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ABSTRACT

BACKGROUND: In recent years, far-reaching technological improvements have vastly
enhanced our ability to gather large amounts of molecular and clinical data. This
wealth of information has been poised to revolutionise computational biology and
medicine. However, reliably and efficiently extracting knowledge from data in these
domains is often a difficult task, as datasets tend to be characterised by very low
sample sizes relative to the number of features and small signal-to-noise ratios. In this
regime, where associations between features and targets tend to be faint, methods
based on classical statistical significance testing have proven to be a powerful tool for
data exploration, allowing to detect salient patterns in the data that can be prioritised
for further study by domain experts. However, owing to the inherent challenges posed
by statistical inference in high-dimensional spaces, most existing methods either rely
on univariate statistical association tests, thus considering the effect of each feature
in isolation from the rest, or utilise sparse linear models, describing the joint effect
of all features as the sum of a small number of individual effects. As a result, these
approaches are unable to detect nonlinear signals due to interactions between features. This
shortcoming has profound implications in many crucial problems including, but not
limited to, accounting for epistasis in genome-wide association studies, modelling
tissue-specific combinatorial transcription factor regulation of gene expression or
discovering patterns of co-occurring mutational events in tumours.

Assessing the statistical significance of all high-order interactions between features
is an exceedingly challenging problem, mainly due to two major difficulties: (i) the
vast number of statistical association tests to be performed would cause an extreme
multiple comparisons problem that goes well beyond what classical tools such as the
Bonferroni correction are able to cope with in practice, and (ii) the computational
complexity of a naive approach would grow exponentially with the number of features.
Nonetheless, despite being long considered an unsolvable problem by many, recent
work has provided a solution for the particular case that all features are discrete, de
facto kickstarting the field of significant pattern mining, the subject of study of this
thesis.

CONTRIBUTIONS: Significant pattern mining is a young field, offering a myriad
of open problems, some of which severely hinder its applicability to analyse data in
computational biology and medicine. The goal of this thesis is to develop novel significant
pattern mining algorithms, aiming to overcome some of the most crucial limitations of the state
of the art.

The first part of this thesis provides a self-contained introduction to significant
pattern mining, proposing a general formulation that encompasses multiple variations
of the problem and describing the statistical and algorithmic techniques that make
significant pattern mining possible.

Next, original contributions on three different topics of fundamental importance for
applications in the life sciences are presented.



(i) Many associations between features and targets in biomedical data are weak,
being barely above the noise level. This difficulty is exacerbated when high-order
interactions between features are taken into account, requiring a stringent significance
threshold. However, the search space consisting of all feature interactions is redundant
by construction, inducing strong statistical dependencies between test statistics. In
practice, these reduce the effective number of tests to account for when correcting for
the multiple comparisons problem. One of the contributions in this thesis is a fast and
memory-efficient algorithm that combines significant pattern mining with permutation testing
to estimate a less stringent significance threshold that accounts for the dependencies between
test statistics. Compared to the single existing approach that also aims to exploit this
phenomenon, our method is one to three orders of magnitude faster and requires two
to three orders of magnitude less memory while providing the same improvement in
statistical power.

(ii) Another ubiquitous problem when exploring data in the life sciences is the need
to correct for covariate factors such as age, gender, socioeconomic status or population
structure. Neglecting to account for factors of variation that might have a potentially
confounding effect could create a large number of spurious associations, jeopardising
the reliability of any discoveries reported as a result of the analysis. One of the biggest
limitations of state-of-the-art significant pattern mining algorithms is their inability to
incorporate such covariate factors into the model. A second contribution of this thesis
solves this shortcoming by devising a novel method that uses the Cochran-Mantel-Haenszel
test to correct for a categorical covariate. Computational tractability is achieved by means
of a specialised pruning criterion that can be evaluated in almost-linear time in the
number of categories of the covariate. Results on both synthetic data and genome-wide
association studies of the plant model organism A. thaliana suggest a drastic reduction
in false positives due to confounding effects without sacrificing neither statistical
power nor computational efficiency.

(iii) Genetic heterogeneity, the phenomenon that multiple genomic markers might
affect a phenotype in a similar manner, can be exploited to gain statistical power
in genome-wide association studies. By carrying out association studies at a region
level, as opposed to testing single markers, the (possibly weak) effects of multiple
neighbouring markers can be aggregated into a stronger, easier to detect signal. A
crucial limitation of existing approaches in this domain is their requirement that
the user preselects a priori a small subset of candidate genomic regions. The final
contribution discussed in this thesis is a new family of methods to carry out genome-wide
association studies at a region level based on significant pattern mining. Unlike other
approaches, these methods are able to test all genomic regions, regardless of their
length or position. The resulting resilience to misspecification of the subset of genomic
regions to be tested empirically translates into sharp gains in statistical power in
situations for which reliable prior knowledge about the length or location of the causal
regions is unavailable. This was corroborated by experiments on synthetic data as
well as genome-wide association studies on human and A. thaliana samples.

ouTLoOK: We strongly believe that these contributions substantially strengthen
the state of the art in significant pattern mining, particularly in regards to potential
applications in computational biology and medicine. Remarkable challenges still
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lie ahead of this young field, as discussed extensively in the final part of this thesis.
Nevertheless, rapid progress in the development of methods at the intersection be-
tween machine learning, statistical significance testing and data mining suggest that
significant pattern mining will play a key role in knowledge discovery for years to
come.
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RESUME

CONTEXTE : Les progres technologiques de ces derniéres années ont décuplé notre
capacité de récolter de grandes quantités de données moléculaires et cliniques. Cette
richesse d’information est destinée a révolutionner la biologie computationnelle et la
médecine. Cependant, il est souvent difficile d’extraire des connaissances pertinentes
a partir de ces données car elles présentent des tailles d’échantillon tres petites par
rapport au nombre de leurs caractéristiques et ont de petits rapport signal sur bruit.
Dans ce cadre de faibles associations entre caractéristiques et objectifs, les méthodes
basées sur les tests statistiques classiques ont été largement utilisées pour 1’exploration
des données, permettant de découvrir des motifs remarquables qui ont donné suite a
des études plus approfondies des effets observés. Néanmoins, a cause des difficultés
causées par l'inférence statistique dans les espaces a haute dimension, la plupart des
méthodes statistiques a disposition sont basées soit sur des tests univariés - qui ne
considerent que les effets de chaque caractéristique en isolation des autres - soit sur des
modeles linéaires creux - qui décrivent 1’effet combiné de plusieurs variables comme la
somme d'un petit nombre d’effets individuels. Par conséquent, ces approches ne sont pas
aptes a détecter des signaux non-linéaires causés par l'interaction de plusieures caractéristiques.
Cette limitation a des conséquences marquées pour de nombreuses applications,
notamment pour la détection d’épistasie dans les études d’association pangénomiques,
la modélisation de la régulation combinatoire de 1’expression génétique par les facteurs
de transcriptions ou encore la découverte de mutations co-occurentes dans les tumeurs.

Déterminer la signification statistique de foutes les interactions d’ordre supérieur
entre caractéristiques est un probléeme excessivement difficile pour deux raisons : (i)
I'immense quantité d’hypothéses qui doivent étre testées cause un probleme de com-
paraison multiple extréme, qui ne peut étre résolu par de simples instruments tels que
la correction de Bonferroni et (ii) la complexité computationnelle d’'une approche naive
grandit exponentiellement avec le nombre de caractéristiques. Toutefois, malgré avoir
été longtemps considéré comme un probleme insoluble par de nombreux chercheurs,
des développements récents ont proposé des solutions pour le cas particulier ou les
caractéristiques sont discretes, donnant naissance au domaine de la découverte de motifs
significatifs, le sujet de recherche de cette these.

CONTRIBUTIONS : La découverte de motifs significatifs est un domaine de re-
cherche nouveau qui offre une myriade de problemes irrésolus, parmis lesquels
certains qui empéchent son application a I’analyse de données médicales ou biolo-
giques. Le but de cette thése est de développer de nouveaux algorithmes de découverte de
motifs significatifs dépassant les limites actuelles de I'état de la technique.

La premiére partie de cette these propose une introduction au domaine de la
découverte de motifs significatifs et est composée d’une formulation générale du
probléme ainsi que d"une description des techniques statistiques et algorithmiques
qui rende la découverte de motifs significatifs possible.
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Ensuite, trois contributions fondamentales pour 'application de ces méthodes dans
les sciences de la vie sont présentées.

(i) De nombreuses associations entre caractéristiques et objectifs dans les données
biomédicales sont faibles, a peine au dessus du niveau du bruit. Les difficultés de
détection s’accroissent lorsque sont considérées les interactions d’ordre supérieur
entre plusieurs caractéristiques, exigeant un seuil de signification plus strict. Ce-
pendant, 'espace de recherche constitué par toutes les interactions entre toutes les
caractéristiques étant redondant par construction, de fortes dépendances statistiques
sont présentes entre les différentes statistiques de test. En pratique, ces dépendances
réduisent le nombre effectif de tests pour lesquels il faut corriger lors de problémes
de comparaisons multiples. Une des contributions de cette thése est un algorithme rapide
et efficient en terme d’utilisation de mémoire qui combine la découverte de motifs significatifs
avec le test de permutation pour estimer un seuil de signification moins strict qui tient en
compte les dépendances entre les statistiques de test. Notre méthode est d'un a trois ordres
de magnitude plus rapide et demande entre deux et trois ordres de magnitude moins
de mémoire que la seule autre solution existante, tout en permettant le méme gain de
puissance statistique.

(ii) Un autre probleme omniprésent lors du traitement de données dans les sciences
de la vie est le besoin de corriger pour différentes covariables telles que 1'age, le genre,
le statut socioéconomique ou la structure d"une population. Ne pas considérer ces
covariables lors des analyses statistiques peut nuire considérablement aux résultats
obtenus, en générant de fausses associations et en compromettant leur analyse. Une des
principales limitations des algorithmes existants de découverte de motifs significatifs
est leur incapacité a considérer des covariables dans leur modéle. Une deuxieme
contribution de cette thése résout cette restriction en présentant une nouvelle méthode qui
utilise le test de Cochran-Mantel-Haenszel pour corriger en tenant compte des covariables
catégoriques. Un critéere d’élagage spécialisé qui peut étre évalué en un temps quasi-
linéaire par rapport au nombre de catégories de la covariable garantit la faisabilité
computationnelle de 1'algorithme. Les résultats obtenus sur des données synthétiques
ainsi que sur des études d’association pangénomiques de 1’organisme modele A.
thaliana suggerent une réduction drastique du nombre de faux positifs dus aux effets
des covariables sans perdre de puissance statistique ni d’efficience computationnelle.

(iii) L'hétérogénéité génétique, un phénomene pour lequel plusieurs marqueurs
génétiques peuvent influencer d’une maniére similaire un seul phénotype, peut étre
utilisée pour gagner de la puissance statistique lors d’études d’association pangéno-
miques. Les effets (potentiellement faibles) de plusieurs marqueurs voisins peuvent
étre combinés dans un signal plus fort et plus facile a détecter en testant des régions
entieres plutdot que des marqueurs uniques. Une limitation cruciale des méthodes
existantes dans ce domaine est qu’elles exigent de recevoir des régions prédéterminées
a l’avance par l'utilisateur. La derniére contribution décrite dans cette theése est une nouvelle
famille de méthodes basées sur la découverte de motifs significatifs qui permet I'étude d’asso-
ciation pangénomique au niveau des régions. Ces méthodes, contrairement aux solutions
existantes, permettent de tester toutes les régions génomiques, indépendamment de
leur taille ou position. Ceci permet de considérables augmentations de puissance
statistique dans les situations ou1 tres peu d'informations a propos des régions causales
sont connues, comme 1’ont prouvés nos expériences sur des données synthétiques et
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sur des résultats d’études d’association pangénomiques d’échantillons humains et de
A. thaliana.

PERSPECTIVES : Nous sommes convaincus que ces contributions renforcent considé-
rablement 1’état de la technique de la découverte de motifs significatifs, en particulier
dans les applications pour la biologie computationnelle et la médecine. De nombreux
défis sont encore présents dans ce jeune domaine, comme la partie finale de cette
thése le témoigne. Néanmoins, le progres rapide dans le développement de méthodes
a l'intersection de 'apprentissage machine, des tests statistiques significatifs et du
data mining suggere que la découverte de motifs significatifs va jouer un role essentiel
dans le domaine de 'extraction de connaissances lors des prochaines années.



ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor Prof. Karsten
Borgwardt for his excellent advice and support throughout my PhD. I am deeply
thankful for the exciting research opportunities, the generous funding to attend many
of the main conferences in our field and the guidance and mentoring during my PhD
studies. Working as a PhD student in Prof. Borgwardt’s lab has been a fantastic
learning experience and a great way to start what I hope will be a successful career as
a machine learning researcher.

I would also like to thank Prof. Koji Tsuda and Prof. Volker Roth for kindly agreeing
to act as referees in my doctoral examination committee, as well as Prof. Tanja Stadler
for chairing the examination.

I cannot emphasise enough how grateful I am to all of my co-authors for their
essential contributions in the four articles which form the backbone of this thesis.
Laetitia Papaxanthos has co-authored three of these publications, and her contributions
in two of them have been at least as important as mine. Her role in making the research
described in this thesis a reality has been irreplaceable, the successful completion of
these projects being to a great extent the result of her talent, knowledge and hard
work. I am also deeply indebted to Mahito Sugiyama. Our collaboration had a
decisive influence in all of my PhD’s work but, most importantly, it was a source
of inspiration and taught me a great deal about how to become a better machine
learning researcher. Damidn Roqueiro has been a selfless source of support in all
projects described in this thesis. I benefited immensely from his expertise in carrying
out research at the interface between computational biology and machine learning.
His advice provided invaluable guidance throughout my PhD and will continue to
shape my research for many years to come. The efforts of Dean Bodenham were
instrumental in pushing forward the research on significant pattern mining in Prof.
Borgwardt’s lab. In addition to co-authoring three of the articles described in this
thesis, I would like to thank him in particular for taking the lead in the development
of a toolbox allowing to access our methods with a more user-friendly interface. I
am also grateful to Dominik Grimm, who suggested to use datasets originating from
genome-wide association studies of the plant model organism A. thaliana as a testbed
to develop our algorithms. His extensive experience in that domain greatly helped
speedup the pace of our research and increase its practical impact. Finally, I wish to
thank Matteo Togninalli for helping me translate the abstract of this thesis.

During my PhD, I was in a privileged position to be exposed to stimulating dis-
cussions with many talented individuals. For that, I am particularly thankful to my
former colleagues in Prof. Borgwardt’s lab in Tiibingen, Chloé-Agathe Azencott, Aasa
Feragen, Carl Johann Simon-Gabriel, Barbara Rakitsch, Veronika Cheplygina and
Niklas Kasenburg, as well as many other researchers in the Max Planck Institute for
Intelligent Systems. I thoroughly enjoyed the opportunity provided by the “Machine
Learning for Personalized Medicine” Marie Curie Initial Training Network to meet
many amazing fellow PhD students and postdocs. Discussing all sorts of topics with

xi



Melanie E. Pradier in long email chains, conferences and summer schools has been
one of the highlights of my PhD, as were the experiences shared with Cankut Cubuk,
Daniel Urda Mufioz, Ramouna Fouladi and Yuanlong Liu during our respective sec-
ondments. I also feel grateful for the opportunity to work with all past and present
members of Prof. Borgwardt’s lab in Basel, Menno Witteveen, Udo Gieraths, Xiao
He, Lukas Folkman, Elisabetta Ghisu, Matteo Togninalli, Anja Gumpinger, Thomas
Gumbsch, Christian Bock, Bastian Rieck, Caroline Weis, Michael Moor, Eric Wolf,
Birgit Knapp and Katharina Heinrich. In addition, I would also like to thank Koji
Tsuda, Ichiro Takeuchi and Junpei Komiyama for the insightful exchanges regarding
significant pattern mining and machine learning.

Finally, I would like to express my gratitude to all professors who taught me
during my undergraduate studies, specially those from the Signal Theory and Com-
munications department in Universidad Carlos III de Madrid. In particular, I feel
indebted to Prof. Fernando Pérez-Cruz and Prof. Antonio Artés-Rodriguez for their
extraordinary professional advice, which continued throughout my PhD, and, above
all, to my Master’s Thesis supervisors, Prof. Emilio Parrado-Herndndez and Prof.
Matilde Sanchez-Ferndandez, who instilled in me the desire to become a researcher
and provided invaluable, untiring mentoring to that end.

FUNDING: This work was funded in part by the Marie Curie Initial Training Network

MLPM2012, Grant No. 316861 and the SNSF Starting Grant “Significant Pattern
Mining”.

xii



CONTENTS

i INTRODUCTION AND BACKGROUND 1
1 INTRODUCTION 3
1.1 Organisation of thisthesis . . . . ... .. ... ... ... ... ..... 7

2 STATISTICAL ASPECTS OF SIGNIFICANT PATTERN MINING 11
2.1 Problem Statement and Terminology . . . . . .. ... ... . ... .... 11
2.2 Statistical Association Testing in Significant Pattern Mining . . . . . . . 16
2.3 The Multiple Comparisons Problem . . . ... ............... 21

3 ALGORITHMIC ASPECTS OF SIGNIFICANT PATTERN MINING 25
3.1 OVErVIEW . . . . o o o 26
3.2 Pattern enumeration . ... ... ... ... oL 26
3.3 Evaluating Tarone’s Minimum Attainable P-value . . . . . ... ... .. 29
3.4 Designing a Pruning Condition . . . . ... ... .............. 34
3.5 Implementation Considerations . . . . ... ... ... ........... 35

ii CONTRIBUTIONS 39
4 EXPLOITING THE DEPENDENCE BETWEEN PATTERNS 41
4.1 Introduction . .. ... ... ..o 41
4.2 Empirically Approximating the FWER Via Random Permutations . . . . 45
4.3 Permutation Testing in Significant Pattern Mining . . . . . . ... .. .. 47
4.3.1 Related work: the FastWY algorithm . . . ... ... ... ..... 48

4.3.2 Contribution: the Westfall-Young light algorithm. .. ... .. 50

4.4 Experiments . . .. ... ... .. ... o oo 54
4.4.1 Experimental Setup . ... ... ... ... . ... . .. 0L 54

4.4.2 Runtime and memory usage . . ... ................ 56

4.4.3 Final support for pattern mining . . . . . ... ... ... ... .. 59

4.4.4 Statistical power . . .. .. ... L L oL 60

5 CORRECTING FOR A CATEGORICAL COVARIATE 65
5.1 Introduction . . . . . . ... 65
5.2 Conditional Association Testing in Significant Pattern Mining . . . . . . 68
5.3 The Minimum Attainable P-value for the CMH Test . . . . . .. ... .. 69
5.4 A Search Space Pruning Condition for the CMH Test . . . ... ... .. 71
5.5 Miscellaneous aspects of the FACS algorithm . . .. ... ......... 83
56 Experiments . . .. ... ... ... ... L o o 85
5.6.1 Experimentalsetup . .. ... .. ... .. ... ... ... ... 85

5.6.2 Simulation experiments . . . ... ... ... o 0 0L 86

5.6.3 Applications to genome-wide association studies . . . ... ... 93

6 GENOME-WIDE ASSOCIATION STUDIES AT A REGION LEVEL 99
6.1 Introduction . ... ... ... ... .. L 100
6.2 Method . . . . . . . .. 104
6.3 Experiments . . ... .... ... .. ... .. ... .. 116
6.3.1 Experimentalsetup . . . .. ... ... ... ... .. ... .. .. 116

xiii



CONTENTS

6.3.2 Simulation experiments . . .. ... ... .. .. 00 oL

6.3.3 Experiments on real-world human and plant GWAS datasets

ili DISCUSSION AND OUTLOOK

7 SUMMARY AND OUTLOOK

7.1 Summary . . . . .
7.2 Outlook . . . . ..
7.3 Closing Remarks

iv APPENDICES
A CHAPTER SUMMARIES
B AVAILABLE SOFTWARE

BIBLIOGRAPHY

Xiv

. 130

141
143
143

149
163

165
167
191

193



LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

[lustration of significant itemset mining on a toy dataset.. . . .
Ilustration of significant subgraph mining on a toy dataset.
Ilustration of a pattern enumeration tree for a significant item-
set mining problem with p = 5 binary features. . ... ... ..
Minimum attainable P-value ps min for Pearson’s x? test and
Fisher’s exact test as a function of the number rs of occurrences
of pattern SinadatasetD. . . ... .......... .. ....
[lustration of the concept of testability at an arbitrary signif-
icance level § when Fisher’s exact test is the test statistic of

lustration of the effect of search space pruning in a significant
itemset mining problem with p = 5 binary features. . . . . . . .
[ustration of how dependence between patterns arises in sig-
nificant itemset mining due to inclusion relationships § C &’
between candidate patterns S, 8" e M. ... ... ...
[ustration of how subset/superset relationships between pat-
terns and the sharing of pattern sub-structures can result in a
pattern S € M being statistically associated with many other
patterns in the search space M . . . .. ... ... ... .. ..
Mlustration of permutation testing-based resampling in the
context of significant itemset mining. . . . . . .. ... ... ...
Comparison of runtime and memory usage between FastWY
and Westfall-Young light in 20 significant itemset mining
experiments. . . . . ... ... L o
Comparison of runtime and memory usage between FastWY
and Westfall-Young light in 12 significant subgraph mining
experiments. . . . . ... ... L o
Comparison of the final support corresponding to FastWY and
Westfall-Young light. . . ... ... .. ... .. ........
Empirical FWER versus j, for two representative significant
itemset mining datasets. . . . ... ... ... ... .. . ...
Empirical FWER versus j, for two representative significant
subgraph mining datasets. . . . .. ... ... ... ... .....
An illustration of the effect of confounding on a toy significant
itemset mining problem. . . . .. ... ... . 0 0L
Application of the CMH test to the toy significant pattern
mining dataset in Figure 5.1.. . . .. ... .. ... ... . ...
Minimum attainable P-value function pmin(rs) for the CMH
test in a problem with k = 2 categories for the covariate.
[lustration of the lower envelope psmin of the minimum at-
tainable P-value psmin. - - - - - - - o oo oo

12

27

32

33

35

42

43

57

58
61
62
62
67
70
72

73

XV



Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

XVi

FDR as a function of the signal strength p for our proposed
approach FACS and two baseline algorithms: Bonf-CMH and
LAMP-X2. . . 90

Statistical power at different values of the signal strength p
for our proposed approach FACS and two baseline algorithms:
Bonf-CMH and LAMP-X2. . . . . . . o vttt 91

Runtime as a function of the number of features p for our
proposed approach FACS and four baseline algorithms: 2X-FACS,
mF-FACS, Bonf-CMH and LAMP-x2. . . . . . ... ... ....... 92

Runtime as a function of the number of categories for the
covariate k for our proposed approach FACS and four baseline
algorithms: 2X-FACS, m*-FACS, Bonf-CMH and LAMP-x2. . . . . . . 93

An illustration of how genetic heterogeneity can be exploited
to gain statistical power in GWASs. . . . . .. ... ... ... .. 102

Statistical power at different values of the signal strength p
for our proposed approaches FAIS-x? and FastCMH, as well as
four baseline algorithms: Bonf-x2, Bonf-CMH, Univariate-y>
and Univariate-CMH. . . . . ... ... ... ............ 120

FWER at different values of the signal strength p for our
proposed approaches FAIS-y? and FastCMH, as well as four
baseline algorithms: Bonf-x?, Bonf-CMH, Univariate-y? and
Univariate-CMH.. . . . . . .. ... ... ... ... ........ 121

Runtime as a function of the number of features p for our pro-
posed approaches FAIS-x* and FastCMH, as well as the baseline
Bonf-CMH. . . . . . . . ... 122

Runtime as a function of the number of samples n for our pro-
posed approaches FAIS-x? and FastCMH, as well as the baseline
Bonf-CMH. . . . . . . . . . e 123

Runtime as a function of the number of categories for the
covariate k for our proposed approach FastCMH and the baseline
2K FastCMH. . . . . o oot e e 124

A comparison of the statistical power of FastCMH and several
burden tests with (a) sliding windows and (b) non-overlapping
windows. . . . ... 127

Statistical power at different values of the signal strength p
for our proposed approach FastCMH, as well as two baseline
algorithms: Bonf-CMH and Univariate-CMH. . . . . ... ... .. 129

Visualisation of the three-dimensional embedding obtained by
EIGENSTRAT for each sample in the COPDGene study. . . . . . . 132



List of Tables

Figure 6.10 Q-Q plots for the P-values of all testable genomic regions ob-
tained with FAIS-x? and FastCMH for all six datasets under
consideration. . . . .. ... ... . L L Lo 135

LIST OF TABLES

Table 4.1 Characteristics of the significant itemset mining datasets. . . . . 55
Table 4.2 Characteristics of the significant subgraph mining datasets. . . 56
Table 5.1 Total number of feature interactions (hits) deemed significantly

associated by LAMP-x2, FACS and Bonf-CMH and average ge-

nomic inflation factor A. . . . ... ... ... ... ..., 97
Table 5.2 Genomic inflation factor A for different univariate analyses of

the two GWAS datasets under consideration. . . . . . ... ... 98
Table 6.1 Characteristics of the six GWAS datasets used in this chapter. . 131
Table 6.2 Summary of the results of our proposed approaches FAIS-?

and FastCMH. . . . . . . . . oot 134
Table B.1 A non-exhaustive list of existing software for significant pattern

MINING. . . . . . 191

xvii






Part1

INTRODUCTION AND BACKGROUND






INTRODUCTION

Biomarker discovery, the search for measurable biological indicators of a phenotypic
trait of interest, is a fundamental problem in healthcare and computational biology.
Biomarkers help researchers better understand the biological mechanisms underlying
phenotypic variation and can ultimately lead to significant advances in prevention,
diagnosis and treatment of many medical conditions [1]. In recent years, drastic
improvements in our ability to affordably collect large amounts of molecular data
has led to a rapid growth in data availability. In particular, the past three decades
have shown a (roughly) doubling, every 18 months, of the number of sequenced bases
readily available in public databases [2]; a growth rate that outpaces Moore’s “law” [3].
As a result, large-scale datasets containing millions of biological measurements for
thousands of individuals have now become customary. Perhaps most importantly,
current trends show no indications that this explosion in data availability will slow
down in the foreseeable future [4]. Precision medicine [5—7] aims to make use of
this wealth of molecular data, alongside information about a patient’s lifestyle and
environment, in order to personalise disease prevention and medical treatment. Thus,
developing methods to efficiently and reliably discover promising biomarkers in such
large-scale datasets is of utmost importance to make precision medicine a reality.

