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Demand estimation for Aerial Vehicles in Urban
Settings

Milos Balac, Amedeo R. Vetrella, Raoul Rothfeld, and Basil Schmid

Abstract—The idea of flying has always fascinated mankind. A
century ago it became reality when in 1914 the first commercial
flight was offered. In recent times, many entities are planning,
developing and testing aerial vehicles and systems that will move
goods and people in urban scenarios. Consequently, the need
to develop appropriate planning tools and to investigate the
potentials for this kind of transportation is needed.

In this paper we present a methodology for simulation and
demand estimation for personal aerial vehicles (PAVs) in urban
settings. The methodology is then utilized to analyze the impacts
of PAVs with different vehicle and system parameters on the de-
mand. The findings show that with higher automation and falling
prices, PAVs have a potential to be an important transportation
mode, by serving not only mid-distance trips, but also shorter
trips in urban settings. The analysis also show that unlike for car
and public transport service, vehicle parameters of PAVs have a
substantial impact on the demand and turnover. Furthermore, an
optimization procedure that minimizes fixed costs of the PAVs
by minimizing the fleet size and variable costs by minimizing
the empty kilometers of PAVs for the estimated demand in the
region of Zurich, Switzerland, is proposed. Optimized service
ensures that much wider range of possible vehicle concepts can
be utilized to serve the demand.

I. INTRODUCTION

The idea of flying has always fascinated mankind. To quote
Schmitt and Gollnick [1]: ”Behind the imagination of flying,
which can be found in all old cultures and civilizations, there
are also the basic emotional elements of mankind about free-
dom and mobility.” On the 1st January 1914 a first commercial
airline flight happened and the dream of easily and quickly
reaching any part of the world transformed into reality.

At the moment of writing this paper the transportation
systems have already seen the testing and in some areas of
the world the introduction of autonomous ground vehicles.
Commercial Unmanned Aerial Vehicles (UAVs) have also
undergone testing and some were recently used to transport
small sized goods. Additionally, encouraged by the fast paced
technological development certain entities are already devel-
oping aerial vehicles (called Personal Aerial Vehicles - PAVs)
and systems that will move people in urban settings. The
opportunities and disruptive effects that this innovation in the
transportation system might bring are vast and they need to
be analyzed.

At the moment many countries are faced with the om-
nipresent congestion problems on the roads and the constant
growth of traffic. In Mexico City drivers are standing on
average 1 hour in congestion during peak hours, amounting
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to more than 8 days per year of lost time [2]. This problem
could be alleviated with the introduction of the urban aerial
transportation. People movement in the uncongested air space
would not only reduce travel times, but will allow for less air
pollution as the stop and go emissions would be eliminated.
Expansion of roads would not be necessary and the gained
space could be used for other purposes.

The introduction of urban commercial piloted and later fully
autonomous aerial vehicles and their interaction with already
existing transportation modes (both traditional and modern) in
the transportation system brings many new research questions
that are in need of investigation.

It is the purpose of this paper to present a methodology to
investigate on a large scale the impacts of the introduction of
urban aerial transportation, as well as why the exchange of
the information between transportation planners and physical
system developers is germane for the development and demand
forecasting for this new transportation system. First estima-
tions of the demand for urban aerial transportation services
are then presented for the region of Zurich, Switzerland.

II. BACKGROUND

Traditional four-step demand models in transportation are
recently being replaced by agent-based models (some exam-
ples among many can be found in [3]–[5]) since they are
not suitable to forecast the demand for new transportation
modes like ridesharing, carsharing, bikesharing or autonomous
vehicles. As stated by Shaheen and Rodier [6] the need for
models that can incorporate both land use and demographics is
needed in order to properly simulate these new modes (at that
time autonomous vehicles were not the topic, but fall under
the same category). Moreover, the availability of these modes
in both space and time needs to be considered, which the
four-step approach cannot do on an appropriate level. This is
obviously also true for the simulation and demand modeling
of aerial vehicles in urban setting.

