies
that the presence or absence of pattern S in an observation X provides no additional
information about Y besides the information that is already contained in the covariate
C. In most potential applications of significant pattern mining in the life sciences,
the aim is to discover association signals which are unrelated to certain sources of
variation such as age, gender or population structure. However, LAMP, FastWY or
Westfall-Young light are all designed to detect patterns S in the search space M
for which GS (X) and Y are deemed (marginally) significantly associated. As a result,
many of the patterns retrieved by these algorithms could turn out to be uninformative
when examined in the light of relevant covariate factors that have been unaccounted
for. A fundamental contribution described in this thesis is FACS, a novel significant
pattern mining algorithm that allows to correct for a categorical covariate C with
an arbitrary number of categories k. More precisely, FACS allows to find patterns
S in the search space M for which GS (X) and Y are statistically associated given
C, under the assumption that C takes values in C = {1, 2, . . . , k}. The Cochran-
Mantel-Haenszel (CMH) test allows assessing the statistical association between
two binary random variables GS (X) and Y given a categorical random variable
C, thus being an ideal choice for this problem. However, replacing unconditional
association tests such as Pearson’s χ2 test or Fisher’s exact test by the CMH test entails
considerable methodological complications. The first obstacle that had to be overcome
concerns the existence of a computationally tractable minimum attainable P-value
function for this test. Owing to the discrete nature of the CMH test, a minimum
attainable P-value does indeed exist, and can be computed in only O(k) operations
as a multivariate function pmin(rS ) of k variables {rS ,c}k

c=1, where rS ,c stands for
the support of pattern S in samples for which the covariate belongs to category c.
Nevertheless, the mere existence and tractability of the minimum attainable P-value
function pmin(rS ) does not suffice to make use of the CMH test as part of a significant
pattern mining algorithm; an alternative search space pruning criterion valid for
the CMH test must also be derived. Existing significant pattern mining algorithms,
such as LAMP, rely on the fact that the function pmin(rS ) is monotonically decreasing
for rS ≤ min(n1, n − n1). This allows them to use a simple yet effective pruning
criterion, consisting of removing from the search space all supersets of untestable
patterns S which satisfy rS ≤ min(n1, n− n1). Unfortunately, the minimum attainable
P-value function pmin(rS ) for the CMH test does not exhibit an analogous behaviour.
To circumvent this limitation, FACS introduces a monotonically decreasing lower
bound of pmin(rS ) as a surrogate to construct a pruning criterion. In spite of the
fact that naively evaluating this lower bound would require O(nk) operations, an
efficient algorithm that exactly computes its value with only O(k log k) operations was
proposed. Equipped with these new techniques, FACS was found to be successful in
drastically reducing the number of false positives due to confounding in both synthetic
data and genome-wide association studies for the plant model organism A. thaliana.
Moreover, it appears that the ability to account for a categorical covariate does not
come at the price of a loss of statistical power or computational efficiency: FACS was
as effective as LAMP in detecting true associations and only required a small runtime
overhead. Finally, despite being designed to handle a single categorical covariate,
our experiments also suggested that a heuristic approach based on discretising low-
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dimensional real-valued covariates can result in satisfactory performance. In particular,
this approach was found to be successful in substantially reducing genomic inflation
due to population structure in two A. thaliana genome-wide association studies.

By providing a principled way to discover statistically significant associations in
enormous search spaces, significant pattern mining offers a unique opportunity to
revisit classic biomarker discovery problems from a different perspective. In the
last part of this thesis, we showcased this potential by proposing a new family of
significant pattern mining-based approaches to carry out genome-wide association
studies at a region level.

During the last decade, genome-wide association studies have become one of the
most popular study designs for biomarker discovery, leading to the identification of
more than 61,000 unique SNP-trait associations as of May 2018. Early genome-wide
association studies have predominantly relied on univariate association tests. However,
as the strongest SNP-trait associations are being found, detecting the remaining weaker
associations, which might jointly explain a large proportion of phenotypic variation,
is becoming increasingly challenging. This difficulty is particularly severe when
studying rare variants, a regime in which unrealistically large sample sizes could
be required for univariate tests to reach satisfactory statistical power. A popular
approach to alleviate this limitation, pioneered by the statistical genetics community,
is to assess the association between genotype and phenotype at a region level, rather
than looking at each marker individually. In this way, multiple neighbouring markers
can be pooled together, forming a joint meta-marker that, under the right conditions,
might exhibit a stronger association with the phenotype than any of the markers
in the region do in isolation. Genome-wide association studies at a region level
have been successful in facilitating the discovery of associations that would have
otherwise remained undetected by univariate approaches. However, state-of-the-art
methods for this task, such as burden tests, are hindered by their inability to perform
a large number of association tests. In a typical dataset with one million genomic
markers, there are more than 500 billion genomic regions to be explored. In order
to reduce the search space to a manageable size, burden tests require the analyst
to prespecify a small subset of candidate regions a priori. In practice, the absence
of strong prior knowledge to guide the definition of the set of regions to be tested
leads to heuristic alternatives, such as only exploring regions of a certain length w.
If the search space was misspecified by, for example, setting the hyperparameter w
too small or too large, the resulting statistical power would plummet. Moreover,
a data-driven choice for w or, more generally, the collection of regions that make
up the search space, would necessitate either an additional correction for multiple
comparisons or the use of a separate validation dataset. While burden tests require
such prior assumptions to be computationally and statistically feasible, significant
pattern mining allows attacking this problem from a fundamentally different angle. As
a last contribution of this thesis, we explored the possibility to carry out genome-wide
association studies at a region level by means of a new instance of significant pattern
mining, which we denoted significant region mining. In particular, we proposed
FAIS and FastCMH, two novel methods that utilise techniques from significant pattern
mining to assess the statistical association of all genomic regions, regardless of their
length or starting position, with a binary phenotype of interest. Formally, given a
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search spaceM = {Jjs, jeK | 1 ≤ js ≤ je ≤ p} comprising all possible genomic regions
one could enumerate, FAIS aims to discover all regions S ∈ M for which the binary
random variable GS (X) that indicates the presence or absence of one or more copies
of a minor allele in S is significantly associated with a binary phenotype Y. Motivated
by the susceptibility of genome-wide association studies to confounding due to factors
of variation such as population structure, FastCMH borrows ideas from our previous
contribution FACS, extending FAIS to allow correcting for a categorical covariate C.
From an algorithmic perspective, significant region mining can be understood as a
restricted version of significant itemset mining. Consequently, FAIS and FastCMH reuse
most of the algorithmic machinery described in this thesis, being heavily based on LAMP
and FACS, respectively. In an exhaustive simulation study, our proposed approaches
were shown to dramatically outperform univariate testing when the association signal
is spread among multiple neighbouring markers, resulting in individually-weak
associations. Most importantly, our results also demonstrated that significant region
mining algorithms exhibit higher statistical power than burden tests whenever the
length l of the truly associated regions is unknown and varies substantially throughout
the genome. The potential of significant region mining to perform genome-wide
association studies at a region level was further corroborated by an analysis of six
real-world genome-wide association studies: five A. thaliana datasets and one study
of Chronic Obstructive Pulmonary Disease (COPD) comprising two human cohorts.
All in all, we found that more than half of all regions for which FastCMH discovered a
statistically significant association would have been undetected by univariate testing,
including some that have strong support in the literature. Many of these regions were
also undetected by burden tests, owing to the restrictive definition of their search space.
Nonetheless, burden tests also detected regions that were missed by our proposed
approaches. More specifically, several regions that had a moderate association with
the phenotype were deemed significant by burden tests but not by FastCMH, which
necessitated a more stringent correction for multiple comparisons. In summary, we
believe these results to be a strong indicator of the role that significant pattern mining
could play in the broad field of biomarker discovery. By expanding the set of problem
formulations which are computationally and statistically tractable, significant pattern
mining should be considered a powerful complement to existing approaches rather
than a substitute.

7.2 outlook

Before the introduction of the LAMP algorithm less than five years ago, accounting for
the multiple comparisons problem in discriminative pattern mining was considered
an unsolvable problem by many. Since then, the young field of significant pattern
mining has experienced substantial progress. Recent developments, including the
contributions described in this thesis, have made significant pattern mining algorithms
faster, able to correct for confounding covariates, improved their statistical power and
expanded the types of problems they can be applied to beyond itemset mining. In spite
of all of these innovations, significant pattern mining still remains an exciting field,
filled with open problems and avenues for future research awaiting to be explored.
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Going beyond FWER control

Throughout this thesis, the FWER has been used as the unifying principle to account
and correct for the multiple comparisons problem. Guaranteeing that the probability
of reporting any false discoveries is bounded from above by a user-defined level
α provides an unequivocally meaningful measure of confidence on the output of
a significant pattern mining algorithm. Moreover, existing techniques to control
the FWER, such as Tarone’s method, have certain properties which are particularly
appealing for their use in data mining. Firstly, they tend to require little processing
time for each enumerated pattern and, as extensively discussed in this thesis, lend
themselves relatively easily to the design of pruning criteria that can be exploited to
drastically reduce the search space. Moreover, they are also extraordinarily general,
guaranteeing strict FWER control regardless of the specific joint distribution of the
test statistics. This is fundamentally important for significant pattern mining since,
as studied in Chapter 4, the collection of test statistics corresponding to all patterns
in the search space might exhibit extensive dependence structures that are not easily
characterised. In spite of all these advantageous properties, FWER control is not
devoid of limitations. In particular, the FWER has been known to be an overly
conservative criterion for several decades, as can be readily understood from its
definition. Strictly requiring that, with high probability, not a single error will be made
might be adequate in critical applications with a low tolerance for errors. However, in
many other exploratory tasks, reporting a small number of false discoveries might be
an acceptable compromise in exchange for gaining statistical power. This observation
has motivated statisticians to develop a wealth of alternative criterions to correct for
the multiple comparisons problem.

fdr control : Controlling the False Discovery Rate (FDR) [106] is arguably the
most popular alternative to FWER control, having achieved widespread adoption in
the life sciences. Mathematically, the FDR is defined as FDR = E

( FP
TP+FP

)
1, that is, as

the expected False Discovery Proportion (FDP). By using a rate as an error measure,
FDR control does not necessarily require a high probability of not producing false
discoveries. Intuitively, a small number of false positives (FP) might be tolerated
provided that the total number of discoveries (TP + FP) is large enough. In practice,
this makes FDR control less stringent than FWER control, improving statistical power
at the expense of an increase in the amount of Type I errors. This trade-off could be
desirable in many potential applications of significant pattern mining, making the
development of novel algorithms that control the FDR instead of the FWER one of the
most promising research directions in the field. However, substantial methodological
complications need to be overcome in order to reach this milestone.

Firstly, unlike the Bonferroni correction or Tarone’s method, most existing techniques
to control the FDR only allow for certain types of dependence between test statistics.
For example, the Benjamini-Hochberg (BH) procedure [106], which is arguably the
most popular approach to control the FDR, was initially only proven to be correct
under the assumption that the test statistics are independent, a condition that is clearly
violated in significant pattern mining. Follow-up work showed that the BH procedure

1. FDP = FP
TP+FP is typically defined to be zero when no discoveries are made, i.e. when TP+ FP = 0.
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also controls the FDR under certain types of dependence [107, Theorem 1.2] and
proposed an extension, often referred to as the Benjamini-Yekutieli (BY) procedure [107,
Theorem 1.3], which is also provably correct under general dependence. However,
both of these alternatives have shortcomings in the context of significant pattern
mining. Verifying whether the types of dependence under which the BH procedure is
valid apply to significant pattern mining or not still remains an open problem. Also,
the BY procedure is known to be overly conservative in many situations, conflicting
with the main motivation to substitute the FWER by the FDR as a criterion to account
for the multiple comparisons problem. Other methods to control the FDR have been
developed as an attempt to achieve a compromise between both extremes, being
applicable to a broader set of types of dependence than the BH procedure while
retaining high statistical power (e.g. [108–110]). Nevertheless, once again, whether
the types of dependence these approaches consider are general enough to be used in
significant pattern mining or not has not yet been shown.

Secondly, most existing procedures to control the FDR have been developed for
applications involving a much smaller number of hypotheses than significant pattern
mining. Designing an algorithm to make any of those procedures computationally
tractable when trillions of simultaneous association tests need to be performed would
be a remarkable contribution in its own right. In particular, many popular methods, in-
cluding the BH and BY procedures, use a step-up strategy to find the set of hypotheses
to be rejected. In a nutshell, these methods require computing the P-values correspond-
ing to all hypotheses and sorting them in decreasing order. In other words, in order to
assess the significance of the collection of tests, step-up procedures proceed from the
least significant hypotheses to the most significant. Nonetheless, naively applying this
strategy in the context of significant pattern mining would in principle require enumer-
ating all patterns in the search space and computing their respective P-values, which
would not be computationally feasible. Thus, step-down FDR-controlling procedures,
even if less commonly known, might be easier to integrate into a significant pattern
mining algorithm. Perhaps most importantly, a computationally tractable significant
pattern mining algorithm using the FDR to account for the multiple comparisons
problem will most likely necessitate a novel pruning criterion. A simple two-step
combination of Tarone’s method and the BH procedure has been shown to successfully
control the FDR [111]. However, deriving an equivalent notion of testability that is
fully optimised for FDR control remains an open problem.