From a statistical perspective, biomarker discovery is particularly challenging due
to the nature of the datasets involved [8, 9], typically containing many more features
than samples. For instance, such a dataset may represent the allelic value of millions
of single nucleotide polymorphisms (features or markers) for thousands of individuals
(samples). In this example, the goal would be to identify the single nucleotide
polymorphisms that help us differentiate between individuals of distinct phenotype
(biomarkers). The difficulty of analysing datasets with such a large number of
features relative to the sample size has motivated the development of novel tools for
statistical inference in high-dimensional spaces. Existing work has predominantly
focused on either univariate methods or multivariate linear models with sparsity-
inducing regularisers. Approaches based on univariate association tests (e.g. [10])
consider the effect of each candidate marker in isolation from the others. In contrast,
multivariate linear models with sparsity-inducing regularisers (e.g. [11-15]) jointly
model the effect of all candidate markers as a weighted additive combination of
individual effects. These techniques have been a fundamental part of many successes
in biology and medicine. For instance, they have been widely used to analyse data
in genome-wide association studies, helping discover more than 61,000 variant-trait
associations [16, 17], many of which have led to substantial biological insight and
even clinical applications [18, 19]. However, both families of approaches share a key
limitation: they are unable to discover nonlinear signals due to interactions between features.
For instance, this “blind spot” has been hypothesised as a factor that could account for
at least a fraction of the “missing heritability” in genome-wide association studies [20-
23]. The missing heritability problem, the phenomenon that loci discovered by
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genome-wide association studies only account for a small proportion of the estimated
heritability of the phenotypes, is one of the main open problems in statistical genetics.
In order to test the hypothesis that nonlinear interactions between candidate markers
could explain part of this missing heritability, novel biomarker discovery methods able
to take feature interactions into consideration are necessary. More generally, biological
mechanisms for which feature interactions have been found to play a crucial role
abound in a variety of topics of utmost relevance. For example, the regulation of gene
expression in different tissues is known to be dictated at least in part by combinatorial
interactions among transcription factors [24—26]. Analysing feature interactions has
also proven to be fruitful in oncology, where identifying co-occurring mutational
events from tumour sequence data has facilitated the detection of cancer genes and
pathways [27, 28].

Nevertheless, assessing the statistical association of all high-order feature interac-
tions with a phenotypic trait of interest is an exceedingly difficult problem. The gap
between the number of features and sample size, already large in traditional analyses,
is further exacerbated when all high-order feature interactions are considered, leading
to a combinatorial explosion in the effective number of features in the model. To
give a sense of scale, in a dataset with p = 266 features, which could be considered
a small number by current standards, one could explore up to 2? ~ 10% high-order
feature interactions; as many as the estimated number of electrons in the observable
universe [29, Appendix C.4]. Two fundamental difficulties arise from the daunting
number of feature interactions that would need to be tested for association with the
trait of interest:

(i) A statistical challenge, in the form of an extreme instance of the so called multiple
comparisons problem. When such an enormous number of associations tests are
performed, it is extraordinarily difficult to control the probability of reporting
false associations while maintaining enough statistical power to discover the
truly significant feature interactions.

(ii) A computational challenge, caused by the necessity to explore the vast search
space consisting of all candidate feature interactions.

In order to tackle the computational challenge, decades of research have led to a
plethora of data mining algorithms able to quickly navigate the search space of all
candidate feature interactions. Most of these approaches rely on efficient schemes
to enumerate feature interactions in combination with pruning criteria that allow
removing a large proportion of the search space without affecting the validity of
the results (e.g. [30-33]). These discriminative pattern mining algorithms have been
largely successful in many applications, however, they are unable to account for
the multiple comparisons problem. As a consequence, the statistical significance of
their reported associations cannot be evaluated. While this might only be a minor
inconvenience in some domains, strictly assessing the statistical significance of any
positive findings is essential in biomarker discovery. Indeed, in this “big data” era,
the current “reproducibility crisis” in many scientific disciplines [34-39] has made
abundantly clear that, as the role of data science becomes more prominent in most
tields of research, properly accounting for all sources of uncertainty when reporting
any discoveries is extraordinarily important.
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Despite this pressing motivation to develop approaches to correct for the multiple
comparisons problem in discriminative pattern mining, an effective, uncompromising
solution remained elusive for decades. If all candidate feature interactions are taken
into consideration, the resulting multiple comparisons problem is enormous, way
beyond what had been successfully handled in the statistics literature, leading many
field experts to believe that a solution to this problem was unlikely to be found. Early
attempts to account for the multiple comparisons problem in pattern mining were
pioneered by [40, 41]. However, these approaches resorted to imposing limits in the
number of interacting features in order to reduce the total number of candidate feature
interactions in the search space and alleviate the multiple comparisons burden or, al-
ternatively, proposed to randomly split the original dataset into separate “exploratory”
and “holdout” data, leading to a potential loss of statistical power and hindering
reproducibility. Follow-up work [42] proposed a method to soften the hard constraints
in the maximum number of interacting features, effectively allowing to prioritise the
discovery of feature interactions involving a certain number of interacting features at
the expense of decreasing statistical power for other candidate feature interactions.
Nevertheless, recent work presented in [26] showed that it is entirely possible to solve
both the computational and statistical challenges described above while keeping all
candidate feature interactions in the search space. This feat, achieved through a com-
bination of classical discriminative pattern mining algorithms and highly-specialised
techniques for statistical association testing with discrete data, effectively created a
new branch of machine learning which we refer to as significant pattern mining.

The method in [26] was groundbreaking, as it showed for the first time that assessing
the statistical significance of all high-order feature interactions with a target of interest
is, in general, possible. However, the approach is not devoid of limitations, some of
which severely hinder its applicability to biomarker discovery problems. The aim of
this thesis is to propose novel significant pattern mining methods that overcome some
of those limitations, selected on the basis of their crucial importance for biomarker
discovery. Next, we briefly introduce each of our contributions, leaving an in-depth
description for subsequent chapters.

Exploiting the dependence between patterns

Unlike other machine learning problems such as computer vision, speech recogni-
tion and other perceptual tasks, many datasets in computational biology are charac-
terised by containing only extremely faint signals, barely above the noise level. This
partly explains why a large body of work in machine learning for computational
biology focuses on association testing rather than prediction and, most importantly,
why methods to improve statistical power are among the most relevant contributions
a computational scientist might make to the field.

If there is a single characteristic that defines significant pattern mining, it is the
daunting size of the search space that needs to be explored. As discussed above,
this is the source of statistical and computational difficulties that make significant
pattern mining challenging. However, it is also the source of opportunities to improve
upon the state of the art. The exhaustive nature of the search space of all candidate
feature interactions makes it redundant by construction: subset/superset relationships
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between distinct feature interactions induce strong statistical dependencies between
the different association tests that need to be performed. Intuitively, these statistical
dependencies reduce the effective number of tests one must account for when cor-
recting for the multiple comparisons problem. While this offers an opportunity to
significantly increase statistical power, modelling these dependencies appropriately
is difficult, again, due to the enormous number of association tests to be considered.
Consequently, existing approaches opt for ignoring these statistical dependencies
between feature interactions, effectively sacrificing statistical power in exchange for
simplicity. Moreover, the single approach that aims to exploit the dependencies in
the search space [43] is too computationally demanding in practice, both in terms of
runtime and memory usage, making it suitable only for small datasets.

In this thesis, we propose a new method to combine permutation testing with
significant pattern mining. Permutation testing allows empirically estimating the joint
global null distribution of all test statistics, making it possible to compute a tighter
significance threshold that takes the dependence between feature interactions into
account. Compared to the method introduced in [43], our algorithm is one to three
orders of magnitude faster and requires two to three orders of magnitude less memory
without affecting its ability to exploit the dependencies in the search space to improve
statistical power. The resulting approach scales-up to a broader range of datasets, thus
making it applicable to many problems relevant for computational biology.

Correcting for a categorical covariate

The need to account for covariates that might have a potentially confounding effect
is ubiquitous in most applications for medicine and computational biology. If these
covariates are not incorporated in the model, a large number of spurious false positives
whose association signal is exclusively mediated by the confounder might be erro-
neously reported. For instance, some possible sources of confounding in biomarker
discovery are factors such as gender, age, education level, pre-existing conditions or
population structure, among others. Despite the potential that significant pattern
mining has for biomarker discovery, it is unlikely that these methods will ever gain
acceptance among practitioners unless effective ways to correct for confounders are
proposed.

Accounting for covariate factors in significant pattern mining had remained an open
problem since the first significant pattern mining approach was proposed in [26]. This
method heavily relies on low-level properties of some specific statistical association
tests for discrete data, such as Pearson’s x? test [44] or Fisher’s exact test [45]. However,
these properties do not apply for tests that have been traditionally used to account
for covariates when testing associations in discrete data, such as the Cochran-Mantel-
Haenszel test [46]. Hence, the framework in [26] cannot be used in combination with
covariate factors, limiting the use of significant pattern mining to datasets for which
confounding effects could be ruled out a priori according to domain knowledge.

A fundamental contribution of this thesis is to propose a significant pattern mining
algorithm that can account for a categorical covariate. Our method makes use of
the Cochran-Mantel-Haenszel test alongside a novel pruning criterion that can be
evaluated in almost-linear time in the number of categories of the covariate. As a
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result, our approach is able to incorporate categorical covariates such as gender, age or
population structure, drastically reducing false positives due to confounding without
sacrificing neither computational efficiency nor statistical power.

Genome-wide association studies at a region level

Genome-wide association studies aim to discover how common genetic variation in
the population can be mapped to phenotypic differences between individuals, hoping
to shed light on the underlying biology and eventually lead to better approaches
for disease prevention and medical treatment. According to the common disease-
common variant hypothesis, phenotypic variation for complex traits might be largely
polygenic, being governed by a considerable number of variants, each accounting
for a exceedingly small proportion of the variation [18]. An alternative hypothesis
postulates that rare variants, i.e. those which occur in less than 1% of the population,
could be the source of phenotypic variability among individuals [47]. This model
expects these variants to have a large effect size. However, their rarity and the fact
that their effects can only be indirectly measured in genome-wide association studies
via linkage with common variants imply that the observed effect sizes would again be
small.

In order to improve statistical power, many approaches have been proposed to
aggregate the (possibly weak) effects of multiple neighbouring variants into a stronger,
easier to detect association signal. Some of these approaches have been successful
in discovering associations that would have been otherwise missed by a univariate
analysis, specially for associations which involve rare variants [48]. Nonetheless, all
these methods share a common limitation: they can only test a relatively small subset
of genomic regions chosen a priori. Practitioners have used multiple criteria to select
which genomic regions to test. For instance, some have used prior knowledge, defining
the regions as either genes or other functional units. Others prefer to perform an
agnostic, genome-wide scan and define the genomic regions to be tested by splitting
the genome into (possibly overlapping) windows of a pre-specified size. Regardless of
the choice, only a small proportion of all possible genomic regions will be covered. If
the windows the genome is split into are chosen too small or too big, or if part of the
signal happens to arise from variants outside the regions chosen according to prior
knowledge, these methods will suffer a sharp loss in statistical power.

This application offers an ideal opportunity to showcase the potential of significant
pattern mining for computational biology. In this thesis, we propose a new family of
methods that are able to test all genomic regions, regardless of their starting position
or size. Unlike competing approaches, our algorithm is robust to misspecification of
the genomic regions to be tested and reduces the number of hyperparameters to be
adjusted by the data analyst, aiding reproducibility.

1.1 ORGANISATION OF THIS THESIS

The content of this thesis is organised into three parts: (i) introduction and back-
ground, (ii) contributions, and (iii) discussion and outlook.
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The first part comprises a self-contained introduction to the key background con-
cepts the rest of this thesis relies on. In particular, Chapter 2 begins by formalising the
objective of significant pattern mining and describing its two most popular instances:
(i) significant itemset mining, which looks for statistically significant feature interactions
in binary data, and ii) significant subgraph mining, which aims at finding significant
subgraphs in a dataset of graph-structured samples. Statistical association testing for
binary random variables, a fundamental sub-component of significant pattern mining,
is discussed next. The chapter concludes with a detailed introduction to the multiple
comparisons problem and a description of Tarone’s improved Bonferroni correction
for discrete data, the key statistical tool that made it possible to manage the multiple
comparisons problem in significant pattern mining. Finally, Chapter 3 describes
how Tarone’s improved Bonferroni correction can be combined with techniques from
classical discriminative pattern mining to obtain an efficient algorithm for significant
pattern mining.

The next part is devoted to presenting all of the novel contributions of this thesis.
These will be organised as follows:

(i) Chapter 4, which discusses our new approach to exploit the dependence between

patterns to improve statistical power, is based on the following publication:
— Llinares-Lépez, E, Sugiyama, M., Papaxanthos, L. & Borgwardt, K. Fast and memory-

efficient significant pattern mining via permutation testing in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2015), 725—
734
(ii) Chapter 5 describes our method to correct for categorical covariates in significant
pattern mining, allowing practitioners to deal with potential confounding factors.
The work presented in this chapter originates from the following publication,
for which the two first authors contributed equally:

— Papaxanthos, L., Llinares-Lépez, F.,, Bodenham, D. & Borgwardt, K. Finding significant
combinations of features in the presence of categorical covariates in Advances in Neural
Information Processing Systems (2016), 22712279

(iii) Chapter 6 introduces our work on genome-wide association studies at a region
level, proposing a new family of algorithms to test all genomic regions regardless
of size and starting position. This chapter encompasses two distinct publications,
the second of which is also the result of equal contributions by the two first
authors:

— Llinares-Lépez, F., Grimm, D., Bodenham, D., Gieraths, U., Sugiyama, M., Rowan, B. &
Borgwardt, K. Genome-wide detection of intervals of genetic heterogeneity associated
with complex traits. Bioinformatics 31, i240-i249 (2015)

— Llinares-Lépez, F.,, Papaxanthos, L., Bodenham, D., Roqueiro, D., COPD Investigators
& Borgwardt, K. Genome-wide genetic heterogeneity discovery with categorical
covariates. Bioinformatics 33, 11820-11828 (2017)

The last part of this thesis, which comprises Chapter 7, synthesises the main concepts
presented throughout this document and provides a detailed outlook on the main
open problems in the field.

How to read this thesis

Chapters in this thesis are not self-contained, hence, they should ideally be read
in order. Nevertheless, in hopes of facilitating selective reading, a self-sufficient
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summary of the essential ideas and results introduced by each chapter can be found
in Appendix A. Additionally, the interested reader can find in Appendix B a brief list
of existing open source software for significant pattern mining.

Finally, we wish it to be known that a book chapter heavily based on this thesis
is currently under preparation. The chapter, preliminarily titled “Machine learning
for biomarker discovery: significant pattern mining”, will be part of an interdisciplinary
textbook aimed at training biological, medical and computational scientists and will
cover both the fundamentals of significant pattern mining as well as a simplified
description of the contributions detailed in Chapters 4 and 5 of this thesis.






STATISTICAL ASPECTS OF SIGNIFICANT PATTERN MINING

2.1 PROBLEM STATEMENT AND TERMINOLOGY

Let D = {(x;,yi)}._; be a dataset with n distinct observations x and their corre-
sponding labels y, sampled i.i.d. from an unknown joint probability distribution
p(x,y). We consider the case where each observation x exists in a finite input domain
X and belongs to one of two classes, i.e. y € {0,1}. Throughout this thesis, we will
informally refer to any discrete substructure that might be part of an input sample
x € X as a pattern. The exact notion of pattern depends on the input domain X’; some
of the most common cases will be introduced later in this section.

Given a search space M containing all candidate patterns under study, significant
pattern mining aims to discover all patterns S in M whose occurrence within a sample
is statistically significantly associated with the class labels.

We define the pattern occurrence indicator ¢s(x) as the binary random variable that
indicates whether pattern S is present in an input sample x or not:

1, if SCx,

gs(x) = { (2.1)

0, otherwise.

A pattern S occurs statistically significantly more often in one class of samples than
in another if and only if the class labels y and the indicator gs(x) are statistically
associated.

A precise definition of the search space of candidate patterns M and the concept
of inclusion or occurrence S C x also depend on the nature of the input domain &'.
This abstract framework can be particularised to cover a variety of significant pattern
mining instances; the remaining of this section will be devoted to describe some of
the most relevant.

Significant itemset mining

Perhaps the most widespread instance of significant pattern mining corresponds to
the case where the input samples are p-dimensional binary vectors, i.e. X = {0,1}".
Essentially, this means that each input sample x comprises a collection of p different
binary features x = (uq,uy,..., up), each of which can be either active (u; = 1) or
inactive (u; = 0).

Datasets arising from a wide variety of problems in computational biology can be
described using this type of representation. For instance, in genome-wide association
studies, the genotype of n individuals at a set of p single nucleotide polymorphisms
can be represented as p binary features using, for example, a dominant/recessive/over-
dominant encoding or prior knowledge such as functional annotations. In functional
genomics, given a set of n distinct genomic regions, each of the p binary features could
be an indicator of whether a certain property of interest, such as exhibiting a particular
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chromatin modification in a given cell type or containing a specific transcription factor
binding motif, applies to a genomic region or not. In a clinical setting, many datasets
contain samples that can be described by high-dimensional binary vectors as well.
For instance, this type of representation can be related to Electronic Health Records
(EHRs). In this case, the active binary features can be used to encode the set of medical
codes from a certain medical ontology (e.g. SNOMED-CT, ICD-9) which apply to
the record, among a vocabulary of p distinct medical terms. Moreover, many clinical
variables can typically be described using a binary feature that indicates whether its
observed value lies within the normal, healthy range or not.

p features
Y Ul U U3 Ug Us Ue U7 U U U0 28, ZS,
r o |(F1To00110111)| 0o M
o/l |(i1o1110010)| o |o
o/l |](1io1ioi100011)| o |o
f.i"o (i11io0111001)| 1 |o
. of |[(011io0110110)] o |o
'%‘ 0 [1110010001]3 0
3 1l |(i110110011)| 1 I
= 1| |lGaiioi1101 0|1 |1
gjl1 (i1i1io0110011)| 1 |4
1| |(1110110100J)| 1 |0
1 |[(AF110110111)] 1 |
| 1) |GFo01110011)| 0o U
S, = {2,9,10}

Figure 2.1. — Illustration of significant itemset mining on a toy dataset with n = 12
samples, divided into n; = 6 samples belonging to class y = 1 (e.g.
cases) and 19 = 6 samples belonging to class y = 0 (e.g. controls). Each
sample is represented by p = 10 binary features, 11, uy, ..., u19. Patterns
S1 = {1,3,5,6} (yellow) and S, = {2,9,10} (blue) are highlighted in
the figure alongside their induced feature interactions zg, (x) and zg, (x).
While none of the ten binary features is individually associated with
the class labels, the high-order feature interactions zg, (x) and zg, (x) are
active considerably more often among samples of class y = 1.
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In significant itemset mining, each pattern S corresponds to a different candidate
feature interaction. Let S C {1,2,...,p} be the index set of an arbitrary subset of
the p binary features. We define zs(x), the feature interaction induced by S, as the
multiplicative interaction of the features indexed by S, i.e. zs(x) = []jes #;j. In partic-
ular, note that zg(x) = 1 if and only if all features indexed by S are simultaneously
active in the sample x and zg(x) = 0 otherwise. We consider that a pattern S occurs
in a sample x € {0,1}7,ie. S C x, if the feature interaction induced by S is active
(zs(x) = 1). Therefore, the occurrence indicator gs(x) of a pattern S in significant
itemset mining is identical to the feature interaction zs(x) induced by S. In order to
justify this definition, consider the alternative representation of each input sample
x € {0,1}" given by the set of indices of the features which are active in x. For
instance, the input sample x; = (1,0,1,1,0) can be represented as x; = {1,3,4} and
xp = (0,1,0,1,0) as x, = {2,4}. This defines a one-to-one mapping between the
set of p-dimensional binary vectors {0, 1}” and the set of all subsets of {1,2,...,p},
i.e. the power-set P({1,2,...,p}). Thus, both representations are equivalent and the
input domain can also be defined as X = P({1,2,...,p}). Moreover, S C x, with
x represented as a set of active features and C denoting traditional set inclusion,
holds if and only if the feature interaction zs(x) as defined above has value 1. Both
representations of x therefore lead to the same pattern occurrence indicator ggs(x).
The latter notation, describing samples as a set of active features or items, is commonly
used in the data mining field, being ultimately responsible for giving this particular
instance of significant pattern mining the name of significant itemset mining.

Whenever all feature interactions are of potential interest, the search space of candi-
date patterns M would contain all possible feature subsets, i.e. M = P({1,2,...,p}),
thus comprising 27 different patterns. This setting is perhaps the most common case;
however, certain forms of prior knowledge can be incorporated into the model simply
by modifying the definition of the search space M. For instance, in the context of
genome-wide association studies, researchers could decide to restrict the analysis to
study only interactions between variants belonging to the same biological pathway
or to the same genomic region. Provided that the design of M according to domain
knowledge is successful in keeping all relevant feature interactions while discarding
many others, the reduction in the number of candidate patterns prior to the analysis
will lead to improved computational efficiency and statistical power. This opens the
door to the development of novel instances of significant itemset mining, targeting
particular problems in medicine and computational biology.