There are many commercial simulation tools for air traffic
(SIMMOD [7], AirTop [8], RAMSrams plus [9]). Researchers
have also developed air traffic simulators ( e.g. see ATOMS
[10], FACET [11], ELSA [12] ). They all aim at representing
in detail air traffic control. However, they are not able to
represent people on an agent level and do not include other
kinds of transportation system. This becomes a limitation
when the aim is to model and analyze the demand for urban
aerial transportation. The only known attempt to simulate
commercial flights using an agent-based approach, where both
aircraft and passengers are modeled on an agent level on
all segments of the flight was by [13] using Multi-Agent
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Transport Simulation (MATSim) [3]. Here MATSim was used
to simulate commercial airplane flights over Europe. Aircraft
are represented microscopically, while the air traffic network
used was implemented at a low level of detail since the goal
was not to provide an air traffic management tool. The results
presented by the authors show that MATSim is able to simulate
the air traffic in Europe realistically. However, simulation
of urban aviation was not attempted and therefore it is the
purpose of this paper to bridge this research gap.

MATSim has already been used to simulate ground au-
tonomous vehicles in recent years [14], [15] and their impacts
on the transportation system. Consequently, developing an
urban aerial system as part of MATSim is a natural next step.

Previously research has already been undertaken to in-
vestigate how Unmanned Aerial Systems could impact the
operations at airports [16]. The authors explain that with the
fast paced technological developments this is not a far distant
future. On the other hand, at the moment of writing this
paper several entities are planning to commence operation of
urban aerial transportation services with different character-
istics. Airbus is currently developing a Passenger Unmanned
Aerial Vehicles (PUAV) capable of transporting people in the
urban area [17]. Amazon has already performed a packet
delivery using a drone in December 2016 [18]. Swiss Post
has also tested drone delivery in Lugano, Switzerland in 2017
[19]. Uber has made plans to install aerial taxi service in
Dallas and Dubai [20]. In Dubai, the government officials are
highly motivated to have PAVs moving people within the city
boundaries in the next couple of years. In [16] the prospects
of autonomous flying at the airports is also envisioned in
the future. All these plans and ideas are a signal that proper
planning and research on this topic is urgently needed.

This is why, taking into account the interest of industry
to create an aerial transportation system, it is necessary to
analyze the performance of these vehicles and design a proper
transportation system that is able to integrate the aerial mode
with more traditional modes.

An additional challenge in modeling PAVs is the variation
in current PAV concept designs. While the idea of a flying
car–with whom PAVs are often being compared–has been
around nearly as long as the first successful flight it is
now that personal air transport seems technologically and
economically viable. Based on advances in battery technology,
electric propulsion and regulatory frameworks, PAV concepts,
intended for intra-urban regional passenger missions, are being
developed and examined by a multitude of corporate as well as
start-up companies. The industry interest stems from various
branches as can be observed by the diversity of involved
companies such as Airbus, NASA and Uber ( [21]).

One advance in particular, the advance of electric propul-
sion, provides novel and–so far–unattainable freedoms in de-
signing the air vehicle’s system architecture, as it facilitates the
use of distributed propulsion. Distributed electric propulsion
is expected to allow for the development of relatively quiet,
near emission-free and highly reliable PAVs–all of which are
preconditions for intra-urban air travel–and provides the basis
for unconventional air vehicle designs. Thus, current PAV
concepts vary greatly in morphology, passenger capacity, and

expected performance.

Fig. 1. Rotor-based lift-production during cruise c©Airbus.

Fig. 2. Fixed-wing lift-production during cruise c©Airbus.

While there are grave morphological distinctions between
various PAV concepts, e.g. rotor-based and fixed-wing lift-
production during cruise (see Figures 1 and 2 for respective
examples), it is the concepts’ passenger capacity and perfor-
mance in speed and range that is of principal interest for
modeling the integration of PAVs into a transport system.

Figure 3 shows the disparity across PAV concepts by
plotting the expected range, cruise speed, passenger capacity
and energy supply of an excerpt of known PAV concepts.
According to [21] current PAV concepts are intended to be
supplied with energy by electric (56%), fuel-based (23%),
hybrid-electric (9%), and other (e.g. hydrogen) (12%) means.
The type of energy supply greatly influences the vehicle’s
performance data, with the ranges of electric concepts laying
between 27 and 370 km with 167 km on average (SD 136
km), while fuel-based concepts range from 112 to 1,200
km with an average of 708 km (SD 324 km). Interestingly,
between the three hybrid-electric concepts, of which range
expectations have been published, the range varies between
800 and 2030 km (AVG 1210 km, SD 710 km)–surpassing
fuel-based concepts. One hydrogen-based concept, the only
remaining concept with published range expectation, has an
expected range of 500 km.

