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Supplement File for journal paper - Analytical Switching Loss Modeling Based on 
Datasheet Parameters for MOSFETs in a Half-Bridge

This supplement document aims to correct some mistakes in the original published journal paper. In 
addition, some hints are provided for the correct implementation of the proposed analytical switching 
loss model.

Section 1: Mistakes from the original paper

Mistake 1: equation (15)

In the paper: 𝑡𝑓𝑖 = −ln(
𝑉𝑡ℎ+𝑉𝑔

𝑉𝑚𝑖𝑙+𝑉𝑔
)(𝐶𝑔𝑠𝑅𝑔 + 𝐿𝑠𝑔𝑚)

Correct one: 𝑡𝑓𝑖 = −ln(
𝑉𝑡ℎ−𝑉𝑔

𝑉𝑚𝑖𝑙−𝑉𝑔
)(𝐶𝑔𝑠𝑅𝑔 + 𝐿𝑠𝑔𝑚)

Attention: 𝑉𝑔 here represents the 0 or negative turn-off gate supply voltage. Similar applies to 
equation (18), where 𝑉𝑔 represents the turn-on gate supply voltage.

Mistake 2: Fig. 6 Flowchart for calculating the turn-on and turn-off losses of MOSFETs in a half-bridge

In the paper: the red regions are wrong              Correct one: 

Turn-off: 

Turn-on:

𝑔𝑚 = 𝑓(𝐼0)

𝑔𝑚,𝑛𝑒𝑤 = 𝑔𝑚

𝑔𝑚,𝑜𝑙𝑑 = 𝑔𝑚,𝑛𝑒𝑤

(29) : → 𝐼𝑜𝑠𝑠

(37) : → 𝑔𝑚 = 𝑓(𝐼0 − 2𝐼𝑜𝑠𝑠)
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𝑔
𝑚
>
∆
𝑔
𝑚
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𝑥
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(10) : → 𝐼𝑜𝑠𝑠

(37) : → 𝑔𝑚 = 𝑓(𝐼0 − 2𝐼𝑜𝑠𝑠)
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𝑔
𝑚
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𝑔
𝑚
,𝑚

𝑎
𝑥



Mistake 3: equation (19) 

In the paper: 𝑖𝑏𝑑(𝑡) = 𝐼0 −
𝑑𝑖𝑏𝑑

𝑑𝑡
𝑡 =

𝐼0

𝑡𝑟𝑖
𝑡 

Correct one: 𝑖𝑏𝑑(𝑡) = 𝐼0 −
𝑑𝑖𝑏𝑑

𝑑𝑡
𝑡 = 𝐼0 −

𝐼0

𝑡𝑟𝑖
𝑡 

 

Mistake 4: equation (29) 

In the paper: 0 = −
2𝐿𝑠

𝑄𝑜𝑠𝑠𝑅𝑔
𝐼𝑜𝑠𝑠

2 + (
2

𝑔𝑚𝑅𝑔
+

𝐶𝑔𝑑

𝐶𝑔𝑑+𝐶𝑑𝑠
) 𝐼𝑜𝑠𝑠 +

1

𝑅𝑔
(𝑉𝑔 − 𝑉𝑡ℎ −

𝐼0

𝑔𝑚
) 

Correct one: 0 =
2𝐿𝑠

𝑄𝑜𝑠𝑠𝑅𝑔
𝐼𝑜𝑠𝑠

2 + (
2

𝑔𝑚𝑅𝑔
+

𝐶𝑔𝑑

𝐶𝑔𝑑+𝐶𝑑𝑠
) 𝐼𝑜𝑠𝑠 +

1

𝑅𝑔
(𝑉𝑔 − 𝑉𝑡ℎ −

𝐼0

𝑔𝑚
) (comment: same to (10)) 

 

Mistake 5: equation (41) 

In the paper: 
1

𝜏𝑟𝑟
=

1

𝜏𝑐
−

1

𝑇𝑚
 

Correct one: 
1

𝑇𝑚
=

1

𝜏𝑟𝑟
−

1

𝜏𝑐
 

 

Mistake 6: wrong definition of 𝑸𝒐𝒔𝒔 in equation (4) 

Although 𝑄𝑜𝑠𝑠 is firstly defined in equation (4) in the paper as the charge value stored in the output 

capacitance 𝐶𝑜𝑠𝑠  of both switches 𝑆1  and 𝑆2 , all of the equations other than equation (4) actually 

define 𝑄𝑜𝑠𝑠 as the charge value stored in 𝐶𝑜𝑠𝑠 of only one switch.  

In the paper: 𝐸𝑝𝑎𝑟(𝑉0) = ∫ 𝑣 ∙ 𝐶𝑝𝑎𝑟(𝑣)𝑑𝑣 =
𝑉0

0
𝑄𝑜𝑠𝑠𝑉0 

Correct one: 𝐸𝑝𝑎𝑟(𝑉0) = ∫ 𝑣 ∙ 𝐶𝑝𝑎𝑟(𝑣)𝑑𝑣 = 2
𝑉0

0
𝑄𝑜𝑠𝑠𝑉0 

There are several examples to prove that this statement is true. In section II, Turn-off subsection A,  

Interval 1a, the current required to recharge the parasitic capacitance is defined as 𝐼𝑜𝑠𝑠 = 𝑖𝑑𝑠 + 𝑖𝑔𝑑, 

which represents the current in only one switch. Then in equation (9) and (13), the voltage rise time 

𝑡𝑟𝑣 =
𝑄𝑜𝑠𝑠 

𝐼𝑜𝑠𝑠 
, which is only true if 𝑄𝑜𝑠𝑠 is defined as the charge value stored in 𝐶𝑜𝑠𝑠 of only one switch.  