Figure 2.1 depicts a conceptual illustration of significant itemset mining on a toy
dataset with n = 12 samples, n; = 6 belonging to class y = 1 (e.g. cases) and
np = 6 to class y = 0 (e.g. controls). Each of these samples is represented by a
binary vector with p = 10 features, uq,uy, ..., ujp. Two patterns, S; = {1,3,5,6}
(vellow) and S, = {2,9,10} (blue), as well as their induced feature interactions,
zs,(x) and zg,(x), are highlighted in the figure. In this example, none of the ten
features is individually associated with the class labels. Thus, univariate analyses
or multivariate additive models would be unable to discover any association in this
dataset. Nevertheless, the feature interactions zg, (x) and zg, (x) are active significantly
more often in samples which belong to class y = 1 than in samples which belong
to class y = 0. This simple example is sufficient to illustrate the fact that, even in
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the absence of univariate associations, nonlinear interactions between features can
strongly correlate with a target of interest. Unless methods to explore such feature
interactions in high-dimensional datasets are developed, many signals of practical
importance might remain undiscovered by existing approaches.

Significant subgraph mining

A different instance of significant pattern mining arises when input samples cor-
respond to graphs. In this case, the input domain X can be defined as X =
{x | x=(V,E,lyg)}, where V is a set of nodes, E C V x V a set of edges and
lyeg : VUE — Zyf a function that labels each node and edge in the graph with a
categorical value from a finite alphabet Xy . The domain of Iy g can be redefined
to account for graphs without edge or node labels. If neither nodes nor edges are
labelled, Iy, g does not need to be included as part of the definition of the input domain
X.

Graphs are general-purpose objects, being able to represent almost any kind of data.
For instance, p-dimensional binary vectors can be modelled as fully-connected graphs
with p nodes, one for each binary feature. These nodes would have binary labels,
indicating the value taken by the corresponding feature in the sample, while edges
would remain unlabelled. Data types such as time-series, images or video can all be
accurately described by a grid-like graph. Each node in the graph would again map
to a distinct input feature while, in this case, the neighbourhood of the node would
represent the corresponding Markov blanket of the feature. This generality is the
primary reason why graphs are among the most important types of structured data.
Graphs are also ubiquitous in applications for the life sciences. As an example, they
are commonly used to describe molecular compounds in chemoinformatics: each atom
is associated with a different node in the graph, labeled by its atomic symbol, and
edges describe atomic bonds, labeled according to the type of bond [53]. Additional
molecular properties (e.g. implicit valence, number of implicit hydrogen atoms,
aromaticity) can also be incorporated as part of the node or edge labels. Many types
of data in computational biology, such as protein structures, biological pathways or
co-expression networks, are customarily represented in the form of graphs. Healthcare
applications are no less abundant with graph-structured data. For instance, they are
commonly used in medicine and neuroscience to describe the result of brain magnetic
resonance imaging (MRI) scans, with edges quantifying the connectivity between a
predefined set of brain regions (nodes) [54, 55]. As a final example, most medical
ontologies, such as those mentioned in the previous section, are structured as directed
acyclic graphs.

While patterns correspond to feature interactions in significant itemset mining, here
each candidate pattern § is identified with a different subgraph of an input sample
in D. Hence, this instance of significant pattern mining is commonly referred to as
significant subgraph mining. A pattern S is said to occur in an input observation x € &,
ie. § C x, if and only if S is an induced subgraph of x. The search space of candidate
patterns M comprises the set of all distinct subgraphs of input graphs present in the
dataset D. While the exact number of candidate patterns in M will vary from dataset
to dataset, it will typically grow combinatorially with the size of the graphs in D.
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Thus, not unlike the case of significant itemset mining, the resulting search space M
will contain an enormous number of candidate patterns.

In summary, the goal of significant subgraph mining is to discover all subgraphs S
of graph samples in a dataset D which occur statistically significantly more often in
one class of graph samples than in another.

y Graph-structured samples gs,  9s,
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Figure 2.2. — Illustration of significant subgraph mining on a toy dataset with n = 8
samples (graphs), divided into n; = 4 samples belonging to class y = 1
(e.g. successful drugs) and nyp = 4 samples belonging to class y = 0
(e.g. drugs that trigger an adverse reaction). Samples are represented by
graphs with labeled nodes and edges (|Zyg| = 5). Two patterns (sub-
graphs) which are associated with the class labels have been highlighted
in the figure, 51 (yellow) and &, (blue).

Figure 2.2 illustrates significant subgraph mining on a toy dataset with n = 8 graphs,
n1 = 4 belonging to class y = 1 (e.g. successful drugs) and ny = 4 belonging to class
y = 0 (e.g. drugs which generate an adverse reaction). Each sample (drug) is given
by a graph with labeled nodes and edges (|Xv | = 5). Two different patterns, i.e.
subgraphs, S; (yellow) and S, (blue), are highlighted in the figure. Their occurrence
indicators gs, and gs, are also shown on the right of the figure, with entries in
the vectors corresponding to graphs in clockwise order for each of the two classes
separately. In this particular example, subgraph S is overrepresented in class y = 1
while S, occurs significantly more often in class y = 0.
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2.2 STATISTICAL ASSOCIATION TESTING IN SIGNIFICANT PATTERN MINING

Irregardless of the type of pattern under study, be it itemsets, subgraphs or any
other kind of discrete substructure, all instances of significant pattern mining represent
a pattern S by its occurrence indicator ¢s(x). Therefore, from a statistical perspective,
the particular nature of the input domain & does not need to be taken into consider-
ation; what is required is a principled approach to test the statistical association of
two binary random variables, the class labels Y and the pattern occurrence indicator
Gs(X), according to the n realisations {(gs(x;),yi)};_; which can be obtained from
the input dataset D.

Two random variables G and Y are statistically independent, denoted G L Y, if their
joint probability distribution Pr(G = g,Y = y) factorises as Pr(G = g,Y = y) =
Pr(G = g)Pr(Y = y). This is equivalent to the conditional probability distributions
Pr(G=g|Y =y)and Pr(Y =y | G = g) being equal to the marginal distributions
Pr(G = g) and Pr(Y = y), respectively. In contrast, G and Y are statistically associated,
denoted G [ Y, if and only if they are not statistically independent. See [56] for an
in-depth, self-contained discussion on statistical independence.

In significant pattern mining, the random variables G and Y both take binary values.
Hence, the joint distribution Pr(G = g,Y = y) consists of only four probabilities:
Pr(G=0,Y =0) = poo, Pr(G=10,Y =1) = po1, Pr(G=1,Y =0) = p1o and
Pr(G =1,Y = 1) = py;1. This joint distribution is typically depicted as a 2 x 2
contingency table:

Variables | G=1| G =0 | Row totals
Y=1 P11 Po1 2%
Y=0 P1,0 P0,0 1-py

Col. totals | pg 1—-pc 1

The marginal distributions of G and Y can be obtained from the joint distribution as
Pr(G=1) =p1o+p11=pcand Pr(Y =1) = po1+p11 = py-

The challenge in determining whether two random variables G and Y are statistically
independent or statistically associated stems from the fact that the joint distribution
Pr(G = g, Y = y) is generally unknown. In practice, only a set {(gs(x;), )}, of n
i.i.d. realisations from the joint distribution is available. These n samples can be used to
obtain a frequentist estimate of the unknown joint distribution Pr(Gs(X) = g, Y = y)
as the proportion of samples that had the event {Gs(x) = g, Y = y} as an outcome,
for each (g,y) € {0,1}*. This estimation process is also often represented by means of
a 2 x 2 contingency table:

Variables | ¢s(x) =1 | gs(x) =0 | Row totals
y=1 as bs nq
Yy = 0 d,g Cs no
Col. totals rs qs n

with (1) as = Y, vigs(x;) being the number of samples for which the event
{Gs =1,Y =1} occurs; (2) bs = Y 1 yi(1 — gs(x;)) the number of samples for which
the event {Gs = 0,Y =1} occurs; (3) cs = Y g (1 —yi)(1 — gs(x;)) the number of
samples for which the event {Gs = 0,Y = 0} occurs and (4) ds = Y11 (1 — yi)gs(xi)
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the number of samples for which the event {Gs = 1,Y = 0} occurs. The correspond-
ing estimates po, Po,1, P1,0, P11 of the four unknown probabilities poo, po1, P10, P11
can be derived from these counts as: poo = cs/n, po1 = bs/n, p1p = ds/n and
p11 = as/n. The unknown marginal distributions of G and Y can be estimated using
these counts as well: pg = (as +dgs)/n =rs/nand py = (as + bs)/n = ny/n.

As the empirical estimate of the joint distribution will always incur error due
to random sampling, the definition of statistical independence cannot be readily
applied. Instead, a procedure able to account for the uncertainty introduced by
the approximation is needed. In order to tackle this problem, frequentist statistical
association testing typically relies on the concept of P-value, a certain scalar measure of
association that is calibrated against the stochasticity inherent to the sampling process.
Most frequentist statistical association testing procedures proceed as follows:

1. Choose an appropriate test statistic T. Any function T: {(gs(x;),yi)}—; — R
which maps the set of n i.i.d. realisations to a scalar value is a valid statistic.
Nevertheless, not all such functions will be equally useful for association testing.
Intuitively, a suitable test statistic should map data samples {(gs(x;),yi)};
generated from joint distributions for which Gs(X) and Y are statistically inde-
pendent and data samples {(gs(x;), i)}/, generated from joint distributions
for which Gg(X) and Y are statistically associated to sufficiently distinct values.
In this way, the output of such a test statistic T could be interpreted as an empir-
ical measure of association between Gs(X) and Y according to the n observed
samples { (g (x:),yi) 1.

2. Compute the null distribution Pr(T = t | Hy) of the test statistic T. This is the
probability distribution of the test statistic T under the null hypothesis Hy =
Gs(X) L Y, ie, under the hypothesis that the sample {(gs(xi),yi)}r is
generated from a joint distribution for which Gg(X) and Y are statistically
independent.

3. In order to account for the uncertainty due to random sampling, the value ¢
that the test statistic T takes on the real data sample {(gs(x;), )}, will be
transformed into a P-value. The P-value is defined as the probability that the
test statistic T takes a value at least as extreme as t, i.e. a value representing
an association at least as strong, under the null hypothesis Hy. For most test
statistics, larger values of t are indicative of stronger associations. In these cases,
the P-value would be obtained as p = Pr(T > t | Hy).

4. The random variables Gs(X) and Y are deemed significantly associated if the
corresponding P-value is smaller or equal than a significance threshold « defined
a priori, i.e. if p < a. The significance threshold a can be understood as the
type I error of the procedure; it is the probability that Gs(X) and Y are deemed
significantly associated according to a sample {(gs(x;), yi)};_; generated from a
joint distribution for which Gs(X) and Y are however statistically independent.
Decreasing the significance threshold a will reduce type I error. However, it
will likewise decrease statistical power, the probability to correctly identify truly
existing associations. Consequently, the optimal value of a will be in general
application-specific, reflecting the corresponding costs of false positives and false
negatives.
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A sufficiently small P-value merely indicates that the null distribution Pr(T = ¢ | Hy)
is a poor fit to the observed value t of the test statistic T. This is most typically inter-
preted as potential evidence against the null hypothesis of independence, supporting
the alternative hypothesis that Gs(X) and Y might be statistically associated. Never-
theless, there is a myriad of reasons why the model fit might be poor even in cases
for which Gs(X) and Y are indeed statistically independent. For instance, often the
null distribution Pr(T = t | Hyp) is not known exactly and needs to be approximated.
In these cases, low P-values could also arise due to an insufficiently accurate approx-
imation to the null distribution. Alternatively, the derivation of a null distribution
Pr(T =t | Hp) for a certain test statistic T could involve additional assumptions
beyond the null hypothesis of independence, such as postulating a certain parametric
form. If these assumptions are not satisfied by the real data sample, the resulting
P-value could be small even if Gs(X) and Y were truly independent. Another common
situation that might spuriously lead to low P-values occurs whenever the n samples
that conform the input dataset D are not obtained via i.i.d sampling. This issue arises
frequently in many biomarker discovery problems as the result of phenomena such as
batch effects, population structure or other confounders.

All techniques discussed throughout this thesis are machine learning methods for
data exploration, which use statistical association testing as means to provide practi-
tioners with tools to ease navigating the overwhelming sea of noise that characterises
typical biomarker discovery datasets. The output of these techniques, in the form
of a set of significantly associated patterns, should therefore not be considered as
definitive, unquestionable discoveries but, rather, as promising findings that ought to
be investigated further.

The remainder of this section will be devoted to introduce Pearson’s x? test [44]
and Fisher’s exact test [45], two of the most widespread tests of statistical association
between a pair of binary random variables. A rigorous presentation of both tests
can be found in the original articles [44, 45]. However, this section aims to provide a
self-contained, informal derivation with emphasis on building intuition about both
test statistics.

Pearson’s x? test and Fisher’s exact test are both defined in terms of the counts of the
empirical 2 X 2 contingency table. In particular, the counts as, s and n; are enough
to describe the data sample without loss of generality. These, together with the sample
size n, uniquely determine all other counts in the contingency table. Pearson’s x? test
and Fisher’s exact test both make the assumption that the marginal counts rs and
11, respectively related to the marginal distributions Pr(Gs(X) = g) and Pr(Y =y),
contain little information about the potential existence of an association between the
two binary random variables. Thus, both test statistics will be derived conditioning
on rs and ny, efficiently treating these margins as fixed quantities. This leaves the
count as as the single random quantity in the model. As a consequence, the null
distribution for both tests will be of the form Pr(T(As) =t | Rs = rs, N1 = n1, Hp);
it is the specific choice of transformation T(Ags) what will differentiate both tests.

The first step to derive the null distributions of Pearson’s x? test and Fisher’s exact
test will be to compute the conditional probability distribution Pr(As = as | Rs =
rs, N1 = n1, Hp) under the null hypothesis of independence Hy = Gs(X) L Y. The
result is summarised in the following proposition:
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Proposition 2.1. The conditional probability distribution of As given that Rg = rg, Ny = my
and sample size n under the null hypothesis of independence Hy = Gg(X) L Y is a
hypergeometric distribution with parameters n, ny and rs:

Pr(As =as | Rs =rs, Ny = n1, Hy) = Hypergeom(as | n,n1,7s)

R

(2.2)
(rs)
Proof. By definition of conditional probability distribution we have:
PT(AS =ag ’ RS =rg, N1 =m, HO) — I'( S as, ks rs | Nl ny, 0)‘ (23)

PI‘(RS =Trs | N1 = n, Ho)

Since Rs = As + Dg, the joint distribution in the numerator can be rewritten as
PI‘(AS = as,RS =Trs | Nl = nl,Ho) = PI‘(AS = aS,DS =Trs —4as | N1 = nl,Ho).
Note that As depends only on samples for which y; = 1 while Ds depends only on
samples for which y; = 0. Therefore, under the assumption that all n samples are i.i.d.
draws, the random variables As and Dy are statistically independent. This allows the
joint distribution in the numerator to be decomposed as Pr(As = a5, Rs =rs | N1 =
nq, Ho) = Pr(AS =4as | N1 =nq, Ho)Pr(DS =Trs —4as | N] =nMn, Ho).

Let p1p = Pr(Gs = 1| Y =0) and p;; = Pr(Gs = 1| Y = 1). If the null hypothesis
of independence Hy holds, then py; = p1jo = pc- If the n samples are obtained as
iid. draws, As can be modeled as the sum of n; independent Bernoulli random
variables, each with success probability ps. Hence, Pr(As = as | Ny = ny, Hy) =
Binomial(as | n1, pc) = (;1)p¢ (1 — pc)" . Analogously, Ds can be modeled as the
sum of n — n; independent Bernoulli random variables, each with success probability
pc. Hence, Pr(Ds = rs —as | N = ny1, Hy) = Binomial(rg —ag | n —ny, pg) =
(T';'Zg)pg_”s(l — pg)"=M)=(rs=as)_Finally, since Rg = As + Ds, with As I Dg, Rs
corresponds to a sum of n Bernoulli variables with success probability pg, leading to
Pr(Rs =rs | N1 = n1, Hy) = Binomial(rs | n, pc) = ([1)pe (1 — pe)"'s.

Substituting those distributions into Equation (2.3) leads to the final result. In
particular, the conditioning on Rs = rs eliminates the influence of the nuisance
parameter pg, leading to a distributional form that depends only on 14, rs and the
sample size n. O

Since Pearson’s x? test and Fisher’s exact test can both be written as a transformation
T(Ags) of the count Ags, Proposition 2.1 easily leads to the specific null distributions
for each of the two tests, as shown next.

Pearson’s x? test

Pearson’s x? test can be seen as the square of a Z-score:

as —Elas | Rs = rs, Ny = ny, Hy|
Std[ag | Rs =rs, N1 = ny, Ho}

Tpearson(aé‘ ’ 7/l/ nl/ 7’,5) - Z}%earson(as ‘ n/ 7’[1, 7/‘3)/ (24)

Zpearson(“S ’ n, 1’11,7’5) =

where Elas | Rs = rs, Ny = n1, Hy| = 1’5% and Std[as | Rs = rs, N1 = n1, Hy] =
\/ S 5=18 22lny are the mean and standard deviation of a hypergeometric distribution
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with parameters 7, n; and rg. Substituting these into (2.4), the following expression
for the test statistic is obtained:
2
(as —rs')

Tpearson(ﬂs | n,ny,rs) = Tsn—rsnny (2.5)
mn an—1™

n n n—1
Large values of Tpearson(ﬂs | n,ny,rs) are less likely to occur under the null hypothesis,
hence hinting at the potential existence of an association.

Provided that the sample size 7 is sufficiently large, the central limit theorem can be
used to justify approximating the distribution of Zpearson(as | 1, 111,7s) under the null
hypothesis Hy by a standard normal distribution. Thus, the null distribution of the test
statistic Pr(Tpearson(As) =t | Rs = rs, Ny = ny, Hp) can in turn be approximated as a
X3 distribution for sufficiently large n. Finally, the corresponding two-tailed P-value
can be obtained from the survival function of a )(% distribution, i.e.

ppearson(aS | n,ny, rS) =1- FX% (Tpearson(aS | n,ny, 78)) , (26)

where FX% (e) is the cumulative density function of a )(% distribution.

Fisher’s exact test

Multiple approaches have been proposed in the literature to compute two-tailed
P-values for Fisher’s exact test. For the sake of clarity, this section will present only
one such method. Nevertheless, all techniques that will be discussed in subsequent
chapters of this thesis can be readily extended to work with order definitions of
two-tailed P-values for Fisher’s exact test, as well as with one-tailed P-values.

Fisher’s exact test can be motivated by considering the probability Pr(As = as |
Rs = rs, Ny = n1, Hp) to be the test statistic:

(ag) (s ag)
(r)

By definition, Txgher(as | 1, 111, 7s) will be small for improbable values of as under the
null distribution Pr(As = as | Rs = rs, N1 = n1, Hp). Therefore, in this particular
case, small values of the test statistic Tgsper(ds | 71, 111, 7s) are indicative of a potential
association rather than large values. Hence, a two-tailed P-value will be computed as
p =Pr(T < t| Hy).

Formally, define A(as) as the set of all possible counts a's which are at least as
improbable as as under the null distribution, i.e.,

Tfisher({’ZS ‘ n, nl/VS) = HYPergeom(ﬂs ‘ n,ny, 7’5) = (2-7)

A(ag) = {as | Hypergeom(a’s | n,n1,rs) < Hypergeom(as | n,n1,7s)} .

Then:
Prisher(as | n,m1,75) = ) Hypergeom(als | n,ny,rs). (2.8)
ascAlas)
As indicated by its name, Fisher’s exact test does not require approximations to
model its null distribution. It is therefore typically preferred over Pearson’s x? test,
most notably in situations where the sample size 7 is too small to justify asymptotic
approximations based on the central limit theorem.
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2.3 THE MULTIPLE COMPARISONS PROBLEM

Significant pattern mining aims to retrieve, among all candidate patterns S in a
search space M, the set of informative patterns whose occurrence within a sample
is significantly associated with the class labels. Techniques to test the statistical
association of binary random variables, such as Pearson’s Xz test and Fisher’s exact test,
provide a principled approach to assess the statistical significance of each pattern & €
M according to n labeled observations in an input dataset D = {(x;,y;)};_;. Given
an appropriate test statistic T and a desired significance threshold «, the framework
presented in the previous section could in principle be applied independently to each
pattern S in the search space M, leading to a set of P-values {ps | S € M}. These
could then be used to obtain a tentative set of significantly associated patterns M\Sig =
{§ e M | ps < a}. Temporarily obviating the evident computational limitations of
such a brute-force approach, this naive application of statistical association testing
to pattern mining would however lead to an even more severe statistical caveat. As
discussed in the previous section, the significance threshold a can be understood
as the type I error of each association test: it is the probability that a pattern S
entirely irrelevant for the purpose of determining which class a sample belongs to is
erroneously deemed significantly associated. Therefore, this naive procedure would
on average produce «| M| false positives, where My C M denotes the set of patterns
whose occurrence within a sample is statistically independent of the class membership
of the sample. In many practical situations, including the vast majority of biomarker
discovery problems, the search space M contains an enormous number |M| of
candidate patterns, most of which are irrelevant patterns S € My, i.e. |[My| = |[M]|.
If the significance threshold « is fixed a priori, irregardless of the number |M| of
association tests being performed, the few truly significant patterns contained in the
output of this hypothetical significant pattern mining algorithm would be interspersed
with billions or even trillions of false positives, drastically compromising the reliability
of all reported findings. The need for more sophisticated statistical association testing
procedures when multiple association tests are carried out simultaneously has long
been understood by statisticians. This phenomenon, traditionally referred to as the
multiple comparisons problem or multiple hypothesis testing problem, has been extensively
studied for several decades (e.g. [57-59]). Nevertheless, the multiple comparisons
problem that arises in significant pattern mining is justifiably unique: never before
had an application required performing such a gigantic number of simultaneous
association tests as significant pattern mining does.

Rather than controlling the per-hypothesis type I error, correcting for the multiple
comparisons problem requires adopting new error measures that instead consider
the entire collection of associations tests. A popular criterion is the Family-Wise Error
Rate (FWER), which is defined as the probability of reporting any false positives in the
entire body of tests. Formally, FWER(J) = Pr(FP(J) > 0), where FP () is the number
of false positives at significance threshold J, i.e., the number of patterns S € M, for
which ps < 6. A common goal to account for the multiple comparisons problem
is to control the FWER, that is, to guarantee that the FWER is bounded above by
a pre-specified level a. A simple approach to achieve this is to properly adjust the
significance threshold ¢. By definition, FWER(J) is a monotonically increasing function
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of 6. Therefore, the optimal corrected significance threshold 6* is given by the largest
value of J, in order to maximise statistical power, that still satisfies FWER(J) < a:

0* = max {J | FWER(J) < a}. (2.9)

Nevertheless, evaluating the FWER at a certain significance threshold ¢ is, in general,
an intractable problem. The function FWER(J) is often exceedingly complex, as it
depends on the unknown joint distribution of the collection of P-values corresponding
to all null hypotheses {ps | S € My}. Rather than using the exact but generally
unknown function FWER(¢), most existing approaches resort to the introduction of
an easier-to-compute surrogate function m(é ), most often designed to be a strict
upper bound of FWER(4). An approximation 6* of the optimal significance threshold
0* can then be obtained by using the surrogate @(5 ) in place of FWER():

5* = max {(5 \ ﬁvﬁa(&) < oc}. (2.10)

In particular, if m{(é) is chosen such that FWER(d) < m{(é) forall 6 € [0,1],
then m?(é ) < a implies that FWER(J) < a as well. Thus, a solution of (2.10) would
also control the FWER at level « but could nevertheless lead to a considerable loss of
statistical power if the bound ﬁvﬁz(a) is too loose, i.e. if FWER(J) < ﬁvﬁz(&)

In the remaining of this section, two distinct procedures for controlling the FWER
will be presented. These differ on the particular form of the upper bound m(é ),
which ultimately determines both the resulting statistical power and the underlying
computational complexity of each method. The purpose of this discussion is not to
provide a comprehensive review of the state-of-the-art for the multiple comparisons
problem but, rather, to introduce the subset of techniques from this field which are
most relevant for significant pattern mining. In particular, fundamentally important
families of approaches, such as sequential rejection procedures, will not be covered in
this thesis.