For speed, Shamiyeh et al. [21] lists electric concepts which
vary between 70 and 322 km/h (AVG 198 km/h, SD 88 km/h),
while fuel-based concepts are expected to achieve 211 km/h
on average–starting from 112 km/h and up to 457 km/h (SD
106 km/h). Again, the hybrid-electric concepts are expected to
surpass the fuel-based concepts with speeds between 320 and
630 km/h (AVG 427 km/h, SD 176 km/h). Other concepts (3)
range from 100 to 250 km/h (AVG 200 km/h, SD 87 km/h).
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Fig. 3. Comparison of different PAV concepts (adapted from [21]).

Finally, the concepts also vary in their designed passenger
carrying capacity, where–across all types–the PAV concepts
vary in their capacity between one and six passengers, with
most concepts being designed as one- (28%) and two-seaters
(40%). The hybrid-electric concepts are expected to seat the
most passenger (N 4, AVG 4.50, SD 1.91), while electric (N
24, AVG 2.25, SD 1.33) and fuel-based (N 10, AVG 2.20,
SD 1.03) concepts–the majority of concepts–are planned with
fewer seats.

PAVs are novel concepts, whose design mission and archi-
tecture are not yet clearly defined, as can be derived from the
broad ranges in expected concept ranges, speeds and passenger
capacities. While most PAV concepts are designed for short-
haul missions with one or two passengers, others more closely
resemble existing regional aircraft with medium-haul ranges
and passenger capacities. Which concepts are best-suited for
any given urban region will have to be determined based on
that region’s transport demand and circumstances.

Taking all this into account, close collaboration is needed
between different stakeholders and research fields in order to
obtain viable solutions for the integration of and demand fore-
casting for aerial urban systems in the transportation networks.
Transport planners need to have a close exchange of informa-
tion with aerial vehicles developers in order to properly plan,
develop and forecast the usage of aerial systems. Therefore,
it is the purpose of this paper to propose a methodology for
the estimation of demand for the urban aerial transportation.
Subsequently, the proposed methodology is used to provide
first insights on the impacts of different technologies currently
in development on the demand for PAVs.

III. METHODOLOGY

A. Demand Modeling

Modeling and forecasting the demand for PAVs is challeng-
ing. Careful planning and exchange of information between
aerial vehicle developers and transport planners is essential in
the early stages of research in order to realistically forecast the
demand for this novel transportation mode. As was already

explained in [22] research on the aerial network design,
where topography, population densities, no-fly zones, weather
conditions are taken into account, aerial vehicle technology
development and demand modeling for this kind of systems,
and their interaction is of utmost importance.
With all this in mind and since four-step models are not
suitable to model this kind of transportation mode we advocate
to use an agent-based model which can represent each player
in this complex system on an agent level and which can
represent both land use and socio-demographics. We propose
to use a multi-agent transport simulation (MATSim).

MATSim through its use of the agent paradigm [23] sim-
ulates daily life of individuals. Each agent in MATSim has
a daily plan of trips and activities, such as going to work,
school, leisure or shopping. The initial daily plans of agents
are provided in the initial demand together with supply models,
e.g. street network, building facilities and public transport
schedules. The plans of all agents are executed by a micro-
simulation, resulting in traffic flow along network links, which
can cause traffic congestion. After the micro-simulation some
of the agents are allowed to re-plan their daily schedule in
order to increase their utility. This process is then repeated
until the equilibrium is achieved.

In this study agents are allowed to perform mode and route
choice. Mode choice is performed using a novel approach first
presented and tested in [24]. In this approach a specific mode
choice model is implemented as compared to the previous
approach in MATSim where agents were randomly trying out
modes in order to increase their utility [3]. Pairing a mode
choice model with an agent-based simulation like MATSim
provides not only a more accurate way to predict agent’s
choices, but also reduces the computation time by reducing the
amount of micro-simulations needed to reach the equilibrium
state.
The mode choice model developed in this study is based
on the national travel diaries and a stated preference survey
performed in connection with the national travel diaries survey
[25]. Parameters of this Multi-nominal logit (MNL) model can
be seen in Table I. Since, naturally PAVs were not part of these
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TABLE I
MNL MODEL PARAMETERS

