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Abstract	

Computational psychiatry is a novel field devoted to improving the 
understanding and treatment of psychiatric disorders through 
quantitative methods. A significant part of this endeavor is the 
formulation and evaluation of models that describe relevant 
physiological and cognitive processes. In this dissertation, we aim to 
contribute to this field in two manners. First, we present and evaluate 
methods for model selection with an emphasis on models of brain 
connectivity. Our main contribution is to implement and extend 
thermodynamic integration, a method that has not been used in 
computational neuroscience in the past. Second, we develop statistical 
models of eye movements in two paradigms that are relevant for 
psychiatric research: the double step and the antisaccade task. The 
models developed here are probabilistic in nature and therefore we use 
the methods presented in the first section to solve several empirical 
questions related to learning, inhibitory control, and rule guided 
behavior in the oculomotor system.





Zusammenfassung	

Komputationale Psychiatrie ist ein neues Forschungsgebiet, das sich dem 
Verständnis und der Behandlung von psychiatrischen Erkrankungen 
durch quantitative Methoden widmet. Ein signifikanter Teil dieses 
Bestrebens besteht in der Formulierung und Evaluierung von Modellen, 
welche relevante psychische und kognitive Prozesse beschreiben. In 
dieser Dissertation bestreben wir, in diesem Feld auf zwei Arten 
beizutragen. Zum einen präsentieren und evaluieren wir Methoden des 
Modellvergleichs, mit einem Fokus auf Modellen für Hirnkonnektivität. 
Unser primärer Beitrag besteht in der Implementierung und Erweiterung 
der thermodynamischen Integration, einer Methode welche in der 
Vergangenheit noch keine Anwendung in der Komputationalen 
Neurowissenschaft gefunden hat. Zum anderen entwickeln wir 
statistische Modelle von Augenbewegungen in zwei Paradigmen, die 
beide relevant für die psychiatrische Forschung sind: die Doppelschritt- 
und Antisakkadenaufgabe. Unsere Modelle sind in ihrer Natur 
probabilistisch, weshalb wir die Methoden des ersten Teils zur 
Beantwortung mehrerer empirischer Fragen bezüglich Lernens, 
inhibitorischer Kontrolle und regelbasierten Verhaltens im 
okulomotorischen System, anwenden. 
 





Introduction	

Computational psychiatry is a field devoted to the development and 
application of mathematical and quantitative methods to psychiatric 
research. Part of this enterprise is the formulation of models, or abstract 
representations of physiological and cognitive processes that are 
relevant to understanding mental health. Because models constitute 
scientific hypotheses, a central task for computational psychiatry is 
evaluating and comparing competing models of the same phenomena. 

This dissertation aims to contribute to this young field in two manners. 
First, we consider the problem of how to decide between formal models 
applied to the same data using probabilistic methods. We undertake this 
task within the conceptual framework of Bayesian statistics, which offers 
one general metric of the adequacy of a model: its posterior probability. 
As we will clarify further in this thesis, despite being an intuitive concept, 
the probability of a model, known as the model evidence, is not a 
quantity that can be easily computed. The first part of this dissertation 
explores one option to estimate the model evidence that has received 
little attention in computational neuroscience: thermodynamic 
integration (TI). Despite its large computational costs, we hope to 
demonstrate the advantages of TI over other more conventional 
methods. 

The second contribution of this dissertation is applying TI to empirical 
questions in computational psychiatry. Initially, we consider TI in the 
context of dynamical causal modeling (DCM; introduced by (Friston et 
al., 2003)). In contrast to other models in neuroscience, DCMs are not 
only used to simulate physiological processes, but also to infer the 
parameters and models that best explain experimental observations. We 
restrict our attention to DCM for functional magnetic resonance imaging 
(fMRI), and show in great detail the theory behind the methods 
proposed here. We then explore a practical implementation of this 
methodology, and compare it to other state-of-the-art alternatives. 
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In addition to DCM, the second application domain explored in this 
dissertation is models of saccadic eye movements. Research in this type 
of behavior has a long history in neuroscience and in psychiatry, as eye 
movements offer a surprisingly rich window into human cognition 
without the practical hurdles associated with other physiological 
measurements like electroencephalography (EEG) and fMRI. Moreover, 
some deficits in eye-movement behavior are likely to constitute 
endophenotypes or biomarkers of psychiatric and neurological illnesses 
(Radant et al., 2015; Myles et al., 2017). 

The topics explored here are somewhat different but share an underlying 
agenda that unifies them: to devise and test models of human behavior 
and physiology that one day could be translated into applications in 
clinical psychiatry. Because of the differences between these topics, this 
dissertation is divided into two parts. The first section covers the 
methodological problem of computing the probability of a model, and 
the second section focuses on the development and evaluation of models 
of the oculomotor system. 

The rest of the Introduction explains the structure of this dissertation. 
Each chapter is self-contained and has been redacted as an independent 
scientific article. Three of them have been published as clearly indicated 
in the corresponding chapter and the others are either in the final stage 
of preparation or have been submitted for peer review evaluation. To 
avoid duplication of efforts but to nevertheless offer a brief 
contextualization of each chapter, a short introduction precedes each of 
them. The chapters do not follow the same style in terms of citations and 
editing, as these have been prepared for different journals. We 
apologized to the reader in advance for these differences, which were 
kept to the minimum possible.  

Part	I:	Methodological	developments	

In this dissertation, we address the problem of model selection from a 
statistical and probabilistic perspective. Concretely, we restrict our 
attention to generative models, characterized by formally stating how 
experimental data is believed to have been generated (Frassle et al., 
2018).  
In the following, we will refer to experimental data as !, which, 
depending on the context, might represent data such as reaction times 
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(RT) or blood-oxygen-dependent (BOLD) time series, for example. From 
the perspective of generative modelling, ! is assumed to be generated 
by a mapping " from a set of parameters #. For example, this mapping 
can represent the physiological process that connects brain activity to 
the BOLD signal. In addition, experimental data is also assumed to be 
corrupted by stochastic noise $ through a second mapping %. Thus, we 
informally write 

%("(#), $) → ! 
meaning that observations ! are the result of a generative process 
characterized by the mappings " and %, parameters #, and noise $. We 
further assume that the noise $ is generated by the process * and write 

* → $. 
This abstract representation encapsulates, among many others, linear 
regression models, in which the mapping from a set of coefficients 
# = - is linear on a set of predictors ., and the noise is assumed to be 
additive and Gaussian distributed: 

.- + $ → !. 
Beyond the important case of linear regression, some common non-
linear models can also be specified as a generative model. For example, 
in logistic regression, the mapping " is a sigmoid function, such as 

"(-) =

1

1 + 1
234

. 

In this case, observations ! ∈ {0,1} are assumed to be generated from a 
Bernoulli distribution with mean "(-). 

The process that is thought to generate parameters # is also an integral 
part of a generative model. We refer to this process as 9 and write: 

9 → #. 
Thus, it is in principle possible to simulate experimental observations by 
first generating parameters # and noise $ from 9 and *. From these, one 
can generate observations ! through the mapping %("(#), $). 

The components of a generative model are usually divided into its 
structural elements -the mappings " and %, and the description of the 
process from which parameters and noise are generated, 9 and *- and 
the particular instantiations of the parameters # and noise $. All these 
elements together -the model, its parameters, and noise- represent the 
three forms of uncertainty that arise when studying experimental data: 
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not only are experimental observations corrupted by measurement 
noise; we are also uncertain about the adequacy of our models, and the 
parameters that best describe the data. 

The approach used in this dissertation to formalize and quantify this 
uncertainty is probability theory. Without going into details, probability 
theory formalizes the notion that certain events are more likely than 
others, and thereby it can be used to quantify the certainty associated 
with a particular belief. 

Informally, this is done through three simple rules (assuming a set of 
possible events or outcomes !

:
, … , !

<
): 

• (positivity of probabilities) the probability of an outcome !
=
, 

designated as >(!
=
), is a positive number, 

• (normalization) the sum of the probability of all possible 
outcomes ∑ >

<

=@:
(!

=
) is 1, and 

• (additivity) the probability that any of two disjoint outcomes 
occurs is equal to the sum of the probability of each outcome. 

Based on these axioms, probability theory can be used to represent the 
uncertainty associated with a belief in a single positive number. For 
example, if the outcome space is understood as the set of models in 
consideration, we can express our initial confidence about the model A

=
 

as the prior probability 

>(A
=
) ∈ [0,1]. 

Prior probabilities quantify the uncertainty associated with a model 
before taking into account any novel data or information. Absolute 
certainty about the correctness of model A

=
 implies 

>(A
=
) = 1. 

By contrast, absolute certainty of the inadequacy of the model implies 

>(A
=
) = 0, 

and all intermediate values represent varying degrees of certainty about 
a model. 

Besides our prior beliefs about the model, we can quantify our prior 
uncertainty about the parameters # as the probability 

>(#|A), 
to be read as ‘the conditional probability of # given A’, or more 
succinctly, ‘the probability of # given A’. This corresponds to our beliefs 
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about how the parameters # have been originally generated and are a 
structural part of the model. 

Probability theory prescribes how the uncertainty about the model and 
its parameters should evolve in the light of experimental observations !. 
This is determined by the conditional probability of the data given the 
parameters #, i.e., the likelihood 

>(!|#,A). 
This term depends on the model and its parameters, and therefore it is 
conditional on both of them. For instance, in a linear regression model, 
the likelihood is Gaussian because the noise $ (the difference between 
the predictions .- and observations !), is assumed to be Gaussian. 

The rule that dictates optimal belief updates is called Bayes’ theorem, in 
honor of the English priest Thomas Bayes (1701-1761). Bayes’ theorem 
states that our posterior belief about parameters # after taking into 
account data ! should be proportional to the product of the likelihood 
and prior 

>(#|!,A)EFFGFFH

IJKLMN=JN

=

1

O

>(!|#,A)EFFGFFH

P=QMP=RJJS

>(#|A)EFGFH

IN=JN

 

where O is a constant with respect to #. This constant is necessary to 
warrant the normalization property, i.e., 

T>

U

(#
U
|!,A) =T

>V!W#
U
,AX>V#

U
WAX

O
U

= 1. 

It follows that 

T>

U

V!W#
U
,AX>V#

U
WAX = O. 

Similarly, the belief update about the model A is also governed by Bayes’ 
rule, such that 

>(A|!) =

1

Y

>(!|A)>(A), 

where Y is again constant with respect to A and depends on the model 
space, i.e., the set of models under evaluation. 
Fundamentally, probability theory indicates that the likelihood of the 
data conditioned on the model >(!|A), also called marginal likelihood, 
is given by integrating out the uncertainty about the parameter #. Hence, 
the marginal likelihood is precisely: 
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>(!|A) =T>

U

(!|#
U
,A)>(#

U
|A) = O. 

This term is also known as the model evidence, and as we mentioned 
earlier in this introduction, this term is computationally laborious to 
calculate exactly. More specifically, to integrate out the uncertainty 
about # is a difficult problem in the absence of analytical solutions 
because models can include thousands or tens of thousands of 
parameters, and, in the extreme case of non-parametric models, 
infinitely many. Thus, the ability to update beliefs according to Bayes’ 
rule is often hampered by the challenge of computing the marginal 
likelihood of a model. Precisely for this reason, a wide variety of methods 
have been developed to compute or approximate the marginal likelihood 
of a model, including variational techniques, Markov Chain Monte Carlo 
(MCMC) methods, and approximations based on asymptotic theory (as 
explained in detail in Chapters 1 and 3). 

The main goal of the first part of this dissertation is to present and to 
develop methods to assess models based on their marginal likelihood. 
To do this, we build upon TI, a method originally introduced in 1935 by 
John Kirkwood (Kirkwood, 1935) to compute the difference in 
thermodynamic potentials between two systems. Historically, Kirkwood 
and others were not interested in statistical inference, but in physical 
chemistry, where the analogous problem of computing the difference in 
free energy between two systems is paramount. The relationship 
between statistics and thermodynamics is explained in detail in Chapter 
3. 

Despite its long history, TI has rarely been used outside the field of 
physical chemistry, from which it emerged. It is not difficult to identify 
the reason for this: in spite of the evidence of highly accurate estimates, 
TI requires large computational resources that have not been available 
in the past. However, this is becoming a secondary issue as TI can be 
easily implemented in parallel architectures, fully leveraging multicore 
CPUs, GPUs, and computer clusters. Hence, part of the problem solved 
here is the engineering challenge of devising software able to exploit the 
computational gains offered by modern parallel architectures. 

The first chapter of this dissertation is devoted to introducing TI in the 
context of model comparison, with an emphasis on clinical applications 
in computational psychiatry. A detailed explanation of model 
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comparison is presented. In addition, this chapter introduces a novel 
algorithm to compute predictive likelihoods -a quantity tightly related to 
the marginal likelihood of a model- for future clinical applications. 

In the second chapter, we introduce an implementation of DCM for fMRI 
in GPUs. This is a tool that leverages parallel architectures either with 
the goal of model selection or to deal with large data sets. DCMs are an 
interesting application domain for TI for three key reasons. Firstly, from 
a translational perspective, DCMs offer mechanistic descriptions of brain 
connectivity that might be of clinical importance in the future (Stephan 
et al., 2015; 2017). Moreover, these models are a promising tool to help 
disentangle patient subpopulations based on their functional 
connectivity (Brodersen et al., 2011). Finally, as demonstrated in 
Chapter 3, some of the challenges presented by the differential equations 
used in DCM might require the type of parallelization gained through 
GPUs. 

The main topic of Chapter 3 is the evaluation of TI in the context of 
DCM. In this chapter, TI is compared to other sampling-based methods, 
as well as the standard algorithm for DCM, variational Bayes under the 
Laplace approximation (VBL) (Friston et al., 2007). Our results 
demonstrate that there are important advantages in using TI when 
compared to more common approaches, in terms of less variance in the 
estimates of the model evidence. This is of great importance for clinical 
applications that require highly accurate and reliable results. 

Part	II:	Applications	to	eye	movement	research	

In Part II, we consider an application domain for the technology 
developed in the first section of this thesis: eye movement research in 
computational psychiatry. Although a small field, computational 
modelling in eye movement research with translational applications is 
promising for several reasons. First, there is strong evidence that 
behavioral deficits in some oculomotor tasks are endophenotypes of 
certain psychiatric diseases (Jaafari et al., 2011; Bittencourt et al., 2013; 
Terao et al., 2013). The most prominent examples are deficits in the 
antisaccade task in schizophrenia, with at least two large cohort studies 
providing striking evidence for this in the past 5 years (Reilly et al., 
2014; Radant et al., 2015). In addition, the oculomotor system is well 
understood in the primate brain (Munoz and Everling, 2004), and the 
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effects of several psychoactive compounds on eye movements have been 
widely investigated (Reilly et al., 2008). However, only in recent years 
models of these deficits have appeared (as discussed in Chapter 6), and 
to date, our understanding of behavioral findings in computational 
terms is still limited. 

The goal of the second part of this dissertation is to develop and evaluate 
formal computational models of eye movement behavior based on the 
methods proposed in Part I. The models developed here have been 
devised with the aim of applying them to translational research in 
computational psychiatry. 

In Chapter 4, we briefly introduce the research agenda followed in Part 
II and identify some of the most promising questions and methods that 
could be used to address clinical questions in psychiatry using a 
computational approach to eye movement research. 

In Chapter 5, we investigate the neurocorrelates of saccadic adaptation 
(SA) with the help of a computational model (McLaughlin, 1967). SA is 
a form of oculomotor plasticity triggered when the target of a saccade is 
stepped from its initial location just after the saccade has been initiated. 
SA is an interesting topic for computational psychiatry because it likely 
depends on corollary discharge and prediction errors, two types of 
computation hypothesized to be at the center of the deficits observed in 
schizophrenia (Adams et al., 2013) and autism (Pellicano and Burr, 
2012; Friston et al., 2013; Haker et al., 2016). This chapter is an initial 
basic science study, part of a larger research program in oculomotor 
plasticity and prediction-error computation in schizophrenia, as detailed 
in Chapter 4. 

In Chapter 6, we evaluate a series of models of voluntary control of eye 
movements in the antisaccade task (Hallett, 1978). In this paradigm, 
subjects are required to saccade in the opposite direction of a suddenly 
displayed stimulus. As mentioned above, deficits in this paradigm 
constitute a likely endophenotype of schizophrenia that might shed light 
on the computational fingerprint of this disease. The main result of this 
chapter is a novel model, the Stochastic Early Reaction, Inhibition, and 
late Action (SERIA) model, that captures both reaction time distributions 
and error rates in the antisaccade task, and also has predictive validity 
for the latency of compensatory saccades that follow an error. 
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SERIA is further developed in Chapter 6, where we demonstrate that it 
can be applied to the most common version of the antisaccade task. This 
chapter showcases the application of the methods developed in Chapter 
1 to compute the evidence of hierarchical models. Thus, we can formally 
evaluate a series of hypothesis about the effect of task design on 
inhibitory and rule-guided behavior. 

In Chapter 8, we study task switching costs in the context of the 
antisaccade task. Task-switching costs are defined as the degradation in 
performance that can occur when subjects are required to alternate 
between tasks that impose different demands (Allport et al., 1994), and 
have been shown to play a role in a range of neurological conditions. For 
example, Parkinson’s disease patients exhibit difficulties in task 
switching in a number of paradigms (e.g., Woodward et al., 2002). To 
study this phenomenon, we use the mixed antisaccade task in Chapters 
5 and 6 in consort with the SERIA model. Our results demonstrate robust 
switching costs in voluntary action generation, as well as in inhibitory 
control in the antisaccade task. 

In Chapter 9 of this dissertation, SERIA is used to answer the following 
simple empirical question: what are the effects of a pro-dopaminergic 
(levodopa) and a pro-cholinergic (galantamine) drug in the voluntary 
control of eye movements in humans? This chapter describes the result 
of two double-blind, placebo controlled, within-subject experiments. 
Using the model developed in the previous chapters, we aim to 
disentangle the effects of the two different drugs. Our findings suggest 
that these two compounds have opposite effects in this task, with 
levodopa increasing and galantamine decreasing the RT of voluntary 
actions. This last chapter brings this dissertation closer to the goal of 
using formal mathematical models to address truly translational 
questions in psychiatry. 

We conclude with an outlook on future applications of the methods, 
models, and empirical results obtained in this dissertation. 

Because scientific research is not the enterprise of single individuals, all 
the work presented here has been done collaboratively and thus it is the 
result of the contributions of different individuals, acknowledged in each 
of the sections. In particular, Jakob Heinzle, Dario Schoebi, Dominic G. 
Tschan, Saee Paliwal, and Klaas E. Stephan have been instrumental to 
the present work.





Part	I





Chapter	1	

In the Introduction, we presented computational psychiatry (Montague 
et al., 2012; Stephan and Mathys, 2014; Wang and Krystal, 2014) as the 
discipline devoted to formulate mathematical models of mental illness, 
either in terms of behavior, cognition, physiology, or a combination of 
these dimensions. This goal invites an important epistemological 
question: How to choose between different, competing models of the 
same data? While according to falsificationism, scientific theories should 
be tested by the correctness of their predictions, the view explored here 
differs in asserting that model selection consists of comparing a set of 
plausible models and then opting for the one that better accounts for 
experimental data. What it means for a model to better account for data 
does not have a unique answer, and in this chapter, we discuss two 
different options: in-sample explanatory power, and out of sample 
predictive power. In the context of Bayesian statistics, the first option 
can be equated to using the marginal likelihood or evidence of a model 
as selection criterion, whereas the latter corresponds to using the 
predictive marginal likelihood. 

The problem of model selection takes a special twist when the question 
is not which model accounts best for the totality of the data in 
consideration, but rather, one asks which model explains best a single 
observation. This is relevant for future clinical applications in 
computational psychiatry, in which different computational models 
might stand for different causal explanations of observable symptoms. 
For example, it is conceivable that disorders like schizophrenia, which 
historically emerged as the aggregate of different psychiatric constructs 
(Jablensky, 2010), might have more than a single biological origin. 
Thus, in some patients, symptoms might be caused by hypertonic striatal 
dopamine (Deserno et al., 2016), while in others, similar symptoms 
might be due to altered NMDA receptor activity in the prefrontal cortex 
(Krystal et al., 2003). These two pathways can potentially be formalized 
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as different generative models that relate biological pathomechanisms 
with physiological and behavioral data. Hence, in a clinical setting the 
question is not necessarily which is the model that best accounts for the 
whole population, but rather, which is the best model for a single 
patient. 

Here, we argue that because the evidence of a model evaluated on single 
observations strongly depends on subjective priors, this method is not 
satisfactory in clinical applications. However, the evidence of a 
hierarchical model is far less susceptible to this problem. A definition of 
this type of models is provided in the chapter. Here, it is enough to 
characterize them as models in which observations are assumed to come 
from a common, although unknown population. 

Our main conclusion is that while the model evidence is a robust tool 
when comparing hierarchical models, it is less so for non-hierarchical 
models. However, the model evidence is a global score that does not 
directly relate to a single observation and cannot be directly used to 
evaluate models on a subject-by-subject basis within a hierarchical 
model. This restriction does not hold for the Bayesian predictive 
likelihood, which can be derived from the model evidence, and is a more 
satisfactory score to evaluate models on single observations. 

This chapter includes a technical contribution regarding the 
computation of the predictive likelihood using TI: We device a novel 
estimator of this quantity based on estimates of the model evidence. This 
estimator is compared to similar approaches and is shown to offer an 
accurate estimate at a little additional computational cost.
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ABSTRACT

The marginal likelihood or evidence of a model is often used as
criterion to evaluate models in psychology, cognitive neuroscience,
and, more recently, in computational psychiatry. Based on this
framework, we have recently proposed that the model evidence can be
used not only for model selection, but that it can also be used for
differential diagnosis in translational applications in computational
psychiatry. Thus, instead of aiming for the model that best accounts for
a population of subjects, in model-based differential diagnosis, one
aims to find the diagnosis -represented by a model- that best explains
each observation. Unfortunately, the model evidence strongly depends
on the specification of the prior, a situation that is undesirable when
the effects of hyperparameters are hard to predict or understand. One
solution to this limitation is to rely on hierarchical models, in which the
marginal likelihood depends only weakly on the specification of the
hyperparameters. Because in this case the model evidence is only a
global statistic, the predictive model evidence can be used to evaluate
models on a subject-by-subject basis. To make this feasible in a
practical setup, we present a novel estimator of the predictive
likelihood based on thermodynamic integration. This estimator can be
used to compute simultaneously the evidence of a hierarchical model
as well as subject-by-subject predictive likelihoods at a minimal
additional cost.

Keywords: model evidence, Bayesian model selection, predictive likelihood,
thermodynamic integration, differential diagnosis
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INTRODUCTION

The development of complex computational models in psychology,
cognitive science and computational psychiatry has lead to a
broadened interest in principled methods to evaluate and compare
them. One approach that has become popular in these fields
(e.g. Mulder and Wagenmakers 2016; Dienes 2016; Penny 2012) is to
use the Bayesian log model evidence (LME). This is defined as the
logarithm of the marginal likelihood of data y conditioned on a model
m, with parameters ✓, and hyperparameters w. Assuming that all the
distributions discussed here admit a density with respect to a reference
measure (which we assume to be the Lebesgue measure), the model
evidence is defined as:

p(y|w, m) =
Z

p(y|✓, w, m)p(✓|w, m)d✓, (1)

where p(y|✓, w, m) is the likelihood function of data y, and p(✓|w, m) is
the prior probability of the parameters ✓. In a common setting, the data
set y is assumed to be composed of N identically and independently
distributed (i.i.d.) observations {y1, . . . , yN} = y, that represent, e.g.,
experimental observations from N subjects. Under this condition, the
marginal log likelihood is given by

ln p(y|w, m) = ln p(y1, . . . , yN|w, m), (2)

=
N

Â
i=1

ln p(yi|w, m), (3)

=
N

Â
i=1

ln
Z

p(yi|✓i, w, m)p(✓i|w, m)d✓i. (4)

In order to compare two models m0 and m1, the model evidence can be
used, for example, in a likelihood ratio test

p(y|m1)
p(y|m0)

(5)

or, given a prior probability on the model space p(mi), to compute the
posterior probability:

p(m1|y) =
p(y|m1)p(m1)

p(y|m0)p(m0) + p(y|m1)p(m1)
. (6)

The likelihood ratio of two models, or Bayes factor, is a widely used
method for model selection (Kass and Raftery, 1995).



26 Eduardo A. Aponte

Despite its conceptual simplicity, the LME requires the marginalization
of any free parameter ✓, with the caveat that in most but the simplest
models no analytical expression is available. For this reason, a large
numbe of method to approximate or estimate the LME either through
sampling (for example, Meng and Wong 1996; Gelman and Meng 1998;
Raftery et al. 2007), approximate Bayesian inference (Friston et al., 2007;
Minka, 2001), or asymptotic theory (Schwarz, 1978; Watanabe, 2013) has
been developed.

In the case of hierarchical models, in which observations are assumed
to be conditionally independent given a set of unknown parameters,
the LME is not usually used to compare models. Instead, a more
common method to evaluate hierarchical models is cross-validation, in
which the goal is to estimate the predictive power of a model. This is
done by fitting the model to a set of observations y = (y1, . . . , yN) and
then by evaluating it on a test set ytest. Here, we will limit our
discussion to leave-one-out cross validation, in which the test data set
consists of a single observation y0. Excellent presentations of this topic
from Bayesian and non-Bayesian perspectives can be found in Hastie
et al. (2001) Chap. 7, Robert (2007) Chap. 7, Vehtari and Ojanen
(2012), Burnham and Anderson (2003).

The predictive error of a model, Err, is defined as the expected negative
utility or loss �u(y0, y, m), with respect to the data generation process
g from which the training and test data sets are sampled

Err =�
Z

g(y)
Z

g(y0)u(y0, y, m)dy0

�
dy, (7)

=� E
h

E [u(y0, y, m) ]g(y0)

i

g(y)
. (8)

For example, in a typical machine learning application, a classifier is
trained on labeled data yi = (xi, li), where xi are predictors or
independent variables, and li are categorical labels. The classifier is
evaluated by examining the predicted label lpredict based on an unseen
predictor x0. In this context, it is common to use the 0–1 loss function,
which assigns 1 if the correct label is predicted, and 0 otherwise.

A second common utility function is the log posterior predictive
likelihood (LPL)

u(y0, y, m) = ln p(y0|y, w, m), (9)

= ln
Z

p(y0|✓, w, m)p(✓|y, w, m)d✓. (10)
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This represents the marginal log likelihood of the test observation y0,
after the initial prior p(✓|w, m) is replaced by the posterior distribution
of the parameters p(✓|y, w, m) conditioned on the training data y. This
term is sometimes called Bayes generalization error (Watanabe, 2009),
and it is commonly used as a Bayesian model selection criterion (Vehtari
and Ojanen, 2012).

Recently, we proposed that the LME can be used as a method for
hypothesis testing on single subjects in the context of clinical
applications (Heinzle et al., 2016; Stephan et al., 2017). This differs
epistemologically from the problem of model selection and
development (Gelman and Shalizi, 2013), in which the goal is to device
models that offer general and parsimonious explanations of current
data, and that predict future observations. Rather, in Heinzle et al.
(2016); Stephan et al. (2017), we proposed to use model comparison on
a subject-by-subject basis to evaluate plausible hypotheses of the
causes or pathomechanisms behind behavioral and physiological
symptoms. These hypotheses are represented by generative models
that describe the formation of observable symptoms from a set of
unobservable causes. Thus, in this scenario, one is not interested in
developing a single model that generalizes to as many future
observations as possible, but rather to test a series of hypotheses that
could better account for individual symptoms and, eventually, guide
treatment.

Here, we argue that the predictive likelihood in the context of
hierarchical models is a more appropriate method for model selection
when one is interested in clinical applications. In particular, we
demonstrate in an example from our own work that using the model
evidence in non-hierarchical models can lead to ‘prior driven’
conclusions, a well documented phenomenon sometimes referred to as
the Jeffreys-Lindey paradox (Gelman and Shalizi, 2013). This problem
is obiquitous in the complex nonlinear models used in computational
psychiatry, because it is often hard to predict the role of an individual
parameter in a model. Thus, in many situations there is no subjective
method to select a satisfactory prior parametrization for a model.
Importantly, we show here that this phenomenon is less severe in
hierarchical models, but, because the LME provides only a single
global score, we suggest to use the LPL when comparing models on a
subject-by-subject basis. As the sample size increases, this corresponds



28 Eduardo A. Aponte

to the model evidence conditioned on the population distribution and
thus, it is conceptually similar to the model evidence as a comparison
criterion.

To provide estimates of the predictive likelihood, we derive three
simple estimators based on thermodynamic integration (TI), a
sampling method. Although TI has to our knowledge rarely been used
in neuroscience or psychology (but see Chapter 5 to 8), it is a
particularly promising approach in biological science (Ballnus et al.,
2017) for reason that we have discussed elsewhere (see Chap. 3). One
of the estimators proposed here has, to our knowledge, not been
described previously in the literature. Because the theory underlying
TI is conceptually rich, we discuss it in some detail, emphasizing its
connections with other more commonly used techniques.

This paper is organized as follows. First, we describe in more detail
both the LME and LPL as methods for model selection. We do not aim
to review the very large body of literature on this topic (see Vehtari and
Ojanen 2012; Gelman et al. 2014; Han and Carlin 2001). Rather, our
goal is to motivate both methods and to explain why the evidence of a
non-hierarchical model depends strongly on the specification of its
prior. We then proceed to introduce TI and derive an estimator of the
LME using this approach, from which we derive three estimators of the
leave-one-out predictive likelihood. The first two estimators are based
on samples obtained when computing the LME. The third estimator is
based on a more computationally intensive approach, designed to
generate highly accurate estimates. Finally, we briefly present the
cognitive model evaluated here and apply TI to a toy example and to
an empirical data set published before.

Our main result shows that if TI is used to compute the LME, accurate
estimates of the predictive likelihood can be obtained at a minimal
marginal cost. Moreover, the LME and the predictive likelihood yield
similar conclusion for sample sizes in the range of common
psychological experiments. However, the predictive likelihood offers a
formally sound method to evaluate models on a subject-by-subject
basis, which is required in clinical settings. Please note that we did not
aim to evaluate the computational efficiency of the algorithms
developed here, as this falls outside of the scope of this paper.
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THE LOG MODEL EVIDENCE

As explained above, one motivation to use differences in LME as
model selection criterion is these have an intuitive but formal
interpretation in terms of a likelihood ratio test. A second motivation
for using the model evidence for model selection is the observation
that it includes a penalization term that accounts for the complexity of
the model (MacKay, 2002; Stephan et al., 2009; Vandekerckhove et al.,
2015). In the following we will refer to the LME with the letter F, in
analogy to the concept of negative free energy, as it is the counterpart
of this term in thermal physics. In the variational literature, F is often
expressed as the difference of an accuracy term A and a penalization or
complexity term S. To avoid clutter in the notation, we assume the
conditioning on hyperparameters w and model m and make it implicit
whenever possible. The LME can be expressed as:

F = ln p(y), (11)

=
Z

p(✓|y) ln
p(y|✓)p(✓)

p(✓|y) d✓, (12)

=
Z

p(✓|y) ln p(y|✓)d✓
| {z }

Accuracy

�
Z

p(✓|y) ln
p(✓|y)
p(✓)

d✓
| {z }

Complexity

, (13)

=A � S (14)

where S � 0.

The term A, which in statistical physics is denominated the internal
energy U, corresponds to the expected log likelihood of the data under
the posterior distribution. The complexity term S is called the
Kullback-Leibler (KL) divergence between the posterior and prior
distributions. Because S can be shown to be always positive or equal to
zero, the model evidence includes a term that penalizes the expected fit
of a model according to the divergence between the posterior and prior
distributions of the parameters ✓. It is commonly argued that this term
prevents overfitting, by penalizing overparametrized models (for
example, see MacKay 2002; Penny 2012).

When observations are assumed to be independent, the average LME is
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equal to

FN
N

=
1
N

N

Â
i=1

ln p(yi), (15)

=
1
N

N

Â
i=1

Ai � Si. (16)

As the number of independent observations N goes to infinity, FN/N
converges to the expected accuracy minus complexity of the model (as
long as these exist), where the expectation is taken over the data
generating process g:

1
N

N

Â
i=1

Ai � Si !
Z

g(y0) (A0 � S0) dy0 (17)

Because the observations are assumed to be independent, the
complexity term scales with the number of observations and thereby,
regardless of the sample size, the prior distribution can have a large
impact on the LME.

If observations are assumed to come from an unknown but common
distribution, as in a hierarchical model, and assuming that the
posterior density of ✓ converges in distribution to p̂(✓) as the number
of observations increases (for which conditions are provided in, for
example, Ghosh et al. 1994), the averaged model evidence behaves
differently. In this case, the log model evidence can be written as

ln p(y) =
N

Â
i=1

Z
p(✓|y) ln p(yi|✓)d✓�

Z
p(✓|y) ln

p(✓|y)
p(✓)

d✓
�

. (18)

Thus, we can write

FN
N

=
1
N

N

Â
i=1

Ai +
SN
N

. (19)

If the complexity SN is bounded when N ! 1, the average model
evidence FN/N converges to

E [A ]g = E
h

E [ ln p(y0|✓) ] p̂(✓)
i

g(y0)
(20)

where g is the true data generating process. Thus, in the case of
non-hierarchical models, the complexity term scales with the number
of observations, while in the case of hierarchical models, the
complexity term does not grow with the number of observations (if the
posterior density converges to a density p̂(✓)). Thus, as the sample size
increases, the complexity term tends to be diluted.
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CROSS-VALIDATION AND THE PREDICTIVE LIKELIHOOD

As mentioned above, the goal of cross-validation is to estimate the
expected negative utility or loss of a model. The expected negative
utility is defined as:

�E [E [u(y0, y, m) ] ] = �
Z Z

u(y0, y, m)g(y0)dy0

�
g(y)dy. (21)

When the utility function is the LPL, there are two main motivations
for using cross validation. First, cross validation controls for
overfitting, which occurs when a model displays high in-sample
likelihood on the training dataset, but performs poorly on
out-of-sample observations. In other words, overfitted models have
poor predictive power, but perform well on the data used for training.
Hence, by definition, the model with the lowest expected loss has the
highest out-of-sample predictive power.

The second motivation for using the LPL is that the model that
minimizes the conditional expected loss Err given training data y, also
minimizes the KL divergence between the data generating process
g(y0) and the predictive likelihood p(y0|y) (cf. Burnham and
Anderson (2003), Chap. 7):

KL [g||p] =
Z

g(y0) ln
g(y0)

p(y0|y)
dy0. (22)

This term can be expressed as the negative entropy of g, �Hg and the
expected loss of the predictive distribution

�E [ ln p(y0|y) ]g(y0)
. (23)

Thus, the conditional error can be expressed as

Err = Hg + KL [g||p]. (24)

Since Hg is constant with respect to the model being evaluated, the
model that minimizes the expected loss minimizes the KL divergence
between the data generating processes g and predictive posterior
distribution p(y0|y).

From a Bayesian perspective, the LPL corresponds to the log likelihood
of a new observation y0, conditioned on previous observations and the
model. In the following we assume 0, . . . , N observations and for
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simplicity in notation, we denote the set {0, . . . , N} \ {i} as \i. Also,
we denote all the observations y0, . . . , yN as simply y and the set of all
observation minus {yi} as y\i. The predictive likelihood of observation
y0 is then given by:

p(y0|y\0) =
Z

p(y0|✓)p(✓|y\0)d✓. (25)

Thus, this is the marginal likelihood of the new observation under the
distribution of ✓ conditioned on all other observations. The predictive
posterior can be rewritten as

p(y0|y\0) =
Z

p(y0|✓)
p(y\0|✓)p(✓)

Z\0
d✓ =

Z
Z\0

, (26)

where

Z =
Z " N

’
i=0

p(yi|✓)
#

p(✓)d✓, Z\0 =
Z " N

’
i=1

p(yi|✓)
#

p(✓)d✓. (27)

In other words, one can formulate the predictive likelihood as the ratio
of the normalization constants of the joint and leave-one-out densities.

The LPL contains a penalization term analogous to the LME:

ln
Z

Z\0
= E [ ln p(y0|✓) ]p(✓|y) � KL

h
p(✓|y)||p(✓|y\0)

i
. (28)

Hence, in the LPL the complexity term is the divergence between the
leave-one-out and ‘full’ posterior densities. Because for a large sample
size the influence of the prior on the posterior is negligible, its effect on
the LPL is often minimal. We note that this is a heuristic argument, and
a formal treatment is outside the scope of the present discussion (for a
review see Ghosh and Ramamoorthi 2003).

In summary, both the LME and the LPL are commonly used for
assessing models. The former includes a penalization term that
corresponds to the KL divergence between prior and posterior. The
predictive likelihood corresponds to a marginal likelihood in a model
in which the prior has been replaced by a leave-one-out density. It
includes also a penalization term, which is the divergence between the
empirical leave-one-out density and the posterior conditioned on the
totality of the data.

In the next section we proceed to show how both the LME and LPL can
be estimated using TI.
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Figure 1: The model evidence corresponds to the area below the curve
A[t] = E [ ln p(y|✓) ]p(✓|y,t), which is the accuracy term in the variational
formulation of TI. It follows that the area between A[t] and below
the constant A[1] is equal to the KL divergence between the prior
and posterior up to an arbitrary additive constant. An analoguous
relationship holds for every t 2 [0, 1].

THERMODYNAMIC INTEGRATION

TI is based on the idea of constructing a piecewise differentiable path �

between the prior and posterior densities. Imposing the conditions

F[�(0)] = ln
Z

p(✓)d✓ = 0, F[�(1)] = ln
Z

p(y|✓)p(✓)d✓, (29)

the main TI equality is:

F[�(1)]� F[�(0)] =
Z 1

0


∂
∂t

F [�(t)]
�

dt =
Z 1

0


dF
d�

�0(t)
�

dt. (30)

Note that the path integral in Eq. 30 is independent of the piecewise
differentiable curve �. Eq. 30 can be seen as the difference in the log
normalization constant of two distributions, in this case the prior and
unnormalized posterior. More generally, the TI equality can be used
to compute changes in LME between distributions, a fact that we will
exploit later on.

For non-hierarchical models, typically one assumes �(t) = t and

F[t] def
= ln

Z
p(y|✓)t p(✓)d✓. (31)

We use now the notation

p(✓|y, t) =
p(y|✓)t p(✓)

Zt
, Zt =

Z
p(y|✓)t p(✓)d✓. (32)
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From this, one obtains that

Z 1

0

∂
∂t

F
����
t=⌧

d⌧ =
Z 1

0
E [ ln p(y|✓) ]p(✓|y,⌧) d⌧ , (33)

provided that F and ∂F/∂t are almost everywhere continuous with
respect to t and ✓.

This formulation closely maps to the formulation of the LME in terms
of accuracy and complexity as depicted in Fig 1. In particular, one can
interpret the integral in Eq. 33 as the area below the curve defined by

∂F/∂t = E [ ln p(y|✓) ]p(✓|y,t) (34)
def
= A[t] (35)

for t 2 [0, 1]. Note that for t = 1, A[t] corresponds to the accuracy of the
model.

Eq. 33 can be used to compute the model evidence by estimating the
accuracy terms A[t] through sampling and computing the outer integral
with the help of a trapezoidal rule or any other numerical integration
method.

THERMODYNAMIC INTEGRATION FOR HIERARCHICAL MODELS

The TI method can be easily extended to a model with latent states.
Consider a simple model with latent variables ✓, and parameters �

p(y|�)p(�|✓)p(✓). (36)

In this case, the accuracies A[t] required to approximate the LME can be
estimated by expressing the likelihood as a marginal. We write the joint
probability of the model as

p(y|✓)p(✓) =
Z

p(y|�)p(�|✓)d�
�

p(✓). (37)

The following expression can be used to construct a path between prior
and posterior

F[t] = ln
Z Z

p(y|�)t p(�|✓)d�
�

p(✓)d✓. (38)
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This leads to

∂
∂t

F =
1
Zt

Z Z d
dt

p(y|�)t p(�|✓)d�
�

p(✓)d✓, (39)

=
1
Zt

Z Z
[ln p(y|�)]p(y|�)t p(�|✓)d�

�
p(✓)d✓, (40)

=
1
Zt

Z "Z
[ln p(y|�)] p(y|�)t p(�|✓)

p(y|✓, t)
d�

#
p(y|✓, t)p(✓)d✓, (41)

=E
h

E [ ln p(y|�) ]p(�|✓,y)

i

p(✓|y)
. (42)

From the law of total expectation, this integral can be estimated using
the expression

1
K

K

Â
k=1

ln p(y|�(k)) (43)

where samples �(k), k = 1, . . . , K, have been obtained from the power
posterior

1
Zt

p(y|�)t p(�|✓)p(✓). (44)

In the case of hierarchical models, the path between prior and posterior
can be constructed similarly. We consider a set of experimental
observations yi, i 2 I = {1, . . . , N}, which are modeled using the
subject specific parameters �i and the population parameter ✓.

ln p(y|t) = ln p(y1, . . . , yN|t) (45)

= ln
Z

p(✓)’
i2I

Z
p(yi|�i)

t p(�i|✓)d�i

�
d✓. (46)

In Appendix A, it is shown that the estimator

1
K

K

Â
k=1

Â
i2I

ln p(yi|�
(k)
i ), (47)

where �(k)
i are samples from the joint power posterior distributions, can

be used to compute the accuracies A[t] required in TI.

FROM THE LOG MODEL EVIDENCE TO THE LOG

PREDICTIVE LIKELIHOOD

To our knowledge, TI has been used to compute differences in the
normalization constants of two distribution, but not to compute the
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LPL in the context of model comparison. Our contribution here is to
show how the samples from the power posteriors required to compute
the model evidence of a hierarchical model in TI can be used to
estimate the leave-one-out LPL using importance sampling. Although
a similar method was presented in Vehtari and Lampinen (2002), the
method proposed by these authors was not developed in the context of
TI.

A BIASED ESTIMATOR FOR THE LOG PREDICTIVE LIKELIHOOD

We assume here that the LME of the totality of the data y0, . . . , yN has
been computed using the TI method proposed above. Thus, samples of
the log likelihood ln p(yi|�i) for a grid of temperatures t0, . . . , tM are
available. Our goal is to compute the ratio of two normalization
constants Z/Z\0 using the samples obtained through TI.

We observe that when the number of observations is large enough
(Vehtari and Ojanen, 2012):

p(✓|y, t) ⇡ p(✓|y\0, t). (48)

Thus, one can obtain a biased estimator of the log ratio ln Z/Z\0 using
the TI equality

ln
Z

Z\0
=
Z 1

0
E

"
N

Â
i=0

ln p(yi|✓)
#

p(✓|y,t)

dt �
Z 1

0
E

"
N

Â
i=1

ln p(yi|✓)
#

p(✓|y\0,t)

dt,

(49)

⇡
Z 1

0
E

"
N

Â
i=0

ln p(yi|✓)
#

p(✓|y,t)

dt �
Z 1

0
E

"
N

Â
i=1

ln p(yi|✓)
#

p(✓|y,t)

dt,

(50)

=
Z 1

0
E [ ln p(y0|✓) ]p(✓|y,t) dt. (51)

This estimator requires no additional computational cost when the
LME is estimated using TI. Note that comparing Eq. 28 and 51, we can
conclude that in this approximation the penalization term associated
with the LPL is effectively set to zero, while still accounting for the
uncertainty associated with the parameters �i. The severity of this bias
depends on the assumption in Eq. 48 (Vehtari and Ojanen, 2012). This
estimator is interesting because it demonstrates the relationship
between the LME of a hierarchical model and the LPL form the TI
perspective.
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AN UNBIASED ESTIMATOR

Although the estimator in Eq. 51 is consistent but weakly biased for a
large sample size N, it is possible to correct the bias using the joint
power posteriors as importance distributions, similarly as in Vehtari
and Lampinen (2002). To our knowledge this estimator has not been
proposed before. The goal is to compute Z\0 using samples obtained
from the posterior distribution conditioned on the totality of the data.
This can be achieved using the same TI method as before and then
adjusting the estimator with the correct importance weights.

The log marginal Z\0 can be computed using the TI equality:

ln Z\0 =
Z 1

0
E

"
N

Â
i=1

ln p(yi|t,✓)
#

p(✓|y\0,t)

dt (52)

In order to use the TI identity, it is necessary to estimate the accuracies:

A\0[t]
def
= E

"
N

Â
i=1

ln p(yi|✓, t)

#

p(✓|y\0,t)

(53)

=
Z

p(✓|t, y\0)

"
N

Â
i=1

Z
p(�i|✓, yi, t) ln p(yi|�i)d�i

#
d✓. (54)

To simplify the notation, we define

�(✓)
def
=

N

Â
i=1

Z
p(�i|✓, yi, t) ln p(yi|�i)d�i (55)

such that

A\0[t] =
Z

p(✓|t, y\0)�(✓)d✓. (56)

At this point, one can use importance sampling, such that:
Z

p(✓|t, y\0)�(✓)d✓ =
Z

p(✓|t, y\0)
p(y0|t,✓)
p(y0|t,✓)

�(✓)d✓, (57)

/
Z

p(✓|t, y)
�(✓)

p(y0|t,✓)
d✓, (58)

=
Z

p(✓|t, y)

"Z
p(�0|y0,✓, t)

�(✓)

p(y0|�0)
t d�0

#
d✓.

(59)

The last step corresponds to the same equality underlying the harmonic
mean estimator. The importance density is proportional to the posterior
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density of ✓ conditioned on y up to a constant. The likelihood ratio
required by the importance distribution is

w(✓,�0) = 1/p(y0|�0)
t. (60)

Using the law of total expectation and the method of self-normalizing
importance sampling, the importance sampling estimator of the
accuracies is

ÂK
k=1

h
w(✓(k),�(k)

0 )Ân
i=1 ln p(yi|�

(k)
i )
i

ÂK
k=1 w(✓(k),�(k)

0 )
. (61)

Thus, it is possible to use the posterior of the totality of the data as an
importance distribution to estimate the leave-one-out normalization
constant Z\0. In that case, the TI integral is computed over the adjusted
expected values in Eq. 61. Since we assumed that the LME of the
totality of the data ln Z is known, the LPL is readily available. We refer
to this estimator as the unbiased TI estimator.

THE LOG RATIO TI METHOD

We conclude with a TI estimator that does not use the samples from
the joint distribution. For this, one can exploit the more general fact
that TI can be used to compute differences in log marginal likelihood to
formulate another estimator of the LPL. Using Eq. 26 we note that this
can be formulated as

ln
Z

Z\0
=
Z 1

0

∂
∂t

F[t]d⌧ , (62)

F[t] def
= ln

Z Z
p(y0|�0)

t p(�0|✓)d�0

�
p(y\0|✓)p(✓)d✓. (63)

In this case, it is not the joint likelihood of the whole model that is
relaxed by the parameter t, but only the likelihood of the test set y0.
This method does not require to explicitly compute the LME of the
totality of the data ln Z. The disadvantage of this approach is that it
requires samples from the power posteriors
Z�1

t

hR
p(y0|�0)

t p(�0|✓)d✓0

i
p(y\0|✓)p(✓) for each observation yi,

increasing the computational costs by the number of observations.
Moreover, when the posterior landscape is challenging it is desirable to
sample from an array of temperatures to implement population
Markov chain Monte Carlo (MCMC) sampling (Calderhead and
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Girolami, 2009; Ballnus et al., 2017). However, one would expect that
this is a highly accurate estimator and we will use it as gold standard
when comparing the biased and corrected estimators proposed above.
In the following we refer to this estimator as the log ratio TI method.

AN ILLUSTRATION: THE GAMMA-GAUSSIAN CASE

To illustrate the performance of the estimators presented here, we
consider a simple model for which the LME and the LPL can be
computed analytically: A Gaussian likelihood with unknown mean µ

and precision �. To keep the model tractable, the prior of � is assumed
to be the Gamma distribution and the prior distribution of µ is
assumed to be Gaussian with precision � and mean µ0. Later on, we
will extend this model into a simple hierarchical model, as discussed
below.

The joint probability of y = [y1, . . . , yN] observations, and parameters
µ and � can be written as

p(y1, . . . , yN ,µ, �) =

"✓
�

2⇡

◆N/2
exp��

2

N

Â
i=1

(yi �µ)2

#
(64)

"✓
�

2⇡

◆1/2
exp��

2
(µ0 �µ)2

#
ba

�(a)
�a�1 exp(��b)

�
.

The hyperparameters a and b are the shape and scale parameters of the
prior density of �. To obtain a simple expression for the posterior for
arbitrary t 2 [0, 1], the model can be reparametrized in terms of the
summary statistics and ‘tempered’ sample size. Hence, the model can
be fully expressed in terms of the coordinates
⌘(t) = [⌘0(t), ⌘1(t), ⌘2(t), ⌘3(t)]:

⌘0(t) = tn + 1, (65)

⌘1(t) =
tn Ân

i=1
yi
n +µ0

tn + 1
, (66)

⌘2(t) =
2b

tn + 1
+

tn Ân
i=1

y2
i

n +µ2
0

tn + 1
, (67)

⌘3(t) = a. (68)

Under this parametrization, the unnormalized power posteriors can be
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Figure 2: Analytical and estimated LME and LPL. Estimates were computed
using 16 chains and 100 samples per chain. Left: Analytical and
estimated mean LME and LPL for increasingly larger sample sizes
with the Gamma-Gaussian model. Right: Variance of the two TI
estimators of the LPL. As expected, the log ratio TI method displays
lower variance than the unbiased TI estimator.

written as:

q(�,µ|⌘(t)) = �⌘3(t)+⌘0(t)/2�1 exp��⌘0(t)
2

(µ � ⌘1(t))
2 exp��⌘0(t)

2
(⌘2(t)� ⌘2

1(t)).

(69)

The normalization constant is given by

Z
q(�,µ|⌘(t))dµd� =

h
⌘0(t)(⌘2(t)�⌘2

1(t))
2

i⌘3(t)+(⌘0(t)�1)/2p
⌘0(t)

p
2⇡�(⌘3(t) + (⌘0(t)� 1)/2)

(70)

Using this parametrization, one can sample from the unnormalized
power posteriors by first obtaining samples of � and then samples
from µ. This is explained in detail in Appendix B.

In Fig. 2, we illustrate the LME and the sum of LPL (also called
sometimes pseudo-log model evidence Geisser and Eddy 1979; Vehtari
and Lampinen 2002), where the hyperparameters were
m0 = 5, a = 2, b = 2. The data was generated from a Gaussian
distribution centered at �2 and std. 5. All simulations were performed
with 16 chains, and 100 samples per chain. To compute the variance of
the estimators, the simulations were repeated 10 times. Although both
the unbiased TI estimator, as well as the log ratio TI method yielded
highly accurate estimates, the latter method displayed lower variance.
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Figure 3: Convergence rate of the unbiased TI estimator. The inverse
variance of the ubiased TI estimator as a function of the number of
samples drawn for the Gamma-Gaussian model displayed in squared
root scale. The sample size is 18 observations. The variance of
the estimator is computed by estimating the LPL 50 times for K =

10, 100, 200, 500, 1000, 2000.

The key quantity to understand this behavior (Wolpert and Schmidler,
2012) is the tail behavior of the importance weights

1
K

K

Â
k=1

1

p(y0|✓(k)0 )
t (71)

where

✓
(k)
0 ⇠ p(✓(k)0 |y, t) (72)

As shown in Wolpert and Schmidler (2012), this estimator is only
reliable if the variance of the importance weights exists. Interestingly,
in contrast to the examples discussed by Wolpert and Schmidler (2012),
in this particular case it can be easily shown that the variance of the
importance weights always exists. Thus, the unbiased TI should
display

p
K convergence rate. This is exemplified in 3, which displays

the inverse variance of the unbiased TI estimator as a function of the
number of samples K.
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SUMMARY

Here, we have shown the relationship of the model evidence with the
leave-one-out Bayesian predictive likelihood and its relationship with
cross validation. In particular, the Bayesian predictive likelihood can
be expressed as the ratio of two normalization constants and therefore
as a path integral. This path integral can be approximated with the
samples used to compute the model evidence of a hierarchical model
conditioned on the totality of the data. We proceed to describe the
cognitive model and empirical data on which we applied the methods
above.

METHODS

THE HIERARCHICAL BAYESIAN FILTER

We consider an example from our own work based on the Hierarchical
Bayesian Filter (HGF), a model of learning under environmental
uncertainty. The HGF (Mathys et al., 2011) is a probabilistic inference
algorithm for an extension of the model proposed in Behrens et al.
(2007). This model consists of stacked one dimensional AR(1)
processes Xk(t), in which 0 < t < N is an index over discrete time, k
with 0 < k  K is an index over the AR processes, and K is the order of
the HGF. Usually K is restricted to either K = 1 or K = 2.
Fundamentally, the variance of Xk(t) is assumed to be a function of
Xk+1(t) such that

Xk(t) ⇠N(xk(t � 1), exp(xk+1(t) +!k)), (73)

XK(t) ⇠N(xK(t � 1), exp(!K)). (74)

For a binary output U(t), the emissions of the process are distributed
according to

p(U(t) = 1|x1(t)) =
1

1 + exp(�x1(t))
. (75)

The HGF is an approximate single forward pass algorithm that exploits
local conditional independencies, similarly as in variational Bayes.
Recently, it has received great attention as a cognitive model of
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inference under environmental volatility because its update equations
can be interpreted as precision weighted prediction error updates.
Given that prediction errors are considered a fundamental type of
computation performed by the brain (Rao and Ballard, 1999; Friston
and Kiebel, 2009), the model proposed by Mathys et al. (2011) has been
used in several domains, such as reverse learning (Iglesias et al., 2013),
social inference (Diaconescu et al., 2014), gambling (Paliwal et al.,
2014), the Posner task (Vossel et al., 2015), etc.. In computational
psychiatry, HGF has now been used in, for example, autism (Lawson
et al., 2017) and psychosis (Powers et al., 2017) research among others.

For our purposes, we simply consider the HGF as a likelihood function
of the form

p(y1, . . . , yn|u1, . . . , un,✓, m) (76)

where yi correspond to behavioral measurements, ui to experimental
manipulations, m to the specific model evaluated and ✓ a set of model
parameters, which are postulated to reflect idiosyncrasies in the
cognition of different individuals. Usually, the likelihood in Eq. 76 can
be seen as composed of, first, the maximum a posteriori (MAP)
estimates of the states Xk(t) of the HGF

f (u1, . . . , un,✓) = [x(1), . . . , x(n)] (77)

where x(t) is the vector of MAP estimates [x1(t), . . . , xK(t)] at time t.
Second, the MAP estimates are used as arguments of a link likelihood
function called observation function

p(yt|x(t),✓) (78)

which describes the probability of a behavioral response given the
deterministic putative beliefs predicted by the HGF, given the
experimental inputs and subject specific parameters.

In Appendix B, we present a simple hierarchical extension of the HGF
based on the Gamma-Gaussian model discussed before. Note that
other extensions are possible and the methods develop here depend
only on the assumption that the subject specific parameters are
conditionally independent given a set of unknown parameters
representing the population distribution. In the next section we briefly
describe the empirical data set used here, which was previously
reported in Iglesias et al. (2013).
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Figure 4: Probability of a face given high tone as a function of trials and a
posterior estimate of it according to a second order HGF. Taken from
Iglesias et al. (2013).

DATA

We investigated a fraction of the data reported in Iglesias et al. (2013).
Briefly, 47 subjects participated in a reverse learning task. Participants
were presented an auditory stimulus (AS; a high or low pitch tone) and
were asked to guess a visual stimulus (VS; a face or a house) based on
the AS. Participants were rewarded for correct guesses. Fundamentally,
the conditional densities

p(VS|AS) (79)

were not constant but changed across trials, as schematically shown in
Fig. 4.

Four of the models reported in Iglesias et al. (2013) were evaluated as
summarized in Tab. 1. All models included a form of learning in which
beliefs about the densities p(VS|AS) were updated across trials. Models
m2 and m4 used a temporal difference algorithm, but model m4 included
a flexible learning rate according to Sutton (1992). Model m1 and m3

were HGFs of order 2 and 1, respectively. This implies that model m1

included a term representing the volatility of the probability p(VS|AS),
whereas in m4 the volatility was assumed to be constant. All models
used a similar observation function according to which the probability
of a decision was given by the rule

y =0 $ Response face u =0 $ Low pitch tone (80)

y =1 $ Response house u =1 $ High pitch tone (81)

ln p(y|b, u) =(y � u) ln�(b) + (1 � y � u) ln(1 ��(b)), (82)

�(b) =
1

1 + exp(��b)
, (83)

where � corresponds to the XOR operator. The parameter � is usually
called inverse decision temperature and represents the slope of the
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Models in Iglesias et al. (2013)

m1 HGF of second order, i.e., with state
dependent volatility. Described in detail in
Mathys et al. (2011).

m2 Temporal difference algorithm in which
p(VS|AS) is updated with a fixed learning
rate.

m3 HGF of first order, i.e., no volatility update.
Described in detail in Mathys et al. (2011).

m4 Temporal difference algorithm with
variable learning rate as described by
Sutton (1992).

Table 1: Summary of the models analyzed from Iglesias et al. (2013).

decision rule. The term b represents a belief about the VS and AS
contingency and is computed in a different manner in each of the
different models; thus, while the belief update was different in each
model, the decision rule was equal across them.

The prior distribution of the parameters was the same as the one used
in Iglesias et al. (2013) except that the prior mean of the inverse decision
temperature parameter � was assumed to be 1 (as opposed to 48) if not
otherwise stated. We were interested in the LME of hierarchical and
non-hierarchical models, and the bias and variance of the estimators
proposed here.

IMPLEMENTATION

The sampler was implemented in MATLAB and is available as part of
the tapas toolbox (https://www.tnu.ethz.ch/en/software/tapas.html).
In all the simulations, we used a temperature schedule following a 5th
order power rule (Calderhead and Girolami, 2009). The
Metropolis-Hastings (MH) step used a Gaussian proposal distribution.
During the burn-in phase, the kernel was adapted following Shaby and
Well (2011). In addition, we included a population MCMC step in
which the parameters were swapped across chains (Calderhead and
Girolami, 2009). The number of samples collected is detailed in Tab. 2.
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Sampler parameters

# chains # burn-in
samples

# kept
samples

Iglesias et al. (2013) non
hierarchical

16 3000 3000

Iglesias et al. (2013) Hierarchical 32 3000 3000
Iglesias et al. (2013) log ratio TI 32 4000 2000

Table 2: Parameters of the sampler.

RESULTS

In Tab. 3 the LME of each of the models with and without a
hierarchical prior is displayed. In the case of the non-hierarchical
models, model m3, which does not include a belief about volatility, was
preferred over model m1. While both models did not display a strong
difference in LME (�LME < 3) when using a hierarchical prior,
hierarchical models obtained a higher LME when compared to
non-hierarchical models. Fig. 5 depicts the accuracy as a function of
temperature. From Fig. 5, it can be concluded that the higher evidence
in favor of the hierarchical models is due to a small improvement in
the fit as seen when temperature approaches 1. Moreover, at lower
temperatures the accuracy had a higher slope, as the prior mean was
quickly replaced by the sample population mean when t increases.

In Tab.4, we report the mean difference and standard deviation across
subjects between the biased and unbiased estimator with respect to log

LME

m1 m2 m3 m4

Hierarchical

-6879.87 -7007.46 -6878.47 -7233.31

Non Hierarchical

-6947.49 -7064.16 -6989.55 -7251.94

Table 3: LME of the models reported in Iglesias et al. (2013).
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Figure 5: Expected value of the log likelihood as a function of the
temperature for the models in Iglesias et al. (2013). Non hierarchical
models are represented as broken lines.

Figure 6: LME and accuracy at t = 1. The LME and accuracy at t = 1 was
computed for different prior means of the log decision temperature
ln�. Left: The LME is highly sensitive to the prior mean in non
hierarchical models. This is not the case in hierchical models, in which
the LME varies slowly as a function of this hyperparameter. Note that
Bayes factors would lead to different conclusions. Right: The accuracy
as a function of decision temperature �.
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Figure 7: Subject-by-subject model comparison between m1 and m2. Red line
depics a difference of ±3, usually considered strong evidence in favor
of one of the two models.

ratio TI estimator. Both estimators performed well. While the biased
estimator was on average a pessimistic estimator, its variance was low
in comparison to the corrected estimator, which showed for all models
low bias but high variance. When considered on a subject-by-subject
basis (Fig. 7 and 8), while there were no large differences between
models m1 and m3 except for one subject, there was clearly strong
evidence in favor of the HGF for several subjects when compared to a
delta learning rule model without a flexible learning rule (model m3).

Finally, we examined the pseudo LME (Geisser and Eddy, 1979; Vehtari
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Figure 8: Subject-by-subject model comparison between m1 and m3.
Although all estimators yield similar conclusions, the unbiased TI
estimator displays much higher variance.
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Mean diff. estimators

m1 m2 m3 m4

Biased estimator

-0.410 (0.344) -0.308 (0.366) -0.329 (0.320) -0.188 (0.367)

Corrected estimator

0.268 (0.875) -0.031 (0.858) -0.114 (0.784) -0.098 (1.000)

Table 4: Mean difference and standard deviation between the biased and
unbiased estimators when compared to the log ratio TI estimator for
the data reported in Iglesias et al. (2013).

and Lampinen, 2002)

Â
i

ln p(yi|y\i, m) (84)

which has been suggested as a method for model scoring. The
rationale of this score is that if for each i, p(✓|y\i) is a good
approximation of the population density, then this score corresponds
to LME of a model where the prior is the population density. The
pseudo LME score is reported for the three estimators. Note that for
the biased estimator, this corresponds to the LME estimated through
TI. The corrected unbiased and log ratio TI estimators yielded similar
values and both favored model m3 over all other models. However, the
unbiased estimator suggested strong evidence in favor of model m3.
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Predictive pseudo LME

m1 m2 m3 m4

Biased TI estimator

-6879.87 -7007.46 -6878.47 -7233.31

Unbiased TI estimator

-6848.04 -6994.47 -6868.34 -7229.09

log ratios TI estimator

-6860.61 -6992.99 -6863.00 -7224.49

Table 5: Pseudo LME (Vehtari and Lampinen, 2002) according to the three
estimators proposed here for the data reported in Iglesias et al. (2013).
In the case of the biased estimator, the pseudo Bayes LME corresponds
to the actual LME.

DISCUSSION

Our results reflect the long standing concern that the LME is highly
sensitive to the selection of a particular prior density for the model
parameters (Kass and Raftery, 1995). This represents a serious issue, as
it conflicts with the postulate of scientific objectivity. This concern is
aggravated by the difficulty of assessing the effect of prior densities on
nonlinear models, in which parameters can interact in subtle manners.
Scoring models using the LME of their hierarchical versions partially
addresses this concern because prior distributions are diluted in a
population dependent prior. In terms of the TI formulation of the LME,
this is represented by a higher slope of the accuracy A[t] at lower
temperatures. Also, hierarchical models can lead to better fits in terms
of the expected log likelihood under the posterior distribution. We
note, however, that although the LME can be influenced by the
particular priors used, this concern can be addressed with several
measures such as sensitivity analyses (see for example the discussion
in Kass and Raftery 1995), and thus it does not constitute a general
reason to not use this criterion for model selection. However, it is
important to highlight that Bayesian model comparison should be
accompanied by other quantitative and qualitative tests (Gelman et al.,
2003; Gelman and Shalizi, 2013).
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An alternative score besides the model evidence is the Bayesian
predictive likelihood. This method quantifies the likelihood of a new
observation, conditioned on previous observations. Thus, it provides
information about the generalizability of a model, as opposed to the
likelihood of already observed data. Because this quantity can be
understood as the ratio of two normalization constants, it can be easily
approximated using samples obtained from computing the LME of a
hierarchical model with TI.

Here, we proposed three estimators. The first is a biased approach that
simply uses the joint power posteriors as an approximation of the
leave-one-out densities. The second estimator corrects this bias by
using importance sampling. To account for the presence of a marginal
likelihood in the correction factor, we proposed to use the equality
underlying the harmonic mean estimator. One of the advantages of
this approach is that it addresses the main concern about importance
sampling in this context: although the weights

1
p(y|✓)t (85)

can have infinite variance in many applications of the harmonic mean
estimator (Raftery et al., 2007), the temperature parameter effectively
counteracts the high variance of this term at low temperatures.
Moreover, as t approaches 1, the variance of this term decreases.
Therefore, in practice the method that we proposed here is less
susceptible to the problems usually attributed to the harmonic mean
estimator in terms of unacceptable convergence rates (Wolpert and
Schmidler, 2012).

Both the biased and unbiased estimator provided fairly accurate
approximations of the predictive density at minimal added
computational costs compared to the direct computation of the log
ratio using the TI inequality. Thus, although the latter method should
be preferred when the predictive likelihood is paramount, the biased
and unbiased estimators computed from samples used to estimate the
LME are acceptable approximations.
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TRANSLATIONAL APPLICATIONS

In Stephan et al. (2017), we suggested to use differences in LME for
diagnosis and prediction of treatment response in computational
psychiatry. This requires subject specific scores for each model tested.
The methods developed here can translate group level results, in terms
of the LME of a hierarchical model, to subject specific scores. In
particular, one can use the Bayesian predictive likelihood as a subject
specific decision rule for model comparison, by conditioning on group
level results. Thus, one can use predictive pseudo Bayes factors of the
form

p(yi|y\i, m1)

p(yi|y\i, m2)
. (86)

This approach has the advantage of integrating previous knowledge
when comparing hypothesis regarding a new observation and it
should be preferred since the effect of subjective priors can yield
inadequate conclusions as shown here.

A further advantage of producing subject specific scores is that these
can be used in the context of hierarchical models that consider model
assignment as a random variable, such as Stephan et al. (2009) and more
recently Rigoux et al. (2014). This depends on the assumption that the
leave-one-out distribution is a good approximation for the population
distribution.