It is worth noting that the development of significant pattern mining algorithms
based on the FDR has already begun to be explored. In particular, recent work [112]
proposed a novel emerging pattern mining algorithm designed to control the FDR
instead of the FWER. The main contribution in this article is the notion of quasi-
testability, which essentially substitutes the implicit use of a Bonferroni correction to
define testability by either the BH or the BY procedures. However, quasi-testability as
defined in [112] requires estimating the number of patterns that would be deemed
significant by the BH or BY procedures. In order to solve this difficulty, the authors
resort to splitting the original dataset into a calibration dataset, used to estimate a
quasi-testability threshold, and a main dataset, in which the significance of the patterns
found to be testable according to the previous result is assessed using either the BH or
the BY procedures. Despite the success of this approach, which has pioneered the use
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of FDR control in significant pattern mining, there are several aspects which could
be further improved in the future. Firstly, the use of data splitting is known to be
inefficient in terms of statistical power and, most importantly, can lead to the output
of the algorithm being unstable, hindering the interpretability of the results. Also,
as previously discussed, the BH procedure might fail to control the FDR in pattern
mining while the BY procedure might be overly conservative. Thus, we expect the
development of FDR-based significant pattern mining algorithms to continue being a
fruitful direction of research.

selective inference: Post-selection inference, or selective inference for short, is
perhaps one of the most innovative and active areas of research in multiple hypothesis
testing [113]. Selective inference aims to devise techniques to carry out valid statistical
inferences after model selection. Formally, consider a search space M containing
a collection of hypotheses to be tested and an algorithm A : (X ×Y)n → P(M)

that chooses a subset A(D) ⊆ M of hypotheses based on the observed data D =

{(xi, yi)}n
i=1. “Classical” P-values pS computed for each hypothesis S ∈ A(D) using

the same data D would no longer be correct; intuitively, using the targets {yi}n
i=1

for model selection leads to “overfitting”. The traditional solution to this problem
is to either avoid model selection altogether or to split the dataset, using only a
subset Dms ⊂ D of the data for model selection and computing the P-values on
the remaining samples D \ Dms. However, data splitting is an inefficient, overly
conservative approach, causing a loss of statistical power. Moreover, different random
splits might lead to distinct results, complicating the interpretation of any findings
reported by the procedure. Selective inference studies how to account for the bias
introduced by model selection, providing a principled, more efficient alternative to
data splitting.

The set of selected hypotheses A(D) can be modelled as a random variable taking
values in P(M), with the n targets {Yi}n

i=1 being the source of randomness. The
information about the targets conveyed by observing a certain outcome A(D) =Mms

of the model selection procedure effectively reduces the sample space for the targets
to the set

{
{yi}n

i=1 ∈ Yn | A
(
{(xi, yi)}n

i=1

)
=Mms

}
. Motivated by this observation,

selective inference accounts for model selection by replacing the original null dis-
tribution of the test statistics Pr(TS (D) = tS | H0) by conditional null distributions
of the form Pr(TS (D) = tS | A(D) =Mms, H0). Interestingly, Tarone’s method can
be understood as an extreme instance of selective inference. The model selection
algorithm implicitly defined by Tarone’s concept of testability, A(D) =Mtest(δtar),
depends on the targets only through N1 = ∑n

i=1 Yi. As all test statistics consid-
ered throughout this thesis treat the observed n1 as a fixed quantity, it follows that
Pr(TS (D) = tS | A(D) =Mtest(δtar), N1 = n1, H0) = Pr(TS (D) = tS | N1 = n1, H0).
In other words, when Tarone’s method is used alongside statistical association tests
which consider the margin N1 an ancillary statistic, there is no need to adjust the
“classical” P-values to account for the use of testability for model selection. Neverthe-
less, for more complex model selection procedures, the conditional null distribution
can differ drastically from the original null distribution. One of the most celebrated
results in selective inference [114, Lemma 5.1 and Theorem 5.2] shows that, under
the assumption that the targets Y = (Y1, Y2, . . . , Yn) follow a multivariate normal
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distribution and that the set
{

y ∈ Rn | A
(
{(xi, yi)}n

i=1

)
=Mms

}
can be described

as a polyhedron {y ∈ Rn | Cy ≤ d} with C ∈ Rm×n and d ∈ Rm independent of y,
P-values adjusted for model selection can be computed in closed-form based on a
truncated normal distribution. In particular, these assumptions are sufficiently general
to be applicable to ubiquitous model selection procedures such as the lasso, elastic
net, marginal screening or forward step-wise regression, among others.

Recent work [115] has started investigating how to make use of selective inference
in significant pattern mining. In principle, the framework proposed in [114] can be
directly applied to pattern mining by treating each pattern occurrence indicator gS (x)
as a different feature in an extremely high-dimensional linear model. However, the
design of a practical algorithm implementing this idea is beset by the sheer size of
the search space. More precisely, in the context of significant pattern mining, the
polyhedron {y ∈ Rn | Cy ≤ d} representing the selection event would be described
by trillions of inequalities, rendering a naive implementation of the method in [114]
computationally intractable. The algorithm proposed in [115] circumvents this chal-
lenge by means of a novel search space pruning criterion, drastically speeding-up
the computation of valid post-selection P-values in significant pattern mining. Nev-
ertheless, selective inference is still a modern field which continues to evolve as it
progressively overcomes its own limitations. For instance, all the derivations in [114]
rely on certain restrictive assumptions, such as considering that the noise variance σ2

e
is known a priori or that the hyperparameters of the model selection algorithm are
fixed. Follow-up work (e.g. [116–120]) alleviates these shortcomings, opening the door
to many exciting possibilities to develop novel significant pattern mining algorithms
based on selective inference.

Accounting for heterogenous directions of effect

In several instances of significant pattern mining studied in this thesis, the pattern
occurrence indicator gS (x) can be understood as a specific nonlinear function of a
subset of binary features indexed by the pattern S , i.e., gS (x) = f

({
uj
}

j∈S

)
with

x = (u1, u2, . . . , up). For instance, significant itemset mining investigates multiplicative

interactions of the form f
({

uj
}

j∈S

)
= ∏j∈S uj whereas significant region mining

effectively uses a pooling transformation f
({

uj
}

j∈S

)
= max

j∈S
uj after an appropriate

encoding of the p original integer-valued features, uj = 1 [x(j) > 0]. Since the function
which defines the pattern occurrence indicator gS (x) is chosen a priori, it is possible for
a subset of features

{
Uj
}

j∈S to be jointly statistically associated with the target Y even
if the corresponding pattern occurrence indicator GS (X) is statistically independent
of Y. Ultimately, this limitation might cause interesting associations to be missed.

Carrying out a nonparametric association test between the target Y and all feature
subsets

{{
Uj
}

j∈S | S ∈ M
}

might be unrealistic in the context of significant pattern
mining. However, developing significant pattern mining algorithms which can adapt
the function gS (x) = f

({
uj
}

j∈S

)
defining the pattern occurrence indicator in a

data-driven manner could be an impactful intermediate step in that direction. A
common situation whereby an existing statistical association between

{
Uj
}

j∈S and
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Y might be missed by existing significant pattern mining algorithms occurs when
the features indexed by S exhibit heterogeneous directions of effect. That is, when a
subset Sp ⊂ S of the features are positively correlated with Y whereas the remaining
features Sn = S \ Sp are negatively correlated. Intuitively, in this case the effects of
the features indexed by Sp and Sn “cancel out” in the pattern occurrence indicator
GS (X) of pattern S . If GSp(X) and GSn(X) were not associated sufficiently strongly
with Y to be detected individually, the association signal would remain undiscovered
by the significant pattern mining algorithm. This example is of critical importance,
specially in significant region mining: as only contiguous subsets of features (regions)
are considered, it could occur that the subsets Sp and Sn are never tested on their own,
making it very unlikely for the algorithm to deem the region significantly associated.
If, for each pattern S , the subsets Sp and Sn could be identified, it would in principle
be possible to define a pattern occurrence indicator that combines their effects in a
constructive, rather than destructive manner, thereby alleviating this limitation.

Define Sj = sign
(

Aj − rj
N1
n

)
∈ {−1, 0,+1} to be the direction of effect of feature

j ∈ S estimated from the data. Sj is a random variable, as it depends on the
targets {Yi}n

i=1 through Aj = ∑n
i=1 ui,jYi. One simple possibility to make the pattern

occurrence indicator flexible enough to account for heterogenous directions of effect is
to consider functions of the form GS (x) = f

({
uj
}

j∈S |
{

Sj
}

j∈S

)
. Note that, in this

case, the dependence of the pattern occurrence indicator GS (x) on
{

Sj
}

j∈S makes it a
random variable as well, even if the observation x = (u1, u2, . . . , up) was treated as

fixed. For example, one such function f
({

uj
}

j∈S |
{

Sj
}

j∈S

)
could be

GS (x) = ∏
j∈S|Sj=+1

uj − ∏
j∈S|Sj=−1

uj = GSp(X)− GSn(X).

However, the discussion which follows applies to any function that depends only
on the targets {Yi}n

i=1 only through
{

Sj
}

j∈S and N1 = ∑n
i=1 Yi. Given a dataset

D = {(xi, yi)}n
i=1, define AS = ∑n

i=1 GS (xi)Yi and RS = ∑n
i=1 GS (xi) analogously to

Section 2.2. While it might be tempting to use the observed values of aS , rS , n1 and
n to perform an association test as discussed throughout this thesis, the fact that
the pattern occurrence indicator GS (x) depends on the targets {yi}n

i=1 through the
observed directions of effect

{
sj
}

j∈S would render such an approach invalid. This
setting is reminiscent of the problem of statistical inference after model selection and,
as such, some of the core techniques of selective inference could be of great use.

We began to explore this connection in [121] where, provided that the sample size n
is large enough to assume that the random vector (AS , A1, A2, . . . , A|S|) approximately
follows a multivariate normal distribution, it was shown that the conditional null
distribution

Pr
(

AS = aS |
{

Sj = sj
}

j∈S , N1 = n1, H0

)

can itself be satisfactorily approximated by a truncated normal distribution. Using this
result, valid P-values that account for the fact that the pattern occurrence indicator
GS (X) was constructed with (partial) information about the targets {yi}n

i=1 can be
computed in closed-form. Moreover, it was also shown in [121] that, for some specific
functions f

({
uj
}

j∈S |
{

Sj
}

j∈S

)
used to build the pattern occurrence indicator, a
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minimum attainable P-value exists, allowing to use Tarone’s concept of testability.
However, in order to incorporate this conceptual idea into a practical significant
pattern mining algorithm, several key open problems remain to be solved. Firstly,
computing Tarone’s minimum attainable P-value naively for the pattern occurrence
indicators we considered is computationally intensive, with worst-case complexity
exponential in the sample size n. While a lower bound on the exact minimum
attainable P-value can be obtained by solving a linear program, the resulting approach
might still be too computationally demanding for typical significant pattern mining
problems. Perhaps most importantly, an effective pruning criterion has not yet been
designed. Solving these challenges to propose the first significant pattern mining
algorithm that can correct for heterogeneous directions of effect could be particularly
impactful for applications such as genome-wide association studies. More generally,
investigating the use of selective inference to allow for more expressive, data-driven
functional forms for the pattern occurrence indicator is a promising avenue for future
research.

Enhancing interpretability by identifying redundant significant patterns

The redundant nature of the search space in significant pattern mining has been a
major theme in this thesis. One of its consequences, studied in great detail in Chapter 4,
is to reduce the effective number of tests that need to be corrected for when accounting
for the multiple comparisons problem. Algorithms which exploit this phenomenon,
such as FastWY and Westfall-Young light, will exhibit greater statistical power than
those which do not. However, the existence of strong statistical dependencies between
test statistics also makes it extraordinarily difficult to differentiate between significantly
associated patterns that correspond to original association signals and those whose
association is merely mediated by a related pattern. In practice, this means that each
individual association signal might be represented in the output of a significant pattern
mining algorithm by hundreds or even thousands of heavily-redundant patterns, such
as subsets or supersets of the (unknown) truly associated pattern. This phenomenon
can seriously hinder the interpretability of the results, specially when compounded
with statistical dependencies that might exist between the original features in the
dataset.

In Chapter 6, we introduced a heuristic, post hoc approach to manage this problem
in significant region mining. By simply grouping overlapping significantly associated
genomic regions, the output can be represented as disjoint clusters, greatly aiding
interpretability. Nevertheless, this naive solution is only possible due to the char-
acteristics of the search space in significant region mining. In particular, any two
non-overlapping, significantly associated regions Sa and Sb will belong to the same
cluster if and only if there is a sequence Sa = S0, S1, . . . , Sj = Sb of significantly
associated patterns satisfying Si ∩ Si−1 6= ∅ for all i = 1, . . . , j. As this will seldom
occur unless Sa and Sb lie close to each other in the genome, individual association
signals tend to form disjoint clusters of overlapping, significantly associated regions.
In contrast, in other instances of significant pattern mining, for any two significantly
associated patterns Sa and Sb there are many other patterns S in the search space
which are related (e.g. have a sufficiently small Jaccard distance) to both Sa and Sb. As
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a result, using the naive strategy described in Chapter 6 in this situation would often
result in very few “super-clusters” that merge many individual association signals
together.