Mode Variable Parameter robust-t test
Walking Constant 1.1275 8.64

Travel time [min] -0.0670 -6.44
Cycling Constant 0.4809 5.03

Travel time [min] -0.0617 -9.9
Car Travel time [min] -0.0409 -12.48
Public Transport Constant -0.4671 -6.44

Travel time [min] -0.0364 -13.14
Access time [min] -0.02084 -5.03

Cost [chf] -0.1045 -11.24
Number of decision makers: 4961
Number of observations: 40070
LL(null): -37867.35
LL(final): -27067.07
Rho2: 0.2852136
Estimated parameters: 12

surveys as currently they do not exist in practice, we have
assumed the value of travel time for this mode to be similar
to public transport. The approximation can be justified looking
at the literature on the value of travel time for automated
vehicles as discussed in the Discussion section of this paper.
The utilities of each alternative in this model are computed
using linear utility function:

Ui,j = α+ βcost · cost+ βi,traveltime · ttravel
+βi,accesstime · taccess

(1)

for mode i and trip j. For all modes except public transport
and PAV access time is assumed to be 0.

B. Simulation and costs of different transportation modes

The modes available to the agents are car, public transport,
cycling, walking and PAV. Driving a car is physically simu-
lated on the network, where agents interact with each other,
thus creating congestion. Public transport routing is done via
R5 routing platform [26], but the vehicles were not physically
simulated on the network. In this case as well as for cycling
and walking, the agents were teleported between their origin
and destination based on the estimated travel time. In case of
PAV, agents have to walk for certain time to reach a PAV and
then their travel time to the destination was estimated as:

t = 2 · tliftoff + d/vcruising (2)

where tliftoff is the liftoff time, d is distance traveled and
vcruising is the cruising speed. Both walking and flying to
the destination is executed using teleportation. Considering the
level of demand for PAVs at the moment this is a reasonable
simplification since the level of interaction would be very low
between different PAVs.

Each agent in the simulation contains personal information
on the driving license, car and season ticket (for public
transportation) ownership. This information is used in the
mode choice model to first define which modes an agent can
use and second to calculate the costs of a given trip for car
and public transport trips. The minimum cost of driving a
car is set to 1CHF and then 0.176CHF for every kilometer.
For public transport, those that do not own a season ticket

have to pay a minimum price of 2.6CHF (which is the price
of a short distance ticket in the city of Zurich). If the agent
holds a GA (nation wide season ticket) it will pay 0.1CHF/km,
0.18CHF/km if it has a HT (nation wide half fare card) and
otherwise 0.36CHF/km. For short distance trips (less than
5km) if the agent holds a regional season ticket, it will cost
him 0.1CHF/km to make a trip with public transportation.

IV. RESULTS

The simulations were carried out using a Zurich scenario
which covers the area of 30km radius circle around the Zurich
city center. It is a very convenient place to perform the study
because of several advantages. First, the scenario is well tested
and previously used in many studies, second it allows not only
intra- but also inter-city travel and lastly it provides many
possible use cases for aerial transportation, i.e. travel over hilly
regions, rivers, lakes and other natural obstacles that can limit
the ground transportation performance.

In order to reduce computational burden the population
of the area is scaled down to 10%, which means that the
size of the simulated population was approximately 160,000.
Accordingly, the network capacities are adjusted in order
to take into account the scaled number of vehicles on the
roads. The synthetic population used in the simulation is a
representative of the population living in and commuting to
the study area [27].

PAV vehicle parameters used in this study are: cruising
speed (20m/s, 25m/s, 30m/s), liftoff time (60sec, 120sec,
180sec) and access time (120sec, 300sec, 600sec). These
assumptions are based on the current technological parameters
found in the literature as explained previously. Different access
times should be seen as the average access times to the closest
landing platform of PAVs for a given scenario. Even though at
the moment landing stations are not explicitly modeled, this
can be considered as an approximation.

Pricing assumed is inspired by the current Uber Black
prices for Zurich, Switzerland: 4CHF/km plus a base fare of
4CHF. The assumption comes from the Uber announcements
of their plans for piloted PAVs. Moreover, as Uber officials
have recently presented [20], they expect that the costs for
aerial transportation in the urban areas with full automation
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will fall below the costs for car ownership. In order to test
how the increase of the automation would impact the demand,
scenarios with half of the initial per kilometer price are also
simulated .