SUMMARY

This paper contains two novel ideas. First we extended the classical TI
approach to develop an estimator of hierarchical models. Second, we
developed three estimators of the Bayesian predictive likelihood based
on the TI equality. We applied it to a multilevel extension of the HGF, a
cognitive model of belief updates under environmental volatility. We
showed that considering the LME of group models reduces the
dependency of the results with respect to hyperparameters. Moreover,
we showed that the biased and unbiased estimators proposed here
performed comparatively well to subject-wise estimator of the
predictive likelihood using the TI equality. Given the reduced
computational costs of estimating only once the LME evidence of a
hierarchical model, we suggest to use the unbiased estimator.
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APPENDIX

A. THERMODYNAMIC INTEGRATION FOR HIERARCHICAL

MODELS

Let yi, i 2 I = {1, . . . , N} be a set of N observations, and let the power
posterior density of the model m at temperature t 2 [0, 1] be

1
Zt

p(✓)’
i2I

p(yi|✓, t) (87)

where

p(yi|✓, t) =
Z

p(y|�i)
t p(�i|✓)d�i. (88)

The model evidence is given by

F =
Z 1

0

∂F
∂t

dt (89)

=
Z 1

0
A[t]dt (90)

We show that the estimator

1
K

K

Â
k=1

Â
i

ln p(yi|�
(k)
i ) ! A[t] (91)

where �
( j)
i are samples from the power posterior

"

’
i2I

p(�i|yi,✓, t)

#
p(✓|y1, . . . , yN , t) (92)

and K ! 1.

The proof follows from the TI fundamental equation

Z 1

0

∂
∂t

F[t]
����
⌧

d⌧ =
Z 1

0

∂
∂t

ln
Z  

’
i2I

p(yi|t,✓)
!

p(✓)d✓

�����
⌧

d⌧ (93)

=
Z 1

0

1
Z⌧

Z
0

@Â
i2I

∂
∂t

p(yi|t,✓)|⌧ ’
j2I\{i}

p(yj|✓, ⌧)

1

A p(✓)d✓d⌧ (94)

=
Z 1

0

Z p(✓) (’i2I p(yi|⌧ ,✓))
Z⌧

Â
i2I

R
[ln p(yi|�i)]p(yi|�i)⌧ p(�i|✓)d�i

p(yi|⌧ ,✓)
d✓d⌧

(95)
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We note that all the densities are well normalized, such that we can
write Eq. 95 as a expected value of the form

Z 1

0

∂
∂t

F[t]
����
⌧

d⌧ =
Z 1

0
E

"

Â
i2I

E [ ln p(yi|�i) ]p(�i|yi ,✓,⌧)

#

p(✓|y1,...,yN ,⌧)

d⌧ .

(96)

The statement follows from the law of total expectation and the law of
large numbers.

B. A HIERARCHICAL HGF

In the following, we lump all experimental manipulations used with
subject si, in the variable ui and the corresponding responses in yi. The
goal is to compute the posterior density of the subject dependent
parameters ✓i, conditioned on a model m, manipulations ui, and
responses yi and the corresponding normalization constant.

When applying the HGF to data it is customary to assume a Gaussian
prior density on the subject dependent parameters. Thus, this model
can be extended by defining a hierarchical prior that models the sample
mean µ. According to the model (Fig.9), observations are generated
from this mean with variance � following:

p(y1, . . . , yn, u1, . . . , un,µ, �) = [⇧n
i=1 p(yi|ui,✓i)p(✓i|µ, �)] p(µ, �),

(97)

p(✓i|µ, �) =
�1/2
p

2⇡
exp

✓
��

2
(✓i �µ)2

◆
, (98)

p(µ, �) =
�1/2
p

2⇡
exp

✓
��

2
(✓0 �µ)2

◆
�a�a�1

�(a)
exp(���). (99)

Here � denotes the Gamma function. Later, we use the same symbol to
denote the Gamma p.d.f.. Which is meant should be clear from the
context. The prior density p(µ, �) corresponds to the product of a
normal and a Gamma density. For simplicity in notation, ✓i is assumed
here to be a scalar quantity, but the extension to a higher dimensional
space is structurally equivalent. The term p(yi|ui,✓i) constitutes the
likelihood defined by the HGF as explained before. This model has the
desirable property that the parameters � and µ are conditionally
independent of y when ✓i has been observed. This could be leveraged
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Figure 9: Graphical representation of hierarchical and non-hierarchical
models. Observed nodes are depicted in gray. A. In a non-hierarchical
model all observations yi are assumed to be generated from a known
population mean µ. Observations are independent of each other. B. In
a hierarchical model, observations are assumed to be generated from
an unknown population mean µ. Importantly, observations are not
any more independent. For simplicity we have not specified a variance
term in the generating process p(✓i|µ).

to design an efficient variational algorithm using the Laplace
approximation on the conditional probability

p(✓i|yi, ui,µ, �) (100)

as in Mathys et al. (2011); Friston et al. (2007). Instead, the E step typical
of variational algorithms can be replaced by a Gibbs sampling step. For
this, we consider the conditional posterior density of µ, �

p(µ, �|✓0, . . . ,✓n) = N

 
µ;

n

Â
i=0

✓i
n + 1

,
1

�(n + 1)

!
�

✓
�; a + n/2,�+

(n + 1)
2

Var[✓i]

◆

(101)

where Var[✓i] is the sample variance of ✓i. Note that the prior ✓0 is
simply treated as a further observation with the same weighted
contribution as the parameters ✓1, . . . ,✓n.

To obtain a sample from the conditional posterior, one first draws a
sample of �. The expected value of the precision is

E[�|✓0, . . . ,✓n] =
a + n/2

�+ Var[✓i](n + 1)/2
. (102)
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Its variance is

Var[�|✓0, . . . ,✓n] =
↵ + n/2

(�+ Var[✓i](n + 1)/2)2 . (103)

As n grows, the expected value of � approaches 1/Var[✓i] and its
variance approaches zero.

In the second part of the Gibbs step, a sample of µ is drawn from a
Gaussian distribution with mean Ân

i=0✓i/(n + 1) and variance 1/�(n +

1).

Finally the posterior densities of the parameters of each subject are
conditionally independent of each other given samples µk and �k:

p(✓i|yi, ui,µk, �k) / p(yi|ui,✓i)p(✓i|µk, �k) = p(yi|ui,✓i)N(✓i;µk, 1/�k).
(104)

This can be exploited in a local Metropolis Hastings step using the
acceptance-rejection probability

min
⇢

1,
p(yi|✓⇤i )p(✓⇤i |µk, �k)

p(yi|✓i)p(✓i|µk, �k)

�
, (105)

where ✓⇤i corresponds to a sample obtained from a Gaussian kernel
centered on ✓i. Note that while the variance 1/(n + 1)� is used when
drawing a sample of the population average, the conditional p(✓i|µ, �)
is a Gaussian density with variance 1/�.
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Chapter	2	

A prominent approach to model brain activity that has promising 
applications in computational psychiatry is DCM. The goal of this 
framework is to device physiological models of experimental 
measurements (such as eye movements (Adams et al., 2016), galvanic 
skin conductance (Bach et al., 2010), EEG (Kiebel et al., 2009), or fMRI 
(Friston et al., 2003)) that can be probabilistically fitted to experimental 
data. In contrast to most physiological models in neuroscience, DCMs 
are used both as forward models that generate predictions and 
simulations, as well as the backbone of statistical inference from 
experimental data to their putative biological causes. This is done, 
vaguely speaking, by minimizing the difference between simulations of 
the forward model and experimental data. 

The ambitious program of using physiologically plausible models both 
as forward and backward models comes at the price of high 
computational and mathematical complexity. This chapter presents an 
engineering solution to these two challenges that relies on specialized 
hardware to increase the number of concurrent simulations that can be 
generated from a model. This is interesting in the scenario presented in 
the Chapter 1: the computation of the model evidence using TI in both 
hierarchical and non-hierarchical models. Thereby, an efficient 
implementation of DCM that can generate large numbers of simulations 
in parallel renders the utilization of the methods presented in Chapter 2 
feasible. We compare TI to other inference methods in Chapter 3. 

This chapter has been published as Aponte, E. A., Raman, S., Sengupta, 
B., Penny, W. D., Stephan, K. E., & Heinzle, J. (2016). mpdcm: A toolbox 
for massively parallel dynamic causal modeling. Journal of neuroscience 
methods, 257, 7-16. It is a verbatim copy of the document: 
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a b s t  r a c t

Background:  Dynamic  causal  modeling  (DCM) for fMRI  is an  established  method for Bayesian  system
identification and  inference  on  effective  brain  connectivity. DCM  relies  on  a biophysical  model that  links
hidden neuronal  activity  to measurable BOLD signals.  Currently, biophysical  simulations  from  DCM  con-
stitute  a serious computational  hindrance.  Here,  we  present Massively Parallel  Dynamic  Causal  Modeling

(mpdcm),  a toolbox  designed  to address  this  bottleneck.
New method:  mpdcm  delegates the generation  of  simulations  from DCM’s biophysical  model to  graph-
ical processing units (GPUs).  Simulations  are  generated  in parallel  by  implementing  a  low storage
explicit  Runge–Kutta’s scheme on  a GPU architecture. mpdcm  is  publicly available  under  the GPLv3
license.
Results:  We  found  that  mpdcm efficiently generates  large  number  of  simulations  without compromis-
ing their  accuracy.  As  applications of mpdcm, we  suggest two computationally  expensive  sampling
algorithms:  thermodynamic  integration  and  parallel  tempering.
Comparison  with existing  method(s):  mpdcm  is up  to two  orders  of  magnitude  more  efficient  than  the
standard implementation in  the software  package  SPM. Parallel tempering  increases the mixing proper-
ties of  the  traditional  Metropolis–Hastings  algorithm  at low computational cost given  efficient, parallel
simulations  of  a model.
Conclusions:  Future applications of DCM will likely  require increasingly  large  computational  resources,
for example,  when  the  likelihood  landscape  of  a  model is  multimodal,  or when implementing  sampling
methods  for multi-subject  analysis.  Due  to the  wide availability  of  GPUs, algorithmic  advances  can  be
readily  available in  the absence  of  access to large  computer  grids, or when there  is a lack  of  expertise to
implement algorithms  in  such  grids.

© 2015  Elsevier  B.V. All rights  reserved.
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1. Introduction

Dynamic causal modeling (DCM) (Friston et al., 2003) is a  widely
used Bayesian framework for  inference on effective connectiv-
ity from neurophysiological data. When applied to fMRI, it is a
hierarchical generative model that integrates an explicit model
of neuronal population interactions with a biophysical model of
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the regional blood oxygen level dependent (BOLD) signals caused
by those interactions. Currently, parameter estimation in  DCM
rests on a variational Bayesian scheme which maximises nega-
tive  free energy (Friston et al., 2003, 2007). Alternative inference
techniques have been proposed, for example, Markov chain Monte
Carlo (MCMC) sampling (Chumbley et al., 2007; Raman et al.
unpublished results, see also  Sengupta et al., 2015 for an MCMC
approach to DCM for  electrophysiological data). However, varia-
tional Bayes has not yet been replaced as the method of choice
for inference in DCM. One reason for this is computational effi-
ciency: sampling methods are limited by the high computational
cost of evaluating DCM’s likelihood function, because this requires
integrating the neuronal as  well as  the hemodynamic model equa-
tions in DCM. (For simplicity, in the following we  use the term
“simulations” to refer to integration of the model’s state equa-
tions.)

In this paper, we introduce Massively Parallel Dynamic Causal
Modeling, mpdcm, a toolbox designed to overcome some of the
computational limitations of DCM. mpdcm delegates the simu-
lations of DCM’s biophysical model to graphical processing units
(GPUs). The goal of our toolbox is to facilitate the implementa-
tion of algorithms for statistical inference in DCM that require
large numbers of simulations, as  in the case of multi-subject hier-
archical models (Raman et al. unpublished results) or sampling
methods. mpdcm is mostly written in  the C  programming lan-
guage and is accompanied by a MATLAB interface compatible with
Statistical Parametric Mapping (SPM). It  is available under the
GPL license as part of the open source TAPAS software at www.
translationalneuromodeling.org/software.

There is a growing interest in  using GPUs in the context of imag-
ing (Shi et al., 2012; Eklund et al., 2013)  and particularly in the
field of MRI. For example, Hernandez et al. (2013) used a massively
parallel algorithm to accelerate a  sampling method for diffusion
weighted imaging. In the case of fMRI, mature toolboxes covering
several aspects of the analysis pipeline, including coregistration and
statistical inference, are available (Eklund et al., 2014). Ferreira da
Silva (2011) used GPUs to apply Bayesian inference to  BOLD time
series modeling using sampling methods. Recently, Jing et al. (2015)
proposed to accelerate group ICA by using GPUs, a  method integrat-
ing a toolbox originally developed for EEG (Raimondo et al., 2012).
In the context of DCM, Wang et al. (2013) presented a  massively
parallel implementation of DCM  for event-related potentials. This
implementation aimed mostly at speeding up the variational EM
algorithm for inference in DCM for EEG. Here, we  propose a more
general approach in the context of DCM for fMRI that can not only
increase the efficiency of the variational EM algorithm, but also
the efficiency of, for  example, sampling methods. An introductory
account of parallel programming can be found in  Suchard et al.
(2010).

In the following, we first briefly introduce DCM  and  present
our toolbox. We then compare the accuracy and performance of
mpdcm to the standard implementation in SPM. We  also showcase
the implementation of path sampling and parallel tempering, two
computationally expensive sampling algorithms that can be  eas-
ily optimized with mpdcm.  Finally, we discuss future applications,
extensions, and limitations.

2. Methods

2.1. Dynamic causal modeling

Dynamic causal models describe continuous time interactions
between nodes (neuronal populations) in a pre-specified neural
network. The time course of neuronal activity is modeled bythe

bilinear differential equation

ẋ = Ax +

N
∑

n=1

ui, Bix + Cu,  (1)

where x is a vector of neuronal states, u is an N  dimensional vector
of inputs to the network, and A,  B, and  C  are matrices that represent
the connection strengths between nodes and the influence of exter-
nal inputs on nodes and connections. The evolution of x  therefore
depends on both the interactions between nodes and experimental
inputs. In  order to predict measurable signals, DCM for  fMRI also
invokes a  biophysical model, which consists of weakly nonlinear
differential equations that link neuronal activity to BOLD signals,
including an extended Balloon model (Buxton et al., 1998; Friston
et al., 2003; Stephan et al.,  2007).  Briefly, the BOLD signal is modeled
as a nonlinear function of the venous compartment volume and the
deoxyhemoglobin content (Stephan et al., 2007). The venous com-
partment is assumed to behave as a balloon, where the total blood
volume is the difference of the blood inflow and outflow. The deoxy-
hemoglobin content is simply the difference of (1)  the product of
the blood inflow and oxygen extraction rate and  (2)  the outflow
rate times the deoxyhemoglobin concentration. Importantly, blood
inflow into the venous compartment is triggered by putative brain
activity x. For a detailed treatment see Stephan et al. (2007). Because
the Balloon model comprises nonlinear differential equations that
cannot be solved analytically, numerical integration is necessary
to generate predictions from the model. To simplify notation from
here on, we  refer to all states (neuronal or  hemodynamic) as x and
the state equations as  f,  such that:

ẋ = f
(

x, u, !
)

, (2)

where u  are inputs, and ! are subject specific parameters, including
matrices A,  B and C, as  well as several hemodynamic parameters.

States x are linked to observable quantities via a forward model
that we  denote by the function g:

ŷ  = g
(

x, u, !
)

, (3)

where ŷ is the predicted BOLD signal.
DCM can be  used in two  different ways: identification of system

structure and parameter estimation. The former requires model
comparison, i.e., determining which model, from a predefined set
of alternatives (model space), best explains a set of empirical obser-
vations. Typical differences between models include the absence or
presence of certain connections or modulations thereof (entries in
matrices A or  B). The latter consists in determining the posterior dis-
tribution of the parameters !  given experimental observations and
a  model (Penny et al., 2010). Summary statistics of these distribu-
tions can be used, for example, as  dependent variables in  statistical
tests, which can indicate the effect of a  treatment or condition on
effective connectivity.

Model  comparison (Penny et al., 2004)  and parameter estima-
tion (Friston et al., 2003) rest on the generative nature of DCM.  A
generative model requires two things: first, a likelihood function
that defines the probability of observed data  given a  prediction or
simulation of the model. Model predictions are fully specified by
the parameters !, experimental input u, the neuronal state equa-
tion f  (x, u, !), and  the forward model g (x, u,  !). Second, a generative
model requires a prior distribution of the parameters !, i.e., the
probability of !  before any observation. The relationship between
these elements is determined by  Bayes’ formula:

p
(

! |y, m
)

=
p
(

y
∣

∣!, m
)

p
(

! |m
)

p (y |m )
,  (4)

where y is a set  of experimental observations, !  are the param-
eters, and m  is the model being evaluated. In  Bayesian statistics,
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Fig. 1. Graphical representation of  the generative model underlying DCM. All  dis-
tributions are  Gaussian. Experimental data y is  modeled as  being conditionally
dependent on the model parameters !  and a region-wise noise scaling parameter ".

parameter estimation (model inversion) is equivalent to computing
the posterior probability p

(

! |y,  m
)

. Identification of system struc-
ture can be achieved by comparing different models on the basis
of their marginal likelihood or model evidence p (y |m ) (Kass and
Raftery, 1995; Penny et al., 2004). This quantity is the probability
of a  set of observations y given a model m after marginalizing over
parameters !. Comparing models via their marginal likelihood is
an alternative or  complementary approach to cross-validation and
other methods routinely used in  frequentist statistics for  model
comparison (Kass and Raftery, 1995; Gelman et al., 2003; MacKay,
2003)

DCM is defined by  a Gaussian noise model and Gaussian priors
(Friston et al., 2003).  Assuming that there are r = 1,  .  .  .,  R nodes or
brain regions, the model is specified by the joint probability

p
(

y1, .  . .,  yR

∣

∣!, "1, .  . ., "R, m
)

= p
(

! |m
)

R
∏

r=1

p
(

yr

∣

∣!, "r , m
)

p ("r |m ) , (5)

p
(

yr

∣

∣!, "r ,  m
)

=  N
(

yr |g
(

xr, u, !
)

,  "− 1
r I

)

,  (6)

p
(

! |m
)

= N
(

!
∣

∣#!, $2
! I

)

, (7)

p (ln "r |m ) =  N
(

ln "r

∣

∣#", $2
"

)

, (8)

where N  denotes the Gaussian probability density function, yr

corresponds to the time series extracted from brain region r, "r

corresponds to a  region-specific scaling factor of the covariance of
the noise of the observed BOLD signal, and I is an identity matrix
(assuming temporal auto-correlation in  the BOLD signals has been
removed by whitening). A graphical representation of the model is
presented in Fig. 1.

In summary, classical DCM for fMRI assumes a bilinear model
of the interactions between brain regions and a  nonlinear model
of the ensuing BOLD signal. Simulations of the model are used to
construct a  likelihood function by assuming that the observed BOLD
signal is Gaussian distributed around the predicted signal. Given
the nonlinear model of the hemodynamics that cause the BOLD
signal, predicting data points requires numerical integration of the
differential Eq. (2).

The main computational hurdle for DCM is that it requires the
simulation of predicted BOLD signals. The goal of mpdcm is to
accelerate the numerical integration of the biophysical model of
DCM by exploiting the computational power of GPUs. Here, we
optimized only the generation of biophysical simulations, because
the computational costs of DCM are mostly incurred by  the simu-
lation step. This implies that mpdcm can be used to optimize any
inference algorithm that relies on a model with the same likelihood
function, independently of any other aspects of the model. In the
next section, we briefly present the implementation details of our
toolbox.

2.2. Massively parallel simulation of DCMs

The  temporal integration of DCM’s biophysical model on
massively parallel architectures is accompanied by three main chal-
lenges: First, the problem is iterative in  nature. This property forces
a serial implementation of the time updates and imposes a ceil-
ing to the performance gains achievable. Thus, part of our goal
was to exploit parallelizations on  each update step to minimize
the serial component of the algorithm. Second, the integration
of DCM’s dynamic system cannot be rendered into the frame-
work of single instruction/multiple data  paradigm, where GPU
architectures excel, because each state of the model evolves accord-
ing to different dynamics. Third, connectivity between areas and
the dynamics of the states require high levels of communica-
tion between threads and thus increase the effect of memory
latencies.

We  implemented two integration schemes in mpdcm.
First, we implemented an integrator based on Euler’s method
(Butcher, 2008),  which approximates x  at time t + h  through the
equation:

xt+h = xt +  h  f
(

xt, ut, !
)

. (9)

Euler’s integration scheme does not require the storage of any
intermediate result between iterations and hence has low memory
requirements. Although memory is nowadays often not a  major
concern in CPU-based computations, memory access and size are
usually the main bottlenecks for GPU-based computations. The
advantages of Euler’s integration come at the price of reduced
accuracy and, more importantly, possible accumulation of errors.
In order to reduce these inaccuracies, we  also implemented a
fixed step sized Runge–Kutta scheme of fourth order (Butcher,
2008).  This standard technique uses a linear combination of dif-
ferent, iterative evaluations of f to approximate the dynamics of
x. Runga–Kutta’s method requires four times more floating point
operations that cannot be parallelized and, more importantly, twice
as much memory for the storage of intermediate results. In  order to
reduce the memory needed to store intermediate steps, we imple-
mented a  modified version of Runge–Kutta’s method (Blum, 1962).
This modification takes advantage of linear dependencies between
the coefficients of f to reduce the number of required registers for
each state variable from four to  three registers. Both integration
methods are compared in  Section 3.

In our GPU implementation, we  exploited three sources of
parallelism. First, simulations for systems with  different sets of
parameters ! or inputs u can be computed in  parallel. As  it will
become clear in the next section, several applications require sim-
ulations from the same model with different parametrizations.
Second, the update of each node of the network can be per-
formed in parallel. Finally, because f  is a  multivariate function,
its evaluation in each  dimension can be parallelized. Similarly,
we parallelized the evaluation of the forward model g  for each
region.

An important consideration in our implementation is mem-
ory access. In contrast to CPUs, GPUs have only a very limited
amount of fast memory that can be shared between threads in
a block. Currently, a single multiprocessor has by  default access
to 48 kb of high latency shared memory, and  access to a high
latency global memory of several gigabytes. In mpdcm, the exper-
imental inputs u are loaded to global memory and kept there,
while model parameters are stored in  shared memory. States are
stored in  shared memory, and predicted output is stored in global
memory and transferred to the CPU memory after execution. This
implies that each time step requires the access to  slow global mem-
ory.

In Algorithm 1 we present pseudo code of our implemen-
tation of Euler’s integration method. Several details have been
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left out in order to clarify the main aspect of the implemen-
tation. Euler’s method can be easily extended to accommodate
the Runge Kutta’s fourth order method. The implementation of
the Runge Kutta’s algorithm is described in the supplementary
materials.

Algorithm 1:

Requires: itheta—array of pointers to model parameters
Requires: ntheta—number of  elements of  itheta.
Requires: iu—array of experimental inputs.
Requires: iy—arrays of pointers to predicted signals.
Requires: nt—total number of  integration steps.
Requires: dt—1 over sampling rate (integer)
Requires: h—time constant.
Requires: nregions—number of  regions.
Requires: NUM SM PROCESSORS—number of  streaming multiprocessors.
Requires: MAX  THREADS—maximal number of  threads supported by each

multiprocessor.
Requires: MAX  NUM NODES—maximal network size supported.
1:  Allocate shared float array buf0 of size MAX NUM NODES * 5.
2:  Allocate shared float array buf1 of  size MAX NUM NODES * 5.
3:  Allocate local pointer to model parameters theta.
4: Allocate local pointer to float  array y.
5: Allocate local pointer to float  array u.
6:  nblocks = NUM SM PROCESSORS * (MAX THREADS/(MAX NUM  NODES * 5))
7: Set thread block size to (MAX THREADS, 5).
8:  Set grid size to (nblocks, 1).
9:  l = blockId . x  * (MAX NUM NODES/nregions) +  (threadId . x/nregions)
10: while l  <  ntheta in parallel do

11: inrange =  threadId . y  <  nregions * (MAX NUM THREADS/nregions)
12: nlow =  nregions ∗  (threadId.y/nregions)
13: nhigh = nlow + nregions
14: theta =  itheta[l]
15: u = iu[l]
16: y = iy[l]
17: for t  =  0 to nt −  1 do

18:  for  i = 0  to  MAX NUM NODES −  1  in parallel do

19:  for j  = 0 to  4 in  parallel do

20: if  inrange then

21:
buf  1 [i,  j] = buf 0 [i,  j] + h ∗  fj(buf 0 [nlow : nhigh, 0 : 4] , theta, u [nt] , i)

22:  end if

23: end for

24:  synchronize threads
25:  if nt  % dt =  =0 and inrangeand threadId . y =  =0 then

26:  y[nt/nd, threadId.x%nr] = g(theta, buf 0 [i,  0  : 4])
27: end if

28:  end for

29: Swap buf0  and buf1
30: end for

31:  l = l + nblocks *  (MAX NUM NODES/nregions)
32: end while

We  exploited three levels of parallelization. First, several sim-
ulations can be performed in parallel (line 10). Second, the state
equations of each node are computed in  parallel (line 18–19). Cru-
cially, by setting MAX  NUM NODES to a  multiple of the minimal
warp size, different thread warps are assigned to  the evaluation of
different state equations (line 19). Importantly, to maximize occu-
pancy, the number of blocks is based on the maximal number of
possible threads that can be hold by  each streaming multiproces-
sor (line 6). Further implementational details are omitted here for
clarity.

2.3. Comparing simulation accuracy

We verified the accuracy of Euler’s and  Runge–Kutta’s method
by comparing simulations from mpdcm against simulations from
SPM’s function spm int  J.m, which was introduced for nonlinear
DCMs (Stephan et al., 2008). All results are based on SPM8, revision
5236. The implementation in  spm int J.m uses a local linearization
of the dynamics of x  (Ozaki, 1992). The update of x  is given by

xt+h = xt + J− 1
(

ehJ −  I
)

f
(

x, u, !
)

,  (10)

Fig.  2.  Exemplary DCM network. Solid arrows represent positively signed (exci-
tatory) connections. Broken arrows correspond to negatively signed (inhibitory)
connections. Self-inhibitory connections are not displayed. Inputs u1 and u2 acti-
vate directly only nodes 1 and 2,  and modulate the connections between nodes 1
and  4 and between nodes 2  and 3.

where J is the Jacobian of f  with  respect to x, and  I is the iden-
tity matrix. Although this scheme is a highly accurate method, it
requires the computation of the Jacobian of f,  one evaluation of f,
and one matrix exponentiation per update.

To evaluate the three integration schemes, five sets of model
parameters of a six node network were drawn randomly. Fig. 2
displays the structure of the network. We assumed a  TR of 2.0 s.
The inputs u had a sampling rate of 8.0 Hz and  consisted of regu-
lar box car functions with a  width of 20.0  s. Box car functions are
commonly used to model DCM inputs as they represent categorical
experimental conditions. The  step size  h  used for all simulations
was  0.125 s, therefore matching with the sampling rate of u. A total
of 512 scans were simulated.

2.4. Comparing simulation performance

We compared the performance of mpdcm against the default
integrator in  SPM used for  inference. This method is implemented
in spm int.m. It  relies on a linear approximation of f

ẋ = f
(

x, u, !
)

≈  J (u) x. (11)

Using the same numerical integration scheme as  in Eq. (10),
which effectively corresponds to the analytical solution assuming
linearity of f  with respect to  x,  the iterative updates are given by

xt+h = ehJ(ut )xt. (12)

Because J (u) needs to be recomputed only when u changes,
increasing the sampling rate of u when u  is composed of only step
functions does not change the results nor the number of com-
putations necessary to generate simulations (Friston, 2002).  This
method is a compromise between computational time and accu-
racy, as it approximates f  with  a linear system, but  preserves the
nonlinearities in  g.

To further evaluate the performance gains provided by mpdcm,
we also implemented a highly optimized, multithreaded C  version
of Euler’s method and compared it against mpdcm.  This func-
tion is also available as  part  of our toolbox. We  use openmp to
multithread our implementation at the level of simultaneous sim-
ulations. Although a  more fine-grained parallelization is possible,
for a large number of simulations this simple scheme warrants con-
stant high occupancy, as no synchronization is required. Moreover,
a more fine-grained parallelization would also come at the cost  of
increased latency in  the initialization of parallel threads, a  problem
not found in GPU units (Suchard et al., 2010).

We compared the differences in  timing of a  single simulation
and then proceeded to  test the gains in performance when sim-
ulating several models in parallel. Because SPM’s method lacks
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Fig. 3.  Left: simulated BOLD signal using SPM, Euler and Runge–Kutta fourth order integration methods. Right: The same data zoomed-in in two different intervals. Solid
lines correspond to SPM, broken lines to Euler’s method, and circles to  Runge–Kutta’s method. Differences are  only apparent during transients.

any optimization for parallel simulations, its  computational time
of multiple simulations is simply additive. Thus, we did not apply
SPM’s method to more than one simulation. The experimental input
u used for these simulations had the same parameters as  in the
previous section.

2.5.  Environment

Currently, mpdcm targets Nvidia graphical processing units
and  is written mostly in the C  programming language using the
Compute Unified Device Architecture (CUDA) API. Nvidia GPUS
are off-the-shelf chip sets that make massively parallel architec-
tures affordable for standard desktop computers. mpdcm has no
dependencies on specialized libraries provided by  the manufac-
turer except for the standard C library and the math library.

Simulations were performed on a dedicated machine with a
twelve core AMD  Opteron 6174 processor, a professional Nvidia
Tesla M2050, Linux CentOS 6.5,  and  MATLAB 8.1. mpdcm was
compiled with gcc 4.4.7. The Tesla M2050 has a single precision
arithmetic peak performance of 1030.6 giga floating point opera-
tions per seconds (GFLOPS), and 512.2 GFLOPS for double precision
arithmetic. All GPU and CPU simulations were performed on this
machine if  not indicated otherwise. In order to  investigate the
differences in performance that single and double floating point
representation could produce, some of the simulations were per-
formed on a  machine equipped with an Intel i7 4770k, a Nvidia
Geforce GTX 760, Linux Ubuntu 13.10, gcc 4.8.1 and MATLAB 8.1.
The peak performance of single precision arithmetic of the GTX 760
is 2257.0 GFLOPS and only 94 GFLOPS of double precision arith-
metic. It  is important to notice that our goal was  not to benchmark
the two GPUs, but  to evaluate the performance change produced by
different ratios of single to double precision peak FLOPS. All other
simulations were performed in  single precision, unless otherwise
stated. In the remainder of this paper, we first compare accuracy
and performance gains in  the simulation of BOLD data  in  DCM and
then explore the application of our toolbox for model comparison.

3.  Results

3.1. Accuracy

Fig. 3 shows a fragment of one simulation of the network using
mpdcm and SPM. In this case, the range of the BOLD signals was
[− 5.0, 3.4]. The  absolute difference between the signal simulated

using Euler and Runge–Kutta integration schemes was always
lower than 0.11 (max. mean absolute difference 0.013). Euler’s
method diverged always less than  0.11 from SPM (max. mean
absolute difference 0.013), whereas the Runge–Kutta’s method
diverged less than 4 × 10− 4 from SPM (mean absolute difference
9 × 10− 6). To compare all five sets of random parametrizations, we
computed the variance of the difference between the predicted
signal using Euler’s and SPM’s method, and  Runge–Kutta’s and
SPM’s method as  a  percentage of the total variance of the predicted
signals. For simplicity, the total variance of the signal was  com-
puted using the simulations from SPM. We  found that the variance
of the difference from the predicted signals was  never larger than
0.1% (Euler’s method) and 10− 5 × 0.1% (Runge–Kutta’s method) of
the total variance of the signal indicating that all three integration
schemes resulted in  highly similar simulations, with Runge–Kutta
and SPM yielding virtually identical simulations. Finally, we con-
sidered the effect of floating point number representation on the
simulations. In  order to verify that single precision representation
did not cause any  systematic rounding errors, we repeated the
simulations both under single and double precision and compared
the relative error of the single precision implementation with
respect to the double precision. The relative error was defined as

abs (double (svalue) −  dvalue)

abs (dvalue)
(13)

where svalue and dvalue stand for the values obtained using single
and double precision, respectively. We found that the maximal
relative error did not exceed 2 × 10− 5 for both SPM and mpdcm.

3.2. Performance gains

One of the main reasons for introducing mpdcm was to  increase
performance for costly simulations needed for  inversion of DCM
models. Here, performance on a three and six node network was
assessed  by running 20 consecutive simulations. The median val-
ues were used  as  summary statistics. Only minimal variance in the
execution times was observed. Fig. 4 summarizes the results.

mpdcm can reduce the computation time required for generat-
ing simulations from DCM with respect to SPM by up  to two orders
of magnitude. It  is important to note that although increasing the
sampling rate of the input u has a linear effect on the performance
of mpdcm, it has no effect on SPM’s method. Thus, even though in
practice the sampling rate of the input u  was 16 times larger in the
simulations generated with mpdcm, our toolbox performed bet-
ter while preserving the nonlinearities of f.  The difference between
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Fig. 4. Performance measurements. Left panel: Single simulation. Right panel: Mul-
tiple parallel simulations. The broken and solid lines correspond to DCMs with 3 and
6  nodes, respectively. Colors are matched to the left panel. Vertical axis is  shared
between panels. We  found that mpdcm was  faster integrating a single model (left
panel) than the standard SPM integrator. This advantage scales with  the number
of  regions, as the computation of  f  is  performed in parallel. In  the right panel, the
time required for  performing simulations in parallel is  displayed as  a function of  the
number of simultaneous parallel simulations. mpdcm’s Euler scheme was approx-
imately 10 times faster (9.8 times for a 3  nodes network, and 9.9 times for  a 6  node
network) than the C  implementation when 600 systems where integrated in parallel.

the  GPU implementation and  the multithreaded CPU implemen-
tation is lower, with the GPU Euler’s method being an order of
magnitude faster than a  CPU implementation when 600  simula-
tions are performed in parallel. mpdcm is only marginally faster
than a CPU implementation when a single system is evaluated.

We proceeded to investigate whether the performance of
mpdcm was affected by the floating point number representation
used. In Fig. 5, we compared the performance of mpdcm when
using single and double precision floating point arithmetic in two
different GPUs. In the Nvidia Geforce GTX 760, in the case of the
Euler integrator, double precision was only marginally slower than
single precision. However, double precision representation had a
larger effect on Runge–Kutta’s method. In  particular, we  found that
for 600 parallel simulations, a  double precision implementation
was almost between two  and three times slower than a single
float implementation. This effect disappeared on the Nvidia 2050 M,
where only minor differences between single and double precision
arithmetic were found.

Finally, we considered the increases in  accuracy obtained
as a function of computation time. We  compared Euler’s and
Runge–Kutta’s method by simulating a  six node network with the
same parameters as those used in the previous section. However,
input u was sampled at only 0.5 Hz while the time step h  was var-
ied  from 1.0 s to 0.03514 s. A single simulation and 300 parallel and
simultaneous simulations were compared. The mean absolute error

Fig.  6. Mean absolute error as a function of computation time in seconds.
As  expected, the error of  the Euler method decreased slowly compared to
Runge–Kutta’s method.

was obtained against a simulation using Runge–Kutta’s method
with  a time step of h  = 2− 8.  Results are displayed in Fig. 6.

Please note that these results should be considered only a
rough indication of performance gains. Differences in performance
depend on several parameters, such as the number of nodes, TR,
sampling rates, input and output size and structure, and  hardware.
Also, in the case of CPU implementation the linear increase in  time
can of course be compensated by the use of a larger  number of CPUs.

4. Applications

4.1.  Thermodynamic integration

mpdcm was developed to increase the performance of DCM
in the context of computationally demanding inference problems.
One particularly interesting challenge is the evaluation of the model
evidence or  marginal likelihood of a DCM.

Comparison of alternative DCMs is usually done by  comparing
the marginal likelihood between models given a data set y. This
corresponds to  computing the Bayes factors between models:

p (y |m1 )

p (y |m2 )
=

∫

p
(

y
∣

∣!, m1

)

p
(

! |m1

)

d!
∫

p
(

y
∣

∣!, m2

)

p
(

! |m2

)

d!
. (14)

Although a powerful approach, exact computation of marginal
likelihoods is usually not possible because almost all but  the sim-
plest models lead to  intractable integrals in Eq. (14). For this reason,
approximations such as  the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC) or  the negative free energy are
typically used (Penny et al., 2004). In  addition, several sampling-
based methods have been proposed in the literature to  compute

Fig. 5. Computation time in  seconds as a function of the number of parallel simulations in  two different Nvidia cards. Black and gray lines display DCMs of 3 and 6 regions.
Solid and broken lines display results with double and single precision arithmetic, respectively. The effect of floating point representation was more pronounced in the GTX
760.
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Fig. 7. Normalized power posterior densities p
(

y
∣

∣!, m
)1− t

p
(

! |m
)

/z. The likeli-

hood and prior distributions are Gaussian. The prior distribution of  # is N (0,
√

2).
y  is  a single  observation with y = 2. Eight different values of  t are displayed. As the
temperature decreases, the  posterior distributions’ variance decreases.

the evidence of intractable models (Kass and Raftery, 1995). For
example, the identity
∫

1

p
(

y
∣

∣!, m
)p

(

! |y, m
)

d!  =
1

p (y |m )
, (15)

suggests using samples from the posterior distribution to estimate
the marginal likelihood, an approach called the posterior harmonic
mean estimator. Although an asymptotically unbiased estimator,
this approach has several shortcomings, including a potentially
infinite variance (Raftery et al., 2007). Gelman and Meng (1998)
introduced in the statistical literature an alternative method to
estimate marginal likelihoods called thermodynamic integration,
originally proposed by  Kirkwood (1935). In this approach, the dif-
ference in the normalization constants between two distributions
is computed by constructing a continuous path between them. By
integrating along this path, it is possible to  compute differences in
marginal likelihoods. More formally, thermodynamic integration is
based on the equivalence (or a more general formulation thereof):

ln p (y |m ) =  ln

∫

p
(

y
∣

∣!, m
)

p
(

! |m
)

d!  −  ln

∫

p
(

! |m
)

d! (16)

=

0
∫

1

E
p(y|! )

1− t
p(!)

ln p
(

y
∣

∣!, m
)

dt  (17)

The path between prior and posterior is constructed by  weight-
ing the log likelihood function by  the temperature 1 −  t with t ∈
[0, 1]. A graphical illustration of this path is displayed in Fig. 7.  In
practice this  is implemented by first selecting a finite set of temper-
atures 0 = t1 < t2 < ·  · · < tN− 1, < tN = 1, then drawing samples from the

unnormalized power posteriors p
(

y
∣

∣!, m
)1− t

p
(

! |m
)

, and finally
numerically computing the integral in  Eq. (17) using quadratures.
Although it has been shown that in practice this method has
higher accuracy and precision than alternative sampling methods
(Calderhead and Girolami, 2009),  it  requires evaluating N  different
power posteriors, with its accuracy increasing with N.

Samples from the power posteriors can be obtained using the
Metropolis–Hastings algorithm. In this  case, the likelihood of a
sample drawn from the proposal distribution can be used for the
acceptance step. Since the computation of the likelihood is the most
expensive step, mpdcm greatly diminishes the run time of this
algorithm.

4.2. Parallel tempering

If  thermodynamic integration is implemented using the
Metropolis–Hastings algorithm, it can be extended to improve

the mixing of the Markov chains by allowing parallel chains to
exchange information without changing their stationary distribu-
tion. This method is referred to as “population MCMC”, “replica
exchange MCMC”, or “parallel tempering” (see Sengupta et al.,
2015). The basic intuition underlying this approach is the idea of a
set of Markov chains n  = 1, .  . .,  N  exchanging information in a  way
reminiscent of biological evolution, where chains in the popula-
tion “mutate” and “mate” (Laskey and Myers, 2003). This intuition
is formalized by the product distribution

%1

(

!1

)

%2

(

!2

)

, .  . ., %N− 1

(

!N− 1

)

%N

(

!N

)

,  (18)

where !1,  . . .,  !N represent a  population of parameters. Swendsen
and Wang (1986) originally proposed to condition the distributions
%1, . .  .,  %N with a  temperature parameter in the same way  as in
thermodynamic integration, i.e.,

%n

(

!
)

∝ p
(

y|!, m
)1− tn

p
(

!|m
)

,  (19)

with 0  = t1 < ·  · ·  < tN =  1. In  order to propagate information between
chains, an  exchange operator swaps the parameters !i with !j with
probability:

min
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Since the exchange is reversible, the stationary distribution of
each chain does not change. In practice, samples from each chain
are drawn from the distribution defined in Eq. (18) and then sam-
ples from the population are exchanged according to Eq. (20).
Samples drawn using this method can be used for either param-
eter estimation or for computing the evidence of a model through
thermodynamic integration. Informally, since chains at higher tem-
perature can explore the parameter space more freely, parallel
tempering can dramatically improve the mixing of each particular
chain (Calderhead and Girolami, 2009).

Pseudocode for parallel tempering using mpdcm is provided
in Algorithm 2  (Altekar et al.,  2004). The implementation general-
izes path sampling with independent chains by adding a swapping
step. Using path sampling and  parallel tempering has  already been
suggested in the context of DCM (Sengupta et al., 2015). Our goal
here is to show that these algorithms can be  easily and efficiently
implemented through mpdcm.

Algorithm 2:

Requires: M ≥ 1 (Number of  samples)
Requires: S ≥ 1  (Number of  swaps)
Requires: 0  = t1 ≤  ·  · ·  ≤ tN = 1 (Temperature schedule)
1: for m = 0to M −  1  do

2: for n = 0  to  N −  1 do

3:  Sample !(m)
n from p

(

y|u, !n

)1− tn
p(!n)

4:  end for

5: for n =  0  to N −  1  in parallel do

6: Computel(m)
n = p

(

y
∣

∣u, !(m)
n

)

7: end for

8: for s  =  0 to  S −  1 do

9: Randomly select k with 1  ≤ k ≤ N −  1

with probabilitymin
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p
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, swap

samples !(m)

k
and !(m)

k+1

10: end for

11:end for

12:for n = 0 to  N −  1do

13:Compute cn = 1
M

∑M

n=1
ln l(m)

n

14:end  for

15:return 1
2

∑N− 1

n=1
(tn −  tn− 1) (cn + cn− 1)

Although the computational costs of parallel tempering are sim-
ilar to those of path sampling with independent chains, information
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Fig. 8. Left: Samples from the same posterior distribution using independent chains and parallel tempering. Chains at low and high temperature are displayed in green and
black respectively. Right: Autocorrelation function of the samples. In MCMC, samples are by definition correlated, although their stationary distribution corresponds to the
target distribution. If samples are strongly correlated, more samples are necessary to  estimate the  moments of the target distribution. Since parallel tempering reduces the
correlation between samples, the total number of necessary simulations diminishes. (For interpretation of  the  references to color in this figure legend, the reader is  referred
to  the web version of  this  article.)

exchange between chains makes the implementation of efficient
parallel algorithms in computer grids far more challenging (Li  et al.,
2007). In particular, while path sampling can be implemented with
completely parallel CPUs, parallel tempering requires the synchro-
nization of the chains. Since mpdcm uses a  single CPU and only
the simulations are performed on a GPU, parallel tempering can
be easily implemented. Fig. 8 displays samples of one connectivity
parameter drawn using parallel tempering. The exchange operator
effectively decorrelates samples drawn from each chain, increasing
the statistical efficiency of this method at minimal computational
costs.

Running parallel tempering using a purely CPU implementation
is possible but the computational costs are much larger than with
mpdcm. Assuming a  DCM of 6 regions with  512 volumes, a  total of
100 parallel chains, 40,000 iterations of the MCMC  algorithm, and
counting only the time required to perform simulations—based on
results displayed in Fig. 4, it can be inferred that SPM would require
over 22 days to finish the inversion of one session. For a multi-
threaded CPU implementation in  C, the time required would be
reduced to 6.3 h, and for mpdcm Euler’s method, the time required
would be reduced to 1.1 h.

Both thermodynamic integration as well as  parallel
tempering are implemented in  mpdcm in  the function
tapas mpdcm fmri  estimate.m. Besides these two  algorithms,
we have implemented a maximum a posteriori estimator for single
and multiple subjects and  several other routines specified in the
documentation.

5. Discussion

In this paper, we presented mpdcm, a  toolbox aimed at speed-
ing up simulations from the generative model that underlies
DCM. Our implementation does not compromise the nonlinear-
ities in the model and is nevertheless computationally efficient.
We used two integration methods for generating simulations:
Euler’s method and  a modified Runge–Kutta’s fourth order
method. The two integration schemes did  not strongly differ
from each other with regard to the simulated BOLD signal.
They also did not strongly differ from the SPM’s method based
on Ozaki’s scheme (Ozaki, 1992).  However, they strongly dif-
fered in their performance (Fig. 4). Euler’s method is more

efficient because of the lower number of floating point operations
and reduced memory complexity. Although more stable and pre-
cise methods exist, the characteristics of typical fMRI experiments
and of DCM make Euler’s method an acceptable alternative when
precision is strongly outweighed by the need of a  large number of
simulations. Highly precise simulations can still be generated using
Runge–Kutta’s method without large additional computational
time needed. Performance differences between a multithreaded
CPU implementation of Euler’s method and mpdcm reached one
order of magnitude, similarly to  benchmarks published before for
other algorithms (Lee et al., 2010b).

Higher order integrators were not considered here, as inte-
grators of order 5 or higher increase the memory needs of most
algorithms. Low storage explicit Runge–Kutta methods are avail-
able (Williamson, 1980; Ketchenson, 2010), and we implemented
Blum’s (1962) modified Runge–Kutta’s fourth order algorithm,
which requires only 3 registers for each state variable. Although
not presented here, our toolbox includes an adaptive size integra-
tor based on Bogacki and Shampine (1989) third order, embedded
algorithm. This scheme has  several computational advantages, and
adaptive size integrators tend to outperform fixed step imple-
mentations. However, by  nature, the number of iterations of this
algorithm is unknown at scheduling time, a characteristic that
makes the allocation of GPU resources much less efficient.

The  double precision floating point format as  defined by the
IEEE 754 standard (see Goldberg, 1991)  is the default data type
of several scientific applications. However, it is not always clear
whether the advantages inherent to this format are necessary in
all applications. Double precision floats provide a  dynamic range
of over 600 orders of magnitude, a  range which is not needed in,
for example, brain imaging. Moreover, not all applications require
more precision than a  small number of decimal places, while dou-
ble precision format provides approximately 15 decimal places of
precision. Regarding performance, in the case of ×86 architectures,
double and single precision arithmetic is implemented by  the same
80 bit floating point unit. Therefore, in  ×86  architectures, the main
performance difference between both formats is due to memory
latencies and bandwidth. In contrast to this, in the case of con-
sumer level GPUs the theoretical ratio between peak double and
single precision FLOPS is often close to 1:24 or  1:32. We  found that
double precision arithmetic (compared to single precision) reduced
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performance approximately by a factor of 3 in a GPU with a very
low double to single floating point peak performance ratio  (1:32).
This difference was reduced to roughly 1:2 in a GPU designed for
professional purposes.

The performance comparison between double and  single pre-
cision indicates that mpdcm is largely memory bounded, as the
difference in performance between the double and  single preci-
sion performance are far from the differences between peak FLOPS.
Importantly, we did not find any notable effects of rounding-off
errors in the single precision implementation of mpdcm, with the
highest difference being far below the signal to noise ratio that is
typical of fMRI experiments. Single precision floating point arith-
metic is thus sufficiently accurate and recommended for  mpdcm,
as the effect on the performance of Runge Kutta’s method is sig-
nificant. This is particularly important for consumer-level GPUs,
where the peak single precision arithmetic performance is much
larger than the double precision peak performance.

mpdcm is particularly attractive when several systems are sim-
ulated in parallel, because under those conditions performance
gains of up  to two orders of magnitude with respect to SPM and
one order of magnitude with respect to a  multithreaded C imple-
mentation become evident. In order to  show how to exploit these
large increases in performance, we presented an algorithm that can
be easily optimized with our toolbox. In particular, we presented a
GPU implementation of parallel tempering, a variant of MCMC  that
is known to improve the mixing properties of the Markov chains
of the Metropolis–Hastings algorithm, reducing the computational
costs with respect to thermodynamic integration with independent
chains. Implementing parallel tempering using mpdcm is straight-
forward, as all the parallelization is managed internally at the GPU
level. Although the computational gains obtained through our tool-
box have been illustrated using sampling algorithms, variational
methods that require numerical optimization can also  profit, as
numerical differentiation can be easily implemented in mpdcm
(but see Sengupta et al.,  2014). Moreover, while we stressed here
that mpdcm can generate simulations from models with the same
input and different parametrizations, it also  supports generating
simulations from different models and different inputs. This is
important, as it facilitates inference in  models that incorporate sev-
eral data sets, such as  hierarchical multi-subject models (Raman et
al. unpublished results).

We  have presented two sampling algorithms that exploit the
massive parallelism allowed by mpdcm. Other sampling meth-
ods that make use of parallel simulations have been proposed. For
example, multiple try MCMC  (Liu et al., 2000)  relies on  propos-
ing several samples instead of a  single one, as  usually done in the
Metropolis–Hastings algorithm. More recently, Calderhead (2014)
proposed an algorithm similar in spirit that extends the acceptance
step by using a finite state Markov chain. The algorithms presented
here have the advantage of allowing the estimation of the model
evidence, and, in the case of parallel tempering, improving the
mixing of all the chains. It  is important to note that this type of
algorithms can be potentially combined, in  order to fully exploit the
gains in parallel, simultaneous evaluations of the model. Thus,  par-
allel simulations can be added to increase the statistical efficiency
of an algorithm at a minimal cost.

Several authors have proposed before to use GPUs in the con-
text of MCMC  methods (for a review see Guo, 2012; Suchard et al.,
2010). For example, Lee et al. (2010a) considered the improvement
in mixing rate in Gaussian mixture models using parallel tempering
and found a large increase in statistical efficiency. Jacob et al. (2011)
proposed to use parallelism to increase the efficiency of an indepen-
dent Metropolis–Hastings algorithm. In this variant of MCMC,  the
updates proposed do not depend on the former step of the chain.
Thus, candidate updates can be precomputed in parallel. More gen-
erally, the increased computational power provided by GPU has

opened the door to Bayesian methods based on sampling that were
unfeasible before.

In summary, we envisage that future applications of DCM will
require increasingly large computational resources, for example,
when the likelihood landscape of a  model is multimodal, or when
implementing sampling methods for  multi-subject analysis. Due to
the wide availability of GPUs, algorithmic advances can be readily
available in  the absence of access to large computer grids, or when
there is a  lack  of expertise to implement algorithms in such grids.

Software note

The mpdcm toolbox is available under the GPL license
as part of the open source TAPAS software at www.
translationalneuromodeling.org/software.
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Chapter	3	

In Chapter 2, we presented an implementation of DCM based on GPUs 
that is intended to support TI through population MCMC. In the present 
chapter, we now evaluate the merits of TI with respect to other methods 
to compute the model evidence, including other sampling schemes, as 
well as the VBL algorithm (Friston et al., 2007). The latter is the standard 
method used to compute the model evidence and invert DCMs, and it 
rests on the variational interpretation of Bayesian inference, which we 
discuss in some detail in this chapter. In addition to provide a numerical 
comparison between TI and VBL, we explore their theoretical connection 
from the perspective of statistical physics and thermodynamics, based on 
the classical presentation of (Jaynes, 1957). 

Our main conclusion here is that TI in combination with population 
MCMC, can provide robust estimates of the model evidence that other 
state of the art algorithms cannot deliver. Thus, we argue that despite 
its computational cost, TI should be used when reliable estimates of the 
model evidence are paramount.  

This chapter concludes Part I, in which we explored how to compare 
generative models, from a theoretical but also engineering perspective. 
The next Part is devoted to use the methods presented here to answer 
empirical questions in computational psychiatry through models of eye 
movement behavior. 
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Abstract	

In generative modeling of neuroimaging data, such as dynamic causal 
modeling (DCM), one typically considers several alternative models, 
either to determine the most plausible explanation for observed data 
(Bayesian model selection) or to account for model uncertainty 
(Bayesian model averaging). Both procedures rest on estimates of the 
model evidence, a principled trade-off between model accuracy and 
complexity. In DCM, the log evidence is typically approximated using 
variational Bayes (VB) under the Laplace approximation (VBL). 
Although this approach is highly efficient, it makes distributional 
assumptions and can be vulnerable to local extrema. An alternative to 
VBL is Markov Chain Monte Carlo (MCMC) sampling, which is 
asymptotically exact but orders of magnitude slower than VB. This has 
so far prevented its routine use for DCM. This paper makes three 
contributions. First, we introduce a powerful MCMC scheme – 
thermodynamic integration (TI) – to neuroimaging and present a 
derivation that establishes a theoretical link to VB. Second, we present 
an implementation of TI for DCM that rests on population MCMC. Third, 
using simulations and empirical functional magnetic resonance imaging 
(fMRI) data, we compare log evidence estimates obtained by TI, VBL, 
and other MCMC-based estimators (prior arithmetic mean and posterior 
harmonic mean). We find that, in most cases, model comparison based 
on VBL gives reliable results, justifying its use in standard DCM for fMRI. 
Furthermore, we demonstrate that even for nonlinear models accurate 
estimates of the model evidence can be obtained with TI in acceptable 
computation time. This paves the way for using DCM in scenarios where 
the robustness of single-subject inference becomes paramount, such as 
differential diagnosis in clinical applications. 

Keywords: model evidence, free energy, population MCMC, DCM, 
model comparison, fMRI 
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Introduction	

Dynamic causal models (DCMs; Friston et al., 2003, reviewed in 
Daunizeau et al., 2011) are models for inferring unobservable 
neurophysiological processes – e.g., the effective connectivity between 
neuronal populations – from neuroimaging measurements such as 
functional magnetic resonance imaging (fMRI) or magneto-
/electroencephalography (M/EEG) data. DCMs consist of two 
hierarchically related layers: a set of state equations describing neuronal 
population activity, and an observation model which links 
neurophysiological states to observed signals and accounts for 
measurement noise. Together with a prior distribution over model 
parameters, a DCM specifies a full generative or probabilistic forward 
model that can be inverted using Bayesian techniques. 

Depending on the specific type of DCM, interactions between neuronal 
populations and the generation of measurable signals – e.g., blood 
oxygen level dependent (BOLD) signal in fMRI or scalp voltage 
fluctuations in EEG – are represented by different nonlinear equations. 
These nonlinearities prevent exact analytical inference and require the 
use of approximate or asymptotic inference techniques. To date, 
variational Bayes under the Laplace approximation (VBL; Friston et al., 
2007) has been the method of choice for DCM, partially because of its 
computational efficiency.  

In addition to inference on model parameters, an important scientific 
problem is the comparison of competing hypotheses that are formalized 
as different models. Under the Bayesian framework, model comparison 
is based on the evidence or marginal likelihood of a model. The evidence 
corresponds to the denominator or normalization constant from Bayes 
theorem and represents the probability of the observed data under a 
given model. It is a widely used score of model quality that quantifies 
the trade-off between model fit and complexity (Stephan et al., 2009).  

Unfortunately, in most instances, it is not feasible to derive an analytical 
expression of the model evidence due to the intractable integrals that 
arise from the marginalization of the model parameters. Various 
asymptotical approximations exist, such as the Bayesian Information 
Criterion (BIC; Schwarz et al., 1978) and more recently the Widely 
Applicable Bayesian Information Criterion (Watanabe, 2013). Within 
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the framework of variational Bayes (VB), a lower bound approximation 
of the log model evidence (LME) is obtained as a byproduct of model 
inversion: the variational negative free energy (which we refer to as 
−[

\]
 throughout this paper).  

While highly efficient, model comparison based on the variational free 
energy has several potential pitfalls. For example, under the Laplace 
approximation as used in the context of DCM, there is no guarantee that 
−[

\]
 still represents a lower bound of the LME (Wipf and Nagarajan, 

2009). Furthermore, VB is commonly performed in combination with a 
mean field approximation, and the effect of this approximation on the 
posterior estimates can be difficult to predict (for discussion, see 
Daunizeau et al., 2011). Finally, in non-linear models, the posterior 
could become a multimodal density, a condition that makes difficult to 
apply gradient ascent methods regularly used in combination with the 
Laplace approximation. 

For these reasons, Markov Chain Monte Carlo (MCMC) sampling has 
been explored as an alternative inference technique for DCM (Aponte et 
al., 2016; Chumbley et al., 2007; Penny and Sengupta, 2016; Raman et 
al., 2016; Sengupta et al., 2015; 2016). MCMC is particularly attractive 
for variants of DCM models in which Gaussian assumptions might be less 
adequate, such as nonlinear DCMs for fMRI (Stephan et al., 2008), 
DCMs of electrophysiological data (Moran et al., 2013a), or DCMs for 
layered fMRI signals (Heinzle et al., 2016). MCMC is also useful when 
extending DCM to more complex hierarchical models (Raman et al., 
2016), in which the derivation of update equations for VB becomes 
difficult. MCMC does not entail any assumptions about the posterior 
distribution and is asymptotically exact. However, in practice, its 
computational cost leads to runtimes that are often prohibitively long for 
the datasets and models commonly encountered in neuroimaging. 
Furthermore, in contrast to VB, MCMC-based inversion of generative 
models does not provide an estimate of the model evidence for free. 

While several MCMC strategies for computing the model evidence in 
neuroimaging applications have been explored (e.g., Friston et al., 2007; 
Penny, 2012), one particularly powerful and theoretically attractive 
MCMC variant that has not been investigated in great detail is 
thermodynamic integration (TI) (although see Penny and Sengupta, 
2016). This method, like VB, rests on the concept of free energy and has 
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been proposed as gold standard for model evidence estimation 
(Calderhead and Girolami, 2009; Lartillot and Philippe, 2006). Despite 
strong theoretical advantages, so far, the computational costs of TI have 
prohibited its practical use in neuroimaging.  

This technical note introduces TI to neuroimaging in general and DCM 
in particular, with three distinct contributions. First, we present the 
theoretical foundations of TI and demonstrate its theoretical link to VB. 
Second, we present an efficient implementation of TI that rests on 
population MCMC and parallelization using graphical processing units 
(GPUs). Third, we evaluate our TI scheme using simulations and 
empirical fMRI data. Specifically, we compare LME estimates obtained 
by TI to those by conventional sampling-based estimates of the LME 
(prior arithmetic mean and posterior harmonic mean) and VBL.  

This paper is organized as follows: We begin with a brief review of DCM 
for fMRI to keep the paper self-contained. We then turn to model 
comparison, first reviewing conventional sampling-based estimators of 
the LME and subsequently presenting a derivation of TI that reveals its 
theoretical relation to VB. Using simulated data, we verify the accuracy 
of our TI implementation and its superiority compared to conventional 
sampling-based estimators of the LME. Finally, we compare the ranking 
of competing DCMs by TI and VBL for two empirical fMRI datasets – one 
frequently used dataset (Buchel and Friston, 1997) with nonlinear DCMs 
that may pose a particular challenge for VBL, and a more recent dataset 
(Frassle et al., 2016a).  

Methods	

Dynamic	Causal	Models	

This paper focuses on fMRI data, and we therefore limit our discussion 
of DCM to the generation of BOLD signals (Friston et al., 2003; Stephan 
et al., 2008; 2007). In brief, DCM for fMRI is characterized by two layers: 
first, a set of ordinary differential equations that model the dynamics of 
interconnected neuronal states ^ and local hemodynamic states ℎ. 
Second, the hemodynamic states are entered into a static nonlinear 
observation equation that relates venous blood volume and 
deoxyhemoglobin content to measured BOLD signal changes. In the 
following, we discuss only the most relevant equations, in order to 
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convey an understanding of the type of problem that model inversion in 
DCM implies. 

The general form of the dynamics of the neuronal layer is 

`^

`a

= "(^, b, #
c
), (1) 

where ^ = (^
:
, … , ^

<
) describes the neuronal states of d regions, b =

(b
:
, … , b

e
) represents the time series of f experimental manipulations 

or inputs, and #
c
 the connectivity parameters that determine the 

neuronal dynamics. Using a second order Taylor expansion (see Stephan 
et al., 2008 for details), the dynamics " can be approximated as: 

`^

`a

= g^ +Tb
U
h
U
^

i

U@:

+ Yb +T^
=
j
=
^

k

=@:

. (2) 

The connectivity parameters #
c
 can be divided into four subsets: The 

d × d matrix g describes endogenous connectivity strengths between 
regions. The set of d ×d matrices h = {h

:
,… , h

e
} encodes modulatory 

effects of inputs on connections between regions. The d ×f	matrix	Y 
describes the direct effects of driving inputs on regions. Finally, the 
d × d	matrices j = {j

:
,… , j

<
} denote second-order interactions 

between two regions that affect a third one. Linear DCMs use g and Y 
matrices, bilinear DCMs contain at least one non-zero h matrix, and 
nonlinear DCMs contain at least one non-zero j matrix. Together #

c
=

{g, h, Y, j} fully describe the dynamics of the neuronal layer.  

The hemodynamic model of DCM originates from the Balloon model 
proposed by Buxton et al. (1998) and extended by Friston et al. (2000) 
and Stephan et al. (2007). In brief, it describes how changes in neuronal 
states alter cerebral blood flow, which, in turn, affects venous blood 
volume and deoxyhemoglobin content. The model consists of a cascade 
of deterministic differential equations: 

`ℎ

`a

= o(ℎ, ^, #
R
), (3) 

where ℎ = (ℎ
:
, … , ℎ

<
) denotes four hemodynamic states used to model 

d regions. Detailed equations and the meaning of the hemodynamic 
parameters #

R
 can be found in Stephan et al. (2007). It is worth noting 

that the hemodynamic equations are nonlinear and are solved by 
numerical approximations. 
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Finally, hemodynamic states enter a static nonlinear observation 
equation % with parameters #

q
 that models the BOLD signal !: 

! = %Vℎ, #
q
X + .

r
- + s. (4) 

The term .
r
 is a matrix of confound regressors that accounts for constant 

terms and low frequency fluctuations. The Gaussian observation noise s 
is characterized by the covariance matrix u

v

2:: 

s~d(0, u
v

2:
). (5) 

The precision matrix u
v
 is represented as a linear combination u

v
=

∑ exp(|
N
)}

NN
 . The precision components }

N
 are positive definite and 

serve to account for regional differences in noise variance and temporal 
autocorrelation (Friston et al., 2003). Here, we assume that the time 
series have been whitened and therefore only account for region-specific 
variances. In this case, each }

N
 is a diagonal matrix with diagonal 

elements belonging to region ~ set to 1, and 0 elsewhere.  

To complete the generative model, the prior distributions of the 
parameters � = (#

c
, #

R
, #

q
, -) and hyperparameters Ä need to be 

specified. Here, the priors have been largely matched to SPM8 release 
5236 (http://www.fil.ion.ucl.ac.uk/spm), except for the scaling of the 
prior variance of the coefficients of the confound matrix .

r
, which was 

adapted to the scaling of the data as explained in Appendix  A. All 
parameters’ prior distributions are Gaussian, and when positivity needs 
to be enforced, an adequate transformation function is used. A detailed 
specification of the priors is provided by Sup. Table 1. 

Bayesian	model	comparison	and	selection	

Bayesian inference involves the specification of a probabilistic or 
generative model A with data ! and parameters #. The model has two 
components: the prior density over #, >(#|A), and the likelihood 
function >(!|#,A). These are combined to form the posterior 
distribution using Bayes’ theorem. Conditioning on a model A, the 
posterior distribution is: 

>(#|!,A) =

>(!|#,A)>(#|A)

>(!|A)

, (6) 

>(!|A) = ∫ >(!|#,A)>(#|A)`#. (7) 
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The normalization constant in the denominator, >(!|A), is known as the 
marginal likelihood or model evidence and corresponds to the likelihood 
of the data after marginalizing out the parameters of the model. 

In practice, given the monotonicity of the logarithmic function, either 
the evidence or its logarithm can be used to score a set of candidate 
models A

:
,… ,A

Ñ
 (Bayesian model comparison) and to identify the best 

model within the model space studied (Bayesian model selection; BMS). 
One common metric for assessing the relative goodness of two models is 
the Bayes factor (Kass and Raftery, 1995a): 

h
=,U
=

>( ! ∣∣ A=
)

>V ! ∣
∣ A

U
X

. (8) 

or, equivalently, the exponential of the difference in LME of two models.  

BMS has gained an important role in neuroimaging, not only for DCM 
but also in other contexts requiring model comparison, such as EEG 
source reconstruction  (Henson et al., 2009; Wipf and Nagarajan, 2009), 
or computational neuroimaging (Friston and Dolan, 2010; Stephan et 
al., 2015). Group-level BMS techniques exist which account for 
individual heterogeneity by treating the model as a random variable in 
the population (Rigoux et al., 2014; Stephan et al., 2009). Finally, 
Bayesian model averaging allows one to compute an average posterior 
over models (Penny et al., 2010), weighted by the posterior probability 
of each model. Critically, these approaches rely on an accurate estimate 
of each model’s evidence. 

As mentioned above, except for some special cases, the model evidence 
cannot be determined analytically, and one typically has to resort to 
approximations. One computationally efficient option is VB (for 
textbooks, see Koller and Friedman, 2009; MacKay, 2003), which 
provides a lower bound of the LME. An alternative, which we explore in 
detail here, is MCMC sampling. This family of methods is characterized 
by simulating a Markov process whose stationary distribution 
corresponds to the posterior distribution >(#|!,A) (for a textbook 
reference, see Robert and Casella, 2013). 

In the next sections, we describe standard sampling-based estimators of 
the model evidence and juxtapose these to the variational negative free 
energy approximation in VBL. We do not consider classical 
approximations to the LME such as BIC, since these have already been 
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evaluated in the context of DCM in previous work and were found to be 
less useful than the variational negative free energy (Penny, 2012). 