The Bonferroni correction

The most widespread approach to control the FWER is the Bonferroni correction [60,
61]. This method approximates the unknown FWER by an extraordinarily simple

surrogate: ﬁvﬁz((s ) = 0| M|. This quantity can be interpreted as the expected number
of false positives under the assumption that no pattern truly carries information about
the class labels, in which case My = M would hold. Provided that the total number
of candidate patterns |M| is known, the computational complexity of evaluating

@(5 ) is completely negligible. Most importantly, it can be readily shown that
FWER(J) is an upper bound of FWER(J):

FWER(J) = Pr ( U {ps< 5}) < ), Prps <6) <Myl <OM|,  (2.11)
SeM, SeM,

where {ps < J} is the event that pattern S is deemed significantly associated. Ob-
taining the solution of (2.10) for the choice FWER(d) = | M| is trivial. The resulting
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corrected significance threshold, given by o = max{d | 5| M| < a} = a/|M|,
controls the FWER at level a since FWER(6) is an upper bound of FWER(J).

In practice, m(é ) = 8| M| tends to overestimate the real value of FWER(J) by
a considerable margin. In turn, this causes the corrected significance threshold d},q¢
obtained using the Bonferroni correction to be often much smaller than the optimal
significance threshold ¢*, leading to a sharp loss of statistical power. However, as
a direct consequence of its simplicity, the Bonferroni correction has two favourable
properties: (i) it requires no assumptions to guarantee control of the FWER, thus
being readily applicable to any kind of data and (ii) as mentioned above, it does
not introduce any computational overhead. Those aspects have made the Bonferroni
correction the most popular tool to control the FWER, making the loss of statistical
power it entails a price happily paid by many practitioners.

While the Bonferroni correction has been used extensively to rigorously analyse
experimental findings in many distinct disciplines, it is unfortunately unable to cope
with the magnitude of the multiple comparisons problem that arises in significant
pattern mining. The inadequacy of the Bonferroni correction in this setting goes
beyond a mere loss of statistical power. For typical sizes of the search space | M|, the
resulting corrected significance threshold épon¢ would be indistinguishable from zero
using standard floating point arithmetic, leading to a trivial algorithm that would
always consider no pattern to be significantly associated. Due to the lack of approaches
able to control the FWER when such an enormous number of associations tests are
simultaneously performed, traditional pattern mining methods resorted to either (1)
ignore the multiple comparisons problem altogether, providing a ranking of patterns
by association without any statistical guarantees [33, 62, 63] or (2) limit the size of the
search space M a priori by introducing implicit or explicit constraints in the maximum
pattern size, in order to be able to apply a Bonferroni correction in the much smaller
resulting search space [40—42].

Tarone’s improved Bonferroni correction for discrete data

Controlling the FWER in significant pattern mining while keeping all candidate
patterns in the search space, without any soft or hard constraints in the maximum
pattern size, had remained an open problem until the Limitless-Arity Multiple-testing
Procedure (LAMP) algorithm was proposed [26]. LAMP relies on Tarone’s improved
Bonferroni correction for discrete data [64], an alternative approach to control the
FWER that drastically improves statistical power over the Bonferroni correction in
pattern mining problems.

Tarone’s method exploits the nature of test statistics for discrete data to derive
a novel upper bound of the FWER that is much closer to the real FWER than the
bound provided by a standard Bonferroni correction. Consider a 2 x 2 contingency
table summarising 7 i.i.d. realisations of a pair of binary random variables with the
margins n; and rs treated as constants. To be consistent with the fixed margins, the
count as must be smaller or equal than as m.x = min(ny, rs) and larger or equal than
a5 min = max (0, rs — (n —ny)). Therefore, as can only take a4 g max — 45 min + 1 different
values. In turn, this implies that there are at most a5 max — 45 min + 1 distinct P-values
that can be obtained as an outcome of applying a test statistic such as Pearson’s
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x> test or Fisher’s exact test to the 2 x 2 contingency table. Since there is a finite
number of P-values that can be observed, the P-values arising from such discrete test
statistics cannot be arbitrarily small. Instead, there exists a minimum attainable P-value,
psmin = min{ps(al | n,ny,7rs) | a's € [asmin, Asmax]} ', Where ps(als | n,ny,rs) is
the P-value obtained by applying the test statistic of choice to a 2 X 2 contingency table
with count a’s, margins n; and rs and sample size n. The existence of a minimum
attainable P-value ps min strictly larger than zero is a special property of discrete data.
In contrast, P-values obtained when testing the association between two continuous
random variables could be arbitrarily close to zero. Besides, the minimum attainable
P-value ps min depends only on 1, n1 and rs. In particular, ps min does not depend on
the actual value of the count ag.

The existence of a minimum attainable P-value ps min strictly larger than zero has
profound implications. Suppose that the minimum attainable P-value ps min is larger
than the corrected significance threshold, ps min > 6. By definition, regardless of the
value of ags, the corresponding association cannot be deemed statistically significant.
Thus, it can also never cause a false positive at corrected significance threshold 4.
Patterns S € M that satisfy this property are said to be untestable at level 6 while the re-
maining patterns are said to be testable at level 8. Let Myest(6) = {S € M | psmin < 0}
be the set of testable patterns at level . Tarone’s improved Bonferroni correction for dis-
crete data substitutes the unknown exact value of FWER(6) by ﬁ/\]ﬁ{(é ) = 0| Miest(0)],
which is also an upper bound on FWER(d):

FWER(d) = Pr < U {ps < 5}) =Pr U A{ps<é}

SGMO SEMtest((s)
< Z Pr (PS < 5) < (S‘Mtest(é)‘f (2-12)
SEMiest(6)

where the first step follows from the fact that untestable patterns S € M \ Mest(9)
cannot cause a false positive at corrected significance threshold 6. Thus, Tarone’s
method also guarantees FWER control without introducing any additional assump-
tions.

In practice, the number of testable patterns |Miest()| is drastically smaller than
the total number of candidate patterns |M|. Thus, in significant pattern mining,
Tarone’s concept of testability leads to a corrected significance threshold di,r =
max {6 | 6| Miest(6)| < a} which is much closer to the optimal significance thresh-
old 6* than dpop¢, bringing forth a dramatic gain of statistical power over the standard
Bonferroni correction and making significant pattern mining on the entire search space
M statistically feasible. However, while computing Jn¢ is straightforward, the com-
putation of di,r is considerably more involved, requiring the use of sophisticated data
mining approaches. It is precisely at the intersection between statistical association
testing for discrete data and classical data mining techniques where significant pattern
mining thrives, as will be discussed in the next chapter.

1. Throughout this thesis, we will use double brackets to denote a range of consecutive integers, i.e.
[a,b] ={a,a+1,...,b} CZ, wherea <b.
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As discussed in the previous chapter, significant pattern mining is statistically
challenging due to the massive multiple comparisons problem it entails. A meaningful
way to compensate for the multiple comparisons problem is to guarantee that the
FWER, the probability of reporting any false positives among all association tests being
performed, is bounded from above by a user-defined level a. Despite the existence of
more sophisticated procedures, its simplicity and generality have helped establish the
Bonferroni correction as the most popular approach to control the FWER across many
scientific disciplines. However, its strengths come at a price: it is an over-conservative
method that sacrifices a considerable amount of statistical power, specially in situations
where the number of simultaneous association tests is large. Significant pattern
mining, which takes the number of association tests to unprecedented extremes, is
thus too much of a challenge for the Bonferroni correction. Tarone’s method drastically
alleviates that limitation by exploiting the notion of testability, the phenomenon that
only a subset Mest(d) C M of all candidate patterns, the so-called testable patterns,
can reach significance and, therefore, cause a false positive. Significant pattern mining
and testability have a specially strong synergy. In practice, a large proportion of the
search space is untestable (| Mest(6)| < | M]), making Tarone’s method particularly
effective in this application.

Despite the apparent virtues of Tarone’s method in the context of significant
pattern mining, a fundamental problem remains open. Computing Tarone’s cor-
rected significance threshold dt., requires finding the largest § € [0, 1] that satisfies
0| Miest(9)] < a. A brute-force approach to evaluate i,y would involve enumerating
every single pattern § in the search space M to compute all minimum attainable P-
values {psmin | S € M}. Unfortunately, the vast size of the search space M renders
this strategy unfeasible except when dealing with extraordinarily small datasets. This
computational challenge acted as a strong deterrent for the use of Tarone’s method
in significant pattern mining. More than 20 years after the publication of Tarone’s
method, the Limitless-Arity Multiple-testing Procedure (LAMP) algorithm [26] proposed
the first effective solution to this problem, de-facto kickstarting the field of significant
pattern mining. LAMP makes use of very specific properties of certain test statistics,
which include Pearson’s x? test and Fisher’s exact test, to devise a pruning criterion as
part of a branch-and-bound algorithm to efficiently compute 6, while only explicitly
enumerating a rather small subset of the search space M. Since its publication in 2013,
follow-up work [65, 66] has considerably improved the efficiency of the original LAMP
algorithm while still making use of the same core principles, leading to a method that
will be informally referred to as LAMP 2.0.

The goal of this chapter is to present the essential algorithmic aspects of significant
pattern mining, describing a generic algorithm that incorporates all these recent devel-
opments. Thus, this chapter introduces the foundations upon which the contributions
discussed in subsequent chapters have been built.

25



ALGORITHMIC ASPECTS OF SIGNIFICANT PATTERN MINING
3.1 OVERVIEW

Conceptually, significant pattern mining algorithms can be understood as proceed-
ing in two phases. This idea is represented by the pseudocode in Algorithm 3.1.

Algorithm 3.1 Significant Pattern Mining

Input: Dataset D = {(x;,y;)}_,, target FWER «
Output: {S € M |ps < dtar}

1: (Otar, Miest(Star)) < tarone_spm(D, «)

2: Return {S € Miest(tar) | ps < Star}

The goal of the first step, carried out by the routine tarone_spm invoked in Line 1
of Algorithm 3.1, is to compute Tarone’s corrected significance threshold . This
routine, described in detail in Algorithm 3.2 below, is the most critical part of the
entire algorithm. It is responsible for exploring the search space M using a branch-
and-bound approach in order to efficiently obtain éi,r and the resulting set of testable
patterns Miest(dtar). Based on its output, the second phase of Algorithm 3.1, executed
in Line 2, uses a test statistic such as Pearson’s x test or Fisher’s exact test to compute
the P-value pgs for all testable patterns S € Miest(dtar). Finally, the set of testable
patterns deemed significantly associated at level diy, i.e. {S € Miest(Star) | ps < Star},
is returned as an output. Tarone’s concept of testability implies that untestable patterns
S € M\ Miest(dtar) cannot be significant. Hence, they do not need to be taken into
consideration at this step, greatly alleviating the overall computational burden of this
part of the algorithm.

3.2 PATTERN ENUMERATION

In order to efficiently explore the search space of candidate patterns M, each
pattern S € M will be arranged as a node of a pattern enumeration tree, which the
routine tarone_spm then traverses recursively. A valid pattern enumeration tree is any
bijective mapping of patterns to nodes of a tree which satisfies the following property:
the descendants S’ of a pattern S must all be super-patterns of S, i.e,, S C §’. Pattern
enumeration trees are extensively used in many instances of pattern mining [67],
including both significant itemset mining and significant subgraph mining. As an
example, Figure 3.1 depicts one of the many possible ways to construct a pattern
enumeration tree in a significant itemset mining problem with p = 5 binary features.
In this case, each node in the tree corresponds to a feature interaction S and children
S’ of a feature interaction S are obtained by incorporating an additional feature to the
interaction. Note that this construction is not unique since, depending on the ordering
of the features, multiple equally valid pattern enumeration trees could be obained.
Analogously, in significant subgraph mining, each node in the tree corresponds to a
subgraph § and children S’ of S can be obtained by aggregating additional nodes
and edges to subgraph S.

A direct consequence of enumerating patterns by traversing a pattern enumeration
tree is the so-called apriori property of pattern mining. Despite being self-evident
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Figure 3.1. — Illustration of a valid pattern enumeration tree for a significant itemset
mining problem with p = 5 binary features. Each of the |M| = 2°
feature interactions S € M has been mapped to a distinct node of the
tree satisfying that S’ € Children(S) implies that S C S’ for all patterns
SeM.

to a large extent, this property plays a central role in a myriad of pattern mining
algorithms, including all approaches that will be discussed in this thesis.

Proposition 3.1 (Apriori property). Let S,S’ € M be two patterns such that S’ is a
descendant of S in a pattern enumeration tree. Then, rs1 < rs, where rs and rg are the
marginal occurrence counts of patterns S and S in 2 x 2 contingency tables computed from a
dataset D = {(x;,yi) }i_q-

Proof. By definition of pattern enumeration tree, if S’ is a descendant of S then S C §'.
Therefore, S’ C x implies S C x or, equivalently, ¢s/(x) = 1 implies gs(x) = 1. Since
rs =YY", gs(x)and rs = Y1 g5/ (x) the result follows. O

The apriori property formalises an intuitive fact. Due to the way the pattern
enumeration tree is constructed, deeper levels of the tree consist of increasingly
complex patterns, which are guaranteed to occur less frequently in an input dataset
D than its simpler antecedents. As will be described next, the routine tarone_spm
combines this property with additional statistical considerations related to the concept
of testability in order to devise a pruning criterion that allows efficiently traversing
the pattern enumeration tree.

The pseudocode of the routine tarone_spm is described in Algorithm 3.2. As
shown in Line 2, the routine commences by initialising the estimate of the corrected
significance threshold Siar to 1, the largest value 6y could possibly take, and the
estimate of the set of testable patterns at level Star to the empty set, ./T/l\test(c?tar) +— @.
In order to compute by = max {0 | 6| Miest(d)| < a}, candidate patterns S € M
will be explored recursively by traversing the pattern enumeration tree depth-first.
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Algorithm 3.2 tarone_spm

Input: Dataset D = {(x;,y;)}_,, target FWER «
Output: Corrected significance threshold ¢,y and corresponding set of testable pat-
terns Mtest((star)
1: function tarone_spm(D,x)
Initialise global variables di,; +— 1 and /T/l\test(ﬁtar) — @

2:

3: NEXT(QD) . > Start pattern enumeration
4 Otar <— gtar and Mtest(fstar) — Mtest(&ar)

5: Return 6y and Miest (Otar)

6: end function

7: procedure NEXT(S)

8: Compute the minimum attainable P-value ps min > see Section 3.3
9: if psmin < Star then > if pattern S is testable at level Star then
10: %ﬂd S to M\test(gtar)

11 FWER (8tar) 4 Star| Miest (3tar)|

12: while FWER () > « do

13: lzgcrease Star .

14: -/l/l\te_i(gtar) < {S/ S Mtest(gtar) | PS’ min < Star}

15! FWER(ﬁtar) — S\tar‘ﬂ/{\test((gtar)‘

16: if not pruning condition(S, Star) then > see Section 3.4
17: for S’ € Children(S) do

18: NEXT(S’) > Recursively visit nodes in the tree depth-first

19: end procedure

The estimates i and /T/l\test(ﬁtar) will be adjusted incrementally as patterns are
enumerated in such a way that, at the end of the execution of the algorithm, Sty = Jtar
and M\test(5tar) = Mest(0tar) holds. This enumeration procedure is initiated in Line 3
at the root of the tree, which by convention is assumed to represent the empty pattern *
S = @. For each pattern S € M visited during the enumeration process, the following
sequence of steps is carried out.

Firstly, the minimum attainable P-value ps min of the pattern S is computed accord-
ing to the samples in the dataset D. This step, performed in Line 8 of the algorithm,
will be described in detail in Section 3.3 below. In the next line, the algorithm verifies
whether the pattern is testable at the current significance threshold dar (i.€., p.§ min <
&ar) or not. If § is testable, it will be aggregated to the estimate of the set of testable
patterns M\test(gtar) in Line 10. Tarone’s upper bound on the FWER will be evaluated
next in Line 11, using the current estimate M\test(ﬁtar) of the set of testable patterns
at level di,r. In Line 12, this value is subsequently used by the algorithm to check if
the FWER condition dear| M est (dtar)| = ﬁvﬁz(&ar) < a is violated at level di,r. Note
that, as the enumeration process is not yet completed, ﬂtest(&ar) C M est(8tar) holds.

Consequently, the FWER approximation FWER (éy,,) evaluated in Line 11 satisfies

1. The empty pattern is defined to occur in every input sample, i.e. gp(x) =1 for all x € X. Hence,
the empty pattern cannot be statistically significant; its only purpose is to act as the starting point of the
recursive enumeration.
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FWER (8iar) = e Muest (Jiar)| < diar Miest(ar)| = FWER (). If FWER (diar) > @,
then it follows that FWER (di;) > «, implying that the current estimate of the corrected
significance threshold dy,, is too large and violates the FWER condition for target
FWER «. Thus, in that case, b, is decreased in Line 13. This in turn causes some
patterns currently in /(/l\test(ﬁtar) to no longer be testable. These patterns are removed

from ./T/t\test(&ar) in Line 14, thereby reducing ﬁ\f\ﬁi(&ar), which is re-evaluated in
Line 15. This process is repeated, iteratively reducing i, and removing untestable pat-

terns from /T/l\test(&ar), until the FWER condition is satisfied again, i.e. ﬁ\l\ﬁ?(&ar) < a.
Finally, the enumeration process continues recursively by visiting the children of the
pattern S currently being processed (Lines 17-18). Nevertheless, prior to that a pruning
condition is evaluated in Line 16. This step, discussed in detail in Section 3.4 below,
is the key to the computational feasibility of the algorithm. By construction, if the
pruning condition applies, no descendant of pattern S can be testable and, hence, they
do not need to be enumerated, drastically reducing computational complexity. As the
algorithm enumerates patterns, Star progressively decreases, making more and more
patterns become untestable and the pruning condition in Line 16 to become more
stringent. Eventually, the algorithm terminates its execution when all patterns S € M
that have not been pruned from the search space have been visited. At termination,
Star = Oy and /\//Ttest(gtar) = Mtest(&ar), allowing the exact value of Tarone’s corrected
significance threshold i,y and the corresponding set of testable patterns Mest(dtar) to
be returned in Line 5.

The significant pattern mining approach described by Algorithms 3.1 and 3.2 can
be applied as long as the search space of patterns M can be arranged as a valid
pattern enumeration tree, allowing to abstract away the specific type of patterns under
consideration, be it itemsets, subgraphs or any other. While the framework is also
in principle agnostic to the choice of test statistic, the two key steps of the algorithm
which remain to be discussed, the computation of minimum attainable P-values ps min
and the design of a valid pruning condition, are closely intertwined with the particular
test statistic being used to assess the significance of the occurrence of patterns in a
sample. The remainder of this section will be devoted to discuss in detail each of these
two key steps for the two test statistics that were introduced in Section 2.2: Pearson’s
x> test and Fisher’s exact test.

3.3 EVALUATING TARONE’S MINIMUM ATTAINABLE P-VALUE

As described in Section 2.3, discrete test statistics can only result in a finite number
of distinct P-values, implying the existence of a minimum attainable P-value. In
particular, if a test statistic based on 2 x 2 contingency tables conditions on the
observed margins n; and rs, modelling them as constants, the cell count a5 can
only take values in the range [4s min, 45 max), Where as min = max(0,rs — (n —ny))
and as max = min(ny,rs). Any other outcome of as would be inconsistent with the
observed margins 17 and rs and can be thus be ruled out a priori. Therefore, such a
test can result in at most 45 max — 45 min + 1 different P-values, the smallest one being
the minimum attainable P-value:

PS min = min {Ps(ﬂfg ‘ n, 1’11,7‘3) ’ LZ:S S [[aS,rnin/ aS,rnax]]} ’ (31)

29



ALGORITHMIC ASPECTS OF SIGNIFICANT PATTERN MINING

where ps(a’s | n,n1,7s) is the P-value that results as an outcome of applying the test
statistic to a 2 x 2 contingency table with cell count as, margins 77 and rs and sample
size n.

Algorithm 3.2 requires computing the minimum attainable P-value pgs min of every
single pattern S that is enumerated. Hence, billions or even trillions of evaluations of
Ps min Will be necessary in a single execution of the algorithm, rendering the computa-
tional efficiency of this step critical for the overall feasibility of the entire approach.
A naive application of Equation (3.1) would involve computing ps(a’s | n,n1,7s) for
each a's € [as min, 45 max], leading to O(n) P-value computations for each evaluation
of ps min, constituting an unacceptable computational overhead. This section will be
devoted to introduce closed-form expressions of ps min for both Pearson’s x? test and
Fisher’s exact test that can be evaluated with O(1) complexity.

The minimum attainable P-value ps min is a function of the number rs of occurrences
of pattern S in D, the number n; of samples in D that belong to the positive class
and the total sample size n. However, given an input dataset D, only rs varies from
pattern to pattern. In order to simplify the notation used in the remainder of this
section, we will therefore simply write ps min = Pmin(7s), leaving the dependence of
PSmin ON 11 and n implicit.

As Equation (3.1) suggests, the task of computing pmin(7s) is equivalent to finding
the minimiser a% of ps(as | n,n1,7s) in (a5 min, 45,max]- As a consequence of the way
the P-values for Pearson’s x? test (Equation (2.6)) and Fisher’s exact test (Equation (2.8))
are defined, the minimiser a§ must lie in the boundary of [as min, 45 max], i-e. either
A5 = A8min OF 45 = A5 max- 10 derive a closed-form expression of pmin(7s) for each of
the two test statistics under consideration, all that remains to be shown is which of
the two cases holds for each value of rg.

Proposition 3.2 (Minimum attainable P-value function for Pearson’s x? test). Define
ng = min(ny, n — ny) and n, = max(ny, n — ny). Then, the minimum attainable P-value
function for Pearson’s x? test is given by:

1—FX% (71—1)%,,38 , if 0<rs <mng,
_ 1)\l n=rs : n
(rs) = 1 FX% (n 1)nb <) if n,<rs<g, (2
pmints 1—F,((n—1)tets if 2<rs<n '
X% nyn—rs )’ 2 =78 bs
1 —FX% (n—l)”—z”:srs , if ny <rsg<n.