Given a setMsig,raw of significantly associated patterns, it could be argued that the
gold standard post hoc pattern summarisation approach would aim to find a “minimal
Markov blanket of patterns”, that is, a minimal setMsig,mb ⊆Msig,raw that satisfies
Pr(Y = y | {GS (x) = gS (x)}S∈Msig,mb

) = Pr(Y = y | {GS (x) = gS (x)}S∈Msig,raw
).

Ideally, the method would also be able assign each “redundant pattern” S ∈ Msig,raw \
Msig,mb to one or more “driver patterns” inMsig,mb which mediate their association
with the target Y. However, such a procedure might be unfeasible in practice, both
computationally, as |Msig,raw| could be rather large, and statistically, since the pattern
occurrence indicators of distinct patterns in Msig,raw might be too correlated for
Msig,mb to be identifiable. Thus, we believe that developing computationally tractable
methods to summarise the output of significant pattern mining algorithms in a
parsimonious, stable and principled manner would constitute an impactful avenue for
future research, specially in the context of biomarker discovery where interpretability
is essential.

Alternatively, an even more ambitious research direction to combat the effects of
redundancy on the interpretability of significant pattern mining algorithms would be
to modify the problem statement itself, preventing redundant patterns from ever being
discovered. For example, one could conceive an algorithm which, akin to forward
stepwise regression, iteratively aims to find the pattern Sj whose pattern occurrence
indicator GSj(X) is most strongly associated with the target Y given the presence or
absence of all patterns GS1(X), GS2(X), . . . , GSj−1(X) selected in previous interations.
For sufficiently small j, the techniques described in Chapter 5 could be used to solve
this problem at each iteration. However, a naive implementation of such an algorithm
would have serious shortcomings. Firstly, in principle patterns would be enumerated
from scratch at each iteration, greatly increasing runtime. Secondly, approaches based
on stepwise regression are often unstable, with small perturbations of the original
dataset potentially leading to a drastically different set of patterns being selected.
Also, it is a priori unclear how to select a stopping criterion or how to condition on the
set of patterns already included in the model if the resulting number of categories was
too large relative to the sample size of the datasets. It is worth noting that the version
of the selective inference-based approach in [115] that uses Orthogonal Matching
Pursuit (OMP) [122] offers protection against redundancy to some extent as a result of
the model selection stage. However, despite being a promising direction to obtain a
parsimonious set of significantly associated patterns, this method also shares some
of the aforementioned limitations, such as the absence of a principled scheme to
select the hyperparameters of the model selection algorithm and the potential lack of
stability of the set of selected patterns to small perturbations of the dataset. Therefore,
the design of novel significant pattern mining algorithms to discover a minimal and
stable set of patterns that maximally explain the variation in the target still remains
an open problem.
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Extending significant pattern mining to real-valued features

Discrete data is at the heart of significant pattern mining. When testing the as-
sociation between two discrete random variables, there is only a finite number of
distinct P-values that can be obtained and, consequently, there exists a minimum
attainable P-value strictly greater than zero. That is the basis of Tarone’s concept of
testability and the essential principle all significant pattern mining algorithms hinge
on. In contrast, statistical association tests for continuous random variables can in
principle produce arbitrarily small P-values, making it impossible for any hypothesis
to be untestable. This discrepancy between the behaviour of discrete and continuous
random variables can also be intuitively understood through the lens of information
theory. The mutual information I (GS (X); Y) between two discrete random variables
GS (X) and Y is bounded from above by the entropy H (GS (X)) of GS (X). Thus, in
the context of significant pattern mining, if a pattern S is too rare or too common, it
cannot convey enough information about the target Y to be deemed significant. The
situation for continuous random variables is, however, drastically different. If GS (X)

and Y were both real-valued, it would be possible for GS (X) to have an arbitrarily
small (differential) entropy while simultaneously making the mutual information
between GS (X) and Y arbitrarily large. In essence, this phenomenon is a consequence
of the fact that differential entropies can be negative whereas entropies cannot. For
example, suppose that (GS (X), Y) followed a bivariate normal distribution with zero
mean, Var(GS (X)) = σ2

1 , Var(Y) = σ2
2 and Cov(GS (X), Y) = ρσ1σ2. Then, the differ-

ential entropy h (GS (X)) = 1
2 log

(
2πeσ2

1

)
of GS (X) can be made as small as desired

by letting σ1 tend to 0 without affecting the mutual information, which is equal to
I (GS (X); Y) = − 1

2 log
(
1− ρ2) and can grow without bound as ρ tends to 1. Without

the possibility to reduce the search space by means of Tarone’s notion of testability,
significant pattern mining on real-valued data might appear to be hopeless. On some
occasions, there might be a natural way to discretise continuous features. For instance,
many clinical variables can be summarised as either normal or abnormal and, in some
cases, it might be possible to establish a minimum level of gene expression above
which the gene can be considered to be active. More generally, if the distribution of a
feature is markedly bimodal, median-based binarisation could provide a reasonable
heuristic to analyse the data with any of the algorithms discussed throughout this
thesis. Nevertheless, such an approach is undoubtedly unsatisfactory: in many cases,
it might be preferable to maintain the more nuanced representation of the data which
real-valued features provide or there might not be a natural way to discretise the data.

Recently, [123] proposed a simple yet innovative idea to define a notion of sup-
port for multiplicative interactions between continuous features, which is used
as part of a frequent itemset mining algorithm for real-valued data. In order
to capture a large amount of information from the original continuous features
in a discrete representation, their method makes use of a probabilistic ensemble
of many possible ways to binarise the dataset. More precisely, let D = {xi}n

i=1
be a dataset with n i.i.d. observations x = (v1, v2, . . . , vp) ∈ Rp. Define T =

(T1, T2, . . . , Tp) ∈ Rp to be a set of p (random) binarisation thresholds and denote
X (T) =

(
U1 (v1, T1) , U2 (v2, T2) , . . . , Up

(
vp, Tp

))
∈ {0, 1}p the resulting binarised

observation, where Uj
(
vj, Tj

)
= 1

[
vj > Tj

]
is the j-th binarised feature. Given a
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probability density function Pr (T = t) = ∏
p
j=1 Pr

(
Tj = tj

)
, [123] defines the support

of an itemset S ⊆ {1, 2, . . . , p} in D as the average of the support of S in the ensemble
of binarised datasets

{
{xi (t)}n

i=1 | t ∈ Rp}, that is,

rS = ET (rS (T)) = ET

(
n

∑
i=1

GS (Xi (T))

)
=

n

∑
i=1

ET (GS (Xi (T)))

=
n

∑
i=1

ET

(
∏
j∈S

Ui,j
(
vi,j, Tj

)
)

=
n

∑
i=1

∏
j∈S

ETj

(
Ui,j

(
vi,j, Tj

))
=

n

∑
i=1

∏
j∈S

Pr
(
Tj ≤ vi,j

)
,

where the second-to-last step follows from the assumption that the thresholds
{

Tj
}n

j=1
are jointly independent. Therefore, the support rS of a real-valued itemset, as defined
by [123], heavily depends on the set of distributions

{
Pr
(
Tj = tj

)}p
j=1 chosen by

the user. More specifically, it depends on Pr
(
Tj = tj

)
through evaluations of its

cumulative distribution function Pr
(
Tj ≤ tj

)
at n different points, which correspond

to the n realisations
{

vi,j
}n

i=1 of the j-th feature in the dataset D. Consequently, without
loss of generality, it suffices to consider piecewise-constant distributions of the form

Pr
(
Tj = tj

)
=





p0,j, if tj < vπ(1),j ,

p1,j, if vπ(1),j ≤ tj < vπ(2),j ,
...

...

pn−1,j, if vπ(n−1),j ≤ tj < vπ(n),j ,

pn,j, if tj ≥ vπ(n),j ,

where π(i) denotes the index of the i-th smallest element in
{

vi,j
}n

i=1
2. Moreover,

note that any threshold strictly smaller than vπ(1),j or greater or equal than vπ(n),j
would lead to the j-th binarised feature being constant across all observations. As
either of these choices would result in no information being captured by the binary
representation, it is plausible to further impose p0,j = pn,j = 0, effectively leaving n− 2
degrees of freedom to define the distribution Pr

(
Tj = tj

)
. Motivated by its desirable

computational properties, the authors in [123] specifically propose to use a distribution
that assigns an identical probability mass to the remaining n− 1 “threshold bins”, i.e.,
pi,j =

1
n−1

1
vπ(i+1),j−vπ(i),j

for 1 ≤ i ≤ n− 1. In particular, it can be readily shown that

this choice implies that Pr
(
Tj ≤ vi,j

)
= rank

(
vi,j;D

)
, where rank

(
vi,j;D

)
= π−1(i)−1

n−1
denotes the normalised rank of vi,j in

{
vi,j
}n

i=1 and π−1(i) its absolute rank. As a
result, the average pattern occurrence indicator ET (GS (Xi (T))) of an itemset S in
an observation xi can be easily computed as the product of the normalised ranks of{

vi,j
}

j∈S , that is,

ET (GS(Xi(T))) = ∏
j∈S

rank
(
vi,j;D

)
∈ [0, 1].

Most importantly, recent work [124] identified the potential that the concepts
proposed by [123] have to make significant pattern mining for real-valued data

2. For the sake of simplicity, in this informal discussion we assume there are no ties.
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possible. In a nutshell, a 2 × 2 contingency table analogous to those introduced
in Section 2.2 can be constructed using aS = ∑n

i=1 yi ∏j∈S rank
(
vi,j;D

)
and rS =

∑n
i=1 ∏j∈S rank

(
vi,j;D

)
. The statistical association between an itemset S and the

binary target Y can then be assessed based on the observed values of aS , rS , n1 and n.
Due to the way aS and rS are defined, they are not guaranteed to be integer-valued.
To circumvent the difficulty that fractional counts pose for some statistical association
tests, such as Fisher’s exact test, the authors proposed to use the G-test [125] instead.
One of the most remarkable contributions of [124] is to prove that, when the G-test
is used in conjunction with the notion of support introduced by [123], a minimum
attainable P-value does exist and can be computed in closed-form in a computationally
efficient manner. Moreover, [124] also showed that the resulting minimum attainable
P-value function is monotonically decreasing for rS ≤ min(n1, n− n1) and that S ′ ⊇ S
implies rS ′ ≤ rS also when rS is defined as in [123]. Thus, the same pruning criterion
used by the LAMP algorithm (see Proposition 3.4) is valid for this new approach.
Combining all these techniques, [124] proposed the first algorithm able to assess
the statistical association of all high-order multiplicative interactions of continuous
features with a binary target of interest while guaranteeing strict FWER control.

Consider a naive baseline algorithm, consisting of arbitrarily choosing a single set
of thresholds t to obtain a binary representation {xi (t)}n

i=1 of the input observations.
Using such a method, the G-test P-value corresponding to an itemset S would be given
by pG (aS (t) | n, n1, rS (t)). On many occasions, using a unique value for t chosen a
priori, perhaps by means of a heuristic such as median-based binarisation, will fail to
capture an existing association between the multiplicative interaction of the features
indexed by S and the target of interest Y. In order to obtain a more expressive model,
the novel approach in [124] effectively computes each P-value as

pG (ET (aS (T)) | n, n1, ET (rS (T))) ,

where, intuitively, the average values aS = ET (aS (T)) and rS = ET (rS (T)) across
a probabilistic ensemble of thresholds provide a more faithful representation of the
original data. The success of this approach, which pioneered the development of
significant pattern mining algorithms for real-valued data, inevitably poses several
fundamental questions.

Firstly, the P-values computed using the method in [124] strongly depend on
the distribution of the binarisation thresholds. While a uniform distribution on
the n − 1 “threshold bins”, as proposed in [123], might be a reasonable starting
point, it is plausible that other distributions could lead to higher statistical power
or better computational properties. Perhaps most interestingly, the aforementioned
comparison with a naive baseline suggests a third, still unexplored approach. Rather
than evaluating the test statistic at the average values of aS (T) and rS (T), i.e. defining
TS = TG (ET (aS (T)) | n, n1, ET (rS (T))), one could compute instead the average
value of the test statistic, that is,

TS = ET (TG (aS (T) | n, n1, rS (T))) ,
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from which a P-value could then be simply obtained as pS = 1− Fχ2
1
(TS ) 3. This

alternative approach might be advantageous in some situations. For example, consider
a toy problem where a uniformly-distributed feature Vj ∼ U(0, 1) is single-handedly
responsible for the association with the target Y according to the model

Pr(Y = 1 | vj) =





1− ε, if vj ≤ 1
4 ,

ε, if 1
4 < vj ≤ 3

4 ,

1− ε, if vj >
3
4 .