Prior	arithmetic	mean	estimator	(AME)	

Importance sampling is a Monte Carlo method for approximating the 
expected value of a random variable ℎ(X) under the density > by means 
of an auxiliary density function á(.), which is required to be absolutely 
continuous with respect to > (Robert and Casella, 2013; Def. 3.9), or less 
formally, the auxiliary density á should share the same support as > to 
avoid zeros in the denominator: 

àℎ(^)>(^)`^ = à

ℎ(^)>(^)á(^)

á(^)

`^. (9) 

From the strong law of large numbers, if this expected value exists, the 
process 

lim
ç→é

1

S

Tℎ(^
=
)

>(^
=
)

á(^
=
)

ê

=

, (10) 

converges almost surely to Eq. 9 when the samples ^
:
, … , ^

Ñ
 have been 

drawn from the auxiliary distribution á.  

In order to approximate the model evidence by importance sampling, 
the simplest choice of the auxiliary density is the prior distribution,  
á = >(# ∣ A). This results in the prior arithmetic mean estimator (AME): 

>(!|A) = à>(!|#,A)>(#|A)`#, (11) 

= à>(!|#,A)>(#|A)

>(#|A)

>(#|A)

`# , (12) 

>
ëeí

=

1

ì

T>(!|#
=
,A)

ê

=@:

. (13) 

where samples #
=
 have been obtained from the prior distribution >(#|A). 

Because samples of the likelihood >(!|#,A) can greatly exceed the range 
of double precision floating point numbers, it is necessary to normalize 
the likelihood function in log space. In this case, Eq. 13 can be computed 
using the formula: 

ln >
ëeí

= lnï − ln ì + lnT exp[ln >(!|#
=
,A) − ln ï],

ê

=@:

(14) 
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where ï > 0 is an arbitrary constant. In all analyses reported here, ï	was 
set to max

ò

	 >(!|#
=
, A). 

A serious shortcoming of AME is that in the great majority of situations 
most samples drawn from the prior have very low likelihood. Therefore, 
an extremely large number of samples is required to ensure that high 
likelihood regions of the parameter space are taken into account by the 
estimator; otherwise, the model evidence will be underestimated. 

Posterior	harmonic	mean	estimator	(HME)	

The second choice for the auxiliary density is the posterior distribution, 
which results in the posterior harmonic mean estimator (HME). This 
estimator has received divergent appraisals in the literature as a method 
for computing the LME (for example Kass and Raftery, 1995a, Wolpert 
and Schmidler, 2012). Re-expressing the model evidence, the HME can 
be derived as follows: 
	

	 1

>(!|A)

= à

>(#|A)

>(!|A)

`#,	

= à

>(!|#,A)>(#|A)

>(!|#,A)>(!|A)

`# ,	

= à

>(#|!,A)

>(!|#,A)

`#,	

(15)	

	
>
ôeí

= ö	

1

ì

T

1

>(!|#
=
,A)

ê

=@:

õ

2:

.	 (16)	

Here, samples #
=
 have been drawn from the posterior distribution 

>(#|!,A).  

In order to avoid numerical instabilities, it is again necessary to 
normalize in log space, such that Eq. 16 can be computed using the 
formula 

ln >
ôeí

= ln ì + lnï − lnT exp[−ln >(!|#
ò
,A) + ln ï]

ê

=@:

. (17) 

Here, ln ï was chosen to be the maximum of −ln>(!|#
=
, A). 

A disadvantage of HME is that its variance might be infinite when the 
likelihood function is not heavy-tailed (Raftery et al., 2006), which has 
serious consequences for the convergence rate of a wide variety of 
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models (Wolpert and Schmidler, 2012). A second problem is that the 
samples used for HME are obtained from the posterior distribution only. 
This leads to the opposite behavior as for AME: because the contribution 
of the prior to the LME might not be appropriately accounted for, the 
HME tends to overestimate the model evidence, a behavior that can be 
difficult to diagnose (Lartillot and Philippe, 2006). Several 
improvements of the HME have been proposed to account for this 
shortcoming (for example, Raftery et al., 2006). 

Thermodynamic	Integration	(TI)	

This section introduces TI from a statistical physics perspective, focusing 
on free energy as a concept that has a direct relation to the log model 
evidence in statistics. This provides a link to the variational Bayes 
approach to approximate the log evidence which is used in DCM and 
which is described in the following section. 

Free	energy:	A	perspective	from	physics	

In thermodynamics, the analog of the model evidence is the so-called 
partition function O of a system that consists of an ensemble of particles 
in thermal equilibrium. A classical discussion of the relationships 
presented here can be found in Jaynes (1957) and a more modern 
perspective in Ortega and Braun (2013). For example, the system can 
consist of an ideal monoatomic gas, in which the energy of a single 
particle is a function of its kinetic energy (see Fig. 1). If the system is 
large enough, the energy of a single particle can be treated as a 
continuous random variable. The total energy of such a system can then 
be approximated as the product of the number of particles times the 
probability of a particle being in a certain energy level, times the energy 
associated with that level. 
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Figure 1:. In a monoatomic ideal gas at temperature T, the energy of 
a single particle is a function of its velocity # and mass m. We assume 
that there is a large number of particles, such that their velocity can 
be treated as a continuous random variable. The total energy of the 
system is the expected energy of a single particle times the number 
of particles. It is possible to show that once the system settles in 
equilibrium, the probability that a particle attains a certain velocity 
is Gaussian distribution. Note that at higher temperatures, the 
probability of higher kinetic energies increases, leading to higher 
uncertainty about it, i.e., higher Shannon entropy. 

The internal energy ú corresponds to the expected energy of the system. 
This is given by the potential energy ù associated with each possible 
configuration # that the system can occupy, times the probability û that 
the system occupies that state 

ú ≝ àû(#)ù(#)`# . (18) 

The Shannon entropy ì of û is: 

ì ≝ −àû(#) ln û(#) `# . (19) 

If the system is not perturbed by an external force, the third law of 
thermodynamics prescribes that its entropy can only increase or stay 
constant. Thus, the system is at equilibrium when the associated 
Shannon entropy is maximized, subject to the constraint that the 
system’s internal energy is constant and equal to U, and 

∫ û(#)`# = 1. (20) 

The maximization problem under the above-mentioned conditions can 
be solved through a variational Lagrangian with two constrains 
(represented by the Lagrange multipliers |

:
 and |

†
): 
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	 °

°¢

[− ∫û(#) ln û(#) `# − |
:
(∫û(#)`# − 1) −

|
†
(∫ û(#)ù(#)`# − ú)] = 0.	

(21)	

Noting that 

−

£

£û

àû(#) ln û(#) `# = −1 − ln û(#) , (22) 

−

£

£û

|
:
§àû(#)`# − 1• = −|

:
(23) 

−

£

£û

|
†
§àû(#)ù(#)`# − ú• = −|

†
ù(#). (24) 

Solving the Lagrangian yields 

ln û(#) = −|
:
− |

†
ù(#) − 1, (25) 

û(#) =

1

exp(λ
:
+ 1)

exp−|
†
ù(#) . (26) 

The term exp(|
:
+ 1) is the normalization constant of û(#). The term |

†
 

is an energy/information conversion factor, and constitutes the 
statistical physics’ definition of temperature (Jaynes, 1957, S. J. Blundell 
and K. M. Blundell, 2009 section 4.4): 

1

ß®

≝ |
†
, (27) 

where, ß is the Boltzmann constant. This term is more commonly 
represented with the symbol -, and here we have used the symbol | to 
highlight its derivation as a Lagrange multiplier (Ortega and Braun, 
2013). We can write: 

û(#) =

1

O

exp©−

ù(#)

ß®

™ , (28) 

O ≝ àexp©−

ù(#)

ß®

™`# , (29) 

where O is referred as the partition function of the system. 

In a closed system, [
ô

 is called the Helmholtz free energy, which is 
defined as the difference between the internal energy ú of the system 
and its Shannon entropy ì times the information-energy gain ß®: 

[
ô
≝ ú − ß®ì. (30) 
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Substituting the definition of the internal energy and Shannon entropy 
(Eq. 18 and 19), as well as the definition of q (Eq. 27) into Eq. 30, the 
Helmholtz free energy is 

[
ô
= àû(#)ù(#)`# + ß®àû(#) ln û(#)	 `# . (31) 

= à

1

O

exp ©−

ù(#)

ß®

™ù(#)`# + ß®à

1

O

exp ©−

ù(#)

ß®

™©−

ù(#)

ß®

− lnO™`#, (32) 

= −ß® ln O. (33) 

It readily follows that 

−

[
ô

ß®

= ln O . (34) 

Free	energy:	A	perspective	from	statistics	

The physical concept of free energy described above plays an important 
role in statistics. More specifically, the statistical concept of free energy 
that is analogous to the physical concept arises when considering the 
negative log joint probability – ln >(!, #|A) as proportional to the energy 
function (compare Neal and Hinton, 1998): 

ù(#) = −ß® ln >(!|#,A)>(#|A) = −ß® ln >(!, #|A) . (35) 

Inserting the expression for ù in Eq. 34 into Eq. 28, one can show that 
the equilibrium distribution of the system is the posterior distribution. 
Specifically, the free energy can be written as 

[
ô
= −ß®∫ û(#) ln >(!, #|A) `# + ß®∫ û(#) ln û(#) `#, (36) 

−[
ô

ß®

= ∫ û(#) ln >(!, #|A) `# − ∫ û(#) ln û(#) `#, (37) 

û(#) =

1

O

exp §−

ù

ß®

• =

1

O

exp(ln >(!, #|A) . (38) 

By setting the term ß® to unity in Eq. 37 one can move from a physical 
perspective of free energy (expressed in Joules) to a statistical 
formulation (expressed in information units of bytes in natural base) . 
This is the common convention in the statistical literature, and thereby, 
all quantities become unit-less information theoretic terms. In the 
following, we will follow this convention and, for notational consistency, 
explicitly show the sign of the negative free energy. 

Under the choice of the energy function in Eq. 35, the partition function 
corresponds to the normalization constant of the joint probability 
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>(!, #|A). From this, it follows that the negative free energy is equal to 
the LME: 

−[
ô
= ln >(!|A) . (39) 

For generality, we will treat the free energy as a functional of a possibly 
un-normalized log density, such that 

−[
ô
[ù] = lnàexp−ù(#) `#	 . (40) 

Thermodynamic	integration	

Thermodynamic integration (TI; Kirkwood, 1935, more recently see 
Gelman and Meng, 1998) was initially introduced to compute the 
differences in free energy between two states of a system by constructing 
a smooth transition between them. Here, we focus on the transition 
between energy states corresponding to the log prior density ù

r
(#) =

−ln	 >(#|A) and the log posterior ù(#) = −ln >(!|#,A)−ln >(#|A). 
Under the assumption that ∫ >(#|A)`# =1, and substituting ù

r
 and ù 

into Eq. 39, it follows that 

[
ô
[ù] − [

ô
[ù

r
] = −lnà>(!|#,A)>( #|A)`#	 – lnà>(#|A)`# . (41) 

The goal is to compute the difference in free energy by integrating along 
a piecewise differentiable path connecting prior and posterior. A 
transition between [[ù] and [[ù

r
] can be constructed by the power 

posteriors ù
L
: 

ù
L
(#) = −ln >(!|#,A)

L
− ln >(#|A) , (42) 

with a	$	[0,1], such that ù
:
= ù. Under mild assumptions, it can be 

shown that: 

−ln >(!|A) = [
ô
[ù] − [

ô
[ù

r
], (43) 

= à

≠

≠a

L@:

L@r

[
ô
[ù

L
]`a, (44) 

= à

≠

≠a

L@:

L@r

lnà>(!|#,A)
L
>(#|A) `# `a, (45) 

= à à

>(!|#,A)
L
>(#|A)

O
L

L@:

L@r

ln >(!|#,A) `#`a, (46) 
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= à E[ln >(!|#,A)]
IV#W!, a, AX

L@:

L@r

`a, (47) 

which we refer to here as the fundamental TI equation. In Eq. 47 we 
have used the notation 

O
L
= ∫ >(!|#,A)

L
>(#|A)`#, (48) 

>(#|!, a,A) =

>(!|#,A)
L
>(#|A)

O
L

. (49) 

In practice, the expected value E[ln >(!|#,A)]
I(Ø|∞,L,±)

 can then be 
estimated by sampling from the power posterior 

lim
ê→é	

1

ì

Tln >(!|#
=
,A)

ê

=@:

= E[ln >(!|#,A)]
IV#W!, a,AX

, (50) 

where samples #
=
 have been drawn from >(#|!, a,A). The integral over 

t in Eq. 47 can be computed through, for example, a quadrature rule 
using a predefined set of values for t 	0 = a

r
< a

:
< ⋯ < a

<2:
< a

<
= 1. 

This yields 

1

2

T(a
=¥:	

– a
=
) µE[ln >(!|#,A)]

IV#W!, a
=¥:

,AX
− E[ln >(!|#,A)]

IV#W!, a
=
, AX

∂ .

<2:

=@:

(51) 

The optimal schedule in terms of minimal variance of the estimator and 
minimal error introduced by this discretization in the context of linear 
models has been outlined by Gelman and Meng (1998) and  Calderhead 
and Girolami (2009). 

TI can be seen as a path integral [(o(0)) = [[ù
r
], [(o(1)) = [[ù], 

where o is a function such that 

[
ô
[ù] − [

ô
[ù

r
] = à

≠[

≠o

`o

`a

`a

:

r

= à

≠[

≠o

>(a)`a

:

r

= E ∑

≠[

≠o

∏

I(L)

. (52) 

Here, we have assumed that the derivative SP
SL

= > is a strictly positive 

density over the interval [0,1]. Thus, the selection of an optimal schedule 
is equivalent to the selection of an optimal importance distribution > 
(Calderhead and Girolami, 2009; Gelman and Meng, 1998). Under this 
perspective, TI is an expected value over a set of distributions ranging 
from the prior to the posterior. This is in contrast to AME and HME which 
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represent the opposite extremes of this spectrum (Gelman and Meng, 
1998b; Penny and Sengupta, 2016). 

Notably, the TI equation can also be understood in terms of the 
definition of the free energy by noting that the latter can be written as 
the sum of an expected log likelihood and a cross entropy term 

−[
ô
(a) = aà>(#|!, a) ln 	>(!|#) `# − à>(#|!, a) ln

>(#|!, a)

>(#)

`# , (53)	

−[
ô
(a) = ag(a) − ì(a). (54)	

The term g(a) = −≠[
ô
/≠a is sometimes referred to as the accuracy of the 

model (for example Stephan et al., 2009), while the second term is the 
KL divergence between posterior and prior, also referred to as the 
complexity term. Note that Eq. 54 is typically presented in the literature 
only for the case of a = 1. 

The fundamental TI equation (Eq. 47) and Eq. 54 are closely related as 
represented schematically in Fig. 2. For a given t, the negative free 
energy can be interpreted as the signed area below the curve g(a) =
−≠[

ô
/≠a, whereas the term a × g(a) is the rectangular area below the 

constant line given by g(a). Comparison with Eq. 53 shows that the area 
ag(a) +	[

ô
(a)	is the KL divergence between prior and corresponding 

power posterior.  
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Figure 2:. Graphical representation of the TI equation. The free 
energy is equal to the signed area below g = ≠[

ô
/≠a, and thus the 

signed area represented by g(1) + [
ô

 is equal to the KL divergence 
between posterior and prior. The same relation holds for each a ∈
[0,1].  

This relationship holds because the free energy is a convex function with 
respect to t, or equivalently, A(t) is a monotonically increasing function, 
as it can be shown that 

≠g(a)

≠a	

= Var[ln >(!|#)]
IV#W!, aX

> 0. (55) 

While from a theoretical point of view TI represents a very appealing 
choice for computing the model evidence, its practical utility can be 
limited due to the obvious computational disadvantage of requiring 
samples not just from a single but from an ensemble of distributions (one 
for each value of t in the integration of Eq. 51). Arguably, this 
computational burden has so far prevented routine use of TI in 
neuroimaging. Below, we present an efficient population MCMC 
implementation that uses parallelization and GPUs to overcome this 
bottleneck. 

Variational	Bayes	

Variational Bayes (VB) is a general approach to transform intractable 
integrals into tractable optimization problems. Importantly, this 
optimization method simultaneously yields an approximation to the 
posterior density and a lower bound to the LME.  
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The fundamental equality which underlies VB is based on introducing a 
tractable density q to approximate the posterior >(#|!,A). This leads to 
a similar expression of 

−[
ô
= ln >(!|A) = àû(#) ln >(!|A)

û(#)

û(#)

`# , (56)	

= àû(#) ln

>(!, #|A)û(#)

>(#|!,A)û(#)

`# , (57)	

= àû(#) ln >(!|#,A) `#

EFFFFFFGFFFFFFH

ëIINJº.		ΩccæNΩc∞

− àû(#) ln

û(#)

>(#|A)

`#

EFFFFFGFFFFFH

ëIINJº.		cJ±IPMº=L∞

+ àû(#) ln

û(#)

>(#|!,A)

`#

EFFFFFFGFFFFFFH

íNNJN

. (58)
	

The last term in Eq. 58 is the KL divergence or error between the 
unknown posterior density and the approximate density û. Given that 
the KL divergence is never negative, the first two terms in Eq. 58 
represent a lower bound of the log evidence −[

ô
, and in the following 

we will refer to it as the variational free energy −[
\]

. Eq. 58 can be 
rewritten as 

 −[
ô
− KL(û(#)||>(#|!,A)) 	= −[

\]
	 (59) 

It may seem confusing that the term ‘negative free energy’ is sometimes 
used in the literature to denote the logarithm of the partition function Z, 
as we have done above, and sometimes to refer to the lower bound −[

\]
. 

This is justified because the variational free energy −[
\]

 becomes 
identical to the negative free energy – [

ô
 when the approximate density 

û equals the posterior and hence their KL divergence becomes zero. In 
this special case 

max
¡

−[
\]
[û] = −[

ô
. (60) 

To maintain consistency in the notation, we will distinguish −[
ô

 and 
−[

\]
 throughout the paper. 

VB aims at reducing the KL divergence between û	and the posterior 
density by maximizing the lower bound −[

\]
 as a functional of û: 

−[
\]
[û] = àû(#) ln >(!|#,A) `# − àû(#) ln

û(#)

>(#|A)

`#. (61) 

Different VB algorithms are defined by the particular functional form 
used for the approximate posterior. In the next section, we present VB 
under the Laplace approximation (Friston et al., 2007), as commonly 
used in DCM. 
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Note that one can conceptualize TI as selecting the power distributions 
as the approximate posterior 

û
L
(#) =

1

O
L

>(!|#,A)
L
>(#|A). (62) 

However, instead of directly computing the Helmholtz free energy 
associated with them, the derivatives 

≠[[û
L
]

≠a

, (63) 

are estimated using sampling and are used for numerical integration. 

Variational	Bayes	under	the	Laplace	approximation	for	DCM	

Commonly, in order to maximize −[
\]

, a mean field approximation of û 
is used. In other words, the distribution û is assumed to factorize into 
different sets of parameters, each of which defines a more tractable 
optimization problem. In the case of DCM, û is assumed to have the 
form: 

û(Θ, Ä) = û(Θ)û(Λ), (64) 

i.e., the parameters Θ = (#
c
, #

R
, #

q
, -) and the hyperparameters Λ are 

assumed to be conditionally independent. The functional −[
\]

 can be 
optimized iteratively with respect to Θ and Λ converging to a maximum 
−[

\]
≤ ln >(!|A) (Koller and Friedman, 2009). This mean field 

approximation yields two update equations: 

ln û(�) =	àû(Ä)ln>(!, �, Ä)`Ä + ≈
∆
, (65) 

ln û(Ä) =	àû(�)ln >(!, Θ, Λ)`Θ + ≈
«
. (66) 

where ≈
∆
 and ≈

«
 are constants with respect to � and Ä, respectively. 

Analytical update equations usually require distributional assumptions 
about q (but see instances of “free-form” VB, e.g. Stephan et al., 2009). 
In DCM, it is typically assumed that all terms are Gaussian (but see 
Raman et al., 2016 who used conjugate priors for the noise terms). 

Despite the mean field approximation, the integrals in Eq. 65 and 66 
cannot be solved analytically because of the nonlinearities of the forward 
model (Eqs. 1-4). This problem is circumvented by approximating the 
log of the unnormalized posterior with a second order Taylor expansion 
on a local maximum, or equivalently, the unnormalized posterior is 
assumed to be Gaussian. To obtain a maximum, it is necessary to 
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optimize the objective function ln >(!, �, Ä), usually through a gradient 
ascent scheme (but see Lomakina et al., 2015 for an alternative based 
on Gaussian processes). This approach is called the Laplace 
approximation (Friston et al., 2007) and underlies other methods such 
as BIC (Schwarz, 1978) or a more common approach where the 
normalization constant of an approximate, tractable posterior is directly 
used (Kass and Raftery, 1995b). As a consequence of this approximation, 
the variational free energy is no longer guaranteed to represent a bound 
on the log evidence (Wipf and Nagarajan, 2009). In Appendix 2, we 
present a simplified version of the derivation of the VBL estimate of the 
free energy in Friston et al. (2007) and an explicit expression for the 
accuracy term. 

Implementation	

In this section, we describe the implementation for each of the estimators 
of the LME described above. Open source code is available in the TAPAS 
software package (www.translationalneuromodeling.org/software). 

MCMC	

TI was implemented by obtaining samples from the power posterior 
distributions >

=
(#|!,A) ∝ >(!|#,A)

L
…>(#|A), with 102 = a

r
< a

:
, … ,<

a
<
= 1. The temperature schedule obeyed a fifth order power rule as 

suggested by Calderhead and Girolami (2009). Samples from each of the 
chains were drawn using the Metropolis-Hastings (MH) algorithm, with 
a Gaussian kernel as proposal distribution for the connectivity, 
hemodynamic and forward model parameters (#

c
, #

R
, #

q
). Following 

Shaby and Wells (2010), the covariance of the proposal distribution was 
modified during the burn-in phase to resemble the covariance of the 
posterior distribution. The coefficients of the confound matrix .

r
 (see 

Eq. 4) were sampled using a Gibbs step.  

The hyperparameters Ä were sampled using a ‘pseudo’ Gibbs step, by 
noting that if the prior was defined to be a Gamma distribution, its 
conditional posterior is again a Gamma distribution, from which samples 
can be easily obtained. Thus, one can replace the Gaussian prior of the 
log precision component by a log normal distribution and approximate 
it by a Gamma distribution û(Ä) with matched moments (Raman et al., 
2016), in order to obtain an analytical posterior of the form û(Ä|!, �) ∝
>(!|�, Ä)>(�)û(Ä). This last distribution can be used to obtain samples 
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from Ä. To account for this approximation, a MH step can be used as 
acceptance criterion for each proposed sample Ä∗. The corresponding 
ratio is 

>(!|�, Ä
∗
)>(�)>(Ä

∗
)û(Ä|#, !)

>(!|�, Ä)>(�)>(Ä)û(Ä
∗
|#, !)

=

>(!|�, Ä
∗
)>(�)>(Ä

∗
)>(!|�, Ä)>(�)û(Ä)

>(!|�, Ä)>(�)>(Ä)>(!|�, Ä
∗
)>(�)û(Ä

∗
)

, (67) 

=

>(Ä
∗
)û(Ä)

>(Ä)û(Ä
∗
)

. (68) 

To further enhance the efficiency and convergence properties of the 
algorithm, we adopted a population MCMC approach in which 
neighboring chains were allowed to interact by means of a “swap” 
accept-reject (AR) step (Swendsen and Wang, 1986). In brief, 
population MCMC defines a joint product distribution 

Ã>(#
=
|!, a

=
, A)

<

=@r

=Ã

>(!|#
=
,A)

L
…>(#

=
|A)

O
=

<

=@r

, (69) 

where N is the number of distributions or chains. The goal is to obtain 
samples from this distribution by two types of AR steps: First, local steps 
are used to sample parameters θ

=
 from >(#

=
|!, a

=
, A). Second, samples 

are obtained using the swapping step in which a set of neighboring 
parameters #

=
, #

=¥:
 are randomly chosen and then exchanged between 

chains with probability: 

min(1, (>(!|#
=¥:

,A)
L
…

>(#
=¥:

|A)/((>(!|#
=
,A)

L
…Œœ

	

>(#
=
|A))) . (70) 

This AR step does not change the stationary distribution of any of the 
chains. 

Population MCMC can be easily parallelized (Aponte et al., 2016), as 
each of the chains is independent of the rest of the ensemble. Swapping 
steps need to be performed serially but, assuming that the likelihood and 
prior functions have been already evaluated, this method increases the 
efficiency of the sampling scheme while only inducing negligible 
computational costs (for example Aponte et al., 2016; Calderhead and 
Girolami, 2009). Intuitively, the increase in efficiency is achieved by 
exploring the sampling space in a way comparable to simulated 
annealing, i.e., allowing some of the chains to explore the parameter 
space more freely by relaxing the likelihood function. 

Since TI requires samples from both the prior and the posterior 
distribution, the same sampling algorithm can be used for computing all 



Part	I	–	Chapter	3	

	
	

99	

three sampling-based estimators (TI, AME, HME). This ensures that any 
observed differences between estimators are not simply due to 
differences in the implementation of the samplers. 

We assessed the convergence of our sampling scheme using the Gelman-
Rubin’s potential scale reduction factor (PSRF; Gelman and Rubin, 
1992) as diagnostic. This method tests parameter-wise convergence by 
comparing the variance of segments of the chains. A score, or –— statistic 
below 1.1 is a commonly accepted criterion for convergence. To compute 
this score, the samples of the log likelihood of the first  and last third 
section of each chain after the burn-in phase were compared. 

Variational	Bayes	under	the	Laplace	approximation	(VBL)	

The VBL algorithm used here was the implementation available in the 
software package SPM8 (release 5236), which employs a gradient ascent 
scheme to optimize the marginal distributions û(�) and û(Λ) (Friston et 
al., 2007). This algorithm was initialized at the prior mean of the 
parameters and hyperparameters if not stated otherwise. 

To minimize any differences between our sampling-based DCM 
inversion approach and that of SPM, we used the same 4th order Runge-
Kutta scheme for integrating the DCM state equations (as required for 
evaluating the likelihood) in both TI and VBL. 

Integration	of	the	dynamical	system	

The computationally most intensive part of DCM is the evaluation of its 
likelihood function, because it requires the integration of the neuronal 
and hemodynamic state equations in order to predict the BOLD signal 
given a set of connectivity parameters. Here, we relied on the mpdcm 
toolbox (Aponte et al., 2016) which parallelizes the evaluation of the 
likelihood in DCM in two ways: first, the neuronal and hemodynamic 
states of each region are computed in parallel, i.e., the functions "

=
 and 

%
=
 are simultaneously evaluated region-wise. Second, integration can be 

performed for several sets of parameter values simultaneously. The 
integrator used here was the standard 4th order Runge-Kutta explicit 
method. The numerical accuracy of our implementation was verified in 
previous work (Aponte et al., 2016). 
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Computational	environment	

To provide the reader with an impression of the computation time 
required by TI using the mpdcm toolbox, we report the computation time 
of the sampling algorithm for the DCMs investigated here. A more 
thorough evaluation can be found in Aponte et al. (2016). The 
computation time depends on the exact hardware used and therefore the 
values presented here should only be understood as a rough guide. 
Computation time was measured on a machine with the following 
specification: Ubuntu 15.04, Linux kernel 2.6.32, MATLAB 8.3.0 and the 
CUDA toolkit 8.0. The chip set was an Intel i7-4770K and a NVIDIA GTX 
1080 graphics card. 

Simulations	

Linear	Models	

In order to evaluate the accuracy of AME, HME, and TI for a situation 
where the ground truth is known, we first compared the estimates from 
a Bayesian linear regression model whose evidence can be computed 
analytically. These models are defined with the following prior and 
likelihood functions: 

>(#) = dV#; 0, Π
I

2:
X,

>( ! ∣∣ # ) = d(!; .#, Π
M

2:
),

(71) 

where # is the [> × 1] vector of regression coefficients, ! is the [f × 1] 
vector of data points, . is the [f × >] design matrix, and u

I

2: and u
M

2: 
are the covariance matrices of the prior and errors, respectively. The 
LME is given by 

ln ∫ >(!|#)>(#)`# =	

−0.5ln|Π| − 0.5d ln 29 + 0.5ln|u
M
| + 0.5lnWΠ

‘
W − 0.5!

’
Π
M
! + 0.5	÷

’
Πη (72)	

Π = Π
I
+ .

’
Π
M
., (73)	

÷ = Π
2:
.
’
u
M
!. (74)	

For our simulations, we chose f = 100, u
I

2:
= 16ÿ

I
 and u

M

2:
= 10ÿ

M
, 

where ÿ
I
 and ÿ

M
 are the corresponding identity matrices. The design 

matrix was chosen to have a block structure equivalent to a design for a 
one-way ANOVA with > levels (for the values of > that do not exactly 
divide by f, the excess data points were assigned to the last cell). 
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Synthetic data was generated by sampling from the generative model 
defined in Eq. 68. 

DCM:	Simulated	data	

In the first experiment, we used simulated data from 5 DCMs (linear: 
model 1; bilinear: models 2 to 4; nonlinear: model 5) with two inputs 
(u1 and u2). The DCMs are displayed in Fig. 3, and are available for 
download at https://bitbucket.org/aponteeduardo/aponte_et_al_2016. 
The parameters were chosen to maximize qualitative differences 
between the signals generated from them. The BOLD signal data was 
simulated assuming a repetition time (TR) = 2s and 720 scans per 
simulation. The driving inputs were entered with a sampling rate of 
2.0Ÿ⁄, such that each simulation required 2880 integration steps. 
Simulated time series were corrupted with Gaussian noise yielding a 
signal-to-noise ratio (SNR) of 1.0. Here, SNR was defined as the ratio of 
signal standard deviation to noise standard deviation (Welvaert and 
Rosseel, 2013). This means that our simulated data contained identical 
amounts of noise and signal, representing a relatively challenging SNR 
scenario.  

We generated 40 different datasets with different instantiations of 
Gaussian noise, such that the underlying time series remained constant 
for each model. We then counted how often the data-generating model 
obtained the highest model evidence and compared the ensuing values 
across the different estimators (i.e., AME, HME, TI, VBL). Notably, the 
absolute value of the log evidence of a given model is irrelevant for 
model scoring; instead, its difference to the log evidence of other models 
is decisive.  
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Figure 3: Illustration of the five simulated 3-region DCMs used for 
cross-model comparison. Self-connections are not displayed. The 
variables u1 and u2 represent two different experimental conditions 
or inputs. All models represented different hypotheses of how the 
neuronal dynamics in area x3 could be explained in terms of the two 
driving inputs and the effects of the other two regions x1 and x2. 
Model m1 can be understood as a ‘null hypothesis’ in which the 
activity of all the areas can be explained by the driving inputs. Models 
m2 and m3 correspond to two forms of bilinear effect on the forward 
connection of areas x1 and x2. Model m4 represents the hypothesis 
that input u1 affects the self-connection of area x3 (not displayed). 
Model m5 represents a non-linear interaction between regions x1 and 
x2. Endogenous connections are depicted by gray arrows, driving 
inputs by black arrows, bilinear modulations by red arrows and 
nonlinear modulations by blue arrows 

Empirical	data:	Attention	to	motion	

In order to compare VBL and TI using empirical data, we used the 
“attention to motion” fMRI dataset (Buchel and Friston, 1997) that has 
been analyzed in numerous previous methodological studies (e.g., 
Friston et al., 2003; Marreiros et al., 2008; Penny et al., 2004a; 2004b; 
Stephan et al., 2008). In brief, Buchel and Friston (1997) investigated 
the effect of attention on motion perception; in particular, the authors 
examined attentional effects on the connectivity between primary visual 
cortex (V1), motion-sensitive visual area (V5) and posterior parietal 
cortex (PPC). There were four conditions (all under constant fixation): 
fixation only (F), presentation of stationary dots (S), passive observation 
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of radially moving dots (N), or attention to the speed of these dots (A). 
Four sessions were recorded and concatenated yielding a total of 360 
volumes (®

í
= 40A€, ®– = 3.22€). Three inputs were constructed using 

a combination of the three conditions: €a‹Abob€ = ì + d + g, A›a‹›fi =

d + g, flaa1fia‹›fi = g. Driving inputs were resampled at 0.8Ÿ⁄, requiring 
a total of 1440 integration steps. Further details of the experimental 
design and analysis can be found in Buchel and Friston (1997). 

One reason for selecting this dataset is that Stephan et al. (2008) 
previously demonstrated that a nonlinear model had higher evidence 
than comparable bilinear models (Fig. 4). This case is of interest for 
evaluating the quality of different LME estimators, as one would expect 
that the introduction of nonlinearities represents a challenging case for 
VBL. 

 

Figure 4: Illustration of the four models used in (Stephan et al., 
2008) representing different hypotheses of the putative mechanisms 
underlying attention-related effects in the motion-sensitive area V5. 
The first three models are bilinear whereas the fourth model is a 
nonlinear DCM. Endogenous connections are depicted by gray 
arrows, driving inputs by black arrows, bilinear modulations by red 
arrows and nonlinear modulations by blue arrows. Inhibitory self-
connections are not displayed. V1: primary visual area, V5 = motion 
sensitive visual area, PPC: posterior parietal cortex. 

Empirical	data:	Face	perception	

Additionally, we analyzed fMRI data from a single representative subject 
participating in a face perception paradigm described in detail in Frassle 
et al. (2016a). This dataset differs in complexity from Buchel and Friston 
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(1997) in several ways: it consists of almost three times as many scans 
(940), and the DCMs contain twice the number of regions (6) and nearly 
three times more free parameters (shown in Figure 4, models m1, m2 
and A

‡
 possessed 28 connectivity parameters, model m3 contained 36 

connectivity parameters), and a much lower SNR. This dataset is a useful 
candidate for evaluating sampling methods for inversion of DCMs since 
a previous analysis suggested possible instabilities of the VBL estimates 
for challenging scenarios where the number of network nodes and free 
parameters is high (Frassle et al., 2015). 

In brief, subjects viewed either faces (F), objects (O), or scrambled (i.e., 
Fourier-randomized) images (S) in the left (LVF) or right visual field 
(RVF) in a block design, under central fixation. This study examined 
hemispheric lateralization in the human brain by probing intra- and 
interhemispheric integration in the core face perception network. The 
network comprised bilateral occipital face area (OFA; Puce et al., 1996) 
and fusiform face area (FFA; Kanwisher et al., 1997), serving as the key 
regions for face processing (Haxby et al., 2000), as well as left and right 
primary visual cortex (V1), representing the visual input regions of the 
network. A total of 940 scans were acquired, with TR = 1450 ms. Here, 
we tested the four DCMs displayed in Fig. 5. For all DCMs, non-zero 
entries in the endogenous connectivity (A-matrix) and driving inputs (C-
matrix) were identical. Driving inputs b, representing the visual 
stimulation in either the left or right visual field, entered the 
contralateral V1 and were sampled at four times the frequency of the 
TR; thus 3760 integration steps were performed for each simulation. 
Forward and backward intra-hemispheric endogenous connections were 
assumed between V1 and OFA, and between OFA and FFA. Furthermore, 
reciprocal inter-hemispheric connections were set among the homotopic 
face-sensitive regions. Critically, models differed with regard to the 
experimental conditions that were allowed to modulate both intra- and 
interhemispheric connections, implementing different hypotheses of 
how hemispheric lateralization in the face perception network could 
arise from the functional integration within and between hemispheres. 
A comprehensive description of the experimental design and analysis 
can be found in Frassle et al. (2016b; 2016c). 
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Figure 5: Four different models used in Frässle et al. (2016a, 2016b), 
representing different hypotheses of the putative mechanisms 
underlying hemispheric lateralization in the face perception network. 
Endogenous connections are depicted by gray arrows, driving inputs 
by black arrows, and bilinear modulations by red arrows. Inhibitory 
self-connections are not displayed. V1: primary visual area, OFA: 
occipital face area, FFA: fusiform face area. L: left hemisphere, R: 
right hemisphere. LVF: left visual field, RVF: right visual field, FP: 
face perception. FP+RVF: Face perception and right visual field 
stimulation. FP+LVF: Face perception and left visual field 
stimulation.  
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Results	

Synthetic	data:	linear	models	

In this analysis, we computed the LME of a general linear model (with a 
varying number > of regressors) using TI, AME and HME, and compared 
the results against the analytically computed LME.  

Varying > from 2 to 32 in steps of 2, we repeated the data generation 
process 10 times. For each of these runs, values of the regression 
parameters # were drawn from the prior, and observations ! were 
generated according to the likelihood. The TI approximation to the 
model evidence was computed using · = 64 chains with a 5th order 
annealing schedule. We then computed AME based on the samples from 
the prior density (a = 0), and HME based on samples from the posterior 
(a = 1). Fig. 6 shows the error in the LME estimates as a function of the 
number of model parameters for the three approaches. Consistent with 
previous reports, we found that HME overestimated the LME, while AME 
underestimated it Lartillot and Philippe (2006). Only TI provided good 
estimates over the full range of models. However, for a large number of 
model parameters, we observed a small bias in that TI estimates began 
to slightly overestimate the log evidence. This suggests that our TI 
implementation may require a larger number of chains. 
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Figure 6: Error in estimating the log evidence of linear models for 
three different sampling approaches. The curves show mean and 
standard deviation (error bars) over ten runs at each value of p 
(number of GLM parameters) for thermodynamic integration (TI), 
posterior harmonic mean estimator (HME) and prior arithmetic 
mean estimator (AME). 

Synthetic	data:	DCM	

In a pretesting phase, we found that TI generated stable estimates of the 
LME using 64 chains. All simulations were executed with a burn-in phase 
of 1 × 10

‡ samples, followed by 1 × 10
‡ kept samples. Exemplary run 

times of the algorithm are show in Table 1. 

 

Computation	time:	Synthetic	data	

	 ‚
„
		 ‚

‰
		 ‚

Â
	 ‚

Ê
	 ‚

Á
	

Samples/second	 240.4	 200.1	 200.0	 199.2	 186.9	
	

Table 1: Computational time in simulations per second. Each 
simulation required 2880 integration steps. Simulations were 
performed on a CPU. 

We evaluated the convergence of the MCMC algorithm by examining the 
samples of the log likelihood of all chains. We found that the –— statistic 
was below 1.1 in all but a few instances (less than 0.002% of chains). 
Estimated log model evidences are displayed in Figs. 7 and 8. Consistent 
with the linear model analysis in the previous section, the HME was 

AME 
HME 
TI 
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always higher and the AME always lower than the TI estimate of the 
LME. VBL estimates were clearly close to the TI estimate.  

We then examined how often the data-generating model was identified 
correctly by model comparison, i.e., how often it showed the largest LME 
of all models. Of all estimators, AME failed most frequently to detect the 
data-generating model (Table 2). HME identified the correct model 
more consistently (Table 3). Both VBL and TI displayed a similar 
behavior (Tables 4 and 5), although model A

 
 was identified slightly 

more consistently through VBL. However, as displayed in Fig. 8, 
according to both inversion schemes, the data generating model was 
consistent with the model with the highest LME. 

 

Figure 7: Estimated LME for all models relative to TI when inverted 
with the corresponding data-generating model under ìd– = 1 for 40 
different models. Right panel zooms into the left panel. Red triangles 
correspond to the HME, blue circles to the AME, and black squares to 
VBL. HME was always higher and AME always lower than the TI 
estimate. All LME estimates are shown after subtracting the TI-based 
estimate for the same model.  
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Figure 8: Estimated LME using VBL (Top) and using TI (Bottom). 
The panels display the LME (summed across 40 simulations) for each 
model given data generated by one model (indicated above each 
panel). Results were normalized such that columns (VBL and TI) 
share the same base line and can be directly compared. VBL estimates 
were always higher than TI, although qualitatively the results were 
similar. For both VBL and TI the data-generating model obtained the 
highest LME. 

	

AME:	Synthetic	data	

	 	 Generation	

	 	 ‚
„
	 ‚

‰
	 ‚

Â
	 ‚

Ê
	 ‚

Á
	

In
ve
rs
io
n
	

‚
„
	 39	 14	 10	 34	 29	

‚
‰
	 1	 13	 11	 	 3	

‚
Â
	 	 6	 11	 3	 	

‚
Ê
	 	 3	 4	 2	 5	

‚
Á
	 	 4	 4	 1	 3	

	

Table 2: Cross-model comparison results for AME in the case of 
synthetic data (SNR = 1). The row label indicates the data-
generating model, the column index is the inferred model. 
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HME:	Synthetic	data	

	 	 Generation	

	 	 ‚
„
	 ‚

‰
	 ‚

Â
	 ‚

Ê
	 ‚

Á
	

In
ve
rs
io
n
	

‚
„
	 39	 	 	 	 	

‚
‰
	 	 40	 	 	 12	

‚
Â
	 	 	 40	 	 12	

‚
Ê
	 	 	 	 40	 4	

‚
Á
	 1	 	 	 	 12	

 

Table 3: Cross-model comparison results for HME in the case of 
synthetic data (SNR = 1). The row label indicates the data-
generating model, the column index is the inferred model. 
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VBL:	Synthetic	data	

	 	 Generation	

	 	 ‚
„
	 ‚

‰
	 ‚

Â
	 ‚

Ê
	 ‚

Á
	

In
ve
rs
io
n
	

‚
„
	 40	 	 	 	 	

‚
‰
	 	 40	 	 	 	

‚
Â
	 	 	 40	 	 	

‚
Ê
	 	 	 	 40	 1	

‚
Á
	 	 	 	 	 39	

 

Table 4: Cross-model comparison results for VBL in the case of 
synthetic data (SNR = 1). The row label indicates the data-
generating model, whereas the column index is the inferred model. 

	

TI:	Synthetic	data	

	 	 Generation	

	 	 ‚
„
	 ‚

‰
	 ‚

Â
	 ‚

Ê
	 ‚

Á
	

In
ve
rs
io
n
	

‚
„
	 40	 	 	 	 	

‚
‰
	 	 40	 	 	 	

‚
Â
	 	 	 40	 	 	

‚
Ê
	 	 	 	 40	 2	

‚
Á
	 	 	 	 	 38	

 

Table 5: Cross-model comparison results for TI in the case of 
synthetic data (SNR = 1). The row label indicates the data-
generating model, the column index is the inferred model. 

Empirical	data	

Because our previous results clearly demonstrated the inferiority of the 
AME and HME, in the following, we limit our analysis to TI and VBL.  
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Attention	to	Motion	

For the attention to motion dataset, 16 × 10
Ë samples were collected 

from 64 chains, from which 8 × 10
Ë were discarded in the burn-in phase. 

A summary of the computational times can be found in Table 6. We 
found that, across all four models, only in one chain the PSRF score of 
the samples of the log likelihood was above 1.1, indicating the 
convergence of the algorithm. 

 

Computation	time:	Attention	to	motion	

	 ‚
„
	 ‚

‰
	 ‚

Â
	 ‚

Ê
	

Simulations/second	 1077.4	 1084.7	 1090.3	 1032.3	
 

Table 6: Computational time in terms of simulations per second of 
the sampler used to investigate the models reported in Stephan et al. 
(2008). Each simulation required 1440 integration steps. Simulations 
were performed in GPU. 

Table 7 summarizes the evidence estimates obtained with TI and VBL. 
In comparison to the results reported by Stephan et al. (2009), three 
findings are worth highlighting. First, the VBL algorithm reproduced the 
same ranking of models reported in Stephan et al. (2008), although 
Stephan et al. used an earlier version of the VBL algorithm with different 
prior parameters and a different integration scheme. Moreover, our TI 
implementation produced the same ranking as the one obtained under 
VBL. 

Second, the difference between the VBL free energy estimates and the 
TI estimates varied considerably across models. To investigate this 
variability, we compared the log likelihood of the sample with the 
highest posterior probability (i.e., the MAP) obtained using MCMC and 
the likelihood of the convergence point obtained using VBL, as this term 
explicitly enters the accuracy term. Results are summarized in the lower 
section of Table 7. Again, large discrepancies were clear in model A

‡
 

(>40 log units), and this difference was also observable in the accuracy 
estimates.  
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Attention	to	motion	dataset	

Log	model	evidence	

	 m1	 m2	 m3	 m4	

VBL	 -1790.0	 -1778.6	 -1776.6	 -1774.8	

TI	 -1772.6	 -1761.1	 -1757.8	 -1729.1	

Accuracy	

	 m1	 m2	 m3	 m4	

VBL	 -1547.6	 -1538.5	 -1531.6	 -1530.7	

TI	 -1525.6	 -1520.2	 -1511.8	 -1483.5	

Log	likelihood	at	MAP	

	 m1	 m2	 m3	 m4	

VBL	 -1514.3	 -1505.3	 -1497.9	 -1496.6	

TI	 -1504.6	 -1498.4	 -1490.6	 -1459.4	
	

Table 7: Log model evidence, accuracy and log likelihood at the MAP 
estimate using both TI and VBL.  

 A
:
	 A

†
	 A

Ë
	 A

‡
	

 Stephan	et	al.	2008.	

 0.0	 3.1	 5.6	 13.6	

 VBL	

 0.0	 11.4	 13.4	 15.2	

 TI	

 0.0	 11.5	 14.8	 43.5	
	

Table 8: Results of model comparison, in terms of log evidence 
differences with respect to the worst model (m1), from Stephan et al 
(2008)  
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Third, while VBL detected the most plausible model, the findings from 
this dataset suggest that VBL-based inversion of DCMs might not always 
be fully robust. In particular, the difference between the algorithms 
could be attributed to the VBL algorithm converging to a local 
extremum. To assess the differences between TI and VBL more 
systematically, we repeated the simulations 10 times with different 
starting positions of the inversion scheme, sampled from the prior 
density. Fig. 9 displays the predicted BOLD signal time series and Fig. 10 
the estimated model evidence. VBL estimates of the LME and the 
predictive fits displayed a much larger variance than the TI estimates. 
This difference could be traced back to the estimates of the accuracy as 
shown in Appendix 3. 

	
	

Figure 9. Comparison of 10 fits (MAP) of model m4 between TI and 
VBL for the “attention to motion” dataset from Buchel and Friston 
(1997). Both estimates are qualitatively similar, but VBL fits display 
higher variability. 
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Figure 10: Estimates of the LME attention to motion dataset after 
initializing VBL and TI from 10 different expansion points (yellow 
points) drawn from the prior. TI estimates show much lower 
variability as compared to VBL estimates. The inset on the right panel 
zooms in the TI estimates. 

Face	perception	

For the face perception dataset, the same number of iterations 
(16 × 10

Ë), and discarded burn-in samples (8 × 10
Ë
) were used, but the 

number of chains was increased to 96. This has the advantage of better 
leveraging the parallel architecture of a GPU. Representative 
computation times for the four models are displayed in Table 9. We 
found that for all but 3 chains (<1%), the  –— was below 1.1, indicating 
the convergence of the algorithm. The difference between TI and VBL 
estimates of the LME, accuracy and log likelihood at the MAP are shown 
in Table 10. Again, differences between the estimates were apparent, but 
more importantly there were differences in the actual ranking of the 
models. In particular, while VBL favored model A

:
, TI favored model 

A
Ë
. Interestingly, although the estimates of the LME showed large 

differences, the estimates of the accuracy were similar for the two 
inversion schemes. 
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Computation	time:	Face	perception	

	 ‚
„
		 ‚

‰
		 ‚

Â
	 ‚

Ê
	

Simulations/second	 1182.0	 1216.7	 1171.3	 1184.3	
	

Table 9: Computational time in simulations per second. A total of 
2820 integration steps per simulation were performed in a GPU. 

	

Face	perception	dataset	

	 m1	 m2	 m3	 m4	

Log	model	evidence	

VBL	 -3060.8	 -3088.4	 -3071.6	 -3065.8	

TI	 -3051.5	 -3059.7	 -3032.9	 -3051.8	

Accuracy	

VBL	 -2303.6	 -2313.7	 -2279.6	 -2307.4	

TI	 -2309.9	 -2317.9	 -2279.8	 -2303.2	

Likelihood	at	MAP	estimate	

VBL	 -2223.3	 -2233.3	 -2194.9	 -2226.5	

TI	 -2276.5	 -2281.1	 -2236.5	 -2268.4	
	

Table 10: Log model evidence, accuracy and log likelihood at the 
MAP estimate using both TI and VBL for the four DCMs of the “face 
perception” dataset 

To better understand the observed differences between the algorithms, 
we repeated the simulations 10 times by sampling the starting points of 
the algorithms from the prior, after scaling its variance by 1/√10. The 
scaling was used because of numerical instabilities encountered with the 
VBL algorithm. Results for the LMEs under the different starting 
positions are shown in Fig. 11. Consistent with the attention to motion 
dataset, the variance of the VBL estimates was much higher than the TI 
estimates. 
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Figure 11: Estimates of the LME in the face perception dataset after 
initializing VBL and TI from 10 different expansion points drawn 
from the prior. Clearly, TI estimates show lower variability. The inset 
on the right panel zooms in the TI estimates. 

This was also apparent when inspecting the predicted BOLD signal time 
series from TI and VBL for the model with the highest score (m3) under 
the different initializations of the two algorithms (Fig. 12). Both VBL and 
TI generated qualitatively similar predictive fits; however, TI yielded 
more consistent results, suggesting that gradient ascent optimization 
might lead to highly variable estimates.  
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Figure 12. Comparison of the fits of model m3 in Frassle et al., 
(2016c) for different starting points of the algorithm. Displayed are 
the predicted time course of 6 regions. Although both estimates are 
qualitatively similar, the fits obtained under VBL display a much 
higher variability. 

Discussion	

In this technical note, we have described in detail various options for 
approximating the model evidence of probabilistic generative models. In 
brief, our analyses gave three main results. First, we replicated previous 
reports (for example Lartillot and Philippe, 2006) that HME and AME 
exhibit inadequate performance and are not well-suited for estimating 
the LME. Having said this, it is important to note that variants of both 
estimators have been proposed that aim at solving some of the known 
problems (Penny and Sengupta, 2016). 

Second, TI provided robust estimates of LME, with superior performance 
compared to other estimators. It therefore represents a promising 
method for particularly challenging generative models, such as DCMs of 
electrophysiological data (Penny and Sengupta, 2016; Sengupta et al., 
2016; 2015) or hierarchical models of DCM (Raman et al., 2016). 
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Third, although VBL was robust in most instances, we found evidence 
for variability in the estimates due to local optima in the objective 
function – especially for challenging scenarios where the number of 
network nodes and free parameters is high. While its computational 
efficiency and relatively robust performance justify VBL as a default 
choice for standard applications of DCM for fMRI, sampling-based 
approaches like TI might become the method of choice when the 
robustness and validity of single-subject inference is paramount. For 
example, the utility of generative models for clinical applications, such 
as differential diagnosis based on model comparison or prediction of 
individual treatment responses (Stephan et al., 2017), heavily depends 
on our ability to draw reliable and accurate conclusions from model 
estimates. 

Comparison	VBL	/	TI	

Given the widespread use of VBL, its comparison to TI is of particular 
interest. In simulated data, both implementation yielded similar results 
regarding model estimates and cross-model comparison. More 
specifically, although VBL estimates were higher when compared to TI, 
both methods were qualitatively similar and lead to similar conclusions 
in terms of model comparison.  

For the two empirical datasets tested in this paper, LME estimates 
differed considerably between VBL and TI. For the “attention to motion” 
dataset, this was most likely due to the optimizer used in VBL converging 
to a local optimum. This can be seen by different initializations (i.e., 
starting positions randomly sampled from the prior) generating higher 
variability in the VBL estimates as compared to TI. 

This last observation should be seen in the light of several important 
aspects. First, the VBL algorithm used here is based on gradient 
optimization (Friston et al., 2007), and thus is intrinsically susceptible 
to local minima. This problem can be ameliorated by initializing the 
optimizer from different starting points or using global optimization 
methods (see (Lomakina et al., 2015)). Second, our results are not 
directly comparable to previous findings in the literature (Chumbley et 
al., 2007) as the integrator used here (Aponte et al., 2016) fully accounts 
for the nonlinearities of the Balloon-model. This might result in a more 
difficult posterior landscape than for the integrator routinely used in 
DCM (Friston et al., 2003), which uses several linear approximations. 
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Third, the lower variability of the results obtained using MCMC reflects 
a trade-off between computation time and variance of the estimators. 
More specifically, it is not surprising that a computationally far more 
intensive approach like TI generates more consistent estimates as 
compared to the highly efficient VBL algorithm. Finally, MCMC-based 
methods are also susceptible to failures in convergence, and thus 
sampling does not constitute a universal solution to the variance in the 
estimates. Instead, both VBL and MCMC estimates have to be carefully 
examined for convergence, using over-dispersed initialization points 
(Gelman et al., 2003). 

Thermodynamic	integration	

Thermodynamic integration has received relatively little attention in the 
neuroimaging and cognitive science community until now (but see for 
example (Aponte et al., 2016; Penny and Sengupta, 2016). As 
mentioned before, this is arguably due to the high computational burden 
induced by simulating from an ensemble of chains. Although the TI 
estimator is a computationally expensive method for computing the 
LME, the inherent parallel nature of this technique can be exploited to 
obtain estimates in reasonable time. In particular, as suggested by 
Calderhead and Girolami (2009), combining TI with population MCMC 
tends to increase the efficiency of the sampler and can tackle multimodal 
probability landscapes. This observation has been also reported by 
(Ballnus et al., 2017), which provided benchmark evidence that multi-
chain methods can efficiently explore the posterior landscape of 
dynamical systems comparable to DCM, and that the computational 
burden is offset by increased sampling efficiency. Here, we have shown 
that advances in hardware allow obtaining as many as 10  samples of 
realistic DCMs in only few minutes. Thus, our approach provides an 
alternative to VBL that is available to the community as open source 
software. We anticipate that further advances in sampling algorithms, 
specialized hardware, and software implementations will further reduce 
the computational time required to obtain highly accurate MCMC 
estimates of the model evidence. This will facilitate identification of a 
wide variety of nonlinear models, for which approximate methods as 
VBL are not adequate. Currently, the mpdcm toolbox (Aponte et al., 
2016) supports parallelization both with Nvidia GPUs and 
multithreading in CPUs that does not require specialized hardware.  
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One of the key advantages of establishing an MCMC framework for 
model comparison using TI is the estimation of more complex 
hierarchical extensions of DCM (e.g. (Raman et al., 2016)). While the 
derivation of the VB equations for such an extension is difficult, 
inference using the MCMC framework would be possible. Other 
important applications are cases where a multi-model posterior 
distribution may pose a greater challenge for inference, e.g., due to local 
minima. Examples beyond those discussed above include DCMs for 
layered fMRI (Heinzle et al., 2016) or electrophysiological signals 
(Kiebel et al., 2009) (Penny and Sengupta, 2016) and, in particular, 
conductance-based DCMs (Moran et al., 2013b). Along these lines, it has 
been shown for DCM for EEG that gradient-based sampling-based 
methods outperform other, more conventional techniques, such as the 
Metropolis Hastings algorithm used here (Sengupta et al., 2016; 2015). 
However, note that we have used a combination of different methods, 
such as population MCMC, adaptive MCMC, and Gibbs sampling. 

A promising method to reduce the computational demands imposed by 
TI is the Widely Applicable Bayesian Information Criterion (Watanabe, 
2013). This method combines the observation that, according to the 
intermediate value theorem there exists an optimal temperature a∗ such 
that 

−[
ô
(1) = g(a

∗
) (75) 

Advanced mathematical methods provide a generally valid asymptotic 
approximation 

a
∗
≈ ln

1

fi

(76) 

where n is the number of observations. This asymptotic approximation 
is valid even when a model does not satisfy the regularity conditions 
required by Laplace-based methods and traditional asymptotic 
approximations. This result can be particularly useful in the case of 
hierarchical models in which the computational burden induced by TI is 
still prohibitive. 

Summary	

Here we compared estimates of the model evidence based on VBL and 
TI. Our results suggest that VBL provides comparable results to TI in 
many instances, although it can be susceptible to local minima. 
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Sampling-based methods are computationally much more expensive but 
are less susceptible to the above problems. Both methods should be 
examined carefully for signs of convergence failures. In summary, 
sampling-based approaches have great potential for applications where 
regularity conditions are not satisfied, as in hierarchical models, or when 
the prior density does not satisfy any conjugacy property, and when 
sufficient computational resources are available.  

Software	note	

The method described in this paper is available as part of the mpdcm 
toolbox in the open source TAPAS software 
(www.translationalneuromodeling.org/software). 
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Appendix	

Appendix	1	

In the SPM version used here (5236), BOLD signals ! are rescaled with 
respect to their ℓ

é
 norm, such that 

 W|!|W
é

= 4. (A.1) 

The confound matrix .
r
 usually consists of cosine functions that account 

for baseline effects and low frequency components and can be imagined 
as implementing a noise model of the residuals. We assume N 
observations such that data from a region is ![a], a = 0,… ,d − 1, and 
the components of .

r
= [^

Ï
,… , ^

e2:
]
’, Ì > 0 are 

^
Q
[a] = cos(

29ßa

d

).	

In this case .
r

’
.
r
 is a diagonal matrix. The diagonal elements are given 

by 
	

Tcos §

29*fi

d

•

†
<2:

Ñ@r

=

1

4

T §exp

‹fi*29
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+ exp−
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d

•

<2:
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,	 (A.2)	
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•
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,	 (A.3)	
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Ú	 (A.4)	

	
=

d

2

	 (A.5)	

Thus,	

	
.
r

’
.
r
=

d

2

ÿ.	 (A.6)	

The posterior variance of the regressors conditioned on the predictions 
from DCM, the variance of the error Û

c

†, and the prior variance Û
r
, is  

(Û
c
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.
’
. + Û

r

2†
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Û
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ÿ + Û
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To derive the prior variance of the signal predicted by .
r
-, we note that 

for the predicted signal !: 
	

Ù[![a]
†
] = Ù ıöT -

ˆ
cos

29a*

d

e2:

ˆ@Ï

õ

†

˜,	 (A.7)	

	
= 	Ù ¯ T -

ˆ
-
Q
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29a*

d

cos

29aß

d

e2:

ˆ,Q@Ï

˘.	 (A.8)	

Because the coefficients are assumed to be uncorrelated and to have zero 
mean, it follows that 
	

=	 T ˙fl~(-
ˆ
) cos

†
§
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d

•

e2:

ˆ@Ï

,	 (A.9)	
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Assuming that 2fa/d is an integer, if follows that 
	

= Û
r

†
ö

f

2

− T cos
†
§

29a*

d

•

Ï2:

ˆ@r

õ.	 (A.11)	

Trivially it follows that 
	 Û

r

†
(f − Ì)

2

≤ Ù[![a]
†
] = ˙fl~(![a]) ≤

Û
r

†
f

2

.	 (A.12)	

This constitutes an approximation to the prior variance of the signal. 
Although in the SPM implementation of DCM used here, Û

r

† is set to 10˚, 
here we use a more pragmatic value Û

r
= W|!|W

é

= 4. From Eq. A.12, it 

can be seen that this constitutes a more conservative prior variance than 
the SPM implementation, but still liberal enough to a priori easiliy 
account for the totality of the variance in the data. 

Appendix	2	

The expression for the variational negative free energy can be derived 
by noting that Eq. 61 can be written as an energy term plus an entropy 
term 
	 −[

\]
= E[ln >(!, #)]

¢(Ø)
− E[ln û(#)]

¢(Ø)
.	 (A.13)	

For simplicity, in the rest of this section, we collapse parameters � and 
hyperparameters Ä	 into a `-dimensional vector #, assuming that a 
maximum has been obtained. Also, we assume that all densities are 
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conditioned on model m, and make this assumption implicit. Moreover, 
we assume that the prior distribution of parameters # is a Gaussian 
distribution centered at #

r
 with covariance u

r

2:. 

According to the Laplace approximation, û(#) is a Gaussian distribution 
with mean #∗ = argmax

Ø

>(!, #) and variance 

	
u = −

≠
†
ln >(!, #)

≠#
†

= u
r
−

≠
†
ln >(!|#)

≠#
†

.	 (A.14)	

We denote the negative Hessian of the likelihood or observed Fisher 
information in the following as u

˝
. 

The energy term in Eq. A.13 is approximated using the Laplace method, 
which yields 
	 Ù[ln >(!, #)]

¢(Ø)

≈ ln >(!, #
∗
) −

1

2

E[(#
∗
− #)

˛
u(#

∗
− #)]

¢(Ø)
,	
(A.15)	

		
= ln >(!, #

∗
) −

1

2

a~VuE[(#
∗
− #)(#

∗
− #)

˛
]
¢(Ø)

X,	 (A.16)	

		
= ln > (!, #

∗
) −

1

2

a~(uu
2:
) = ln >(!, #

∗
) −

1

2

`.	 (A.17)	

where a~ denotes the trace operator.  

The last term in Eq. A.13 the entropy of a Gaussian distribution, which 
is given by: 
	

−Ù[ln û(#)]
¢(Ø)

=

1

2

(` ln 29 + 	` − ln|u|).	 (A.18)	

where u is the precision of û. 

Plugging Eqs. A.17 and A.18 into Eq. A.13, the variational free energy is 
given by  
	

−[
\]

= ln >(!, #
∗
) +

1

2

(`	ln29 − ln|u|).	 (A.19)	

The first term on the right of Eq. A.19 can be expanded to obtain the full 
expression: 
	 ln	>(!, #

∗
) = 	ln >(!|#

∗
) + ln >(#

∗
),	 (A.20)	

		
= ln >(!|#

∗
) −

1

2

` ln 29

+

1

2

ln|u
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| −

1

2

(#
∗
− #

r
)
˛
u
r
(#

∗
− #

r
).	

(A.21)	
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where #
r
 and u

r
 are the mean and precision of the prior density, 

respectively. By inserting Eq. A.21 into Eq. A.19, the scheme proposed 
by (Friston et al., 2007) can be written as: 
	

−[
\]

= ln >(!|#
∗
) +

1

2

ln

|u
r
|

|u|

	 −

1

2

(#
∗
− #

r
)
˛
u
r
(#

∗
− #

r
).	 (A.22)	

Although VBL is typically orders of magnitude faster than MCMC 
sampling, it exhibits several limitations: it is susceptible to (i) local 
extrema, (ii) violations of the distributional assumptions imposed on the 
posterior, (iii) violations of the conditional independence assumptions 
of the mean field approximation (see Daunizeau et al., 2011) for 
discussion), and (iv) it is only defined when the Hessian in Eq. A.14 is 
not singular. 

Returning to the connection between TI to VBL, one can write the 
variational negative free energy in terms of an approximate accuracy and 
complexity term (Eq. 58). One observes that the accuracy term can be 
computed as 
	 −[

\]
+ Ìˇ(û(#)||>(#)) = g

\]
.	 (A.23)	

Given a Gaussian prior and posterior, the KL divergence has the 
following analytical form: 
	 Ìˇ(û(#)||>(#))

=

1

2

!ln
|u|
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|

+ a~(u
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u
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+ (#
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(A.24)	

Replacing terms, we obtain 
	 g = Ù[ln >(!|#)]

¢(Ø)
	 (A.25)	

		
≈ A$% = ln>(!|#

∗
) +

a~(u
r
u
2:
)

2

−

`

2

.	 (A.26)	

A more familiar expression for the accuracy can be derived by noting 
that the posterior covariance can be written as the sum of the negative 
Hessian of the likelihood plus the prior covariance, such that 
	

A$% = ln>(!|#
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1

2
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− u
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	 & = a~ §

u
˝

u
r
+ u

˝

•.	 (A.29)	

& is the effective number of parameters proposed by (Moody, 1992) Eq. 
18 and see (Spiegelhalter et al., 2002) Eq. 15 and is commonly used for 
model selection. For example, the Deviance Information Criterion 
(Spiegelhalter et al., 2002) is 
	 jÿY = ln >(!|#

∗
) − &.	 (A.30)	

As a model selection criterion, DIC is motivated by the Akaike 
Information Criterion (ignoring multiplicative factors): 
	 gÿY = ln >(!|#

∗
) − >,	 (A.31)	

Where p is the number of parameters of the model. As the largest 
eigenvalue of u

r
 goes to zero, & → >.  

Appendix	3	

	

Figure 13: Estimates of the accuracy in the attention to motion 
dataset after initializing VBL and TI from 10 different expansion 
points drawn from the prior. 
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Figure 14: Estimates of the LME in the face perception dataset after 
initializing VBL and TI from 10 different expansion points drawn 
from the prior. 
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Chapter	4	

Eye movements are the outcome of the most common decision that 
humans are confronted with: ‘Where should I look at?’ Interestingly, 
several psychiatric and neurological diseases are accompanied by 
changes in eye movement behavior (Hutton and Ettinger, 2006, 
Bittencourt et al., 2013; Terao et al., 2013; Myles et al., 2017). This is 
particularly prominent in patients diagnosed with schizophrenia, who 
display deficits in pursuit (smooth eye movements that track a slowly 
moving target) as well as in the antisaccade task, a psychometric 
paradigm that tests both the inhibition of prepotent responses as well as 
the initiation of voluntary saccades. 

Despite the large body of experimental research in eye movements in 
psychiatry, the biological or computational mechanisms that 
characterize deficits in eye movements are still unclear. This 
circumstance has limited our current understanding of oculomotor 
deficits to phenomenological characterizationss in terms of summary 
statistics. In this chapter, Heinzle, Aponte, and Stephan (2016) present 
a brief review of computational models of eye movements in 
schizophrenia and layout a research agenda for eye movement research 
in computational psychiatry. Two of these topics are pursued in the rest 
of this dissertation: saccadic adaptation, and eye movements in the 
antisaccade task. 