Proof. Let Tmax(rs) be the maximum value of Pearson’s x> test statistic for a 2 x 2
contingency table with sample size n and margins rs and n;. As discussed above,
Tpearson(as | 1,11,7s) will be maximised either at a5 = agmin OF at 4% = as max-
Hence:

maXx ((HS,m'm - 7’8%)2 s (as,max - 7’8%)2>

Tmax(rS) - rs n—rs n—mny ° (3'3)
Won n-1'M

Suppose 0 < rs < n,. Then, a5 min = 0 and as max = s, leading to:

2
o rs max‘(m,n—m) rs
Tmax(rS) - (71 1)1’1_7’8 nl(n—nl) a (Tl 1)1’1—7‘,5 nﬂ.

ny

(3-4)
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Analogously, if n, <rg <n, then agmin = rs — (n —n1) and ag max = n1. Thus:

n—rsmax*(ny,n—ny) (n—1)

n—rsny
rs ny(n—mnq) rs Mg

Tmax(rS) = (1’1 - 1) (3-5)
Finally, suppose n, < rs < n;. This case can be studied separately depending on
whether ny <n—mnqy orny >n—nj.
Let ny < n —ny, then as min = 0 and a5 max = n1. This leads to:

ny max’(rs,n—rs) n, max?(rs,n —rs)

Tmax(rs) = (n—1) = (n—-1)

n—n  rs(n—rs) n, rs(n—rs)

_ (Tl - 1)%%/ it n, < rs < %/ (36)

(n— 1)%735’ if 5 <rs<mny.
If n; > n—mnq, then ag min = rs — (n — n1) and as max = rs. Therefore:
2 2
n—nymax-(rs,n—rg) ng, max-(rg,n —rg)
T = —1 =(n—1)—
max(rs) = (n =1) 1 rs(n—rs) ( )nb rs(n—rs)

(n—l)%%, if n, <rs<3, (37)

= . 3.7
n—l)%ngs, if 5 <rs<mny.

Since ppearson(as | n,n1,1s) = 1 — FX% (Tpearson((lg | 1’1,1’11,7’3)), this concludes the
proof. O

Proposition 3.3 (Minimum attainable P-value function for Fisher’s exact test). Define
n, = min(ny,n — ny) and n, = max(ny, n — ny). Then, the minimum attainable P-value
function for Fisher’s exact test is given by:

G/, if 0<rs < g,
/), i ng < z
pmin(rS) (Z—f’s){l(fs)’ 1 Zﬂ =TS 2 (38)
(rsh) (;/S)’ lf 2 S rs < ny,
G )/ (5, i mpy <rs <.

Proof. Analogously to the proof of Proposition 3.2, pfisher(as | 1,111, 7s) is minimised
either at ay = ag min Or at as = a5 max. Therefore:
Pmin(rs) = min(Hypergeom(as min | 1, 11, 7s), Hypergeom(ags max | 1,11,7s)). (3.9)

This implies that:

1 (o) s aim) ")
n
(7s)
The problem will be decomposed in three cases, as done for the derivation of the
closed-form expression of the minimum attainable P-value for Pearson’s x? test.
Let 0 < rs < ng, leading to as min = 0 and a5 max = rs. Then:

min (", ()~ ()
&y )

Pmin(7s) = (3.10)

=
S

Pmin(rs) = (3.11)

~—

<
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Similarly, if n, < rs < n then ag min = rs — (n — n1) and as max = n1. Thus:

min (o (i) i) min (GO, G0) ()
) - 0 = B

rs rs rs

Pmin (VS ) =

where the second step follows from () = (,,”,)-
Let n, <rs < nyand n; < n —mny, so that as min = 0 and a5 max = 11. Hence:

1 - - (nﬁl; ) .
. (r ) B min ((”rg‘l)r(sz;)) B ﬁ, if n,<rg< %’ o
Pmin(¥s) = (”) - (:’S”) oo 3.13
rs @/ 1 7S rs < np.

Alternatively, if n, < rs < n, and n; > n —ny, then agmin = rs — (n —n1) and
as max = s, leading to:

min ((,"), () (”(%), if n, <rs<?,
Pmin(rs) = 7 =9 (3.14)
(78) Ei;, if % <rs < mny,

where again the identity (};) = (") was used. This concludes the proof. O
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Figure 3.2. - Minimum attainable P-value psmin for Pearson’s x? test (blue) and
Fisher’s exact test (orange) as the number rs of occurrences of pattern
S in a dataset D varies. The number of samples in the positive class 11
and the sample size n are ny = 15, n = 60 in (a) and n; = 30, n = 60 in
(b), respectively.

Figure 3.2 depicts ps min as a function of the number rs of occurrences of pattern
S in a dataset D for Pearson’s x? test (blue) and Fisher’s exact test (orange). Two
particular cases are illustrated in Figures 3.2(a) and 3.2(b) depending on the class ratio
n1/n of the dataset: the former exemplifies an unbalanced dataset with n; = 15 and
n = 60 whereas the latter corresponds to a balanced dataset with n; = 30 and n = 60.
The qualitative behaviour of pmin(7s) is identical for both test statistics. As suggested
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by the closed-form expressions derived in Propositions 3.2 and 3.3, the minimum
attainable P-value ps min as a function of rs is symmetric around rs = n/2 and has
minima at rs = n, = min(ny,n —ny1) and rg = n, = max(ny,n —ny). Informally,
the fundamental property of pmin(7s) evidenced by Figure 3.2 is that the minimum
attainable P-value ps min is large, indicating lower potential to result in a statistically
significant association, whenever s is small or rs is large.
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Figure 3.3. — [llustration of the concept of testability at an arbitrary level § = 10~4°
when Fisher’s exact test is the test statistic of choice for two 2 x 2 contin-
gency tables differing in their class ratios: (a) unbalanced, with n; = 15,
n = 60 and (b) balanced, with n; = 30, n = 60. Values of rs in the range
[rmin(6), n — rmin(0)] lead to pattern S being testable at level § (green),
while rs < min(d) or rs > n — rmin(d) imply that pattern S is untestable
at level ¢ (red).

This property is investigated further in Figure 3.3, which illustrates how it relates to
the concept of testability at a certain corrected significance threshold J. As a direct
consequence of the functional form of ps min, for fixed margin n;, sample size n and
corrected significance threshold &, there exists a value rmin(6) such that patterns S
with s < rmin(d) or rs > n — rmin(d) are untestable at level §, while those for which
rs lies in [fmin(8), 1 — rmin(J)] are testable . This formalises the intuition that patterns
S for which rg is too small or too large, i.e. patterns S that are either too rare or too
common in D, are less likely to be significantly associated. Tarone’s method can thus
be understood as a statistically principled way to turn this intuition into a filtering
criterion to reduce the number of patterns that contribute to the multiple comparisons
problem. However, unlike other alternative approaches, Tarone’s method does not use
an ad-hoc threshold to filter patterns according to their number of occurrences in the
input dataset. Instead, it learns an adaptive threshold in a data-driven manner. As
a consequence, Tarone’s method is able to guarantee that all patterns that have no
chance of resulting in a statistically significant association at level J, regardless of the

2. Technically, for sufficiently small J, the set of values of rs that leads to pattern S being testable
could be the union of two disjoint intervals rather than a single interval. Nevertheless, this poses no
additional statistical or algorithmic difficulties. Moreover, this situation is uncommon in practice, as it
corresponds to values of J that would be too small to be of practical relevance in most applications.
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actual realisations of the class labels, will be filtered and that all patterns that could
possibly result in an association will be kept.

3.4 DESIGNING A PRUNING CONDITION

Being able to evaluate the minimum attainable P-value ps min efficiently is of utmost
importance for significant pattern mining. However, even if ps min can be computed
with O(1) complexity, evaluating the minimum attainable P-value psmin of every
single candidate pattern S € M remains computationally intractable in practice due
to the sheer size of the search space. As described in Section 3.2, significant pattern
mining algorithms circumvent this limitation by leveraging a pruning condition, that
is, a way to test if descendants S’ of a pattern S in the enumeration tree are testable
using only information available in the 2 x 2 contingency table of pattern S. The
remainder of this section will describe how specific properties of the function pmin(7s)
for Pearson’s x? test and Fisher’s exact test can be combined with the apriori property
of pattern mining (Proposition 3.1) to design a simple yet highly effective pruning
criterion, which is summarised in the following proposition:

Proposition 3.4 (Pruning criterion for Pearson’s x? test and Fisher’s exact test). Let
S € M be a pattern satisfying:

(1) PSmin > Siar, 1.e., S is untestable at level biay,
(ii) rs < n,, with n, = min(ny, n — ny).

Then, ps' min > Star > Otar for all descendants S of S in the pattern enumeration tree, imply-
ing that they can be pruned from the search space. In conclusion, pruning_condition(S, Sr)
in Line 16 of Algorithm 3.2 is true if and only if rs < 1, and ps min > tar-

Proof. Firstly, for fixed sample size n and number 1, of samples in the positive class, the
minimum attainable P-value ps min is @ monotonically decreasing function of rs in the
range s € [0, n,] for both Pearson’s x? test and Fisher’s exact test, i.e., rg < rg < n,
implies Pmin(7s’) > pmin(rs). This property, which does not necessarily hold for all
test statistics based on contingency tables, can be readily verified from the specific

functional form of ps min in the range rs € [0, 14]: Pmin(rs) =1 — Fx% ((n —1)5Is )

Ng N—rg
for Pearson’s x? test and pmin(rs) = (r2)/(;,) for Fisher’s exact test. Intuitively, this
means that in the range rs € [0, n4], as the pattern S becomes less rare, the minimum
attainable P-value decreases, thereby increasing the potential of pattern S to be
statistically significant. Secondly, due to the apriori property, if S” is a descendant of
S, then rg < rg holds.

Combining both facts, if s < n, then ps min > PS min for all descendants S’
of § in the enumeration tree. Therefore, psmin > Star implies that ps/ min > Star
for all descendants S’ of S. Since by > Jiar at any point during the execution of

Algorithm 3.2, this proves the result. O

The pruning criterion presented in Proposition 3.4 only applies to patterns S € M
satisfying rs < n,. While this might seem to be a strong limitation, a large proportion
of all candidate patterns S in the search space M are sufficiently rare for this condition
to apply. For any pattern S satisfying this constraint, Proposition 3.4 simply states
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Figure 3.4. — Illustration of the effect of search space pruning in a significant itemset
mining problem with p = 5 binary features. In this example, it is as-
sumed that patterns S; and &, (highlighted in red) satisfy the conditions
of Proposition 3.4, i.e. rs, < 1y, rs, < ny and ps; min > 5tar, PS,min > 5tar.
Then, all their descendants (highlighted in orange) would be pruned
from the search space, drastically reducing the number of candidate
patterns that need to be enumerated.

that descendants S’ of an untestable pattern S will also be untestable. As Figure 3.4
illustrates, this can lead to a drastic reduction in computational complexity, allowing
to compute dior and retrieve the set of testable patterns Miest(Jrar) While enumerating
only a small subset of all candidate patterns in the search space M.

3.5 IMPLEMENTATION CONSIDERATIONS

When implementing the state-of-the-art significant pattern mining algorithm de-
scribed in this chapter, some fundamental design choices, not discussed yet for the
sake of clarity, need to be addressed. This section will be devoted to cover each of
these considerations in detail.

Constructing and navigating the pattern enumeration tree

One of the aspects that tends to have the greatest impact on computational efficiency
is the choice of algorithm to build and traverse the pattern enumeration tree. A priori,
this might seem a conceptually simple task. However, the vast size of the search space
quickly renders naive enumeration approaches computationally unfeasible as the size
of the dataset increases, requiring instead the use of sophisticated data structures and
enumeration strategies. Fortunately, the design of efficient algorithms to enumerate
patterns has been a key subject of research in data mining during decades, leading
to a wealth of highly optimised methods that can be readily applied to significant
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pattern mining, including both itemset mining (e.g. [31, 68, 69], see [70] for a review)
and subgraph mining (e.g. [71, 72], see [73] for a review).

Iterative refinement of the estimate of Tarone’s corrected significance threshold

On every occasion the FWER condition is found to be violated during the execution
of Algorithm 3.2, the estimate Star Of the corrected significance threshold is decreased
in Line 13. A simple strategy to implement this step is via grid search, be it uniform
(Otar ¢ Otar — A) or logarithmic (Otar < 10726r). As long as A is sufficiently small,
both approaches yield good results in practice. Alternatively, it is possible to exploit
the discreteness of the function pmin(7s) to devise a more efficient strategy. In this case,
the sequence of candidate values for btar would be obtained by sorting in descending
order the |5 | 4 1 different values the minimum attainable P-value function pmin(7s)
can take 3. Every time d¢,r needs to be decreased, it would be set to the next element
of that sequence. This strategy is optimal in the sense that it adaptively selects the
minimum step size necessary to decrease the estimate of Tarone’s FWER upper bound

FWER (6ar)-

Eliminating the need to keep the set of testable patterns in memory

Algorithm 3.3 find_significant_patterns

Input: Dataset D = {(x;,;)}_,, Tarone’s corrected significance threshold Jtar
1: function find_significant_patterns(D,diar)

2: NEXT(®) > Start pattern enumeration
3: end function
4 procedure NEXT(S)
5: Compute the minimum attainable P-value ps min > see Section 3.3
6: if ps min < Jtar then > if pattern S is testable at level J,r then
7: Compute the P-value ps
8: if ps < diar then > if pattern S is significant at level J,r then
o: Write S and ps to an output file
10: if not pruning condition(S, diar) then > see Section 3.4
11 for S’ € Children(S) do
12: NEXT(S') > Recursively visit nodes in the tree depth-first

13: end procedure

The estimate M test(gtar) of the set of testable patterns at level Star tends to be large in
practice, often containing hundreds of millions or even billions of patterns. Therefore,
explicitly storing this set in memory during the execution of the algorithm can be
a challenge. Moreover, this naive strategy could cause the execution of Line 14 in
Algorlthm 3.2 to become a computational bottleneck, as in principle the entire set
Mtest(étar) would need to be inspected to remove all patterns that become untestable
after having decreased Star in the previous step of the algorithm. Nevertheless, in order

3. The symmetry of pmin(rs) around #/2 implies that only | 5 | 4 1 distinct minimum attainable
P-values can be obtained for fixed 17 and n, rather than n + 1.
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to compute the corrected significance threshold dt,r, Algorithm 3.2 only requires access
to the total number of testable patterns ]/T/l\ test (Otar) |, not the actual patterns themselves.
Define Ppin = {pmin(rg) |rs € [[0, L%Jﬂ } to be the set of | | 4 1 distinct Vil\ues that
Pmin(rs) can take for a given sample size n. Instead of explicitly storing /\/ltest(&ar)
in memory, an alternative approach is to maintain only the set of |5 | 4 1 integers
{c(psmin) | PSmin € Pmin}, where ¢(ps min) is the number of patterns enumerated
so far that have minimum attainable P-value equal to ps min. Given any Star, the total
number |M\te3t(c§tar)| of testable patterns enumerated so far can be retrieved as:

| Miest (bar)| = Y (P min), (3.15)

PS,min € Prin ‘ PS,min <Otar

where the summation includes at most | 5] + 1 counts. This approach allows comput-
ing Jiar exactly by executing Algorithm 3.2 until its termination without ever needing
to store the estimate M\test(ﬁtar) of the set of testable patterns in memory. Moreover,
it also allows executing Line 14 of Algorithm 3.2 with O(1) complexity, avoiding
a potential computational pitfall. However, in order to find the subset of testable
patterns which are significantly associated with the class labels, Line 2 of Algorithm 3.1
does require access to not only the corrected significance threshold J,, but also the
actual set of testable patterns Miest(dtar). To this end, the enumeration process can be
repeated, starting again at the root of the enumeration tree, but with fixed Star = Star-
As patterns are enumerated, the P-values ps of patterns testable at level dt,r can be
computed on the fly, and those which are deemed significantly associated can be
written to an output file. This approach is summarised in Algorithm 3.3. While this
strategy requires enumerating patterns twice, thus approximately doubling the total
runtime, it completely avoids the need to keep the set of testable patterns Mest(dtar)
in memory, greatly reducing memory usage. As a consequence, this is the preferred
implementation choice in most situations. Finally, it is worth noting that this strategy
is also applicable in situations for which the estimate Star Of the corrected significance
threshold is decreased using grid search. For instance, if a logarithmic grid was used,
it would be possible to define c(i) as the number of patterns enumerated so far that

have minimum attainable P-value psmin € [10*(1'*1”, 10*"A) for each 1 < i < ipnay,

where ipay is set so that 10~ max2 s small enough (e.g. 10*30).

Caching the minimum attainable P-value function

In some circumstances, a useful strategy to further speed-up the evaluation of the
minimum attainable P-value function pmin(7s) is to precompute its output for all n + 1
possible values of rs in the range [0, n] and store the mapping as a look-up table. This
requires only O(n) additional memory, often a negligible amount in comparison to the
size of the entire dataset D, and will virtually eliminate the contribution of minimum
attainable P-value computations to the overall runtime of the algorithm.
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EXPLOITING THE DEPENDENCE BETWEEN PATTERNS

Perhaps the most influential characteristic of significant pattern mining as a machine
learning task is the daunting size of the search space of candidate patterns M, which
has profound statistical and computational implications. Most notably, during the
first part of this thesis, it was discussed extensively how this causes two fundamental
difficulties: (i) the statistical challenge of dealing with an extreme instance of the
multiple comparisons problem, and (ii) the computational challenge of exploring this
vast search space M efficiently. In Chapter 3, it was shown how Tarone’s improved
Bonferroni correction for discrete data can be combined with classical data mining
techniques to design a practical significant pattern mining algorithm that successfully
circumvents those difficulties. The resulting method is able to explore all candidate
patterns in the search space M in a computationally efficient manner and exhibits a
considerable amount of statistical power despite guaranteeing FWER control. However,
this approach is not devoid of limitations, opening the door to the development of
novel algorithms to further improve the state of the art in significant pattern mining.

In particular, another defining characteristic of significant pattern mining, com-
pletely overlooked by the approach introduced in Chapter 3, is the fact that the
search space of candidate patterns M is not only extremely large, but also harbours
non-trivial dependencies between the many patterns M contains.

In this chapter we present Westfall-Young light [49], a fast and memory-efficient
significant pattern mining algorithm that models the statistical dependencies between patterns
in the search space, obtaining a more accurate approximation of the FWER than that provided
by Tarone’s method and, ultimately, leading to a gain in statistical power.

The rest of this chapter is organised as follows. Section 4.1 details how the de-
pendence between patterns arises in significant pattern mining, as well as the main
implications of this phenomenon on the correction for the multiple comparisons
problem. Section 4.2 will be devoted to introduce the Westfall-Young permutation testing
procedure, a resampling-based approach to directly estimate the real value of FWER(J)
without the need to make simplifying independence assumptions. Next, Section 4.3
discusses the challenge of developing significant pattern mining algorithms able to
make use of permutation testing. In particular, Section 4.3.1 introduces the FastWY
algorithm [43], which to the best of our knowledge constitutes the only previously ex-
isting attempt to combine permutation testing and significant pattern mining, whereas
Section 4.3.2 discusses in detail our novel contribution, the Westfall-Young light
algorithm. Finally, a thorough experimental assessment of the computational efficiency
of FastWY and Westfall-Young light is described in Section 4.4.

4.1 INTRODUCTION

The most evident source of dependencies between patterns in M are subset/superset
relationships. If a pattern S is contained in another pattern S’, the random variables
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Gs(X) and Gg/(X) that indicate the occurrence of patterns S and S’ in an input sam-
ple X satisfy Gs(X) = 0 = Gg/(X) = 0 or, equivalently, Gs/(X) =1 = Gs(X) = 1.
Therefore, Gs(X) and Gg/(X) are statistically dependent, being mutually redundant
to some extent. Alternatively, the apriori property of pattern mining, discussed in
Proposition 3.1, can also be used to show that Gs(X) and Gg/(X) are statistically
dependent for S C S&'. The strength of this dependency itself mainly depends on
the probability that the “difference pattern” S’ \ S occurs in an input sample X. The
more likely it is that this pattern occurs, the more frequently S and S’ will co-occur,
leading to a stronger association between Gs(X) and Gs/(X). Figure 4.1 illustrates this
phenomenon in a toy significant itemset mining problem with n = 12 samples and
p = 10 features. The illustration depicts feature interaction S = {2,9,10}, highlighted
in grey, and feature interaction S’ = S U {7}, highlighted in brown. Since S’ is formed
by adding an additional feature to S, it satisfies S C &’ by construction. In this
example, it can be seen that knowing the value of gs(x;) alone is sufficient to also
know the value of gs/(x;) for half of the samples {x;};2, in the dataset. In fact, this
holds true for any &’ O S, regardless of the additional features S’ \ S being added to
the feature interaction. Consequently, Gs(X) is statistically dependent of Gg/(X), for
any 8’ O S.

p features
Y Ul U2 U3 Ug Us Ug U7 U U9 U10 s zs
r o |dFoo0o 11011 1)| M @
ol |(fio1i10010)]| |o |0
ol |[(foTo1o0011)]| o] |o
":To (Ti7o01i1i004)| |0 |o
7 of|(0iioiioiio)| (o |o
%‘ of|(T11T0010001)}| |of |0
3 1) l(A1170110011)]| [1] |2
= 11 |[(Ai70i1i011)]| 1] |
§T1 (1110110041 1)]| 1] |?
11 |(7iio01i10100)| [o |o
1|1 10110111)]|[1] |2
\ 1 |Gd 0111001 1)| (1) |2

N
S=1{2,9,10} =8 =SU {7} “zs = urzs
Figure 4.1. — Illustration of how dependence between patterns arises in significant

itemset mining due to inclusion relationships S C &’ between candidate
patterns S, S’ € M.

42



4.1 INTRODUCTION

Subset/superset relationships are not the only potential source of dependence
between any two candidate patterns S;, S, € M. More generally, as long as the two
patterns share some sub-structures, i.e. S NS, # @, the random variables Gg, (X)
and Gg,(X) might be statistically associated. Since Gs,(X) = Gs,ns,(X)Gg,\s,(X)
and Gg,(X) = Gs)ns,(X)Gs,\s,(X) holds for any 81,82 € M, the strength of the
association between Gg, (X) and Gg,(X) depends on the probability that the shared
sub-structure §; N Sy occurs in an input sample X, relative to the probability that
the pattern-specific sub-structures S \ S and S, \ &1 occur. For example, if S1\ S»
and S, \ &; are both common sub-structures which are present in almost every input
sample X, the probability that S; and S, occur in an input sample X will be dominated
by the probability that S; NS, is present in X. Therefore, in this situation Gg, (X)
and Gg,(X) will be strongly associated. On the contrary, if S NS, is a common
sub-structure, the probability that S; occurs in an input sample X will be mostly
determined by how frequently S; \ Sy occurs, while the probability that S, occurs in
an input sample X will mostly depend on how frequently S, \ &1 occurs. In this case,
Gs,(X) and Gg, (X) will be approximately independent.

o HOCe (e )(Cw HCE )

2 )3 )y ) sy ) 23 ) 24

65 (s

{1.2,3} )( {1,249} ) (528 ) ({134 )( {1,350 )( {145 )( {234} )({2:3:5)) ({245} ) ( {3.4,5

{1,2,3,4} ({1,2,3,5}) ({1,2,4,5}) {1,3,4,5}

Figure 4.2. — Illustration of how subset/superset relationships between patterns and
the sharing of pattern sub-structures can result in a pattern & € M being
statistically associated with many other patterns in the search space
M. In this significant itemset mining example, a feature interaction
S = {2,5} (dark green) is related by subset/superset relationships to
9/32 feature interactions (green) and shares features with other 14/32
feature interactions (orange). The intensity of the colour of a node in
the pattern enumeration tree is proportional to the relatedness of the
corresponding feature interaction S’ with S = {2,5}.

Due to the combinatorial nature of the search space M, these dependencies which
arise as a consequence of subset/superset relationships and the sharing of pattern
sub-structures can lead to any given pattern S being statistically associated with
a large proportion of patterns in the search space M. Figure 4.2 illustrates this
effect in a toy significant itemset mining problem with only p = 5 features. In this
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example, a given feature interaction S = {2,5} (highlighted in dark green) is directly
related by subset/superset relationships to 9 out of 32 patterns (highlighted in green)
and shares some sub-structures (in this case, input features) with other 14 out of 32
patterns (highlighted in orange). In summary, in this example, the presence of pattern
S = {2,5} in an input sample X might be statistically associated with occurrences of
more than half of all patterns in the entire search space M.