 

 

 

 

 

 

 

 



Section 2: Hints for model implementation 

Attention for equation (39): 

Equation (39) is derived by assuming 𝑇2 = +∞. However, in some of the device data sheets, e.g. 

SCH2080KEC (ROHM), the definitions of 𝑄𝑟𝑟  related variables are different, as shown below. 

 

In this case, the equation (39) should be: 𝜏𝑟𝑟 =
𝑄𝑟𝑓

0.9𝐼𝑟𝑟
 with 𝑇2 = ln10 ∙ 𝜏𝑟𝑟 + 𝑇1  

 

Attention for two different 𝑔𝑚 in Table I:  

 

The first 𝑔𝑚 is calculated for interval 1b, which is the current rise interval for turn-on. This value is 

calculated by 𝑔𝑚 = 𝑓(𝐼0), because as shown in Fig. 4 during this interval 𝑣𝑑𝑠 is assumed to be constant, 

therefore the channel current 𝑖𝑐ℎ = 𝑖𝑑𝑠 = 𝐼0. 

The second 𝑔𝑚 can be calculated as shown in the flow chart, which is similar to that calculated for 

turn-off. 

It needs to be emphasized that although the nonlinear transfer characteristics have been considered, 

in the current changing intervals (turn-on: interval 1b, turn-off: interval 2a) 𝑔𝑚 is always considered as 

a constant value, which leads to a linearized current waveform. Therefore, in equation (15) and (18) 

the 𝑔𝑚 is always a constant for one specific operating point. 

 



Attention for equation (27-28): 

27: integration from 𝑇1 to 𝑇1 + 𝑡𝑓𝑣 

28: integration from 𝑇1 to +∞ 

 

Attention for the DUT: The data sheet of the exemplified device C2M0080120D has been updated by 

the manufacturer in 2019. The old version (Oct. 2015) is the one used by this paper, which cannot be 

found online anymore. In addition, the parasitic drain inductance is assumed to be 𝐿𝑑 = 10nH, which 

is not mentioned in the paper. 

 

Example implementation of the reverse recovery related equations (19-25, 38-41): 

DUT: C2M0080120D (data sheet: old version (Oct. 2015)) 

Step I: Find reverse recovery parameters from DUT datasheet  

 

Step II: Use only data sheet parameters to calculate three time constants in Fig. 5  

 𝑄𝑟𝑟
∗ = 𝑄𝑟𝑟 − 𝑄𝑜𝑠𝑠,800𝑉 = 88nC 

(38) 𝑄𝑟𝑓 = 𝑄𝑟𝑟
∗ − 𝑄𝑟𝑠 = 𝑄𝑟𝑟

∗ −
𝐼𝑟𝑟𝑚

2

2×
𝑑𝑖𝑓

𝑑𝑡

= 67.17nC  

(39) 𝜏𝑟𝑟 =
𝑄𝑟𝑓

𝐼𝑟𝑟𝑚
= 6.717ns [attention: assuming 𝑇2 = +∞. 𝜏𝑟𝑟 =

𝑄𝑟𝑓

0.9𝐼𝑟𝑟
 with 𝑇2 = ln10 ∙ 𝜏𝑟𝑟 + 𝑇1] 

From the operating point mentioned in the data sheet, 𝑇1 in Fig. 5 can be calculated for this special 

case: 𝑇1 =  
𝐼𝑟𝑟𝑚+𝐼𝑆𝐷

𝑑𝑖𝑓

𝑑𝑡

= 12.5ns  

(40) 𝐼𝑟𝑟𝑚 =
𝑑𝑖𝑓

𝑑𝑡
∙ (𝜏𝑐 − 𝜏𝑟𝑟) ∙ (1 − 𝑒

−
𝑇1
𝜏𝑐 )  

yellow variables are calculated above, can calculate 𝜏𝑐 = 13.7ns (from numerical method) 

(41) 
1

𝑇𝑚
=

1

𝜏𝑟𝑟
−

1

𝜏𝑐
, 𝑇𝑚 = 13.18ns 

Short summary of step I and step II: use data sheet parameters for a certain operating point to 

calculate general parameters 𝑻𝒎, 𝝉𝒄, 𝝉𝒓𝒓   

Step III: Find generalized reverse recovery equations for arbitrary operating points  

𝑇0 = 𝑡𝑟𝑖, which can be obtained by comparing Fig. 5 to Fig. 4 Interval 4b 



In (19), now the unknown variables are 𝑇1 and 𝐼𝑟𝑟 

(22) 𝑞𝑒(𝑇1) = 0 = 𝑞𝑚(𝑇1) + 𝑇𝑚 (𝐼0 −
𝑑𝑖𝑏𝑑

𝑑𝑡
𝑇1) with 

𝑑𝑖𝑏𝑑

𝑑𝑡
=

𝐼0

𝑡𝑟𝑖
 

insert (21) to (22): 

0 =
𝑑𝑖𝑏𝑑

𝑑𝑡
𝜏𝑐 (𝑇0 + 𝜏𝑐 − 𝑇1 − 𝜏𝑐𝑒

−
𝑇1
𝜏𝑐) + 𝑇𝑚 (𝐼0 −

𝑑𝑖𝑏𝑑

𝑑𝑡
𝑇1) 

Obviously, in this equation the only unknown variable is 𝑇1. As written in the paper, 𝑇1 needs to be 

found by numerically solving (22). 

Finally, after knowing 𝑇1, (23)-(28) can be easily calculated. 

 

 

 

 