As ε tends to zero, the association between Vj and Y can be made arbitrarily strong, up
to the point where Y becomes a deterministic function of the input feature. However,
evaluating the G-test TG at ET (aS (T)) and ET (rS (T)) would fail to reveal this
association. In contrast, there exists a range of values for t with high probability under
Pr (T = t) for which TG (aS (t) | n, n1, rS (t)) is rather large. Consequently, the average
value ET (TG (aS (T) | n, n1, rS (T))) of the test statistic TG will be sufficiently large
for the association to be discovered. Perhaps most importantly, a minimum attainable
P-value exists for this alternative approach as well; since for each (n, n1, rS (t)) the
G-test attains a finite maximum, its average over the distribution Pr (T = t) must
be finite too. Whether the resulting minimum attainable P-values are sufficiently
large to be practically useful alongside Tarone’s method or not will depend on the
induced distribution of rS (T). However, it would in principle be possible to tweak
the distribution Pr (T = t) to ensure an adequate interplay with Tarone’s method.
Nonetheless, investigating the effectiveness of these ideas as part of a significant
pattern mining algorithm for real-valued data remains an open problem. In particular,
developing a computationally efficient algorithm to evaluate the resulting minimum
attainable P-values and designing a valid pruning criterion are some of the most
immediate hurdles in this direction. Finally, one could also consider a fourth, arguably
more ambitious alternative: substituting the averaging over a distribution Pr (T = t)
by a maximisation over t ∈ Rp, using selective inference to account for the effects of
model selection, that is,

TS = max
t∈Rp

TG (aS (t) | n, n1, rS (t)) ,

where P-values adjusted for the fact that the optimal set of thresholds t∗ was obtained
using the input dataset D could be derived based on a conditional null distribution
of the form Pr (TS (D) = tS | T∗ (D) = t∗, H0). Key issues such as exploring how to
efficiently compute those P-values, studying if a minimum attainable P-value exists for
this test statistic and can be used effectively alongside Tarone’s method, developing
a valid pruning criterion or investigating whether the set of thresholds t∗ should be
optimised in a per-pattern basis or, rather, jointly for all patterns, are all exciting
open problems to be considered. More complex binarisation schemes than the use
of a single threshold per feature as a splitting point could be researched next. All in

3. Under the null hypothesis H0 :
{

Vj

}
j∈S

⊥⊥ Y, any function of
{

Vj

}
j∈S

is statistically

independent of the target Y, including GS (X (t)) = ∏j∈S 1
[
Vj > tj

]
for any t ∈ Rp. Thus,

TG (aS (t) | n, n1, rS (t)) asymptotically follows a χ2
1 distribution for all t and so does the average

test statistic ET (TG (aS (T) | n, n1, rS (T))).
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all, significant pattern mining for real-valued datasets is definitely one of the next
frontiers in the field, and we hope to see a wealth of new approaches being proposed
within the next few years.

Speeding-up significant pattern mining algorithms

Since the inception of LAMP, follow-up work [65, 66] has refined the algorithmic
interplay between Tarone’s method and pattern enumeration, leading to drastic im-
provements in the computational efficiency of significant pattern mining algorithms.
Nevertheless, significant pattern mining remains inexorably linked to frequent pattern
mining, which is well-known to be an extraordinarily computationally demanding
problem. As a result, existing methods still struggle to analyse large-scale datasets,
particularly those which are not sparse. This limitation severely hinders the applicabil-
ity of significant pattern mining in multiple biomarker discovery tasks. For example,
datasets originating from genome-wide association studies might comprise millions
of features, a large proportion of which could be rather dense, with typical sparsity
ratios in the range [0.15, 0.5].

A possibility to further speed-up significant pattern mining algorithms and broaden
the scope of problems they can be applied to is to redesign them to take advantage of
modern computing resources. In particular, parallelising existing significant pattern
mining algorithms is a key topic for future work. Due to the sequential nature of pat-
tern enumeration and the tendency of depth-first search to create highly-unbalanced
enumeration trees, naive strategies to distribute the workload are unlikely to exhibit a
satisfactory performance. Recent work [89] started studying this subject, leading to
the MP-LAMP algorithm, a parallel implementation of LAMP 2.0 which utilises global
load balancing [126] to achieve a remarkable efficiency; empirically, up to 1, 175-fold
speed-ups were observed when using 1, 200 cores. Additionally, [127] explored a
GPU-based implementation of the Westfall-Young permutation testing procedure for
significant itemset mining in the context of genome-wide association studies, reporting
up to 619-fold speed-ups compared to a naive baseline implementation.

Alternatively, the redundant nature of the search space in significant pattern mining
might provide a complementary opportunity to reduce the runtime of existing ap-
proaches. Intuitively, it could be possible to ascertain the significance of many patterns
to a reasonable degree of accuracy without ever computing their test statistics. Instead,
related patterns might be used to impute the missing test statistics, as it is often done
in univariate genome-wide association studies by exploiting linkage disequilibrium
(e.g. [128]). A hypothetical approach which successfully exploited this idea could
devise a more aggressive form of search space pruning, effectively allowing to reduce
runtime at the expense of possibly having a non-zero number of false negatives among
the pruned patterns. Investigating to which extent such a technique could speed-up
significant pattern mining while maintaining high statistical power still remains an
open problem.

Circumventing existing flaws of Tarone’s method

As extensively discussed throughout this thesis, Tarone’s method is omnipresent in
significant pattern mining. Despite its many virtues, the concept of testability also has
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some arguably undesirable properties. Perhaps the most impactful of all is its inability
to exploit the dependence between test statistics, a limitation which was the main
subject of study of Chapter 4 and culminated in the design of the Westfall-Young
light algorithm. However, other negative aspects of Tarone’s method have not been
addressed yet in the context of significant pattern mining.

A particularly unintuitive property of Tarone’s method is its lack of monotonicity
with respect to the target FWER α. In other words, it is entirely possible for a pattern
to be deemed significantly associated at level α and yet fail to achieve significance at
a less stringent target FWER α′ > α. In essence, this can occur whenever the ratio
between α′ and α is exceeded by the ratio between the number of testable patterns at
levels α′ and α. This problem has long been known, and extensions of Tarone’s method
which are monotonic on the target FWER have been proposed [129, 130]. However,
these have not been yet incorporated into a significant pattern mining algorithm.

Another aspect of Tarone’s method which can be subjected to criticism is its reliance
on a dichotomous interpretation of P-values. In a nutshell, P-values quantify how well
the probabilistic model postulated under the null hypothesis fits the observed data,
thus being an indirect, continuous measure of statistical significance. However, merely
reporting whether a null hypothesis was accepted or rejected provides a much less
informative description of the results than the exact P-value. For example, consider
a toy problem in which three hypotheses are being tested at a certain a corrected
significance threshold δ, with corresponding P-values p1 = 1

1000 δ, p2 = 999
100 δ and

p3 = 1001
1000 δ. In this situation, the data clearly does not support the first null hypothesis

while the evidence against the second and third null hypotheses is inconclusive.
Most importantly, the difference in significance between these two last tests is clearly
inconsequential in practice. Thus, simply stating that the two first null hypotheses were
rejected while the third was accepted is arguably misleading; doing so would implicitly
overstate the significance of the second test while downplaying the significance of
the first test, for which the evidence against the null hypothesis is much stronger,
and third test, whose significance is virtually equivalent to that of the second test.
This phenomenon is well understood, being one of the main reasons why statisticians
strongly recommend always reporting exact P-values, alongside effect sizes and
confidence intervals. Unfortunately, Tarone’s concept of testability is defined explicitly
in terms of a binary interpretation of P-values; a hypothesis is testable if and only
if its P-value could possibly be smaller or equal than δ. Even though this aspect of
testability might be philosophically unappealing, it only has a minor practical impact
in significant pattern mining. Indeed, the primary role of significant pattern mining
is not to be a standalone, definitive method to validate scientific findings but, rather,
to provide a powerful tool for data exploration. As such, these algorithms should
be used as part of a fluid process, complemented with both prior knowledge and
follow-up studies.

Incorporating different forms of prior knowledge

Finally, another interesting avenue for future research is the possibility to incorporate
certain types of domain knowledge by restricting the set of patterns which form the
search space.
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Significant region mining can be considered to be a representative example of this
idea. Rather than attempting to aggregate the (possibly weak) effects of any subset
of markers, only contiguous subsets of features are considered. This is motivated by
the phenomenon of genetic heterogeneity, whereby it is postulated that neighbouring
genomic variants could affect the phenotype in a similar manner, justifying pooling
contiguous markers into a joint meta-marker.

Other ubiquitous form of prior knowledge in the context of biomarker discovery
are biological networks, such as co-expression networks [131], pathways [132] or
protein-protein interaction networks [133], among others. Formally, all of these can be
described as a graph where each node corresponds to a different feature and edges
represent the existence of a relationship between two features. This structure could be
exploited to reduce the set of patterns in the search space, for example, by enumerating
only subsets of features which form a connected subgraph in the network. Other
heuristic alternatives, such as exploring shortest paths or a certain number of random
walks could also be investigated.

In general, the use of prior knowledge can drastically reduce the number of candi-
date patterns in the search space. This can greatly improve computational efficiency
and, if the assumptions turn out to be appropriate, it will also translate into a gain in
statistical power.

7.3 closing remarks

In recent years, vast improvements in data availability and computing power have
spurred unprecedented progress in data science. Machine learning is at the forefront
of these developments, with deep learning-based methods in particular revolutionising
fields such as computer vision, speech recognition, natural language processing or
reinforcement learning [134]. Many of these problems are characterised by high
signal-to-noise ratios and the availability of a large number of training samples;
the key challenge being to design predictive models which can efficiently learn the
extraordinarily complex structures present in the training data in a way that generalises
to unseen observations. This revolution has also transformed biomarker discovery,
albeit in a different direction. While sample sizes are indeed getting bigger, so is
the number of measurements (features) being acquired. The resulting datasets are
often extremely high-dimensional, can have large amounts of noise in the explanatory
variables and/or labels and, more generally, might not contain all the information
necessary to build an accurate predictive model. In these settings, machine learning
has been poised to become an integral component of the scientific method in the
big data era, providing domain experts with the necessary tools to navigate large-
scale, noisy datasets in search for salient patterns that can be further investigated
in follow-up studies. As other modern developments in statistical methodology,
such as sparsity-inducing regularisation, false discovery rate control, empirical Bayes
estimation or post-selection inference, the emergence of significant pattern mining
is a response to this outstanding challenge. By combining the search capabilities of
discriminative pattern mining with a rigorous correction for the multiple comparisons
problem, we hope that significant pattern mining will provide researchers in the life
sciences and other domains with a valuable set of tools for knowledge discovery.

163



summary and outlook

While still being a young field, the substantial progress it has experienced in the last
five years, coupled with exciting new developments in related disciplines, strongly
suggest that significant pattern mining will continue to be a fruitful research topic for
many years to come.
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A P P E N D I C E S





A
C H A P T E R S U M M A R I E S

summary of chapter 2

Problem Statement and Terminology

— Significant pattern mining provides tools to explore datasets D = {(xi, yi)}n
i=1

containing n labeled observations (x, y), where x exists in a discrete input
domain X and y is a binary class label.

— A pattern S is informally defined to be any discrete substructure of the input
domain X . The pattern occurrence indicator gS (x) takes value 1 if pattern S occurs
in a sample x ∈ X and value 0 otherwise.

— Given a search space of candidate patternsM, significant pattern mining aims
to find discriminative patterns S ∈ M for which the class labels Y and the pat-
tern occurrence indicator GS (X) are statistically dependent (or associated) random
variables.

— Specific instances of significant pattern mining that will be covered in this thesis
include:

(i) Significant itemset mining, which deals with p-dimensional binary vectors
(X = {0, 1}p). A pattern S indexes a subset of the p binary features and is
defined to occur in a sample x = (u1, u2, . . . , up) if the multiplicative feature
interaction zS (x) = ∏j∈S uj it induces takes value 1, i.e. gS (x) = zS (x).

(ii) Significant subgraph mining, which operates on graphs with categorical labels
(X = {x | x = (V, E, lV,E)}, where V is a set of nodes, E ⊆ V ×V a set of
edges and lV,E : V ∪ E → ΣV,E a function labelling nodes and edges with
a categorical label from an alphabet ΣV,E). Each pattern S is a different
induced subgraph of a sample x ∈ X in the input dataset D and gS (x) = 1
if and only if x contains a subgraph isomorphic to S .

Statistical Association Testing in Significant Pattern Mining

— A test statistic T: {(gS (xi), yi)}n
i=1 → R maps the set of n realisations of

(GS (X), Y) obtained from dataset D to a scalar tS that quantifies the statis-
tical association between the random variables GS (X) and Y.

— To account for the inherent uncertainty in the determination of tS based on
a finite sample {(gS (xi), yi)}n

i=1, a P-value pS is computed as the probability
of observing a value of T more extreme than tS , i.e. a value indicative of an
association at least as strong, under the null hypothesis that GS (X) and Y are
statistically independent.

— The random variables Y and GS (X) will be deemed significantly associated if the
P-value pS falls below a significance threshold δ.
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— The significance threshold δ determines the trade-off between type I error (proba-
bility to erroneously report associations that do not exist) and statistical power
(probability to successfully detect associations that do exist).

— Pearson’s χ2 test [44] and Fisher’s exact test [45] are extensively used in sig-
nificant pattern mining, as they are popular techniques to test the statistical
association of two binary random variables such as GS (X) and Y.

— For both Pearson’s χ2 test and Fisher’s exact test, the resulting P-value pS can
be expressed as a function pS (aS | n, n1, rS ) of (i) aS , the number of samples in
class y = 1 which contain pattern S ; (ii) rS , the total number of samples which
contain pattern S ; (iii) n1, the number of samples in class y = 1 and (iv) n, the
total number of samples in the dataset.