The existence of this complex web of interdependencies between patterns in the
search space M has profound implications. If the random variables Gg, (X) and
Gs, (X) are statistically dependent, the corresponding P-values ps, and ps, quantifying
the statistical association of Gg, (X) and Gg,(X) with the class labels Y might be
statistically dependent as well. Suppose that patterns &1, S, € M are not associated
with the class labels Y, i.e. S1,8 € My as defined in Section 2.3. Then, if the
random variables Gg, (X) and Gg,(X) are statistically associated, causing ps, and
ps, to be statistically dependent, the occurrence of a false positive for pattern Sy, i.e.
[ps, < 9], and the occurrence of a false positive for pattern S, i.e. [ps, < 4], will be
statistically dependent too. The implications of this observation can be traced back
to the derivations of the upper bounds on the intractable exact FWER used by the
Bonferroni correction and Tarone’s improved Bonferroni correction for discrete data.
Both approaches make use of the fact that, as a direct consequence of the axioms
of probability, Pr([ps, < 6]U [ps, < 8]) = Pr(ps, < 6) +Pr(ps, < ) —Pr(ps, <
5,ps, < 0) < Pr(ps, <6)+Pr(ps, < 9). This inequality is exact, i.e. becomes an
equality, if and only if the events [ps, < J] and [ps, < J] are mutually exclusive,
that is, if and only if Pr(ps, < J,ps, < 0) = 0. Under any other circumstances,
Pr(ps, < J)+Pr(ps, < &) will overestimate the true value of Pr([ps, < d]U [ps, <
J]). Most importantly, if patterns S; and S, are closely related, leading to a high
probability that they co-occur in an input sample X, the random variables Gg, (X)
and Gg, (X) will be strongly positively correlated *, causing [ps, < ¢] and [ps, < J] to
be positively correlated as well. In this particular case, which is of special relevance
for significant pattern mining, Pr(ps, < J,ps, < J) = Pr(ps, < 9) = Pr(ps, < 9),
implying that Pr([ps, < 6]U [ps, < d]) = Pr(ps, < J) = Pr(ps, < J). The same
argument can be generalised to any subset M’ of the search space M. If the set of
P-values {ps | S € M’} exhibits extensive positive correlations between subsets of
P-values, possibly extending beyond mere pairwise associations between P-values,
then Pr (Uscar [Ps < 6]) € Lsemr Pr(ps < 6) will hold. The larger the number of
patterns and the strength of the dependencies between patterns in M/, the bigger the
overestimation gap between Y g ¢ Pr(ps < ¢) and Pr (User [ps < 9]) will be.

The Bonferroni correction approximates the intractable exact FWER, FWER(6) =
Pr (Usenm [ps < 6]), with an upper bound ﬁvﬁz(a) = Y semPr(ps <) = 6|M|.
As discussed in-depth in Section 2.3, this upper bound tends to greatly overestimate
FWER(J) in significant pattern mining because the Bonferroni correction implicitly
assumes that any pattern in the search space M can cause a false positive while, in
reality, only a much smaller subset Miest(d) C M of testable patterns can. Tarone’s im-
proved Bonferroni correction for discrete data hinges on that observation, proposing to

1. Two random variables Gg, (X) and Gg, (X) are said to be positively correlated if E(Gg, (X)Gg, (X)) >
E(Gs, (X))E(Gs,(X)). In the particular case that the random variables Gg, (X) and Gg, (X) are binary,
this is equivalent to Pr(Ggs, (X) =1, Gs,(X) = 1) > Pr(Gg, (X) = 1)Pr(Gg,(X) = 1).
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use instead an upper bound ﬁvﬁa(a) = Yse M (0) P (Ps < 0) = 8| Miest(9)]. Since
in practice | Miest(6)| < | M|, Tarone’s method drastically reduces the overestimation
gap between ﬁvﬁz((s ) and FWER(6). Nonetheless, both the Bonferroni correction and
Tarone’s improved Bonferroni correction for discrete data rely on the additional sim-
plifying assumptions that the sets of P-values {ps | S € M} and {ps | S € Miest(9)}
are statistically independent, respectively. As it was shown above, due to the extensive
statistical dependencies which exist between different patterns in the search space,
both of these assumptions can seldom be expected to be satisfied in significant pattern
mining. Firstly, this observation sheds additional evidence on the inadequacy of the
Bonferroni correction for significant pattern mining. Perhaps most importantly, it also
implies that while Tarone’s improved Bonferroni correction for discrete data might
drastically improve statistical power compared to the Bonferroni correction, the unmet
assumption of joint independence of the P-values of all testable patterns renders it
over-conservative as well. Consequently, Tarone’s method still overestimates the real
FWER, causing the significance threshold 6y, resulting from applying this approach
to be still considerably smaller than the significance threshold 6* one would obtain if
the real value of FWER(J) could be computed exactly.

In the next sections we will introduce the Westfall-Young permutation testing
procedure, which allows to bypass the need to make independence assumptions by
directly obtaining an empirical estimate of FWER(d), and describe how this approach
can be leveraged to improve statistical power in significant pattern mining.

4.2 EMPIRICALLY APPROXIMATING THE FWER VIA RANDOM PERMUTATIONS

Both the Bonferroni correction and Tarone’s method bypass the difficulty to ex-
actly evaluate the FWER at a given significance threshold J by using an easier-to-
compute upper bound FTVE?(& ) of the FWER as a surrogate of the intractable quantity
FWER(J). As argued in the previous section, while this paradigm enjoys the benefits
of simplicity and computational efficiency, it necessarily leads to over-conservative es-
timations of the FWER. An alternative approach is to instead try to obtain an empirical
estimate m?(é) of the exact value of FWER(J) by using resampling techniques.

One of the most commonly used resampling schemes towards this end consists
of applying random permutations to the class labels [74]. Let D = {(x;,y;)}:_, be
an input dataset with n observations x € X and class labels y € {0,1}. Suppose
that 7t : [1,n] — [1,n] is a random permutation, i.e. a permutation of the set [1, 1]
selected uniformly at random from the set of all n! permutations of [1,n]. Define

the resampled dataset D= { (xi, ]/n(i)) }n ) in such a way that the i—th observation
1=

x; is paired with the class label of observation 7(i), for each i = 1, ..., n. The effect
of obtaining the class labels in the resampled dataset D by randomly permuting
the original labels in D is to assign a random class label to each observation while
keeping the class ratio 77 /n unchanged. As a consequence, any statistical dependency
between patterns and labels which might have existed in the original dataset D is
effectively eliminated by the permutation process. While the ground-truth regarding
which patterns S € M are statistically associated with the class labels in the original
dataset D is unknown, in the resampled dataset D, no pattern S € M can possibly be
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Figure 4.3. — In this significant itemset mining example, an input dataset D with
p = 10 features and n = 12 samples, shown on the left, has been
resampled by applying a random permutation 7 : [1,n] — [1,n] to the
class labels, resulting in a new dataset D, shown on the right. While
both datasets share the same observations {x;};_; and class ratio n;/n,
the mapping of class labels and observations is different. A consequence
of this is that the occurrence of patterns &; and S, which is enriched in
observations belonging to class y = 1 in the original dataset D, no longer
show any association with the class labels in the resampled dataset D.

associated with the class labels. In other words, the global null hypothesis Mo = M
holds for D. Figure 4.3 illustrates the permutation process on a toy significant itemset
mining dataset with n = 12 samples and p = 10 features.

The fact that a resampled dataset D obtained in this manner is known to contain
no associations can be exploited to obtain an empirical estimate of the FWER under
the global null hypothesis that no pattern S € M is associated with the class labels.
Suppose that the resampling process described above is repeated a number j, of

times, leading to a set {ﬁ(k)}le of j, resampled datasets. Leaving the matter of
computational feasibility temporarily aside, suppose that for each dataset D*¥), the
P-values pfgk) for all patterns S € M had been obtained. Define pgg to be the P-value
corresponding to the most significant pattern, i.e. p(mkg = min {p‘(sk) | S € ./\/l} By
construction, pr(r’fg < pg() for all patterns S € M. Hence, if pf{ig > §, it follows that no

pattern S € M will be deemed significant in the k-th resampled dataset D*), leading

to no false positives being reported in this resampled dataset, i.e. FP®) () = 0. On the

contrary, if pf{i@ < 4, there is at least one pattern S € M being deemed significant for
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the k-th resampled dataset. Since D) is known to contain no associations, this implies
that FP%)(§) > 0. Therefore, an empirical estimator of the FWER can be obtained as:

. J
FWER(J) = 1 Zp; 1 [pfﬁﬁ < 5}, (4.1)
Ir =1

where 1[e] evaluates to 1 if its input argument is true and to 0 otherwise. Intuitively,
the estimator FWER(J) of the FWER at significance threshold J is simply given by the
proportion of the j, resampled datasets that contain at least one false positive. If the

number of permutations j, is chosen sufficiently large (e.g. j, ~ 10, 000), ﬁvﬁ{((s ) will
be a rather accurate estimate of the true value of FWER(J). A corrected significance
threshold can then be proposed based on this estimator as:

j
5Wy:max{5|,1il[pr(,’2§(5] guc}. (4-2)

Ir =1

In other words, the corrected significance threshold (5Wy can be obtained as the «a-

quantile of the set { pffiﬁ }:a_l. It can be shown that éyy defined in this way guarantees

weak control of the FWER, i.e. controls the FWER under the global null hypothesis.
Moreover, if the subset pivotality condition [74] holds, then it can be shown that permu-
tation testing also strongly controls the FWER, i.e. controls the FWER when any subset
of hypotheses are allowed to be non-null. Permutation testing has been nonetheless
extensively applied to problems for which the subset pivotality condition cannot be
proven to hold, as is the case of significant pattern mining, while still leading to
successful results.

The empirical estimate of the FWER obtained via permutation testing implicitly
accounts for the dependence structure that might exist between patterns in the search
space M. While this can lead to a considerable gain in statistical power with respect
to Tarone’s method, naively applying this procedure to significant pattern mining is

entirely unfeasible. Firstly, evaluating pl(,’% for a single resampled dataset D) is a
(k)

challenging problem on its own. In principle, a naive evaluation of pnlis would require
computing the P-value p‘(gk) of each pattern S € M, which is typically unfeasible due to
the size of the search space M. Moreover, in permutation testing, this operation needs
to be repeated between j, = 1,000 and j, = 10,000 times if a sufficiently accurate
estimate of the FWER is to be obtained, further exacerbating the computational
challenge.

While making use of Westfall-Young permutation testing in significant pattern
mining might therefore seem to be a hopeless endeavour, the next section will describe
in detail how the concept of the minimum attainable P-value, introduced in Section 2.3
in the context of Tarone’s method, can also be leveraged to design computationally
efficient permutation testing-based significant pattern mining algorithms.

4.3 PERMUTATION TESTING IN SIGNIFICANT PATTERN MINING

This section builds upon the framework presented in Chapter 3, describing two
novel significant pattern mining algorithms which use the corrected significance
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threshold dy,y obtained via permutation testing instead of Tarone’s corrected signifi-
cance threshold é,, thereby implicitly exploiting the dependence between patterns
in the search space to improve statistical power. Both novel approaches follow the
skeleton of Algorithm 3.1, thus proceeding in two steps. First, a specialised algorithm
is designed to efficiently compute the corrected significance threshold éwy. Then,
Algorithm 3.3 can be invoked to retrieve all patterns in the search space which are sig-
nificantly associated with the class labels at level dyy. Hence, the transition from using
Tarone’s method to permutation testing merely involves substituting Algorithm 3.2 by
a different approach able to compute dwy efficiently. The rest of this section will be
devoted to describe two such approaches.

The first method to be introduced is the FastWY algorithm [43], the only pre-
existing attempt to use Westfall-Young permutation testing in significant pattern
mining. Next, our contribution, the Westfall-Young light algorithm, will be dis-
cussed in detail. Both algorithms are identical from a statistical perspective: they
both exactly compute the corrected significance threshold éyy and retrieve all pat-
terns significantly associated with the class labels at that level. Consequently, FastWY
and Westfall-Young light are indistinguishable in terms of statistical power and
false positive rate. Nonetheless, they radically differ from an algorithmic perspective,
showing vast differences in computational efficiency when applied to real-world data.

4.3.1 Related work: the FastWY algorithm

The idea of using permutation testing to improve statistical power in significant
pattern mining was pioneered by [43]. In their work, the authors explicitly tackle

the problem of efficiently computing pﬂi@, for a single resampled dataset D). Once

pr(rlfg has been obtained for each k = 1,...,j,, the corrected significance threshold
dwy can be evaluated according to Equation (4.2). In order to avoid computing the

P-values pgk) for all patterns S € M in the search space, FastWY relies on the concept

of testability. Suppose that pr(rlfg(é) = min {pg() | S € /\/ltest(&)} was available for

some 6 € (0,1). Then, since p‘(gk) > psmin > 0 for all patterns S € M \ Miest(9), it

follows that pgg(é) < ¢ implies pgg = pgfg(&) In other words, if the P-value pgfg(é)

corresponding to the most significant testable pattern at level J is known and happens
to be smaller or equal than §, then none of the patterns which are untestable at level
0 could possibly be more significant. In that case, it would therefore be possible to
compute pgg without the need to evaluate the P-values pg() for any pattern & which
is untestable at level /. The FastWY algorithm exploits this observation, as described

in Algorithm 4.1.

j
In order to compute Jyy, FastWY evaluates { pr(rlfg }: ) by processing each resampled

dataset D®*) independently, as shown in Lines 2-4. For a given resampled dataset D),

(k)

the routine compute_pmin, invoked in Line 4, obtains pnlfs by iteratively computing
(k) : . . . .

Pms(6) for a sequence of monotonically increasing values of . This sequence is

initialised at the smallest attainable P-value, 6y = min {pmin(rs) | rs € [0, n]}, where

Pmin(7s) is the minimum attainable P-value function of the test statistic of choice.
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Algorithm 4.1 FastWY

Input: Dataset D = {(x;,y;)};_,, target FWER &, number of permutations j,
Output: Corrected significance threshold dyy
1: function compute_significance_threshold(D,a,j,)

2 fork=1,2,...,j, do

3: Obtain a random permutation 7% : [1,n] — [1,7]

4 pgg < compute_pmin(D, 7))

5: (5Wyemax{5]i2f:11[pgfg§5] Soc}

6: Return dyy

7. end function

8: function compute_pmin(D,r)

9:  Initialise global variable ¢ «— min {pmin(rs) | 7s € [0,n]}
100 Pms(d) < compute_pmin_delta(D, 1, )

11: while pms(d) > 6 do

12: Increase ¢

13: Pms(6) < compute_pmin_delta(D, 7, J)

14: Pms < pms(é)

15: Return pms

16: end function

17: function compute_pmin_delta(D,t,d)

18:  Initialise global variable pms(d) < 1

19: NEXT(QD) > Start pattern enumeration

Pms(0) < Pms(5)
212 Return pms(9)
22: end function

23: procedure NEXT(S)

¥
I

24: Compute the minimum attainable P-value ps min > see Section 3.3
25: if psmin < J then > if pattern S is testable at level J then
26 Compute P-value ps for resampled dataset D

27: Pms (6) = min(pms(6), ps)

28: if not pruning condition(S, ) then > see Section 3.4
29: for S’ € Children(S) do

30! NEXT(S') > Recursively visit nodes in the tree depth-first

31: end procedure

This initialisation is justified by the observation that Mest(6) = @ for any 6 < &y. As

long as p(mkg (6) > 0, the algorithm continues to increase é and recompute pgg(é), as

shown in Lines 11-13, until the condition p(mkg (6) < ¢ is eventually satisfied. At that

point, as discussed previously, pﬁ,’iﬁ = pr(,lfg (6) holds and the routine compute_pmin can

terminate, returning the exact value of p(mkg Each computation of pgfg(é) required
by that process is performed using the routine compute_pmin_delta (Lines 17-31).
Each time this routine is executed, the search space M is explored by traversing the

pattern enumeration tree depth-first, making use of the search space pruning criterion
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introduced in Section 3.4 to efficiently retrieve the set Miest(J) of patterns testable at
level 6. Each time a testable pattern is enumerated, the routine computes its P-value

pg() in order to iteratively update pﬁfﬁ@((s ). Once all testable patterns have been visited,

the routine terminates, returning the exact value of pl(,]%(é ).

As a consequence, the FastWY algorithm requires enumerating patterns from scratch
each time the routine compute_pmin_delta is invoked to compute pﬂig((s ) for a certain
value of 4. This might occur a potentially large number of times for any given
resampled dataset DY) but, perhaps most importantly, this entire process must be
repeated for each of the j, ~ 10,000 resampled datasets. As a result, even if FastWY
is able to obtain the exact value of pr(rlfg while enumerating only a small subset of
patterns in the search space M, the computational overhead of repeating pattern
enumeration such a large number of times limits its applicability to datasets of only

small-to-moderate size.

4.3.2 Contribution: the Westfall-Young light algorithm

Our contribution, the Westfall-Young light algorithm, builds upon the work
in [43] to provide an alternative approach to apply permutation testing in significant
pattern mining. Unlike FastWY, our method processes all resampled datasets simulta-
neously, requiring to enumerate patterns only a single time. In practice, this leads to a
drastic reduction in runtime and memory usage that allows scaling-up permutation
testing-based significant pattern mining to considerably larger datasets.

Pseudocode describing Westfall-Young light is shown in Algorithm 4.2. The
skeleton of the method closely parallels Algorithm 3.2. The search space M of all
candidate patterns is explored in the same manner: recursively traversing a pattern
enumeration tree that satisfies S’ € Children(S) = S C S’ depth-first. The algorithm
begins by initialising the estimate (/S\WY of the corrected significance threshold to 1
(Line 2). Next, in Lines 3-5, for each of the j, resampled datasets, the algorithm
precomputes the random permutation of the class labels and initialises the estimate
ﬁg’iﬁ of the most significant P-value to 1. After the initialisation phase, the algorithm
proceeds to start the pattern enumeration procedure at the root of the tree (Line 6).
For each pattern S visited during the traversal of the enumeration tree, Algorithm 4.2
first computes the minimum attainable P-value ps min in Line 11. The algorithm then
proceeds differently depending on the testability of pattern S.

If pattern S is testable at level E\Wy then, for each of the j, resampled datasets D,
the algorithm computes the P-value pg{) and updates the estimate ﬁgﬁg of the most
significant P-value for the k-th resampled dataset (Lines 13-15). Next, in Line 16, an

estimate ﬁV\E/R(gWy) of the FWER at level Swy is obtained using the estimates ;71(12
of the most significant P-value for each resampled dataset. Since the enumeration

process is not yet completed, pﬁng > pgng holds. This leads to - Z] ’ { mg < ‘SWY} =
FWER((SWy) being a lower bound of FWER( wy) = Z [pmg < 5Wy} Thus, if

FWER(&W},) > g, it follows that FWER(&W},) > & as well, 1mp1y1ng that the FWER
condition is not satisfied. In Lines 17-19, Algorithm 4.2 checks this condition and, if
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Algorithm 4.2 Westfall-Young light

Input: Dataset D = {(x;,y;)};_,, target FWER &, number of permutations j,
Output: Corrected significance threshold dyy
1: function compute_significance_threshold(D,a,j,)
Initialise global variable Swy «—1

2
3 fork=1,2,...,j, do
4 Obtain a random permutation 7% : [1,n] — [1,7]
5 Initialise global variable ;71(112 +—1
6:  NEXT(Q) > Start pattern enumeration
= ' ~(k
, 5Wy<—max{5€ [0, Suy] | izﬁlel[pﬁngga} ga}
8 Return 5wy
9: end function
10: procedure NEXT(S)
11 Compute the minimum attainable P-value ps min > see Section 3.3
12: if psmin < dwy then > if pattern S is testable at level 6,y then
13: fork=1,2,...,j, do
14: Compute P-value ch) for resampled dataset D(¥)
~| .~k k
15: p(mkg “ mm(pfng, ps))
16 FWER (8uy) < £ 571 1 [ Pint < Sy
17: while FWER((SWY) >« do
18: Decrease Swy
19 FWER (uy) = £ 50, 1 [Pind < ]
20: if not pruning_condltlon(S, 5Wy) then > see Section 3.4
21 for S’ € Children(S) do
22 NEXT(S') > Recursively visit nodes in the tree depth-first

23: end procedure

found to be violated, decreases the estimate gwy of the corrected significance threshold
until the FWER condition is satisfied again.
On the contrary, if pattern Sis untestable at level dyy, it will not affect the values of

the FWER estimator FWER( )= 2 {pmg < (5} for any ¢ < b,y Consequently,

the computation of the P-values pfg) for k =1,...,jp can be skipped, as well as the
update of the FWER estimator FWER(@WY). The fact that untestable patterns cannot

modify the value of ﬁV\E/R(é ) follows from the definition of testability. If ps min > (?Wy
and ﬁgg > (/S\Wy, then min(ﬁgfg, pgk)) > 5Awy. Moreover, since wa > dwy at any point
during the execution of the algorithm, it follows that if a pattern & is untestable at
level gwy, then min(ﬁfﬁg, pg()) > dwy, leading to pattern S being irrelevant as far as the
permutation testing-based FWER estimator is concerned.

Search space pruning is fundamental to the computational feasibility of Algo-
rithm 4.2, as is for other significant pattern mining algorithms. As shown in Section 3.4,

when Pearson’s x? test or Fisher’s exact test are used, descendants S’ of an untestable
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pattern S will also be untestable provided that rs < min(n;, n — ny). Reiterating
the argument above, this implies that those descendants cannot affect the value of

ﬁV\E/R(cS) for any 6 < gwy and, thus, can be pruned from the search space. In other
words, the pruning condition of Algorithm 4.2 is identical to that of Algorithm 3.2.
Finally, Lines 21-22 continue the traversal of the tree recursively, visiting the children
of patterns for which the pruning condition does not apply.

As was the case for Algorithm 3.2, ZS\WY progressively decreases as patterns are enu-
merated, leading to less patterns being testable and the pruning condition becoming
more stringent. Eventually, the algorithm ends its execution after all patterns have
either been pruned or visited. A fundamental property of the Westfall-Young light

algorithm is that, at convergence, the estimate ﬁgfg of the most significant P-value for

(k)

the k-th resampled dataset is, in general, not equal to the exact value of pps. Instead,

when Algorithm 4.2 terminates, ﬁgﬁg = min( pr(rlfg (gwy), qg\{g), where:

(i) pi(Swy) = min { p¥ |8 e Mtest((?wy)}.

(ii) qfﬁg = min {pg) ] Q(gwy)}, with Q(gwy) cM \Mtest(gwy) being the subset
of untestable patterns at level gwy which the algorithm visited during earlier
iterations.

In particular, this implies that ﬁ(mkg < pgg(gwy) and, consequently, 1 [ﬁﬁ < 5} =

1 {pﬂfg < 5} holds for all § < c/S\Wy. This in turn leads to the most remarkable property

of the Westfall- Young light algorithm it is able to exactly evaluate FTVﬁ{((S)
Z [pmg < (5} as FWER( ) = Z [pmg < 5] in the range ¢ € [0, (5Wy] despite

not having computed { pﬁng} p_l exactly Since 5Wy > dwy always holds throughout the
execution of the algorithm, including after its termination, it 1mmed1ately follows that

the Westfall-Young light algorithm is able to exactly evaluate FWER(& ) within the
range of values of § which are necessary to retrieve (5wy, i.e.

N 1 jP ~(k)
Sy =max{ 5 € [0,8u] | — Y 1 [pms < 5} <a (4.3)
Ir k31

holds. This result is used in Line 7 of the algorithm to compute dyy and finally return
it in the next line. Once the corrected significance threshold éyy has been obtained,
Algorithm 3.3 can be used to retrieve all patterns S that are statistically significant at
level dyy.