This chapter was published as Heinzle, J., Aponte, E. A., & Stephan, K. E. 
(2016). Computational models of eye movements and their application to 
schizophrenia. Current Opinion in Behavioral Sciences, 11, 21-29. It is a 
verbatim copy of the document: 

 https://doi.org/10.1016/j.cobeha.2016.03.008. 
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Patients with neuropsychiatric disorders, in particular

schizophrenia, show a variety of eye movement abnormalities

that putatively reflect alterations of perceptual inference, learning

and cognitive control. While these abnormalities are consistently

found at the group level, a particularly difficult and important

challenge is to translate these findings into clinically useful tests

for single patients. In this paper, we argue that generative models

of eye movement data, which allow for inferring individual

computational and physiological mechanisms, could contribute

to filling this gap. We present a selective overview of eye

movement paradigms with clinical relevance for schizophrenia

and review existing computational approaches that rest on (or

could be turned into) generative models. We conclude by

outlining desirable clinical applications at the individual subject

level and discuss the necessary validation studies.
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Introduction
Eye movements represent easily measurable behavioural
responses which provide rich information about latent
(hidden) cognitive processes — such as perceptual infer-
ence, learning and decision-making — which are of cen-
tral interest for disease theories of psychiatric disorders.
Additionally, many psychiatric disorders are accompanied
by pronounced eye movement abnormalities (for reviews
see [1–3]). Together with the practical ease of data
acquisition, this makes eye movements of great interest
for translational and clinical applications in psychiatry.

However, the wealth of existing experimental findings
has not yet been translated into diagnostic tools for
clinical practice. For example, while a general deficit of
smooth pursuit eye movements (SPEM) in patients with
schizophrenia allows for a nearly perfect separation of
patients from healthy controls [4], this does not constitute
practically relevant progress: the diagnosis of schizophre-
nia is not a clinical problem; and the diagnostic label
‘schizophrenia’ does not allow for patient-specific predic-
tions due to the heterogeneous nature of this disorder [5].

One strategy to address this is computational psychiatry
[6,7] which strives for understanding the cognitive and
physiological underpinnings of aberrant behaviour by
using mathematical models and, ultimately, translate
these findings into clinical practice. The ongoing appli-
cation of this approach to neuroimaging data has
highlighted the importance of so-called ‘generative mod-
els’ (Figure 1) for clinical applications [8]. This is due to
three main features (for detailed discussion and review,
see [9]): generative models enforce mechanistic thinking
about how observed data could have been caused; they
deal with uncertainty (about model structure and param-
eters) in a principled way and thus provide a natural
fundament for formalizing differential diagnosis; and they
can be combined with unsupervised approaches, such as
clustering, for detecting mechanistically distinct patient
subgroups in heterogeneous disorders (e.g. [10]). Here,
we review emerging generative models for eye movement
data and discuss their possible role for translational re-
search in psychiatry, with a focus on schizophrenia.

While there is evidence for disturbed eye movements in
schizophrenia in many different tasks, historically, SPEM
[2] and voluntary control of eye movements in antisaccades
[1] have been the most widely used eye movement para-
digms in schizophrenia. More recently, theories highlight-
ing failures of inference and predictions in schizophrenia
[11–13] have triggered an additional line of research focus-
ing on corollary discharge (CD) during eye movements.
The following sections revisit these paradigms, describe a
selection of existing computational models, and hint at
possible developments towards generative models.

Generative models for eye movements
Generative models represent a probabilistic mapping
from latent (unobservable or hidden) variables u (e.g.
the parameters of a system) to observed data. This
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mapping is specified by two components (Figure 1; [14]):
First, a prior distribution p(u) defines the range of param-
eter values which are plausible a priori. Second, a likeli-
hood function p(yju) specifies a mechanism by which
measured data y are generated probabilistically, given
the parameters. The product of prior and likelihood yields
the joint probability of data and parameters. Models of
this sort are called ‘generative’ because one can generate
synthetic data, by feeding samples from the prior into the
likelihood function.

The specific mechanism proposed by the likelihood
function is one of the defining features of a particular
generative model; for eye movements, this can take very
different forms. A simple approach is to explain saccadic
RTs phenomenologically, as a mixture of distributions
(Figure 1, panel i). By contrast, biologically more inter-
pretable models can be constructed by choosing a hierar-
chically structured likelihood function, where hidden
(neuronal or computational) states evolve according to
a biophysically motivated dynamical system f and are

linked to data through a static observation function g with
measurement noise s (Figure 1, panel ii). This hierarchi-
cal formulation underlies a special class of generative
models, so-called dynamic causal models (DCMs) [15].
It is possible, in principle, to extend existing dynamical
models of eye movement control to full generative mod-
els. This requires rendering them fully probabilistic by
introducing priors on the parameters and adding a proba-
bilistic observation function.

For all generative models, statistical inference on the
model parameters can be performed by computing the
posterior probability of the parameters, given the data,
using Bayes’ rule (model inversion). The numerical feasi-
bility of model inversion depends on the complexity of the
model. Thus, restricting generative models to a limited
number of unknown parameters is important for practical
utility. Generative models also offer a principled approach
for model comparison, based on the model evidence
p(yjm), which represents a principled measure for the
trade-off between accuracy and complexity of a model.

22 Computational modelling

Figure 1
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Illustration of generative modelling. (a) Schematic illustration of generative modelling. A generative model for eye movements describes how a

latent (unobserved or hidden) neurophysiological process produces eye movements, for example, pursuit traces or reaction times (RTs) for

saccades. The forward model m defines the joint probability of data (here: eye movement measurements) and model parameters; this results from

the product of the a prior distribution p(ujm) of model parameters and a likelihood function p(yju,m) that encodes the probability of the observed

data y given the parameters u. Model inversion corresponds to inferring the posterior probability of the parameters, given the data, p(ujy,m). (b)

Representation of the generative model in (a) as a graphical model. The likelihood specifies the mapping from parameters to data and thus

encodes a particular proposal how the observed data were generated. A simple phenomenological approach is to assume that the data result

from a weighted combination of distributions pi(ui) with mixing weights ai (panel i), Biologically more interpretable models can be constructed by

choosing a hierarchically formulated likelihood, where hidden states x evolve according to a biophysically motivated dynamical system f (with

parameters uf) and are linked to data through an observation function g (with parameters ug) and measurement noise e. See panel ii. The data is

assumed to be normally distributed around the predicted trace yc with standard deviation s. This formulation is known as dynamic causal

modelling (DCM).
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This allows one to compare the relative plausibility of
alternative dynamical system mechanisms [16] that might
underlie observed eye movements.

Smooth pursuit eye movements
Among the different types of eye movements, studies of
SPEM have the longest experimental tradition in schizo-
phrenia research [2]. Patients with schizophrenia show a
general deficit in SPEM which distinguishes them from
healthy controls almost perfectly [4]. In addition, compared
to controls, patients show reduced ability to predict a
target’s trajectory during occlusion [17]; at the same time,
patients with schizophrenia are superior in tracking targets
with unpredictable changes in their trajectory [18]. Both
phenomena can be explained by the same putative mech-
anism, that is, reduced efficacy (precision) of predictions
during perceptual inference [12,19]. This hypothesis is
difficult to test with traditional mathematical models of
SPEM, which have typically taken the form of dynamical
systems with a focus on questions of gain control and less on
prediction [20,21]. More recently, in order to account for
predictions, Kalman filtering [22] and models based on the
notion of ‘predictive coding’ (a hierarchical inference
scheme where each level predicts the state of the next-
lower level below and updates its predictions proportional
to precision-weighted prediction errors; [23,24]) and ‘ac-
tive inference’ (where actions are selected in order to fulfil
sensory predictions) [19,25!] have been introduced to
smooth pursuit. For example, the generative model intro-
duced by Adams and colleagues [19,25!] is a dynamic
causal model (DCM; Figure 1) that provides a physiologi-
cal implementation of predictive coding principles during
SPEM (Figure 2). This model has found application to
empirical SPEM data from healthy volunteers [25!] and for
simulating the empirically observed SPEM anomalies in
patients with schizophrenia, including their superior per-
formance in tracking target trajectories with unpredictable
changes [19]. A recent combined SPEM and magnetoen-
cephalography (MEG) application of this model demon-
strated how a precision parameter of the pursuit model can
be linked to recurrent connectivity in visual areas and
inferred from MEG data [26!!]. An important next step
will be to apply this model to empirical data from patients,
and to examine whether its parameter estimates allow for
clinically relevant predictions in individual patients (see
below).

Voluntary control of eye movements — the
antisaccade task
In the antisaccade task, participants are required to with-
hold a reactive eye movement to a peripheral target and
instead perform a saccade to the opposite location from
the current fixation point. On this task, patients with
schizophrenia show increased error rates (failures of with-
holding the reactive saccade) and increased latencies
compared to healthy controls [1]. It is controversial
whether this is due to a failure of inhibitory control or

a failure of initiating the endogenous movement plan for
the antisaccade [1,27]. This debate is mirrored by two
models that have been applied to antisaccades in humans
[28!!,29!]; see Figure 3. In the LATER (Linear Approach
to Threshold at Ergodic Rate) model [29!], the reactive
prosaccade is stopped by a stop signal that races against
the prosaccade; here, antisaccade errors are due to failure
of inhibitory control. In the Cutsuridis model [28!!], a
competition between two alternative saccadic plans —
prosaccade (error) and antisaccade (correct response) —
determines the resulting saccade. The two models differ
considerably in their implementation. The LATER mod-
el [29!] is a process model, which represents the evolution
of a decision variable (essentially the log posterior odds
ratio between two hypotheses) over time. It can be easily
expanded into a full generative model of trial-wise reac-
tion times (RTs), by formalizing its likelihood function
[30] and specifying priors. The Cutsuridis model [28!!],
by contrast, specifies a detailed neuronal circuit within
the superior colliculus whose activity determines RTs. So
far, it has been used to simulate some of the deficits
observed empirically in patients with schizophrenia
[28!!]. Using this model for inference from empirical data
would require transforming it into a full generative model,
possibly under appropriate simplifications.

Other models for antisaccades range from simple distri-
butional models [31] to elaborate neurophysiological
models of layered cortical units [32] or cortico-basal
ganglia loops [33]. While offering direct links to physiol-
ogy, the last two model types appear presently too com-
plex to be transformed into generative models that could
be inverted.

In summary, although fully generative models of anti-
saccades still need to be developed, a number of compu-
tational models exist which can be used as starting points.

Corollary discharge for saccadic eye
movements
Corollary discharges (CD) are neuronal signals from exec-
utive (motor) areas that inform sensory areas about upcom-
ing action [34] and thus enable a prediction about the
changes in sensory inputs that result from one’s own action.
Influential hypotheses postulate that a failure of CD causes
‘first rank’ symptoms in schizophrenia: hallucinations and
delusions of control (the sensation that an external force
controls one’s movements or thoughts) [11–13]. The
neurophysiology of CD for saccadic eye movements has
been extensively studied in primates (for a review see [34])
providing important constraints for models of CD. Figure 4
summarizes three eye movement tasks — double step
saccades, perisaccadic change detection and saccadic ad-
aptation — in which CD plays an essential role.

Several recent studies using these tasks have provided
evidence for impaired CD during saccadic eye movements
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in patients with schizophrenia. Using an error correction
version of the double step paradigm, Thakkar et al. [35!]
showed that CD for saccades is disrupted in patients with
schizophrenia and is related to the severity of psychotic
symptoms [36!!]. Furthermore, both a stronger  misloca-
lization in perisaccadic flash detection [37!] and reduced
saccadic adaptation [38,39] have been reported in indi-
viduals with schizophrenia. While the latter was mainly

interpreted as a cerebellar deficit by the authors, there is
strong evidence that CD-based prediction errors play an
important role in saccadic adaptation [40], with the
superior colliculus as a crucial source of these error signals
for adaptation [41].

To the best of our knowledge, no model of the double
step paradigm exists so far. For perisaccadic change
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A dynamic causal model of SPEM [25!], with state equations motivated by the notion of ‘active inference’ [19]. (a) Summary of the model’s state

equations for the generative process. Here, v is the angular direction of a target moving on a sinusoidal trajectory. Sensory input s includes

proprioceptive (s0) and retinal (st) input. Retinal input is modelled with Gaussian receptive fields (second term of observation function g) and

includes an occluder function O(v) that turns retinal input on or off, depending on when the target is behind an occluder. x describes the hidden

states, that is, angular position x0 and velocity x
0
0. Changes in position are driven by angular velocity; changes in velocity are driven by action (a).

Both hidden states and sensory inputs are noisy, where the Gaussian noise is indicated by vs and vx. For more details, see [25!]. (b) Top:

Average empirical position errors (deviation of angular direction of gaze from target: x0 " v) for four conditions (red: slow smooth target, blue: slow

noisy target, green: fast smooth target, cyan: fast noisy target). Model inversion (parameter estimation) proceeds using these traces. Model fit is

visible from predicted position errors (middle panel). Finally, comparison of posterior parameter estimates between noisy and non-noisy conditions

allows for estimating an effect of sensory noise on model parameters (bottom).

Figure adapted from [25!] with permission (Creative Commons Attribution License (CC BY)).
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detection, Hamker and colleagues [42,43] have devel-
oped a detailed model of interactions between topograph-
ic cortical maps which could potentially be simplified to
provide a generative model for perisaccadic change de-
tection. Finally, saccadic adaption can be modelled by a
simple learning rule [44] that is structurally equivalent
to standard update equations in generative models of
choice behaviour [45]. Models of this type can explain
a range of observations for saccadic adaptation in mon-
keys [46]. Application of this or similar models to empiri-
cal data on saccadic adaptation from patients with
schizophrenia [38,39] would be straightforward but is
outstanding so far.

In summary, with the exception of saccadic adaption,
generative models for CD in eye movements still need to
be developed.

Additional directions
In this section, we briefly outline other eye movement
paradigms with relevance for schizophrenia and generative
modelling. Similar to SPEM, visual scene scanning almost
perfectly distinguishes between patients and controls [4].
Generative models of scan paths can be derived from Baye-
sian models of attention [47] or active inference [48]. In
addition to the scan paths, investigating fixational eye mo-
vements (small eye movements during fixations) would be
of high interest. A recent study found that fixation stability
during free viewing was the single most informative param-
eter for classification of schizophrenia patients [4]. Models
of fixational eye movements are readily available [49,50]
and have been fitted to data of healthy subjects using grid
search [50]. It would be straight forward to extend these
models to a fully generative framework. Second, reading eye
movements are abnormal in patients [51]. Mathematical
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Illustration of two models of the antisaccade task. (a) Superior colliculus (SC) model by Cutsuridis et al. [28!!]. A circuit of neuronal populations

which code for different eccentricities along the horizontal axis and represent a competitive neural network within the SC. Two unspecified inputs,

presumably of cortical origin, drive the prosaccade (reactive input Ir) and antisaccade (planned input Ip). Given these two inputs and some

assumptions about differences in neuronal time constants between the two colliculi on the prosaccade and antisaccade side, the model

reproduces a variety of findings from the antisaccade literature, including corrective saccades after errors. Figure reproduced from [28!!] with

permission (Creative Commons Attribution License (CC BY)). (b) The LATER model for antisaccades [29!] is based on three race-to-threshold

units. On an antisaccade trial, prosaccade and stop units start a race, followed by the antisaccade unit with a delay. If the stop unit reaches

threshold first, the prosaccade race is cancelled and the antisaccade unit defines the RT. If the prosaccade unit reaches threshold before the stop

unit an error occurs, and the antisaccade unit is reset to trigger a corrective saccade.

Reproduced from [29!] with permission.
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models of cognitive and lexical processes [52,53] are able to
reproduce a wide range of eye movement data in reading.
These could be simplified to result in fully generative
models. Finally, patients with schizophrenia show abnormal
cue-guided spatial attention (Posner paradigm; [54]). Vossel
et al. [55] have used a generative model, a hierarchical
Gaussian filter [45], to infer the mechanisms which govern
variation of saccadic RTs under volatility (changes in the
predictive strength of the cue). This task and model have
subsequently been combined with pharmacological (cho-
linergic) stimulation [56!] and fMRI [57].

Prospects for generative models of eye
movements in schizophrenia research
In this final section, we briefly outline future translational
and clinical opportunities for (generative) models of eye

movements, with a focus on the three main paradigms
described above.

Translation from animal to human research

The three eye movement paradigms described above
are strongly dependent on cortical–subcortical loops
that involve the frontal cortex [58,59] and are likely
altered in the schizophrenia spectrum [60,61]. Studies
of these circuits in primates [34,62,63] provide anatom-
ical and physiological data which are essential for the
development of biologically realistic models in humans
[32,33]. An important next step is to simplify and re-
cast these models as generative models in order to allow
for inference on pathophysiological mechanisms in hu-
man patients.
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Saccadic eye movement tasks that involve CD. Double step saccades require two consecutive saccades to briefly flashed targets T1 and T2. Both

targets vanish before the first saccade is initiated from the fixation point F. In the absence of any visual target, the second saccade needs to be

pre-computed as FT2 ! "CD1 ! , where CD1 ! is the vector represented by the corollary discharge for the first saccade. Hence, in this task, CD

is only used for motor planning, not for predicting visual input. In the perisaccadic change detection task, a visual target at position P1 is moved

to position P2 during the saccade. After landing, the expected retinal position of the target is FP1 ! "CD ! , which has to be compared with the

true retinal position TP2 ! . Here, CD ! is a vector representation of the corollary discharge and T the landing position of the saccade. In this

setting, CD is used for the prediction of visual input after the saccade and thus enables computing a prediction error if target position changed.

Finally, in saccadic adaption the visual target is moved consistently on every trial. The resulting prediction error is used to adapt saccade

magnitude over trials. The right panel illustrates the relations between tasks.
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Computational phenotyping, differential diagnosis and

clinical predictions

Schizophrenia is a heterogeneous spectrum disease,
where identical symptoms can arise from different mech-
anisms across patients. For example, while many symp-
toms in schizophrenia can be understood as arising from a
general deficit in perceptual inference [12], this could be
due to different causes. For example, from a computa-
tional perspective, hallucinations could plausibly arise
from deficient CD, overly tight/inflexible high-level
priors, or attenuated/misplaced low-level prediction
errors (cf. [64]). A battery of simple eye movement tasks
which allow cross-comparing models representing these
competing explanations would introduce a valuable tool
for differential diagnosis to clinical practice. This requires
two things: prospective clinical studies which evaluate
the predictive validity of model-based differential diag-
nosis against relevant clinical outcomes, and statistical
model comparison techniques. The latter can require
computationally demanding sampling techniques for
complex models but will increasingly benefit from dedi-
cated open source software [65].

Computational assays of neuromodulation

Similar to model-based EEG or MEG [66], generative
models of eye movements could become useful as
computational assays for neuromodulatory action, such
as the availability of a particular neuromodulatory trans-
mitter. While some model-based work has focused on
neuromodulatory effects on pupil size [67,68], the pro-
nounced sensitivity of saccadic eye movements to neu-
romodulatory alterations [69] has found remarkably little
exploitation so far. If generative models of eye move-
ments allowed for establishing sufficiently sensitive and
specific assays of neuromodulatory abnormalities, this
could provide valuable guidance for treatment decisions,
for example, when deciding between antipsychotic drugs
with differential emphasis on dopaminergic and cholin-
ergic mechanisms [70]. Again, this eventually requires
prospective clinical studies; initially, however, pharma-
cological validation studies need to be conducted that test
whether generative models of eye movements can detect
specific dopaminergic or cholinergic manipulations in
single subjects.

Conclusion
Computational modelling of eye movement data is a
promising way forward in schizophrenia research, but also
for many other neuropsychiatric disorders where eye move-
ment deficits are observed. In particular, analogous to
similar developments in computational neuroimaging
[8], generative models of eye movements might enable
inference on pathophysiological and/or pathocomputa-
tional mechanisms which underlie eye movement abnor-
malities in single patients. Single subject parameter
estimates or model comparison could then enable clinically
relevant applications for differential diagnosis, to predict

treatment outcome or aid treatment choices, and estimate
risk of relapse or transition to disease. A key challenge for
the future will be to finesse existing and develop novel
generative models for eye movements; the neurophysio-
logical interpretability and clinical utility of these models
must then be evaluated in pharmacological validation
studies and prospective patient studies.
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Chapter	5	

In this chapter, we devote our attention to saccadic adaptation (SA) 
(McLaughlin, 1967), a form of oculomotor learning. Our interest in this 
phenomenon stems from two complementary theories of some of the 
symptoms that characterize schizophrenia: On the one hand, (Stephan 
et al., 2009a) proposed that hallucinations and perceptual disturbances 
in schizophrenia might be due to erroneous integration of predictions of 
the perceptual effects of self-generated actions. This type of predictions 
is thought to further depend on corollary discharge (CD), i.e., 
predictions of the motor effects of voluntarily generated actions. In the 
case of the oculomotor system, this theory postulates that if CD is 
compromised, visual percepts should appear fragmented, and self-
generated eye movements could be perceived (at least partially) as 
generated by external causes. Thus, abnormal CD could partially explain 
some of the positive symptoms in schizophrenia: hallucinations and 
delusions of control. 

Representatively, in a classical first-person report, a patient describes the 
following experience: 

“One will in any case not dispute that I must know myself whether 
my eyes are pulled towards an indifferent object or whether I look 
at something interesting around me of my own will. […] For 
instance, I notice almost daily that when I look for a book 
amongst my books or for certain scores or if I am searching for a 
small object (a needle or a pair of scissors, etc.), which I do not 
notice momentarily because it is so small, miracles direct my gaze 
(turn my eyes) to the desired object. This phenomenon, the 
reality of which cannot be doubted, is in my opinion of absolutely 
fundamental importance for the knowledge of divine qualities 
and forces. Two conclusions can be drawn from it: firstly that the 
rays (and I know this from many other reasons too) are able to 
read my thoughts (how could they otherwise know what I am 
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looking for at the moment); secondly that they must be aware of 
where the looked for object is; in other words the place where 
such an object is is seen by God with the help of sunlight with 
much greater certainty and perfection than by human beings with 
their eyes” (Schreber, 1955 in Maes and Van Gool, 2008). 

Beyond the possibility of impaired CD in schizophrenia, Stephan et al. 
(2006) proposed that dysfunction of the NMDA receptor mediated 
synaptic plasticity in cortical regions could lead to some of the cognitive 
deficits observed in this disease. 
Based on these ideas, we proposed in Chapter 4 to investigate tasks that 
require both oculomotor CD as well as synaptic plasticity. Concretely, 
we suggested to use SA, a task in which the magnitude of saccades to a 
target changes when the target is systematically displaced. The reason 
to investigate SA is that shifting the target of a saccade triggers a 
prediction error between its expected location and the postsaccadic 
perceptual input. 

Oculomotor CD has been well described in the macaque brain (Sommer 
and Wurtz, 2002), in which a re-entrant pathway connects the inferior 
layers of the superior colliculus to the frontal eye fields through the 
medio-dorsal thalamus. This thalamocortical connection is known to 
carry information about the magnitude of saccadic eye movements. 
Notoriously the discovery of this pathway was first reported in a human 
study (Gaymard et al., 1994) that showed that lesions of the thalamus 
lead to decreased accuracy in a task that requires motor predictions but 
not in a task that requires the generation of visually guided saccades. 
Thus, this pathway is likely to exist both in human and non-human 
primates.  

Surprisingly, there is scant evidence connecting oculomotor CD and SA, 
despite the theoretical considerations above. Hence, the present study is 
concerned with the following question: Is there evidence of the 
involvement of the CD pathway during SA? This question is investigated 
with the help of a computational model of SA in combination with fMRI. 
Our results provide evidence that the hypothesized areas (superior 
colliculus, thalamus, and frontal eye fields), as well as regions located in 
the parietal cortex are activated during saccadic adaptation. 
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Abstract	

Saccadic adaptation is a form of motor plasticity that can be triggered 
by systematically stepping the visual target of a saccade during its 
execution. While there is agreement on the important role of the 
cerebellum, a possible cortical involvement is still debated. Despite 
indirect evidence that corollary discharge and prediction errors are 
engaged in saccadic adaptation, the origin of the teaching signal for 
adaptation remains unclear. Here, we investigated the potential role of 
visual prediction errors, combining computational modelling and 
neuroimaging. We first employed Bayesian modelling to compare 
competing explanations of saccadic adaptation. We then performed 
functional magnetic resonance imaging (fMRI) analyses of putative 
prediction error activity, focusing on cortical and subcortical sources 
outside the cerebellum. Visual prediction errors across saccades caused 
activation of regions known to mediate corollary discharge in the 
monkey, including frontal eye fields, superior colliculus, and thalamus. 
Prediction error related activation in the right intraparietal sulcus 
correlated with the amount of adaptation as indexed by Bayesian model 
comparison, and activity in the left superior parietal lobule could be 
predicted by a model-based estimate of the saccadic length of the motor 
command. These imaging findings relate saccadic adaptation to the 
known pathway for corollary discharges of saccadic eye movements and 
highlight the possible involvement of parietal regions in saccadic 
adaptation. 
	 	



Part	II	–	Chapter	5	

	
	

153	

Introduction	

Saccadic adaptation (SA) is a form of motor plasticity in which saccadic 
gain is progressively modified by error signals (McLaughlin, 1967). It 
can be triggered by stepping the target of a saccade from its original 
position to a new location during the saccade (Hopp and Fuchs, 2004; 
Pelisson et al., 2010; Herman et al., 2013). This mismatch between pre- 
and post-saccadic visual targets changes saccadic lengths such that 
saccades increasingly approach the post-saccadic visual target. However, 
the exact nature of the teaching signal that triggers SA has not been fully 
elucidated.  

There are at least two hypotheses about what error signal triggers SA: 
the retinal error model and the prediction error model. The first states 
that the error signal minimized during SA is the post-saccadic difference 
between fovea and target location. According to the second explanation, 
oculomotor plasticity is triggered by a prediction error (Wong and 
Shelhamer, 2011), the difference between internally generated 
predictions of post-saccadic target locations and visual feedback. In 
other words, this hypothesis postulates that SA reflects a form of 
learning that minimizes prediction errors (PE). Crucially, this requires 
the existence of predictive signals of the post-saccadic foveal location, 
so-called corollary discharges (CD; Sommer and Wurtz, 2008). 

Corollary discharges (Sperry, 1950) – or efference copies (von Holst and 
Mittelstaedt, 1950) – are internal, re-entrant motor signals that affect 
sensory processing, motor planning, and learning. In the macaque brain, 
CD signals of saccadic eye movements are transmitted from the superior 
colliculus (SC) to the frontal eye fields (FEF) via the mediodorsal 
thalamus (Sommer and Wurtz, 2002, 2004b, a). However, to date there 
is no conclusive evidence that thalamo-cortical CDs are used for SA. In 
humans, CDs for saccadic eye movements are believed to guide 
behaviour when no visual information is available (Gaymard et al., 
1994) and to be relevant for detection of perisaccadic changes of visual input 
(Collins et al., 2009). More recent studies suggest that CDs are also 
important during SA (Wong and Shelhamer, 2011; Collins and Wallman, 
2012), because retinal errors alone (i.e., the post-saccadic difference 
between the foveal position and the target) cannot fully explain SA. 
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In summary, transsaccadic PEs could serve as the teaching signals that 
trigger SA. These require predictions of future sensory input that are 
compared to visual feedback. Since proprioception only has a minor role 
in SA (Lewis et al., 2001), these sensory predictions presumably require 
CD. Although there is conclusive evidence that predictive signals 
accompany saccadic eye movements, there is no direct evidence that 
these predictions are involved in SA.  

Here, we used a formal statistical model, inspired by previous work 
(Kording et al., 2007; Srimal et al., 2008), to compare competing 
explanations of SA as a form of motor plasticity generated by PE. Second, 
we examined neural activations by PE during SA. In particular, we tested 
whether the FEF, the thalamus, and the SC are involved in SA and PE 
signalling. Finally, we used model-based estimates of internal motor 
commands (saccade length) and of the amount of adaptation in order to 
test for SA-related activity. Our findings suggest that the SC-Thalamus-
FEF circuit is activated during SA in humans. Hence, this circuit is 
possibly involved in PE signalling. In addition, activations in parietal 
regions are correlated with model-based estimates and thus seem to be 
more directly linked to SA. 

Materials	and	methods	

Subjects	

Thirty-two subjects participated in the experiment (mean age: 23, range: 
19-28, female/male: 13/15). Eight subjects were excluded because of 
clear signs of somnolence (1), technical problems related to the eye 
tracking device (6), and incomplete data (1). All experimental 
procedures were approved by the ethics board of the canton of Zurich 
(Approval: KEK-ZH-Nr. 2010-0327). All subjects gave written informed 
consent prior to participating in the study. 

Experimental	procedure	

The experiment was performed at the Laboratory for Social and Neural 
Systems at the University of Zurich. Subjects lay in supine position inside 
an MRI scanner in a dimly lit room. Participants viewed a horizontal 
screen (58 × 34.5	≈A) at the rear of the scanner through a mirror outside 
the head coils (distance to screen approx. 125	≈A). Horizontally, the 
screen subtended 25.1	degrees of visual angle (`'fl). Visual stimuli were 
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displayed using a Sanyo DPG-DWT50L projector, with a refresh rate of 
60Hz and a resolution of 1280 × 1024 pixels.  

Gaze location was measured using an infrared light eye tracker (Eyelink 
1000, SR Research, Mississauga, Ontario, Canada). Saccades were 
detected online by a dedicated computer with a built-in algorithm 
(Stampe, 1993) provided by the manufacturer, which uses a saccade 
velocity threshold of 22	`'fl/€ and an acceleration threshold of 
3800	`'fl/€† to detect saccades. Fixations were defined as constant gaze 
to a window of 2	`'fl	for at least 500	A€. Eye position was stored at a 
sampling rate of 250Ÿ⁄. Calibration was performed using a five-cue 
array (calibration points at centre, and 6	`'fl to north, east, south and 
west). We aimed at a calibration error lower than	1	`'fl. 

The visual gaze target was a red circle of 0.25	`'fl on a gray background. 
Trials started with a fixation period with the fixation target displayed at 
6	`'fl to the left of the center of the screen. Once the target was fixated 
for at least 500	A€ and after an additional random delay of 0	to 1000	A€ 
(uniformly distributed), the target was stepped 12	`'fl to the right, that 
is 6	`'fl to the right of the centre of the screen. Subjects were instructed 
to fixate the circle and to saccade to the target as soon as it changed its 
position (Fig. 1A). No further instructions were provided. A trial was 
restarted if the subject failed to maintain fixation during the fixation 
interval and discarded if no saccade was performed within 800	A€ after 
the target was stepped. 

Experimental	design	

Since we were interested in manipulating adaptation, we followed an 
experimental design similar to Gerardin et al. (2012). The 2x2 factorial 
design had one factor - the probability of stepping the target - controlling 
how often saccadic adaption would happen, and a second factor - the 
delay of the presentation of the post saccadic target - controlling the 
strength of adaptation (Bahcall and Kowler, 2000; Fujita et al., 2002). 
In other words, the two factors of the design aimed at modulating the 
frequency and the strength of adaptation. Each of the four blocks of the 
design consisted of 111 trials, starting with 16 pre-adaptation trials, 
followed by 50 adaptation trials. Sixteen post-adaptation trials were 
added to compare saccadic length before and after the experimental 
manipulation. In order to increase the efficiency of the fMRI design, 
fixation trials were interleaved randomly throughout each block.  
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In pre- and post-adaptation trials the target vanished once a saccade 
towards the main target was detected and crossed a 3	`'fl threshold. In 
these trials, the target did not reappear, and the screen remained blank 
for 500	A€	until the start of the next trial. 

 Adaptation trials were randomly divided into step and no step trials. In 
all adaptation trials, the saccade target vanished at the time of saccade 
detection and reappeared either after 16 ms (no delay condition) or 
500	A€	(delay condition). In step trials (Fig. 1B, top) the saccadic target 
was shifted 3	`'fl to the left to induce backward adaptation. In no step 
trials (Fig. 1B, bottom) it reappeared at its original location.  

We implemented the two factorial design in the following way. The first 
factor, the proportion of step and no step trials, was defined by the 
number of step trials as a percentage of the total number of step and no 
step trials in a block. Each block had either 44 or 6 step trials randomly 
interleaved with the 6 or 44 no step trials. The second factor, the delay 
of the presentation of the post saccadic target, was defined by the delay of 
the reappearance of the target (16 or 500	A€). For simplicity, we refer 
to the blocks with a short and long delay as the delay and no delay blocks, 
and to the 90% step (~44/50) and 10% step (~6/50) trial blocks as the 
step90 and step10 blocks, respectively. The order of presentation of the 
conditions (i.e. blocks) was pseudo-randomized and counterbalanced 
across subjects. 

During fixation trials, the fixation target remained at the original 
location for either 2.5, 3.0, or 3.5	€, and then vanished, before the next 
trial started. The exact temporal pattern of the fixation trials was 
changed after 6 of 24 participants. Most (18) participants saw 29 
fixation trials randomly distributed over the run. For the first six subjects 
we included 19 fixation trials and either 3 pauses of 10 seconds (2 
subjects), or 20 fixations trials and 2 long pauses of 10 seconds (4 
subjects). In these participants, the number of pre- and post-adaptation 
was each 15. Crucially, the number and structure of adaptation trials, 
which are the only trials we analysed here, was identical in all 
participants.  
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Figure 1: Illustration of the task showing the sequence of stimuli. 
A. and their timing B. At the beginning of each trial, participants 
fixated the red dot indicated by the dashed circle at the left side of 
the screen (-6 dva). The fixation target was displayed for 500 to 1500 
ms after start of the trial. If subjects failed to fixate during this 
interval, the trial was restarted. Following the fixation interval, the 
target was stepped 12 dva to the right. Once a saccade was detected 
and gaze crossed a 3 dva threshold from the fixation target 
(timepoint depicted by the red arrow head in B), the saccadic target 
vanished. The post-saccadic target was displayed again with either a 
16 ms or 500 ms delay. In step trials, the target was stepped 3 dva to 
the left. In no step trials, the target reappeared at its original location. 
Note that in B, time lengths are not proportional to their true 
duration. 

In order to minimize adaptation effects between blocks, a de-adaptation 
procedure was introduced between scanning blocks. Subjects were 
instructed to follow a target that was stepped 50 times between −6 and 
6	`'fl to the centre of the screen.  
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Statistical	analysis	

Analysis	of	behavioural	data	

In this section, we first describe the classical analysis of the behavioural 
data based on pre- and post-adaptation trials. We then introduce a 
generative model of SA that allows for a more detailed analysis of the 
behaviour. Only trials with a saccade length between 8 dva and 14.5 dva 
were used for analysis. Trials were rejected if a blink was detected after 
the fixation target was stepped or if there was a saccade before the target 
was stepped. 

Classical	analysis	

In order to assess the effect of the experimental manipulation on 
saccadic length, we entered the average saccadic length difference 
between pre- and post-adaptation into a 2-by-2 within subject ANOVA 
test where the independent variables were subject, delay and step 
probability. This analysis was conducted in MATLAB 2014a (8.3.0), with 
the Statistics Toolbox (9.0). We tested for both main effects and their 
interaction.  

Model	based	analysis	of	saccadic	adaptation	

A model-based analysis was used to refine the behavioural analysis. 
Here, we first provide a concise mathematical description, while in the 
next section we will give an interpretation of the update equation in 
terms of visual errors and CD. The SA model was inspired by previous 
work (Kording et al., 2007; Srimal et al., 2008).  

We refer to the pre- and post-saccadic locations of the target in trial t as 
®
L

r and ®
L

:, respectively. SA was modelled under the assumption that 
subjects maintain an internal representation of the motor command 
€̂	associated with a particular retinotopic presaccadic eccentricity	®r. 
The model describes the horizontal magnitude of the motor command €̂. 
Thus, we assumed a mapping €̂(®

L

r
) between target eccentricity and the 

magnitude of saccades towards that target. Because our design had a 
single pre-saccadic target eccentricity, we drop any dependency of €̂ on 
®
L

r and refer to €̂(®
L

r
) simply as €̂

L
. Furthermore, we assumed that 

saccades are the result of both a motor command €̂
L
 and motor error s

L

±. 
The magnitude of a saccade € generated at trial a	is equal to 

€
L
= €̂

L
+ s

L

±
. (1)	
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Errors s
L

± were assumed to be i.i.d. Gaussian distributed with mean 0 
and variance Û†. Thus, the likelihood of a saccade of magnitude € at trial 
a was assumed to be Gaussian, with mean €̂

L
 and variance Û†. In order 

to account for plasticity, motor commands €̂
L
 were assumed to change 

across trials t. During pre- and post-adaptation phases we assumed no 
adaptation took place (Rolfs et al., 2010) due to lack of post-saccadic 
perceptual feedback and thus: 

€̂
L
= €̂

L2:
. (2)	

During adaptation, the trialwise update equation with adaptation rate 
ï > 0 was given by: 

€̂
L¥:

= €̂
L
+ ï(®

L

:
− €̂

L
). (3)	

Here, the teaching signal that drives SA is the difference between the 
motor command €̂

L
 and the postsaccadic location of the target ®

L

:. We 
refer to this quantity as prediction error throughout this paper. 

Finally, we finessed the model in order to account for two experimental 
findings. First, adaptation often plateaus before reaching the stepped 
target (Collins et al., 2009; Picard et al., 2012). This can be accounted 
for by introducing a scaling parameter )* for the stepped location ®

L

:. 
Second, forward adaptation can differ in several aspects from backward 
adaptation (Hopp and Fuchs, 2004), which we took into account by 
introducing a separate adaptation rate and scaling factor for forward and 
backward adaptation, respectively 

€̂
L¥:

= €̂
L
+ "(€̂

L
, ®), (4)	

"(€̂, ®) = 	+
ï*()*® − €̂)		‹"	® = ®

L

:
,

ï,V),® − €̂X		‹"	® = ®
L

r
.

(5)	

The full model is thus controlled by six parameters: backward and 
forward adaptation rates ï* and ï,, backward and forward scaling )* 
and ),, the initial saccadic command €̂

r
, and the error variance Û†. The 

scaling parameter ), is the gain of the saccade towards a visual target, 
while the backward scaling )* is related to the adaptation gain (the 
relative amount of adaptation) by )*∗ = ()*®: − ®

r
)/(®

:
− ®

r
). Fig. 2 

shows a graphical representation of the model and illustrates the effect 
of the parameters associated to backward adaptation in simulations of 
the model. 
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Figure 2: A. Graphical illustration of the SA model. The internal 
motor command is directly compared to the target location and 
updated accordingly. B. Illustration of effect of model parameters 
on adaptation. Simulations of the SA model with 4 different 
parametrizations (top left: ï* = 0.15,)*∗ = 0.85; top right: ï* =
0.005,)*∗ = 0.85; bottom left: ï* = 0.15, )*∗ = 0.4; bottom right: ï* =
0.005,)*∗ = 0.4) with 90% step trial probability. As in the experiment, 
	T
r
 was assumed to be 12	`'fl (black dashed line). In the step trials, 

T
:
 was equal to 9	dva (red dashed line). The time course of the motor 

command s0 is depicted by the solid red line. Simulated saccades are 
depicted as black circles. The dark grey area displays one standard 
deviation around s0. Pre- and post-adaptation phases are highlighted 
by light grey. During the pre- and post-adaptation phase, it is 
assumed that no adaptation takes place. 

Visual	errors	and	corollary	discharge	

In this section, we briefly discuss the assumption about the learning 
model and illustrate how a CD about the saccadic command can be 
combined with the post-saccadic visual error to yield the learning rule 
implemented in the model. For simplicity we assume in this derivation 
that the two scaling constants )

Ω
, )

S
 are equal to one. After each saccade 
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the post-saccadic visual error s
L

1 is given by the difference between the 
foveal location €

L
 and the target ®

L

:: 
s
L

1
= ®

L

:
− €

L,
(6)

= ®
L

:
− €̂

L
− s

L

±
. (7)

	

Fundamentally, we assumed that it is not the visual error that is used as 
teaching signal to update the motor command €̂

L
, but the trans-saccadic 

visual PE, i.e. the mismatch between the expected location of the visual 
target after the saccade and its true location. Mathematically, this 
corresponds to the difference between the visual error and the predicted 
motor error (s1 − s

±
). The predicted motor error is the difference 

between the actual saccade €
L
 and the associated internal motor 

command €̂
L
: 

€
L
− €̂

L
= s

L

±
. (8)	

Note that the motor error can be easily computed if the brain receives a 
CD of the actual saccade €

L
 which can be compared to the internal motor 

command €̂
L
. In other words, the visual system requires an accurate 

prediction of the magnitude of a saccade €
L
 generated in a trial given by 

a CD signal.  

Under this model, the trial wise update equation with adaptation rate 
ï > 0 is given by: 

€̂
L¥:

= €̂
L
+ ï(s

L

1
− s

L

±
), (9)	

= €̂
L
+ ï(®

L

:
− €̂

L
). (10)	

This formulation of the learning rule shows that both the post-saccadic 
visual error as well as a precise CD (and thus knowledge of the motor 
error) are required for SA in accordance with the model. 

Model	space	

In order to test which set of parameters provided the most parsimonious 
explanation of the data, we defined a series of nested models. Starting 
from the full model with six free parameters, eight models were defined 
by fixing a subset of the parameters to particular values. A list of all 
models is presented in Table 1. 

In the full model	A
:
, the adaptation rate and scaling were allowed to 

differ between the two directions of adaptation. In model A
†
, we 

assumed that the adaptation rate was equal in both directions (ï* = ï,), 
while in models A

Ë
	and A

‡
 the adaptation scale was fixed to 1. In 
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addition, model A
‡
 (as model A

†
) assumed that the adaptation rate was 

equal during the step and no step trials. In models A
 
 and A2, we 

assumed that in no step trials subjects adapted back to their baseline €̂
r
, 

or equivalently that ), = €̂
r
/®

L

:. In model A2, the adaptation rates ï* 
and ï, were equal. In model A3, no adaptation took place in the no-step 
trials, which corresponds to ï, = 0. Finally, in the null model A

˚
, no SA 

was allowed by fixing ï* = ï, = 0. A
˚
 represents the null hypothesis 

that no adaptation took place in a block. 

 

	 A
:
	 A

†
	 A

Ë
	 A

‡
	 A

 
	 A2	 A3	 A

˚
	

Back.	update	 ®
:	 ®

:	 ®
:	 ®

:	 €̂
r
	 €̂

r
	 N.A.	 N.A.	

ï*	 ü	 ü	 ü	 ü	 ü	 ü	 ü	 0	

ï,	 ü	 ï*	 ü	 ï*	 ü	 ï*	 0	 0	

)*	 ü	 ü	 1	 1	 ü	 ü	 ü	 N.A.	

),	 ü	 ü	 1	 1	 €̂
r
/®

L

:	 €̂
r
/®

L

:	 N.A.	 N.A.	

€̂
r
	 ü	 ü	 ü	 ü	 ü	 ü	 ü	 ü	

Û
†	 ü	 ü	 ü	 ü	 ü	 ü	 ü	 ü	

	

Table 1: Behavioral model space. Free parameters are designated by 
“ü”. All models shared the same prior distributions. N.A. stands for 
“does not apply”. 

Specification of a full generative model requires setting a prior 
distribution on the parameters. Table 2 summarizes the priors used here. 
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Parameter	 Probability	density	function	
Û Γ(Û; 1.5, 0.5) 
€
r
 d(€

r
; 12.0, 2.0) 

ï* , ï, ú[r,:](ï) 

)
Ω
, )

S
 Γ(); 12.8, 16.0) 

	 

Table 2: Prior probability density functions. d(!;5, Û†) corresponds 
to a Gaussian distribution with mean μ and variance Û†. ú

[r,:]
(α) 

corresponds to the uniform distribution in the interval [0,1]. 
6(a; ï, -) corresponds to the gamma distribution (-

27
/

6(ï))	a72: exp−a/-, where 6(ï) is the gamma function. 

Inference	

To quantitatively compare models with and without adaptation, we 
relied on Bayesian inference (Gelman et al., 2013), a family of statistical 
methods based on Bayes’ formula: 

>(#|!, b,A)EFFFGFFFH

IJKLMN=JN

=

>(!|#, b,A)
8999:999;
P=QMP=RJJS

>(#|A)		
89:9;

IN=JN

>(!|b,A)EFFGFFH

±JSMP	M1=SMÑcM

		 (11)	

where # is the vector of model parameters, ! represents the observed 
experimental data, b encodes the experimental design, A is the model 
used to describe the data, and > denotes the appropriate conditional 
probability density functions. 

Two common goals of Bayes inference are to (i) compute the posterior 
distribution >(#|!, b,A), which describes the probability of the 
parameters conditioned on a given model, an experimental design or 
condition b, and observed data y, and (ii) the model evidence or 
marginal likelihood >(!|b,A), which describes the probability of the 
data given a model. Two models i and j can then be compared using the 
Bayes factor: 

h
=,U
=

>V!Wb,A
=,
X

>V!Wb,A
U
X

. (12)	

Bayes factors can be used to compare competing models on the same 
data set, and it is a complementary method to for example model cross 
validation (Kass and Raftery, 1995; MacKay, 2003; Gelman et al., 2013). 
Throughout this paper we will us log Bayes Factors which are equal to 
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the difference in log model evidence (LME): o›% h
=,U
= o›%

I(∞|±
…
)

I(∞|±<)
=

	=ˇfÙ
=,U

. For statistics on the group level, we use a fixed effect analysis, 
that is, we summed the LMEs across subjects. This tests the evidence that 
our experimental manipulation was successful. Following recommended 
interpretations, we consider =ˇfÙ > 3 strong evidence (Kass and 
Raftery, 1995). This roughly corresponds to a Bayes factor of 20. We 
only report results for which we obtained strong evidence.  

A sampling algorithm was used to approximate the posterior distribution 
of each model. It was implemented in python 2.7, using the libraries 
numpy (1.8) and scipy (0.13). 3 × 10

‡
	samples from the target 

distribution were drawn using the Metropolis-Hastings algorithm and a 
Gaussian proposal distribution. Prior to this, 10‡ samples were drawn 
and discarded in the so-called burn-in phase. Samples of the learning 
rate were drawn from ï∗ = tan9(ï − 0.5) and then transformed to the 
open interval ]0, 1[. The sampling algorithm was further refined by 
adapting the proposal distribution during the burn-in phase, following 
Shaby and Wells (2010). In order to compute the marginal likelihood of 
each model, we relied on thermodynamic integration (Gelman and 
Meng, 1998; Gelman et al., 2013), a technique that provides an accurate 
estimate of the marginal likelihood of a model. This is achieved by first 
constructing a smooth path between the prior and posterior distributions 
and by then integrating along this path. In order to increase the 
statistical efficiency of this technique, an exchange operator between 
chains was implemented (Swendsen and Wang, 1986; Aponte et al., 
2016). 

Imaging	

The experiment was performed on a 3T Philips Achieva MR Scanner with 
an eight-channel head coil.  ®

†

∗ weighted images were acquired using a 
gradient-echo EPI sequence with the following parameters: slice 
thickness: 2.5	AA; in-plane resolution: 2.5	 × 	2.5	AA; interslice gap: 
0.5	AA; ascending continuous in-plane acquisition; ®– = 2000	A€; 
®Ù = 36	A€; flip angle = 90J; field of view = 192 × 192 × 98.5	AA; 
SENSE factor = 2; EPI factor = 41.	®

:
 anatomical images were acquired 

for structural preprocessing with the following parameters: resolution 
1 × 1 × 1	AA, ®– = 8.3	A€, ®Ù = 3.9	A€, field of view = 256 × 256 ×

181	AA,	flip angle = 8° . The main goal of the present study was to 
investigate cortical correlates of SA. Thus, the scan volume was set to 
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cover the entire cortex. Since we aimed for a relatively high temporal 
(TR = 2s) and spatial (2.5 mm isotropic) resolution it was not possible 
to increase the scan volume and reliably include the cerebellum for all 
head sizes. Pulse and respiration were concurrently measured using 
electrocardiography and a breathing belt. These physiological measures 
served as confound regressors as explained below. 

fMRI	Analysis	

Data analysis was performed with SPM8 (v5236). Preprocessing of 
functional images included realignment, coregistration of the EPI images 
to the T1 image and normalization and segmentation of the T1 image 
using SPMs New Segment function with subsequent normalization of all 
EPI images. Normalization included resampling of the images to 1.5mm 
isotropic resolution. Finally, the images were smoothed with an isotropic 
Gaussian kernel of FWHM=6mm. 

Subject specific data were modelled at the first level using a general 
linear model (GLM). Four main regressors were defined for each 
experimental run, one for each trial type: (i) step and (ii) no step trials, 
and (iii) pre- and (iv) post-adaptation trials. Trials were modelled as 
delta functions aligned to the end of the main saccade of each trial and 
then convolved with the hemodynamic response function and its time 
derivative. A nuisance regressor that modelled the onset of all saccade 
trials that were excluded from the analysis (see below) was added. We 
also included head movements (as encoded by realignment parameters), 
and respiration and heartbeat regressors according to RETROCIOR 
(Glover et al., 2000), as constructed by the PHYSIO toolbox (Kasper et 
al., 2017; version 1.5). 

Because we manipulated the probability of stepping, the number of step 
and no step trials was different within each run (90/10 or 10/90 ratio). 
In order to reduce potential differences between beta values due to large 
differences in trial number, the group level analysis was restricted to the 
most common trial type in each block. For example, for the step90 
conditions, only the - images of the step trials were included in the group 
level analysis. Similarly, only the - images of the no step trials were used 
for the step10 conditions. This yielded a 2 × 2	factorial design with levels 
delay vs. no delay and step90 vs. step10. In the statistical analysis, we 
assessed the two main effects (step and delay) as well as their 
interaction. We were particularly interested in the effects of stepping the 
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target because precisely in this condition the predictions conveyed by CD 
do not match the visual outcome, which according to our hypothesis 
should trigger PEs. Thus, we assessed PE responses by means of a 
categorical contrast on the conditions described above, comparing step 
trials during the step90 condition (when a PE occurs) to non-step trials 
during the step10 condition (when there is no PE). Moreover, we were 
interested in the interaction between the step and delay conditions, 
because the delay condition is reported to abolish or diminish the 
amount of adaptation even under the presence of a visual prediction 
error. Thus, this contrast could potentially disentangle prediction errors 
and saccadic adaptation. 

Model	based	fMRI		

We used the above generative model of saccades in a model-based trial-
by-trial analysis of fMRI data in two ways. First, we included the (mean-
corrected) predicted trace of the internal estimate of saccadic length €̂

L
 

as a parametric modulation in the first level GLM. We computed a 
contrast representing the mean β value for the parametric regressor over 
the two step90 conditions (no-delay and delay) and then assessed on the 
second level whether this parameter was significantly larger than zero. 

Furthermore, we use the model to investigate whether the difference in 
neural activation between the two stepping conditions ((step90+no-
delay) – (step90+delay)) was correlated with difference in adaptation 
between the two conditions. The model directly provides a measure of 
adaptation in terms of the log Bayes Factor between the best adaptation 
model and the no-adaptation model (m8). We thus correlated the 
difference of this measure and the difference of activation between the 
two runs. 

fMRI	statistics	

All second level tests were performed using cluster level FWE correction 
at p<0.05 with a cluster defining threshold of p=0.001 (Flandin and 
Friston, 2016). In addition to the whole brain analysis we also assessed 
small volume corrected (S.V.C.) statistics within regions of interest in 
the CD pathway. In particular, we used a bilateral ROI of the superior 
colliculus as in (Limbrick-Oldfield et al., 2012) and masks for the left 
and right thalamus connected to prefrontal cortex (Behrens et al., 2003). 
Within ROIs we applied FWE correction at the voxel level. In order to 
take into account multiple testing for the three ROIs we adjusted the 



Part	II	–	Chapter	5	

	
	

167	

significance level to a<0.0166. Finally, in the model-based analysis, we 
restricted the analysis of activity related to the internal estimate of 
saccadic length to those regions that showed a significant effect of step 
using the result of the factorial analysis as a mask. Please note that we 
orthogonalised the model based regressor to the main regressor of step. 
This assures that any significant finding is purely driven by fluctuations 
in the model based regressor and cannot be explained by the mask 
defining contrast. We used the Anatomy Toolbox (version 2.2c) for SPM 
(Eickhoff et al., 2007) to confirm anatomical labelling. 

Results	

In this section, we first report the behavioural and modelling results and 
then proceed to the imaging findings. 

Behavioral	results	

A total of 7803 primary saccades were analysed, from which roughly 
20% (1593) were discarded, because of blinking, aborted trial, no 
saccade before 800ms, or length (below 8.5	`'fl or above14.0	`'fl). 
Careful inspection of saccade timing revealed that 416 trials were 
incorrectly detected, triggering the presentation of the post-saccadic 
target not in time with the saccade. These trials were also excluded from 
the analysis. The mean time between the start of a saccade and the 
command for vanishing the target was 25.5ms (std. 3.0 ms). 

Classical	analysis	

We submitted the mean saccadic difference between the pre- and post-
adaptation phases to a within subject ANOVA. While the step factor had 
a significant effect ([

†‡,:
= 7.49, > < 0.05), on the difference between 

phases, neither the delay factor ([
:,†‡

= 1.0, > = 0.32)	nor the interaction 
([

:,†‡
= 0.71, > = 0.40)	was significant.  

Modelling	saccadic	adaptation	–	simulations	

As a first step, we verified the reliability of our inference scheme by 
generating data from each model through random sampling from the 
prior distributions and then computing the evidence of each of the 
models for each simulation. Twenty data sets were generated from each 
model under both the step10 and step90 conditions, with the resulting 
ˇfÙ being added across all the data sets. This yielded an 8 × 8 matrix 
whose cells were the marginal likelihood of each model, given data 
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generated by one of the eight possible models. The results are 
summarized in Table 3. Please note that we have considered a 
complicated case here, for two reasons. First, we included both 
conditions, step10 and step90, in this simulation. In the step10 condition, 
it is more difficult to disambiguate models, because only few trials could 
induce adaptation.  Second, we sampled the parameters from the prior, 
which leads to many instances where the parameter of a more 
complicated model is chosen to be the fixed value of a simpler model 
which will then exceed in explaining the data. Nevertheless, we found 
that all models but A

Ë
	were clearly identifiable. When data were 

generated with model m3, Bayesian model comparison could not 
distinguish between models m1, m2 and m3. 

	 	 Model	used	for	inversion	

	 	 A
:
	 A

†
	 A

Ë
	 A

‡
	 A

 
	 A2	 A3	 A

˚
	

D
at
a	
ge
n
er
at
in
g	
m
o d
el
	

A
:
	 440.4	 436.3	 380.0	 314.6	 386.6	 340.9	 200.0	 0.0	

A
†
	 702.1	 719.4	 447.3	 450.6	 419.0	 347.6	 277.1	 0.0	

A
Ë
	 530.4	 527.7	 530.3	 498.7	 373.2	 334.5	 223.7	 0.0	

A
‡
	 588.7	 599.1	 585.3	 607.0	 334.9	 306.9	 214.8	 0.0	

A
 
	 218.9	 200.0	 158.2	 135.0	 237.1	 223.2	 108.0	 0.0	

A2	 250.6	 257.3	 185.1	 175.6	 273.1	 284.5	 119.6	 0.0	

A3	 612.9	 539.2	 470.0	 187.8	 607.0	 258.6	 628.6	 0.0	

A
˚
	 2.2	 2.4	 0.00	 3.7	 21.9	 8.5	 9.3	 40.1	

	

Table 3:  Matrix displaying the ˇfÙ given a data generating model 
(rows) and a model used for inversion (columns). Except for model 
A
Ë
, the data generating model had always the highest ˇfÙ with 

DLME>3 compared to the second-best model. Data generated by 
model m3 did not result in a distinctly superior model. 

Modelling	saccadic	adaptation	–	empirical	data	

To test the effect of the experimental design we first compared all 
models within each of the four conditions independently. The results for 
each condition and the sum across factors are displayed in Fig. 3, i.e. a 
fixed effect analysis. In the delay, step90 condition, A

˚
 was favored over 

all other models, with model m5 (ˇfÙ
±˚

− ˇfÙ
± 

= 3.14) having the 
second highest log marginal likelihood. In the no delay, step90 condition 
A

 
 and A2	did not differ strongly in their model evidence (ˇfÙ

± 
−
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ˇfÙ
±2 = 2.90), but model m5 was strongly favoured with respect to all 

other models, e.g. (ˇfÙ
± 

− ˇfÙ
±†

= 3.44, ˇfÙ
± 

− ˇfÙ
±‡

= 3.24). 
Importantly, all adaptation models were strongly favoured compared to 
the no adaption model A

˚
. In the two step10 conditions, there was 

strong evidence for model A
˚
 as compared to all other models, 

irrespective of the delay. 

 

Figure 3: Log model evidence across the four conditions and 
pooled over conditions (right and bottom). Bars depict summed 
model evidence. Grey bars are different versions of models with 
adaptation (m1 to m7), with decreasing number of degrees of freedom 
from left to right. The black bar shows the LME for the no adaptation 
model m8. LME values are shown relative to the model with the 
lowest ˇfÙ in each of the panels. Red horizontal lines show a 
difference of 3 log units from the model with the highest ˇfÙ. 

We then considered the question whether subjects adapted during the 
delay and no delay conditions. In order to test this hypothesis, we 
compared the ˇfÙ of each model by pooling over the step10 and step90 
conditions. The results are shown in Fig. 3 bottom. Model A

 
, according 

to which backward adaptation aimed at the base line, was better than 
any other model in the no delay condition. Moreover, we found strong 
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evidence (> 30	log units) in favour of	A
 
 with respect to the no 

adaptation model A
˚
. In the delay condition, there was strong evidence 

in favour of A
˚
 compared to any other model: Its evidence was over 10 

log units higher compared to model A
 
. Finally, when considering only 

the effect of step (Fig. 3 right), model A
 
 obtained the highest evidence 

when the target was stepped 90% of times. In the step10 condition, 
model A

˚
 obtained the largest evidence. In brief, this means that the 

adaptation model m5 was superior when prediction errors frequently 
occurred; by contrast, the simpler model m8 (that did not account for 
adaptation) was sufficient when prediction errors were rare. 

We also used the model to explore individual differences in saccadic 
adaptation and compare them to brain activity. For this, we first 
computed for every subject and every condition the log Bayes factor 
(=DLME) between models m5 and m8. This difference provides a 
measure of the strength of adaptation by quantifying how likely it is that 
the data was generated by the adapting model m5 compared to the non-
adapting model m8. In general, we found that the spread of ˇfÙ 
differences was larger in the two step90 conditions. This reflects the fact 
that these conditions contained much more step trials that could inform 
the model. In contrast, in the step10 condition, it was not possible to 
distinguish between models on a single subject basis, most likely because 
there were too few adaptation trials to inform the inference. Note that 
in the no delay, step90 condition, there were several subjects (n=8) for 
whom model comparison clearly indicates adaptation happening. Some 
participants (n=3) also showed adaptation in the delay, step90 
condition. These findings are remarkable given the relatively small 
number of trials in a single block. See below (Fig. 7) for an illustration 
of these model comparisons.  

fMRI	results	

Unless otherwise stated, all results are reported with familywise error, 
whole brain correction at the cluster level >BCí

< ï = 0.05 at a cluster 
defining threshold of > < 0.001. Reported coordinates correspond to 
peak activation within clusters. 

We first investigated the effect of stepping the target vs. it reappearing 
at the pre-saccadic location. Under the assumption that stepping 
generated an error signal, this contrast reveals regions whose activation 
correlates with prediction errors. See Table 4 for a list of activations. The 
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comparison of step90 condition with the step10 condition mainly 
increased BOLD signals in bilateral FEF (bilateral precentral gyrus; 
PreCG) as well as bilateral parietal areas (cf. Fig. 4A). In addition, there 
were activations in left inferior frontal gyrus (extending into anterior 
insula), right inferior frontal gyrus (Area 44), bilateral medial occipital 
gyrus, and the right supramarginal gyrus/postcentral gyrus. The peak 
activation in the right FEF was the only activation that also survived a 
correction for multiple comparisons at the voxel level (	aD† = 5.39, 
>BCí

= 0.030). 



Eduardo	A.	Aponte	

	
	

172	

Main	effect	of	stepping	probability	

Region	 EFGH	 c.s.	 IJ‰			 x	 y	 z	

Left	SPL	(Area	7A)	and		
Precuneus	

<0.001	 910	 4.65	 -23	 -61		 57	

Right	PreCG	(FEF),		
Right	SFG	and	MFG			

<0.001	 712	 5.39	 22	 -1	 55	

Left	PreCG	(FEF),		
Right	SFG	and	MFG			

<0.001	 393	 4.66	 -23	 -4	 57	

Right	SPL	(Area	7A	and	7P)		
and	Precuneus	

0.002	 352	 4.65	 20	 -69	 54	

Right	MOG	and	SOG	 0.003	 316	 4.59	 28	 -72	 33	

Left	IPL	 0.005	 295	 4.61	 -31	 -46		 51	

Left	IFG	(anterior	insula)	 0.012	 248	 4.55	 -24	 21	 -2	

Right	SMG	and	PoCG	 0.016	 232	 4.37	 34	 -37	 43	

Right	IFG	(Area	44)	 0.030	 202	 4.19	 46	 7	 13	

Left	MOG	 0.043	 185	 4.30	 -25	 -72	 24	
	

Table 4: Significant clusters for main effect of step. Reported is 
the whole brain corrected family wise error cluster-level probability 
(pFWE), cluster size (c.s.), t value and coordinates of the cluster peak 
in the MNI space. SPL: superior parietal lobule, PreCG: precentral 
gyrus, SFG: superior frontal gyrus, MFG: middle frontal gyrus, MOG: 
middle occipital gyrus, SOG: superior occipital gyrus, IPL: inferior 
parietal lobule, SMG: supramarginal gyrus, PoCG: postcentral gyrus, 
IFG: inferior frontal gyrus. All p values larger than 0.001 are rounded 
to the next higher value with 3 decimals after the comma (hence 
actual p-values are slightly lower). Note that the activation in the left 
IFG (anterior insula) extended through the white matter to the left 
putamen. 
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Figure 4: Main effect of stepping probability. Illustration of 
significant activations for step90 condition compared to step10 
condition (cf. Table 4). Activation was thresholded at p<0.001 
uncorrected with a cluster size k>170, showing significant clusters 
only. The colorbar indicates t-values. 

Next, we tested whether two other key regions for CD, the SC and the 
thalamus, (Sommer and Wurtz, 2008) were activated by stepping the 
target during the saccade. We employed small volume correction for the 
SC (Limbrick-Oldfield et al., 2012) and, separately, for the right and left 
prefrontal thalamus (Behrens et al., 2003) using anatomically defined 
masks. Within each of these regions we assessed significance at the voxel 
level using SPM’s small volume correction for multiple comparison and 
taking into account multiple comparison (3 ROIs) by setting the 
significance level to 0.0166=0.05/3. In all three ROIs there was a 
significant activation below this threshold. In the SC, the peak was at 
coordinate [9 -30 -3] with >BCí

= 0.011 (aD† = 3.65). Within the right 
and left prefrontal thalamus the strongest activations were found at [6 -
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22 0] (>BCí
= 0.010, 	aD† = 4.20) and [-9 -7 0] (>BCí

< 0.001, 	aD† =
5.21), respectively. Figure 5 illustrates the location of these activations 
within the SC and the prefrontal thalamus. 

 

Figure 5: Main effect of stepping probability within thalamus and 
SC. Top: Illustration of left (blue) and right (yellow) thalamic ROIs 
(Behrens et al., 2003) and of the SC mask (red; Limbrick-Oldfield et 
al., 2012). Bottom: Activations within the three masks shown in 
colours corresponding to the top row. Please note that activations are 
plotted at a FWE peak level corrected threshold of p<0.05 (small 
volume corrected for each mask individually), for illustration. Peak 
activation in all three regions survived the Bonferroni corrected alpha 
level of 0.0166=0.05/3. 

The second analysis investigated the main effect of the delay factor. 
Delayed presentation of the post-saccadic target resulted in increased 
activity in three clusters (cf. Table 5 and Figure 6). In addition to these 
clusters, there was a strong activation at the anterior tip of the right 
insula which survived FWE correction at the voxel level (pFWE < 0.05, 
peak at [29, 24, -8] with pFWE=0.002). There was no significant voxel 
for this contrast in any of the three ROI. Finally, we did not find any 
region that showed an interaction effect between stepping probability 
and delay. 
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Positive	effect	of	delay		

Region	 EFGH	 c.s.	 IJ‰	 x	 y	 z	

Right	PreCG	and	MFG	 <0.001	 924	 5.21	 47	 13	 40	

Right	STG	and	MTG	 <0.001	 763	 4.67	 53	 -45	 15	

Right	Precuneus	 0.002	 354	 4.63	 8	 -64	 43	
 

Table 5: Summary of the main effect of delay. We report the whole 
brain corrected family wise error cluster-level probability (>BCí

) at 
a cluster defining threshold of p<0.001, cluster size (c.s.), a value 
and coordinates in the MNI space of the cluster peak. PreCG: 
precentral gyrus, MFG: middle frontal gyrus, MTG: middle temporal 
gyrus, STG: superior temporal gyrus. 
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Figure 6: Main effect of delay. Regions that are more activated 
during the delay condition compared to the no-delay condition are 
displayed. For a detailed list of regions see Table 5. Note that the 
activation in the anterior insula is not shown, because it was not 
significant at the cluster level. The colour bar indicates t-values. 

Effect	of	delay	on	adaptation	and	BOLD	signal	during	step	trials	

The difference between the delay and no-delay conditions is of a 
particular interest when the target was stepped, it has been shown that 
the delay reduces adaptation (Bahcall and Kowler, 2000; Fujita et al., 
2002). To better understand the effect of delay on SA and visual PE, we 
computed a first level contrast between the no-delay, step90 and delay, 
step90 conditions and assessed group effects at the second level with a 
t-test. Since both conditions included the same number of trials, any 
difference would point to a different processing of prediction errors in 
these two conditions. There was no significant cluster showing higher 
activity in the no-delay condition compared to the delay condition. For 
the contrast between delay – no-delay conditions, two regions survived 
the family wise error correction at the threshold level: One cluster in the 
precentral gyrus and middle frontal gyrus (pcluster = 0.002, maximum at 
MNI: [48, 1, 48]) and one cluster in the anterior insula (pcluster = 0.02, 



Part	II	–	Chapter	5	

	
	

177	

maximum at MNI: [27, 24, -7]). While this analysis is not orthogonal 
and, thus, not completely independent from the main effect of delay 
shown above, it provides additional information for the specific effect of 
a delay during adaptation trials. 