The Multiple Comparisons Problem

— Significant pattern mining requires performing an enormous number |M| of
association tests.

— Controlling the type I error of each individual test at level α would produce
on average α|M0| false positives, whereM0 ⊆M is the set of null patterns for
which GS (X) and Y are statistically independent.

— Whenever |M0| is a large number, as is the case for significant pattern mining,
this strategy would result in an astounding number of false positives, compromis-
ing the reliability of the results. To circumvent this so-called multiple comparisons
problem, error measures that consider the entire collection of association tests
simultaneously are necessary.

— The Family-Wise Error Rate (FWER), defined as the probability of producing
any number of false positives in the entire body of tests, is one such measure.
Formally, FWER(δ) = Pr(FP(δ) > 0), where FP(δ) is the number of false
positives at significance threshold δ. Controlling the FWER at level α, rather
than the individual type I error of each test, is a widespread approach to correct
for the multiple comparisons problem.

— The Bonferroni correction [60, 61] achieves FWER control at level α by using an over-
conservative significance threshold defined as δbonf = max {δ | δ|M| ≤ α} =

α/|M|. While being extremely popular due to its extraordinary simplicity, the
Bonferroni correction is too conservative to cope with the enormous number
|M| of association tests that significant pattern mining requires; the resulting
statistical power would be too low for all practical purposes.

— Tarone’s improved Bonferroni correction for discrete data [64] exploits the fact that,
for some discrete test statistics such as Pearson’s χ2 test and Fisher’s exact test,
there exists a minimum attainable P-value pS ,min.

— By definition, if pS ,min > δ for a pattern S , the random variables GS (X) and Y
cannot possibly be deemed significantly associated. Therefore, these untestable
patterns could also never result in a false positive.

— It can be proven that untestable patterns do not need to be taken into consid-
eration to achieve FWER control. Tarone’s method makes use of this, propos-
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ing a significance threshold defined as δtar = max {δ | δ|Mtest(δ)| ≤ α}, where
Mtest(δ) = {S ∈ M | pS ,min ≤ δ} is the set of testable patterns at level δ.

— In significant pattern mining, a large proportion of all candidate patterns is often
untestable, i.e. |Mtest(δtar)| � |M|. Therefore, Tarone’s method dramatically
improves statistical power over a standard Bonferroni correction. Nevertheless,
computing δtar is a challenging problem that requires developing data mining
algorithms to efficiently explore the search spaceM.
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summary of chapter 3

— One of the main algorithmic challenges in significant pattern mining is to
efficiently compute Tarone’s corrected significance threshold δtar, given by the
largest δ that satisfies δ|Mtest(δ)| ≤ α.

— A brute-force approach to compute the number |Mtest(δ)| of testable patterns at
level δ would be computationally intractable, as it would require computing the
minimum attainable P-value pS ,min of each pattern S in the search spaceM.

— The Limitless-Arity Multiple-testing Procedure (LAMP) algorithm, proposed in
2013 [26], was the first method to successfully solve this problem, allowing to
use Tarone’s method to correct for the multiple comparisons problem in pattern
mining. Recent work [65, 66] has further improved the original LAMP algorithm,
leading to even faster significant pattern mining methods that are nevertheless
based on the same core principles. Throughout this thesis, that enhanced version
of the LAMP algorithm will be informally denoted as LAMP 2.0.

Overview

— Significant pattern mining algorithms derived from LAMP usually proceed in two
phases:

(i) The first and most critical phase is responsible for exploring the search
space of candidate patterns M to efficiently compute Tarone’s corrected
significance threshold δtar and retrieve the corresponding set of testable
patternsMtest(δ).

(ii) The second phase applies a test statistic of choice to compute a P-value pS
for each testable pattern S ∈ Mtest(δtar), returning those that are signifi-
cantly associated at level δtar.

Pattern enumeration

— Significant pattern mining algorithms explore the search space of candidate
patternsM by arranging each pattern S ∈ M as a node of a pattern enumeration
tree.

— A valid pattern enumeration tree is any bijective mapping of patterns to nodes
of a tree such that the descendants S ′ of a pattern S are all super-patterns of S ,
i.e., S ⊆ S ′.

— A direct consequence of enumerating patterns by traversing a pattern enumera-
tion tree is the apriori property of pattern mining, which states that the number
rS of occurrences of a pattern S in an input dataset D must be larger or equal
than the number rS ′ of occurrences of any pattern S ′ which is a descendant of S
in the pattern enumeration tree.

— State-of-the-art significant pattern mining algorithms compute Tarone’s corrected
significance threshold δtar and the set of testable patterns Mtest(δ) exactly by
iteratively adjusting estimates δ̂tar and M̂test(δ̂tar) as patterns are enumerated
during a depth-first traversal of the pattern enumeration tree.

170



chapter summaries

Evaluating Tarone’s minimum attainable P-value

— Significant pattern mining methods require computing the minimum attainable
P-value pS ,min of every single pattern S that is enumerated by the algorithm,
making the computational efficiency of this step critical.

— For most statistical association tests typically used in significant pattern mining,
computing the minimum attainable P-value pS ,min is equivalent to finding the
cell-count value a∗S ∈ Jmax(0, rS − (n − n1)), min(n1, rS )K that minimises the
P-value pS (a′S | n, n1, rS ) that would result as an outcome of applying the test
statistic to a 2× 2 contingency table with cell count a′S , margins n1 and rS and
sample size n.

— Solving that optimisation problem by evaluating all P-values pS (a′S | n, n1, rS )
for a′S ∈ Jmax(0, rS − (n − n1)), min(n1, rS )K would require O(n) operations,
leading to an unacceptable computational overhead.

— However, for both Pearson’s χ2 test and Fisher’s exact test, closed-form expres-
sions of pS ,min that can be evaluated with O(1) complexity are available.

— The minimum attainable P-value pS ,min of a pattern S is a function of the
margins n1 and rS and sample size n. However, since n1 and n are constant for
all patterns in a dataset D, the dependence on these parameters can be treated
implicitly. This allows studying the minimum attainable P-value pS ,min as a
univariate function pmin(rS ) of the number rS of occurrences of pattern S in the
dataset D.

— Qualitatively, the minimum attainable P-value pmin(rS ) is large whenever rS
is small or rS is large. This formalises the intuition that patterns S that are
either too rare or too common in a dataset D are less likely to be significantly
associated.

— For sufficiently large values of the corrected significance threshold δ, there
exists rmin(δ) such that a pattern S is testable at level δ if and only if rS lies in
Jrmin(δ), n− rmin(δ)K.

Designing a pruning condition

— Irregardless of how efficient the evaluation of the minimum attainable P-value
function pmin(rS ) is, enumerating every single pattern in the search space is
computationally intractable.

— A key component of significant pattern mining algorithms is a pruning criterion
to test whether the descendants S ′ of a pattern S are testable or not based only
on information present in the contingency table of pattern S .

— The minimum attainable P-value function pmin(rS ) for both Pearson’s χ2 test and
Fisher’s exact test is monotonically decreasing on rS in the range J0, min(n1, n−
n1)K. Combining this with the apriori property of pattern mining, it follows
that if a pattern S satisfying rS ≤ min(n1, n− n1) is untestable, then all of its
descendants S ′ in the pattern enumeration tree must be untestable as well and
can be pruned from the search space.
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— This pruning criterion can be readily applied in significant pattern mining as
part of the recursive traversal of the pattern enumeration tree; only if the pruning
condition does not apply for the pattern S currently being processed by the
algorithm will patterns S ′ ∈ Children(S) be enumerated by the algorithm next.

Implementation considerations

— Important aspects to consider prior to implementing a significant pattern mining
algorithm include:

(i) Choosing an efficient algorithm to construct and navigate the pattern enumeration
tree. The design of efficient algorithms to enumerate patterns has been
widely studied in data mining, leading to a myriad of existing approaches
that can be readily used in significant pattern mining.

(ii) Choosing a strategy to iteratively refine the estimate δ̂tar of Tarone’s corrected
significance threshold. While approaches based on grid search are valid,
the discreteness of the minimum attainable P-value function pmin(rS ) can
be exploited to devise a more efficient strategy to decrease δ̂tar whenever
necessary.

(iii) Avoiding the need to keep the estimate M̂test(δ̂tar) of the set of testable patterns at
level δ̂tar in memory during the execution of the algorithm. In order to compute
δtar, only the total number |M̂test(δ̂tar)| of testable patterns is necessary. This
allows using a two-step strategy: a first pattern enumeration pass is used
to compute δtar while a second, subsequent pass is dedicated to find which
testable patterns are significantly associated at level δtar. This strategy
requires enumerating patterns twice, approximately doubling runtime,
but drastically reduces memory usage, being therefore often preferred in
practice.
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summary of chapter 4

— The search space of candidate patternsM in significant pattern mining is not
only enormous, but also harbours extensive dependencies between the many
patterns it contains.

— This chapter is devoted to introduce Westfall-Young light [49], a fast and
memory-efficient significant pattern mining algorithm that models the statistical
dependencies between patterns in the search space using the Westfall-Young
permutation testing procedure [74].

— Permutation testing allows obtaining a more accurate approximation of the
FWER than that provided by Tarone’s method, ultimately leading to a gain in
statistical power.

Introduction

— The dependence between patterns in significant pattern mining arises due to
several factors, ultimately owing to the combinatorial nature of the search space
M:

(i) Subset/superset relationships between patterns S , S ′ ∈ M are one obvious
source of dependencies; if S ⊆ S ′, the random variables GS (X) and GS ′(X)

indicating the occurrence of patterns S and S ′ in an input sample X must
be positively correlated.

(ii) More generally, the random variables GS1(X) and GS2(X) corresponding
to any two patterns S1, S2 ∈ M which share a common substructure, i.e.
S1 ∩ S2 6= ∅, will be statistically dependent as well.

— In order to obtain a tractable upper bound of the FWER, both the Bonferroni
correction and Tarone’s method rely on the fact that Pr (

⋃
S∈M′ [pS ≤ δ]) ≤

∑S∈M′ Pr (pS ≤ δ) always holds for any subset of patternsM′ ⊆M. Neverthe-
less, since a large number of patterns inM′ might be positively correlated with
each other, ∑S∈M′ Pr (pS ≤ δ) is likely to greatly overestimate the true value
of Pr (

⋃
S∈M′ [pS ≤ δ]). Consequently, whenever the search spaceM contains

many interdependent patterns, both approaches tend to overestimate the FWER,
thus often leading to a severe loss of statistical power.

Empirically Approximating the FWER Via Random Permutations

— Rather than replacing the intractable, exact FWER by a surrogate upper bound,
an alternative strategy is to empirically estimate the exact value of FWER(δ)
using resampling techniques.

— A popular approach towards this end is the Westfall-Young permutation testing
procedure. Given an input dataset D = {(xi, yi)}n

i=1, the procedure can be
summarised as follows:

(i) Obtain jp resampled datasets
{
D̃(k)

}jp

k=1
by applying, for each k = 1, . . . , jp,

a different random permutation π(k) : J1, nK → J1, nK to the class labels,
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i.e. D̃(k) =
{(

xi, yπ(k)(i)

)}n

i=1
. By construction, the global null hypothesis

M0 = M holds for all resampled datasets, that is, no pattern can be
associated with the (randomly permuted) class labels.

(ii) For each k = 1, . . . , jp, compute p(k)ms = min
{

p(k)S | S ∈ M
}

, the most sig-
nificant P-value across all patterns. Since any pattern deemed significantly
associated in the resampled datasets must be a false positive, one or more
false positives occur for the k-th resampled dataset at level δ if and only if
p(k)ms ≤ δ.

(iii) Consequently, the FWER at level δ can be estimated as:

F̂WER(δ) =
1
jp

jp

∑
k=1

1
[

p(k)ms ≤ δ
]
.

(iv) Finally, a corrected significance threshold based on the estimator F̂WER(δ)
can be obtained as:

δwy = max

{
δ | 1

jp

jp

∑
k=1

1
[

p(k)ms ≤ δ
]
≤ α

}
.

— Permutation testing implicitly accounts for the dependence between patterns,
often leading to vastly more accurate estimates of the FWER than those obtained
with Tarone’s method.

— Nonetheless, a naive application of permutation testing to significant pattern
mining is computationally unfeasible:

(i) Computing p(k)ms = min
{

p(k)S | S ∈ M
}

via brute force for any resampled

dataset is unrealistic, as it would require evaluating the P-value p(k)S of
every single candidate pattern in the search spaceM.

(ii) Moreover, the already computationally challenging task of obtaining p(k)ms

must be repeated for a large number jp of resampled datasets to obtain a
sufficiently accurate estimate of the FWER.

Permutation Testing in Significant Pattern Mining

— Permutation testing-based significant pattern mining algorithms proceed in two
phases, just as significant pattern mining approaches derived from LAMP do.
Compared to the methods introduced in the previous chapter, only the first
phase, which involves the computation of the corrected significance threshold,
needs to change.

— The FastWY algorithm [43] constitutes the only former attempt to design a com-
putationally efficient algorithm to obtain a permutation testing-based corrected
significance threshold δwy.