Implementation considerations

All low-level design choices which were discussed in Section 3.5 in the context of
Algorithm 3.2 also apply to Westfall-Young light:

(i) In order to efficiently navigate the pattern enumeration tree, highly-optimised,
problem-specific pattern mining algorithms can be seamlessly integrated as a
subcomponent of Westfall-Young light.
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(ii) When decreasing the estimate gwy of the corrected significance threshold in
Line 18 of Algorithm 4.2, the |5 | distinct values the minimum attainable P-value

function pmin(7s) takes can be used as the sole candidate values for gwy.

(iii) To compute the corrected significance threshold dyy, it is unnecessary to keep
the set Mtest(gwy) of testable patterns in memory. Significant patterns at level
dwy can be retrieved by performing pattern enumeration a second time using
Algorithm 3.3.

(iv) The minimum attainable P-value function pmin(7s) of the test statistic of choice
can be cached in a look-up table to speed-up the execution of the algorithm at
the price of a negligible increase in memory usage.

The fact that Westfall-Young light processes simultaneously all j, resampled
datasets allows to introduce an additional low-level optimisation. Given a pattern
S with rs occurrences in the input dataset D, the number of distinct P-values one
can obtain is of the order O(min(ny,7s)). For many patterns in the search space M,
min(ny,rs) < j, holds. In these cases, it is advantageous to implement Line 14 in
Algorithm 4.2 by pre-computing all attainable P-values and storing them in a look-up
table. This would reduce the computational complexity of computing pg() for all j,
resampled datasets from O(j,) to O(min(ny,7s)).

Comparison to FastWY

As previously mentioned, FastWY and Westfall-Young light can be understood as
two different approaches to compute dyy, being thus statistically identical. However,
Westfall-Young light introduces many novel elements that render it considerably
more computationally efficient. In particular:

(i) FastWY uses the search strategy postulated by the original implementation of
the LAMP algorithm [26]: ¢ is initialised to the smallest value it could take, being
then increased in each iteration of the algorithm until convergence. Nonethe-
less, subsequent work [65, 66] has shown that the opposite search strategy;,
namely, initialising J to 1 and proceeding instead by decreasing it in each it-
eration, reduces the runtime of the algorithm by several orders of magnitude.
Westfall-Young light uses this vastly more efficient search strategy, as does
the LAMP 2.0 algorithm [65] described in Chapter 3.

(i) In order to compute the corrected significance threshold éyy, the Westfall-Young
light algorithm needs to traverse the pattern enumeration tree only once. In
contrast, FastWY needs to repeat this process j, times. This leads to either a vast
increase in runtime, if the enumeration is repeated naively, or a vast increase
in memory usage, if all intermediate computations are cached in memory to
reduce the runtime overhead.

j
(iif) FastWY requires computing the most significant P-values { pgg }kpzl of all j, re-

sampled datasets. In particular, resampled datasets for which pr(ﬁg ends up being
large require exploring a larger proportion of the search space M, dominating
the overall runtime of the algorithm. On the contrary, the Westfall-Young light
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algorithm does not need to compute {pgg }Z_l exactly, effectively eliminating

this undesirable effect entirely.

As a result of these improvements, Westfall-Young light drastically outperforms
FastWY in terms of runtime and memory usage, as will be shown in Section 4.4.

Comparison to LAMP 2.0

Compared to the LAMP 2.0 algorithm described in Algorithm 3.2, Westfall-Young
light will exhibit more statistical power due to the use of permutation testing to
obtain a better approximation of the FWER. However, it is a more computationally
demanding approach, as j, P-values need to be computed for each pattern deemed
testable during the pattern enumeration procedure. In short, Westfall-Young light
allows to trade off computational complexity for statistical power, an option that might
be desirable in applications where signals are too weak to be detected by LAMP 2.0.

4.4 EXPERIMENTS

In this section we compare our contribution, the Westfall-Young light algorithm,
to the current state of the art for permutation testing-based significant pattern mining,
the FastWY algorithm. In order to make a comprehensive evaluation of both ap-
proaches, a wide range of real-world datasets will be used, including both significant
itemset mining and significant subgraph mining experiments.

4.4.1  Experimental Setup

Our implementation of Westfall-Young light was written in C/C++. While the
original implementation of FastWY was written in Python by its authors, in this section
we compare to our own version of FastWY, written in C/C++ to allow for a fair
comparison. This new implementation of FastWY used as a baseline is about two to
three orders of magnitude faster and reduces the amount of memory used by one
to two orders of magnitude compared to the original Python version. In order to
alleviate the impact of having to repeat pattern enumeration j, times, the original
implementation of FastWY stores intermediate computations in memory, sacrificing
memory usage to be able to analyse datasets of small-to-moderate size in a feasible
amount of time. For the sake of consistency, our C/C++ implementation of FastWY
resorted to the same strategy.

The significant itemset mining instances of both Westfall-Young light and FastWY
use LCM version 3 [69] as the underlying itemset mining algorithm to traverse the
enumeration tree. LCM is widely considered one of the most efficient itemset mining
algorithms, having won the FIMI'o4 frequent itemset mining competition [75]. The
code was compiled using Intel C++ compiler version 14.0.1 with -03 optimisation and
executed on a single thread of a 2.7 GHz Intel Xeon CPU with 256 GB of memory
available. Similarly, the significant subgraph mining instances of Westfall-Young
light and FastWY make use of Gaston [72], reported to be one of the fastest subgraph
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mining algorithms [76]. The code was compiled using gcc 4.8.2 with -03 optimisation
and run on a single thread of a 2.5 GHz Intel Xeon CPU with 256 GB of memory.

Significant Itemset Mining Datasets

Table 4.1. — Characteristics of the significant itemset mining datasets. n and n; are the
total number of samples and the number of samples in the positive class,
respectively; p is the number of features (items) and p,. is the average
number of active features per sample. The ratio n/n; is shown only for
labeled datasets.

Dataset n n/ny p Pact
TicTacToe 958 2.89 18 6.93
Chess 3,196 — 75 37.00
Inetads 3,279 714 | 1,554 | 12.00

Mushroom 8,124 2.08 117 22.00
Breast cancer | 12,773 | 11.31 | 1,129 6.70

Pumsb-star 49,046 — 7,117 | 50.48
Connect 67,557 — 129 43.00
BmsWebview | 77,512 — 3,340 | 4.62
Retail 88,162 — 16,470 | 10.31
T10l4D100K | 100,000 — 870 10.10
T40l10D100K | 100,000 — 942 39.61
Bmspos 515,597 — 1,657 | 6.53

Our significant itemset mining experiments include four labeled datasets: TicTac-
Toe?, Inetads 3, Mushroom 4, and Breast cancer. The first three datasets are widely
studied datasets from the UCI repository [77] whereas the Breast cancer dataset
is described in [43]. Additionally, our experiments were extended by including
eight unlabelled datasets commonly used to benchmark frequent itemset mining
algorithms [75]: Bmspos, BmsWebview, Retail, T1ol4D100K, T40-I10D100K, Chess,
Connect and Pumsb-star. In order to use these unlabelled datasets in our experiments,
we exploit the observation that Algorithms 4.1 and 4.2 only depend on the class labels
via n1, the number of samples in the positive class. Two representative scenarios were
considered for each unlabelled dataset: (i) a case with balanced classes, n/n1 = 2 and
(ii) a case with highly unbalanced classes, n/n; = 10. The main properties of each
dataset are summarised in Table 4.1.

Significant Subgraph Mining Datasets

Our significant subgraph mining experiments include 12 labelled graph datasets:
four PTC (Predictive Toxicology Challenge) datasets >, four NCI (National Cancer

. https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

. https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
. https://archive.ics.uci.edu/ml/datasets/mushroom

. http://www.predictive-toxicology.org/ptc/

U~ N
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Table 4.2. — Characteristics of the significant subgraph mining datasets, where |V| and
|E| denote the number of vertices and edges, respectively.

Dataset n n/ny | max|V| | max |E|
PTC (MR) 584 3.23 181 181
PTC (FR) 583 3.74 181 181
PTC (MM) 576 3.18 181 181
PTC (FM) | 563 | 315 | 181 181
MUTAG 188 2.98 28 66
ENZYMES 600 2.00 126 149
D&D 1,178 | 2.42 5,748 14,267
NCIz 4,208 | 2,00 462 468
NCI41 27,965 | 17.23 462 468
NCl109 4,256 | 2.00 462 468
NCl167 80,581 | 8.38 482 478
NClI220 900 3.10 239 255

Institute) datasets ®, MUTAG, ENZYMES and D&D”. Graphs in ENZYMES and D&D
contain no edge labels and represent proteins whereas in all other datasets they
contain both node and edge labels and represent chemical compounds. In the four
PTC datasets, we follow the setting of [78] and assign graphs labelled as CE, SE, or
P to the positive class while graphs labelled NE or N were assigned to the negative
class. The main properties of each dataset are summarised in Table 4.2.

In order to be able to run FastWY until termination, the maximum size of subgraphs
in the search space had to be artificially limited. For example, considering subgraphs
of up-to ten nodes as candidate patterns, the FastWY algorithm had not finished its
execution on the ENZYMES dataset after two weeks of computation. In contrast,
Westfall-Young light took only 3.6 hours to complete the same analysis. As a result,
the number of nodes in candidate subgraphs was limited to: (i) 15 in NCI1, NClI109,
and NClI220; (ii) 10 in MUTAG, NCl41, and NCI167; and (iii) 8 in ENZYMES. In D&D
and the four PTC datasets, limiting the size of candidate subgraphs was unnecessary
to allow FastWY to complete its execution.

4.4.2 Runtime and memory usage

The main experimental result in this chapter is an exhaustive comparison of the
overall runtime and memory usage of our proposed approach, the Westfall-Young
light algorithm, and the baseline method, the FastWY algorithm, for 20 significant
itemset mining and 12 significant subgraph mining datasets. In all cases, j, = 10,000
random permutations were used to empirically estimate the FWER and obtain a
corrected significance threshold éyy that upper-bounds the FWER by a = 0.05, a
standard choice across many scientific disciplines. Figures 4.4 and 4.5 depict the
results for significant itemset mining and significant subgraph mining, respectively.

6. https://pubchem.ncbi.nlm.nih.gov/
7. The datasets MUTAG, ENZYMES, and D&D were obtained from http://mlcb.is.tuebingen.
mpg.de/Mitarbeiter/Nino/Graphkernels/data.zip
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Figure 4.4. — Comparison of runtime and memory usage between Westfall-Young
light and FastWY in 20 significant itemset mining experiments, using
jp = 10,000 random permutations. Numbers attached to (unlabelled)
dataset names denote the ratio n/n;.

In terms of runtime, our proposed approach Westfall-Young light can be seen
to be two to three orders of magnitude faster than the baseline FastWY across the
significant itemset mining experiments and one to two orders of magnitude faster
in the significant subgraph mining experiments. The runtime gap between both
approaches appears to be heavily dataset-dependent; however, there is a clear trend
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Figure 4.5. — Comparison of runtime and memory usage between Westfall-Young
light and FastWY in 12 significant subgraph mining experiments, using
Jjp = 10,000 random permutations.

indicating that the size of this gap increases with the absolute execution time required
to analyse the dataset. This strongly suggests that Westfall-Young light scales more
gently than FastWY in terms of runtime when analysing real-world datasets.

Figures 4.4 and 4.5 reveal two different qualitative scenarios as far as memory usage
is concerned:

1. In 17 out of 32 experiments, Westfall-Young light and FastWY seem to use
approximately the same amount of memory. It is worth noting that precisely
in these cases for which both approaches exhibit the same memory footprint,
simply running the pattern mining algorithm (i.e. LCM or Gaston) also leads to the
same memory usage. Therefore, memory usage in these datasets is dominated
by the underlying pattern mining algorithm rather than the significant pattern
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mining-specific subroutines, leaving little room for improvement and justifying
why Westfall-Young light and FastWY have essentially the same performance.

2. In all other 15 out of 32 experiments, FastWY requires a vastly larger amount
of memory that Westfall-Young light. Perhaps even most importantly, in 6
out of these 15 cases, the memory usage of FastWY soars up to the point where
the algorithm is unable to complete the analysis. This phenomenon occurred
when applying FastWY to the datasets Chess, Pumsb-star and Connect. The
memory usage of FastWY reported in Figure 4.4(b) for these three datasets is
a conservative lower bound® on the actual amount; the true memory usage
if the analysis had been successfully completed could have been much larger.
In contrast, the Westfall-Young light algorithm could complete the analysis
under the exact same circumstances without further difficulties.

The extreme behaviour of FastWY in terms of memory usage is caused by its need
to store intermediate computations in memory to alleviate the runtime overhead
of repeating pattern enumeration j, times. In particular, FastWY resorts to storing
in memory the values of {gs(x;)}._; for each pattern S that is enumerated by the
algorithm, thus avoiding the need to recompute {gs(x;)}/_; the next time the pattern
is enumerated in a different resampled dataset. While this design choice allows
FastWY to complete the analysis of small-sized datasets in a reasonable amount of
time, it makes the storage complexity of FastWY directly proportional to the number of
testable patterns in the dataset, explaining the poor scaling with dataset size observed
during the experiments. The Westfall-Young light algorithm completely does away
with this need, leading to a much more manageable scaling of memory usage with
dataset size despite being also considerably faster.

In conclusion, our experiments suggest that the FastWY algorithm can only handle
successfully small-to-moderate sized problems, exhibiting poor scaling characteristics
in larger datasets. Our contribution, the Westfall-Young light algorithm, offers a
considerable improvement in terms of runtime and memory usage, allowing larger
datasets to be analysed. Nevertheless, despite this evident progress, Figures 4.4 and 4.5
clearly indicate that permutation testing-based significant pattern mining is still a
highly computationally-demanding task; scaling these algorithms to handle datasets
with millions of features remains an open problem.

4.4.3 Final support for pattern mining

The number rs of samples in a dataset D for which a pattern S is present is
often referred to as the support of the pattern in D. As detailed in Section 3.4, when
using Pearson’s x? test or Fisher’s exact test, if an untestable pattern S has support
rs < min(ni,n — np) then all of its descendants in the pattern enumeration tree
must be untestable as well. Exploiting the fact that the minimum attainable P-value

8. This lower bound was computed by estimating the memory overhead incurred by FastWY under
the assumption that it would enumerate the same number of patterns as Westfall-Young light. This is
a conservative lower bound for two reasons: (i) FastWY enumerates a much larger number of patterns
than Westfall-Young light, due to its need to compute the most significant P-value of all j, resampled
datasets and (ii) it completely neglects the memory usage of LCM, the underlying pattern mining algorithm,
which can itself account for a large proportion of the total memory usage.
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function pmin(rs) corresponding to both test statistics is monotonically decreasing
for rs € [0, min(n1, n — n1)], one can compactly rewrite the pruning condition for a
pattern S in terms of the support rs of the pattern: for each § € [0,1] there exists
a minimum support rmin(6) € [0, min(ny,n — n1)] such that the pruning condition of
Section 3.4 evaluates to true at level ¢ if and only if rs < rmin(6). Moreover, the
minimum support rmin(6) at level § clearly satisfies that 7min(6") < min(6) whenever
<.

The runtime of significant pattern mining algorithms, including LAMP 2.0 (Al-
gorithm 3.2), FastWY (Algorithm 4.1) and Westfall-Young light (Algorithm 4.2),
depends mostly on the total number of patterns enumerated by the algorithm. In
particular, this means that the computational complexity incurred by analysing a
dataset D with LAMP 2.0 is approximately proportional to the total number of patterns
S € M that have a support rs > rmin(dtar) in D. Similarly, using Westfall-Young
light instead leads to a computational complexity proportional to the number of
patterns S € M that have a support s > 7min(dwy) in D. However, the analysis
for FastWY is more complex. Even under the assumption that intermediate computa-
tions are stored in memory, thus eliminating the overhead due to repeating pattern
enumeration j, times in exchange for increased memory usage, FastWY still needs

]
to compute {pl(ﬁg}kp:l exactly for all j, resampled datasets. As a consequence, its

runtime is loosely proportional to the total number of patterns S € M that have
a support rg > rmin((’icastwy) in D, where (’SVfastwy = max {pgg lk=1,..., jp}. Since

dwy < gfastwy holds in practice, the final support rmin(gfastwy) of FastWY is often much
smaller than the final support rmin(dwy) of Westfall-Young light.

This phenomenon is described quantitatively in Figure 4.6, which compares the
final support of both approaches when analysing all datasets described in the previous
section. The empirical results clearly support the theoretical intuition: the final
support of FastWY is often much smaller than that of Westfall-Young light. This
has profound implications for the difference in computational efficiency between
both approaches. Since most real-world datasets obey a power-law distribution [79],
which makes patterns with low supports much more abundant than those with large
supports, even just a small decrease in the final support might drastically increase
the number of patterns that need to be enumerated by the algorithm and, hence, the
overall runtime. Therefore, the results depicted in Figure 4.6 offer at least a partial
explanation for the vast difference in runtime between Westfall-Young light and
FastWY observed in the previous section.

4.4.4 Statistical power

A useful proxy to compare the statistical power of distinct FWER-controlling ap-
proaches is to measure the resulting FWER when applied to a dataset for which
the global null hypothesis holds. An optimal method, able to exactly compute
0* = max {6 | FWER(S) < a}, will attain a FWER virtually identical to the target
FWER «. However, suboptimal approaches will in general obtain a corrected sig-
nificance threshold 6 < ¢*, leading to a loss of statistical power as well as to the
resulting FWER being strictly smaller than «. Therefore, by measuring how close
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Figure 4.6. — Comparison of the final support corresponding to Westfall-Young
light and FastWY. Datasets for which FastWY was unable to complete its
execution due to memory limitations were excluded from the figure.

the resulting FWER is to &, one can estimate how close a certain method is to the
optimal behaviour among all single-step FWER-controlling approaches in terms of
statistical power. In this section, we compare the resulting FWER of permutation
testing-based significant pattern mining methods to that of the LAMP algorithm [26],
which uses Tarone’s improved Bonferroni correction for discrete data to obtain a
corrected significance threshold that controls the FWER.

The parameter of most relevance for this experiment is the number j, of random
permutations used to estimate the FWER. Increasing j, reduces the variance of the
FWER estimator, leading to more stable performance at the expense of increased
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runtime and storage complexity. To investigate the effect of varying the number j, of
random permutations, Westfall-Young light was executed for 10 different values of
Jp between j, = 1,000 and j, = 10,000 in steps of Aj, = 1,000. For each pair (dataset,
Jp), the experiment was repeated a total of 100 times to obtain the median empirical
FWER as a function of j,,, as well as the corresponding 5%-95% confidence interval.
In all experiments, the target FWER was set to & = 0.05.

|— FWER  — FWERLAMP| |— FWER  — FWERLAMP|
0.04¢ 1 0.04¢ |
= 0.03 = 0.03}
= =
~ 0.02t 1 ~ 0.02t 1
&_—\ \’_—
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P —
0.00 ‘ ‘ 0.00 : :
1000 4000 7000 10000 1000 4000 7000 10000
Number of permutations Number of permutations
(a) BmsWebview (n/n; = 2) (b) Tgol10D100K (/117 = 2)

Figure 4.7. — Empirical FWER versus j, for two representative significant itemset
mining datasets.
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Figure 4.8. — Empirical FWER versus j, for two representative significant subgraph
mining datasets.

Figures 4.7 and 4.8 depict the results for two representative significant itemset
mining datasets (BmsWebview and T40l10D100K) and two representative significant
subgraph mining datasets (ENZYMES and NCI220), respectively. The most salient
feature of these experiments is that the LAMP algorithm, which employs Tarone’s
method to control the FWER, is still a considerably over-conservative approach. Its
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resulting FWER oscillates between a/2 and «/100, depending on the dataset. In
contrast, Westfall-Young light attains a median FWER close to a, regardless of the
number j, of random permutations used, thus being in a sense close to optimal
in terms of statistical power among single-step FWER-controlling procedures. The
performance of Westfall-Young light is particularly robust to the choice of j,. At
the lower end of the range, i.e. j, = 1,000, the resulting FWER of Westfall-Young
light does exhibit some variability across repetitions of the experiment. Nevertheless,
even the worst outcomes can be seen to be considerably closer to a than even the best
realisations of LAMP. Moreover, if increasing the computational complexity by a factor
of 10 is feasible, using j, = 10,000 yields a very narrow range of variability across
repetitions.

In summary, our experimental results confirm the intuition that permutation testing-
based significant pattern mining can drastically outperform approaches based on
Tarone’s method in terms of statistical power. Nonetheless, this enhancement comes
at the price of a sharp increase in computational complexity. The optimal choice of
approach will therefore be heavily application-dependent.






CORRECTING FOR A CATEGORICAL COVARIATE

The need to incorporate into the model covariate factors that might have a con-
founding effect is an ubiquitous problem in computational biology and clinical data
analysis. By neglecting to account for such covariates, an algorithm might discover
many spurious patterns whose association with the class labels is entirely mediated
by confounding.

In this chapter we present the Fast Automatic Conditional Search (FACS) algorithm [50], a
novel significant pattern mining approach that can account for a categorical covariate with an
arbitrary number of categories, allowing to drastically reduce spurious false positives due to
confounding effects without sacrificing neither computational efficiency nor statistical power.

The remainder of this chapter is organised as follows. Section 5.1 states the problem
of correcting for a confounding covariate in significant pattern mining and further
elaborates on the motivations to come up with an efficient solution. Section 5.2 extends
the background on statistical association testing provided in Section 2.2 by introducing
the Cochran-Mantel-Haenszel (CMH) test [46], which generalises Pearson’s x? test
to conditional association testing. Next, Sections 5.3 and 5.4 present the theoretical
foundation of our contribution, the FACS algorithm. In particular, Section 5.3 details
the derivation of the minimum attainable P-value for the CMH test whereas Section 5.4
introduces a valid, computationally efficient pruning condition. Section 5.5 discusses
low-level implementation considerations, explains how to extend FACS to permutation
testing-based significant pattern mining and gives pointers to related work. Finally,
the results of an experimental study to assess the computational efficiency, statistical
power and false discovery rate of the FACS algorithm are described in Section 5.6.

5.1 INTRODUCTION

Let Gs(X) denote the binary random variable indicating the occurrence of pattern S
in an input sample X, Y the binary class label and C be a random variable representing
a covariate factor that takes values in a domain C. We say that the covariate C has a
confounding effect on the statistical association between Gg(X) and Y when:

(i) Gs(X) and Y are marginally statistically associated, i.e., Gs(X) L Y. As dis-
cussed in Section 2.2, this is the case if and only if Pr(Gs(X) = gs(x),Y =y) #
Pr(Gs(X) = gs(x))Pr(Y = y) for some (gs(x),y) € {0,1}"

(i) Gs(X) and Y are conditionally independent given C, i.e.,, Gg(X) L Y | C. This
occurs if and only if Pr(Gs(X) = gs(x),Y =y | C =) = Pr(Gs(X) = gs(x) |
C=c)Pr(Y=y|C=c)forallceCand (gs(x),y) € {0,1}.

Intuitively, condition (i) above implies that Gs(X) and Y are statistically associated in
the absence of information about C. However, condition (ii) also implies that, once the

value ¢ taken by the covariate C is known, Gg(X) carries no further information about
Y and, therefore, can be discarded. In most applications, patterns S € M satisfying
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conditions (i) and (ii) are spurious findings that should not be retrieved by a mining
algorithm.

These patterns will be of little use to the practitioner, as they provide no additional
information about the class membership of an input sample beyond the information
that is already contained in the covariate. In many applications, the covariates
are quantities that can be measured more easily than the input samples x € &
For example, while x might represent the genotype of a patient at a set of single
nucleotide polymorphisms or describe the measured expression levels of a set of genes,
the covariate C often contains simple information such as age, gender, socioeconomic
status or genetic ancestry. Thus, from a practical point of view, if a marginally
associated pattern S € M is redundant with such a covariate, it might be preferable
to simply make use of the covariate when trying to predict the class label Y.