Relation	of	cortical	activations	to	saccadic	adaptation	

In this analysis, we investigated whether there was any brain signal 
related to how much participants adapted the length of their saccades. 
The difference in log model evidence or log Bayes factor between the 
best adaptation (m5) and the non-adapting model (m8) provides a 
measure of the strength of SA. See Figure 7A for an illustration of subject 
specific DLME in all 4 conditions. We correlated the difference in log 
Bayes factors (m5 vs. m8) between the two conditions (no-delay,step90 
vs. delay,step90) with the fMRI contrast that models the difference 
between the same two conditions. This resulted in a cluster in the 
intraparietal sulcus and superior parietal lobule (Fig. 7) in which 
activation difference between no-delay and delay was correlated with the 
difference in log model evidence between the two conditions 
(pcluster<0.001, Cluster size: 470, Peak at MNI: [30, -54 36]). Hence, 
activation within this region was related to how much a participant 
adapted. 
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Figure 7: Correlation of adaptation with brain activation. A. 
Difference in LME between the best adaptation model (m5) and the 
no adaptation model (m8). Horizontal black dashed lines indicate the 
threshold of DLME=3. The orange dashed box highlights the data 
that went into the second level analysis. B. Illustration of the parietal 
cluster in which the difference in fMRI activation between delay and 
no-delay (step90 condition) correlated with the difference in LME 
between the same two conditions. 

Neural	correlates	of	the	internal	motor	command	

Finally, we investigated whether there was any cortical or subcortical 
activation correlated with the internal motor command. For this, we 
used the estimated saccadic length €̂

L
 from the best model (m5; see Eq. 

1 and Fig 8A for example traces) and correlated it with the brain activity 
during the two step90 conditions. Within a mask of all regions with 
significant activation for step vs. no-step (Fig. 4), we found a significant 
cluster (pcluster<0.01 at a cluster defining threshold of p<0.001, cluster 
size: 100, peak at MNI: [-14 -66 58], FWE-corrected for the mask 
volume) in the left superior parietal lobule (area 7A). Hence, within this 
region, the activation during stepping trials was modulated by the 
internal motor command for saccadic length. There was no significant 
modulation in any of the subcortical ROIs. 
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Figure 8: Modulation of brain activation by saccadic length of 
internal motor command. A. Illustration of internal saccadic length 
€̂ for three sample subjects (S1-S3) in the no delay, step 90 condition. 
B. Brain activity correlated with this internal saccadic length estimate 
in a parietal cluster (pcluster<0.01, Cluster size: 100, Peak at MNI: [-
14 -66 58], statistic S.V.C. for the mask). 

Discussion	

In this paper, we show that cortical and subcortical regions are activated 
by PE during SA. We used a factorial design to disentangle the effects of 
the delay of the post-saccadic target and stepping probability, both of 
which showed an impact on learning. Bayesian model comparison of 
adapting vs. non-adapting models demonstrated that our design had the 
expected behavioural effect. Focusing on blocks with a high probability 
of stepping, we observed clusters in parietal regions whose activation 
was significantly correlated with how much participants adapted 
according to log Bayes factors and with an internal estimate of saccadic 
length, respectively. 

Behaviour	

We hypothesized that SA in the double step task (McLaughlin, 1967) is 
driven by a prediction error signal, computed from sensory feedback and 
a prediction of the retinal post-saccadic location of the target. The rate 
of adaptation was modelled with the parameters ï

Ω
 and ï

S
, and the total 

adaptation gain with the bias terms )
Ω
 and )

S
. In previous models, SA 
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was described by a similar form of learning (Kording et al., 2007; Srimal 
et al., 2008). Here, we have extended these earlier accounts by including 
motor biases and differences in learning rate depending on the direction 
of adaptation. 

Bayesian model comparison was used to test whether the experimental 
conditions had an effect on the participants’ behaviour. This approach 
selects within a series of nested models the most parsimonious one, i.e. 
the least complex model which adequately explains the experimental 
observations. In the no-delay blocks, model comparison favoured a 
model that included forward and backward adaptation, whereas in 
sessions with a delay, a simpler model without adaptation was favoured. 
In general, the model without adaptation was favoured in sessions with 
only 10% step trials, suggesting that there was not enough evidence for 
adaption because of the low number of step trials. 

Comparison	to	previous	imaging	studies	in	humans	

Our experimental paradigm was similar to the one proposed by Gerardin 
et al. (2012), but included step and no step trials in all conditions. As in 
the above study, delayed presentation of the post-saccadic target 
reduced or even abolished SA as demonstrated by the model comparison 
results (Fig. 3). However, irrespective of the delay, the shift of the 
saccadic target should trigger a visual prediction error. Therefore, the 
difference between the step and no step conditions should reveal areas 
involved in post-saccadic visual prediction error signalling. The delay 
should reduce SA, but not visual prediction errors. Hence, regions with 
activation differences between no-delay and delay condition might also 
influences adaptation. 

There is little doubt about the pivotal role of the cerebellum during SA 
(for reviews see Hopp and Fuchs, 2004; Pelisson et al., 2010; Herman et 
al., 2013). Because we did not measure the entire cerebellum, we cannot 
directly compare our results to previous fMRI (van Broekhoven et al., 
2009; Liem et al., 2013) and positron emission tomography (PET) 
(Desmurget et al., 1998; Desmurget et al., 2000) studies of SA focused 
on the cerebellum. More recently two studies have investigated cortical 
activation during SA. For reactive saccades, as the ones investigated in 
our experiment, Gerardin et al. (2012) reported a difference between 
delay and no-delay in the right TPJ and hMT+, as well as bilaterally in 
the inferior precentral sulcus (iPrCS). These results overlap with our 
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finding that the contrast delay vs. no delay showed increase activation of 
the right STG, MTG and angular gyrus as well as the iPrCS. However, 
we did not find an activation in hMT+. Blurton et al. (2012) also relied 
on a similar paradigm, but the saccadic target was not removed during 
the delay period. It is therefore difficult to directly compare our results 
to their findings. 

A novel finding by our study is the cortical activation by visual prediction 
errors across saccades (step90 vs. step10) in the bilateral FEF as well as 
prefrontal thalamus and the right SC. Parietal areas were activated in 
both main contrasts: step90 vs. step10 as well as no-delay vs. delay.  

There are at least two potential reasons for the discrepancies with 
previous studies. First, we randomly interleaved step and no step trials, 
as opposed to having a block design. Second, our study included more 
subjects (n=24) compared to n=12 (Blurton et al., 2012) and n=6x2 
(Gerardin et al., 2012).  

Potential	involvement	of	parietal	cortex	in	saccadic	adaptation	

In line with recent findings, our study provides evidence for activation 
of parietal regions during SA. For example, a TMS study (Panouilleres 
et al., 2014) showed that stimulation of the right posterior intraparietal 
sulcus (iPS) increased the backward adaptation gain of reactive saccades 
to the right. Interestingly, the parietal activation of effect of step in our 
study overlapped with the stimulation site (Tal: x=13±5, y=-63±6, 
y=52±5; MNI: x=13±5, y=-68±6, y=59±5) of Panouilleres et al. 
(2014). The parietal activation for the effect of delay was more medial, 
mainly located in the precuneus. A third parietal region was the only 
cluster which exhibited a significant correlation between brain activity 
and the amount of adaptation as indexed by Bayesian model 
comparison. This region did not overlap with the TMS stimulation site 
of Panouilleres et al. (2014). Neurons in the lateral intraparietal area 
have recently been implicated with the monitoring of saccadic error in 
the macaque (Zhou et al., 2016). Thus, one could speculate that SA 
might be related to the amount of saccadic error signalling in parietal 
cortex. Future studies will have to test how these regions interact with 
the cerebellar circuits known to be crucial for SA (Hopp and Fuchs, 
2004), and whether they might indeed play a causal role in SA as 
indicated by TMS (Panouilleres et al., 2014). Finally, a left parietal 
region exhibited activation correlated to the saccadic length of the 
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internal motor command derived from the model. The left hemispheric 
location is in line with saccades made towards the right. Hence, this 
activation is more likely to represent an adapted saccadic signal, instead 
of an error signal.   

Involvement	of	the	saccadic	corollary	discharge	pathway	in	saccadic	

adaptation	

We found increased activation of the FEF, SC and thalamus when the 
saccadic target was shifted from its original location. These regions form 
the core circuit of internal monitoring of saccadic eye movements 
(Sommer and Wurtz, 2002, 2004b, a). Consistent with our finding, 
neurons in the FEF monitor intra-saccadic changes of visual input (Crapse and 
Sommer, 2012). The activation in the SC is of particular interest, because 
electrical stimulation in the SC induces SA (Kaku et al., 2009). In 
accordance with these experiments, the right SC (contralateral to the 
direction of adaptation) was activated for backward adaptation of 
rightward saccades (Kaku et al., 2009). Finally, thalamic lesions in humans 
result in asymmetric SA with the same lateralization (Gaymard et al., 2001; 
Zimmermann et al., 2015) and cause deficits in the perception of 
perisaccadic shifts (Ostendorf et al., 2013). Interestingly, the lesioned 
regions reported by this group partially overlap with our activation 
findings (see their Figure 6). In summary, the agreement of our results 
with the known literature supports the notion that the visual PE based 
on CD as incorporated in our model and signalled in the SC-Thalamus-
FEF pathway could be involved in SA.  

While the pattern of fMRI activation together with previous evidence 
points to the involvement of the SC-Thalamus-FEF pathway in 
generating error signals, our experiment cannot prove a causal 
relationship. However, analysis of identified FEF cells projecting to the 
SC suggests that complete remapping of visual input happens at the level 
of output cells in layer 5 (Sommer and Wurtz, 2006; Shin and Sommer, 
2012) and is sent to the SC. Hence, the error signal in the SC at least 
partly depends on cortical input. Accordingly, subthreshold electrical 
stimulation of the SC probably elicited SA by triggering a signal similar 
to PE from the FEF (Kaku et al., 2009). To our knowledge the FEF-SC-
Thalamus pathway has not been studied in the context of SA.  
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Summary	

In this study, we have shown that SA and, in particular the hypothesized 
trans-saccadic visual PE, elicit a wide range of cortical activations. 
Parietal areas and the FEF were sensitive to intrasaccadic steps of the 
target. In addition, the SC as well as the thalamus were activated in this 
condition pointing towards a potential involvement of the SC-Thalamus-
FEF pathway. In parietal regions, both the delay as well as the intra-
saccadic step changed cortical activation. Finally, two model-based 
findings hint at the importance of parietal circuits in SA in humans: A 
correlation between brain activity and log Bayes’ factors (encoding the 
evidence for adaptation processes) in the right parietal cortex, and a 
correlation of BOLD activity with an estimate of saccadic length of the 
internal motor command in the left hemisphere. In summary, we have 
shown that SA is associated with activation in a set of cortical and 
subcortical areas, which might act in coordination with the well-
established role of the cerebellum. 
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Chapter	6	

In Chapter 4, we argued that the antisaccade task is an interesting 
research topic for computational psychiatry. There are at least two 
reasons for this: First, recent studies have shown that deficits in this task 
are likely endophenotypes of schizophrenia (e.g. Radant et al., 2010; 
Reilly et al., 2014). Second, the biological underpinnings of the 
antisaccade task have been widely investigated in human and non-
human primates (Munoz and Everling, 2004), making it possible, at least 
in principle, to relate behavioral findings to physiological processes. 
Unfortunately, only few computational models of this task exist 
(reviewed in Cutsuridis, 2017), and none of them has offered a formal 
probabilistic approach to the two main variables of interest measured in 
this paradigm: reaction times and error rates. This precludes the 
comparison of these models, and a truly quantitative analysis of 
experimental data. 

This chapter presents a novel modeling approach to the antisaccade task, 
which we refer to as the Stochastic Early Reaction, Inhibition, and late 
Action (SERIA) model. SERIA is formal in the sense that it provides a 
well-defined likelihood function of reaction times and actions, in a trial-
by-trial fashion. 

Our results reveal the complexity of the decision processes that occur in 
the tenths of a second that precede a saccade. Furthermore, the 
development of a formal model such as SERIA opens the door to 
quantitative analysis of experimental data. This idea is followed in the 
rest of this dissertation. 

This chapter was published as Aponte, E. A., Schobi, D., Stephan, K. E., & 
Heinzle, J. (2017). The Stochastic Early Reaction, Inhibition, and late 
Action (SERIA) model for antisaccades. PLoS Computational Biology, 
13(8), e1005692. It is verbatim copy of the document 
https://doi.org/10.1371/journal.pcbi.1005692. 
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Abstract
The antisaccade task is a classic paradigm used to study the voluntary control of eye move-

ments. It requires participants to suppress a reactive eye movement to a visual target and to

concurrently initiate a saccade in the opposite direction. Although several models have

been proposed to explain error rates and reaction times in this task, no formal model com-

parison has yet been performed. Here, we describe a Bayesian modeling approach to the

antisaccade task that allows us to formally compare different models on the basis of their

evidence. First, we provide a formal likelihood function of actions (pro- and antisaccades)

and reaction times based on previously published models. Second, we introduce the Sto-

chastic Early Reaction, Inhibition, and late Action model (SERIA), a novel model postulating

two different mechanisms that interact in the antisaccade task: an early GO/NO-GO race

decision process and a late GO/GO decision process. Third, we apply these models to a

data set from an experiment with three mixed blocks of pro- and antisaccade trials. Bayesian

model comparison demonstrates that the SERIA model explains the data better than com-

peting models that do not incorporate a late decision process. Moreover, we show that the

early decision process postulated by the SERIA model is, to a large extent, insensitive to the

cue presented in a single trial. Finally, we use parameter estimates to demonstrate that

changes in reaction time and error rate due to the probability of a trial type (pro- or antisac-

cade) are best explained by faster or slower inhibition and the probability of generating late

voluntary prosaccades.

Author summary

One widely replicated finding in schizophrenia research is that patients tend to make
more errors than healthy controls in the antisaccade task, a psychometric paradigm in
which participants are required to look in the opposite direction of a visual cue. This defi-
cit has been suggested to be an endophenotype of schizophrenia, as first order relatives of
patients tend to show similar but milder deficits. Currently, most models applied to exper-
imental findings in this task are limited to fit average reaction times and error rates. Here,
we propose a novel statistical model that fits experimental data from the antisaccade task,
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beyond summary statistics. The model is inspired by the hypothesis that antisaccades are
the result of several competing decision processes that interact nonlinearly with each
other. In applying this model to a relatively large experimental data set, we show that
mean reaction times and error rates do not fully reflect the complexity of the processes
that are likely to underlie experimental findings. In the future, our model could help to
understand the nature of the deficits observed in schizophrenia by providing a statistical
tool to study their biological underpinnings.

Introduction

In the antisaccade task ([1]; for reviews, see [2,3]), participants are required to saccade in the
contralateral direction of a visual cue. This behavior is thought to require both the inhibition
of a reflexive saccadic response towards the cue and the initiation of a voluntary eye movement
in the opposite direction. A failure to inhibit the reflexive response leads to an erroneous sac-
cade towards the cue (i.e., a prosaccade), which is often followed by a corrective eye movement
in the opposite direction (i.e., an antisaccade). As a probe of inhibitory capacity, the antisac-
cade task has been widely used to study psychiatric and neurological diseases [3]. Notably,
since the initial report [4], studies have consistently found an increased number of errors in
patients with schizophrenia when compared to healthy controls, independent of medication
and clinical status [5–8]. Moreover, there is evidence that an increased error rate constitutes
an endophenotype of schizophrenia, as antisaccade deficits are also present in non-affected,
first-degree relatives of diagnosed individuals (for example [5,7]; but for negative findings see
for example [9,10]).

Unfortunately, the exact nature of the antisaccade deficits and their biological origin in
schizophrenia remain unclear. One path to improve our understanding of these experimental
findings is to develop generative models of their putative computational and/or neurophysio-
logical causes [11]. Generative models that capture the entire distribution of responses can
reveal features of the data that are not apparent when only considering summary statistics
such as mean error rate (ER) and reaction time (RT) [12–15]. Additionally, this type of model
can potentially relate behavioral findings in humans to their biological substrate.

Here, we apply a generative modeling approach to the antisaccade task. First, we intro-
duce a novel model of this paradigm based on previous proposals [16–20]. For this, we for-
malize the ideas introduced by Noorani and Carpenter [17] and extend them into what we
refer to as the Stochastic Early Reaction, Inhibition and late Action (SERIA) model. Second,
we apply both models to an experimental data set of three mixed blocks of pro- and antisac-
cades trials with different trial type probability. More specifically, we compare several mod-
els using Bayesian model comparison. Third, we use the parameter estimates from the best
model to investigate the effects of our experimental manipulation. We found that there was
positive evidence in favor of the SERIA model when compared to our formalization of the
model proposed in [17]. Moreover, the parameters estimated through model inversion
revealed the complexity of the decision processes underlying the antisaccade task that is not
obvious from mean RT and ER.

This paper is organized as follows. First, we formalize the model developed in [17] and in-
troduce the SERIA model. Second, we describe our experimental setup. Third, we present our
behavioral findings in terms of summary statistics (mean RT and ER), the comparison between
different models, and the parameter estimates. Finally, we review our findings, discuss other
recent models, potential future developments, and translational applications.

SERIA—Amodel for errors and reaction times in the antisaccade task

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005692 August 2, 2017 2 / 36



Materials andmethods

Ethics statement

All participants gave written informed consent before the study. All experimental procedures
were approved by the local ethics board (Kantonale Ethikkomission Zürich,
KEK-ZH-Nr.2014-0246).

Race models for antisaccades

In this section, we derive a formal description of the models evaluated in this paper. We start
with a formalized version of the model proposed by Noorani and Carpenter in [17] and pro-
ceed to extend it. Their approach resembles the model originally proposed by Camalier and
colleagues [21] to explain RT and ER in the double step and search step tasks, in which partici-
pants are either asked to saccade to successively presented targets or to saccade to a target after
a distractor was shown. Common to all these tasks is that subjects are required to inhibit a pre-
potent reaction to an initial stimulus and then to generate an action towards a secondary goal.
Briefly, Camalier and colleagues [21] extended the original ‘horse-race’ model [16] by includ-
ing a secondary action in countermanding tasks. In [17], Noorani and Carpenter used a simi-
lar model in combination with the LATER model [22] in the context of the antisaccade task by
postulating an endogenously generated inhibitory signal. Note that this model, or variants of
it, have been used in several experimental paradigms (reviewed in [20]). Here, we limit our dis-
cussion to the antisaccade task.

The pro, stop, and antisaccade model (PROSA)

Following [17], we assume that the RT and the type of saccade generated in a given trial are
caused by the interaction of three competing processes or units. The first unit up represents a
command to perform a prosaccade, the second unit us represents an inhibitory command to
stop a prosaccade, and the third unit ua represents a command to perform an antisaccade. The
time t required for unit ui to arrive at threshold si is given by:

si ¼ rit; ð1Þ

si
ri
¼ t; ð2Þ

where ri represents the slope or increase rate of unit ui, si represents the height of the threshold,
and t represents time. We assume that, on each trial, the increase rates are stochastic and inde-
pendent of each other.

The time and order in which the units reach their thresholds si determines the action and
RT in a trial. If the prosaccade unit up reaches threshold before any other unit at time t, a pro-
saccade is elicited at t. If the antisaccade unit arrives first, an antisaccade is elicited at t. Finally,
if the stop unit arrives before the prosaccade unit, an antisaccade is elicited at the time when
the antisaccade unit reaches threshold. It is worth mentioning that, although this model is
motivated as a race-to-threshold model, actions and RTs depend only on the arrival times of
each of the units and ultimately no explicit model of increase rates or thresholds is required.
Thus, for the sake of clarity, we refer to this approach as a ‘race’ model, in contrast to ‘race-to-
threshold’ models that explicitly describe increase rates and thresholds.

Formally (but in a slight abuse of language), the two random variables of interest, the reac-
tion time T 2 [0,1[ and the type of action performed A 2 {pro,anti}, depend only on three fur-
ther random variables: the arrival times Up, Us, Ua 2 [0,1[ of each of the units. The
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probability of performing a prosaccade at time t is given by the probability of the prosaccade
unit arriving at time t, and the stop and antisaccade unit arriving afterwards:

pðA ¼ pro; T ¼ tÞ ¼ pðUp ¼ tÞpðUa > tÞpðUs > tÞ: ð3Þ

The probability of performing an antisaccade at time t is given by

pðA ¼ anti;T ¼ tÞ ¼ pðUa ¼ tÞpðUp > tÞpðUs > tÞ þ pðUa ¼ tÞ
Z t

0

pðUs ¼ tÞpðUp > tÞdt: ð4Þ

The first term on the right side of Eq 4 corresponds to the unlikely case that the antisaccade unit

arrives before the prosaccade and the stop units. The second term describes trials in which the stop

unit arrives before the prosaccade unit. It can be decomposed into two terms:

pðUa ¼ tÞ
Z t

0

pðUs ¼ tÞpðUp > tÞdt ¼ pðUa ¼ tÞ pðUs < tÞpðUp > tÞ þ
Z t

0

pðUs ¼ tÞpðt < Up < tÞdt
! "

ð5Þ

¼ pðUa ¼ tÞ pðUs < tÞpðUp > tÞ þ
Z t

0

pðUs < tÞpðUp ¼ tÞdt
! "

ð6Þ

The term pðUa ¼ tÞ
R t

0
pðUs < tÞpðUp ¼ tÞdt describes the condition in which the prosaccade

unit is inhibited by the stop unit allowing for an antisaccade. Note that if the prosaccade unit
arrives later than the antisaccade unit, the arrival time of the stop unit is irrelevant. That
means that we can simplify Eq 4 to

pðA ¼ anti;T ¼ tÞ ¼ pðUa ¼ tÞ pðUp > tÞ þ
Z t

0

pðUs < tÞpðUp ¼ tÞdt
! "

: ð7Þ

Eqs 3 and 7 constitute the likelihood function of a single trial, and define the joint proba-
bility of an action and the corresponding RT. We refer to this likelihood function as the PRO-
Stop-Antisaccade (PROSA) model. It shares the central assumptions of [17], namely: (i) the
time to reach threshold of each of the units is assumed to depend linearly on the rate r, (ii) it
includes a stop unit whose function is to inhibit prosaccades and (iii) there is no lateral inhibi-
tion between the different units. Finally, (iv) RTs are assumed to be equal to the arrive-at-
threshold times. Note that the RT distributions are different from the arrival time distributions
because of the interactions between the units described above. The main difference of this
model compared to [17] is that we do not exclude a priori the possibility of the antisaccade
unit arriving earlier than the other units. Aside from this, both models are conceptually
equivalent.

The Stochastic Early Reaction, Inhibition, and Late Action Model
(SERIA)

The PROSA model is characterized by a strict association between units and action types. In
other words, the unit up leads unequivocally to a prosaccade, whereas the unit ua always trig-
gers an antisaccade. This implies that if the distribution of the arrival times of the units is uni-
modal and strictly positive, the PROSA model cannot predict voluntary slow prosaccades with
a late peak, or in simple words, the PROSA model cannot account for slow, voluntary prosac-
cades that have been postulated in the antisaccade task [23]. Similarly, it has been argued that
prosaccade RT can be described by the mixture of two distributions (for example [2,22]).
To account for this, we introduce the Stochastic Early Reaction, Inhibition and Late Action
(SERIA) model.

SERIA—Amodel for errors and reaction times in the antisaccade task
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According to this model, and in analogy to the PROSA model, an early reaction takes place
at time t if the early unit ue arrives before the late and inhibitory units, ul and ui, respectively. If
the inhibitory or late unit arrives before the early unit, a late response is triggered at the time
the late unit reaches threshold. Crucially, both early and late responses can trigger pro- and
antisaccades with a certain probability. Thus, in parallel to the race processes which determine
RTs, an independent, secondary decision process is responsible for which reaction is gener-
ated. Fig 1 shows the structure of the SERIA model.

To formalize the concept of early and late responses, we introduce a new unobservable ran-
dom variable that represents the type of response R 2 {early,late}. The distribution of the RTs
is analogous to the PROSA-model, such that, for instance, the probability of an early response
at time t is given by

pðR ¼ early; T ¼ tÞ ¼ pðUe ¼ tÞpðUi > tÞpðUl > tÞ ð8Þ

where Ue, Ui, and Ul represent the arrival times of the early, inhibitory, and late units, respec-
tively. The fundamental assumption of the SERIA model is that a secondary decision process,
beyond the race between early, inhibitory, and late units, decides the action generated in a sin-
gle trial. An initial approach to model this secondary decision process is to assume that the
action type (pro- or antisaccade) is conditionally independent of the RT given the response

Fig 1. Layout of the SERIAmodel. The presentation of a visual cue (a green bar) triggers the race of three independent
units. The inhibitory unit can stop an early response. Importantly, both early and late responses can trigger pro- and
antisaccades. Note that the PROSAmodel is a special case of the SERIAmodel in which πe = 1 and πl = 0, i.e. all early
responses are prosaccades, whereas all late responses are antisaccades.

https://doi.org/10.1371/journal.pcbi.1005692.g001
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type (early or late). Hence, the distribution of RTs is not a priori coupled to the saccade type
anymore; RT distributions for both pro- and antisaccades could in principle be bimodal, con-
sisting of both fast reactive and slow voluntary saccades.

Formally, the conditional independency assumption can be written down as

pðA;TjRÞ ¼ pðAjRÞpðTjRÞ; ð9Þ

pðA;TjRÞpðRÞ ¼ pðAjRÞpðTjRÞpðRÞ; ð10Þ

pðA;T;RÞ ¼ pðAjRÞpðT;RÞ: ð11Þ

The term p(A|R) is simply the probability of an action, given a response type. We denote it as

pðA ¼ projR ¼ earlyÞ ¼ pe 2 ½0; 1&; ð12Þ

pðA ¼ antijR ¼ earlyÞ ¼ 1' pe; ð13Þ

pðA ¼ projR ¼ lateÞ ¼ pl 2 ½0; 1&; ð14Þ

pðA ¼ antijR ¼ lateÞ ¼ 1' pl: ð15Þ

Since the type of response R is not observable, it is necessary to marginalize it out in Eq 11 to
obtain the likelihood of the SERIA model:

pðA;TÞ ¼ pðA;T;R ¼ earlyÞ þ pðA;T;R ¼ lateÞ: ð16Þ

The complete likelihood of the model is given by substituting the terms in Eq 16

pðA ¼ pro; T ¼ tÞ ¼ pepðUe ¼ tÞpðUi > tÞpðUl > tÞþ

plpðUl ¼ tÞ pðUe > tÞ þ
Z t

0

pðUe ¼ tÞpðUi < tÞdt
! "

; ð17Þ

pðA ¼ anti; T ¼ tÞ ¼ ð1' peÞpðUe ¼ tÞpðUi > tÞpðUl > tÞþ

ð1' plÞpðUl ¼ tÞ pðUe > tÞ þ
Z t

0

ðUe ¼ tÞpðUi < tÞdt
! "

: ð18Þ

It is worth noting here that the PROSAmodel is a special case of the SERIA model, namely, it
corresponds to the assumption that πe = 1 and πl = 0. The SERIAmodel allows for bimodal distri-
butions, as both early and late responses can be pro- and antisaccades. Importantly, one predic-
tion of the model is that late prosaccades have the same distribution as late antisaccades.

A late race competition model for saccade type

Until now, we have assumed that the competition that leads to late pro- and antisaccades does
not depend on time in the sense that late actions are conditionally independent of RT. This
assumption can be weakened by postulating a secondary race between late responses; this
leads us to a modified version of the SERIA model, that we refer to as the late race SERIA
model (SERIAlr). The derivation proceeds similarly to the SERIA model, except that we postu-
late a fourth unit that generates late prosaccades instead of assuming that the late decision pro-
cess is time insensitive.

SERIA—Amodel for errors and reaction times in the antisaccade task
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This version of the SERIA model includes an early unit ue that, for simplicity, we assume
produces only prosaccades, an inhibitory unit that stops early responses ui, a late unit that trig-
gers antisaccades ua, and a further unit that triggers late prosaccades up. As before, if the early
unit reaches threshold before any other unit, a prosaccade is generated with probability

pðUe ¼ tÞpðUi > tÞpðUa > tÞpðUp > tÞ: ð19Þ

If any of the late units arrive first, the respective action is generated with probability:

Antisaccade : pðUa ¼ tÞpðUp > tÞpðUe > tÞpðUi > tÞ: ð20Þ

Prosaccade : pðUp ¼ tÞpðUa > tÞpðUe > tÞpðUi > tÞ: ð21Þ

Finally, if the inhibitory unit arrives first, either a late pro- or antisaccade is generated with
probability

Antisaccades : pðUa ¼ tÞpðUp > tÞ
Z

t

0

pðUi ¼ tÞpðUe > tÞdt

0

B

@

1

C

A
; ð22Þ

Prosaccades : pðUp ¼ tÞpðUa > tÞ
Z

t

0

pðUi ¼ tÞpðUe > tÞdt

0

B

@

1

C

A
: ð23Þ

Implicit in the last two terms is the competition between the late units, which are assumed
again to be independent of each other. Formally, this competition is expressed as the probabil-
ity of, for example, the late antisaccade unit arriving before a late prosaccade p(Ua = t)p(Up>
t). A schematic representation of the model is shown in Fig 2. This late race is similar to the
Linear Ballistic Accumulation model proposed by [24], although in that model decisions are
seen as the result of a race of ballistic accumulation processes with fixed threshold but stochas-
tic base line and increase rate. Here we only assume that the late decision process is a GO-GO
race [21].

The likelihood of an action is given by summing over all possible outcomes that lead to that
action:

pðA ¼ pro; T ¼ tÞ ¼ pðUe ¼ tÞpðUi > tÞpðUa > tÞpðUp > tÞþ

pðUp ¼ tÞpðUa > tÞpðUi > tÞpðUe > tÞ þ pðUp ¼ tÞpðUa > tÞ
Z

t

0

pðUi ¼ tÞpðUe > tÞdt

0

B

@

1

C

A
; ð24Þ

pðA ¼ anti;T ¼ tÞ ¼ pðUa ¼ tÞpðUp > tÞpðUi > tÞpðUe > tÞþ

pðUa ¼ tÞpðUp > tÞ
Z

t

0

pðUi ¼ tÞpðUe > tÞdt

0

B

@

1

C

A
: ð25Þ

We have left out some possible simplifications in Eqs 24 and 25 for the sake of clarity.
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The conditional probability of a late antisaccade is given by the interaction between the late
units, such that

pðUa < UpÞ ¼
Z

1

0

pðUa ¼ tÞpðUp > tÞdt ¼ 1' pðUp < UaÞ; ð26Þ

is analogous to the probability of a late antisaccade 1−πl in the SERIA model. This observation
shows that the main difference between the SERIA and SERIAlr model is that the former pos-
tulates that the distribution of late pro- and antisaccades are equal and conditionally indepen-
dent of the action performed, whereas the latter constrains the probability of a late antisaccade
to be a function of the arrival times of the late units.

The expected response time of late pro- and antisaccade actions is given by

1

pðUp < UaÞ

Z

1

0

t pðUp ¼ tÞpðUa > tÞdt; ð27Þ

Fig 2. Layout of the SERIAlr model. The presentation of a visual cue (a green bar) triggers the race of four
independent units. The inhibitory unit can stop an early response. The late decision process is triggered by the
competition between two further units.

https://doi.org/10.1371/journal.pcbi.1005692.g002
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1

pðUa < UpÞ

Z

1

0

t pðUa ¼ tÞpðUp > tÞdt: ð28Þ

We will refer to these terms as the mean response time of pro- and antisaccade actions, in con-
trast to the mean arrival times, which are the expected value of any single unit.

Non-decision time

The models above can be further finessed to account for non-decision times δ by transforming
the RT t to tδ = t−δ. The delay δmight be caused by, for example, conductance delays from the
retina to the cortex. In addition, the antisaccade or late units might include a constant delay δa,
which is often referred to as the antisaccade cost [1]. Note that the model is highly sensitive to
δ because any RT below it has zero probability. In order to relax this condition and to account
for early outliers, we assumed that saccades could be generated before δ at a rate η 2 [0,1] such
that the marginal likelihood of an outlier is

pðT < dÞ ¼ pðTd < 0Þ ¼ Z: ð29Þ

For simplicity, we assume that outliers are generated with uniform probability in the interval
[0,δ]:

pðT ¼ tÞ ¼
Z

d
if t < d: ð30Þ

Furthermore, we assume that the probability of an early outlier being a prosaccade was
approximately 100 times higher than being an antisaccade. Because of the new parameter η,
the distribution of saccades with a RT larger than δ needs to be renormalized by the factor
1−η. In the case of the PROSA model, for example, this means that the joint distribution of
action and RT is given by the conditional probability

pðA ¼ pro; T ¼ tdjtd > 0Þ ¼ pðUp ¼ tdÞpðUa > td ' daÞpðUs > tdÞ; ð31Þ

pðUa < 0Þ ¼ 0; ð32Þ

pðA ¼ anti;T ¼ tdjtd > 0Þ ¼ pðUa ¼ td ' daÞ pðUp > tdÞ þ
Z td

0

pðUp ¼ tÞpðUs < tÞdt
! "

: ð33Þ

A similar expression holds for the SERIA models. However, in the PROSA model a unit-
specific delay is equal to an action-specific delay. By contrast, in the SERIA model both early
and late responses can generate pro- and antisaccades. Thus, δa represents a delay in the late
actions that affects both late pro- and antisaccades.

Parametric distributions of the increase rate

The models discussed in the previous sections can be defined independently of the distribution
of the rate of each of the units. In order to fit experimental data, we considered four parametric
distributions with positive support for the rates: gamma [13], inverse gamma, lognormal [25]
and the truncated normal distribution (similarly to [22] and [24]). Table 1 and Fig 3 summa-
rize these distributions, their parameters, and the corresponding arrival time densities. We
considered five different configurations: 1) all units were assigned inverse gamma distributed
rates, 2) all units were assigned gamma distributed rates, 3) the increase rate of the prosaccade

SERIA—Amodel for errors and reaction times in the antisaccade task
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and stop units (or early and the inhibitory units) was gamma distributed but the antisaccade
(late) unit’s increase rate was inverse gamma distributed, 4) all the units were assigned lognor-

mal distributed rates or 5) all units were assigned truncated normal distributed rates.
All the parametric distributions considered here can be fully characterized by two parame-

ters which we generically refer to as k and θ. Hence, the PROSA model is characterized by the
parameters for each unit kp,ka,ks,θp,θa,θs. The SERIA model can be characterized by analogous
parameters ke,kl,ki,θe,θl,θi and the probabilities of early and late prosaccades πe and πl. In the
case of the SERIAlr model, the probability of a late prosaccade is replaced by the parameters of
a late prosaccade unit kp, θp. In addition to the unit parameters, all models included the non-
decision time δ, the antisaccade (or late unit) cost δa, and the marginal rate of early outliers η.

Experimental procedures

In this section, we describe the experimental procedures, statistical methods, and inference
scheme used to invert the models above. The data is from the placebo condition of a larger
pharmacological study that will be reported elsewhere.

Table 1. Parametric density functions of the increase rates.

Name Parameters Rate p.d.f. Arrival time p.d.f.

Gamma k,θ y'k

GðkÞ e
'r=yrk'1 yk

GðkÞ e
'y=tt'k'1

Inv. gamma k,θ yk

GðkÞ e
'y=r r'k'1 y'k

GðkÞ e
't=ytk'1

Log normal μ,σ2 1
ffiffiffiffi

2p
p

sr
e'

1
2

lnr'm
sð Þ2 1

ffiffiffiffi

2p
p

st
e'

1
2

lntþm
sð Þ2

T. normal μ,σ2 1

Z e
'1
2
r'm
sð Þ2 1

Zt2 e
'1
2
t'1'm

s

$ %2

Z is the normalization constant Z ¼
R1
0
exp ' ðr'mÞ2

2s2

& '

dr.

https://doi.org/10.1371/journal.pcbi.1005692.t001

Fig 3. Illustration of probability distributions used tomodel increase rates. Left: Distribution of the rates based on different probability density
functions: Normal (red), gamma (blue), inverse gamma (green), and log-normal (cyan). All distributions were matched to have equal mean and
variance. Center: Probit plots of the same distributions. While the gamma and lognormal distributions are very close to the straight line induced by the
normal distribution, the inverse gamma distribution diverges slightly more from linearity. Right: Arrival time distribution (scaled to ms).

https://doi.org/10.1371/journal.pcbi.1005692.g003
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Participants. Fifty-two healthy adult males naïve to the antisaccade task were invited to a
screening session through the recruitment system of the Laboratory of Social and Neural Sys-
tems Research of the University of Zurich. During screening, and after being debriefed about
the experiment, subjects underwent an electrocardiogram, a health survey, a visual acuity test,
and a color blindness test. Subjects were excluded if any of the following criteria were met: age
below 18 or above 40 years, regular smoking, alcohol consumption the day before the experi-
ment, any possible interaction between current medication and levodopa or benserazide, pulse
outside the range 55–100bpm, recreational drug intake in the past 6 months, history of serious
mental or neurological illness, or if the medical doctor supervising the experiment deemed the
participant not apt. All subjects gave their written informed consent to participate in the study
and received monetary compensation.

Procedure. Each subject was invited to two sessions. During both visits, the same experi-
mental protocol was followed. After arrival, placebo or levodopa (Madopar DR 250, 200mg of
levopa + 50 mg benserazide) was orally administered in the form of shape- and color-matched
capsules. The present study is restricted to data from the session in which subjects received pla-
cebo. Participants and experimenters were not informed about the identity of the substance.
Immediately afterwards subjects were introduced to the experimental setup and to the task
through a written document. This was followed by a short training block (see below).

The experiment started 70 minutes after substance administration. Subjects participated in
three blocks of 192 randomly interleaved pro- and antisaccade trials. The percentages of pro-
saccade trials in the three blocks were 20%, 50%, or 80%. This yielded three prosaccade proba-
bility (PP) conditions: PP20, PP50, and PP80. Thus, in the PP20 block, subjects were presented
a prosaccade cue in 38 trials, while in all other 154 trials an antisaccade cue was shown. The
order of the trials was randomized in each block, but the same order was used in all subjects
and sessions. The order of the conditions was counterbalanced across subjects.

Stimulus and apparatus. During the experiment, subjects sat in front of a CRT monitor
(Philipps 20B40, distance eye-screen:’60cm, refresh rate: 75Hz). The screen subtended a hori-
zontal visual angle of 38 degrees of visual angle (dva). Eye movements were recorded using a
remote infrared camera (Eyelink II, SR-Research, Canada). Participants’ head was stabilized
with a chin rest. Data were stored at a sampling rate of 500 Hz.

During the task, two red dots (0.25dva) that constituted the saccadic targets were constantly
displayed at an eccentricity of ±12dva. Displaying the saccadic target before the execution of an
antisaccade has been reported to affect saccadic velocity and accuracy, but not RTs [26], and
arguably decreases the need for sensorimotor transformations [27]. At the beginning of each
trial, a gray fixation cross (0.6 × 0.6 dva) was displayed at the center of the screen. After a ran-
dom fixation interval (500 to 1000 ms), the cross disappeared, and the cue instructing either a
pro- or an antisaccade trial (see below) was shown centered on either of the red dots. As men-
tioned above, in each block, subjects were presented with a prosaccade cue in either 20, 50, or
80 percent of the trials. The order of the presentation of the cues was randomized. The cue was
a green rectangle (3.48 × 0.8dva) displayed for 500ms in either horizontal (prosaccade) or verti-
cal orientation (antisaccade). Once the cue was removed and after 1000ms, the next trial started.

Subjects were instructed to saccade in the direction of the cue when a horizontal bar was
presented (prosaccade trial) and to saccade in the opposite direction when a vertical bar was
displayed (antisaccade trial, see Fig 4). See [28,29] for similar task designs.

Prior to the main experiment, participants were trained on the task in a block of 50 prosac-
cade trials, immediately followed by 50 antisaccade trials. During the training, subjects were
automatically informed after each trial whether their response was correct or not (see below),
or whether they had failed to produce a saccade within 500ms after cue presentation (CP). No
feedback was given during the main experimental blocks.

SERIA—Amodel for errors and reaction times in the antisaccade task
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Data preparation. Data were parsed and preprocessed using the Python programming
language (2.7). Saccades were detected using the algorithm provided by the eyetracker manu-
facturer (SR Research), which uses a velocity and acceleration threshold of 22dva/s and
3800dva/s2 [30]. We only considered saccades with a magnitude larger than 2dva. RT was
defined as the time between CP and the first saccade larger than 2dva. A prosaccade trial was
considered correct if the end position of the saccade was ipsilateral to the cue and, conversely,
an antisaccade trial was considered correct if the end position of the saccade was contralateral
to the cue.

Trials were excluded from further analysis if a) data were missing, b) a blink occurred
between CP and the main saccade, c) the trial was aborted by the experimenter, d) subjects
failed to fixate in the interval between fixation detection and CP, e) if a saccade was detected
only later than 800ms after CP, f) if the RT was below 50ms, and in the case of an antisaccade
if it was below 110ms. Corrective antisaccades were defined as saccades that a) followed a pro-
saccade error, b) occurred no later than 900ms after CP, and c) had less than 3dva horizontal
error from the red circle contralateral to the cue.

Besides the fitted non-decision time δ we assumed a fixed non-decision time of 50ms for all
participants [17]. This was implemented by subtracting 50ms of all saccades before being
entered into the model. In order to avoid numerical instabilities, RT were rescaled from milli-
second to tenths of a second during all numerical analysis. All results are presented in ms.

Modeling

We aimed to answer three questions with the models considered here. First, we investigated
which model (i.e. PROSA, SERIA or SERIAlr) explained the experimental data best, and
whether all important qualitative features of the data were captured by this model. We did not
have a strong hypothesis regarding the parametric distribution of the data and hence, compari-
sons of parametric distributions were only of secondary interest in our analysis. Second, we
investigated whether reduced models that kept certain parameters fixed across trial types were

Fig 4. Task design. After a variable fixation period of 500–1000ms (top) the cue (green rectangle) appeared
on the screen for 500 ms. The orientation of the cue (horizontal or vertical) indicated the required response
(prosaccade or antisaccade).

https://doi.org/10.1371/journal.pcbi.1005692.g004
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sufficient to model the data. Third, we investigated how the probability of a trial type in a
block affected the parameters of the model.

Model space. Initially, we considered 15 different models as shown in Table 2. Each
model was fitted independently for each subject and condition. Since our experimental design
included mixed blocks, we allowed for different parameters in pro- and antisaccade trials, i.e.,
different increase-rate distributions depending on the trial type (TT). Under this hypothesis,
the PROSA model had 12 free parameters (6 for each TT), whereas the SERIA model required
4 further parameters (πe and πl in each TT). The late race SERIAlr model included 16 parame-
ters for the units (8 for each TT). We did not investigate the case that early reactions could
trigger antisaccades but rather fixed the probability of an early antisaccade 1−πe to 10

−3. The
rationale behind this was that if early reactions are a priori assumed to never trigger antisac-
cades, rare but possible early antisaccades might cause large biases when fitting a model.

Regarding the non-decision time δ, antisaccade cost δa, and rate of outliers η, we assumed
equal parameters in both TT. Consequently, the full PROSA model had 15 free parameters
whereas the full SERIA and SERIAlr models had both 19 free parameters.

In addition to the full models, we evaluated restricted versions of each of them by constrain-
ing some parameters to be equal across TT. In the case of the SERIA model, we hypothesized
that the parameters of all units were equal, irrespective of TT (i.e., that the rate of the units was
not affected by the cue presented in a trial). However, we assumed that the probability that an
early or late response was a prosaccade was different in pro- and antisaccade trials. Therefore,
in the case of the SERIA model, instead of 12 unit parameters (6 per TT), the restricted model
had only 6 parameters for the units’ rates. The parameters πe and πl were allowed to differ in

Table 2. Model families with the respective increase-rate distributions.

PROSA

Model Prosaccade/
stop units

Anti. unit # Param. full/const.

m1=m
c
1

Inv. gamma Inv. gamma 15/13

m2=m
c
2 Gamma Gamma 15/13

m3=m
c
3 Gamma Inv. gamma 15/13

m4=m
c
4

Lognorm. Lognorm. 15/13

m5=m
c
5 T. norm. T. norm. 15/13

SERIA

Early/stop units Late unit

m6=m
c
6 Inv. gamma Inv. gamma 19/13

m7=m
c
7 Gamma Gamma 19/13

m8=m
c
8

Gamma Inv. gamma 19/13

m9=m
c
9 Lognorm. Lognorm. 19/13

m10=m
c
10 T. norm. T. norm. 19/13

SERIAlr

Early/stop units Late pro./anti. units

m11=m
c
11 Inv. gamma Inv. gamma 19/15

m12=m
c
12

Gamma Gamma 19/15

m13=m
c
13 Gamma Inv. gamma 19/15

m14=m
c
14 Lognorm. Lognorm. 19/15

m15=m
c
15

T. norm. T. norm. 19/15

Models with parameters constrained to be equal across trial types are referred through the superscript c.

https://doi.org/10.1371/journal.pcbi.1005692.t002
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pro- and antisaccade trials. In the case of the restricted SERIAlr model, the units that underlie
the late decision process were allowed to vary across TT, yielding a restricted model with 4
parameters for the early and inhibitory units, and 8 for the late decision process, half of them
for each trial type. In the case of the PROSA model, similarly to [17], it is possible to assume
that the parameters of the prosaccade unit remain constant across TT, and that the parameters
of the stop and antisaccade units depend on TT, yielding 10 parameters for the units.

Prior distributions for model parameters. To complete the definition of the models, the
prior distribution of the parameters was specified. This distribution reflects beliefs that are
independent of the data and provides a form of regularization when inverting a model. In
order to avoid any undesired bias regarding the parametric distributions considered here, we
reparametrized all but the truncated normal distribution in terms of their mean and variance.
We then assumed that the log of the mean and variance of the rate of the units were equally
normally distributed (see Table 3). Therefore, the parametric distributions had the same prior
in terms of their first two central moments. In the case of the truncated normal distribution,
instead of an analytical transformation between its first two moments and its natural parame-
ters μ and σ2, we defined the prior distribution as a density of μ and ln σ2. To ensure that μ was
positive with high probability (96%) we assumed that μ* N(0.55,0.09). The variance term was
distributed as displayed in Table 3. As a further constraint, we restricted the parameter space
to enforce that the first two moments of the distributions of rates and RTs existed. We relaxed
this constraint for the late units of the SERIAlr in order to allow for ‘flat’ distributions with pos-
sibly infinite mean and variance. This can describe a case in which the increase rate of one of
the late units is extremely low.

For the non-decision time δ and the antisaccade cost δa, the prior of their log transform was
a normal distribution, consistent across all models. Note that the scale of the parameters δ and
δa in Table 3 is tenths of a second. The fraction of early outliers η, and early and late prosac-
cades πe and πl were assumed to be Beta distributed, with parameters 0.5 and 0.5. Thus, for
example, the prior probability of an early outlier is given by

pðZÞ / Z0:5ð1' ZÞ0:5: ð34Þ

This parametrization constitutes the minimally informative prior distribution, as it is the Jef-
frey’s prior of η, πe and πl. Table 3 displays the parameters used for the prior distributions.

Bayesian inference

Inference on the model parameters was performed using the Metropolis-Hastings algorithm
[31]. To increase the efficiency of our sampling scheme, we iteratively modified the proposal
distribution during an initial ‘burn-in’ phase as proposed by [32]. Moreover, we extended this
method by drawing from a set of chains at different temperatures and swapping samples across
chains. This method, called population MCMC or parallel tempering, increases the statistical

Table 3. Prior probability density functions.

Parameter Probability density function Expected value Variance

μr N ðlnmr ;'1:08; 0:97Þ 0.55 0.5

s2
r N ðlns2

r ;'2:64; 0:69Þ 0.1 0.01

δ N ðlnd;'1:58; 1:79Þ 0.5 1.25

δa N ðlnda;'0:87; 1:17Þ 0.75 1.25

πe Beta(πe;0.5,0.5) 0.5 0.145

πl Beta(πe;0.5,0.5) 0.5 0.145

η Beta(η;0.5,0.5) 0.5 0.145

https://doi.org/10.1371/journal.pcbi.1005692.t003
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efficiency of the Metropolis-Hasting algorithm [33] and has been used in similar contexts
before [34]. We simulated 16 chains with a 5-th order temperature schedule [35]. For all but
the models including a truncated normal distribution, we drew 4.1 × 104 samples per chain,
from which the first 1.6 × 104 samples were discarded as part of the burn-in phase. When a
truncated normal distribution was included (models m5, m10, and m15), the total number of
samples was increased to 6 × 104, from which 2 × 104 were discarded. The convergence of the

algorithm was assessed using the Gelman-Rubin criterion [33,36] such that the ~R statistic of
the parameters of the model was aimed to be below 1.1. When a simulation did not satisfy this
criterion, it was repeated until 99.5 percent of all simulations satisfied it.

Models were scored using their log marginal likelihood or log model evidence (LME). This
is defined as the log probability of the data given a model after marginalizing out all its parame-
ters. When comparing different models, the LME corresponds to the log posterior probability
of a model under a uniform prior on model identity. Thus, for a single subject with data y, the
posterior probability of model k, given models 1 to n is

pðmkjyÞ ¼
pðyjmkÞpðmkÞ

Pn

i¼1 pðyjmiÞpðmiÞ
¼

pðyjmkÞ
Pn

i¼1 pðyjmiÞ
: ð35Þ

Importantly, this method takes into account not only the accuracy of the model but also its
complexity, such that overparameterized models are penalized [37]. A widely used approxima-
tion to the LME is the Bayesian Information Criterion (BIC) which, although easy to compute,
has limitations (for discussion, see [38]). Here, we computed the LME through thermody-
namic integration [33,39]. This method provides robust estimates and can be easily computed
using samples obtained through population MCMC.

One important observation here is that the LME is sensitive to the prior distribution, and thus
can be strongly influenced by it [40]. We addressed this issue in two ways: On one hand and as
mentioned above, we defined the prior distribution of the increase rates of all models in terms of
the same mean and variance. This implies that the priors were equal up to their first two
moments, and hence all models were similarly calibrated. On the other hand, we complemented
our quantitative analysis with qualitative posterior checks [33] as shown in the results section.

Besides comparing the evidence of each model, we also performed a hierarchical or random
effects analysis described in [38,41]. This method can be understood as a form of soft cluster-
ing in which each subject is assigned to a model using the LME as assignment criterion. Here,
we report the expected probability of the model ri, which represents the percentage of subjects
that is assigned to the cluster representing model i. This hierarchical approach is robust to pop-
ulation heterogeneity and outliers, and complements reporting the group-level LME. Finally,
we compared families of models [42] based on the evidence of each model for each subject
summed across conditions.

Classical statistics

In addition to a Bayesian analysis of the data, we used classical statistics to investigate the effect
of our experimental manipulation on behavioral variables (mean RT and ER) and the parame-
ters of the models. We have suggested previously [11,43,44] that generative models can be
used to extract hidden features from experimental data that might not be directly captured by,
for example, standard linear methods or purely data driven machine learning techniques. In
this sense, classical statistical inference can be boosted by extracting interpretable data features
through Bayesian techniques.

Frequentist analyses of RT, ER, and parameter estimates were performed using a mixed
effects generalized linear model with independent variables subject (SUBJECT), prosaccade

SERIA—Amodel for errors and reaction times in the antisaccade task
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probability (PP) with levels PP20, PP50 and PP80, and when pro- and antisaccade trials were
analyzed together, trial type (TT). The factor SUBJECT was always entered as a random effect,
whereas PP and TT were treated as categorical fixed effects. In the case of ER, we used the
probit function as link function.

Analyses were conducted with the function fitglme.m in MATLAB 9.0. The significance
threshold α was set to 0.05.

Implementation

All likelihood functions were implemented in the C programming language using the GSL
numerical package (v.1.16). Integrals without an analytical form or well-known approxima-
tions were computed through numerical integration using the Gauss-Kronrod-Patterson algo-
rithm [45] implemented in the function gsl_integration_qng. The sampling routine was
implemented in MATLAB (v. 8.1) and is available as a module of the open source software
package TAPAS (www.translationalneuromodeling.org/tapas).

Results

Behavior

Forty-seven subjects (age: 23.8 ± 2.9) completed all blocks and were included in further analyses.
A total of 27072 trials were recorded, from which 569 trials (2%) were excluded (see Table 4).

Both ER and RT showed a strong dependence on PP (Fig 5 and Table 5). Individual data is
included in the S1 Dataset and is displayed in S1 Fig. The mean RT of correct pro- and antisac-
cade trials was analyzed independently with two ANOVA tests with factors SUBJECT and PP.
We found that in both pro- (F2,138 = 46.9, p< 10−5) and antisaccade trials (F2,138 = 37.3, p<
10−5) the effect of PP was significant; with higher PP, prosaccade RT decreased, whereas the
RT of correct antisaccades increased. On a subject-by-subject basis, we found that between the
PP20 and PP80 conditions, 91% of the participants showed increased RT in correct antisac-
cade trials, while 81% demonstrated the opposite effect (a decrease in RT) in correct prosac-
cade trials. Similarly, there was a significant effect of PP on ER in both prosaccade (F2,138 =
376.1, p< 10−5) as well as in antisaccade (F2,138 = 347.0, p< 10−5) trials. This effect was present
in all but one participant in antisaccade trials and in all subjects in prosaccade trials. Exem-
plary RT data of one subject in the PP50 condition is displayed in Fig 6.

Modeling

Model comparison results. Initially, we considered the models outlined in Table 2. The
LME over all participants (fixed effects analysis) and the posterior probability of all models

Table 4. Summary of trials per subject.

Valid Blink Missing Aborted FE Late S. Early S. Total

Total 26503 188 60 42 249 0 30 27072

Mean 563.9 4.0 1.3 0.9 5.3 0.0 0.6 576

Std. 9.9 5.1 2.5 1.5 5.0 0.0 1.3 -

Min. 536 0 0 0 0 0 0 -

Max. 576 22 15 6 19 0 8 -

FE: Fixation errors. Late saccades are saccades elicited after 800ms. Early saccades are prosaccades elicited before 50ms after CP or antisaccades

elicited before 110ms after CP.

https://doi.org/10.1371/journal.pcbi.1005692.t004
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and all subjects are presented in Fig 7. Independently of the particular parametric distribution
of the units, the SERIAlr models had higher evidence compared to the PROSA and SERIA
models. A random effects, family-wise model comparison [42] resulted in an expected fre-
quency of r = 87% for the SERIAlr family, r = 11% for the SERIA family, and r = 2% for the
PROSA family. In addition, constraining the parameters to be equal across trial types increased
the model evidence irrespective of the parametric distribution assigned to the units (Fig 7).
Here, the family-wise model comparison showed that models with constrained parameters
had an expected frequency of r = 98%. Over all 30 models,mc

13 (SERIAlr with constrained

parameters, early and inhibitory increase rates gamma distributed, and late units’ rate inverse
gamma distributed) showed the highest LME with ΔLME> 200 compared to all other models.
Following [40], a difference in LME larger than 3 corresponds to strong evidence.

To verify that the SERIAlr family was not preferred simply because the probability of early
prosaccades was fixed, we considered models in the SERIA family with the same property (not
displayed). We found that although fixing this value increased the LME of the SERIA family,

Fig 5. Error rate andmean reaction time as a function of prosaccade trial probability (PP). Left panel:
Mean error rates for pro- and antisaccade trials. Right panel: Mean reaction time inms. Error bars indicate
standard errors of the mean. Only correct responses are displayed.

https://doi.org/10.1371/journal.pcbi.1005692.g005

Table 5. Summary of mean RTs and ERs.

Trial type Action Reaction times [ms]

PP 20 PP 50 PP80

Pro. Pro. 330(72) 319(67) 284(59)

Pro. Anti. 326(68) 329(46) 336(57)

Anti. Anti 354(60) 378(57) 389(61)

Anti. Pro 234(50) 231(47) 225(31)

Error rates [%]

Pro. 26(15) 11(8) 4(4)

Anti. 23(17) 35(21) 51(20)

Standard deviations are shown in brackets.

https://doi.org/10.1371/journal.pcbi.1005692.t005
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there was still a difference of ΔLME> 90 when comparing the best model of the SERIAlr family
and the best model of the SERIA family with a fix probability of early prosaccades.

Fits of four subjects using the posterior samples of the best PROSA (m1), SERIA (mc
8
), and

SERIAlr (mc
13) models are depicted in Fig 8. Although modelm1 was the best model in the

PROSA family, it clearly did not explain the apparent bimodality of the prosaccade RT distri-
butions. Instead, RTs were explained through wider distributions. No obvious difference could
be observed between the SERIA and SERIAlr models. We further examined the model fits in
Fig 9 and Fig 10 by plotting the weighted fits and cumulative density functions of the recipro-
cal RT in the probit scale (reciprobit plot [22]) collapsed across subjects for the best model of
each family. The histograms of RTs clearly show a large number of late prosaccades whose dis-
tribution is similar to the distribution of antisaccade RTs. The most pronounced–but still
small—difference between the SERIA and SERIAlr models was visible in prosaccade trials in
the PP20 condition (left panel, upper half plane), in which antisaccade errors displayed lower
RT than correct late prosaccades.

Corrective antisaccades. The RTs of antisaccades that follow an error prosaccade were
not directly modeled. However, we hypothesized that corrective antisaccades are delayed late
antisaccade actions, whose distribution is given by the response time distribution of late anti-
saccades

1

pðUa < UpÞ
pðUa ¼ tÞpðUp > tÞ ð36Þ

A total of 2989 corrective antisaccades were included in the analysis. The mean (±std) end
time of the erroneous prosaccades was 268(±63)ms. The mean RT of corrective antisaccades
was 447(±103)ms, and the weighted mean arrival time of the late antisaccade unit was 367ms.
Fig 11 displays the histogram of the end time of all prosaccade errors, the RT of all corrective

Fig 6. Exemplary histogram of the reaction times of one subject in the PP50 condition. Prosaccade
trials are displayed in the upper half plane and antisaccade trials in the lower (negative) half plane.
Prosaccade actions are depicted in red color, whereas antisaccade actions are shown in blue. Errors in
prosaccade trials are antisaccades that for this subject occurred after the first peak of early prosaccades.
Errors in antisaccade trials (lower half plane) occurred at a similar latency as early prosaccades in prosaccade
trials. The histograms have been normalized to have unit probability mass, i.e., the sum of the area of all bars
is one.

https://doi.org/10.1371/journal.pcbi.1005692.g006
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antisaccades and the time shifted (+80ms) predicted response time of late antisaccades. Since
we did not have a strong hypothesis regarding the magnitude of the delay of the corrective
antisaccades, we selected the time shift to be the difference between the mean corrective anti-
saccade RT and the mean predicted response time of late antisaccades. Visual inspection
strongly suggests that the distribution of corrective antisaccade RTs is well approximated by
the distribution of the late responses. The short difference between corrective antisaccades’ RT
and the expected response time of the late antisaccade unit (80ms) favors the hypothesis that
the plan for a corrective antisaccade is initiated before the incorrect prosaccade had finished.

Effects of prosaccade probability on model parameters. The effect of PP on the parame-
ters of the model was investigated by examining the expected value of the parameters of the
best scoring model (mc

13). Initially, we considered the question of whether the mean arrival or

response time of each of the units changed as a function of PP. For arrival times, this corre-
sponds to

1

N

X

N

j¼1

ðE½Uijkij; y
i
j& þ dijÞ ð37Þ

where i is an index over the units, j is an index over N samples collected using MCMC, and dij
is the estimated delay. In the case of the late units, we considered only the response time of cor-
rect actions. Fig 12 left displays the mean arrival and response times. These were submitted to

Fig 7. Summary of model comparison. Top: Summed LME of all subjects for all 30 models. White bars showmodels with all parameters free, grey
bars models with constrained parameters. LMEs are normalized by subtracting the lowest LME (m5). Modelmc

13 (constrained SERIAlr) exceeded all
other models (ΔLME > 200). Bottom: Illustration of model probability for all subjects. The posterior model probabilities for all subjects are shown as
black dots. In white shading are models with all parameters free, grey bars represent models with restricted parameters. Note that in nearly all
subjects, the SERIAlr models with restricted parameters showed high model probabilities.

https://doi.org/10.1371/journal.pcbi.1005692.g007
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Fig 8. Fits of best PROSA (m1), SERIA (mc

8) and SERIAlr (m
c

13) models.Columns display the normalized histogram of the RTs of pro- (red) and
antisaccades (blue) in each of the conditions. Rows correspond to individual subjects named S1 to S4 for display purpose. As in Fig 6, prosaccade

SERIA—Amodel for errors and reaction times in the antisaccade task
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four separate ANOVA tests, which revealed that PP had a significant effect on all four units:
early unit (F2,138 = 9.2, p< 10−3), late antisaccade (F2,138 = 26.6, p< 10−3), late prosaccade
(F2,138 = 19.6, p< 10−3), and inhibitory unit (F2,138 = 30.9, p< 10−3). We then explored the dif-
ferences across conditions through planned post hoc tests on each condition for each of the
units (Table 6). The arrival times of the early unit did not change significantly between condi-
tion PP20 and PP50, but decreased significantly in the PP80 condition as compared to the
PP50 block. The response times of late antisaccades increased significantly between the PP20
and the PP50 conditions but not so between the PP50 and PP80. Late prosaccades followed the
opposite pattern, showing only a significant decrease in response time between the PP50 and
PP80 conditions. Finally, the inhibitory unit changed significantly across all conditions.

Finally, we examined how the probability of a late antisaccade p(Ua> Up) (Fig 12, right)
depended on PP and TT. The estimated parameters for both pro- and antisaccade trials were
analyzed with a model with factors SUBJECT, TT, PP and the interaction between TT and PP.
An ANOVA test demonstrated that both PP (F2,276 = 51.2, p< 10−3) and TT (F1,276 = 985.0,
p< 10−3) had a significant effect, but there was no evidence for an interaction between the two
factors (F2,276 = 1.5, p< 0.23), suggesting that PP affected the probability of a late antisaccade
equally in pro- and antisaccade trials.

trials are displayed on the upper half plane, whereas antisaccade trials are displayed in the lower half plane. The predicted RT distributions based on
the samples from the posterior distribution are displayed in solid (SERIAlr), broken (SERIA), and dash-dotted (PROSA) lines. Note that data from
subject 3 in the PP50 condition is the same as shown in Fig 6. Early outliers are not displayed.

https://doi.org/10.1371/journal.pcbi.1005692.g008

Fig 9. Fits from the best models in each family (m1;m
c

8;m
c

13).Model fits and RT histograms for each condition collapsed across subjects. For more
details see Figs 6 and 8.

https://doi.org/10.1371/journal.pcbi.1005692.g009
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Subject specific parameters

Finally, we investigated how some of the parameters of the model were related to each other
across subjects. Because it has been commonly reported that schizophrenia is related with
higher ER, but also with increased antisaccade RT, an interesting question is whether higher
late-action response times are correlated with the percentage of late errors and inhibition fail-
ures, i.e., early saccades that are not stopped. We found that the response time of late pro
(F1,135 = 13.6, p< 0.001) and antisaccades (F1,135 = 7.1, p< 0.01) was negatively correlated
with the probability of a late error (Fig 13), but no significant interaction between PP and
response time was found (pro: F2,135 = 1.7, p = 0.19; anti: F2,135 = 0.3, p = 0.76). Hence, late
responders tended to make fewer late errors, suggesting a speed/accuracy trade-off in addition
to the main effect of PP. We further considered the question whether the percentage of

Fig 10. Reciprobit plot of best models.Predicted and empirical cumulative density function of the reciprocal RT in the probit scale for each condition and
model collapsed across all subjects. The data shown are the same as in Fig 9, but split for trial types and illustrated as cumulative distributions. Note that the
y-axis is in the probit scale and that nearly all differences between themodel and the data occur at very small probability values of 5% or below.

https://doi.org/10.1371/journal.pcbi.1005692.g010
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inhibition failures was correlated with the expected arrival time of the late antisaccade unit in
antisaccade trials (Fig 13 right). Note that the number of inhibition failures is the same in both
trial types in a constrained model, but inhibition failures are errors in antisaccade trials and
correct early reactions in prosaccade trials. We found that these parameters were not

Fig 11. Empirical and predicted RT of corrective antisaccades. Left: End time of erroneous prosaccades, RTs of corrective antisaccades, and time
shifted predicted response time distribution of late antisaccades. The time shift was selected to be the difference between the empirical and predicted
mean response time. Center: Quantile-quantile plot of the predicted and empirical distribution of corrective antisaccades, and a linear fit to the central
98% quantiles. There is a small deviation only at the tail of the distribution. Right: Reciprobit plot of the empirical and predicted cumulative density
functions of the RT of corrective antisaccades. The scale of the horizontal axis is proportional to the reciprocal RT. The vertical axis is in the probit scale.

https://doi.org/10.1371/journal.pcbi.1005692.g011

Fig 12. Model parameters. Left: Mean arrival or response time and standard error of the early and inhibitory units and late pro- and antisaccades.
Right: Probability of a late antisaccade p(Ua > Up) in prosaccade (red) and antisaccade (blue) trials in each condition in the probit scale.

https://doi.org/10.1371/journal.pcbi.1005692.g012
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significantly correlated (F2,135 = 1.2, p = 0.26). This was also the case when we considered the
expected response time of late prosaccades in prosaccade trials (not displayed; F2,135 = 0.0,
p = 0.98).

