Analytical Switching Loss Modelling based on Datasheet Parameters for MOSFETs in a Half-Bridge

Journal Article

Author(s):

Christen, Daniel; Biela, Jürgen (D)

Publication date:

2019-04

Permanent link:

https://doi.org/10.3929/ethz-b-000274385

Rights / license:

In Copyright - Non-Commercial Use Permitted
Originally published in:
IEEE Transactions on Power Electronics 34(4), https://doi.org/10.1109/TPEL.2018.2851068

Supplement File for journal paper - Analytical Switching Loss Modeling Based on Datasheet Parameters for MOSFETs in a Half-Bridge

This supplement document aims to correct some mistakes in the original published journal paper. In addition, some hints are provided for the correct implementation of the proposed analytical switching loss model.

Section 1: Mistakes from the original paper

Mistake 1: equation (15)

In the paper: $t_{f i}=-\ln \left(\frac{V_{t h}+V_{g}}{V_{m i l}+V_{g}}\right)\left(C_{g s} R_{g}+L_{s} g_{m}\right)$
Correct one: $t_{f i}=-\ln \left(\frac{V_{t h}-V_{g}}{V_{m i l}-V_{g}}\right)\left(C_{g s} R_{g}+L_{s} g_{m}\right)$
Attention: V_{g} here represents the 0 or negative turn-off gate supply voltage. Similar applies to equation (18), where V_{g} represents the turn-on gate supply voltage.

Mistake 2: Fig. 6 Flowchart for calculating the turn-on and turn-off losses of MOSFETs in a half-bridge

In the paper: the red regions are wrong

Correct one:
Turn-off:

Turn-on:

Mistake 3: equation (19)

In the paper: $i_{b d}(t)=I_{0}-\frac{d i_{b d}}{d t} t=\frac{I_{0}}{t_{r i}} t$
Correct one: $i_{b d}(t)=I_{0}-\frac{d i_{b d}}{d t} t=I_{0}-\frac{I_{0}}{t_{r i}} t$

Mistake 4: equation (29)

In the paper: $0=-\frac{2 L_{s}}{Q_{o s s} R_{g}} I_{o s s}^{2}+\left(\frac{2}{g_{m} R_{g}}+\frac{C_{g d}}{C_{g d}+C_{d s}}\right) I_{o s s}+\frac{1}{R_{g}}\left(V_{g}-V_{t h}-\frac{I_{0}}{g_{m}}\right)$
Correct one: $0=\frac{2 L_{s}}{Q_{o s s} R_{g}} I_{o S S}^{2}+\left(\frac{2}{g_{m} R_{g}}+\frac{C_{g d}}{C_{g d}+C_{d s}}\right) I_{o S S}+\frac{1}{R_{g}}\left(V_{g}-V_{t h}-\frac{I_{0}}{g_{m}}\right)$ (comment: same to (10))

Mistake 5: equation (41)

In the paper: $\frac{1}{\tau_{r r}}=\frac{1}{\tau_{c}}-\frac{1}{T_{m}}$
Correct one: $\frac{1}{T_{m}}=\frac{1}{\tau_{r r}}-\frac{1}{\tau_{c}}$

Mistake 6: wrong definition of $Q_{o s s}$ in equation (4)

Although $Q_{\text {oss }}$ is firstly defined in equation (4) in the paper as the charge value stored in the output capacitance $C_{\text {oss }}$ of both switches S_{1} and S_{2}, all of the equations other than equation (4) actually define $Q_{o s s}$ as the charge value stored in $C_{o S s}$ of only one switch.

In the paper: $E_{p a r}\left(V_{0}\right)=\int_{0}^{V_{0}} v \cdot C_{p a r}(v) d v=Q_{o s s} V_{0}$
Correct one: $E_{\text {par }}\left(V_{0}\right)=\int_{0}^{V_{0}} v \cdot C_{p a r}(v) d v=2 Q_{\text {oss }} V_{0}$
There are several examples to prove that this statement is true. In section II, Turn-off subsection A, Interval 1a, the current required to recharge the parasitic capacitance is defined as $I_{o s s}=i_{d s}+i_{g d}$, which represents the current in only one switch. Then in equation (9) and (13), the voltage rise time $t_{r v}=\frac{Q_{o s s}}{I_{o s s}}$, which is only true if $Q_{o s s}$ is defined as the charge value stored in $C_{o s s}$ of only one switch.

Section 2: Hints for model implementation

Attention for equation (39):

Equation (39) is derived by assuming $T_{2}=+\infty$. However, in some of the device data sheets, e.g. SCH2080KEC (ROHM), the definitions of $Q_{r r}$ related variables are different, as shown below.

Fig.4-2 Reverse Recovery Waveform

In this case, the equation (39) should be: $\tau_{r r}=\frac{Q_{r f}}{0.9 I_{r r}}$ with $T_{2}=\ln 10 \cdot \tau_{r r}+T_{1}$

Attention for two different g_{m} in Table I:

TABLE I
TABLE I

	Turn-off		Turn-on	
Interval 1a/b	g_{m}	1.02 S	g_{m}	3.02 S
	$I_{\text {oss }}$	8.33 A	$t_{r i}$	10.7 ns
	$I_{c h}$	3.32 A	$V_{L d}$	37.35 V
	$V_{\text {mil }}$	7.46 V		
	$t_{r v}$	10.5 ns		
Interval 2a/b	$t_{f i}$	3.5 ns	$t_{r s}$	4.6 ns
			$I_{r r}$	8.6 A
Interval 3b	-		g_{m}	4.1 S
	-		$I_{o s s}$	-6.06 A
	-		$I_{c h}$	32.16 A
	-		$V_{m i l}$	12.16 V
	-		$t_{f v}$	14.44 ns
Losses (device internal)	$E_{T, o f f}$	$14.1 \mu \mathrm{~J}$	$E_{T, o n}$	$274 \mu \mathrm{~J}$
Stored energy	$E_{\text {oss }, S 1}$	$18.9 \mu \mathrm{~J}$	$E_{\text {oss }, S 1}$	$18.9 \mu \mathrm{~J}$

The first g_{m} is calculated for interval 1 b , which is the current rise interval for turn-on. This value is calculated by $g_{m}=f\left(I_{0}\right)$, because as shown in Fig. 4 during this interval $v_{d s}$ is assumed to be constant, therefore the channel current $i_{c h}=i_{d s}=I_{0}$.