— FastWY exploits the concept of testability to compute p(k)ms without the
need to evaluate the P-value p(k)S of all candidate patterns. In particular,
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it leverages the observation that if p(k)ms(δ) = min
{

p(k)S | S ∈ Mtest(δ)
}

satisfies p(k)ms(δ) ≤ δ, then p(k)ms = p(k)ms(δ). This motivates an algorithm which
iteratively computes p(k)ms(δ) for increasing values of δ until the condition
p(k)ms(δ) ≤ δ is satisfied.

— Despite the fact that FastWY can successfully obtain p(k)ms while enumerating
only a small subset of the search space M, its computational efficiency
is hindered by the fact that it must repeat the entire pattern enumeration
process for each of the jp resampled datasets. In practice, this limits its
applicability to only datasets of small-to-moderate size.

— Our contribution, the Westfall-Young light algorithm, is a novel permutation
testing-based significant pattern mining algorithm that computes δwy exactly
while only enumerating patterns once.

— Contrary to FastWY, the Westfall-Young light algorithm proceeds by ini-
tialising the estimate δ̂wy of the corrected significance threshold to 1, itera-
tively decreasing δ̂wy in each iteration. This search strategy, also used by
the LAMP 2.0 algorithm described in Chapter 3, has been shown [65, 66] to
be several orders of magnitude faster than that used by FastWY.

— Westfall-Young light processes all jp resampled datasets simultaneously,

updating the estimates
{

p̃(k)ms

}jp

k=1
of the most significant P-value of each

resampled dataset as it enumerates patterns.

— Westfall-Young light exploits the fact that if a pattern S is untestable at
level δ̂wy, it cannot affect the permutation testing-based FWER estimator
F̂WER(δ) for any δ < δ̂wy. This allows bypassing the computation of P-

values p(k)S for untestable patterns, as well as using the search space pruning
condition introduced in Section 3.4.

— Once the algorithm concludes its execution, the estimates
{

p̃(k)ms

}jp

k=1
of

the most significant P-value of each resampled dataset are not equal to

the true values
{

p(k)ms

}jp

k=1
. However, the fundamental property of the

Westfall-Young light algorithm is that the estimates
{

p̃(k)ms

}jp

k=1
satisfy:

F̂WER(δ) =
1
jp

jp

∑
k=1

1
[

p(k)ms ≤ δ
]
=

1
jp

jp

∑
k=1

1
[

p̃(k)ms ≤ δ
]

for any δ ≤ δ̂wy.

— Since the algorithm guarantees that δwy ≤ δ̂wy at any point during its
execution, including after its termination, it follows that Westfall-Young

light does away with the need to exactly evaluate
{

p(k)ms

}jp

k=1
while still

being able to exactly compute δwy. Compared to FastWY, this leads to a
drastic reduction in the number of patterns that need to be enumerated to
obtain δwy, considerably improving computational efficiency.
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— The same low-level implementation considerations discussed in the context
of the LAMP algorithm in Section 3.5 also apply to Westfall-Young light.
Moreover, as the algorithm processes all resampled datasets simultaneously,
a careful implementation of Westfall-Young light can precompute all
P-values an enumerated pattern S could attain, storing them in the form of
a look-up table. This reduces the complexity of evaluating jp P-values from
O(jp) to O(min(n1, rS )).

— Westfall-Young light and FastWY are statistically indistinguishable. How-
ever, Westfall-Young light is drastically faster and more memory-efficient
than FastWY.

— Westfall-Young light takes into account the dependence between can-
didate patterns in the search space, gaining additional statistical power
compared to the LAMP 2.0 algorithm described in Chapter 3. Nonetheless,
Westfall-Young light must evaluate jp P-values for each testable pattern.
Besides, since δwy ≤ δtar, it must also enumerate more patterns than LAMP
2.0. Consequently, despite improving over FastWY, Westfall-Young light
remains considerably more computationally-intensive than LAMP 2.0.

Experiments

— An exhaustive set of experiments comparing the runtime and memory usage
of FastWY and Westfall-Young light in 12 significant itemset mining datasets
and 12 significant subgraph mining datasets was presented.

— The experimental results showed that Westfall-Young light is two to three
orders of magnitude faster than FastWY in significant itemset mining tasks and
one to two orders of magnitude faster in significant subgraph mining tasks. The
runtime gap seems to increase with the absolute runtime required to analyse
the dataset, suggesting that the execution time of Westfall-Young light scales
more gently with the size and density of the dataset.

— For small-to-moderate sized datasets, the memory usage is dominated by the
underlying pattern mining algorithm, leading to Westfall-Young light and
FastWY exhibiting the same memory footprint. However, for more demanding
datasets, the memory requirements of FastWY increase sharply. This caused
FastWY to be unable to complete the analysis of three significant itemset mining
datasets, despite being executed on a server with 256 GB of memory. In contrast,
the memory usage of Westfall-Young light scales gracefully with dataset size,
being able to run until termination for all datasets under consideration.

— Given a minimum attainable P-value function pmin(rS ) and a significance thresh-
old δ ∈ [0, 1], define the minimum support rmin(δ) at level δ as the unique
integer in the range J0, min(n1, n − n1)K that satisfies pmin(rmin(δ)) ≤ δ and
pmin(rmin(δ)− 1) > δ. Then, the pruning condition of Section 3.4 evaluates to
true for a pattern S if and only if rS < rmin(δ).

— To compute the corrected significance threshold δwy, Westfall-Young light
must enumerate all patterns that occur at least rmin(δwy) times in the
dataset.
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— However, as FastWY needs to compute
{

p(k)ms

}jp

k=1
exactly, it must enumerate

all patterns that occur at least rmin(δ̃fastwy) times in the dataset, where δ̃fastwy

is defined as δ̃fastwy = max
{

p(k)ms | k = 1, . . . , jp

}
.

— Since δ̃fastwy ≤ δwy and the minimum support is decreasing on δ, it follows
that rmin(δwy) ≥ rmin(δ̃fastwy). Moreover, as real-world datasets are abun-
dant with patterns that have a small support rS , in practice FastWY must
enumerate a much larger number of patterns than Westfall-Young light
to compute δwy. This phenomenon was confirmed experimentally for both
significant itemset mining and significant subgraph mining datasets.

— The performance of Westfall-Young light is roughly insensitive to the number
jp of random permutations used to estimate the FWER, provided that jp is large
enough (e.g. jp ≥ 1, 000). When executed on a dataset for which the global
null hypothesis holds, Westfall-Young light and FastWY obtain a resulting
FWER close to the target FWER α. In contrast, the LAMP 2.0 algorithm yields
a resulting FWER considerably smaller than α, a manifestation of the over-
conservative nature of Tarone’s method. This indicates that Westfall-Young
light and FastWY are superior to LAMP 2.0 in terms of statistical power, albeit
less computationally efficient.
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summary of chapter 5

— The need to incorporate into the model covariate factors that might have a
confounding effect is an ubiquitous problem in computational biology and
clinical data analysis.

— This chapter is devoted to introduce the Fast Automatic Conditional Search
(FACS) algorithm [50], a novel significant pattern mining approach that can
correct for a categorical covariate with an arbitrary number of categories.

— Compared to existing methods, FACS allows to drastically reduce spurious false
positives due to confounding effects without sacrificing neither computational
efficiency nor statistical power.

Introduction

— Let GS (X) be the binary random variable that indicates the occurrence of pattern
S in an input sample X, Y the binary class label and C a random variable that
represents a covariate factor that takes values in a domain C. We say that the
covariate C has a confounding effect on the statistical association between GS (X)

and Y when:

(i) GS (X) and Y are marginally statistically associated, that is, GS (X) 6⊥⊥ Y.

(ii) GS (X) and Y are conditionally independent given C, that is, GS (X) ⊥⊥ Y | C.

— Confounded patterns, that is, patterns for which conditions (i) and (ii) hold, provide
no additional information about the class membership of an input sample beyond
the information that is already contained in the covariate. Moreover, on many
occasions, these patterns represent misleading associations, impairing our ability
to acquire useful knowledge from the salient patterns in the data.

— All methods discussed in this thesis so far, such as LAMP 2.0 (Chapter 3) and
Westfall-Young light (Chapter 4), aim at finding all patterns S ∈ M that are
(marginally) statistically associated with the class labels, that is, they look for
the set of patterns {S ∈ M | GS (X) 6⊥⊥ Y}.

— In contrast, an approach able to correct for the effect of a covariate C would aim
to find the set of patterns {S ∈ M | GS (X) 6⊥⊥ Y | C} instead.

— Our proposed approach, the FACS algorithm, can be understood as a generali-
sation of LAMP 2.0 which makes use of the Cochran-Mantel-Haenszel (CMH)
test [46] to incorporate a categorical covariate C into the model. The fundamental
methodological contributions leading to the FACS algorithm are:

(i) Proving that a minimum attainable P-value exists for the CMH test and
deriving a tractable expression to evaluate it.

(ii) Developing a novel search space pruning criterion that can be used in
combination with the CMH test.

Conditional Association Testing in Significant Pattern Mining

— The CMH test allows assessing the conditional association of two binary random
variables GS (X) and Y given a categorical random variable C with k categories.
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That is, the CMH test can be used to falsify the null hypothesis H0 : GS (X) ⊥⊥
Y | C.

— Unlike in previous chapters, we consider an input dataset D = {(xi, yi, ci)}n
i=1

with each observation-label pair (xi, yi) being additionally tagged with a cate-
gorical covariate ci ∈ {1, 2, . . . , k}, where k is the number of distinct categories
that an outcome of the covariate C can belong to.

— At a high-level, the CMH test can be understood as the result of combining k
distinct Pearson’s χ2 test statistics, each of them obtained on the subset D(c)
of the original dataset D which contains all samples for which the categorical
covariate takes value c.

— As a consequence, the resulting P-value pS can be expressed as a function
pS (aS | n, n1, rS ) of:

(i) aS = (aS ,1, aS ,2, . . . , aS ,k), with aS ,c being the number of samples in D(c)
belonging to class y = 1 for which pattern S occurs.

(ii) rS = (rS ,1, rS ,2, . . . , rS ,k), with rS ,c being the total number of samples in
D(c) for which pattern S occurs, that is, the support of S in D(c).

(iii) n1 = (n1,1, n1,2, . . . , n1,k), with n1,c being the number of samples in D(c)
belonging to class y = 1.

(iv) n = (n1, n2, . . . , nk), with nc being the total number of samples in D(c).

The Minimum Attainable P-value for the CMH Test

— As Pearson’s χ2 test and Fisher’s exact test, the CMH test is based on discrete
data. Therefore, it can only attain a finite number of distinct values, implying
the existence of a minimum attainable P-value pS ,min for any candidate pattern
S .

— It can be shown (Proposition 5.1) that the minimum attainable P-value for the
CMH test can be computed with only O(k) operations as a multivariate function
pmin(rS ) of k variables.

A Search Space Pruning Condition for the CMH Test

— The existence of a search space pruning condition is essential for the computa-
tional feasibility of current significant pattern mining algorithms.

— In previous chapters it was shown that when the underlying test statistic is
Pearson’s χ2 test or Fisher’s exact test, the resulting minimum attainable P-value
function pmin(rS ) is monotonically decreasing in J0, min(n1, n− n1)K. Thus, de-
scendants S ′ of an untestable pattern S with rS ≤ min(n1, n− n1) are untestable
as well and can be pruned from the search space.

— Since the apriori property of pattern mining implies that rS ′ ,c ≤ rS ,c if S ′ ⊇ S ,
an analogous pruning condition for the CMH test could be used if rS ′ ,c ≤ rS ,c ≤
min(n1,c, nc − n1,c) for all c = 1, 2, . . . , k implied that pmin(rS ′) ≥ pmin(rS ).

— Nevertheless, the former condition can be readily proven to be false. This has
profound implications for the development of a valid pruning criterion for the
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CMH test, as in principle there is no simple way to make a statement about the
minimum attainable P-value pS ′ ,min of a descendant S ′ of a pattern S based on
pS ,min and rS alone.

— FACS uses a monotonically decreasing lower bound of the minimum attainable
P-value as a surrogate of pS ,min in its pruning criterion. This surrogate, which
will be referred to as the lower envelope of the minimum attainable P-value, is
defined as

p̃S ,min = min
S ′⊇S

pS ′ ,min.

— An alternative characterisation of the lower envelope of the minimum attainable
P-value can be obtained in terms of a combinational optimisation problem. Let
B(rS ) = J0, rS ,1K× J0, rS ,2K× · · · J0, rS ,kK be the set of all rS ′ satisfying rS ′ ,c ≤ rS ,c
for all c = 1, 2, . . . , k. Then, p̃S ,min is equivalently given by

p̃min(rS ) = min
rS′∈B(rS )

pmin(rS ′).

— By construction, the lower envelope of the minimum attainable P-value p̃S ,min

satisfies (i) p̃S ,min ≤ pS ,min and (ii) p̃S ′ ,min ≥ p̃S ,min for any S ′ ⊇ S . Conse-
quently, if p̃S ,min > δ̂tar and rS ,c ≤ min(n1,c, nc − n1,c) for all c = 1, 2, . . . , k, all
descendants of pattern S can be pruned from the search space (Proposition 5.3).