Moreover, not only are patterns satisfying conditions (i) and (ii) of little practical use
but, on many occasions, they might represent misleading associations. A particularly
common example are spurious associations between genotype and phenotype which
arise in genome-wide association studies due to population structure [80]. Often, a
phenotype might be strongly associated with the genetic ancestry of an individual,
which is obviously itself associated with that individual’s genotype. Therefore, if
population structure is unaccounted for in a genome-wide association study containing
individuals with diverse genetic ancestries, a large number of apparently significant
patterns might be retrieved. However, a practitioner might later find that, in fact, most
of these patterns simply reflect genotypic motifs that differ between individuals with
distinct genetic ancestries and provide no additional insight about the phenotype.

The effect of confounding is illustrated in Figure 5.1, which revisits the significant
itemset mining dataset first introduced in Figure 2.1 of Section 2.1. In this example,
patterns S; and S, are both marginally associated with the class labels, being enriched
among samples of class Y = 1. However, Figure 5.1 incorporates a factor not present
in the original example: a categorical covariate C with k = 2 categories, describing
the genetic ancestry of a sample. The inclusion of C changes the interpretation of the
associations that patterns S; and S, represent. While the occurrence of pattern S; still
carries additional information not contained in the covariate C, pattern S, can be seen
to be entirely redundant with C. Thus, following the discussion above, pattern &,
might be considered a spurious association that should not be retrieved.

All methods that have been discussed in this thesis so far aim at finding all pat-
terns S € M that are (marginally) statistically associated with the class labels, i.e.
they look for the set of patterns {S € M | Gs(X) L Y}. However, an approach
able to correct for the effect of a covariate C would aim to find the set of patterns
{§ € M | Gs(X) LY |C} instead. In particular, a pattern S € M satisfying condi-
tions (i) and (ii) above would not be retrieved by the latter formulation yet it would
be deemed significant by the former. Consequently, significant pattern mining ap-
proaches such as LAMP 2.0 (Algorithm 3.2) and Westfall-Young light (Algorithm 4.2)
are prone to discover many spurious patterns due to confounding, severely limiting
their applicability in computational biology and clinical data analysis.

The FACS algorithm, which constitutes the main focus of this chapter, can be un-
derstood as an extension of LAMP 2.0, described in Section 3.2. However, in order
to incorporate the covariate C into the model, FACS replaces Pearson’s x? test or
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Figure 5.1. — An illustration of the effect of confounding on a toy significant itemset
mining problem. A categorical covariate C with k = 2 categories (orange
and purple) has been introduced. Two patterns, §; and S;, are marginally
associated with the class labels Y. Pattern &7 remains associated with Y
given the covariate C. On the contrary, pattern S, carries no information
about Y given that the value of C is known, i.e. &; is conditionally
independent of Y given C.

Fisher’s exact test by the CMH test. Unlike the former two, the CMH test allows
assessing the conditional association of two binary random variables Gg(X) and Y
given a categorical random variable C with k categories, making it an ideal choice
for this task. Nevertheless, replacing the test statistic has profound implications for
Tarone’s method and its integration into the pattern mining algorithm. In particular, it
is necessary to:

(i) Prove that a minimum attainable P-value exists for the CMH test and devise a
tractable expression to evaluate it.

(ii) Propose a novel search space pruning criterion that applies to the CMH test.

In the next sections we will introduce the CMH test and describe techniques to
solve each of these two open problems, culminating in our proposed approach, the
FACS algorithm.
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5.2 CONDITIONAL ASSOCIATION TESTING IN SIGNIFICANT PATTERN MINING

Section 2.2 introduced Pearson’s x? test and Fisher’s exact test, two test statistics
able to assess the statistical association between two binary random variables. Given
an input dataset D = {(x;,y;) };_;, these can be used to test the (marginal) association
between the class labels Y and the binary random variable Gg(X) indicating the
occurrence of a pattern & € M in an input sample X.

This section however concerns the case in which we are given a dataset D =
{(xi,yi,¢i)}1—,, consisting of n observations x € X belonging to one of two classes
y € {0,1}. Additionally, each of the n observations is now also tagged with a
categorical covariate ¢ € {1,2,...,k}, where k is the number of distinct categories that
an outcome of random variable C can belong to. Unlike in the setting of Section 2.2,
the new goal is to test the conditional association between Gs(X) and Y given C. This
is precisely what the CMH test was designed for.

Intuitively, the CMH test can be seen as a way to tackle this problem by reducing it
to a set of k instances of Pearson’s x? test and then combining the k resulting statistics
appropriately. By definition, Gs(X) and Y are conditionally independent given C
and, therefore, not conditionally associated given C, if Pr(Gs(X) = gs(x),Y =y |
C=c¢) =Pr(Gs(X) =gs(x) | C=¢c)Pr(Y =y | C=¢) Vce{l2,...,k}. For
each c = 1,2,...,k, let D(c) = {(x;,yi) € D | c; =c} be the set of samples in D
for which the categorical covariate takes value c. The (unknown) joint distribution
Pr(Gs(X) = gs(x),Y =y | C = ¢) can be empirically approximated using counts
derived from the samples in D(c):

Variables | ¢s(x) =1 | gs(x) =0 | Row totals
V= 1 as,c bS,c n1,c
V= 0 dS,c CS,c no,c

Col. totals S qs,c "¢

The interpretation of these counts is analogous to the unconditional case described
in Section 2.2. For instance, as. is the number of samples in D(c) belonging to
class y = 1 for which pattern S occurs or, equivalently, the number of samples in D
belonging to class y = 1 for which pattern S occurs and the covariate takes value c.
Thus, an empirical estimate of Pr(Gs(X) =1,Y =1 | C = ¢) could be obtained as
asc/nc foreach c € {1,2,...,k}. The remaining counts can be described in a similar
manner.

As a consequence of Proposition 2.1 in Section 2.2, if Gs(X) is conditionally in-
dependent of Y given C, the random variable As . given margins 1. and rs, and
sample size n. follows a hypergeometric distribution with parameters n., 11, and rs
for all c € {1,2,...,k}. Furthermore, under the assumption that all n samples in D
are obtained as i.i.d. draws, it follows that As . is statistically independent of Ag
for any ¢ # ¢/, since D(c) N D(c’) = @. Paralleling the derivation of Pearson’s x> test
described in Section 2.2, the following Z-score can be proposed as a way to additively
aggregate the individual Z-scores of the k distinct 2 x 2 contingency tables:

k
_ —E Rg. = =
Zomn(as | 1, £5) = Y148, [asc | Rse =71s,c, Nic n1,c,Ho],

\/Zlc{:l Var[aS,c ‘ Rsc =715, Nic =11y, HO]

(5.1)
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where the term in the denominator follows from the fact that the variance of a sum of
independent random variables equals the sum of the variances of each random variable
participating in the sum. To simplify the notation, the vectors as = (as1,...,45k),
n = (ny,...,ng), ng = (ny1,...,n1x) and rs = (rs1,...,7sx), which contain the
values of as., n,, ni, and rg. for all k different 2 x 2 contingency tables, were
introduced. The final expression for the CMH test can be obtained by squaring
this Z-score and plugging in the values of E[as. | Rs: = rs¢, N1 = n1,¢, Ho] and
Var[as. | Rsc = ts¢, N1,c = n1,¢, Ho] as the mean and variance of a hypergeometric
distribution with parameters n, 1y, and rs , resulting in:

2
k ni,
(ZC:l aS,c — 7S, ncc)

Zk I'S,c Ne—¥S,c e N1 n
c=1 n. n, n.—1 '‘lc

Temn(as | n,nq,15) = (5-2)
The CMH test statistic Tomn(as | n,ny, rs) aggregates evidence against the null
hypothesis Hj that Gg(X) is conditionally independent of Y given C across all k
distinct 2 x 2 contingency tables. Large values of T.n(as | n, ny, rs) are less likely to
occur if the null hypothesis holds.

The null distribution of the CMH test statistic can be approximated in a similar way
as the null distribution of the Pearson’s x? test statistic. Provided that the sample
size n is sufficiently large, Z.nn(as | n,ng, rs) will be approximately distributed
as a standard normal under the null hypothesis Hy. Thus, the null distribution of
Temh(as | n, 1, rs) can be approximated as a x7 distribution, with a two-tailed P-value

Peamh(as | m,ny,1s) =1 = Fao (Temn(as | n,my, 15)), (5:3)

where Fa (e) is the cumulative density function of a x7 distribution.

Figure 5.2 depicts the result of applying the CMH test to assess the statistical
significance of pattern & in the dataset shown previously in Figure 5.1. The 2 x 2
contingency table built using all samples in the dataset D, shown at the top of the
figure (light blue), suggests a (marginal) association between Gg,(X) and Y. Indeed, if
Pearson’s x? test is used to compute a P-value, one obtains Ppearson (s, | 1,111,75,) =
0.021, a rather significant result taking into consideration that the sample size is only
n = 12. However, if this contingency table is split into k = 2 distinct tables according to
the value of the categorical covariate C, leading to the orange and purple contingency
tables shown at the bottom of the figure, this association can be seen to disappear. In
particular, those tables are so extreme that only one outcome for ag, . is possible in
each case, i.e. as, ¢ min = 45,,cmax holds for both contingency tables. As a consequence,
the CMH test leads to an entirely non-significant P-value pcmn(as, | n,ni, rs,) =1,
successfully eliminating the confounding effect of the covariate. In contrast, it can be
readily verified that if this analysis is repeated for pattern &;, which is not affected
by confounding in the example of Figure 5.1, the CMH test still returns a rather
significant P-value, pmn(as, | n, ny, rs,) = 0.029.

5.3 THE MINIMUM ATTAINABLE P-VALUE FOR THE CMH TEST

As Pearson’s x? test and Fisher’s exact test, the CMH test is based on discrete
data and, as a consequence, it can only attain a finite number of distinct values. As

69



CORRECTING FOR A CATEGORICAL COVARIATE

952(1.) =1 gSZ(w) =0

y=1 ) 1 6

y=20 1 5 6

6 6 12

/ \
gs, () =1 | gs,(x) =0 9s, () =1 | gs,(z) =0

y=1 ) 0 5 y=1 0 1 1
y=20 1 0 1 y=20 0 5 5
6 0 0 6 6

ppearson(SZ) = 0.021 7£ pcmh(SQ) = 1.000

Figure 5.2. — Application of the CMH test to the toy significant pattern mining dataset
in Figure 5.1. This example shows an assessment of the statistical associ-
ation between the class labels Y and the occurrence of pattern &; in the
input samples, given the categorical covariate C. The contingency table
shown at the top of the figure (blue) is constructed using all samples
in the dataset D. In contrast, the two contingency tables shown at the
bottom of the figure are obtained from the stratified datasets D(1), which
contains only samples of African ancestry (orange), and D(2), which
comprises only samples of Australian ancestry (purple).

discussed in Section 2.3, this property implies the existence of a minimum attainable P-
value strictly larger than zero, allowing one to leverage Tarone’s concept of testability.
This observation is summarised in the following proposition:

Proposition 5.1 (Minimum attainable P-value function for the CMH test). Let a5 min
and as max be k-dimensional vectors defined as:

aS min = (uS,l,min/ AS2mins -+« aS,k,min)/ (54)

as max — (aS,l,maxr as2maxs -+ aS,k,max)/ (55)

where a5 ¢ min = max(0,rs. — (N — n1,)) and asmax = min(nyc, rs.) for each ¢ =
1,2,...,k. Then, the minimum attainable P-value function for the CMH test is given by:

Pmin(rS) =1- FX% (maX(Tcmh(aS,min ‘ n,ni, 1‘,5), Tcmh<aS,max ’ n,ni, 1‘3))). (56)

In particular, this implies that pmin(rs) can be evaluated in O(k) time, where k is the
number of categories for the categorical covariate C.
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Proof. Equation (5.2) can be rewritten as:

2
k n
(as,tot — Y =178 nlf>
Temn(as | n,nq, 15) = kK TsefMe—Tse e—1c ’ (5.7)
Zc:l e ne ne—1 M,

where as ot = 2{;1 as . has been introduced. As described in Section 2.3, given fixed
margins 1y, s, and sample size n., each count a5, can only take values in the
setas,. € [[aS,c,min/ aS,c,max]]/ where a5 ¢ min = maX(O/ rS,e — (nc - nl,c)) and as ¢ min =
min(”l,c: rS,c)' Thus, astot € [[ﬂs,tot,min/ aS,tot,max]]r where as tot,min = 27521 4S,c,min
and 4s tot max = 25:1 as cmax- Equation (5.7) clearly shows that Toyn(as | n,ny, rs)
is a strictly convex function of as . Therefore, it will be maximised and, hence,
Pemn(as | n,ny, rs) minimised, either when ag ot = 45 totmin OF AStot = A4S tot,max-
Equivalently, this occurs when as = as min Or as = as max, thus proving Equation (5.6).
Finally, note that evaluating T.nn(as | n,ng, rs) for an arbitrary ag requires O(k)
operations. Since pmin(rs) can be computed by evaluating T, (as | n, ny, rs) at two
distinct values of as, namely as min and as max, Pmin(rs) can be computed with O(k)
operations as well, thus concluding the proof. ]

Proposition 5.1 above offers a solution to the first of the two challenges mentioned
at the beginning of this chapter: providing a computationally tractable expression to
evaluate the minimum attainable P-value function pmin(rs) for the CMH test. This is,
to the best of our knowledge, the first result concerning the use of Tarone’s concept
of testability in conjunction with the CMH test. From an algorithmic perspective,
Proposition 5.1 also suggests the first of the two key modifications that need to be
performed to Algorithm 3.2 in order to obtain our novel FACS algorithm: Line 8, which
is responsible for evaluating the minimum attainable P-value ps mi of a pattern S,
must now follow Equation (5.6) rather than the formulae described in Section 3.3.

5.4 A SEARCH SPACE PRUNING CONDITION FOR THE CMH TEST

In Section 3.4, a search space pruning condition valid for Pearson’s x? test and
Fisher’s exact test was derived. The fundamental principle on which that pruning
criterion relies is that, for fixed n; and 7, the minimum attainable P-value for these
test statistics is a monotonically decreasing function pmin(rs) of rs in the range
rs € [0, min(ny, n — nq)]. This implies that, if a pattern S is untestable at level § and
satisfies rs < min(ny,n — ny), all its descendants &’ in the pattern enumeration tree
will be untestable at level § as well and can be pruned from the search space. In
this section, an alternative pruning condition which is valid for the CMH test will be
proposed.

The first key observation is that, for fixed n and n, the minimum attainable P-value
psmin Of a pattern & when using the CMH test can be obtained as a multivariate
function of k variables: rs1,7s2,...,7sk. This will be denoted by psmin = Pmin(ts),
where the dependence of ps min On n and nq is kept implicit to avoid cluttering the
notation. By applying the apriori property of pattern mining, stated in Proposition 3.1,
it can be shown that if S’ is a descendant of S in the pattern enumeration tree, then
rs . <rs.willhold forallc = 1,2,..., k. Using identical arguments as those exploited
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in Section 3.4, a majority of patterns S in the search space of candidate patterns M
will be relatively rare, satisfying rs . < min(ny,n. —ny) forallc =1,2,...,k. This
naturally leads to the fundamental question of whether, given that rs . < min(ny, n. —
nyc) forallc =1,2,...,k, the fact that rg/ . < rs. forall c = 1,2,...,k implies that
Pmin(s') > Pmin(rs) or not. If the answer to this question was affirmative, a pruning
condition entirely analogous to the one used for Pearson’s x? test and Fisher’s exact
test would also be valid for the CMH test.

Minimum attainable P-value Minimum attainable P-value
N, pm 0.00 Na,2 0.00
M5 —4.44 -2.27
—8.88 —4.54
Mb, 21 ‘ ~1333 O 681 O
Q
~ -17.77 g ~ —-9.08 5
kc,; ny/2 1 -22.21 ;? % -11.34 E
—26.65 § —-13.61 3
4 —31.09 i/ -15.88 3
Na 2] - _35.54 -18.15
1 —39.98 —20.42
M e
0 Na1 Ni/2  Np n
rs1 rs1
(a) (b)

Figure 5.3. — Minimum attainable P-value function pmin(rs) for the CMH test in
a problem with k = 2 categories for the covariate. In this example,
ny = np = 100 and ny;, = 25, n1p = 75. Thus, category ¢ = 1 has
a class ratio of 1/4 while category ¢ = 2 has a class ratio of 3/4. (a)
Minimum attainable P-value pmin(rs) function over the entire domain
[0, n1] x [0, n2]. (b) Minimum attainable P-value function pmin(rs) over
the region [0, 1151] % [0, 11,,2], where 1,1 = min(ny1, 11 —n11) and n,» =
min(nllz, np — 711/2).

Unfortunately, it is easy to come up with non-pathological counterexamples which
show that this property does not hold in general. As an example, Figure 5.3 depicts
the minimum attainable P-value function pmin(rs) for the CMH test in a problem with
k = 2 categories for the covariate. In particular, Figure 5.3(b) illustrates the behaviour
of psmin as a function of rs; and rs, over the region [0, min(ny1,1n7 —nyq)] %
[0, min(ny 2, na — ny5)]. While the function is approximately monotonic when rs ; and
rs are both sufficiently far from zero, pmin(rs) is not monotonically decreasing when
one of its arguments is small enough, as can be appreciated from the level curves.
This has profound implications for the development of a valid pruning criterion, as in
principle there is no simple way to make a statement about the minimum attainable
P-value ps/ min Of a descendant S’ of a pattern S based on ps min and rgs alone.

In order to solve this problem, the FACS algorithm uses a monotonically decreasing
lower bound of the minimum attainable P-value as a surrogate of ps min in its pruning
criterion. This surrogate will be referred to as the lower envelope of the minimum
attainable P-value.
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Definition 5.2. Let S € M be a pattern satisfying rs . < min(ny, n. —ny) for all
c=1,2,...,k The lower envelope of the minimum attainable P-value ps min is defined
as:

ﬁS,min = ggl} PS’ min- (58)
Equivalently, let B(rs) = [0,7rs1] x [0,7s.2] X - - - [0, 75 k] be the set of all rg satisfying
rsic <rseforallc=1,2,...,k Then, as a consequence of the apriori property of
pattern mining, ps min can be expressed as the following function Pmin(rs) of rs:

ﬁmin (1'3) = min Pmin (1‘5/), (59)
rg €B(rs)
where the dependence of the minimum attainable P-value ps min and its lower envelope
PSmin ON I's has been made explicit.

Intuitively, Pmin(rs) is defined as the tightest lower bound of the minimum at-
tainable P-value function pmin(rs), hence the term “lower envelope”, that satisfies
rs € B(rs) = Pmin(rs’) > Pmin(rs). This notion is illustrated in Figure 5.4 with a
conceptual example.

(7“3,1, 7“5,2)

Pmin (rS)

ﬁmin (rS)

rs’ 1 rs

pmin(rS) — min pmin(rS’)
rg/€B(rs)

Figure 5.4. — Illustration of the lower envelope ps min of the minimum attainable P-
value psmin. To evaluate pmin(rs), the minimum of pmin(rs/) over the
region B(rs) needs to be computed. In this example, this corresponds
to minimising pmin(rs/) over the region shaded in blue on the left of
the figure. As a result of this definition, pmin(rs) is the tightest lower
bound of pmin(rs) that satisfies rs/ € B(rs) = Pmin(ts’) > Pmin(rs) or,
equivalently, thatre . < rg.forallc =1,2,..., kimplies that pmin(rs) >
Pmin(ts). This is illustrated, along a one-dimensional slice of B(rs), on
the right of the figure.

The lower envelope psmin is a lower bound of the minimum attainable P-value
psmin Dy construction. Also, the fact that pmin(rs) is monotonically decreasing on
rs, i.e. that rg € B(rs) = Pmin(ts’) > Pmin(rs), is a direct consequence of the
Way Psmin is defined. If rgr € B(rs), then it follows that B(rs/) C B(rs). Thus,
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Pmin(ts/) = mMin  Prin(rsr) > min  pPmin(rs7) = Pmin(rs) must hold. These two
rS//EB(rS/) rS//EB(rS)

properties of ps min allow proposing the following search space pruning criterion for
the CMH test.

Proposition 5.3. [Pruning criterion for the CMH test] Let S € M be a pattern satisfying:

(i) PSmin > Otar, i-e. the lower envelope of the minimum attainable P-value is larger than
Star/

(ii) rsc < ngcforallc=1,2,...,k where ng. = min(ny ., ne —ny ).

Then, ps: min > Star > Otar for all descendants S’ of S in the pattern enumeration tree,
implying that they can be pruned from the search space. In conclusion, when using the CMH
test, pruning_condition(S, dwar) in Line 16 of Algorithm 3.2 evaluates to true if and only if
rse < ngcforallc=1,2,...,kand pg min > Star-

Proof. If 8’ is a descendant of S in the pattern enumeration tree, rsr € B(rs) by the
apriori property of pattern mining. Hence, as a consequence of the monotonicity of
Pmin(ts), Pmin(ts’) > Pmin(rs). Since the lower envelope ps min is a lower bound on
the minimum attainable P-value ps min and ps min > Star by assumption (i), it follows
that ps/ min > Star. Moreover, since by > Sy holds at any point during the execution
of Algorithm 3.2, ps/ min > Otar, proving that pattern S’ can be pruned from the search
space. O

The resulting pruning condition for the CMH test is mostly analogous to the pruning
criterion for Pearson’s x? test and Fisher’s exact test described in Proposition 3.4.
However, the minimum attainable P-value ps min in condition (i), p.smin > Star, iS
substituted by the lower envelope ps min- This allows circumventing the difficulties
which arise as a consequence of the minimum attainable P-value function pmin(rs)
not being monotonically decreasing for the CMH test. While the concept of lower
envelope of the minimum attainable P-value is only used by FACS in the context of
the CMH test, the same principle could be applied to other discrete tests statistics
with a non-monotonic minimum attainable P-value function. This might help develop
new applications of significant pattern mining that require using domain-specific test
statistics.

Nevertheless, an important aspect that remains to be considered is how to efficiently
evaluate psmin. Obtaining the lower envelope of the minimum attainable P-value
by naively applying Equation 5.8 would require enumerating and evaluating the
minimum attainable P-value ps/ min of all patterns S’ O S. In other words, in order to
verify whether the search space pruning condition applies for a pattern S according
to this naive approach, the very same computations the pruning condition is intended
to avoid would have to be performed. Thus, Equation (5.8) is entirely unhelpful from
an algorithmic perspective. Alternatively, Equation (5.9) phrases the evaluation of
PSmin as @ combinational optimisation problem. Attempting to solve this problem
by brute force, i.e. by evaluating pmin(rs/) at each rg in B(rs), would result in
[T¥_; (rs. + 1) evaluations of the minimum attainable P-value function. Defining

1
ms = (H’gzl (rsc+ 1)) " to be the geometric mean of {rs.+ 1}];:1, it follows that

Pmin(rs’) needs to be evaluated mk = O(n*) times. Since the pruning condition is
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assessed for every single pattern S € M that is enumerated along the execution of
the algorithm, this would entail an impractical computational overhead. Without
a computationally tractable approach to exactly compute the lower envelope of the
minimum attainable P-value ps min, the pruning condition in Proposition 5.3 is nothing
more than a theoretical construct, leaving the problem of accounting for covariates in
significant pattern mining completely unsolved.

In order to design FACS, one of the main contributions of [50] is an algorithm
which solves the optimisation problem defined by Equation (5.9) in only O(klogk)
time, provided that the CMH test is the underlying test statistic *. Using this novel
approach, the computational overhead incurred by evaluating the lower envelope
of the minimum attainable P-value psmin for the CMH test becomes negligible,
rendering Proposition 5.3 computationally tractable. The remainder of this section
will be devoted to describe this method in detail and to prove its correctness.

Computing ps min in O(klogk) t