Fig 14 illustrates the posterior distribution of late errors and inhibition failures of two repre-
sentative subjects as estimated using MCMC. Clearly, PP induced strong differences in the
percentage of inhibition failures and late errors in prosaccade trials in both subjects. The effect
of PP is less pronounced in late errors in antisaccade trials. The posterior distributions also
illustrate how the SERIAlr model can capture individual differences: For example, the percent-
age of late prosaccade errors in the PP80 condition and the percentage of inhibition failures
across all conditions are clearly different in each subject.

Discussion

In this study, we provided a formal treatment of error rates (ER) and reaction times (RT) in
the antisaccade task using probabilistic models. We applied these models to data from an
experiment consisting of 3 mixed blocks with different probabilities of pro- and antisaccades
trials. Model comparison showed that a novel model that allows for late pro- and antisaccades

Table 6. Post hoc comparison of the effect of PP.

Early Inhib. Late pro. Late anti.

Mean [ms] t138 p Mean [ms] t138 p Mean [ms] t138 p Mean [ms] t138 p

PP20–PP50 4 0.6 0.50 -30 -4.0 <0.001* 3 0.5 0.55 -24 -36 <0.001*

PP20–PP80 26 3.9 <0.001* -58 -7.8 <0.001* 32 5.7 <0.001* -32 -5.4 <0.001*

PP50–PP80 22 3.3 0.001* -28 -3.8 <0.001* 29 5.1 <0.001* -7 -1.5 0.13

Effect of PP on the mean arrival time of the early and inhibitory unit, and for late pro- and antisaccade units in the corresponding trial type.

*, p < 0.05.of a two-tailed t-test.

https://doi.org/10.1371/journal.pcbi.1005692.t006

Fig 13. Correlation between late arrival times and errors. Left: Percentage of late errors against late antisaccades’ response times in antisaccade
trials. Center: Percentage of late errors against late prosaccades’ response time in prosaccade trials. Left: Percentage of inhibitory failures against late
antisaccades’ response time in antisaccade trials. The vertical axis is in the probit scale.

https://doi.org/10.1371/journal.pcbi.1005692.g013
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explains our experimental findings better than a model in which all late responses are assumed
to be antisaccades. The parameter estimates of the hidden units of the model showed that
changes in the inhibitory unit and the late decision process explained most of the overt
changes in behavior caused by our experimental manipulation, i.e., differences in trial type
probability. Moreover, we found that all units were sensitive to the PP in a block, although late
responses tended to plateau when the corresponding trial type was not highly frequent.

Our main finding is that two decision processes are necessary to properly model the anti-
saccade task: on one hand, an early race between a prepotent response towards a target and an
endogenously generated signal to cancel this action, and, on the other hand, a secondary late
race between two units encoding the cue-action mapping. Although the late decision process
can be closely approximated by assuming that RT and actions are independent (at least in our
experimental design), Bayesian model comparison demonstrated that late decisions are more
accurately described by a race between two units representing different actions. The two deci-
sion processes are the sources of early errors–fast prosaccades in antisaccade trials- and late
errors–late actions incongruent with the cue presented. The late decision process displays a
speed/accuracy tradeoff and is biased by the probability of a trial type in a block. Moreover,

Fig 14. Posterior distribution of late errors and inhibition failures. The posterior distribution of the percentage of late and inhibition failures of two
exemplary subjects (see Figs 8 and 13). Samples from the posterior distribution were obtained using MCMC. Histograms display the distributions of
the samples in probit scale (horizontal axis). For these two subjects, the posterior distribution of late prosaccade and inhibitory failures clearly
discriminates between the three PP conditions.

https://doi.org/10.1371/journal.pcbi.1005692.g014
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this decision process predicts the RT distribution of corrective antisaccades that follow early
errors. Because the extra latency of these corrective antisaccades (80ms) is relatively short, it is
unlikely that corrective antisaccades are due to a restart in the decision process. Rather these
are late actions that overwrite early errors.

Influence of trial type probability on reaction times and error rates

Our results show that both RT and ER depend on PP. While this was a highly significant factor
in our study, there are mixed findings in previous reports. ER in antisaccade trials was found
to be correlated with TT probability in several studies [29,46,47]. However, this effect might
depend on the exact implementation of the task [47,48]. Changes in prosaccade ER similar to
our study have been reported by [29] and [48]. Studies in which the type of saccade was sig-
naled at fixation prior to the presentation of the peripheral cue do not always show this effect
[47]. The results on RTs are less consistent in the literature. Our findings of increased anti-
and decreased prosaccade RTs with higher PP are in line with the overall trend in [29], and
with studies in which the cue was presented centrally [47]. Often, there is an additional
increase in RT in the PP50 condition [29,47], which was visible in our data as a slight increase
in RT in the PP50 condition on top of the linear effect of PP. Overall, RTs in our study were
relatively slow compared to studies in which the TT cue was separated from the spatial cue
[46,47]. However, a study with a similar design and added visual search reported even slower
RTs in both pro- and antisaccades [29].

Interpretation of model comparison results

Formal comparison of generative models can offer insight into the mechanisms underlying
eye movement behavior [11] and might be relevant in translational neuromodeling applica-
tions, such as computational psychiatry [49–53]. Here, we have presented what is, to our
knowledge, the first formal statistical comparison of models of the antisaccade task. For this,
we formalized the model introduced in [17] and proceeded to develop a novel model that
relaxes the one-to-one association of early and late responses with pro- and antisaccades,
respectively. All models and estimation techniques presented here are openly available under
the GPLv3.0 license as part of the open source package TAPAS (www.
translationalneuromodeling.org/tapas).

Bayesian model comparison yielded four conclusions at the family level. First, the SERIA
models were clearly favored when compared to the PROSA models. Second, including a late
race between actions representing late pro- and antisaccades (SERIAlr) resulted in an increase
in model evidence, compared to a model not including a late race (SERIA). Third, models in
which the race parameters of the early and inhibitory unit were constrained to be equal across
TT had a higher LME than models in which all parameters were free. Hence, the effect of the
cue in a single trial was limited to the late action, and did not affect the race between an early
and inhibitory process. This constitutes an important external validation, as it means that
model comparison does favor a model which respects the temporal order of the experiment:
Information about TT is only available after the stimulus was presented and, thus, it is unlikely
to have an impact on fast reactive responses. Fourth, early responses were nearly always pro-
saccades. Crucially, these four conclusions are based on family-wise comparison across all
parametric distribution of the increase rate of the units.

A further consequence of our findings is that two independent and qualitatively different
decision processes lead to an antisaccade: the race process between early and inhibitory units,
and the secondary decision process that generates late responses. A separation of decisions
into a ‘where’ and a ‘when’ component has been proposed by [54], but mainly in conceptual
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terms. However, model comparison showed that these two components (‘where’ and ‘when’)
cannot be completely dissociated and that time plays a role in late decisions. Nevertheless, the
assumption that action type and arrival time of late responses were independent yielded a
good fit to this particular data set, suggesting that it is, in many cases, an acceptable approxi-
mation to assume a time-independent late decision process. The most obvious difference
between the SERIA and SERIAlr can be observed in prosaccade trials in the PP20 condition
(left panel, upper half plane Fig 9), in which late prosaccades are slower than antisaccades. We
discuss this point in more detail below.

Parametric distribution of reaction times. The parametric distribution of oculomotor
RTs has been discussed in great detail in the literature (e.g., [13,55]). Here, we did not aim at
determining the most suitable distribution, but rather opted for a practical approach by evalu-
ating different models with a reduced number of parametric distributions. We then based our
conclusions on the model with the highest LME. Nevertheless, one can consider the connec-
tion of the models presented here with other families of parametric distributions. In particular,
the linear relationship

si
ri
¼ t ð38Þ

could be seen as formally inconsistent with the observation that RT are likely to be expla-
ined by stochastic accumulation processes (see for example [56,57], but [58]). This is a
weaker constraint than one would expect, because under low noise conditions, for example,
a linear relationship can be a good approximation of neural activity. Even if the relationship
is not linear, for any continuous function ϕ with an inverse function ϕ−1, the model can be
recasted as [59]:

si ¼ !ðtriÞ; ð39Þ

!'1ðsiÞ
ri

¼ t: ð40Þ

In any case, linear accumulation models have been shown to yield similar conclusions to
stochastic accumulation models [58].

More generally, it can be shown that if RTs follow a generalized inverse normal distribution
(GIN) of the form

GINðt; l; k;cÞ ¼
c

k

$ %l

2Klð
ffiffiffiffiffiffiffiffi

kcÞ
p tl'1exp '

1

2
ðkt'1 þ ctÞ

! "

ð41Þ

where λ( 0, and Kλ is a modified Bessel function of the second kind, there exists a continuous
diffusion process whose first hit distribution (FHD) follows the GIN [60]. A particular case of
this distribution is the Wald distribution for which l ¼ ' 1

2
; k ¼ 0. It is the FHD of the

Brownian diffusion process with drift

Xt ¼ '
ffiffiffi

s
p

ct þ sWt ð42Þ

whereWt denotes a Wiener process, x0> 0, and the absorbing boundary a is zero. More rele-
vant here, when ψ = 0 the distribution reduces to an inverse gamma distribution, the FHD of
the process

Xt ¼
ffiffiffi

s
p

ð2l' 1Þt'1 þ sWt ð43Þ
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with x0 > 0 and boundary a = 0 (for a detailed mathematical treatment see [60]). Thus, if the
rates of a ballistic, linear processes are assumed to be gamma distributed, the RTs follow a dis-
tribution that is formally equivalent to a first hit model with stochastic updates and fixed rates.
While the model presented here can be seen as a ballistic accumulation model, this equivalence
suggests that it is compatible with a diffusion process with infinitesimal mean change propor-
tional to t−1.

Other antisaccade models. In broad terms, three families of antisaccade models can be
distinguished (reviewed in [61]). The first set of models is based on a race process with inde-
pendent saccadic and stop units. These models build on the seminal work of [16] on the stop-
signal paradigm. According to this model, a ‘GO’ signal triggers a stochastic ‘race’ process that
generates a response once it reaches threshold. Critically, a stop signal triggers a second pro-
cess that inhibits the first ‘GO’ response if it is the first to reach threshold. Moreover, the rates
of both units are assumed to be independent. This model was further extended for the antisac-
cade task by [17] (but see [14,21], and the review in [20]), who included a third unit such that
an antisaccade is generated when a reflexive prosaccade is inhibited by an endogenously-trig-
gered stop process. Note that the original ‘horse-race’ model has also been modified [62] to
account for different competing response actions, similarly as in the antisaccade task. The
models proposed here belong to this family.

A second type of model relies on lateral or mutual inhibition of competing pro- and anti-
saccade units. In this direction, Cutsuridis and colleagues [61,63,64] proposed that lateral inhi-
bition is implemented by inhibitory connections in the intermediate layers of the superior
colliculus. Thus, saccades are the result of accumulation processes, but these are not indepen-
dent of each other. Crucially, no veto-like stop signal is required. Although no formal model-
fitting has been proposed for this model, qualitative agreement with data suggests that it might
capture behavioral patterns relevant in translational applications [64,65]. Since no probabilistic
version of this model is available, it is not yet possible to decide on the grounds of model com-
parison whether mutually dependent or independent race processes best explain current
behavioral findings.

Finally, several models that incorporate detailed physiological mechanisms have been pro-
posed [23,66–68]. These models cannot be easily assigned to one of the above categories, as
they often employ both an inhibitory mechanism that stops or withholds the reactive responses
as well as competition between actions. In addition, while more realistic models possess a
more fine-grained representation of the underlying neurobiology, they rely on a large number
of parameters and for this reason, it is difficult to fit them to behavioral data (for discussion,
see [11]).

Regarding neurobiologically realistic models, the model proposed by [23] is the most simi-
lar to the SERIA model. It posits two different mechanisms that interact in the generation of
antisaccades: an action-selection module and a remapping module that controls the cue-action
mapping. As a consequence, this model allows for the generation of late errors that follow a
similar RT distribution as correct antisaccades. Consistent with this observation, the SERIA
model can quantitatively distinguish between inhibition and late cue-action mapping errors
(Fig 15, left panel). A less obvious similarity between the SERIA model and [23] is that differ-
ent cues do not lead directly to different dynamics in the action module, but only in the so-
called ‘remapping’ module. Furthermore, the incorporation of a late race is conceptually close
to the approach proposed by [23], which includes a winner-take-all competition in what we
have referred here as late responses. Similarly, our model comparison results show that differ-
ent cues (i.e., trial types) do not affect the GO/NO-GO process but only the late cue-action
mapping.
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Parameter changes across trial types

One of the most salient results presented here is that models in which the parameters of the
units were constrained to be equal across trial types had a larger LME than models in which all
the parameters were free, suggesting that the early and inhibitory race units were not affected
by the cue presented in a single trial. While visual inspection of the predicted likelihood under
the posterior parameters showed that most of the prominent characteristics of the data were
explained correctly, some more subtle effects were not captured accurately by the SERIA
model. This is particularly clear in the PP20 condition, in which the SERIA model displays a
large bias in prosaccades trials in the PP20 condition. One possible explanation is that restrict-
ing the parameters across trial types made the model too rigid to capture this effect. Fig 16
compares the fitted RT distributions for modelsm8 (SERIA) andm13 (SERIAlr), in which no
constraint on the parameters was imposed. Both models are qualitatively almost identical,
although as shown in Fig 7, the LME favored the SERIAlr model. Thereby, the qualitative simi-
larity between both models indicates that, in our experiment, the RT of late decisions is only
weakly dependent on time. In conclusion, although removing the constraint on the parameters
did improve the fit, the differences are marginal and thus did not justify the additional model
complexity. As mentioned above this is consistent with the notion that the information about
trial type is only available to a subject once the peripheral stimulus (green bar) has been pro-
cessed, presumably tens of milliseconds after the stimulus onset. In fact, this example illustrates
the protection against overfitting provided by the LME, as this is a case in which simpler mod-
els were preferred over more complex models despite of slightly less accurate fits.

Arguably, the constrained SERIA model fails to fully capture the RT of late prosaccade in
the PP20 and PP50 conditions because of the assumption that late prosaccades have the same
arrival time as late antisaccades. As shown in Fig 15, although the response time of late pro-

Fig 15. Error sources and the correlation of response times. Left: Error rate (black line) split into the two causes predicted by the model.
Inhibition errors are early actions that always trigger prosaccades. Similarly as described by [23], late errors occur when a late response leads to a
prosaccade. Right: Correlation between correct antisaccades’ and late prosaccades’ response times according to the best SERIAlc model. The best
linear fit is depicted as a solid line. Themean ratio of pro- and antisaccade response times (s) is displayed on the right. Although late pro- and
antisaccade response times are highly correlated, their ratio is different in each condition (interaction PP and late prosaccade response time F = 9.2,
p < 0.001).

https://doi.org/10.1371/journal.pcbi.1005692.g015
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and antisaccades are strongly correlated, the average ratio of the response times changes across
conditions.

The effect of trial type probability

It is far from obvious why TT probability affects RT and ER in the antisaccade task. One possi-
ble explanation is that increased probability leads to higher preparedness for either pro- or
antisaccades. Such a theory posits an intrinsic trade-off between preparations for one of the
two action types that leads to higher RTs and ERs in low probability trials. Thus, a trade-off
theory predicts that the arrival times of early and late responses should be negatively corre-
lated. Although this hypothesis can explain our behavioral findings in terms of summary statis-
tics, our model suggests a more complicated picture.

The main explanation of our results is the effect of TT probability on the inhibitory unit
and the probability of a late prosaccade. A higher probability of antisaccade trials leads to faster
inhibition and to a higher number of late prosaccades. This resulted in higher mean RT in pro-
saccade trials when PP is low. In the case of antisaccades, although the mean arrival times of
the late unit increased in the PP50 condition, the increased arrival time of the inhibitory unit
on the PP80 condition skewed the antisaccade distribution towards higher RTs. Nevertheless,
the SERIAlr implies the anticorrelation of late pro- and antisaccades in a single trial type, as
these are the results of a GO-GO race.

Action inhibition

The biological implementation of action inhibition in the antisaccade and other countermand-
ing tasks has received a lot of attention and is still debated [69–73]. Our work adds evidence to
the theory that the antisaccade task requires a process that inhibits prepotent responses and is
independent of the initiation of a late action [20]. Recent evidence from electrophysiological
recordings in the rat brain ([74] reviewed by [71]) suggests that the hypothesized race between

Fig 16. Comparison between unconstrained SERIA and SERIAlr models.Comparison between modelsm8 (broken lines; SERIA model) andm13

(solid lines; late race SERIAlr model.).

https://doi.org/10.1371/journal.pcbi.1005692.g016
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GO and inhibitory responses might be implemented by different pathways in the basal ganglia
[68]. In addition to the basal ganglia, microstimulation of the supplementary eye fields tends
to facilitate inhibition of saccades in the countermanding task [75].

Corrective antisaccades

Although not a primary goal of our model, we considered the question of predicting corrective
antisaccades. This problem has received some attention recently [18,61,65,76], as more sophis-
ticated models of the antisaccade task have been developed. We speculated that corrective anti-
saccades are generated by the same mechanism as late responses. Thus, their RT distribution
should follow a similar distribution. Our results strongly suggest that this is the case (see Fig
11). Moreover, the time delay of the corrective antisaccades indicates that, on average, these
actions are not the result of the late unit being restarted at the end time of the erroneous pro-
saccade, as this would lead to much higher RTs. Rather, the planning of a corrective antisac-
cade might be started much before the end of the execution of an erroneous prosaccade, in
accordance with the parallel planning model of the antisaccade task [46] and the ‘GO–STOP
+GO’ model in [21].

Translational applications

Despite the large number of studies of clinical patients using the antisaccade task, an important
question remains open: What are the causes of the errors in different neurological and psychi-
atric conditions? For example [77,78] argued that errors in schizophrenia might be explained,
at least partially, by a failure to generate a secondary late action based on several modifications
of the antisaccade task. However, it was also proposed that the increased ER in schizophrenia
is due to high tonic dopamine levels in the basal ganglia, that lead to decreased inhibition of
early responses [68]. More generally, different neurological and psychiatric diseases, or even
patients with the same condition, might be characterized by a different source of errors. For
example, there is intriguing evidence [79] that patients with different diseases such as attention
deficits disorders [80], Parkinson’s disease [81], and amyotrophic lateral sclerosis [82] might
be characterized by different ratios of early and late errors. An interesting experimental finding
in our study related to this is the considerable amount of erroneous antisaccades in prosaccade
trials. An increased number of such errors could be caused by reduced cognitive flexibility
leading to impaired shifting between tasks as observed for example in obsessive compulsive
disorder [83]. The ability to quantify different types of errors through computational modeling
might help to further characterize these diseases.

Summary

Here we have presented a novel model of the antisaccade task. While the basic structure of the
model follows the layout of a previous model [17], we have introduced two crucial advance-
ments. First, we postulated that late responses could trigger both pro- and antisaccades, which
are selected by an independent decision process. Second, the generative nature of our model
allows for Bayesian model inversion, which enables the comparison of different models and
families of models on formal grounds. To our knowledge this has not been done for any of the
previous models of the antisaccade task, which is of relevance for translational applications
that aim at better understanding psychiatric diseases by means of computational modeling.

The application of the model to a large data set yielded several novel results. First, the early
and inhibitory race processes triggered by different cues are almost identical. Moreover, differ-
ent PP had very different effects on the individual units, which was not obvious from the linear
analysis of the mean RT and ER. Crucially, our modeling approach allowed us to look at a

SERIA—Amodel for errors and reaction times in the antisaccade task

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005692 August 2, 2017 31 / 36



mechanistic explanation or the effects of PP by examining the individual units. In future work
we aim to disentangle the mechanisms of behavioral differences caused by neuromodulatory
drugs and psychiatric illnesses using formal Bayesian inference.

Supporting information
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(TIFF)

Acknowledgments

We thank Saee Paliwal for her remarks and helpful comments on an earlier version of this
manuscript.

Author Contributions

Conceptualization: Eduardo A. Aponte, Dario Schöbi, Klaas E. Stephan, Jakob Heinzle.
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Chapter	7	

In Chapter 6, we introduced the SERIA model for the antisaccade task. 
Its most remarkable characteristic is the postulate that prosaccades can 
be either early responses, or voluntary saccades analogous to 
antisaccades. Through formal model comparison, we showed that SERIA 
accounted for experimental data better than models in which 
prosaccades were assumed to be always pre-potent, fast responses. 

One important limitation of these findings is that the experimental 
design used in the previous chapter has been rarely investigated in 
humans, and only in a few physiological studies in the macaque monkey. 
The most conspicuous aspect of our design is that the peripheral cue that 
signals the correct (or incorrect) saccade direction, also signals the 
action to be performed (a pro- or antisaccade). By contrast, most 
antisaccade experiments are organized in blocks of the same trial type. 
Even in mixed designs, subjects are usually presented a central cue that 
signals the trial type before a peripheral stimulus is presented. Thereby, 
it is questionable whether the distinction between early and late errors 
introduced in the previous chapter is relevant when considering other 
designs of the antisaccade task. In other words, is there any evidence of 
late decision processes and late errors when task demand and saccade 
direction cues are presented one after the other? 

In this chapter, we investigate whether voluntary prosaccades can be 
observed in the antisaccade task when task demands are presented in 
advance of the peripheral cue. To operationalize this hypothesis, we 
compare the SERIA model against a model that posits that all 
prosaccades are early responses (the PROSA model in Chapter 6) 
Moreover, we contrast this task with the same experimental procedure 
as used in the previous chapter. 

Our results indicate that ERs and RTs were much lower when subjects 
were cued in advance about task demands compared to the design used 
in Chapter 6. In addition, the prosaccade RT distribution was not 
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bimodal, as reported in the previous chapter. Nevertheless, our results 
indicate that regardless of the experimental procedure, prosaccade 
distributions are better accounted for by SERIA. Model parameters also 
suggest that around a third of all errors in antisaccade trials can be 
categorized as late errors, with substantial variability across subjects. 
Furthermore, despite of the large absolute differences in ER and RT, we 
found that subjects’ ERs were strongly correlated across the two 
conditions. This observation is important because it implies that the 
results obtained in Chapter 6 are indeed comparable to findings 
previously reported in the literature. 

In the next chapter, we will extend SERIA to account for inter-trial 
effects, showing that alternating between pro- and antisaccade trials 
generates a degradation in performance that can be captured and 
partially explained by our generative model. 

This chapter is publicly available as Inhibition and late errors in the 
antisaccade task: Influence of task design; Eduardo A. Aponte, Dominic G. 
Tschan, Klaas E. Stephan, Jakob Heinzle bioRxiv 270165; doi: 
https://doi.org/10.1101/270165. 
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Abstract	

In the antisaccade task participants are required to saccade in the 
opposite direction of a peripheral visual cue (PVC). This paradigm is 
often used to investigate inhibition of reflexive responses as well as 
voluntary response generation. However, it is not clear to what extent 
different versions of this task probe the same underlying processes. Here, 
we explored with the Stochastic Early Reaction, Inhibition, and late Action 
(SERIA) model how the delay between task cue and PVC affects reaction 
time (RT) and error rate (ER) when pro- and antisaccade trials are 
randomly interleaved. Specifically, we contrasted a condition in which 
the task cue is presented prior to the PVC with a condition in which the 
PVC serves also as task cue. Summary statistics indicate that ER and RTs 
are reduced, and contextual effects largely removed when the task is 
signaled before the PVC appears. The SERIA model accounts for RT and 
ER in both conditions, and better so than other candidate models. 
Modeling demonstrates that voluntary pro- and antisaccades are 
frequent in both conditions, showing that not all prosaccades are reflex-
like actions. Moreover, early task cue presentation results in better 
control of reflexive saccades leading to fewer fast antisaccade errors and 
more rapid correct prosaccades. Finally, wrong voluntary actions, i.e. 
late errors, are prevalent in both conditions. In summary, SERIA 
provides an explanation for the differences in the delayed and non-
delayed antisaccade task. 

Keywords: antisaccades, eye movements, SERIA model, reaction time, 
error rate 
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Introduction	

The antisaccade task (Hallett 1978) is an oculomotor paradigm widely 
used in psychiatric research (Hutton and Ettinger, 2006; Gooding and 
Basso 2008; Bittencourt et al. 2013), in which participants are required 
to saccade in the opposite direction of a peripheral visual cue (PVC). 
This paradigm probes both the ability to inhibit reflexive responses – i.e., 
(pro)saccades towards a visual cue – and the ability to initiate voluntary 
actions – i.e., (anti)saccades in the direction contralateral to the 
peripheral stimulus (Everling and Fischer 1998). Since the seminal study 
of Hallett (1978), it is known that participants commit errors in the 
antisaccade task, defined as saccades towards the PVC. The clinical 
relevance of this paradigm originates from the fact that both error rates 
(ER) and reaction times (RT) are altered in many psychiatric and 
neurological diseases. For example, ERs are elevated not only in 
schizophrenic patients (Gooding and Basso 2008), but also in their first 
order relatives as well as in related psychiatric populations, such as 
schizoaffective disorder patients (Calkins et al. 2004; Reilly et al. 2014; 
Myles et al. 2017). 

Errors in this task have often been attributed to deficits in inhibitory 
control (e.g. Levy et al. 1998; Broerse et al. 2001; Calkins et al. 2004), 
while other proposals view them as deficits in voluntary action initiation 
(Reuter and Kathmann 2004; Reuter et al. 2005). Initially, Fischer et al. 
(2000) proposed to differentiate between inhibition errors and volitional 
errors based on a factor analysis on the ER of a large cohort of subjects, 
sub-classed by the number of ‘expressed saccades’ performed in 
prosaccade trials, a proxy of inhibitory control. This analysis revealed 
two main factors that predicted ER, which Fischer and colleagues 
interpreted as inhibitory control and voluntary action initiation. Using a 
similar argument, Klein and Fischer (2005) proposed to extend the 
distinction between express and ‘normal-range’ saccades to antisaccade 
errors, and used indirect statistical evidence to suggest that these evolve 
differently during development and are correlated with different 
psychometric constructs (Klein et al. 2010). Reuter and colleagues 
(Reuter and Kathmann 2004; Reuter et al. 2005), based on the parallel 
programming model proposed by Massen (2004), hypothesized that at 
least some fraction of the errors observed in this paradigm are caused by 
failures to initiate a voluntary action. More recently, Lo and Wang 
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(2016) incorporated the idea of two sources of antisaccade errors into a 
biophysical model of eye movement control and speculated that the 
mechanisms behind prosaccade errors with unusual high latency might 
be of interest in psychiatric research. In that spirit, Coe and Munoz 
(2017) suggested that the ratio between early and late errors could 
distinguish between control and patient populations, such as Parkinson’s 
disease and lateral amyotrophic sclerosis patients. 

Recently (Aponte et al. 2017), using the Stochastic Early Reaction, 
Inhibition, and late Action (SERIA) model, we presented quantitative and 
qualitative evidence that errors in the antisaccade task can be divided 
into fast, reflex-like prosaccades and voluntary but erroneous late 
prosaccades. SERIA is a generative model that extends the LATER model 
for antisaccades initially proposed by Noorani and Carpenter (2013) and 
builds on the idea that RTs are distributed as the threshold hit times of 
linear, ballistic accumulation processes (Noorani and Carpenter 2016). 
In this family of models, pro- and antisaccades are generated by two 
competing but independent accumulators. In addition, a third 
unobservable process can stop reflexive prosaccades, similarly as in the 
model used for the countermanding saccade task (Logan et al. 1984). 

Conceptually, SERIA extends Noorani and Carpenter’s work by 
introducing a further decision process that can generate late prosaccades 
and competes with the (late) antisaccade process. Errors can therefore 
be divided into early errors, explained as inhibition failures, and late 
errors, explained as the result of a late race between voluntary pro- and 
antisaccades. Moreover, according to SERIA, late errors on prosaccade 
trials can occur when an early response is inhibited, but an antisaccade 
overwrites a late prosaccade. Thus, our model provides a unified account 
of all types of errors observed in the antisaccade task. 

One limitation of the study reported in Aponte et al. (2017) is that the 
version of the antisaccade task used there originated from non-human 
primate studies (e.g., Sato and Schall 2003) but has not been extensively 
investigated in humans (Weber 1995; Irving et al. 2009; Liu et al. 2010; 
Chiau et al. 2011; Weiler and Heath 2012). Concretely, in Aponte et al. 
(2017) subjects performed interleaved pro- and antisaccade trials, in 
which a PVC signaled both the trial type and the target location (see Fig 
1A). We refer to this version of the antisaccade task as a synchronous cue 
(SC) design. 
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In humans, the antisaccade task is most often administered in a block 
design (Antoniades et al. 2013) in which subjects perform a single trial 
type throughout a block and are informed in advance about the task to 
be performed. Even when different trial types are interleaved, 
participants are usually informed about the task demands before the PVC 
is presented (e.g., Cherkasova et al. 2002; Massen 2004; O'Driscoll et al. 
2005; Reuter et al. 2006; Pierce et al. 2015; Pierce and McDowell 2016a; 
2016b). We refer to this paradigm as the asynchronous cue (AC) design. 
This version of the task has been used in monkey experiments as well 
(e.g., Amador et al. 1998; Johnston et al. 2014; Koval et al. 2014; 
Vijayraghavan et al. 2016).  

The main goal of the present study was to test whether the conclusions 
drawn in our previous experiment generalize to the AC, the most 
commonly used version of the antisaccade task in humans. We acquired 
data from twenty-four participants in both the SC and AC conditions and 
compared RT and ER as well as SERIA model parameters estimated from 
the data. We were interested in three main questions: First, we 
investigated whether in an AC design it was necessary to postulate a late 
race between voluntary pro- and antisaccades. Hence, we compared 
models that incorporated a late race against models in which all late 
saccades were antisaccades. Second, we were interested in differences 
in the probability of inhibition failures (i.e. early errors in antisaccades) 
and late errors in the two task designs. In particular, we investigated if 
and in what proportions late errors occurred in SC and AC tasks. Finally, 
we tested whether the effects of trial type probability reported in Aponte 
et al. (2017) could be replicated, and whether these effects generalized 
to the AC design. 
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Methods	

Participants	

Twenty-five healthy male volunteers (age: 21.4±2.0 y) participated in 
the study approved by the local ethics board of the Canton of Zurich, 
Switzerland (KEK-ZH-Nr.2014-0246) and conducted according to the 
Declaration of Helsinki. Because this experiment was part of a larger 
pharmacological study, only male participants were included. All 
subjects had normal or corrected to normal vision and gave their written 
informed consent to participate. One subject had to be excluded because 
of incomplete data. Hence, twenty-four subjects were included in the 
final analysis. 

Apparatus	

The experiment took place in a dimly illuminated room. Subjects viewed 
a CRT screen (41.4x30cm; Philips 20B40) operating at 85Hz from a 
distance of 60cm, while their gaze was recorded with an infrared eye 
tracker (Eyelink 1000, SR Research, Ottawa, Canada). Head position 
was stabilized using a chin rest. Gaze position was recorded at a 
sampling rate of 1000Hz. Every block started with a 5-points calibration 
procedure. Absolute calibration error was aimed to be below 1°. The 
experiment was programmed in the Python programming language 
(2.7) using the PsychoPy (1.82.02) package (Peirce 2007, 2008). The 
experiment was controlled by a personal computer (Intel Core i7 4740K) 
equipped with a Nvidia GTX760 graphics card. 

Experimental	design	

The experimental design used here is an extension of the design used in 
Aponte et al. (2017). Subjects participated in 6 blocks of mixed pro- and 
antisaccade trials. Each block consisted of 200 randomly interleaved pro- 
and antisaccade trials, from which either 20, 50 or 80% were prosaccade 
trials. In addition to trial type probability, we also manipulated the 
temporal order in which the trial type cue and the saccade direction cue 
were presented: Subjects were either simultaneously informed about the 
trial type and saccade direction using one peripheral cue (SC condition), 
or they were informed about the trial type before being presented with 
the peripheral cue (AC condition). Both conditions are explained in 
detail below. All task instructions were given to the participants in 
written format prior to the experiment. 
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The experiment followed a within-subject, 3x2 factorial design, with 
factors prosaccade trial probability (PP) with levels PP20, PP50, and PP80 
and cue type (CUE) with levels SC and AC. The blocks belonging to one 
of the CUE conditions were administered consecutively. The order of 
presentation of the blocks was pseudo-randomized and counterbalanced 
across subjects. The same sequence of pro- and antisaccade trials was 
used for each PP condition independently of the CUE condition. The 
peripheral cue was presented randomly on the right and left side of the 
screen. Again, the same random sequence was used across subjects. 

Before participating in the main experiment, subjects underwent a 
training block for each condition. These consisted of 100 trials, from 
which the first half were prosaccade trials, followed by 50 antisaccade 
trials. During training, participants received automatic feedback after 
each trial indicating whether they had made a saccade in the correct 
direction. In order to urge participants to respond quickly, saccades with 
a latency above 500ms were signaled as errors. 

Synchronous	cue	(SC)	condition	

Throughout the experiment, two red circles of 0.25° of radius were 
presented at +12° to the left and right of the center of the screen. Each 
trial started with a cross (0.6x0.6°) displayed at the center of the screen. 
Subjects were required to fixate for at least 500ms. If their gaze drifted 
outside a 3° window, the fixation interval was restarted. The fixation 
target was presented for a further random interval (500-1000ms), after 
which a green bar (3.48x0.8°) centered on one of the peripheral red 
circles was displayed for 500ms (Fig. 1A). The bar was presented in 
either horizontal or vertical orientation. A horizontal bar indicated a 
saccade to the cued stimulus, and a vertical bar indicated a saccade to 
the uncued stimulus. The next trial started 1000ms after the peripheral 
cue was removed. 

Asynchronous	cues	(AC)	condition	

The start of the AC condition (Fig. 1B) was identical to the SC condition, 
but after the initial fixation period a green bar (3.48x0.8°) was displayed 
for 700ms, centered on the fixation cross. The bar could be in horizontal 
or vertical orientation, cueing a pro- or antisaccade trial, respectively. 
The fixation cross and the green bar were removed at the end of the 
700ms period and subsequently a green square (1.74x1.74°) was 
presented on one of the peripheral red circles for 500ms. Subjects were 
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instructed to saccade to the circle ipsilateral to the green square if the 
task cue was a horizontal bar, and to saccade to the contralateral circle 
if it was a vertical bar. The next trial started 1000ms after the green 
square was removed. 

	

Fig. 1: Task design. A. Synchronous cue (SC) condition. Similarly to 
Aponte et al., 2017, subjects were instructed to fixate a central cross 
for 500-1000ms, while two red circles (0.25° radius) were displayed 
at ±12°. Immediately after the fixation period, a green bar (3.4x0.8°) 
was displayed centered on one of the red circles for 500ms. 
Participants were instructed to saccade as fast as possible to the red 
circle ipsilateral to a horizontal green bar, and to saccade to the 
contralateral circle when a vertical bar was displayed. B. 
Asynchronous cues (AC) condition. As in the SC condition, subjects 
were instructed to fixate a central cross for 500 to 1000ms. After the 
initial fixation period, a green bar (3.4x0.8°) was displayed at the 
center of the screen for 700ms. Immediately afterwards, the fixation 
cross and the green bar were removed and a green square 
(1.74x1.74°) was displayed centered on one of the circles. Subjects 
were instructed to saccade to the circle ipsilateral to the peripheral 
cue if a horizontal bar was presented, and to saccade to the 
contralateral circle otherwise. 

Data	preprocessing	

Data was preprocessed using the Python programming language (2.7). 
Saccades were detected using the algorithm provided by the eye tracker 
manufacturer (Stampe 1993), which uses velocity and acceleration 
thresholds of 22°/s and 3800°/s2, respectively. Saccades with a 
magnitude lower than 2° were ignored. RT was defined as the latency of 
the first saccade after the fixation cross was removed (henceforth, the 
main saccade). Trials were discarded if any of the following conditions 
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was true: if a blink occurred between the start of the fixation period and 
the end of the main saccade; if subjects failed to maintain fixation; if a 
saccade had a latency above 800ms or below 50ms, and in the case of 
an antisaccade, a latency below 95ms. Corrective antisaccades were 
defined as saccades contralateral to the peripheral cue that followed an 
error in an antisaccade trial. Corrective saccades were only included in 
the analysis if they occurred within 900ms after cue presentation and if 
their end location was within a 4° window around the correct target. 

Classical	statistical	analysis	

Mean RTs, ERs and parameter estimates of the model (see below) were 
analyzed using a generalized mixed effects linear model. The 
independent variables were PP with levels PP20, PP50, PP80; CUE with 
levels SC and AC; SUBJECT entered as a random effect, and, when pro- 
and antisaccade trials were analyzed together, trial type (TT). All 
regressors were entered as categorical variables. ERs were analyzed 
using a binomial regression model with the probit function as link 
function. When probabilities were analyzed, a fixed effects Beta 
regression model (Cribari-Neto and Zeileis 2009) was used, because a 
mixed effect model proved numerically unstable. For RT, we report tests 
based on the F statistic, whereas for ER and probabilities we report tests 
based on the C2 statistic, as this is more appropriate in model were the 
dispersion parameter is not estimated from the data. Statistical 
significance was asserted at a=0.05. All statistical tests were performed 
with the R programming language (3.4.2) using the functions lmer, 
glmer, and glmmadmb (Beta regression model) from the packages lme4, 
lmerTest, and glmmADMB. 

Modeling	

Two models (described in detail in Aponte et al. 2017) were fitted to 
actions (pro- or antisaccades) and RTs. First, we fitted the PRO-, Stop 
and Antisaccade (PROSA) model, which structurally resembles the model 
described in Noorani and Carpenter (2013). According to this model, 
three linear race decision units determine RTs and ERs in the antisaccade 
task. Each unit triggers or stops different types of action depending on 
the order and time at which they hit threshold (henceforth hit time): The 
first early unit triggers a prosaccade if it hits threshold before all other 
units. These fast reactions can be stopped by the inhibitory unit, if the 
latter hits threshold before the early unit. If an early response is 
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inhibited, the third unit triggers an antisaccade once it hits threshold. 
Note that we assume that the antisaccade unit is delayed with respect to 
the early and inhibitory unit, a phenomenon denominated the 
antisaccade cost (Hallet 1978). This model represents the hypothesis 
that all voluntary or late responses are antisaccades. 

More formally, we assume three independent stochastic accumulation 
processes or units that represent early responses (b

M
), a unit that inhibits 

them (b
=
), and a unit that trigger antisaccades (b

Ω
). The threshold hit 

time of the units can be represented by the random variables ú
M
, ú

=
 and 

ú
Ω
, respectively. According to PROSA, a prosaccade is generated at time 

t if the early unit hits threshold at time t before all other units 

>(g = >~›, ® = a) = >(ú
M
= a)>(ú

=
> a)>(ú

Ω
> a). (1) 

Here the probability on the left hand side of the equation is the 
probability that the action prosaccade (g = >~›) is generated at time 
(® = a). An antisaccade at time t is elicited when the antisaccade unit 
hits threshold at time t before all other units,  

>(ú
Ω
= a)	>(ú

M
> a)>(ú

=
> a) (2) 

or the inhibitory unit hit threshold before the early unit. 

>(ú
Ω
= a)à >(ú

=
= K)>(ú

M
> K)`K

L

r

. (3) 

From this it follows that  

>(g = flfia‹, ® = a) = >(ú
Ω
= a)	>(ú

M
> a)>(ú

=
> a)

+>(ú
Ω
= a)à >(ú

=
= K)>(ú

M
> K)`K

L

r

. (4)
 

Note that according to PROSA, all early reactions are prosaccades, which 
can be stopped by the inhibitory unit b

=
. 

Second, we fitted the SERIA model see Fig. 2, which extends PROSA by 
including a fourth unit that can trigger late, voluntary prosaccades. 
Hence, SERIA distinguishes between reflexive, early prosaccades, and 
voluntary late prosaccades. 

Formally, to account for late prosaccade we model a fourth unit b
I
 and 

its threshold hit time ú
I
. A prosaccade at time t can be generated when 

the early unit hits threshold before all other units 

>(ú
M
= a)>(ú

Ω
> a)>(ú

=
> a)>Vú

I
> aX (5) 
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or the late prosaccade unit hits threshold before all other units 

>Vú
I
= aX>(ú

Ω
> a)>(ú

=
> a)>(ú

M
> a) (6) 

or the inhibitory unit stops early reaction and the late prosaccade unit 
hits threshold before the antisaccade unit 

>Vú
I
= aX>(ú

Ω
> a)à >(ú

=
= K)>(ú

M
> K)`K

L

r

. (7) 

Finally, antisaccades are generated either when the antisaccade unit hits 
threshold before all other units 

>(ú
Ω
= a)>Vú

I
> aX>(ú

M
> a)>(ú

=
> a) (8) 

or the early prosaccade unit is stopped, and the late prosaccade unit hits 
threshold after the antisaccade unit 

>(ú
Ω
= a)>Vú

I
> aXà >(ú

=
= K)>(ú

M
> K)`K

L

r

. (9) 

As for the PROSA model, the probability of a specific action at time t can 
be calculated by summing the probabilities of the different cases that can 
trigger the corresponding action.  

SERIA distinguishes two types of errors in antisaccade trials: inhibition 
failures, when the early unit hits threshold before all other units, and 
volitional or late errors when the late prosaccade unit hits threshold 
before the antisaccade unit. An error on a prosaccade trial occurs when 
an early response is stopped, but the antisaccade unit hits threshold 
before the late prosaccade unit. Note that the model used here 
corresponds to the SERIA model with late race (SERIAlr) introduced in 
Aponte et al. (2017). 
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Fig.	2	The	SERIA	model:	A)	The	SERIA	model	consists	of	four	units	
with	different	arrival	time	distributions.	A	reactive,	early	response	is	
triggered	if	the	early	unit	(green)	hits	threshold	before	all	other	units.	
If	 the	 early	 unit	 is	 inhibited	 by	 the	 inhibitory	 unit	 (black),	 a	 late	
decision	process	 is	decided	between	 the	 late	pro	(red)	and	 late	anti	
(blue)	units.	The	unit	arriving	at	threshold	first,	defines	the	action	and	
reaction	 time.	 Figure	 adapted	 with	 permission	 from	 Aponte	 et	 al.	
(2017).	B)	The	order	and	the	hit	times	of	the	units	determine	the	RT	
and	action	performed	in	a	trial.	The	increase	rate	of	each	of	the	units	is	
assumed	 to	 be	 stochastic.	 Colors	 correspond	 to	 subfigure	 A).	 For	
simplicity,	units	are	shown	sharing	the	same	threshold,	although	this	
assumption	is	not	necessary.	Note	that	in	the	PROSA	model,	there	is	no	
late	prosaccade	unit	and	thereby	prosaccades	can	only	be	generated	by	
the	early	unit.	Left:	An	early	prosaccade	is	generated	when	the	early	
unit	hits	threshold	before	all	other	units.	Middle:	A	late	prosaccade	is	
generated	 when	 the	 inhibitory	 unit	 hits	 threshold	 before	 all	 other	
units,	 and	 the	 late	 prosaccade	 unit	 hit	 threshold	 before	 the	 late	
antisaccade	 unit.	 Right:	 An	 antisaccade	 is	 generated	 when	 early	
reactions	are	 inhibited	and	the	antisaccade	unit	hit	 threshold	before	
the	late	prosaccade	unit.	
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To fit the models to empirical data, we evaluated three different 
parametric distributions for the increase rate (or reciprocal hit time) of 
each of the units: We either assumed that the increase rate of all the 
units were truncated Gaussian distributed in analogy to the LATER 
model (Noorani and Carpenter 2016), or that the increase rates of the 
early and inhibitory unit were Gamma distributed, but the increase rate 
of the late units was inverse Gamma distributed. We refer to this model 
as the mixed Gamma model. Finally, we considered a model in which 
the increase rate of all the units was Gamma distributed. 

We assumed that a different set of parameter values for each of the units 
was necessary for each trial type. However, we also considered a 
constrained version of the SERIA model in which the early and inhibitory 
units followed the same distribution on pro- and antisaccade trials, but 
where the late units had different parameter values across trial types 
(Aponte et al. 2017). For PROSA, we investigated a model in which the 
early unit followed the same distribution across trial types but others 
were allowed to differ (Noorani and Carpenter 2013; Aponte et al. 
2017). A summary of the model space is presented in Table 1. More 
details on the model space can be found in Aponte et al. (2017). 
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Table	1:	Model	space	

Model	 Parametric	dist.	 No.	parameters	

Unconstrained/Constrained	 PROSA	

m1/m2	 Truncated	Normal	 15/13	

m3/m4	 Mixed	Gamma	 15/13	

m5/m6	 Gamma	 15/13	

	 SERIA	

m7/m8	 Truncated	Normal	 19/15	

m9/m10	 Mixed	Gamma	 19/15	

m11/m12	 Gamma	 19/15	
	

List	of	models	with	corresponding	increase	rate	distributions	and	
number	 of	 free	 parameters.	 In	 constrained	 models,	 some	 of	 the	
parameters	 are	 assumed	 to	 be	 equal	 across	 trial	 types.	 Note	 that	
besides	the	parameters	of	the	units,	all	models	include	three	nuisance	
parameters	that	account	for	no-response	time,	late	response	cost,	and	
the	 frequency	 of	 outliers,	 i.e.,	 saccades	with	 latencies	 below	 the	 no-
response	time.	Further	details	can	be	found	in	Aponte	et	al.	(2017).	

We fitted the data of all subjects and PP conditions simultaneously using 
a Bayesian hierarchical model (Gelman et al. 2003), in which the prior 
distribution of the parameters for each subject was informed by the 
population distribution. The two CUE conditions were analyzed 
independently, because our goal was to evaluate whether different 
models were favored under different task designs. The population 
distribution was modeled using a linear mixed effects model with PP as 
fixed effect and SUBJECT as a random effect. Details are provided in the 
Supplementary Methods and in Supplementary Figure S1. 

Models were fitted using Markov chain Monte Carlo (MCMC) sampling 
via the Metropolis-Hastings algorithm. Model evidence was computed 
with thermodynamic integration (Gelman and Meng 1998; Aponte et al. 
2016), with 32 chains and a 5th order temperature schedule (Calderhead 
and Girolami 2009). To increase the efficiency of the algorithm, we 
incorporated a ‘swap-step’ according to population MCMC’s 
accept/reject rule (Calderhead and Girolami 2009). The algorithm was 
run for 16 × 10

‡ iterations, and the first 6 × 10
‡ samples were discarded 



Part	II	–	Chapter	7	

	

243	

as ‘burn-in’ samples. The code was executed on a computer cluster 
running Linux (CentOS 7.4.1708), MATLAB R2015a (8.5.0.197613), 
and GSL 1.16. The software implemented here is publicly available as 
part of the TAPAS toolbox 
(http://translationalneuromodeling.org/tapas/; see software note). 

The statistic used to compare models was the difference in log model 
evidence (LME), which correspond to log Bayes factors (Kass and Raftery 
1995). Because our main hypothesis was related to families of models 
(SERIA and PROSA), we used Bayesian family model comparison (Penny 
et al. 2010) implemented in the SPM12 software package (release 6470, 
function spm_compare_families.m). Building on random effects Bayesian 
model selection (Stephan et al. 2009), this method pools the evidence 
of models which are assumed to belong to the same family and returns 
the posterior probability of each family. 
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Results	

A total of 28815 main saccades were collected from 24 subjects. 1079 
saccades (or 3.7%) were discarded due mainly to eye blinks (330), 
fixation failures (458), and with a latency below 50ms (162). Only a 
minority of saccades (14) had a latency above 800ms. For the analysis 
of corrective saccades, 983 and 696 trials were included in the SC and 
AC conditions, respectively. 

Error	rate	(ER)	

Fig. 3A and 3B display the mean ER in all conditions and trial types. Pro- 
and antisaccade ERs were submitted to two independent tests using PP 
and CUE as explanatory variables. ERs were higher in the SC condition, 
regardless of trial type (prosaccade trials: Χ†(2, d = 144) = 402.75, > <

10
2 , antisaccade trials: Χ†(2, d = 144) = 257.06, > < 10

2 ). Moreover, 
there was a significant interaction between the factors PP and CUE in 
both trial types, demonstrating that PP had a much more pronounced 
effect in the SC condition (prosaccade trials: Χ†(2, d = 144) =

43.00, > < 10
2 ; antisaccade trials: Χ†(2, d = 144) = 63.43, > < 10

2 ). 
Next, we submitted ERs in the two CUE conditions to two separate tests 
with explanatory variables TT and PP. Thus, we could test whether PP 
had a significantly different effect on pro- and antisaccade trials. We 
found that in the two CUE conditions, the interaction between PP and 
TT was significant (SC: Χ†(2, d = 144) = 700.46, > < 10

2 , AC: 
Χ†(2, d = 144) = 41.24, > < 10

2 ). 
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Fig. 3: A. Mean ER vs. prosaccade probability (PP), SC condition. B. 
Mean ER vs. prosaccade probability (PP), AC condition. Error bars 
depict the standard error of the mean (sem). C-E. ER correlation 
between the AC and SC conditions in the PP20, PP50 and PP80 
conditions, respectively. ER are displayed in the probit scale. 

Next, we investigated the correlation of ER from the two CUE conditions 
(Fig. 3C-E). The probit transformed ERs in each PP block were analyzed 
separately. For numerical reasons, zero percent ERs were set to a non-
zero value, pretending that the respective subjects had committed a 
single error. There was a significant correlation (–†

> 0.43,	> < 0.001) 
between ERs on antisaccade trials for all three PPs, but we found no 
comparable results on prosaccade trials (–†

< 0.01, > > 0.56). 

Reaction	times	(RT)	

Mean RTs of correct saccades are displayed in Fig. 4. First, RT on pro- 
and antisaccade trials were submitted to two separate models with PP 
and CUE as independent variables. Clearly, RTs in the SC condition were 
much higher than in the AC condition (prosaccades: [

:,:: 
= 815.05, > <

10
2 ; antisaccades: [

:,:: 
= 789.90, > < 10

2 ). The factor PP was 
significant in both pro- ([

†,:: 
= 3.46, > = 0.03) and antisaccade trials 

([
†,:: 

= 4.32, > = 0.01). However, there was a significant interaction 



	 	 	 Eduardo	A.	Aponte	

	
	

246	

between the factors CUE and PP on antisaccade ([
†,:: 

= 11.25, > <

10
2Ë), but not on prosaccade trials ([

†,:: 
= 1.79, > = 0.17). 

 

Figure 4: A. Mean	RT	vs.	prosaccade	probability	(PP),	SC	condition.	B.	
Mean	RT	vs.	prosaccade	probability	(PP),	AC	condition.	Only	the	mean	
RTs	of	correct	trials	are	displayed.	Error	bars	depict	the	sem. 

We then investigated both CUE conditions separately in a model with 
factors PP and TT. In the AC condition, pro- and antisaccade RTs 
decreased with PP, as previously reported by Pierce et al. (2015). 
However, neither the main effect of PP ([

:,:: 
= 2.40, > = 0.09) nor the 

interaction PP*TT was significant ([
†,:: 

= 0.48, > = 0.61), although the 
main effect of TT was significant ([

:,:: 
= 238.93, > < 10

2 
). In the SC 

condition, PP had the opposite effect on pro- and antisaccades which 
resulted in a significant interaction between PP and TT ([

†,:: 
=

12.99, > = 10
2 
). 

Model	comparison	

In order to compare models, we used the differences in LME or log Bayes 
factors between the hierarchical models fitted to our data (Table 2). The 
expected log likelihood or accuracy of each model is reported in 
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Supplementary Table S1. This measure is closely related to the –† 
statistic and reflects the un-penalized goodness of fit of a model. 

Table	2:	Differences	in	log	model	evidence	(LME)	

Model	 Parametric	family	 SC	 AC	

PROSA	

m1	 T.	normal	 103.0	 295.0	

m2	 T.	normal	 0.0	 0.0	

m3	 Mixed	Gamma	 540.7	 291.7	

m4	 Mixed	Gamma	 518.3	 92.3	

m5	 Gamma	 572.5	 364.1	

m6	 Gamma	 557.4	 140.2	

SERIA	

m7	 T.	normal	 1162.7	 740.1	

m8	 T.	normal	 1177.8	 717.7	

m9	 Mixed	Gamma	 1230.4	 874.8	

m10	 Mixed	Gamma	 1264.9	 542.6	

m11	 Gamma	 1248.0	 795.3	

m12	 Gamma	 1291.5	 769.9	
	

Model comparison. Log evidences are given relative to the worst 
model (zero) in each condition. The models with the highest 
evidence are highlighted in bold font. 

We first compared families of models in each of the conditions 
separately. In the SC condition, the SERIA family was favored when 
compared to the PROSA family (posterior probability nearly 1). In the 
SERIA family, constrained models were favored when compared to 
models in which the early and inhibitory unit were allowed to differ 
across trial types (posterior probability nearly 1). When we considered 
each model independently (Table 2), analogously to the findings in 
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Aponte et al. (2017), a constrained SERIA model (m12) obtained the 
highest evidence (=ˇfÙ > 26.6). 

In the AC condition, while the SERIA model family was favored when 
compared to the PROSA model family (posterior probability approx. 1), 
SERIA models in which the early and stop units were not constrained 
obtained the highest evidence (posterior probability approx. 1). When 
comparing models individually, the unconstrained mixed Gamma SERIA 
model (m9) was favored among all possibilities (=ˇfÙ > 79.5). 

In order to facilitate the comparison across CUE conditions and our 
previous study (Aponte et al. 2017), in the following we report the 
parameter estimates obtained using mixed Gamma models (SC 
condition: m10; AC condition: m9). 

Model	fits	

To qualitatively evaluate the PROSA and SERIA models (Gelman et al. 
2003; Gelman and Shalizi 2013), we plotted the histogram of RTs of all 
saccades and the fit of the best model in each family (Fig. 5). For the 
PROSA model, we used model m5 in both conditions. Fits were computed 
by weighting the expected probability density function in a given block 
by the corresponding number of trials. Fits for representative subjects 
are displayed in Supplementary Figures S2 and S3. 
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Fig. 5: Histogram of RTs and model fits. For comparison, 
prosaccade trials are displayed in the positive half plane while 
antisaccades trials are displayed in the negative half plane. The 
histogram of prosaccade responses is displayed as red bars, whereas 
antisaccades are displayed in blue. Hence, errors in prosaccade trials 
(antisaccades) are displayed in blue in the positive half plane, 
whereas errors in antisaccade trials (prosaccades) are displayed in 
red in the negative half plane. 

Replicating our previous findings (Aponte et al. 2017) the RT 
distribution of correct prosaccades in the SC condition was bimodal, and 
could not be captured by the PROSA model, but was accounted for by 
the SERIA model. More importantly, since this is the first time that 
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SERIA is applied to data from an AC task design, the RT distributions in 
the AC condition were also fitted better by the SERIA model. This was 
particularly visible for correct prosaccades in the PP50 and PP80 
condition (Fig. 5, bottom row, middle and right panels). 

To further investigate the fits of the SERIA model, Fig. 6 displays the 
empirical and predicted cumulative density function (cdf) of the 
reciprocal RT1 of correct pro- and antisaccades. Cdfs are displayed on 
the probit scale (Noorani and Carpenter 2016) but in contrast to 
previous accounts (Aponte et al. 2017;  Noorani and Carpenter 2013), 
we did not normalize by the total number of saccades. 

																																																								
	

	
1 Reciprocal RT are often used to compare cumulative RT distributions. In these 
plots the x-axis is rescaled proportionally to 1/RT and flipped in order to have 
RT increasing from left to right. A detailed description of reciprobit plots can 
be found elsewhere (Noorani and Carpenter 2016). 
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Fig. 6: Empirical and predicted reciprobit of RTs in correct trials. 
In the SC condition, the SERIA model clearly captured the apparent 
bimodality of the RT distributions. Please note the deflection in the 
prosaccade cdf, which demonstrates a bimodal distribution. In the AC 
condition, the SERIA model accounted for most of the relevant 
aspects of the RT distribution, including left and right tails.  

The distribution of reciprocal (inverse) RTs on correct trials in the SC 
condition echoed the findings by Carpenter and Williams (1995), and 
suggest that prosaccades are the results of two processes (Noorani and 
Carpenter 2016). Moreover, the RT distribution of late prosaccades 
converges to the distribution of correct antisaccades. This provides 
further evidence for the hypothesis that late prosaccades are the result 
of a slow accumulation process analogous to the one used to model 
antisaccades (Aponte et al., 2017). 

Importantly, SERIA also yielded accurate fits in the AC condition. 
Although the RT distribution of pro- and antisaccades deviated from the 
linear behavior observed in the SC condition, the model correctly 
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predicted the empirical cdfs. Arguably, because late responses have 
latencies as low as 95ms, early and late prosaccades are disguised in a 
single unimodal distribution that does not follow the linear pattern 
observed in the SC condition. The PROSA model yielded less accurate 
fits (cf. Supplementary Figure S4).  

RT	distribution	of	corrective	antisaccades	

In order to predict the RT distribution of corrective antisaccades, the 
distribution of the hit time of the late antisaccade unit of each subject in 
each condition was weighted by the corresponding number of corrective 
antisaccades. See Aponte et al. (2017) for a similar analysis. The 
estimated distribution was time-shifted to optimize the predictive fit, i.e., 
we tried to predict the shape of the RT distribution, not its mean. Fig. 7 
displays the predicted distributions in the SC (time-shift=93ms) and AC 
(time-shift=63ms) conditions. Visual inspection suggests that SERIA 
predicted correctly the shape of the distribution of corrective 
antisaccades. 

 

Fig. 7: Histogram of corrective antisaccades and model 
predictions. Depicted are the distributions of the hit times of the 
antisaccade unit and the histogram of the corrective antisaccades’ RT. 
The location or time-shift of the predicted distributions was 
optimized using the data. 

Model	parameters:	Inhibition	failures	and	late	errors	

We then turned our attention to inhibition and volitional or late errors. 
These are defined by the probability that the late prosaccade unit hits 
threshold before the antisaccade unit on an antisaccade trial, and the 
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probability that the antisaccade unit hits threshold before the late 
prosaccade unit on a prosaccade trial, respectively. We also investigated 
the probability of an inhibition failure, i.e., the probability that the early 
unit hits threshold before all other units. On an antisaccade trial, an 
inhibition failure corresponds to a reflexive error. 

In the SC condition (Fig. 8A), the findings were in line with our previous 
results (Aponte et al. 2017). While the probability of a late error on a 
prosaccade trial was negatively correlated with PP (Χ†(2, d = 72) =

156.66, > < 10
2 ), the opposite behavior was observed for the 

probability of an inhibition failure on antisaccade trials (Χ†(2, d = 72) =

22.5, > < 10
2Ë) and late errors on antisaccade trials (Χ†(2, d = 72) =

23.50, > < 10
2 ). 
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Fig. 8: A. Probability of late errors and inhibition failures in the 
SC condition. Late errors occur when an early prosaccade is stopped 
by the inhibitory unit, but the incorrect late action is performed. Non-
stopped early reactions are called inhibition failures. B. Probability 
of late errors and inhibition failures in the AS condition. C. 
Expected hit time of the units in the SC condition. Note that we 
report a single estimate for the early and inhibitory unit because in a 
constrained model both units are assumed to have the same behavior 
across trial types. D. Expected hit time of the units in the AC 
condition. 

By contrast, in the AC condition it was necessary to consider the number 
of inhibition failures on pro- and antisaccade trials separately because 
model comparison favored models in which the early and inhibitory 
units behaved differently across trial types. We found (Fig. 8B) that the 
probability of an inhibition failure on prosaccade trials (mean 61%, std. 
11) was much higher than on antisaccade trials (mean 9%, std. 8), 
indicating that most correct prosaccades were early, reflexive responses. 
When we considered the effect of PP in the AC condition, we found only 
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a significant effect on the probability of a late error in antisaccade trials 
(Χ†(2, d = 72) = 6.31, > = 0.04). 

The percentage of late responses in prosaccade trials was estimated to 
be approximately 39% of all trials in the AC condition (see Fig. 8B and 
Table 3). In antisaccade trials, the percentage of inhibition failures was 
estimated to be 9% of all trials, or 61% of all errors. Hence, 39% of all 
errors could be attributed to the late decision process. In the SC 
condition, the number of antisaccade errors predicted by the model was 
approximately 2% higher than the empirical error rate. On average 21% 
of all errors in antisaccades were cataloged as late decision errors. To 
assess the posterior predictions of the model, we report the correlation 
coefficient between the empirical and predicted ER in Table 3.  
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Table	3	

	 Empirical	and	fitted	error	rates	

	 PP20	 PP50	 PP80	 	 PP20	 PP50	 PP80	

	 Antisaccade	trials	

	 SC	 	 AC	

Empirical	 error	 rate	
[%]	

14.06	 22.79	 38.22	 	 11.56	 13.81	 16.83	

Predicted	 error	 rate	
[%]	

15.18	 24.90	 40.53	 	 11.50	 13.82	 16.07	

Correlation	
coefficient	

0.99	 0.97	 0.98	 	 0.99	 0.94	 0.99	

Inhib.	failures	[%]	 12.65	 22.00	 34.63	 	 8.27	 9.28	 11.06	

:rr∗MNOP	PQQRQS
MNOP	PQQRQS	¥	òTUòV.WNòX.

		 26.82	 18.62	 22.13	 	 39.44	 40.01	 37.28	

	 Prosaccade	trials	

Empirical	 error	 rate	
[%]	

29.11	 11.18	 4.88	 	 3.07	 3.07	 1.07	

Predicted	 error	 rate	
[%]	

30.91	 11.70	 5.21	 	 3.13	 3.14	 1.12	

Correlation	
coefficient	

0.98	 0.96	 0.99	 	 0.97	 0.98	 0.90	

Inhib.	failures	[%]	 13.08	 22.42	 34.34	 	 57.86	 62.23	 64.10	
	

Empirical and predicted error rate, inhibition failures, and late 
errors. In order to evaluate the error rate estimates, we display the 
correlation coefficient between the predicted and observed error 
rates. Please note that inhibition failures on prosaccade trials 
correspond to correct early prosaccades. Errors on prosaccade trials 
can only be explained as late, volitional errors. 

We	then	investigated	whether	the	percentage	of	inhibition	failures	in	the	

SC	condition	was	correlated	with	the	percentage	of	inhibition	failures	on	

antisaccade	trials	 in	the	AC	condition.	Results	are	displayed	in	Fig.	9.	 In	

each	of	the	PP	conditions,	we	found	a	significant	correlation	(> < 0.005),	

with	 a	 correlation	 coefficient	 between	0.67-0.77	 (Fig.	 9).	 This	 indicates	
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that	the	tendency	of	individual	subjects	to	respond	with	an	early	saccade	

was	comparable	across	task	designs.		

 

Fig. 9: Correlation of inhibition failures in antisaccade trials. 
Values are displayed on the probit scale. There was a significant and 
strong correlation between the percentage of inhibition failures 
across task designs and conditions. 

Model	parameters:	Hit	times	

Finally, we investigated the effect of PP on the expected hit times of the 
units. In the SC condition (Fig. 8C), the early ([

†,‡2 = 7.39, > = 0.001), 
as well as the antisaccade ([

†,‡2 = 36.34, > < 10
2 ) and inhibitory units 

([
†,‡2 = 18.12, > < 10

2 ) were significantly affected by PP: High 
prosaccade trial probability led to slower inhibition, slower antisaccades, 
and faster early responses. However, we did not find a significant effect 
of PP on the hit times of the late prosaccade unit ([

†,‡2 = 0.22, > = 0.79).  

In the AC condition (Fig. 8D), most of the units had a much shorter hit 
time compared to the SC condition. Moreover, the fitted parameters 
suggested that most differences between pro- and antisaccade trials 
could be attributed to changes in the hit time of the inhibitory unit, 
which was over 100ms higher on prosaccade trials than in antisaccade 
trials. To further support this observation, we fitted a mixed Gamma 
SERIA model in which the early prosaccade unit (but not the inhibitory 
unit) was set to be equal across trial types. This is analogous to the 
restricted model originally proposed by (Noorani and Carpenter, 2013). 
This post-hoc model obtained the highest evidence in the AC condition 
(ΔˇfÙ > 7 log units). Crucially, this model was also better than one in 
which the early unit but not the inhibitory unit was allowed to change 
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across trial types (=ˇfÙ > 80). Thus, most variance in the probability 
of early prosaccades could be explained by changes in the inhibitory unit, 
which indicates that cuing the trial type in advance of the saccade 
direction cue mainly influenced the inhibition of early responses. 

There was no significant effect of PP on the hit time of the late pro-  and 
antisaccade units (late pro: [

†,‡2 = 0.00, > = 0.99; anti: [
†,‡2 = 2.08, > =

0.13). However, we found a significant effect of PP on the inhibitory unit 
regardless of the trial type (pro. trials: [

†,‡2 = 3.23, > = 0.04; anti. trials: 
[
†,‡2 = 14.11, > < 10

2Ë). Finally, there was a significant effect of PP on 
the early unit in antisaccade trials ([

†,‡2 = 8.62, > = 10
2Ë), but not on 

prosaccade trials ([
†,‡2 = 2.15, > = 0.12). Taken together, our results 

suggest that manipulating the trial type probability in AC task had only 
an effect on the early and inhibitory units, and this effect was weak in 
prosaccade trials. 
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Discussion	

The present study resulted in four main finding. First, the SERIA model 
better accounted for RT and ER than the PROSA model in both the SC 
and AC conditions. This indicates that even in AC designs, the 
prosaccade RT distribution is best described by more than one process. 
Second, according to the model fits, a significant proportion of errors on 
antisaccade trials were late errors, irrespective of the CUE condition. 
Third, we found that in the AC condition, the main factor explaining the 
differences in ER and RT between pro- and antisaccade trials was the hit 
time of the inhibitory unit and, consequently, the probability of 
inhibiting an early response. Finally, we found that the effects of 
manipulating the probability of a trial type were almost completely 
abolished when subjects were cued about task demands in advance of 
the peripheral cue. This suggests that SC task designs are more 
appropriate for studies interested in probability-dependent effects. 
Moreover, all effects of trial type probability were restricted to the early 
and inhibitory unit in the AC condition. We proceed to discuss these 
findings. 