— As the pruning condition is evaluated for every pattern S which is enumerated
during the execution of the algorithm, being able to efficiently compute p̃S ,min

is of utmost importance. Attempting to obtain p̃min(rS ) by brute force, that is,
by evaluating pmin(rS ′) for each rS ′ ∈ B(rS ), is impractical, as it would require
O(nk) operations each time the pruning condition needs to be assessed.

— A first improvement over this naive approach results from the fact that pmin(rS ′)
must attain its minimum value at a vertex of B(rS ) (Proposition 5.4). Conse-
quently, the number of operations needed to compute p̃min(rS ) can be reduced
from O(nk) to O(2k).

— Building on that result, a fundamental contribution of FACS is an algorithm
to compute pmin(rS ′) exactly with only O(k log k) operations (Proposition 5.5).
The resulting approach is instrumental in allowing to efficiently correct for a
categorical covariate in significant pattern mining.

Miscellaneous Aspects of the FACS Algorithm

— Most low-level implementation considerations discussed in Section 3.5 in the
context of LAMP 2.0 also apply to FACS. Nonetheless, some slight differences
caused by the inclusion of covariates are:

(i) Unlike LAMP 2.0 or Westfall-Young light, FACS requires computing the
support of each enumerated pattern in k disjoint subsets of the original
input dataset D, that is, it needs to compute rS ,c for each c = 1, 2, . . . , k
instead of merely computing rS = ∑k

c=1 rS ,c. Consequently, implementing
the pattern enumeration routines for FACS often requires to slightly modify
the original algorithm used to traverse the pattern enumeration tree.
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(ii) The number of distinct values that the minimum attainable P-value function
for the CMH test can take grows as O(nk). As a result, two useful low-
level optimisations for LAMP 2.0 and Westfall-Young light are no longer
beneficial for FACS: (a) precomputing pmin(rS ) as a look-up table becomes
impractical and (b) grid search-based strategies to adjust the estimate δ̂tar

of the corrected significance threshold each time it needs to be decreased
become preferable to more complex alternatives that would require sorting
all possible values of pmin(rS ).

— By design, FACS allows to correct for a single categorical covariate. Nevertheless,
this limitation can be alleviated as follows:

(i) Since FACS can handle a large number k of categories for the covariate, it
is possible to correct for multiple categorical covariates C1, C2, . . . , Cd by
defining a new covariate C with k = ∏d

j=1 k j categories.

(ii) Extending FACS to account for real-valued covariates is more challenging.
However, our experiments suggest that a heuristic approach based on
discretising continuous covariates can lead to satisfactory results.

— The FACS algorithm was designed to make use of Tarone’s method as the under-
lying approach to correct for the multiple comparisons problem. Nonetheless, all
of the fundamental derivations behind FACS, including the minimum attainable
P-value and pruning condition for the CMH test, can be directly applied to
the Westfall-Young light algorithm introduced in Chapter 4. In particular, a
version of Westfall-Young light able to account for a categorical covariate can
be obtained by performing slight modifications to the original algorithm.

Experiments

— We carried out simulation experiments to evaluate our proposed approach,
the FACS algorithm, in terms of computational efficiency, statistical power and
ability to correct for confounding covariates. Additionally, a proof-of-concept
application of FACS to analyse data from two genome-wide association studies
in the plant model organism A. thaliana was also described.

— Using synthetic itemset mining data containing both a truly associated pattern
and a confounded pattern, our simulation results showed that FACS can sat-
isfactorily correct for confounding due to a categorical covariate. In contrast,
as a result of its inability to account for the covariate, approximately half of
all discoveries made by LAMP 2.0 in the same data are false positives owing
to confounding. Moreover, our results strongly suggest that the possibility to
correct for a categorical covariate does not lead to a loss of statistical power,
as FACS and LAMP 2.0 display comparable performance in retrieving the truly
associated pattern.

— Tarone’s method was found to be as effective in improving statistical power
in conditional association testing as was known to be in marginal association
testing; Bonf-CMH, a version of FACS which substitutes Tarone’s method by a
naive Bonferroni correction, yields considerably less statistical power than FACS
and LAMP 2.0.
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— Tarone’s method was also found to be essential from a computational perspective.
The runtimes of FACS and LAMP 2.0 grow at the same rate as the number of
features p increases. In contrast, the runtime of Bonf-CMH increases at a much
faster rate, becoming impractical even for moderate-sized datasets.

— Finally, our simulation experiments confirmed that being able to quickly assess
the pruning condition for the CMH test is essential to obtain a computationally
feasible approach. When using a brute force approach to evaluate the lower
envelope of the minimum attainable P-value p̃min(rS ), the runtime grows so
quickly with the number of categories for the covariate k that, with as few as
k = 10 categories, even not applying any pruning results in a less inefficient
algorithm. Most importantly, the runtime of FACS was shown to scale gently
with k, empirically validating the derivations in Proposition 5.5. In summary,
our experiments suggest that FACS provides the possibility to account for a
categorical covariate, drastically reducing false discoveries due to confounding,
at the expense of only a small computational overhead compared to LAMP 2.0.

— As a proof-of-principle, we tested the ability of FACS to correct for confounding
due to population structure in two datasets derived from genome-wide asso-
ciation studies in plants. EIGENSTRAT [91], a popular method from statistical
genetics, was used first to represent the genetic ancestry of each sample i as a
d-dimensional, real-valued covariate ci ∈ Rd. We followed a heuristic approach
to discretise these covariates; the k-means algorithm [81] was applied to the
set of d-dimensional vectors {ci}n

i=1, resulting in a set of cluster assignments
{c̃i}n

i=1 which was subsequently used as a categorical covariate for FACS. Our
results showed that, despite the simplicity of this strategy, a categorical covariate
obtained in this fashion allowed FACS to drastically reduce the genomic inflation
factor [90], a popular measure of confounding in statistical genetics, compared to
LAMP 2.0. Moreover, further analyses suggest that, at least in these two datasets,
the resulting categorical covariate is as effective in correcting for the confounding
effects of population structure as the original real-valued covariates provided by
EIGENSTRAT.
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summary of chapter 6

— In the past decade, Genome-Wide Association Studies (GWASs) have been exten-
sively used to discover links between genomic markers, typically single-nucleotide
polymorphisms (SNPs), and a wide variety of phenotypic traits.

— The overwhelming majority of GWASs look for statistically significant associa-
tions between individual SNPs and the phenotype being studied. As a result, if
the sample size is small or the effect sizes of the associated markers are weak,
the discovery of novel associations poses considerable difficulties.

— Genetic heterogeneity, the phenomenon that multiple genomic markers could
affect a phenotype of interest in a similar manner, can be exploited to discover
weakly associated markers that would remain undetected by univariate studies.
For genomic regions for which the assumption of genetic heterogeneity holds,
pooling several neighbouring markers into a joint meta-marker can result in a
stronger and easier-to-detect association signal. This observation motivated the
development of approaches to look for genomic regions (sets of contiguous
markers) associated with the phenotype under study, rather than individual
markers.

— Given a dataset with p markers, there are p(p+1)
2 = O(p2) distinct genomic

regions one could consider. Since typical GWAS datasets might comprise millions
of SNPs, an exhaustive screening of all possible genomic regions would require
performing hundreds of billions of association tests.

— The most popular methods used in statistical genetics are unable to cope with
the statistical and computational challenges that would ensue. As a result,
they require preselecting a small subset of candidate genomic regions a priori,
for example, by dividing the genome into (possibly overlapping) fixed-length
windows or defining regions to coincide with well-known functional units such
as exons or entire genes.

— While this design choice drastically reduces the number of candidate regions
in the search space, alleviating both the multiple comparisons burden and the
computational complexity, statistical power will plummet if the set of candidate
genomic regions to be tested was misspecified.

— In this chapter, we presented the Fast Automatic Interval Search (FAIS) [51] and
FastCMH [52] algorithms, two approaches that make use of significant pattern
mining to assess the statistical association of all genomic regions with a binary
phenotype, regardless of their length or position.

— Unlike other existing methods, FAIS and FastCMH are insensitive to a potential
misspecification of the set of regions to be tested. Empirically, this leads to a
sharp gain in statistical power in situations for which reliable prior knowledge
to select a subset of promising candidate genomic regions is unavailable.

— FAIS predates the development of the techniques to correct for a categorical co-
variate in significant pattern mining described in Chapter 5. Its resulting inability
to correct for factors of variation that might have a confounding effect severely
limits the range of GWAS datasets it can be applied to in practice. FastCMH does
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away with this shortcoming by extending the original FAIS algorithm, leveraging
the ideas of Chapter 5 to allow accounting for potential confounders such as age,
gender or population structure.

Introduction

— In this chapter, each observation x will represent the genotype of an individual
or specimen based on a set of p genomic markers measured at distinct positions
(loci) in its genome. Accordingly, x will be defined as a sequence rather than a
p-dimensional vector, with x(j) denoting the value taken by the j-th genomic
marker for j = 1, 2, . . . , p. Further assuming that the p genomic markers in x are
SNPs, x(j) can be considered to be a count variable that indicates the number
of copies of the minor allele that the individual has at the j-th SNP. Thus, if the
organism has q sets of chromosomes (q = 2 for humans), x(j) will lie in J0, qK.

— Each observation x will be accompanied by a binary class label y, indicating the
presence or absence of a phenotypic trait of interest, such as being a case for
a certain disease under study. Optionally, observations might be additionally
tagged by a categorical covariate c with an arbitrary number k of categories. In
the context of GWAS, this covariate factor will be used to correct for potential
confounders such as age, gender or population structure.

— We propose to carry out GWASs at a region level by using a new instance of
significant pattern mining, which we refer to as significant region mining.

— In significant region mining, we identify each pattern S in the search space
M with a different genomic region, i.e., S = Jjs, jeK, where 1 ≤ js ≤ je ≤ p.
The resulting search spaceM = {Jjs, jeK | 1 ≤ js ≤ je ≤ p} thus contains p(p+1)

2
candidate regions.

— We say that a pattern S occurs in an observation x if the total number of copies
of a minor allele in the region, the so called burden count bS (x) = ∑j∈S x(j), is
non-zero. That is, the pattern occurrence indicator will be given by gS (x) =

1[bS (x) > 0]. Provided that the assumption of genetic heterogeneity holds
for region S and that all weakly associated markers in S have homogeneous
directions of effect, gS (x) will exhibit a stronger association with the phenotype
than any of the individual markers being pooled, facilitating the discovery of
novel associations.

— In summary, the goal of significant region mining is to discover all genomic
regions, regardless of their length or starting position, for which the presence
or absence of one or more copies of a minor allele in the region is statistically
associated (either marginally or given a categorical covariate) with a binary
phenotype.

— Burden tests [48] are widely-used approaches to carry out GWASs at a region
level. In particular, the Cohort Allelic Sums Test (CAST) [101] pools the markers
in each genomic region in exactly the same manner as significant region mining,
that is, as a binary variable that indicates if the genomic region contains minor
alleles.
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— However, burden tests and significant region mining differ drastically in the
way they define their respective search spaces. Significant region mining aims
to carry out an exhaustive scan of the genome by testing all genomic regions,
making use of significant pattern mining to cope with the statistical and compu-
tational difficulties that this entails. In contrast, burden tests introduce a priori
assumptions to limit the number of regions to be tested.

— One of the most widespread restrictions of the search space used by burden
tests is to focus the analysis on regions of a certain length w, where w acts as
a hyperparameter that must be chosen a priori on the basis of domain knowl-
edge. Common examples include burden tests with non-overlapping windows,
which have a search spaceM =

{
J(i− 1)w + 1, min(iw, p)K | 1 ≤ i ≤ d p

we
}

, and
burden tests with sliding windows of unit stride, which result in a search space
M = {Jjs, js + w− 1K | 1 ≤ js ≤ p− w + 1}.

— Burden tests and significant region mining can be expected to be complementary
to some extent. If sufficiently reliable prior knowledge is available to narrow
down the search space, burden tests will benefit from requiring a less stringent
significance threshold, outperforming significant region mining algorithms in
terms of statistical power and runtime. In contrast, if the set of regions to
be tested is misspecified by, for example, setting the hyperparameter w to
be too small or too large, the performance of burden tests could be severely
compromised.

— Moreover, any attempts to choose w in a data-driven manner would require an
additional correction for multiple comparisons or having access to a validation
dataset to be used solely for hyperparameter selection. Significant region mining,
which eliminates the need for such a hyperparameter, does away with this
shortcoming, alleviating the potential for unintentional data dredging.

Method

— Among all other instances of significant pattern mining studied in this thesis,
significant itemset mining is arguably the closest to significant region mining.

— In significant itemset mining, a pattern S can be understood as a subset of
features, that is, S ⊆ {1, 2, . . . , p}. The same holds true for significant region
mining. However, in the former paradigm any feature subset constitutes a valid
pattern whereas in the latter only feature subsets that have consecutive indices
correspond to genomic regions and thus are valid patterns. In other words, what
sets apart both paradigms is the collection of patterns that are included in the
search spaceM.

— The search space in significant itemset mining is enormous, containing up to
2p distinct patterns. Moreover, the number of patterns comprising |S| features
is ( p
|S|). Intuitively, this implies that the width of the pattern enumeration tree

grows very rapidly as we descend levels in the tree.