The second g_{m} can be calculated as shown in the flow chart, which is similar to that calculated for turn-off.

It needs to be emphasized that although the nonlinear transfer characteristics have been considered, in the current changing intervals (turn-on: interval 1b, turn-off: interval 2 a) g_{m} is always considered as a constant value, which leads to a linearized current waveform. Therefore, in equation (15) and (18) the g_{m} is always a constant for one specific operating point.

Attention for equation (27-28):

27: integration from T_{1} to $T_{1}+t_{f v}$
28: integration from T_{1} to $+\infty$

Attention for the DUT: The data sheet of the exemplified device C2M0080120D has been updated by the manufacturer in 2019. The old version (Oct. 2015) is the one used by this paper, which cannot be found online anymore. In addition, the parasitic drain inductance is assumed to be $L_{d}=10 \mathrm{nH}$, which is not mentioned in the paper.

Example implementation of the reverse recovery related equations (19-25, 38-41):
DUT: C2M0080120D (data sheet: old version (Oct. 2015))

Step I: Find reverse recovery parameters from DUT datasheet

Reverse Diode Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{V}_{\text {so }}$	Diode Forward Voltage	3.3		V	$\mathrm{V}_{\text {GS }}=-5 \mathrm{~V}, \mathrm{I}_{\text {SD }}=10 \mathrm{~A}$	$\begin{aligned} & \text { Fig. 8, } \\ & 9,10 \end{aligned}$
		3.1		V	$\mathrm{V}_{\text {GS }}=-5 \mathrm{~V}, \mathrm{I}_{\text {SD }}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150{ }^{\circ} \mathrm{C}$	
Is	Continuous Diode Forward Current		36	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	Note 1
$\mathrm{t}_{\text {r }}$	Reverse Recover time	32		ns	$\begin{aligned} & \mathrm{V}_{\text {GS }}=-5 \mathrm{~V}, \mathrm{I}_{\text {so }}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V} \\ & \mathrm{dif} / \mathrm{dt}=2400 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	Note 1
Q_{π}	Reverse Recovery Charge	192		nC		
$\mathrm{I}_{\text {mm }}$	Peak Reverse Recovery Current	10		A		

Note (1): When using SiC Body Diode the maximum recommended $\mathrm{V}_{\text {GS }}=-5 \mathrm{~V}$

Step II: Use only data sheet parameters to calculate three time constants in Fig. 5

$Q_{r r}^{*}=Q_{r r}-Q_{o s s, 800 V}=88 \mathrm{nC}$
(38) $Q_{r f}=Q_{r r}^{*}-Q_{r s}=Q_{r r}^{*}-\frac{I_{r r m}^{2}}{2 \times \frac{d i_{f}}{d t}}=67.17 \mathrm{nC}$
(39) $\tau_{r r}=\frac{Q_{r f}}{I_{r r m}}=6.717 \mathrm{~ns}$ [attention: assuming $T_{2}=+\infty . \tau_{r r}=\frac{Q_{r f}}{0.9 I_{r r}}$ with $T_{2}=\ln 10 \cdot \tau_{r r}+T_{1}$]

From the operating point mentioned in the data sheet, T_{1} in Fig. 5 can be calculated for this special case: $T_{1}=\frac{I_{r r m}+I_{S D}}{\frac{d i_{f}}{d t}}=12.5 \mathrm{~ns}$
(40) $I_{r r m}=\frac{d i_{f}}{d t} \cdot\left(\tau_{c}-\tau_{r r}\right) \cdot\left(1-e^{-\frac{T_{1}}{\tau_{c}}}\right)$
yellow variables are calculated above, can calculate $\tau_{c}=13.7 \mathrm{~ns}$ (from numerical method)
(41) $\frac{1}{T_{m}}=\frac{1}{\tau_{r r}}-\frac{1}{\tau_{c}}, T_{m}=13.18 \mathrm{~ns}$

Short summary of step I and step II: use data sheet parameters for a certain operating point to calculate general parameters $T_{m}, \tau_{c}, \tau_{r r}$

Step III: Find generalized reverse recovery equations for arbitrary operating points

$T_{0}=t_{r i}$, which can be obtained by comparing Fig. 5 to Fig. 4 Interval 4b

In (19), now the unknown variables are T_{1} and $I_{r r}$
(22) $q_{e}\left(T_{1}\right)=0=q_{m}\left(T_{1}\right)+T_{m}\left(I_{0}-\frac{d i_{b d}}{d t} T_{1}\right)$ with $\frac{d i_{b d}}{d t}=\frac{I_{0}}{t_{r i}}$
insert (21) to (22):
$0=\frac{d i_{b d}}{d t} \tau_{c}\left(T_{0}+\tau_{c}-T_{1}-\tau_{c} e^{-\frac{T_{1}}{\tau_{c}}}\right)+T_{m}\left(I_{0}-\frac{d i_{b d}}{d t} T_{1}\right)$
Obviously, in this equation the only unknown variable is T_{1}. As written in the paper, T_{1} needs to be found by numerically solving (22).

Finally, after knowing T_{1}, (23)-(28) can be easily calculated.