SERIA	accounts	for	antisaccade	behavior	regardless	of	CUE	condition	

Arguably, the main novelty of the SERIA model is the distinction 
between early responses, which are always directed toward the PVC (i.e., 
a prosaccade) and can be inhibited by a stop process, and voluntary, late 
responses which can trigger both pro- and antisaccades. The units that 
trigger this type of saccades can generate rule guided behavior (e.g., an 
antisaccade), at the cost of higher RTs. Moreover, voluntary saccades are 
also subject to a race-to-threshold decision process (Aponte et al. 2017). 

By contrast, involuntary and voluntary saccades are often distinguished 
by the paradigm in which these are elicited (Walker et al. 2000) and not 
by the mechanism that generates them: On one hand, involuntary 
saccades are associated with paradigms in which a suddenly displayed 
stimulus elicits a saccade. On the other hand, voluntary saccades are 
associated with paradigms in which the target needs to be retrieved from 
memory or it depends on specific task instructions, such as in the 
antisaccade task. 

Because the SERIA model accounts for both reflex-like and ‘voluntary’ 
saccades towards a visual cue, the distinction between voluntary and 
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involuntary saccades can be reformulated in terms of the processes that 
generates them. Accordingly, the antisaccade ‘cost’ (Hallett 1978) might 
be also understood as a ‘voluntary’ saccade cost (ignoring remapping 
costs). This reconceptualization might explain the finding that under 
certain circumstances pro- and antisaccades exhibit the same latency 
(Liu et al. 2010; Weiler and Heath 2014); if all early responses are 
inhibited, pro- and antisaccades can have the same latency. 

Qualitatively, evidence for the SERIA model can be easily observed in 
histograms of RT for the SC condition (cf. Fig. 5): RTs of correct 
prosaccades follow a bimodal distribution, and their late component 
resembles the distribution of correct antisaccades. Moreover, errors on 
prosaccades trials are relatively common in this version of the 
antisaccade task, and their latency is similar to the latency of correct 
antisaccades. 

The main question that we addressed in this study is whether a similar 
mechanism could explain RT and ER distributions in an AC task design. 
Although correct prosaccade RTs do not show a bimodal distribution and 
errors in prosaccade trials are rare (<4%), model comparison and 
qualitative checks clearly indicate that prosaccade RT distributions in the 
AC condition can be better explained by a model that postulates early 
and voluntary prosaccades. Moreover, this model can predict the RT 
distribution of corrective antisaccades with surprising accuracy in both 
conditions. 

Our data supports the idea that prosaccades do not appear to be 
bimodally distributed in the AC condition because voluntary prosaccades 
are fast enough to overlap with early prosaccades. This is obvious in Fig. 
6 (bottom row), in which the distribution of correct prosaccades deviates 
from the linear pattern usually observed in other conditions (see Fig. 6 
top row and Noorani and Carpenter 2016). 

Early	and	late	errors	on	antisaccade	trials	

SERIA provides a formal account of errors in the antisaccade task which 
distinguishes it from the two most prominent models in the literature. 
On the one hand, the model in Noorani and Carpenter (2013) does not 
incorporate a late decision process and thereby it explains all errors as 
inhibition failures. On the other hand, lateral inhibition models 
(Cutsuridis et al. 2007, 2014; Cutsuridis, 2015) explain errors as the 
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result of connected accumulators that represent pro- and antisaccades, 
without the intervention of a third inhibitory unit. Accordingly, an error 
occurs when a voluntary action does not inhibit a reflex-like prosaccade. 
Along this line, Reuter and colleagues (Reuter and Kathmann 2004) 
have argued that deficits in the ability to initiate an antisaccade 
contribute to the elevated ER observed in patients with schizophrenia.  

The SERIA model is closer to the idea proposed by Fischer and colleagues 
(Fischer et al. 2000; Klein and Fischer 2005), who extended the 
distinction between ‘express’ and ‘normal latency’ saccades to 
antisaccade errors. Although conceptually similar to the approach 
presented here, these authors used a simple time threshold to distinguish 
between the two types of saccades (Klein and Fischer 2005). In this 
context, SERIA offers a model-based, statistically sound separation 
between early and late errors that goes beyond simple thresholding of 
RTs. 

Hence, an important conclusion from our analysis is that late errors are 
a significant fraction of all errors regardless of task design. Concretely, 
in the present sample, approx. 39% of the errors on antisaccade trials in 
the AC condition were quantified as late errors, with large variability 
across subjects (Fig. 9). This number was estimated to be 21% in the SC 
condition. This is of significance, as the ability to separate between early 
and late errors might be of relevance in computational psychiatry and 
future patient studies (Fischer et al. 2000; Heinzle et al. 2016; Lo and 
Wang 2016; Coe and Munoz 2017). 

AC	vs.	SC	designs	

The most obvious difference between the AC and SC conditions was an 
overall reduction in RT and ER in the AC task. This observation replicates 
previous findings (Weber 1995; Weiler and Heath 2014).  

There are two main explanations for these differences. First, in the SC 
condition the mapping between a cue and an action can only be started 
once the peripheral stimulus is presented. Thus, one would expect robust 
inhibition of reactive saccades, that affords enough time to select the 
correct action (pro, or antisaccade) (Weber 1995). Second, in the AC 
condition subjects could anticipate the presentation of the peripheral cue 
because the task cue was always displayed for 700ms. Despite this 
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general reduction in RT, ERs were lower in the AC condition when 
compared to the SC condition. 

Model comparison suggests differences in the type of anticipatory 
preparation in the two tasks: whereas in the SC condition the early and 
inhibitory unit followed a similar hit time distribution across trial types, 
this was not the case in the AC condition. Furthermore, a model in which 
the prosaccade unit was fixed across trial types obtained the highest 
model evidence, indicating that most of the differences in the number of 
early responses could be accounted for by changes in inhibitory control. 

One interpretation of these findings is that in the SC condition, the 
peripheral cue does not influence the inhibition of early responses, 
because it is integrated in the decision-making process too late to 
strongly affect the early and inhibitory units. Nevertheless, contextual 
information about trial type probability can be exploited by the 
participants to drive inhibitory control. By contrast, in the AC condition 
early prosaccade inhibition is almost entirely determined by the trial 
type cue and only weakly modulated by the probability of a trial type, as 
discussed below. 

Importantly, the probability of antisaccade errors was correlated 
between both CUE conditions. Thus, relative ERs were consistent across 
the two tasks, suggesting that the same cognitive processes are involved 
in both conditions. In conclusion, SC designs are likely to provide more 
variability in terms of ER and RT, for example under different PP 
conditions, while probing the same cognitive processes involved in an 
AC paradigm. 

The	effect	of	trial	type	probability	

Our results replicate the finding that in the SC condition the probability 
of a trial type has a large impact on both ER and RT (Chiau et al. 2011; 
Aponte et al. 2017). Concretely, RTs of correct responses were 
negatively correlated with the corresponding trial type probability. 
These effects were strongly reduced in the AC condition, as reported 
before (Massen 2004; Pierce et al. 2015; Pierce and McDowell 2016a). 
Modeling indicated no significant effect of PP on late responses and a 
significant but relatively small effect on the early and inhibitory units. 
One interpretation of this is that the early presentation of the task cue in 
the AC condition, essentially removes all uncertainty about the task, 
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rendering the probabilistic manipulation largely un-effective, especially 
for late responses. This is in contrast to the SC condition, in which 
contextual information is of relevance for optimal, i.e. fast execution of 
the task. Thus, we conclude that the effects of contextual or prior 
information in the antisaccade task are best studied using the SC design. 

Summary	

This study investigated whether and to what extent cue presentation 
order (task cue and spatial cue) influenced ER and RT in the antisaccade 
task. Overall, we found that the impact of trial type probability was 
strongly reduced in the AC condition compared to the SC condition. 
From a modeling perspective, our results demonstrate that the 
combination of an early and a late race between voluntary pro- and 
antisaccades better accounts for RT and ER in an AC design, as compared 
to models that incorporate only an early race. Furthermore, modeling 
revealed that early inhibitory processes are strongly influenced by trial 
type in the AC condition, but not in the SC condition. By contrast, trial 
type probability had a strong effect on early units in the SC condition, 
but not in the AC condition. SERIA also provided a good prediction of 
the shape of the distribution of corrective antisaccades in both tasks. 
Finally, our quantitative analysis supports the hypothesis that a non-
negligible fraction of errors in the antisaccade task can be categorized as 
late errors, irrespective of task design. 

Software	note	

The models used here are available under the GPL license as part of the 
TAPAS toolbox (http://translationalneuromodeling.org/tapas/). 
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Supplementary	

Supplementary	Methods	and	Supplementary	Figure	S1	

To infer the model parameters of all subjects we used the likelihood 
function of the PROSA (Eq. 1-5, in the main text) and SERIA (Eq. 5-9 in 
the main text) models and assumed a hierarchical prior, such that the 
parameters of all subjects in each CUE condition were estimated 
simultaneously. Figure S1 summarizes entire model as a graphical model 
following the conventions in Bishop (2006).  

	

Figure S1: Graphical representation of the hierarchical model. 
Graphical summary of the statistical model using the convention in 
Bishop (2006). Briefly, each circle represents a probability 
distribution and arrows indicate conditional dependence. Black dots 
represent fixed parameters. The equations describing the 
distributions of each node are given below. The most important 
feature of the model is that the prior distribution of each set of 
parameters Z[ is parametrically defined by a set of explanatory 
variables \[ and coefficients ] with variance ^‰. These coefficients 
are estimated from the population distribution. We partition 
parameters ] into fixed (]F) and random effects (]_), such that the 
latter have a prior mean estimated again from the population 
distribution. For the present study, random effects represent subject 
specific intercepts, while their mean (or global intercept) is modeled 
by ]`,_, whose prior distribution is assumed to be centered at zero 
with variance ^`‰. 

In the following, we present the mathematical description of the model 
depicted in Figure S1. We will write down the conditional probabilities 
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that specify individual nodes of the graphical model, starting from the 
likelihood and then moving up the hierarchy. To simplify notation, we 
assume that the data in each run ‹, i.e., the RT and actions in a single 
block of each subject, are represented by a vector !

=
 and a parameter #

=
. 

The extension to a multivariate model is straightforward under the 
assumption that different parameters are conditionally independent. 
Although this independence assumption can be questioned, it facilitates 
the construction of a hierarchical extension of the SERIA and PROSA 
models. 

The likelihood of the model (represented by the gray shaded circle in 
Figure S1) is given by the product of the likelihood of all runs, i.e. all 
sessions in all subjects: 

>(!
:
,… , !

<
|#
:
, … , #

<
) = u

=@:

<
>(!

=
|#

=
). (ì1)	

The precise definition of the likelihood is given by the equations in the 
main text (Eq. 1-9). The prior distribution of parameters #

=
 is given by 

>(#
=
|^

=
, -, Û) =a(#

=
; ^

=
∙ -, Û†). (ì2)	

. = (^
:
, … , ^

<
) is a design matrix of size f ×d that codes M explanatory 

variables, such as SUBJECT, PP, etc., and - is a vector of dimension 
f × 1 that represents the effect of each explanatory variable. The prior 
distribution of - is given by 

>(-|-
r
, Û) =a(-; -

r
, Û

†
) (ì3)	

and the prior probability of Û is 

>(Û
2†
) = 6(Û2†; fl, c). (ì4) 

We distinguish between two types of - coefficients in analogy to the 
concepts of fixed and random effects. For fixed effects -B, we assumed 
that the coefficients have a fixed prior mean -

r,B = 0. For random effects 
-d, we assume that the prior mean -

r,d is a random variable drawn from 
a distribution that represents the sample population, i.e. all subjects, 

>V-
r,dW-d , Û, ÛrX ∝ >V-dW-r,d, ÛX>V-r,dW0, ÛrX (ì5)	

∝ 	aV-d; -r,d , Û
†
XaV-

r,d; 0, Ûr
†
X (ì6) 

The conditional posterior of -
r,d can be computed analytically and is 

given by  

>V-
r,dW-d, Û, ÛrX =aV-

r,d;5d , 9d2:X, (ì7) 

where 
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5d =
Û
2†
∑ -

=,d
<

=@:

dÛ
2†

+ Û
r

2†
, (ì8) 

	 9d = (dÛ
2†

+ Û
r

2†
). (ì9)	

 
The rationale for including a random effect is to account for the 
idiosyncrasies of each subject with the parameters -d while modeling a 
population wide intercept  -

r,d.  

All equations defined above are linear and rely on conjugate priors. 
Hence, it is possible to derive Gibbs steps to sample from the conditional 
posterior distributions of all parameters with the exception of #

:,..,<
, 

which are sampled from a Gaussian kernel centered at the previous 
sample. 
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Supplementary	Table	S1:	Model	comparison	by	accuracy	

Table	S1	

Model	accuracy	

Model	 Parametric	family	 SC	 AC	

PROSA	

m1	 T.	normal	 224.6	 338.9	

m2	 T.	normal	 0.0	 0.0	

m3	 Mixed	Gamma	 607.1	 376.3	

m4	 Mixed	Gamma	 499.0	 72.4	

m5	 Gamma	 613.2	 347.8	

m6	 Gamma	 531.2	 126.1	

DORA	

m7	 T.	normal	 1302.8	 1011.0	

m8	 T.	normal	 1291.4	 812.3	

m9	 Mixed	 1351.4	 998.7	

m10	 Mixed	 1260.8	 600.7	

m11	 Gamma	 1390.9	 893.0	

m12	 Gamma	 1305.2	 813.6	
	

Expected log likelihood (accuracy) normalized by subtracting the 
lowest log likelihood (m2) from all estimates. The accuracy of a 
model is the expected log likelihood of the model. It is tightly related 
to the unpenalized R2, or total variance explained, of a model.  
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Supplementary	 Figure	 S2:	Model	 fits	 for	 representative	 subjects	 –	

synchronous	cue	

 

Figure S2: RT distribution and comparison of the SERIA (m10) and 
PROSA (m5) models in the SC condition in three representative 
subjects, each one displayed in a different row. Prosaccade trials are 
displayed in the upper half plane, antisaccade trials in the bottom 
half. Note that the two models are the best models of their classes, 
respectively. 
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Supplementary	 Figure	 S3:	Model	 fits	 for	 representative	 subjects	 –	

asynchronous	cue	

 

Figure S3: Comparison of the SERIA (m9) and PROSA (m5) models 
in the AC condition in three representative subjects, each one 
displayed in a different row. Note that the two models are the best in 
their respective families. 
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Supplementary	Figure	S4:	Reciprobit	plots	of	the	PROSA	model	

 

Figure S4.: Empirical and predicted reciprobit plots of the PROSA 
model. Same as in Figure 6, but using the PROSA model. 

	



	

Chapter	8	

When required to alternate between two tasks, humans tend to be slower 
and less accurate than when asked to perform the same behavior 
repeatedly. Although the first study dedicated to this phenomenon dates 
back to the beginning of the 20th century (Jersild, 1927 reviewed in 
Monsell, 2003), only since the seminal work of Allport and colleagues 
(Allport et al., 1994), this topic started to receive attention in the 
psychological literature. 

Around twenty behavioral studies have investigated this phenomenon in 
the mixed antisaccade task. Surprisingly, while switch costs have been 
clearly demonstrated when subjects perform a prosaccade after an 
antisaccade, it is not clear whether the same costs occur in the opposite 
direction. As discussed later in this chapter, positive, negative, and none 
switch costs have been reported, sometimes by the same researchers. 
More importantly, no unified explanation of these dissimilar results has 
been proposed. 

Here, we apply SERIA to a fraction of the data reported in the last 
chapter with two simple questions in mind: Do switching costs arise in 
the version of the antisaccade task that we have used in Chapter 6 and 
7? More interestingly yet, if switch costs do occur, can we impute them 
to any of the two main decision processes postulated by SERIA: the 
inhibition of early responses and the initiation of voluntary actions. 

Our results demonstrate RT and ER switching costs regardless of trial 
type. This is a somewhat surprising outcome in that, from all the studies 
we are aware of, only a single publication documented a similar effect 
(Barton et al., 2006). Interestingly, in that study subjects were cued 
about the task they were supposed to perform (pro- or antisaccade), only 
200ms in advance of the peripheral spatial cue. As the synchronous 
antisaccade task, this design reduces the amount of time that subjects 
have to prepare how to act in a trial. 
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Using model comparison, we demonstrate that task switching costs 
affect both the early and late decision process postulated by SERIA. 
When we explored this result using the parameters of the model, a subtle 
picture emerged: On the one hand, switch voluntary pro- and 
antisaccades were slower and less accurate than their counterparts. On 
the other hand, antisaccade trials enhanced inhibitory control in the next 
trial, reducing the number of inhibition failures and decreasing their 
latency. 

As mentioned above, these results seem at odds with the extant 
literature, in which only the study by Barton and colleagues (Barton et 
al., 2006) reported a similar effect. The most plausible explanation is 
that previous studies have masked switching costs in voluntary actions 
by cueing subjects about the task demands long in advance of the 
peripheral cue. 

The next chapter explores a further application of SERIA to a more 
clinically relevant question: What are the effects of pro-dopaminergic 
and pro-cholinergic compounds in the antisaccade task?
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Abstract	

When instructed to alternate between different tasks, humans require 
more time and are less accurate than when they repeat the same task. 
This decrease in performance is referred to as the ‘task switch cost’. 
Several behavioral studies have investigated this phenomenon in the 
mixed antisaccade task, in which participants are cued to saccade either 
in the same or in the opposite direction of a peripheral stimulus. These 
reports have provided conflicting answers as to whether a cue to saccade 
away from a target leads to positive, negative, or no switch costs. These 
contradictory findings are paralleled by two opposing theoretical 
hypotheses which focus on task-set inertia and oculomotor inhibition, 
respectively. Here, we applied a computational, generative model to 
data from a mixed antisaccade task in which the peripheral visual 
stimulus also served as a trial type cue. Behaviorally, we found reaction 
time and error rate switch costs on pro- and antisaccade trials. Modeling 
revealed that these costs were due to two different effects. First, 
antisaccade trials enhanced inhibitory control on the following trial, 
resulting in fewer but faster inhibition failures. Second, goal-directed 
actions displayed a task-inertia effect, in that rule these were slower on 
switch trials compared to repeat trials. Our results shed light on the 
general phenomena of task switching, by demonstrating two types of 
switch cost that affect differently the inhibition of habitual responses and 
the initiation of goal-directed actions.   
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Introduction	

One hallmark of higher-order cognition is the ability to alternate 
between habitual and non-habitual, goal-directed actions (Isoda and 
Hikosaka, 2008). However, alternating between different tasks 
engenders costs in terms of reaction time (RT) and error rate (ER),  and 
switching from a non-habitual to a habitual response sometimes leads to 
larger costs than the opposite transition (Allport et al., 1994). An 
attractive paradigm to study these phenomena in the oculomotor 
domain is the antisaccade task (Hallett, 1978; Munoz and Everling, 
2004), in which a habitual response – a prosaccade towards a salient 
peripheral stimulus – needs to be overwritten by a non-habitual action, 
i.e., an antisaccade in the opposite direction. Importantly, this paradigm 
has received much attention in psychiatric research, because changes in 
ER and RT constitute a stable finding in schizophrenia (Greenwood et 
al., 2007; Reilly et al., 2014; Radant et al., 2015; Myles et al., 2017). 

Behaviorally, switch costs in the antisaccade task have been investigated 
in great detail (Barton et al., 2002; Cherkasova et al., 2002; Manoach et 
al., 2002; Bojko et al., 2004; Fecteau et al., 2004; Barton et al., 2006a; 
2006b; Rivaud-Pechoux et al., 2007; Ansari et al., 2008; Mueller et al., 
2009; Lee et al., 2011; Weiler and Heath, 2012a; 2012b; DeSimone et 
al., 2014; Weiler and Heath, 2014; Weiler et al., 2014; Heath et al., 
2015; Pierce et al., 2015; Weiler et al., 2015; Heath et al., 2016; Chan 
et al., 2017). Despite the large number of studies, no unified picture of 
the cost of switching in this paradigm has emerged. Concretely, all 
studies we are aware of have reported that switch prosaccades, i.e. 
correct prosaccades that follow an antisaccade trial, have higher 
latencies than repeat trials, whereas the costs associated with switch 
antisaccades are less clear. For example, some studies have indicated 
that switch antisaccades display lower RTs (e.g. Cherkasova et al., 
2002), while others have reported both lower and higher RTs (e.g., 
Barton et al., 2006a), and yet others indicate no switch costs (e.g., 
Weiler and Heath, 2012b). 

One path to clarify the relationship between seemingly contradictory 
experimental evidence is the application of generative models to 
empirical data (Monsell, 2003; Karayanidis et al., 2010; Heinzle et al., 
2016) which might help disentangle the underlying mechanisms that 
explain switch costs. In this direction, we recently developed the 



	 	 	 Eduardo	A.	Aponte	

	

282	

Stochastic Early Reaction, Inhibition and late Action (SERIA) model 
(Aponte et al., 2017) of the antisaccade task. In essence, SERIA 
combines the ‘horse-race’ model usually applied in the context of the 
countermanding saccade task (Logan et al., 1984; Camalier et al., 2007) 
to explain the inhibition of habitual, fast prosaccades, with a second race 
between two voluntary, or goal-directed actions that can generate both 
pro- and antisaccades. In contrast to previous models (Noorani and 
Carpenter, 2013), we acknowledge the possibility that prosaccades can 
be generated not only as the result of reactive (habitual) saccades, but 
also by a rule-guided decision process.  

In two recent studies (Aponte et al., 2017; Chapter 7), we showed that 
SERIA can be used to account for RT and ER distributions with great 
accuracy, and that it is able to predict corrective antisaccades. Here, we 
employ the model to investigate switch costs and whether they could be 
attributed either to the inhibition of habitual responses or to the 
generation of voluntary saccades. In other words, we compare the two 
dominant theories of antisaccade switch costs – the task-set inertia 
hypothesis (Allport et al., 1994) and the oculomotor inhibition 
hypothesis (Barton et al., 2006a; Weiler and Heath, 2014)– by a 
modeling approach that inherently separates these two processes.  Our 
results demonstrate that switch costs are largely explained by the 
interference between voluntary pro- and antisaccades, irrespective of 
trial type. In addition, antisaccade trials lead to increased inhibitory 
control, which reduces the number of reactive saccades following an 
antisaccade trial, leading to an apparent switch cost on prosaccade trials. 
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Methods	

In this study, we analyzed a subset (one of two tasks) of the data 
presented in detail in Chapter 7. In the following, we briefly summarize 
the experimental procedures relevant for the analysis presented here. 
This study was approved by the ethics board of the Canton of Zurich, 
Switzerland (KEK-ZH-Nr.2014-0246) and was conducted according to 
the Declaration of Helsinki. 

Participants	

We used the data of all twenty-four, healthy male subjects that were 
analyzed in Chapter 7. All subjects had normal or corrected to normal 
vision and provided a written inform consent to participate in the study. 

Apparatus	

The experiment was conducted in a dimly illuminated room. Subjects sat 
60cm in front of a computer screen (41.4x30cm; Philips 20B40; refresh 
rate 85Hz). Eye position was recorded at a sampling rate of 1000Hz with 
a remote, infrared eye tracker (Eyelink 1000; SR Research, Ottawa, 
Canada). Head position was stabilized using a chin rest. The experiment 
was controlled by in-house software written in the Python programming 
language (2.7) using the PsychoPy package (1.82.02) (Peirce, 2007; 
2008). 

Experimental	design	

Here, we only considered the data from the synchronous task condition 
in Chapter 7. Subjects participated in three blocks of mixed pro- and 
antisaccade trials. Each block consisted of 200 trials of which either 20, 
50, or 80% were prosaccade trials. Before the main experiment, subjects 
underwent a training block of 50 prosaccade trials followed by 50 
antisaccade trials. In the training phase (but not during the main 
experiment) subjects received feedback about their performance. 

As shown in Fig. 4A, two red circles (radius 0.25°) were presented 
throughout the experiment at an eccentricity of ±12°. Each trial started 
with a central fixation cross (0.6x0.6°). Subjects were required to fixate 
for at least 500ms, after which a random interval of 500 to 1000ms 
started. Completed this period, the fixation cross disappeared, and a 
green bar (3.48x0.8°) centered on one of the red circles was presented 
in either horizontal or vertical orientation for 500ms. Subjects were 
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instructed to saccade to the red circle ipsilateral to a horizontal green 
bar (prosaccade trials), and to saccade to the contralateral circle in the 
opposite case (antisaccade trials). After 1000ms the next trial started. 
Horizontal and vertical bars were randomly interleaved, but the same 
sequence was presented across all subjects. The location (left of right) of 
the peripheral cue was also randomly permuted, such that the number 
of pro- and antisaccade trials in each direction was the same. 
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Figure 4: Experimental design and model. Adapted from Chapter 7. 
A. Experimental design. Subjects were instructed to first fixate to a 
central cross. After a variable interval (500-1000ms), a cue indicating 
the trial type was presented for 500 ms. B. Trial types. Depending 
on the cue presented in the previous trial, four types of trials were 
considered. From top to bottom: repeat prosaccade, switch 
prosaccade, repeat antisaccade, and switch antisaccade. The cue was 
presented to the right or left pseudorandomly. C. SERIA model. The 
SERIA model is a race model that incorporates four different units: 
an early prosaccade unit, an inhibitory unit, a late prosaccade and an 
antisaccade unit (see legend). The RT distributions are a function of 
the hit time distribution of the four units. Early reactions occur when 
the early unit hits threshold before all other units. Late reactions 
occur mainly when early reactions are stopped by the inhibitory unit. 
Note that late pro- and antisaccade compete with each other in a 
similar manner. In principle, different trial types could affect the hit 
time distribution of each unit. 

Data	processing	
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Saccades were detected with the software provided by the eye tracker 
manufacturer (Stampe, 1993), which uses a 22°/s and 3800°/s2 
threshold to define the start of a saccade. Only saccades with a 
magnitude larger than 2° were included in the analysis. Trials were 
rejected in case of an eye blink, if subjects failed to maintain fixation 
before the peripheral green bar was presented, and if their latency was 
above 900ms or below 50ms, and, in the case of antisaccades, below 
95ms. 

Statistical	Analysis	

As variables of interest, we investigated mean RT of correct responses 
and mean ER. These were analyzed with a generalized, linear mixed 
effect (GLME) model implemented in MATLAB 9.3 (fitglme.m). 
Independent variables were prosaccade probability (PP) with levels 20, 
50 and 80%; trial type (TT); last trial (LT) with levels switch and repeat 
(Fig. 4B); and SUBJECT entered as a random effect. In the case of ER, 
the probit function acted as link function in the GLME. The first trial of 
a block was not included in this analysis. 

The	SERIA	model	

Briefly, SERIA (Aponte et al., 2017) models the race of four independent 
accumulators or units: an early (b

M
), an inhibitory (b

=
), a late prosaccade 

(b
I
), and an antisaccade (b

Ω
) unit. The pair of an action g ∈ {>~›. , flfia‹.} 

and its latency ® ∈ [0,∞[ is treated as a random variable, whose 
distribution is a function of the hit times of each of the units, ú

M
, ú

=
, ú

I
, 

and ú
Ω
 respectively. Conceptually, SERIA can be decomposed into two 

different competitions: First, the early unit, which models reactive, 
habitual responses, generates a prosaccade at time t if it hits threshold 
at time t (i.e., ú

M
= a) and all the other units hit threshold afterwards. 

An early response can be stopped by the inhibitory unit if the latter hits 
threshold at some earlier point. In that case, either a late prosaccade or 
an antisaccade is generated. This second decision process is modeled as 
the race between the corresponding units, such that, for example, a late 
prosaccade at time t is generated only if the late prosaccade unit hits 
threshold at ú

I
= a before the antisaccade unit (i.e., ú

Ω
> a). 

More concretely, SERIA provides an explicit formula for the probability 
of an action A and its RT. First, a prosaccade at time t is generated when 
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either the early unit b
M
 hits threshold at time t (i.e., ú

M
= a) before all 

other units. The probability of this event is given by 
>(ú

M
= a)>Vú

I
> aX>(ú

Ω
> a)>(ú

=
> a). (1)	

Furthermore, a prosaccade at time t can be triggered when the late 
prosaccade unit hits threshold at t and before all other units 

>Vú
I
= aX>(ú

M
> a)>(ú

Ω
> a)>(ú

=
> a) (2)	

or an early response is stopped by the inhibitory unit (i.e., ú
=
< a and 

ú
=
< ú

M
), and the late prosaccade unit hits threshold before the 

antisaccade unit 

>Vú
I
= aX>(ú

Ω
> a)à >(ú

=
= K)>(ú

M
> K)`K

L

r

. (3)	

Similarly, an antisaccade at time t is generated when the antisaccade 
unit hits threshold at t (ú

Ω
= a), before all other units 

>(ú
Ω
= a)>(ú

M
> a)>Vú

I
> aX>(ú

=
> a) (4)	

or after an early prosaccade has been stopped 

>(ú
Ω
= a)>Vú

I
> aXà >(ú

=
= K)>(ú

M
> K)`K

L

r

. (5)	

To fit the model, we assumed a parametric form for the hit times of each 
of units: the hit times of the early (ú

M
) and inhibitory unit (ú

=
) were 

modeled with an inverse Gamma distribution, while the hit times of the 
late units (ú

I
 and ú

Ω
) were modeled using a Gamma distribution 

(Aponte et al., 2017). Thus, each unit could be fully characterized by 
two parameters controlling the mean and variance of the hit times. 
Accordingly, to fully specify the distribution of actions and RTs in a 
condition, 8 (unit) parameters were required. 

Model	space	

We aimed to answer three different questions through Bayesian model 
comparison (Kass and Raftery, 1995; Stephan et al., 2009): First, are 
models that included information about the previous trial superior in 
explaining experimental data compared to models which did not include 
this factor? Second, are inter-trial effects driven by either the trial type, 
the action, or the correctness of the action performed in the previous 
trial? Third, can inter-trial effects be accounted for by changes in either 
the generation of goal-directed actions, inhibitory control, or a 
combination of both? 
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To answer these questions, we fitted models that explained the totality 
of the data not only as a function of the current trial type, but also as a 
function of the previous trial. For this, all trials were divided into four 
different conditions, according to the cue displayed (pro- or antisaccade) 
and the previous trial, as explained below. Although a different set of 
parameters could operate in each condition, this seems biologically 
implausible and our goal was to identify which parameters could be 
fixed across conditions, without compromising the ability of the models 
to parsimoniously explain the behavioral data. As illustrated in Table 4, 
we first evaluated models in which the parameters of the units were 
constant irrespective of the previous trial but could vary depending on 
the cue presented on the current trial. Second, we evaluated models that 
accounted for effects of the last trial in three manners: either the 
parameters of the model depended on (i) the previous trial type (Fig. 
4B), (ii) the previous action, or on (iii) whether the previous action was 
an error or not. In principle, one could also consider interactions among 
these three factors, but this would require 2x2x2x2x8=128 parameters. 
Hence, we limited the analysis to the three options mentioned above and 
ignored their interaction, acknowledging that such effects have been 
reported in the literature (DeSimone et al., 2014). 

These families of models were divided into three nested versions that 
represented different types of inter-trial effects: either the parameters of 
the inhibitory and early unit were fixed across conditions, but the late 
units were allowed to vary across conditions, or only inhibitory control 
changed across conditions, or both the late and the inhibitory units could 
differ in all conditions, but the early units were equal across them. 
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Table	4	

	 	 Model	space	

	 Late	units	 Inhib.	units	 Late+inhib.	

units	

	 Model	 #	Pars.	 Model	 #	Pars.	 Model	 #	Pars.	

No	switch	 A
:
	 15	 A

†
	 13	 A

Ë
	 17	

Switch	trial	 A
‡
	 23	 A

 
	 21	 A2	 29	

Last	action	 A3	 23	 A
˚
	 21	 AD	 29	

Last	error	 A
:r
	 23	 A

::
	 21	 A

:†
	 29	

	

Model space. In addition to the 8 parameters controlling the units, 
all models included three parameters that accounted for the ‘no 
response’ time, the late response delay, i.e., a constant delay 
associated with all goal-directed saccades and, finally, the probability 
of an outlier, i.e., the probability of a saccade faster than the no-
response-time. In model A

:
, we assumed that the early and inhibitory 

units were equal in pro- and antisaccade trials (4 parameters), but 
the late units were allowed to vary across pro- and antisaccade trials 
(4x2 parameters). Thus, the total number of parameters was 
3+4+4x2=15. In the case of models A

‡
,A3 and A

:r
, the parameters 

of the late units varied in all four possible conditions, resulting in 2x4 
(two switch trials times four parameters) additional degrees of 
freedom (15+2x4=23). In model A

†
, the inhibitory unit was allowed 

to vary between pro- and antisaccade trials, but the late units were 
fixed across the two conditions. Thus, A

†
 had 13 parameters, i.e., 

two parameters less than A
:
. In models A

 
,A

˚
 and A

::
, we allowed 

the inhibitory unit to vary across all four conditions. Note that A
†
 

had the identical late decision process in pro- and antisaccade trials. 
We relaxed this severe restriction in models A

 
,A

˚
 and A

::
 and 

allowed the late units to vary between pro- and antisaccade trials, but 
kept them fix across switching. Thus, theses three models had 
3x2+4+13=21 parameters. Lastly, in the late+inhib. family we 
allowed both the inhibitory and late units to vary, keeping the 
parameters of the early unit fixed. In model m3 this implied two more 
parameters when compared to m1, while in models m6, m9 and m12 

this led to 3x2 more parameters than e.g. m4. 

	Model	fitting	

The models were estimated using the techniques presented in our 
previous studies (Aponte et al., 2017). Data from all subjects were 
entered simultaneously into a hierarchical model presented in Chapter 
7. Samples from the posterior distribution were drawn using the 
Metropolis-Hasting algorithm. The evidence or marginal likelihood of 
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models was computed using thermodynamic integration with 32 parallel 
chains ordered according to the temperature schedule suggested by 
Chapter 7. The algorithm was run for 60000 iterations, from which only 
the last half was used to compute summary statistics. The software used 
here to implement the models and inference is available in the TAPAS 
toolbox (http://translationalneuromodeling.org/tapas/). 

We were interested in several model-based statistics derived from the 
fits. First, we evaluated the probability of an inhibition failure, defined 
as the probability that the early unit hits threshold before all the other 
units: 
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Inhibition failures are fast, reflexive prosaccades, which are correct on 
prosaccade trials and errors on antisaccade trials. The expected RT of an 
inhibition failure is 
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We also report the conditional probability of a late prosaccade, defined 
as the probability that the late prosaccade unit hits threshold before the 
antisaccade unit: 
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Note that the conditional probability (given no inhibition failure) of a 
late antisaccade is defined as 

>(flfia‹. ) = 1 − >(ofla1	>~›. ). (9)	

We were also interested in the expected hit times of the late units, 
defined as  
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and analogously so for antisaccades. This quantity is the expected hit 
time of the late prosaccade unit, conditioned on the antisaccade unit 
arriving at a later point. We report this statistic, as it conveys an 
interpretable quantity that can be readily compared to experimental 
data. The derivation for these terms can be found in Aponte et al. 
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(2017). Finally, we computed the probability of a saccade at time t to be 
an early response: 

>(1fl~o!|® = a, g = >~›) =
I(MΩNP∞	INJ,’@L)

I(MΩNP∞	INJ,’@L)¥I(PΩLM	INJ,’@L)

. (11)  
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Results	

The results are based on all trials of the experiment, after roughly 2.2% 
of the trials were discarded due to blinks or other artefacts, as explained 
in detail in Chapter 7. We first report a classical statistical analysis of ER 
and RT. Only correct trials entered the analysis of RT. Then, we proceed 
to the model-based findings.  

Switch	costs:	Error	rate	

Mean ERs (Fig. 5A-C) were submitted to a binomial regression model. 
On prosaccade trials, there was a significant effect of both PP 
([(2,138) = 36.4, > < 10

2Ë) and LT ([(1,138) = 178.7, > < 10
2Ë). On 

average, switch prosaccade trials showed 15% more errors than repeat 
trials. In the case of antisaccades, the main effects of PP ([(2,138) =
17.1, > < 10

2Ë) and LT ([(1,138) = 147.7, > < 10
2Ë) as well as the 

interaction between PP and LT ([(2,138) = 4.3, > = 0.01) were 
significant. Switch trials led to 18% more errors on antisaccades trials. 
When we included all trials in a single model, there was a significant 
effect of TT (anti. ER – pro. ER=9%; [(1,276) = 112.4, > < 10

2Ë) and a 
significant interaction between TT and LT ([(1,276) = 4.8, > = 0.02), 
indicating a significant difference in switch cost between anti- and 
prosaccade trials (anti. switch	cost− pro. switch	cost = 2.8%). 

Reaction	time	

To evaluate the effect of previous trials, we submitted the mean RT of 
correct trials (Fig. 5D-F), to a GLME that included PP, LT, and SUBJECT 
as independent variables. There was a significant effect of LT on both 
pro, and antisaccades trials (pro. switch	cost = 14A€, [(1,138) =

37.1, > < 10
2Ë; anti. switch	cost = 12A€, [(1,138) = 32.7, > < 10

2Ë). 
The effect of PP was significant on antisaccade ([(1,138) = 6.6, > <

10
2Ë) but not on prosaccade trials ([(1,138) = 0.9, > = 0.39). In both 

cases, the interaction between PP and LT was not significant. We then 
considered pro- and antisaccades in a single model with factors PP, LT, 
TT and all possible interactions. Our main interest was the interaction 
between the factors LT and TT, which would indicate a significant 
difference in the switch cost between pro- and antisaccades. This 
interaction was not significant ([(2,276) = 0.2, > = 0.64). 
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Figure 5: A. Mean ER on prosaccade trials. B. Mean ER on 
antisaccade trials. C. ER switch costs. D. Mean RT on prosaccade 
trials. E. Mean RT on antisaccade trials. E. RT switch cost. Error bars 
display the s.e.m.. PP: prosaccade probability 

SERIA	results	–	model	comparison	

All models were initially evaluated according to their log evidence or 
marginal likelihood, which corresponds to the accuracy or expected log 
likelihood adjusted by the complexity of the model (Stephan et al., 
2009). Table 2 (top) reports the evidence of all models in log units. The 
model with the highest evidence (A2, LME = -17467.6, DLME>8.0 log 
units) allowed for differences in the late and inhibitory units across all 
conditions. In addition, the accuracy or expected log likelihood is 
reported in Table 2 (bottom). In general, models in which switch costs 
depended on the last trial type, as opposed to the last action or error, 
obtained higher evidence. 

Table 2 illustrates the penalization for complexity (or number of 
parameters) in terms of the difference between log model evidence (top) 
and expected log likelihood (bottom) in each model. For example, in the 
case of the no-switch:late+inhib. model (A

Ë
) the penalty was 817.8 log 

! !! !

A B C

D E F
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units. Similarly, the penalty for switch:inhib (A
 
) was 857.7 units, 

whereas for the best model (switch:late+inhib; A2) the penalty was 
985.5 log units. This demonstrates that the switch:late+inhib model 
provided the most parsimonious explanation of the data as the increase 
in expected log likelihood outweighed the increased complexity. 
Table	5	

	 Log	model	evidence	

	 Late	 Inhib.	 Late+inhib.	

No	switch	 -17596.0	 -19571.0	 -17591.4	

Switch	trial	 -17481.1	 -17475.8	 -17467.6	

Last	action	 -17599.1	 -17577.1	 -17634.8	

Last	error	 -17657.5	 -17623.0	 -17706.1	

	 Expected	log-likelihood	

No	switch	 -16842.8	 -18806.0	 -16773.6	

Last	trial	type	 -16532.2	 -16618.1	 -16482.1	

Last	action	 -16661.9	 -16797.4	 -16598.0	

Last	error	 -16751.1	 -16804.4	 -16715.5	
	

Model comparison. The model with the highest evidence is high 
lightened in bold face. A difference of 3 log units is typically regarded 
as strong evidence (Kass and Raftery, 1995). The expected log-
likelihood is also displayed for comparison. Note that within all 
model families (rows) the difference in expected log-likelihood 
between the most complex and the other models is strongly reduced 
(for last trial type) or even inverted (last action or last error) in log 
model evidence due to the penalization for complexity. 

To illustrate qualitative differences between models, the fits of m4 
(switch:late), m5 (switch:inhib.) and m6 (switch:late+inhib.) are 
displayed in Fig. 6 and 7. Fits represent the expected posterior predictive 
probability estimated from posterior samples. Visual inspection suggests 
that the switch:inhib. model failed to capture the distribution of late 
responses, and particularly so on prosaccade switch trials. The 
switch:late model made a better job regarding late saccades, but it did 
not seem to capture early responses on, for example, prosaccade repeat 
trials (Fig. 6 bottom row). Finally, the switch:late+inhib. model was able 
to accommodate most of the features of the behavioral data, with 
perhaps the exception of the early peak on prosaccade switch trials.  
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Figure 6: Histogram of prosaccade trials and model fits. 
Prosaccades are displayed in red, and antisaccades in blue. For 
comparison, the weighted posterior predictive distribution of models 
m4 (switch:late), m5 (switch:inhib.) and m6 (switch:late+inhib.) 
computed from posterior samples are displayed. The 
switch:late+inhib. model fitted both the early and late peaks in the 
prosaccade RT distribution better. 
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Figure 7: Histogram of antisaccade trials and model fits. For a 
detailed legend see Fig. 6. Note that all three models showed a 
relatively poor model fit for errors in the PP80 condition in repeat 
trials. This can be explained by the very low number of errors (N=19 
across all subjects) in this condition.  

SERIA	results	–	parameter	estimates	

In the second part of the analysis, we investigated how model-based 
parameter estimates differed across conditions. For this, we used the 
parameter estimates from the model with the highest evidence, namely 
the switch:late+inhib. model. The focus of this analysis was the hit times 
of the late units and the early responses, as well as the expected 
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proportion of late errors, and the number of inhibition failures in switch 
and repeat trials. 

Threshold	hit	times	

The expected hit time of the late pro- (327ms, std. 35ms) and 
antisaccade (314ms, std. 33ms) units (Fig. 8A-B) were first submitted to 
two separate GLMs. The main effect of LT was significant for the two 
late units (pro. switch cost = 16ms, std. 19ms, [(1,138) = 28.6, > <

10
2Ë; anti. switch cost = 23ms, std. 21ms, [(1,138) = 46.6, > < 10

2Ë). 
When considered together, we found no significant interaction between 
LT and TT ([(1,276) = 2.4, > = 0.11). Finally, the interaction between 
PP and TT was significant ([(1,276) = 5.0, > = 0.007). 

	

Figure 8: A. Hit times of the late prosaccade unit (see Eq. 10). B. Hit 
times of the antisaccade unit. C. RT of inhibition failures on 
prosaccade trials (see Eq. 7). D. RT of inhibition failures in 
antisaccade trials. Error bars depict the s.e.m.. 

In addition to the late units, we investigated the latency of inhibition 
failures (i.e., non-stopped early reactions; Fig. 8C-D). In SERIA, these 
are always prosaccades and occur on both pro- and antisaccade trials 
when the early unit hits threshold before all other units. Note that 
inhibition failures are correct in prosaccade trials, but errors in 
antisaccade trials. When pro- and antisaccade trials were analyzed 
together, we found a significant effect of PP ([(2,276) = 16.2, > <

A B

C D
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10
2Ë), LT ([(1,276) = 4.0, > = 0.045), and the interaction between TT 

and LT was significant, as well ([(1,276) = 46.9, > < 10
2Ë). As shown 

in Fig. 8D, inhibition failures had a higher mean latency on antisaccade 
switch trials (214ms, std. 32ms) than on repeat trials (199ms, std. 
29ms), whereas on prosaccade trials (Fig. 8D), the opposite pattern 
occurred (switch 204ms, std. 33ms; rep. 211ms, std. 31ms). Thus, 
according to our model fits, inhibition failures following an antisaccade 
trial were faster than inhibition failures following a prosaccade trial. 

To illustrate the above effect, we compared the mean RT of errors on 
switch (227ms, std. 36ms) and repeat antisaccade trials (221ms, std. 
48). We have shown previously that most of the errors in this paradigm 
are due to inhibition failures (Aponte et al., 2017), and we therefore 
hypothesized that errors on antisaccade trials that follow prosaccade 
trials should have a higher latency than errors that follow antisaccade 
trials. In agreement with our prediction, we found a positive switch cost 
(4ms, std42) with respect to errors on antisaccade trials. Note that the 
scant number of errors on antisaccade repeat trials in the PP80 condition 
(N=19, see Fig. 7, bottom right panel) prevented us from conducting a 
statistical analysis. However, if the PP80 block was excluded, the switch 
cost was still positive (11ms; std. 30ms) and significant ([(1,86) =
5.1, > = 0.025). 

Error	types	

In order to characterize different sources of errors, we investigated early 
and late errors separately (Fig. 9). First, we submitted the probability of 
late errors (Eq. 8 and 9) on pro- (mean 19%, std. 14) and antisaccade 
(mean 4%, std.4) trials to a single GLME. This revealed a positive switch 
cost as demonstrated by a significant effect of LT ([(1,276) = 55.9, > <

10
2Ë). Moreover, there was a significant interaction between LT and TT 

([(1,276) = 14.7, > < 10
2Ë). The mean switch cost for late prosaccades 

was 11% (std. 11), whereas for antisaccades, it was 1% (std. 4.8). When 
late antisaccades were analyzed separately, the effect of the previous 
trials was still significant ([(1,138) = 9.87, > = 0.002). 
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Figure 9: A. Percentage of late errors (see. Eq. 8 and 9). B. 
Percentage of inhibition failures in prosaccade trials (cf. Eq. 6). C. 
Percentage of inhibition failures in antisaccade trials. Percent errors 
are presented in the probit scale and summary statistics (mean and 
s.e.m.) were computed from probit transformed probabilities. Error 
bars represent the s.e.m.. 

We then investigated the probability of an inhibition failure (see Eq. 6), 
defined as the probability that the early unit hits threshold before all 
other units. According to our model, on prosaccade trials 28% (std. 19) 
of saccades were inhibition failures, whereas this number was lower on 
antisaccade trials (mean 21%, std. 18). The effect of LT on pro- 
([(1,138) = 105.5, > < 10

2Ë) and antisaccades trials ([(1,276) =
149.2, > < 10

2Ë) was significant. When considered together, we found a 
significant interaction between the factors TT and LT ([(1,276) =
219.8, > < 10

2Ë). Concretely, prosaccade trials induced more inhibition 
failures on the next trial regardless of trial type (pro. switch cost=-12%, 
std. 10; anti. switch cost=11%, std. 9). Finally, while we found a weak 
but significant interaction between PP and TT ([(1,276) = 3.2, > =

0.04), the three-way interaction between PP, TT and LT was not 
significant ([(2,276) = 1.3, > = 0.25).  

In Fig. 10, the effects of switch and repeat trials on early responses are 
exemplified. We depict the histogram of all responses in the PP50 
condition sorted into trial types, and switch and repeat trials. We restrict 
this illustration to the PP50 case because the number of repeat and 
switch trials was similar (pro. switch: 2479, pro. repeat: 2150, anti. 
switch: 2435, anti. repeat 2150). The predicted histograms of early 
responses are overlaid on the empirical distributions. The former were 

A CB
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computed by weighting each saccade’s RT by its probability of being an 
early response (Eq. 11). Clearly, on prosaccade trials, the early peak of 
repeat trials (orange) is larger than on switch trials (green), as 
emphasized by the predicted histograms. The opposite pattern is 
observable on antisaccade trials, in which switch trials have a larger 
early peak than repeat trials. 

	

Figure 10: Normalized histograms of all saccades in the PP50 
condition and predicted early responses. The histograms of all 
responses on pro- and antisaccade trials are sorted into switch and 
repeat trials. Histograms were normalized to have unit area. Overlaid 
are the predicted histogram of early responses, computed by 
weighting each saccade by its probability of being an early response 
(Eq. 11). In prosaccade trials, there were more early saccades in 
repeated trials than on switch trials, while the opposite pattern could 
be observed on antisaccade trials. Note that the black and gray 
histograms represent the empirical distributions, while orange and 
green histograms show modeling results. 

Fig. 11 summarizes the effect of switching on the RT of early and late 
reactions, late ER, and the percentage of inhibition failures. Our findings 
indicate a strong positive switch cost in RT and ER for late responses, 
with the exception of late errors on antisaccade trials. Regarding 
inhibition failures, antisaccade trials decreased the frequency and 
latency of early reactions on the subsequent trial compared to 
prosaccade trials. This observation is compatible with the claim that an 
antisaccade trial leads to enhanced inhibitory control on the following 
trial. The reason is that in a race model, when the distribution of the hit 
times of the stop unit is shifted to the right, more early reactions with 
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higher RT are possible. In other words, faster inhibitory control leads to 
fewer but faster errors. 

	

Figure 11: Summary of switch costs. A. Error rates: Task switching 
increase the probability of late errors in pro- and antisaccade trials. 
This cost was higher on prosaccade trials when compared to 
antisaccade trials. In contrast, we found that there was a negative 
switch cost in the number of inhibition failures on prosaccade trials, 
while we observed the opposite effect on antisaccade trials. Thus, 
prosaccade trials lead to more inhibition failures on the subsequent 
trial irrespective of trial type. B. Hit times. There was a positive and 
significant switch cost for late pro- and antisaccades. Early reactions 
that followed a prosaccade trial showed a higher latency than those 
following an antisaccade trial. Error bars display the s.e.m.. 
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Discussion	

In the present study, we investigated switch costs in a mixed pro- and 
antisaccade task with the SERIA model. This allowed us to quantify to 
what extent switch costs affected the inhibition of habitual reactions 
(early prosaccades) and goal-directed (rule-guided) behavior (late pro- 
and antisaccades), respectively. Modeling revealed two distinguishable 
effects: on the one hand, switch trials engendered RT costs in goal-
directed behavior. On the other hand, antisaccade trials enhanced 
inhibitory control compared to prosaccade trials, as demonstrated by 
fewer inhibition failures with lower latency following antisaccade trials. 
In the following, we discuss these findings. 

Behavioral	findings	

Two types of switch costs have been commonly reported for the 
antisaccade task. Early studies (e.g., Barton et al., 2002; Cherkasova et 
al., 2002; Manoach et al., 2002; Fecteau et al., 2004) reported positive 
prosaccade RT switch costs, negative antisaccade RT switch costs, as well 
as an increase in ER following switch trials in both type of trials. More 
recently, Heath and Weiler (e.g. Weiler and Heath, 2012b; Weiler et al., 
2015) have reported a positive switch cost on prosaccade trials, and no 
switch cost on antisaccade trials. 

Our behavioral analysis based on standard statistics supports positive 
switch costs in pro– and antisaccades, both in terms of ER and RT. 
Although our study seems at odds with previous reports, we believe that 
our findings complement rather than contradict them, because the 
design used here differs in key aspect from the tasks used by other 
researchers. Notably, in our paradigm (inspired by Sato and Schall, 
2003), the peripheral spatial cue also signaled the action to be 
performed, whereas in most studies the trial type cue precedes the 
spatial cue by hundreds of milliseconds. We refer to these two paradigms 
(Chapter 7) as the synchronous cues (SC) and asynchronous cues (AC) 
designs, respectively. Importantly, it has been shown (e.g., Weiler and 
Heath, 2014) that displaying the task cue before the peripheral saccadic 
target has a dramatic effect on ER and RT when compared to the SC 
task. Supporting the idea that different designs can trigger different 
switch costs, Barton et al. (2006a) showed that when the task cue was 
presented only 200ms before the peripheral cue, there was a positive 
switch cost in both pro- and antisaccades. However, if the peripheral cue 
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was delayed by 1800ms, a negative antisaccade cost could be observed. 
Here, we replicated the observation that a very short cue-to-peripheral-
stimulus delay (0ms in our case) causes switch costs regardless of trial 
type. 

Weiler and Heath (2014) have also noted methodological differences 
across studies. For example, in studies reporting a negative antisaccade 
switch cost (e.g., Cherkasova et al., 2002), the saccadic targets (in our 
case, the two peripheral red points) were displayed during the entire 
experiment. This group has attributed the difference in findings to this 
manipulation (Barton et al., 2006a). 

One possible explanation for the contrast between AC and SC designs is 
that if the trial type cue is presented early enough relative to the 
peripheral cue, the decision processes that triggers voluntary actions can 
be consolidated to the point that contextual factors, such as the previous 
trial or the probability of a task cue, become ineffective (Weiler and 
Heath, 2014). Thus, the AC might abolish task switching effects in 
voluntary action generation by allowing participants to overwrite 
contextual effects during the cue-to-stimulus interval.  

We speculate that seemingly contradictory reports could be explained by 
a single computational mechanism. In other words, a unified 
explanation of behavioral findings might be attained through the lens of 
quantitative modeling. Thus, we proceed to discuss our computational 
results. 

Computational	Modelling	

The main goal of our study was to account for switch costs in the 
antisaccade task using the SERIA model. The conclusions presented here 
are based on quantitative Bayesian model comparison, as well as on 
qualitative posterior predictive fits (Fig. 6 and 7). Our results indicate 
that the bulk of effects of the last trial can be accounted for by 
alternations of trial type, and not by the previous actions. Note, however, 
that we cannot rule out interactions between trial type and actions that 
have been previously reported (Tatler and Hutton, 2007; DeSimone et 
al., 2014). 

Qualitative inspection of the predictive fits (Fig. 6 and 7) clearly 
indicates that accounting for switch costs in both habitual and goal-
directed actions improved the fit of the RT distributions. The second best 
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model (=ˇfÙ = 8.2) accounted for switch costs only through changes in 
inhibitory control (switch:inhib.). Examination of the predictive fits 
clearly shows why this model was inferior: The RT distribution of late 
responses could not be properly fitted.  

The analysis of parameter estimates led to two conclusions. First, there 
was a positive switch cost in late pro- and antisaccades in terms of RT 
and ER. However, the switch cost associated with late errors on 
antisaccade trials was small (1%). Second, antisaccade trials led to fewer 
and faster habitual responses on the following trial. Therefore, we 
conclude that goal-directed behavior is facilitated by the application of 
the same rule over trials. Moreover, the enhanced inhibitory control 
induced by antisaccade trials led to more efficient inhibition on the 
following trial. 

It is not straightforward to compare our model-based findings to 
predictions from conceptual models, because these do not always 
translate into precise empirical predictions. In particular, our results 
support two theories that are considered opposites (Weiler and Heath, 
2014). On the one hand, the switch cost observed in goal-directed 
behavior supports the task-set inertia hypothesis (Weiler et al., 2014), 
according to which the activation of a cue-action mapping facilitates the 
activation of the same rule on the next trial, while interfering with other 
mappings. 

On the other hand, our results also support the oculomotor inhibition 
hypothesis (Allport et al., 1994), according to which the type of 
inhibitory control required to execute an antisaccade leads to enhanced 
inhibition on the following trial, as reflected by a fewer inhibition 
failures following an antisaccade trial, as well as faster early 
prosaccades. The latter is a natural consequence of more efficient 
inhibitory control, which allows only inhibition failures with very short 
latencies. Note that the existence of inter-trial effects on inhibitory 
control is supported by evidence in the countermanding saccade task 
(e.g., Barton et al., 2006a; Weiler and Heath, 2014). In summary, our 
model supports both theories, depending on whether the interpretation 
focusses on the inhibition of reactive responses or on the generation of 
voluntary actions. 

Finally, we note that our modeling approach cannot distinguish whether 
antisaccade trials enhance inhibitory control, or whether prosaccade 
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trials disengage it. Here, we have opted to assert that antisaccade trials 
enhance inhibition; however, in the present context, both options are 
undistinguishable. 

Other	models	of	inter-trial	effects	

To our knowledge, this is the first computational, trial-by-trial model 
used to investigate switch costs in the antisaccade task. Although SERIA 
seems to accommodate the most salient features of our data, one 
conceptual limitation of our approach is its phenomenological or 
descriptive nature. For instance, SERIA does not postulate any specific 
neurophysiological mechanism to explain the different types of switch 
costs. This role could be better filled by biologically inspired models 
(Emeric et al., 2007; Pouget et al., 2011), that can be compared to 
behavioral data as well as to physiological recordings. 

A further limitation is that learning effects were not modeled explicitly. 
Because no information about the trial type probability was provided to 
participants, the PP effects reported here and by others (Cutsuridis et al., 
2007; Heinzle et al., 2007; Wiecki and Frank, 2013; Lo and Wang, 2016) 
can only be explained by adaptation to statistical regularities in the 
stimuli. Here, we made the assumption that subjects quickly reach a 
steady state such that dynamic effects can be ignored. However, since 
the pioneering work of Carpenter and Williams (1995), it has been 
hypothesized that changes in saccadic RT can be explained by the 
principles of optimal statistical inference (assuming, for example, that 
humans act like ideal Bayesian observers; Brodersen et al., 2008). More 
recently, Vossel et al. (2014) (but see also Anderson and Carpenter, 
2006; Brodersen et al., 2008) used a Bayesian model (Mathys et al., 
2011) to demonstrate trial-by-trial variations in saccadic RT in a 
modified Posner paradigm, in which the average validity of the cue 
changed over time. In future work we plan to account for learning 
effects, in addition to the last trial effects modeled here. 

Summary	

Our quantitative modeling suggests that conceptual theories of switch 
costs in the antisaccade task can profit from a more precise formulation 
in computational terms, as seemingly contradictory statements can be 
correct at the same time. This is possible because of the non-trivial 
interactions between a habitual response mechanism that can be subject 
to fast inhibitory control and the ability to generate goal-directed, 
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context sensitive behavior. Concretely, our analysis indicates that 
alternating between goal-directed behaviors engenders sizeable switch 
costs, whereas increased inhibitory demands on one trial enhance 
inhibitory control on the following trial.  
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Chapter	9	

In the previous chapters, the SERIA model for the antisaccade task was 
developed, and several experimental findings were reported. For 
example, we showed that corrective antisaccades that follow an error 
are likely to be delayed late responses. In this chapter, we use SERIA to 
answer the following question: How do pro-cholinergic and pro-
dopaminergic drugs affect the voluntary control of eye movements in the 
antisaccade task? These two types of drugs have been investigated in 
some detail in the literature, although the particular compounds used 
here (galantamine and levodopa) have either not being investigated 
before, or only in very different experimental setups (as explained later 
in this chapter). Their importance lies in that both compounds affect 
neurotransmitters that are directly or indirectly affected by antipsychotic 
medication. Moreover, while it has been suggested that galantamine, a 
cognitive enhancer approved for palliative treatment of Alzheimer’s 
disease, could be of use in treating cognitive deficits in schizophrenia, 
recent clinical studies have not shown any significant therapeutic value, 
as discussed in detail later on. Thus, it is of interest to understand the 
effects of both types of compounds in the antisaccade task, and their 
relationship to the deficits observed in schizophrenia. 

Here, we present two experiments that follow a well-powered, double-
blind, placebo-controlled, within subject design. Our results indicate that 
the compounds used here have opposite effects on voluntary eye 
movements. This is shown in both summary statistics of RTs and ERs, as 
well as in the parameter estimates of SERIA. Moreover, SERIA offers an 
interpretable explanation of our empirical findings, and points to 
possible mechanistic explanations. 

This last chapter incorporates the methodological ideas developed in 
Part I and II of this dissertation and offers a first product of the research 
agenda laid out in Chapter 4. In the final section of this dissertation we 
offer an outlook of the open questions and problems for future research. 
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Abstract	
The ability to stop habitual responses and to simultaneously initiate rule 
guided actions is pivotal to adaptive behavioral control. To study how 
dopamine (DA) and acetylcholine (ACh) affect this ability under 
environmental uncertainty, we investigated two agonist compounds 
(galantamine 8mg and levodopa 200mg) in humans (N=90) in the 
context of the antisaccade task. Using a recent computational model of 
antisaccade latencies, we found that while ACh reduced the latency of 
voluntary actions, higher systemic DA had the opposite effect. Although 
inhibitory control was affected by environmental uncertainty, neither of 
these compounds had an impact on inhibition, nor did they interact with 
the effect of uncertainty. Crucially, a classifier was able to predict the 
compound (DA vs. Ach) with an accuracy of 70%. Our results contribute 
to further the current understanding of the role of DA and ACh in 
decision making. 
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Introduction	
Higher-order cognitive control often requires the interplay of different, 
competitive decision processes. For example, when confronted with 
situations that demand a rapid but thoughtful change of plans, it is not 
enough to simply stop our initial course of action, it is also imperative to 
select a secondary plan that copes with changing circumstances. 
Interestingly, these two decision processes might recruit different 
neuronal circuits (Hikosaka and Isoda, 2010; Isoda and Hikosaka, 2011; 
2008) that are differently affected by the neuromodulators acetylcholine 
(ACh) and dopamine (DA). The dysregulation of these 
neurotransmitters is at the heart of disorders such as Parkinson’s disease 
and schizophrenia. 

An experimental paradigm that has been extensively used to investigate 
the interplay of these mechanisms is the antisaccade task (Hallett, 
1978), in which subjects are instructed to saccade in the opposite 
direction of a cued location. Because the most common response to a 
suddenly presented stimulus is a ballistic eye movement towards it (a 
prosaccade), the execution of a saccade in the opposite direction (an 
antisaccade) requires both the inhibition of an automatic, habitual 
response, and the start of a secondary, voluntary action (Everling and 
Johnston, 2013; Reuter et al., 2007). In addition to inhibitory control 
and conflict resolution in human and non-human primates (Munoz and 
Everling, 2004), the antisaccade task has been extensively used to study 
clinical populations (Hutton and Ettinger, 2006; Myles et al., 2017). 
Arguably, the most remarkable and consistent finding in this domain is 
that patients diagnosed with schizophrenia as well as their first order 
unaffected relatives display high error rates (ER) and reaction times 
(RT) in this paradigm (Myles et al., 2017; Radant et al., 2015; Reilly et 
al., 2014). These findings indicate that deficits in the antisaccade task 
constitute a genuine biomarker of schizophrenia.  

It has also been proposed that errors caused by different decision 
processes could discriminate different psychiatric and neurological 
diseases (Coe and Munoz, 2017; Heinzle et al., 2016). Unfortunately, 
only few studies (Reuter et al., 2007; 2005) have considered the 
question whether significant changes in ER and RT can be related to one 
or both putative decision processes that are thought to underlie the 
execution of this task. 



	 	 	 Eduardo	A.	Aponte	

	

318	

Arguably, one reason why this question has not been systematically 
addressed is the lack of computational models that could disentangle the 
decision processes involved in the generation of antisaccades (Heinzle 
et al., 2016). Such models have only emerged in recent years (Aponte et 
al., 2017; Camalier et al., 2007; Cutsuridis et al., 2007; Heinzle et al., 
2007; Lo and X. J. Wang, 2016; Noorani and Carpenter, 2013; Wiecki 
and Frank, 2013) and with them more precise predictions of the effect 
of different changes in neuromodulation associated with psychiatric 
diseases have been made. For example, (Wiecki and Frank, 2013) 
suggested that increased tonic DA in the basal ganglia impairs inhibitory 
control in the antisaccade task. This hypothesis is based on the 
observation that schizophrenia is associated with the dysregulation of 
DA as well as with higher ERs in the antisaccade task (Matsuda et al., 
2004). Moreover, deficits could be partly explained by abnormalities in 
the inhibitory pathway from the basal ganglia to the motor layers of the 
superior colliculus, which is critically involved in saccadic eye 
movements (Hikosaka et al., 2000; Isoda and Hikosaka, 2008). 
Similarly, a large body of evidence points to a role of this structure in 
inhibitory control across different tasks (Aron and Poldrack, 2006; 
Schmidt and Berke, 2017). However, the location of the circuits 
responsible for the inhibition of prosaccades is still debated (although 
see Stuphorn and Schall, 2006). It has also been reported that lesions in 
the basal ganglia do not affect antisaccade performance (Condy et al., 
2004), whereas prefrontal lesions are known to critically impair it 
(Guitton et al., 1985; Pierrot-Deseilligny et al., 1991). In this direction, 
Everling and Johnston (2013) have challenged the view that the 
elevated error rate in schizophrenia is caused by compromised inhibitory 
control, instead hypothesizing that cortical cue-action mapping might be 
affected in this condition. 

In contrast to the hypothesized deleterious effect of high tonic DA, pro-
cholinergic compounds targeting the a7 and a4b2 nicotine receptors 
have been postulated as a possible treatment to the negative symptoms 
and cognitive impairments associated with schizophrenia (Arango et al., 
2013; Buchanan et al., 2008; Lieberman et al., 2013), although recent 
studies did not reveal any or only limited therapeutic effects of these 
compounds (Conley et al., 2009; Lindenmayer and Khan, 2011; 
Umbricht et al., 2014; Walling et al., 2016). In a similar spirit, several 
studies (Bowling and Donnelly, 2010; Depatie et al., 2002; Ettinger et 
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al., 2009; Larrison et al., 2004; Larrison-Faucher et al., 2004; Petrovsky 
et al., 2012; 2013; Powell et al., 2002; Roos et al., 1995; Rycroft et al., 
2006; 2007) have investigated whether nicotine has a positive effect on 
the antisaccade task. These reports indicate that that nicotine decreases 
antisaccade RT (Bowling and Donnelly, 2010; Ettinger et al., 2009; 
Petrovsky et al., 2013; Rycroft et al., 2007; 2006), in line with a meta-
analysis of the effect of nicotine on a wide variety of cognitive paradigms 
(Heishman et al., 2010). However, not all studies have replicated this 
result (for example Ettinger et al., 2017). Similarly, several studies have 
found that nicotine reduces ER (Depatie et al., 2002; Petrovsky et al., 
2013; 2012; Rycroft et al., 2006; Schmechtig et al., 2013) but others 
have not found a significant effect (Rycroft et al., 2007). Thus, it is not 
clear whether pro-cholinergic and pro-dopaminergic drugs have 
opposite effects in the antisaccade task, and, if so, whether these effects 
are reflected in either inhibitory control or the initiation of voluntary 
actions involved in this paradigm. 