— In contrast, while the search space in significant region mining is large when
compared to other approaches in statistical genetics, such as burden tests, it
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“only” contains p(p+1)
2 different patterns, a much smaller number than in signifi-

cant itemset mining. Besides, the number of patterns comprising |S| features is
p− |S|+ 1. As a result, in significant region mining the pattern enumeration
tree gets narrower, not wider, as we descend levels in the tree.

— From an algorithmic point of view, these differences justify a change in the
strategy used to traverse the pattern enumeration tree.

— In significant itemset mining breadth-first traversal is unfeasible: the pattern
enumeration tree gets “too wide, too quickly” and the amount of memory
necessary to follow that strategy would be unrealistic. As a result, all methods
discussed in this thesis so far use depth-first traversal instead.

— Nevertheless, enumerating patterns breadth-first has a clear advantage: it would
allow to assess the search space pruning condition for all subsets S of any given
pattern S ′ before enumerating S ′. In contrast, depth-first traversal would in
general allow assessing it for only one of the subsets, resulting in a less effective
pruning of the search space.

— Due to the characteristics of the search space in significant region mining,
breadth-first traversal is feasible. Consequently, we adopted this alternative
strategy as part of both FAIS and FastCMH.

— The pattern occurrence indicator gS (x) also appears to differ drastically between
significant itemset mining and significant region mining. In the former, gS (x) =
∏j∈S uj, where an observation x = (u1, u2, . . . , up) consists of p binary features.

In the latter, gS (x) = 1
[
∑j∈S x(j) > 0

]
, where an observation x contains p

integer-valued features in J0, qK.

— Most importantly, the pattern occurrence indicator gS (x) in significant region
mining does not obey the Apriori property of pattern mining: in this new
instance of significant pattern mining, S ′ ⊃ S implies that rS ′ ≥ rS instead of
rS ′ ≤ rS .

— Nevertheless, this apparently stark contrast is merely superficial. Two binary
random variables GS (X) and Y are statistically associated (either marginally or
given a categorical covariate C) if and only if 1− GS (X) and Y are statistically
associated.

— By looking for associations between 1 − GS (X) and Y rather than between
GS (X) and Y, the Apriori property is restored in significant region mining.
Moreover, since 1 − gS (x) = ∏j∈S 1 [x(j) = 0], it becomes evident that the
pattern occurrence indicator in significant region mining is identical to that of a
significant itemset mining dataset in which the original, integer-valued genomic
markers {x(j)}p

j=1 are represented by binary features
{

uj
}p

j=1 defined as uj = 1
if x(j) = 0 and uj = 0 otherwise.

— By viewing significant region mining as a restricted instance of significant
itemset mining, we designed FAIS and FastCMH borrowing from methods already
introduced in this thesis.

— Our significant region mining algorithms proceed in three main steps:
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(i) Traverse the pattern enumeration tree once, in order to compute the cor-
rected significance threshold δ.

(ii) Traverse the pattern enumeration tree a second time, aiming to retrieve the
setMsig,raw of genomic regions significantly associated with the phenotype
at level δ.

(iii) Cluster the regions inMsig,raw, with the goal of obtaining a setMsig,clustered
of disjoint clusters of overlapping significantly associated genomic regions.

— The first two steps are entirely analogous to other significant pattern mining
algorithms described in this thesis. More specifically, since FAIS and FastCMH
make use of Tarone’s method to account for the multiple comparisons problem,
FAIS parallels the LAMP 2.0 algorithm described in Chapter 3 and FastCMH the
FACS algorithm proposed in Chapter 5. The only salient difference lies in the
traversal of the pattern enumeration tree: FAIS and FastCMH enumerate patterns
breadth-first, whereas LAMP 2.0 and FACS use depth-first traversal instead.

— The last step aims at enhancing the interpretability of the results. As discussed
in Chapter 4, related patterns tend to have correlated test statistics. In particular,
this implies that if a certain genomic region S is statistically associated with
the phenotype, it is plausible that some other genomic regions which overlap
with S show a significant association too. As a result, the set Msig,raw can
often be summarised as a set Msig,clustered of disjoint clusters of overlapping
significantly associated genomic regions. For each cluster Csig ∈ Msig,clustered,
we report both the individual genomic region S∗ ∈ Csig with the smallest (most
significant) P-value and the the union ∪S∈CsigS = Jcs, ceK of all regions in the
cluster. Empirically, the former tends to slightly underestimate the length of the
ground-truth associated region while the latter often slightly overestimates it.

— While, for the sake of clarity, all algorithms described in this chapter have use
Tarone’s method to obtain a corrected significance threshold, it is straightforward
to extend FAIS and FastCMH to make use of permutation testing instead. This
modification, which poses no algorithmic difficulties, would result in a similar
trade-off as in other instances of significant pattern mining: statistical power
would improve at the cost of additional runtime.

— Another simple extension of FAIS and FastCMH concerns the definition of the
pattern occurrence indicator. Rather than considering that just having a single
minor allele in a genomic region might suffice to perturb its function, this
assumption can be relaxed by introducing a burden threshold bmin. Under
this alternative model of genetic heterogeneity, the pattern occurrence indicator
would be given by gS (x) = 1[bS (x) ≥ bmin]. No algorithmic modifications,
other than the computation of gS (x) itself, are necessary to implement this
extension. However, choosing a value for the hyperparameter bmin is challenging
and attempts to do so in a data-driven fashion would necessitate an additional
correction for multiple comparisons.

Experiments

— We empirically evaluated the performance of our proposed significant region
mining algorithms compared to several baseline approaches using synthetic
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data, five A. thaliana datasets and one case/control study of Chronic Obstructive
Pulmonary Disease (COPD) including two different ethnic groups (COPDGene).

— Using synthetic GWAS datasets generated in accordance with our model of
genetic heterogeneity, we confirmed the ability of FAIS and FastCMH to gain
statistical power by pooling weakly associated markers into a joint meta-marker.
While this is not unexpected, due to the data being generated to fit our as-
sumptions, the gap in statistical power between the significant region mining
algorithms and their corresponding univariate baselines was dramatic. This
illustrates that, under a model of genetic heterogeneity, it is perfectly possible to
have genomic regions strongly associated with the phenotype while none of the
markers it spans can be detected on their own.

— In spite of the fact that the search space in significant region mining is drastically
smaller than in the other instances of significant pattern mining studied in this
thesis, Tarone’s method was found to still be instrumental in making FAIS and
FastCMH practical. When Tarone’s method is substituted by a naive Bonferroni
correction, statistical power plummets and the runtime increases sharply. In
particular, we empirically observed the runtime of FAIS and FastCMH to scale
linearly with the number of markers p, being able to analyse datasets comprising
millions of markers in less than one hour. In contrast, we estimated that the
baselines based on a naive Bonferroni correction, which cannot prune the search
space and thus scale quadratically with p, would have required more than a
month’s worth of computations to complete the same analysis.

— Compared to burden tests, significant region mining algorithms eliminate the
possibility to misspecify the set of candidate regions to be tested at the expense of
necessitating a considerably more stringent corrected significance threshold. To
investigate this trade-off, we generated synthetic GWAS datasets with seven truly
associated genomic regions of distinct lengths and examined the statistical power
of FastCMH and several burden test baselines. All burden tests were run with five
different choices of the hyperparameter w determining the length of the regions
to be tested. Our results showed that, despite requiring a stricter correction for
multiple comparisons, significant region mining algorithms greatly outperform
burden tests in this situation. In particular, we found that the probability of
discovering a certain truly associated region using a burden test decreases
sharply as the mismatch between w and the length l of the region increases.
Consequently, no single choice for w allows the burden tests to consistently
detect all seven regions. FastCMH, which is able to test regions of all lengths
simultaneously, does not suffer from this limitation.

— To explore the performance of significant region mining algorithms under models
other than genetic heterogeneity, we generated synthetic GWAS datasets in which
a single, unobserved causal variant is associated with the phenotype. In these
datasets, multiple observed neighbouring markers are correlated with the latent
causal marker via linkage disequilibrium, thus being indirectly associated with
the phenotype. Our results showed that, in this setting, significant region
mining algorithms can lead to a gain in statistical power compared to traditional
univariate approaches. This effect is maximised when the correlation between
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the observed markers and the latent causal variant is modest, rendering the
association signal present in the data barely detectable.

— The six real-world datasets considered in this thesis share two fundamental
characteristics: (i) their class ratio is relatively balanced, with the proportion of
cases not falling below 0.2 or exceeding 0.8, and (ii) they exhibit a substantial
amount of confounding due to population structure, as measured by the genomic
inflation factor [90]. However, they differ drastically in their sample size: while
the COPDGene study comprises 7, 993 participants, the five A. thaliana datasets
have only between 84 and 95 samples.

— In order to account for population structure, we made use of the ability of
FastCMH to correct for a categorical covariate. For each dataset, a categorical
covariate representing population structure was defined using the same heuristic
approach described in Chapter 5. First, the popular tool EIGENSTRAT [91] was
used to obtain a low-dimensional embedding of the genotype of each sample,
which was subsequently encoded as one of k categories using the k-means
algorithm. The hyperparameter k was chosen to minimise the genomic inflation
factor among a finite set of candidate values.

— Our results strongly suggest that, in this scenario, FastCMH is successful in
correcting for the confounding effects of population structure. This observation
holds true when assessing confounding using either the genomic inflation ratio
or quantile-quantile (Q-Q) plots.

— FastCMH deems a much smaller number of regions to be significantly associated
than FAIS. Most importantly, the decrease in the number of “hits” appears to be
strongly correlated with the corresponding decrease in genomic inflation. This
observation is consistent with the hypothesis that many of the genomic regions
found by FAIS are only deemed significant due to the confounding effects of
population structure.

— The results in all six real-world datasets further support the idea that significant
region mining is a useful tool to complement univariate analyses in GWAS. In
the COPDGene study, FastCMH discovered three significantly associated genomic
regions, none of which contained any marker that would have been deemed
significant by a univariate association test. Moreover, each of these regions
overlaps with a gene that has been reported to be associated with COPD [103,
105], making the findings of FastCMH biologically plausible. The results in A.
thaliana also confirm the potential of significant region mining to discover new
associations: only 16 out of the 33 clusters of significantly associated regions
retrieved by FastCMH contain markers that would have been discovered by a
univariate association test.

— Most importantly, we found that the ability of significant region mining to
carry out an exhaustive scan of the genome renders our proposed approaches
complementary to burden tests as well. This effect could be seen particularly
clearly in the analysis of the COPDGene dataset. None of the three significantly
associated regions discovered by FastCMH were successfully retrieved by any of
the burden tests we considered in our experiments. While all burden tests had
candidate regions in their search space that fully contained the regions found by
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FastCMH, the presence of additional, irrelevant markers contaminates the pooled
meta-marker with noise. Once again, by testing all possible regions, FastCMH is
resilient to this problem. Nonetheless, our results also suggest that, by requiring
a less stringent corrected significance threshold, burden tests can find regions
that would be missed by our approaches. This overall trend was confirmed by
the results in the five A. thaliana datasets: the discoveries made by significant
region mining and burden tests were often complementary.

— In summary, we believe that univariate association tests, burden tests and
significant region mining should not be treated as mutually exclusive approaches
but, rather, as tools that can be combined to analyse GWAS datasets at different
levels of granularity.
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Table B.1 lists open source implementations for some of the most relevant significant
pattern mining algorithms described in this thesis.

Table B.1. – A non-exhaustive list of existing software for significant pattern mining.
Algorithm Reference URL
LAMP, LAMP 2.0 [26, 65] http://a-terada.github.io/lamp
LAMPLINK [135] http://a-terada.github.io/lamplink
MP-LAMP [89] http://github.com/tsudalab/mp-lamp
Westfall-Young light [49]

http://significant-patterns.orgFACS [50]
FAIS, FastCMH [51, 52]

Several versions of LAMP, the first pattern mining approach based on Tarone’s
method and arguably the most influential significant pattern mining algorithm to date,
have publicly available implementations for practitioners to use. This includes both
the original LAMP algorithm as presented in [26] as well as LAMP 2.0, the follow-up
approach introduced by [65], which vastly improves the computational efficiency of
LAMP in practice. Researchers who specifically aim to use significant pattern mining
to detect high-order epistatic effects in genome-wide association studies might find
LAMPLINK [135] particularly useful. This toolbox provides an implementation of
LAMP 2.0 which is compatible with the input/output format and user interface of
PLINK [136], a widely-used resource in the statistical genetics community. Finally,
MP-LAMP [89], a parallel version of the LAMP algorithm, is also available as open source
software. Empirically, MP-LAMP has been found [89] to provide an speed-up close to
the number of processes used, rendering it a good option for analysing larger datasets.

Software tools for all contributions of this thesis have also been made available. In
particular, this includes:

(i) Westfall-Young light [49], our proposed approach to exploit the statistical
dependence between patterns to improve statistical power (Chapter 4).

(ii) FACS [50], our method to account for a categorical covariate in significant pattern
mining to deal with observed confounding factors (Chapter 5).

(iii) FAIS [51] and FastCMH [52], our novel algorithms to test all possible genomic
regions for association with a phenotype of interest, regardless of their length or
starting position (Chapter 6).

Providing additional implementations of these four algorithms compatible with the
PLINK suite, in the same spirit as LAMPLINK, is currently pending as future work.
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