Here, we used a recent computational model of the antisaccade task 
(Aponte et al., 2017) to investigate the effects of a pro-cholinergic and 
a pro-dopaminergic compound in healthy volunteers in two well 
powered (Ettinger et al., 2017; Heishman et al., 2010), comparable 
experiments (Experiment 1: DA, N=46, Experiment 2: ACh, N=44). 
Subjects were instructed to saccade either to a cued location (prosaccade 
trial), or in the opposite direction (antisaccade trial) depending on the 
orientation of a visual, peripheral cue (Fig. 1A). Both trial types were 
presented in three mixed blocks with different prosaccade trial 
probability (20, 50, or 80%). In Exp. 1, participants received either 
placebo or levodopa (200mg), and in Exp. 2 placebo or galantamine 
(8mg) in two different sessions, according to a double-blind, placebo-
controlled, crossover protocol. Levodopa (l-dopa) is a precursor of DA 
that crosses the blood-brain barrier and increases the systemic 
availability of this neurotransmitter. Galantamine is a weak inhibitor of 
acetylcholinesterase, an enzyme involved in the hydrolysis of ACh at the 
synaptic clef, as well as an allosteric potentiating ligand of the a7 
(Texido et al., 2005) and a4b2 ACh nicotinic receptors (nAChR; 
Maelicke et al., 2001; Samochocki et al., 2003; Santos et al., 2002). 
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Figure 1: A. Task design. Subjects were required to initially fixate to 
a centrally presented cross for 500 to 1000ms. Two red dots were 
constantly displayed at ±12° indicating the possible locations of the 
cue. After the initial fixation period, the central cross was removed 
and a cue (green bar 3.5°) was presented either in horizontal or 
vertical orientation for 500ms. Subjects were instructed to saccade in 
the direction cued by horizontal cue (prosaccade trial) or the 
opposite direction in case of a vertical cue (antisaccade trial). B 
Exemplary eye position trace in the horizontal plane in prosaccade 
trials. Correct prosaccades distribution extended from as early as 
200ms to as much as 450ms after cue presentation. Importantly, 
several errors (antisaccades) can be observed. C. Exemplary 
horizontal eye position in antisaccade trials. Eye position in correct 
antisaccades is displayed in blue, whereas incorrect prosaccades are 
displayed in red. Errors latency was as short as 200ms from cue 
presentation. 

In this study, our main interests were two: First, we aimed at 
investigating the possibly opposing effects of levodopa and galantamine 
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on either ER and RT, and whether these effects could be imputed to any 
of the decision processes involved in the antisaccade task. For this, we 
first analyzed average ER and RT and then proceeded to apply a 
computational model to these data. Second, we used a classification 
algorithm to test whether eye movement data could be used to 
disambiguate the type of drug given to the participants. 
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Results	
Participants	

In Exp. 1, 46 male subjects (23.6 mean years of age, std. 2.9, range 19 −
33) were included in the final analysis. Four participants were excluded 
because their data was incomplete. No subject demonstrated an overt 
negative reaction to levodopa or placebo. Participants could not guess 
the substance administered significantly better than chance after the first 
(h†(1,d = 44) = 3.2, > = 0.07) or second session (h†(1,d = 42) =
0.9, > = 0.75). In total, 52993 trials were analyzed, from which 1303 
trials were excluded (Supp. Table S1).  

In Exp. 2, 44 subjects were included in the final analysis (mean age 22.4, 
std. 2.3, range 18 − 29). Four subjects reported a negative reaction to 
the substance administered and were excluded from the study. Two 
subjects were excluded because their data was incomplete. Again, 
participants were not significantly better than chance at discriminating 
galantamine from placebo (first session h†(1,d = 44) = 0.8, > = 0.54; 
second session h†(1,d = 44) = 0.8, > = 0.36). A total of 50688 trials 
were analyzed, from which 1416 were excluded, mostly due to blinks 
(Supp. Table S1). 

Error	rate	and	reaction	times	

All variables of interest were analyzed with a generalized, mixed-effects 
linear model (GLME). Both experiments were first included into a single 
GLME, and then each experiment was considered separately for the 
factor DRUG (see below) and its interactions. The fixed effects entered 
into the model were the categorical variables EXPERIMENT (EXP) with 
levels Exp. 1 and 2, DRUG with levels drug and placebo, SESSION, 
prosaccade trial probability (PP; levels PP20, PP50 and PP80), and the 
continuous factor DOSE (mg/kg). Moreover, we divided trials into 
switch and repeat trials, to account for switch costs as shown in Chapter 
8. In addition, we included several interactions as detailed in the 
methods section. Our main interest were the interactions between the 
factors DRUG and EXP, DRUG and PP, and DRUG and DOSE. The factor 
SUBJECT was entered as a random effect.  

Error	rate	

The mean ER in pro- and antisaccade trials is displayed in Fig. 2 and 
Supp. Table S2. Higher congruent trial type probability was associated 
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with fewer errors in pro- (χ†(2,d = 1080) = 871.7, > < 102 ), and 
antisaccade trials (χ†(2,d = 1080) = 901.2, > < 102 ). Subjects made 
fewer errors in the second session (pro.: χ†(1,d = 1080) = 13.9, > =
102Ë, anti.:	χ†(1,d = 1080) = 7.6, > = 0.005). There were less errors in 
prosaccade trials in Exp. 1 compared to Exp. 2 (χ†(2,d = 1080) =
6.1, > = 0.0129). 

 

Figure 2: A. Mean prosaccade ER in Exp. 1 (levodopa vs. placebo). 
B. Mean antisaccade ER in Exp. 2 (galantamine vs. placebo). C. 
Difference in ER between the drug and placebo condition in Exp. 1 
and 2. There was a significant difference between the effect of 
levodopa and galantamine (χ†(1, d = 1080) = 6.8, > = 0.008). When 
analyzed separately, levodopa significantly reduced prosaccade ER 
(χ†(1, d = 552) = 8.5, > = 0.010). D. Mean prosaccade ER in Exp. 1. 
E. Mean antisaccade ER in Exp. 2. F. Difference in ER in Exp. 1 and 
2. No significant effect was found. Error bar depicts the sem.. PP: 
prosaccade trial probability; ∗: > < 0.05; ∗∗: > < 0.01. 

Error	rate:	Drug	effects	

Regarding the effects of DRUG and its interactions, in prosaccade trials 
(Fig. 3A) we found a significant interaction between DRUG and EXP 
(χ†(1,d = 1080) = 6.8, > = 0.008). We proceeded to investigate Exp. 1 
and 2 independently for drug related effects. In prosaccade trials in Exp. 
1, we found a significant main effect of DRUG (χ†(1,d = 552) = 8.5, > =
0.010) that demonstrated that levodopa reduced the number of error in 
prosaccade trials, and this effect was DOSE dependent (χ†(1,d =
552) = 8.0, > = 0.004). In antisaccade trials, we found no significant 
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effect of drug. Regarding Exp. 2, we found a significant interaction 
between DRUG and DOSE (Fig. 3B; χ†(1,d = 528) = 29.6, > = 102 ) in 
antisaccade trials. Galantamine had no significant effect on ER in 
prosaccade trials. Qualitative inspection of the ER in Exp. 2 (Fig. 3B), 
revealed that galantamine increased the number of errors at a high dose, 
while it reduced them at more moderate levels. 
 

 

Figure 3:. A. Difference in ER between the drug and placebo 
conditions in prosaccade trials and the linear fit to dose in Exp. 1 
(χ†(1, d = 552) = 8.0, > = 0.004). B. Difference in ER between the 
drug and placebo conditions in antisaccade trials and the linear fit to 
dose in Exp. 2 (χ†(1, d = 528) = 29.6, > = 102 ). Linear fits are 
displayed for interpretability and do not correspond to the estimated 
effects according to a GLME. 

Reaction	time	

Reaction times (RT) in correct trials (Fig. 4 and Sup. Table S3) were 
analyzed similarly to ER. Higher trial type probability led to lower RT in 
both pro- ([†,D3† = 30.3, > < 102 ) and antisaccade trials ([†,D2˚ =
35.1, > < 102 ). RTs were lower in the second session (pro: [:,D3† =
31.5, > < 102 , anti: [:,D2˚ = 75.0, > < 102 ). Moreover, RT in Exp. 2 
were significantly lower than in Exp. 1 (pro: [:,˚2 = 8.4, > = 0.004; anti: 
[:,˚2 = 12.5, > < 102Ë). 
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Figure 4: Only RT of correct trials are shown. A. Mean prosaccade 
RT in Exp. 1 (levodopa vs. placebo). B. Mean antisaccade RT in Exp. 
1. C. Difference in RT between the drug and placebo conditions on 
prosaccade trials. The main effect of DRUG was significant ([†,D3† =
4.0, > = 0.022). D. Mean antisaccade RT in Exp. 2 (galantamine vs. 
placebo). E. Mean antisaccade RT in Exp. 2. F. Difference in RT on 
antisaccade trials. Levodopa increased the RT of antisaccades when 
compared to galantamine ([†,D2˚ = 12.2, > = 102Ë). Error bars depict 
the sem. PP: prosaccade trial probability; ∗: > < 0.05; ∗∗: > < 0.01. 

Reaction	times:	Drug	effects	

Regarding the DRUG factor, we found a significant interaction between 
DRUG and EXP ([†,D2˚ = 12.2, > = 102Ë) in antisaccades trials (Fig. 4F) 
and an effect of DRUG in prosaccade trials (Fig. 4C; [†,D3† = 4.0, > =
0.022). When the two experiments were analyzed independently for an 
effect of DRUG, we found that galantamine decreased antisaccade RT 
([†,† r = 11.1, > = 102Ë). 

Modeling	

The Stochastic Early Response, Inhibition and late Action (SERIA) model 
(Aponte et al., 2017) was used to fit actions (pro- and antisaccades) and 
RTs. SERIA models two different race processes involved in the 
generation of an antisaccade: An initial GO/NO-GO competition 
between an early and an inhibitory unit (Ue and Ui), and a second race 
between a late pro- and an antisaccade unit (Up and Ua). Accordingly, 
two types of errors in an antisaccade trial are postulated by the model: 



	 	 	 Eduardo	A.	Aponte	

	

326	

inhibition failures that occur when an early prosaccade reaction is not 
stopped, and late errors that occur when the late prosaccade unit hits 
threshold before the antisaccade unit. SERIA explains the commonly 
observed bimodality of prosaccade RTs by the same mechanism: early 
prosaccades are actions that are not inhibited (inhibition failures), 
whereas voluntary or late prosaccades are generated by the same 
decision process responsible for antisaccades. The model accounted for 
differences across pro- and antisaccade trials, and switch and repeat 
trials in the same manner as in Chapter 8 and as elaborated in the 
Methods section. 

We were interested in several parameters derived from the model (see 
Methods). First, we considered the expected hit time of the early, 
inhibitory, late pro-, and antisaccade units. Furthermore, we 
investigated the probability of an inhibition failure, i.e., the probability 
that the early unit hit threshold before all other units, and the probability 
late errors in pro- and antisaccade trials. 

The estimated posterior distribution of RT and actions of exemplary 
subjects are display in Supp. Fig. S4. The fits of the entire data set 
(aggregated across subjects) are displayed in Fig. 5. Posterior fits 
demonstrate that SERIA captures the data well. Concretely, it reproduces 
well the shape of the distribution of RT including the clear bimodality of 
prosaccade responses. 
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Figure 5: Mean fits of the model in the three PP conditions. The 
histogram of the prosaccades and antisaccades is displayed in red and 
blue respectively. Prosaccade trials are shown in upper (positive) part 
of the plane; antisaccades in the bottom (negative) part. To display 
the model fits, the predictive likelihood of each trial type was 
computed for each subject and normalized according to the number 
of trials per condition.  

We proceeded to investigate the metrics derived from the model fits. Our 
main interest was to determine whether the arrival times of any of the 
units or the probability of an uninhibited early saccade and the 
probability of a late antisaccade changed when levodopa or galantamine 
were administered. 

Threshold	hit	times	

The threshold hit times of the early, the inhibitory, and late pro- and 
antisaccades units were analyzed as in the previous section. For the late 
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units, we only report the hit times in correct trials. In the case of the 
inhibitory unit, pro- and antisaccade trials were analyzed together by 
including the factor TRIAL-TYPE (TT). In the case of the early unit, we 
previously established through model comparison (see Chapter 8) that 
its parameters can be fixed across trial types and switch and repeat trials. 
Thus, we did not include the TT and SWITCH factors. 

Prosaccade trial probability (PP) had a significant effect on all units (see 
Supp. Tables S5-8). In agreement with Chapter 7 and 8, we found that 
the arrival time of the inhibitory unit increased with higher prosaccade 
trial type probability ([:,†r‡3 = 242.7, > < 102 ), indicating reduced 
inhibition of early responses. On average, hit times were lower in the 
second session (Supp. Table S5-8). Furthermore, we found a main effect 
of the factor EXP in the response time of the late units (late pro.:	[:,˚2 =
18.5, > < 102Ë, anti: [:,˚2 = 15.4, > < 102Ë). However, we found no 
effect of EXP in the early ([:,˚2 = 0.5, > = 0.461) or inhibitory units 
([:,˚2 = 0.0, > = 0.771). 

Response	times:	Drug	effects	

The interaction between DRUG and EXP. (Fig. 6, left and center) was 
significant in the case of the late pro- ([:,D3† = 19.4, > < 102Ë) and 
antisaccade units ([:,D3† = 15.1, > < 102Ë). Levodopa increased 
response times, while galantamine had the opposite effect. The 
interactions between DRUG and PP, or DRUG, PP and EXP were not 
significant. 

We proceeded to investigate each experiment independently for DRUG 
effects. In Exp. 1, the increase in the hit time of late pro- ([:,‡D‡ =
8.2, > = 0.004) and antisaccades ([:,‡D‡ = 6.4, > = 0.011) in the DRUG 
condition were significant. On average, the response time of late 
reactions was 5ms higher in the DRUG condition as compared to the 
placebo condition. In Exp. 2, we found that galantamine reduced the 
response time of late pro- ([:,‡3† = 15.0, > < 102Ë) and antisaccades 
([:,‡3† = 12.0, > < 102Ë). On average, the response times were 6ms 
faster in the galantamine condition when compared to the placebo 
condition. 
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Figure 6: A. Difference in the RT of late prosaccades between drug 
and placebo conditions ([:,D3† = 19.4, > < 102Ë). B. Difference in RT 
of antisaccades ([:,D3† = 15.1, > < 102Ë). C. Difference in RT of 
corrective antisaccades ([:,:r2†r = 24.4, > < 102Ë). In each case, 
there was a significant difference between the effects of levodopa and 
galantamine. Error bars represent the sem.. ∗: > < 0.05; ∗∗: > < 0.01, 
∗∗∗: > < 0.001. 

Corrective	antisaccades	

In Chapters 7 and 8, we demonstrated that the latency of corrective 
antisaccades after a prosaccade error follow the distribution of late 
responses up to a fixed delay. Because the results above point to opposite 
effects of levodopa and galantamine on the latency of voluntary 
saccades, a prediction of SERIA is that corrective antisaccades should 
display the same drug effects as antisaccades, i.e., higher latency of 
corrective antisaccades in the levodopa condition, and lower latency in 
the galantamine condition. 

We analyzed 5696 corrective saccades in Exp. 1 (levodopa: 2736, 
placebo 2960) and 4996 in Exp. 2 (galantamine: 2479, placebo: 2517). 
Because the frequency of corrective antisaccades varied widely over 
subjects and conditions, we accounted for the inhomogeneous number 
of trials by investigating trial-by-trial RT as opposed to mean RT. In 
general, the model accounted for a large fraction of the variance in the 
data (R2=0.30). When analyzed together, the interaction between 
DRUG and EXP ([:,:r2†r = 24.4, > < 102Ë, Fig. 6 right) was significant. 
Considered independently, the effect of DRUG was significant in Exp. 1 
([:, 2 ‡ = 10.8, > < 102Ë) and 2 ([:,‡D2r = 14.6, > < 102Ë). Supporting 
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our hypothesis, levodopa increased the RT of corrective antisaccades 
(Δ–® = 8A€), whereas galantamine had the opposite effect (Δ–® =
−10A€). 

Inhibition	failures	and	late	errors	

We proceeded to investigate the probability of late errors and inhibition 
failures, i.e., the probability that the early unit hit threshold before all 
other units (Supp. Table S9-11). PP had a significant effect on late pro- 
(χ†(2,d = 1080) = 1634.6, > < 102 ) and antisaccade errors (χ†(2,d =
1080) = 201.7, > < 102 ) and inhibition failures (χ†(2,d = 2160) =
294.7, > < 102 ). 

Drug	effects:	Inhibition	failures	and	late	errors	

In the case of late errors in prosaccade trials, we found a significant 
interaction between DRUG and EXP (χ†(1,d = 1080) = 24.0, > < 102 ; 
Fig. 7A). Regarding late errors in antisaccade trials (Fig. 7B), there was 
a significant main effect of DRUG (χ†(2,d = 1080) = 19.6, > < 102 ). 
The main effect of DRUG (χ†(2,d = 2160) = 4.8, > = 0.028) was also 
significant in the case of inhibition failures (not displayed). Again, no 
interaction between DRUG and PP or DRUG, PP, and EXP was 
significant. 
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Figure 7: A. Difference in ER in late prosaccades between the drug 
and placebo conditions (χ†(1, d = 1080) = 24.0, > < 102 ). B. 
Difference in error rate in antisaccade trials (χ†(2, d = 1080) =
19.6, > < 102Ë). Error bars represent the s.e.m. ∗: > < 0.05; ∗∗: > <
0.01, ∗∗∗: > < 0.001. 

When we examined Exp. 1, we found a significant effect of DRUG 
(χ†(1,d = 552) = 14.9, > < 102Ë) in the probability of late errors in 
prosaccade trials indicating fewer late errors in the levodopa condition. 
In the case of late errors in antisaccade trials, we found a comparable 
effect of DRUG (χ†(1,d = 552) = 17.8, > < 102Ë). There was a small but 
significant effect of DRUG in the probability of an inhibition failure 
χ†(1,d = 1104) = 3.9, > = 0.046).  

In Exp. 2, we found a main effect of DRUG in late errors in both pro 
(χ†(2,d = 528) = 5.4, > = 0.019) and antisaccade trials (χ†(2,d =
528) = 4.19, > = 0.040). Galantamine increased the probability of a late 
error in prosaccade trials and decreased them in antisaccade trials. There 
was no significant effect on the number of inhibition failures 
(χ†(2,d = 1056) = 0.5, > = 0.457). 

Dose	dependent	effects	

In addition to the main effect of levodopa and galantamine, we 
investigated dose dependent effects. In Exp. 1, we found a significant 
interaction between the factors DRUG and DOSE in the probability of a 
late error in prosaccade trials (Fig. 8A; pro. trials χ†(1,d = 552) =
28.1, > < 102 ). At a low dose, levodopa decreased the probability of late 
antisaccades, whereas at high dose it had the opposite effect. 
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On average, galantamine did not affect the arrival time of the inhibitory 
unit, nor did it affect the probability of an inhibition failure. However, 
there was a highly dose dependent effect on both metrics (Fig. 8B-C; RT: 
[:,DD3 = 64.1, > < 102 , probability χ†(2,d = 1056) = 53.2, > < 102 ). 
At a low dose, galantamine reduced the hit time of the inhibitory unit 
and the probability of an inhibition failure, and this effect was reversed 
at higher dose levels. 

 

Figure 8: Dose dependent drug effects. A. Difference (drug-
placebo) in late errors in prosaccade trials as a function of dose in 
Exp. 1 (χ†(1, d = 552) = 28.1, > < 102 ). At a high dose, levodopa 
increased the number of errors. B. Difference (drug-placebo) in the 
percentage of inhibition failures averaged across all conditions in 
Exp. 2 (χ†(2, d = 1056) = 53.2, > < 102 ). Galantamine increased 
the number of inhibition failures as a function of dose. C. Difference 
(drug-placebo) in the RT of the inhibitory unit averaged across all 
condition in Exp. 2 [:,DD3 = 64.1, > < 102Ë. Galantamine increased 
the latency of the inhibition unit as a function of dose. 

Classification	of	drug	effects	

The main goal of the present study was to contrast the effects of a pro-
dopaminergic and a pro-cholinergic compound. To demonstrate that 
these effects have predictive validity, we aimed to classify the compound 
administered to subjects using an approach that we refer to as 
hierarchical generative embedding. In generative embedding (Brodersen 
et al., 2011), a generative model is used to infer upon features of the 
data that are assumed to be relevant for predictive classification. The 
latter task can be performed by a second algorithm such as a support 
vector machine or a decision tree classifier. Here, we extend this 
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approach by relying on a hierarchical model to extract the features used 
to train a classifier, hence hierarchical embedding. 

 

Figure 9: Generative embedding for drug classification. We used 
the hierarchical SERIA model to extract the features used to train a 
gradient boosting classifier (GBC). Train and test features were 
extracted independently. In particular, the training features were 
estimated by fitting the hierarchical SERIA model N times including 
information about the drug or experiment but excluding the test 
subject. Thus, no information about the test data was used to 
generate the training features. The test features were estimated using 
the totality of the data, without entering any information related to 
the drug/placebo or experiment labels. 

Classification was performed on the difference between the DRUG and 
PLACEBO condition of the SERIA statistics described in previous 
sections. The goal was to predict whether a subject received levodopa or 
galantamine. Leave-one-out cross-validation resulted in 0.7 predictive 
accuracy (99% CI [0.57, 0.82]). A permutation test in which the DRUG 
and PLACEBO labels were randomly swapped revealed that the 
probability of this predictive accuracy under the null hypothesis was 
below 0.001. Because drug/placebo labels (but not experiment labels) 
were permuted, this test rules out that the accuracy of the classifier 
depends on the main effects of the experiment. 

Finally, since a GBC assigns interpretable weights to the features used 
for classification, we could examine the relative importance of each of 
the features extracted by SERIA. As expected from the univariate 
regression analysis, the probability of a late error combined with hit time 
of late prosaccades accounted for 71% of the decision tree weights. 
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Discussion	
The present study investigated the effects of a pro-dopaminergic and a 
pro-cholinergic compound in the antisaccade task. Pro- and antisaccade 
trials were mixed in three blocks with different probability in two 
experiments. Qualitatively, both experiments were comparable, 
although Exp. 2 was characterized by lower RTs, likely caused by faster 
late responses. Despite this difference, we replicated the findings in 
Chapter 7 and 8. For example, both RT and ER were strongly influenced 
by trial type probability. Thus, qualitatively both experiments followed 
identical patterns, evident in terms of summary statistics (Fig. 2 and 4). 
In the following, we discuss our experimental findings with a focus on 
drug effects. 

Effects	of	levodopa	

Levodopa is a precursor of DA that increases its systemic availability. As 
such, its influence on the central nervous system is not specific and 
cannot be univocally associated with specific receptor types, for example 
D1 or D2. Even though it is a widely-used compound in humans, the 
effect of levodopa on performance in the antisaccade task has not been 
investigated systematically. We are aware of only two studies that have 
used it in the context of this paradigm (Duka and Lupp, 1997; Hood et 
al., 2007). Unfortunately, these studies cannot be directly compared to 
our experiment because Hood et al. (2007) examined Parkinson’s 
disease patients on and off medication, whereas Duka and Lupp (1997) 
did not follow a placebo-controlled design. In the following, we 
summarize our findings and present possible interpretations, 
emphasizing the methodological challenges and conflicting evidence 
available in the literature. 

First, we did not find an effect of levodopa on the number of errors in 
antisaccade trials, which was also reflected by the absence of a 
significant effect on the probability of an inhibition failure in our 
modeling results. This negative finding is compatible with previous 
studies in the stop-signal task that have failed to demonstrate higher 
error rate or changes in the stop-signal response time (SSRT) with 
levodopa (Obeso et al., 2011; Overtoom et al., 2003). One possible 
explanation is that inhibitory control of early responses in the 
antisaccade task is not controlled uniquely by the basal ganglia (BG; 
Condy et al., 2004). This possibility is supported by the sparsity of fMRI 
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human studies showing increased activation of the BG when comparing 
pro- and antisaccades (Jamadar et al., 2013; McDowell et al., 2008). 
Note that although several studies have reported increased activation of 
the BG in antisaccade trials when compared to fixation (Ettinger et al., 
2008; Matsuda et al., 2004), a quantitative meta-analysis (Jamadar et 
al., 2013) failed to establish differences between trial types in this 
region. However, more recent imaging studies (Pierce and McDowell, 
2017; 2016) using liberal thresholds (Eklund et al., 2016), reported 
increased activation in the BG, in line with the activations in the caudate 
nucleus reported by Ford et al. (2009) in the macaque brain. 

Models that relate DA mediated activity in the basal ganglia to inhibitory 
control in the antisaccade task (Wiecki and Frank, 2013) suggest that  
global inhibition should not be affected by changes in tonic DA levels in 
the BG. Indeed, inhibitory control in our version of the antisaccade is not 
affected by the cue presented in a particular trial (Overtoom et al., 2003) 
and is thus global. This reconciles our findings with the modeling 
predictions by Wiecki and Frank (2013). 

Prominently, we found that levodopa increased the RT of late pro- and 
antisaccades, and, on average, reduced the number of errors in 
prosaccade trials. According to our model (Aponte et al., 2017), an error 
in a prosaccade trial can only occur when the competition between late 
responses is won by the unit representing an antisaccade. Arguably, 
these errors can be interpreted as failures to map the visual cue with the 
correct behavioral response. Similarly, Lo and Wang (2016) explained 
late errors as the result of the winner-take-all competition between two 
attractors (representing voluntary pro- and antisaccades). Based on this 
physiological model, one possible explanation of our results is that at 
low doses D1R mediated inhibition induces higher network stability and 
reduces error rates, while at higher doses excessive inhibition leads to 
loss in accuracy (Vijayraghavan et al., 2007). In both cases, higher 
inhibition would lead to increased reaction time in late responses but 
not necessarily in early reactions. We found that levodopa increased the 
mean hit time of both late pro- and antisaccades, while also reducing the 
number of late errors. 

Although this interpretation aligns with several theoretical accounts (Lo 
and Wang, 2016) and previous findings such as Funahashi et al. (1993), 
a recent study (Vijayraghavan et al., 2016) seems to provide evidence 
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against it. This group reported that iontophoretic application of a D1R 
agonist in the dorsolateral prefrontal cortex of macaque monkeys 
increased antisaccade RT and ER. However, the latter effect was specific 
to D1R neuromodulation, as it was not elicited by the application of a 
D2R agonist. Moreover, application of the D1R agonist reduced the rule-
encoding selectivity of neurons that preferentially fired for pro- or 
antisaccades cues, a somewhat surprising result when compared to 
findings in the delayed memory task (Vijayraghavan et al., 2007). Thus, 
an alternative explanation of our results is that the effect of levodopa 
was not connected to activation of the D1R in prefrontal areas. In this 
direction, Watanabe and Munoz (2013) showed that subthreshold 
electrical stimulation of the caudate can bias voluntary responses in the 
antisaccade task, suggesting that the effects observed here could still be 
mediated by DA neuromodulation in the BG. 

Effects	of	galantamine	

To our knowledge, no study has investigated the effect of galantamine 
or any other ACh allosteric potentiating drugs in the antisaccade task, 
although a recent study investigated the effect of galantamine in a 
modified version of the Posner task (Vossel et al., 2014a; 2014b). In 
general, our results are compatible with the common finding that 
nicotine decreases RT in a variety of paradigms (Heishman et al., 2010). 
In the antisaccade task, our results replicate previous findings that 
nicotine leads to reduced antisaccade RT (Bowling and Donnelly, 2010; 
Ettinger et al., 2009; Larrison et al., 2004; Rycroft et al., 2006; 
(Petrovsky et al., 2013) although for negative evidence see Ettinger et 
al. (2017). 

Interestingly besides the effect on late responses, galantamine also 
affected the number of early errors in dose dependent manner. Such an 
interaction was reported in a previous study (Vossel et al., 2014), and 
agrees with in vitro studies (Samochocki et al., 2003) as well as an in 
vivo study in rodents (Woodruff-Pak et al., 2001). In humans, 
galantamine at high doses (32mg/day) exhibits a deleterious effect in 
inhibitory control and working memory (Dyer et al., 2008), despite its 
good tolerability. Model based analysis revealed that galantamine 
affected ER mostly through its influence on response inhibition. At high 
dose, galantamine had a deleterious effect, whereas at more moderate 
levels, it improved performance. 
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Prior	uncertainty:	Levodopa	and	galantamine	

Here, we manipulated the ratio between pro- and antisaccade trials 
across different blocks. Replicating the findings in Chapter 6 to 8, this 
factor had a profound impact on RT and ER. Because of its contextual 
nature, trial type probability can be considered a top-down effect, in 
contrast to stimulus driven, bottom-up effects. Our experiment allowed 
us to investigate whether levodopa or galantamine also had an effect on 
prior expectations that could lead to behavioral changes, as it has been 
proposed before (Feldman and Friston, 2010; Iglesias et al., 2013; Vossel 
et al., 2014a; Yu and Dayan, 2005). For example, Yu and Dayan (2005) 
have suggested that ACh signaling is related to prior uncertainty, which 
in our experiment is highest in the PP50 condition but equal in the PP80 
and PP20 conditions. 

Although, in our study prior expectations and drug manipulations had 
significant effects, we did not find any significant interaction between 
them. Our findings suggest that none of the compounds used here 
significantly affected how prior expectations were represented or 
leveraged by our participants. One possible explanation for this is that 
DA and ACh might play a role in prior belief updates (Iglesias et al., 
2013; Vossel et al., 2014a; Yu and Dayan, 2005), but not in the actual 
beliefs. Our study did not aim at capturing inter-trial differences in 
behavior, based on the assumption that subjects quickly adapted to the 
different trial type probabilities. 

Summary	

Here we investigated the effect of a pro-cholinergic and a pro-
dopaminergic compound on inhibitory control and voluntary, goal-
directed actions in the antisaccade task. Through a computational model 
we were able to show that both substances had opposite effects on goal-
directed behavior but not in inhibitory control. Although top-down 
effects had a large effect on the probability of an inhibition failure, 
contextual effects did not interact with DA or ACh. Our study helps to 
further our understanding of the role of this neuromodulator in cognitive 
control. 
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Methods	
Experiment	and	Apparatus	

All the procedures described here were approved by the local ethics 
committee (KEK-ZH-Nr.2014-0246). Part of the data presented here was 
reported in a previous study (Aponte et al., 2017). 

Participants	

Prospective subjects were contacted through the University Registration 
Center for Study Participants of the University of Zurich. Subjects 
received first an electronic mail describing the experiment. Those who 
answered to the initial contact were pre-screened on the telephone, and 
then invited to our facilities for a complete screening. During this visit, 
and after inform consent was obtained in written form, medical and 
demographic information was collected. Besides these data, subjects 
underwent an electrocardiogram, a visual acuity test. Only male 
participants were recruited in this experiment, as hormonal changes in 
females can interact with medication affecting the dopaminergic system 
(Fernandez et al. 2003; Caldu and Dreher 2007). Exclusion criteria 
were: age outside the range 18-40, pulse lower than 55bps or higher 
than 100bps or any abnormality detected through electrocardiography, 
regular smoking, recreational drug consumption in the past 6 months, 
serious mental or neurological illness, current use of psychiatric 
medication, use of medication that could interact with levodopa, 
benserazide or galantamine, lactose intolerance, or if the medical doctor 
supervising the experiment considered the participant not apt. 

Subjects that fulfilled all the inclusion criteria were invited to two 
experimental sessions separated by at least one week but no more than 
8 weeks apart from the screening session. At the end of the experiment, 
participants received monetary compensation. 

Experimental	procedure	

In each session, participants were first asked for alcohol consumption in 
the previous day and consumption of recreational drugs since the 
screening session. Immediately afterwards, subjects were administered 
a capsule containing either MadoparÒ DR 250g (200mg levodopa, 50mg 
benserazide), or lactose (Exp. 1), or ReminylÒ (8mg galantamine), or 
lactose (Exp. 2). These were color and shape matched by a pharmacist 
and experimenters and participants were unaware of the drug-session 
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labeling but were informed in which experiment they participated. Once 
the substance was administered, subjects were brought to the 
experimental room where they received written instructions regarding 
the experiment. This was immediately followed by a training session 
scheduled to last between 20 and 30 minutes. Once the training was 
completed, subjects were offered a pause until the next phase of the 
session. 

The main experiment started 70 minutes after subjects were 
administered the capsule. After the end of each experimental session, 
subjects were required to fill a debriefing questionnaire. In the first 
experimental session, participants were asked whether they have been 
administered placebo or the active substance. After the second session, 
they were asked in which session they thought they have received the 
active substance. In both sessions, subjects were also asked about the 
difficulty of the task and their subjective feeling of tiredness. 

Procedure	and	Apparatus	

All the experiments were conducted in a dimly illuminated room. 
Participants sat 60≈A in front of a computer screen (Philips 20B40 CRT, 
30≈A × 41.5≈A) working at a 75Ÿ⁄ refreshing frequency. Their head 
was stabilized with a chin rest. Eye movements were measured with a 
remote infrared camera (Eyelink I, SR Research, Ottawa, Canada), and 
stored at a 500Ÿ⁄ sampling rate. Before each block the eyetracker was 
calibrated with a five-point procedure. 

Fig. 1 displays schematically the task design. During the totality of the 
experiment two red circles subtending 0.25`'fl were presented at a 
horizontal eccentricity of ±12`'fl. At the beginning of each trial, a 
fixation cross was presented at the center of the screen. Once 
participants fixated the cross, it remained on the screen for a random 
interval between 500 to 1000 ms, after which it was removed. 
Simultaneously a green bar (3.48 × 0.8`'fl) centered at either the right 
or left red circle was displayed. The bar was presented in either vertical 
or horizontal orientation for 500A€. Subjects were instructed to saccade 
to the red dot in the ipsilateral location of the bar if the bar was oriented 
horizontally (prosaccade trials), and to saccade to the contralateral red 
dot if the bar was oriented vertically (antisaccade trials). Once the bar 
was removed from the screen and after 1000A€ the next trial started. 
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The training block comprised of 50 prosaccade trials followed by 50 
antisaccade trials. Each trial was followed by automatic feedback 
provided in form of a green “Correct” sign on the screen when a trial was 
correctly performed, a red “Wrong direction” sign when a directional 
error was committed, or “Wrong. No saccade” when no saccade was 
detected after 500A€. This was introduced to encouraged participants 
to react quickly to the peripheral visual cue. 

The main experiment consisted of three blocks of 192 trials each. Every 
block contained randomly interleaved pro- and antisaccade trials. Each 
block comprised of either 20%, 50% or 80% of prosaccade trials 
(horizontal bar). Thereby, both experiments followed a two by three 
factorial design with factors j–úk and prosaccade trial probability (ll). 
The order of presentation of the blocks was kept constant across the two 
sessions of a participant, but pseudo-randomized across subjects. The 
same random sequence of trials (which was different for each block) was 
used in all subjects. The location of the cue (right or left) was created 
randomly once and used in all blocks and participants. A short pause 
was offered to the participants between blocks. 

Data	preprocessing	

Saccades were detected using the algorithm provided by the eye tracker 
manufacturer (SR-Research, Ottawa, Canada). According to it, a saccade 
is defined by a velocity threshold of 22`'fl/€ and an acceleration 
threshold of 3800`'fl/€† (Stampe, 1993). Saccades with a magnitude 
lower than 2`'fl were ignored. 

Data was parsed using in-house software written in the Python 
programming language (2.7.11) using the numpy (1.10.0) and scipy 
(0.15.0) libraries. A trial was excluded i) if a blink was detected between 
the cue presentation (CP) and the main saccade, ii) if data from the trial 
was missing, iii) if the trial was aborted by the experimenter, iv) if the 
subject fixation was not maintained until the cue presentation, v) if a 
saccade was detected only after 800ms from CP, vi) if it had a latency 
lower than 50ms and in the case of antisaccades, if its latency was lower 
than 110ms. Corrective antisaccades were defined as contralateral 
saccades that followed an antisaccade error. These were required to have 
an absolute magnitude of less than 15dva and more than 4dva and to 
have a latency below 900ms. 
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Modeling	

The SERIA model formalizes and extends the work of Noorani and 
Carpenter (2013). Our main assumption is that saccades are the result 
of four independent racing processes or units (Logan et al., 1984): an 
early response unit bM associated with fast prosaccades, an inhibitory 
unit b= whose function is to stop early actions, and two late response 
units that represent the commands to perform either a late prosaccade 
(bI) or an antisaccade (bΩ). These processes can be conceptualized as 
racing to a threshold € with an increase rate ~. The threshold-hit-time t 
is given by: 

~a = €, (77) 

a =
€
~ .

(78) 

Fundamentally, the RT and response type on a trial are a function of the 
order and hit time of each of the units. Based on this simple assumption, 
we define the joint likelihood of a reaction time ® ∈ [0,∞[ and response 
action g ∈ {>~›, flfia‹}. This term is a function of the hit times of each of 
the units: úM, ú=, úI, úΩ ∈]0,∞[, which we assume are randomly 
distributed in each trial. 
According to the model, a prosaccade is generated at time t in three 
different scenarios. First, a prosaccade is produced at time t if the early 
unit hits threshold at time t before the other units: 

(úM = a) ∩ (a < ú=) ∩ Va < úIX ∩ (a < úΩ). (79) 
Second, a prosaccade is generate also if the late prosaccade unit arrives 
to threshold at time t and all other units arrive at some later point 

VúI = aX ∩ (a < ú=) ∩ (a < úM) ∩ (a < úΩ), (80) 
or, third, if the inhibitory unit arrives before the early until, and the late 
prosaccade unit hits threshold at time t before the antisaccade unit 

VúI = aX ∩ (ú= < a) ∩ (ú= < úM) ∩ (a < úΩ). (81) 
In the following we assume that the probability that a unit U reaches 
threshold at time t is given by the density p(U=t). Thereby, the 
probability of a prosaccade at time t can be written down as the sum of 
the probability of each of these three scenarios: 

>(g = >~›, ® = a) = >(úM = a)>(a < ú=)>(a < úΩ)>Va < úIX +	
>VúI = aX>(a < úΩ)>(a < úM)>(a < ú=) +	
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>VúI = aX>(a < úΩ)à >(ú= = K)>(K < úM)`K
L

r
. (82) 

The probability of an antisaccade is given by a similar equation, except 
that antisaccades can only be triggered by the antisaccade unit 	bΩ: 

>(g = flfia‹, ® = a) = >(úΩ = a)>Va < úIX>(a < úM)>(a < ú=) +	

>(úΩ = a)>Va < úIXà >(ú= = K)>(K < úM)`K
L

r
(83) 

We were interested in several statistics that could be derived from the 
model. First, we considered the expected hit time of the early and 
inhibitory unis. The expected hit times of the early and inhibitory units 
Ue and Ui are given by: 

Ù[úM] = à a>(úM = a)`a,
é

r
(84) 

Ù[ú=] = à a>(ú= = a)`a.
é

r
(85) 

In addition, we computed the probability of inhibition failures that 
occurs when the early unit hits threshold before all other units: 

>(‹fiℎ‹c. "fl‹o) = à >(úM = a)>(ú= > a)>VúI > aX>(úΩ > a)
é

r
`a, (86) 

and their expected response time 

Ù[a‹A1	‹fiℎ‹c. "fl‹o. ] = ∫ a	>(úM = a)>(ú= > a)>VúI > aX>(úΩ > a)`aé
r

>(‹fiℎ‹c. "fl‹o. ) . (87) 

Finally, we considered the conditional probability of making a late 
antisaccade, which happens when the antisaccade unit Ua hits threshold 
before the late prosaccade unit Up: 

>(flfia‹. ) = à >(úΩ = a)>VúI > aX
é

r
`a, (88) 

= 1− à >VúI = aX>(úΩ > a)
é

r
`a, (89) 

= 1− >(ofla1	>~›. ) (90) 

and the mean response time of late pro and antisaccades 

Ù[ℎ‹a	a‹A1	flfia‹. ] =
1

>(flfia‹. )à a	>(úΩ = a)>VúI > aX
é

r
`a, (91) 
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Ù[ℎ‹a	a‹A1	ofla1	>~›. ] =
1

>(ofla1	>~›. )à a	>VúI = aX>(úΩ > a)
é

r
`a. (92) 

As shown in previous chapters, the distribution of the early and 
inhibitory units are well described by the inverse Gamma distribution. 
However, the distribution of the arrival times of the late pro- and 
antisaccade units is better described by the Gamma distribution. 

Using the same approach as in Chapter 8, we divided trials in repeat and 
switch pro- and antisaccades. Note that in Chapter 8, we showed that in 
the model with the highest Bayes factor, the parameters of the early unit 
should be fixed across all trial types, but the parameters of the inhibitory 
and late units could vary across them. We used the same model here, 
which requires 29 parameters per block per subject. Although this 
number of parameters might seem elevated, Bayesian model comparison 
with other nested models demonstrated that less complex models could 
not account adequately for the switch costs in the mixed antisaccade 
task. In order to regularize the parameter estimates, we used a 
hierarchical model in which information from all subjects was pooled 
together, as explained below.  

Statistical	inference	

Model	estimation	and	fitting	

We used Bayesian inference to fit all models. The goal in this approach 
is to compute the posterior distribution of the parameters # given the 
observed data ! and a model A. This distribution is given by Bayes 
theorem: 

>(#|!,A)899:99;
IJKLMN=JN

=
>(!|#,A)899:99;
P=QMP=RJJS

>(#|A)89:9;
IN=JN

>(!|A)EFGFH
M1=SMÑcM

. (93) 

Because the posterior distribution of the models evaluated here lacks a 
closed form, we resorted to the Metropolis Hasting algorithm to obtain 
samples from the posterior distribution of the parameters. Details can be 
found in Aponte et al. (2017, 2016). 

We assumed that in each block and session, each trial was independently 
and identically distributed conditioned a set of parameters #*,K,U,M,L,P, 
where the index c ∈ {ll20,ll50,ll80} codes the block, € ∈ {1,2} codes 
the session, n ∈ {1,… , d} codes the subject, 1 ∈ {Afl`›>fl~, ~1A‹fi!o} 
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codes the experiment, a ∈ {>~›, flfia‹} codes the trial type, and o ∈
{€á‹a≈ℎ, ~1>1fla} codes for switch trials.  

For regularization, we used a hierarchical model in which the prior 
distribution of the parameters in a session depended on the population 
distribution, which was estimated using the totality of the data. To 
account for the effects of our experimental manipulations and 
intersubjective variability, the prior mean of each set of parameters was 
defined as the linear combination of a design matrix coding for the 
factors SUBJECT, SESSION, PP, and DRUG, DRUG*DOSE and EXP. and 
a set of coefficients -, estimated from the data. A further level of the 
model was defined by estimating the mean of the subject specific 
parameters, or equivalently, by estimating the population mean from the 
subject specific coefficients. Mathematical details can be found in the 
supplementary materials of Chapter 7. 

This approach provides an empirically motivated prior that regularizes 
the parameter estimates and also models experimental manipulations. 
This is important, as non-hierarchical models that disregard all the 
manipulations used in an experiment are less sensitive than parametric 
hierarchical models (Bae et al., 2016; Cannon et al., 2001). 

Univariate	regression	analysis	

Statistical analyses were performed using mixed effect generalized linear 
models (GLME) implemented in R 3.4.3 (packages lmer and 
glmmadmb). Subjects were always entered as a random effect, whereas 
the factors SWITCH, PP, SESSION, DRUG, EXP., and DOSE were treated 
as fixed effects. In addition, we considered the following interaction 
PP*SESSION, PP*SWITCH, PP*DRUG, DOSE*DRUG. When both 
experiments were analyzed together, we also included the interactions 
DRUG*EXP., DRUG*DOSE*EXP and DRUG*PP*EXP. Error rates were 
analyzed using a binomial regression model (glmer from the package 
lmer), whereas probabilities estimated from the model were estimated 
using a Beta regression model (glmmadmb). To verify the results, we 
also analyzed probabilities with a GLME in which these were probit 
transform, obtaining almost identical results. Inferential statistic on RT 
were performed using F-tests with the degrees of freedom computed 
using the Sattherthwait approximation. For error rates and probabilities, 
Wald tests using the h† statistic were used. Statistical significance was 
asserted at ï = 0.05. 
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Clustering	

The main goal of clustering was to determine whether the features 
extracted using the SERIA model were truly predictive of the type of 
drug administered to a subject. Thus, we were interested into 
determining whether the differences between the drug and placebo 
condition could be classified as either levodopa or galantamine. 

We generated N training data-sets by excluding one of the subjects from 
the hierarchical model, which included information about drug labels 
and experiment. The corresponding leave-one-out test dataset was 
generated by fitting a hierarchical model in which all subjects were 
included, but no information about the labeling was present. We 
followed this strategy, which we refer to as hierarchical generative 
embedding, to implement robust regularization on the parameter 
estimates, without introducing any bias into the algorithm. We aim to 
classify whether a subject received levodopa or galantamine based on 
the difference between model parameters in the drug and placebo 
condition. 

Clusturing was performed using gradient boosting (Friedman, 2001) as 
implemented in the package xgboost (Chen and Guestrin, 2016). This 
algorithm uses simple decision trees, which are sequentially improved 
on the subsets of the data in which the classifier performed poorly. Since 
it uses simple decision trees, it is possible to directly extract the features 
that were used by the classifier. 

To evaluate the clustering accuracy, we used leave-one-out cross 
validation. Because in principle the algorithm could use general 
differences between Exp. 1 and 2 to classify subjects, as opposed to 
differences between drug and placebo condition, we implemented a 
simple permutation test in which the drug and placebo labels were 
randomly swapped 50000 times. This represents a null hypothesis in 
which the drug but not the experiment label was modified.  
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Supplementary	
Supplementary	1	

	 Mean	#	invalid	trials	

	 Experiment	1	

	 Valid	 Blink	 Missing	 Aborted	 FE	 Late	 Early	 NS	

Placebo/		 563(10)	 4(5)	 1(3)	 1(2)	 5(5)	 0(0)	 1(1)	 0(0)	

L-dopa	 562(14)	 5(7)	 1(3)	 1(2)	 5(6)	 0(0)	 1(2)	 0(0)	

	 Experiment	2	

	 Valid	 Blink	 Missing	 Aborted	 FE	 Late	 Early	 NS	

Placebo/	 558(24)	 10(17)	 3(6)	 1(1)	 3(7)	 0(0)	 1(1)	 0(0)	

Galan.	 562(18)	 9(14)	 1(3)	 1(2)	 3(5)	 0(0)	 0(1)	 0(0)	
	

Table S1: Mean number of invalid trials and std. in brackets. FE = 
fixation errors, NS = No saccade. 
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Supplementary	2	

 Error rate (%) 

 Experiment 1 

 Placebo  Levodopa 

 PP20  PP50  PP80  PP20  PP50  PP80 

Anti. 23(17)  36(22)  52(20)  23(16)  36(21)  52(24) 

Pro. 26(15)  11(8)  4(3)  25(18)  10(8)  3(4) 

 Experiment 2 

 Placebo  Galantamine 

 PP20  PP50  PP80  PP20  PP50  PP80 

Anti. 23(17)  36(22)  55(19)  22(17)  36(21)  53(22) 

Pro. 31(17)  14(10)  5(3)  32(16)  15(9)  5(4) 
 

Table S2: Mean error rate and std. in brackets. 
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Supplementary	3	

Mean reaction times (ms) 

   Experiment 1 

   Placebo  Levodopa 

Trial Action  PP20  PP50  PP80  PP20  PP50  PP80 

Anti Anti  355  381  391  367  380  396 

   59  55  60  73  65  70 

Anti Pro  234  231  226  231  228  222 

   51  48  31  56  43  39 

Pro Pro  332  320  285  329  319  279 

   72  68  59  65  60  51 

Pro Anti  327  330  338  338  351  342 

   68  45  56  70  82  65 

   Experiment 2 

   Placebo  Galantamine 

Trial Action  PP20  PP50  PP80  PP20  PP50  PP80 

Anti Anti  323  348  363  313  335  353 

   50  66  72  49  52  60 

Anti Pro  218  225  215  220  220  211 

   35  41  30  44  39  34 

Pro Pro  299  293  261  285  286  262 

   55  58  41  59  52  52 

Pro Anti  300  307  305  293  301  314 

   42  52  62  50  42  59 
 

Table	S3:	Mean	reaction	time	and	std..	
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Supplementary	4	

 

Figure S4: Subject specific fits for the three conditions. Displayed 
are the histogram of prosaccade and antisaccade trials of four 
representative subject. Antisaccade trials are displayed in the upper 
half-plane. Prosaccades are displayed in the bottom half plane. 
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Supplementary	5	

The parameters of the model were analyzed using an ANOVA in the case 
of the hit times of the late prosaccade, antisaccade, inhibitory and early 
unit. The probability of a late error in pro- and antisaccade trials, and 
the probability of an inhibition failure were analyzed using the h† 
statistic. The complete tests are reported in the following. 

 

 Num. DF Den. DF F value Pr(>F)  
experiment  1 86 18.5 4.37E-05 *** 
drug  1 972 0.3 0.572884  
session  1 972 86.42 2.20E-16 *** 
pp  2 972 23.2 1.35E-10 *** 
switch trial  1 972 517.4 2.20E-16 *** 
dose  1 86 1.2 0.2723037  
pp * switch trial  2 972 7.5 0.0005606 *** 
session * pp  2 972 0.7 0.4562863  
drug * pp  2 972 2.6 0.0729269  
experiment * drug  1 972 19.4 1.14E-05 *** 
experiment * pp  2 972 8.6 0.0001803 *** 
drug * dose  1 972 2.3 0.1274583  
experiment * dose  1 86 0.5 0.4520714  
experiment * drug * pp  2 972 1.0 0.3675007  
experiment * drug * dose  1 972 0.0 0.9209532  

 

Table S5. Late prosaccade unit hit time. *:p<0.05, **:p<0.01, 
***:p<0.001. 
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 Num. DF Den. DF F value Pr(>F)  
experiment  1 86 15.4 0.00017 *** 
drug  1 972 0.3 0.548542  
session  1 972 137.8 2.20E-16 *** 
pp  2 972 64.0 2.20E-16 *** 
switch trial  1 972 211.2 2.20E-16 *** 
dose  1 86 0.5 0.4676415  
pp * switch trial  2 972 8.3 0.0002483 *** 
session * pp  2 972 1.3 0.2677091  
experiment * drug  1 972 15.1 1.04E-04 *** 
drug * dose  1 972 3.9 0.0467454 * 
experiment * dose  1 86 0.4 0.5070893  
drug * pp  2 972 1.5 0.2077454  
experiment * pp  2 972 3.0 0.0489029 * 
experiment * drug * dose  1 972 0.0 0.7724891  
experiment * drug * pp  2 972 2.1 0.111831  

 

Table S6. Antisaccade unit hit time. *:p<0.05, **:p<0.01, 
***:p<0.001. 
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 Num. DF Den. DF F value Pr(>F)  
experiment  1 86 0.0 0.77121  
drug  1 2047 1.7 0.18731  
session  1 2047 141.7 2.20E-16 *** 
pp  2 2047 242.7 2.20E-16 *** 
trial type  1 2047 52.7 5.34E-13 *** 
switch trial  1 2047 414.4 2.20E-16 *** 
dose  1 86 2.7 0.10278  
pp * switch trial  2 2047 19.6 3.41E-09 *** 
session * pp  2 2047 2.9 0.05052  
pp * trial type  2 2047 59.2 2.20E-16 *** 
trial type * switch trial  1 2047 1913.5 2.20E-16 *** 
drug * trial type  1 2047 3.4 0.06378  
experiment * drug  1 2047 0.4 0.51493  
drug * dose  1 2047 44.7 2.95E-11 *** 
experiment * dose  1 86 3.2 0.07475  
drug * pp  2 2047 0.0 0.98194  
experiment * pp  2 2047 0.2 0.79608  
experiment * drug * dose  1 2047 31.7 2.02E-08 *** 
experiment * drug * pp  2 2047 0.3 0.70137  

 

Table S7. Inhibitory unit hit time. *:p<0.05, **:p<0.01, 
***:p<0.001. 

 

 NumDF DenDF F value Pr(>F)  
experiment  1 86 0.5 0.46012  
drug  1 435 1.6 0.19608  
session  1 435 37.9 1.65E-09 *** 
pp  2 435 46.2 2.20E-16 *** 
dose  1 86 1.8 0.17701  
session * pp  2 435 1.7 0.17962  
experiment * drug  1 435 0.0 0.875  
drug * dose  1 435 4.6 0.03173 * 
experiment * dose  1 86 0.0 0.94148  
drug * pp  2 435 0.1 0.81887  
experiment * pp  2 435 0.2 0.74173  
experiment * drug * dose  1 435 4.0 0.04423 * 
experiment * drug * pp  2 435 0.4 0.6511  

 

Table S8. Early unit hit time. *:p<0.05, **:p<0.01, ***:p<0.001. 
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Df Chisq Pr(>Chisq) 

 
experiment  1 7.7 0.005442 ** 

drug  1 0.9 0.319472 
 

session  1 7.0 0.007872 ** 

pp  2 1634.6 2.20E-16 *** 

switch trial  1 3427.1 2.20E-16 *** 

dose  1 0 0.995112 
 

pp * switch trial  2 13.6 0.001112 ** 

session * pp  2 1.6 0.446444 
 

experiment * drug  1 24.0 9.31E-07 *** 

drug * dose  1 18.2 1.91E-05 *** 

experiment * dose  1 0.2 0.646652 
 

drug * pp  2 4.1 0.125329 
 

experiment * pp  2 2.1 0.349895 
 

experiment * drug * dose  1 7.3 0.006762 ** 

experiment * drug * pp  2 0.4 0.781459 
 

 

Table S9: Probability of a late error in a prosaccade trial. *:p<0.05, 
**:p<0.01, ***:p<0.001. 
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 Df Chisq Pr(>Chisq)  
experiment  1 0.3 0.5485  
drug  1 19.6 9.44E-06 *** 
session  1 0.6 0.42009  
pp  2 201.7 2.20E-16 *** 
switch trial  1 939.3 2.20E-16 *** 
dose  1 1.8 0.17895  
pp * switch trial  2 1.8 0.3938  
session * pp  2 20.1 4.15E-05 *** 
experiment * drug  1 1.1 0.2851  
drug * dose  1 3.6 0.05636  
experiment * dose  1 0.3 0.57927  
drug * pp  2 0.5 0.76736  
experiment * pp  2 6.0 0.04818 * 
experiment * drug * dose  1 0.0 0.85902  
experiment * drug * pp  2 1.3 0.50174  

 

Table S10: Probability of a late error in an antisaccade trial. 
*:p<0.05, **:p<0.01, ***:p<0.001. 
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 Df Chisq Pr(>Chisq)  
experiment  1 0.1 0.7052589  
drug  1 4.8 0.028009 * 
session  1 0.3 0.5623175  
pp  2 294.7 2.20E-16 *** 
switch trial  1 92.4 2.20E-16 *** 
trial type  1 2.4 0.1158398  
dose  1 0.0 0.8623445  
pp * switch trial  2 1.4 0.4959548  
session * pp  2 4.7 0.0913679  
experiment * drug  1 0.1 0.7325691  
drug * trial type  1 0.0 0.8564022  
experiment * trial type  1 0.5 0.4776703  
drug * dose  1 14.0 0.0001826 *** 
experiment * dose  1 0.8 0.3562499  
drug * pp  2 1.6 0.4366927  
experiment * pp  2 1.7 0.4235288  
experiment * drug * trial type  1 0.2 0.6141654  
experiment * drug * dose  1 17.4 2.99E-05 *** 
experiment * drug * pp  2 0.8 0.6684671  

 

Table S11: Probability of an inhibition failure. *:p<0.05, **:p<0.01, 
***:p<0.001. 

 





	

Outlook	

This dissertation includes the following five contributions to the field of 
computational psychiatry and eye movement research. First, we 
provided a theoretical presentation of thermodynamic integration (TI), 
a sampling method for estimating the model evidence, and compared TI 
to other similar methods in the context of dynamic causal modeling 
(DCM) for fMRI. Second, we developed a novel estimator of the 
predictive likelihood based on TI and evaluated this estimator on an 
empirical data set. Third, we provide evidence for the involvement of the 
corollary discharge (CD) pathway in saccadic adaptation (SA), which we 
establish using a combination of fMRI and computational modeling. 
Fourth, we introduce a novel set of formal models of the antisaccade 
task. And finally, fifth, we apply these models to two versions of the 
antisaccade task, testing for both the effect of task switching and the 
influence of a pro-cholinergic and a pro-dopaminergic compound on the 
oculomotor system. 

These ideas and empirical findings were sequentially organized, starting 
first with the epistemological question of how to evaluate competing 
models, followed by a more mathematical treatment of this question 
involving the implementation of the methods discussed, and finally the 
application of these methods and models to very concrete empirical 
questions. In the following, we discuss the next steps based on this 
progress, highlighting open question and ideas that we judge are worth 
considering in follow-up research. 

Model	selection	
One of the main conclusions from Part I of this thesis is that population 
MCMC is more robust than gradient-based optimization methods when 
the likelihood landscape of a model is very complicated. This result 
should not be surprising, taking into account the history of these 
methods in other fields. For example, in physical chemistry, ‘temperate’ 
methods are the state of the art approach when simulating complex 
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systems (Sugita and Okamoto, 1999; Trebst et al., 2006; Sindhikara et 
al., 2010). This seems to be the case for other dynamical system as well 
(Calderhead and Girolami, 2009; Vousden et al., 2015; Ballnus et al., 
2017). For these reasons, we hope to implement the same type of 
inference used for DCM for fMRI to DCM for EEG (Kiebel et al., 2009), 
in which the likelihood landscape may be even more complex than in 
DCM for fMRI. Note that Sengupta et al. (2015;2016) and Penny and 
Sengupta (2016) conducted work in this direction. Unfortunately, this 
work has not been followed up or applied to empirical problems. 

An interesting question that was left unresolved in Chapter 1 is how to 
combine hierarchical models that pool information from a population of 
subjects with the goal of making single subject statements. The option 
that we presented in Chapter 1 (but see also Vehtari and Lampinen, 
2002) is to use the predictive likelihood as a score on a subject-by-subject 
basis. An objection to this approach is that, if by hypothesis not all 
subjects should be ‘assigned’ to the same model, it seems artificial to 
assume first that all observations have been generated from a single 
model, and then use their predictive likelihood to make subject-by-
subject model comparison. The state of the art method to deal with this 
problem is the random effects model proposed by Stephan et al. 
(2009b). According to it, subjects are ‘assigned’ to a model depending 
on their marginal likelihood and then the number of assignments is used 
to perform inference (Rigoux et al., 2014). Two are the main advantages 
of this approach: it explicitly models the assumed heterogeneity in a 
population of subjects, and it provides a way to reduce the influence of 
outliers. This is important when a small sample of subjects with many 
observations per subject is evaluated, as a single outlier can have a large 
influence in a ‘fixed effect’ analysis, in which observations are assumed 
to be independent (see Chapter 1). Despite these advantages, this model 
has also drawbacks: first, it does not pool information across subjects 
that are assigned to the same model. Rather, the prior distribution of 
each subject is assumed to be fixed. Second, it requires to precompute 
the model evidence of all the models and observations in advance. 

One option to solve this problem when all the models in consideration 
share the same likelihood function is to extend the random effects model 
proposed by Stephan et al. (2009b) into a semi-supervised clustering 
algorithm. From this perspective, the method of Stephan and colleagues 
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can be seen as a version of K-means in which the centroids of the 
classifier are fixed. However, if this restriction is weakened to allow at 
least a subset of the dimensions to vary, it is possible to implement a 
version of the random effects model that pools information across 
subjects. This idea is a compromise between to extremes: on one hand, 
in unsupervised algorithms like K-means, no information is entered in 
the centroids, and the algorithm is left to discover structure in the data 
(Raman et al., 2016). Hence, these algorithms are required to find 
appropriate centroids in addition to assigning subjects to the correct 
cluster in the absence of any prior information. On the other hand, in 
the model proposed by Stephan et al. (2009b) the centroids are fixed 
and the algorithm only needs to assign observations to clusters. In a third 
option, clusters can be treated as models in which a set of parameters is 
‘softly’ fixed, i.e., a shrinkage prior is applied to some of the parameters 
of the model. 

We are currently developing this simple approach, which will avoid the 
costs of pre-computing the evidence of a large set of models. The main 
disadvantage of this idea is that it would be restricted to models that 
share the same likelihood function. Although this is an important 
limitation, model comparison is often performed in the context of nested 
models, as in the case of DCM.  

The	antisaccade	task	
Here, we investigated the antisaccade task with the help of the SERIA 
model from several perspectives. First, we provided extensive evidence 
that prosaccades are the result of both habitual as well as voluntary 
actions (Chapter 7). Moreover, we showed that switch costs affect 
mostly the generation of voluntary actions (Chapter 8). Finally, we 
demonstrated that dopaminergic (DA) and cholinergic (ACh) 
compounds have opposite effects on voluntary saccades (Chapter 9). 

We envision four ways to continue the research program started here. 
The first future direction of research is to investigate the paradoxical 
switching costs (Cherkasova et al., 2002) that occur when the task 
demands cue is presented in advance of the peripheral target (cf. 
Chapter 7). We believe that this is mostly a result of inhibitory inter-trial 
effects that were documented in Chapter 8, although only careful 
modeling work might answer this question. 
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Second, in Chapter 8 we hypothesized that rule guided switch costs are 
masked in asynchronous task designs because the decision process 
between voluntary actions takes places in advance of the presentation of 
the peripheral cue. This hypothesis can be easily tested by presenting the 
task demands cue at different latencies before the peripheral cue, as 
routinely done in other domains (Kiesel et al., 2010). 

Third, the neurocorrelates of the late race process could be investigated 
with the help of model-based EEG and fMRI. To our knowledge no 
previous study has taken into account the possibility that saccades are 
generated by habitual and voluntary responses. Because voluntary 
prosaccades could be triggered by a similar mechanism than 
antisaccades, a direct contrast between these two types of trials might 
have led to undeceive results in previous studies (review in Jamadar et 
al., 2013) . 

Fourth, although not discussed in this dissertation, preparatory activity 
in the antisaccade task might be reflected in changes in pupil size (Wang 
et al., 2015). While we have been able to replicate the finding reported 
by Wang and Munoz, a model-based analysis that incorporates 
information about the physiology of pupil size changes might enrich the 
analysis of these data. 

Finally, we aim to make the software used here available to the 
community in an accessible format. Although it is currently part of the 
tapas software package 
(https://www.tnu.ethz.ch/de/software/tapas.html), it lacks an 
accessible interface. Thus, future releases should make the SERIA model 
more user friendly. 

Clinical	applications	
Despite these results, an important question remains open: what are the 
possible applications of this work in a clinical context? An immediate 
answer is that the tools developed here could be used to better address 
the problem of selecting a model from a set of competing hypotheses. 
Our analysis of empirical data in Chapter 1 clearly exemplifies that in 
the absence of carefully devised priors, the conclusions drawn from 
standard methods of Bayesian model comparison might depend on 
subjective beliefs. Although this might be acceptable when priors 
originate from expert judgement (Kass and Raftery, 1995), in the case 
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of the complex models routinely used in computational psychiatry, this 
type of prior knowledge is rare. In this direction, in Chapters 7 and 8 we 
showcased the application of the methods developed in Chapter 1 to 3 
to test hypotheses operationalized as different hierarchical models. 
Moreover, results in Chapter 3 suggest that population MCMC could 
decrease estimation variance when applied to complex dynamical 
systems as DCM. This observation has been confirmed by a large and 
thorough study by Ballnus et al. (2017) in which several dynamical 
systems were analyzed with Monte Carlo methods. The main finding of 
this study is that population MCMC performed better than comparable 
inversion methods at capturing the multimodality of these systems, and 
additionally, was more statistically efficient in terms of the correlation 
between samples, even when the increased costs of multi-chain 
simulations were considered. Hence, we believe that massively parallel 
architectures and methods that can fully leverage hardware advances 
will impact Bayesian estimation of complex biological models. Thus, this 
method could be helpful in clinical contexts. 

A second path towards truly useful translational tools is laid down by 
the models of eye movement behavior proposed in this dissertation. 
These can be used to ask very concrete questions in psychiatry, such as, 
for example: is CD and thereby SA compromised in patients diagnosed 
with schizophrenia? What are the nature of the antisaccade deficits in 
this disorder? Are these primary due to lack of inhibitory control, 
attention, or impediments in the generation of voluntary actions? Are 
there different patient subgroups characterized by different deficiencies 
that could potentially be relevant for treatment or outcome prediction? 

The last questions are particularly important in a translational context, 
as deficits in the antisaccade task have been demonstrated to constitute 
an endophenotype of schizophrenia (Radant et al., 2015). 
Unfortunately, in the absence of computational models, our 
understanding of this endophenotype is restricted to a purely 
phenomenological characterization that might mask differences among 
patients and hide the connections to other deficits in working memory 
or attention, for example. 

In summary, the next step in the research agenda proposed in this 
dissertation is to characterize the deficits of diagnosed patients in terms 
of computational quantities such as the probability of early and late 
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errors. Hence, the two research lines that we consider most relevant are 
the following: (i) are the high number of errors in the antisaccade task 
in schizophrenia mostly due to poor inhibitory control or weak voluntary 
action initiation, and (ii) are there subgroups characterized by the 
probability of each type of error. Answering these questions could lead 
to longitudinal studies that examine the connection of this 
endophenotype with disease progression, allowing us to make clinically 
relevant predictions such as treatment response and relapse rate on a 
subject-specific level.
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