Spatial distribution of PAV trips for the scenario with
parameters - 30m/s, 60sec liftoff time, 120sec access time,
can be seen in Figure 4. The ability to travel in a straight line
and not having to stay on the congested roads, clearly benefits
long distance commuters. Most of the trips are over the Zurich
lake, mountain ranges and in areas with not so good public
transport connection.

Figure 5a shows the amount of trips served with PAVs.
Increasing liftoff and access time both have negative effect on
the amount of served trips, which is expected. However, what
is important is that the liftoff time has a higher negative effect
than the access time. Interestingly, higher the speed the lower
the average distance traveled (Figure 5b). This means that with
higher speeds people are more likely to chose the PAV for
shorter distance trips, since it is more likely to overcome the
initial burden of having to take a PAV. Increasing the access
time is also increasing the average trip distance, meaning that
short distance trips are no longer desirable, which makes sense.

The turnover for each combination of the tested parameters
can be seen in Figure 6b. Decreasing speed, increasing liftoff
and access time all have negative effects on the turnover.
However, this does not necessarily mean lower profit as this
depends on the cost of the vehicle production, maintenance and
so on. Comparing the systems I (with 20m/s, 120sec liftoff and
300s access time) and II (30m/s, 180s liftoff and 300s access
time) it can be observed that system II can serve almost the
same number of trips as system I. Additionally, the turnover
is very similar, so the actual financial benefit of having faster
aerial vehicles is lost with an increase of liftoff time. Unlike
for car and public transport services, where speed of vehicles
is constrained by the infrastructure and regulations and not so
much by the vehicle parameters, the demand and performance
of PAVs is substantially affected by the utilized PAV concept.
Therefore, all these parameters need to be considered when
making an implementation decision for this kind of a system.

With a 50% reduction in the per kilometer price for PAV
trips a substantial increase in the amount of trips (Figure
7a) can be observed. Having lower prices the agents are
starting to take the advantage of much faster travel speed
also for short distance trips as the lower price overcomes the
burden of walking to the aerial vehicles. This effect can be
seen in the reduction of average distance in Figure 7b. This
however comes at a price, many short distance trips means
a higher requirement for communication between vehicles,
organization of the routes, more landing platforms etc.. Having
almost 18,000 (scaled up to the full population of the Zurich
area) take offs (Scenario with 30m/s, 120sec access time,
60sec liftoff time) and landings per day on the area of this
size would require considerable planning. This number must
be considered as an uper bound since aspects that are not
currently considered in our simulations can and will influence
accessibility, speed and routes of this kind of service. This is
discussed in detail in the next section.

The turnover increases between 2 and 5 times for different
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Fig. 4. Spatial distribution of PAV trips for the scenario with 30m/s crusing
speed, 60s lift-off time and 120s access time and normal pricing.

PAV systems with the decrease of the price (Figure 8b). How-
ever, the increase in the amount of added infrastructure, fleet
size, maintenance, might overcome this increase in turnover,
so each system operator would need to find a proper balance.

A. Optimization of the service

Using the results obtained from the simulation on the
potential demand for the PAV service we can estimate the
minimum number of vehicles needed to serve all PAV trips.
The demand contains all the information on PAV trips, their
origins, destination, departure time and arrival time.

Lets assume we have a total of N passenger trips with PAVs.
We form a directed graph G = (V,E) where each start (vi,s)
and end (vi,e) point of a PAV trip is a vertex (see also Figure 9
for a simple example). We define ti,s as a time when the PAV
departs from the vertex vi,s (i ∈ 1, .., N ) and tj,e as a time
when the PAV arrives at the vertex vj,e (j ∈ 1, .., N ) with the
passenger during the simulation.

Edges of this graph are connections between start and end
point of a single PAV trip and also connections between each
arrival (vi,e) and departure (vi, s) vertex. However, because
of time and speed constraints vehicle cannot reach every
departure point after arrival at a specific vertex. Therefore,
edges between a pair of vertices that either equation 3 or 4
hold, were removed from the graph .

∀ti,s < tj,e (3)

d(vi,e, vj,s)

vcruising
+ 2 · tliftoff > (tj,s − ti,e) (4)

where function d(v, u) calculates the crow-fly distance
between two vertices based on their location in space. vcruising
is the cruising speed of the vehicle and tliftoff is the time
required to liftoff and land. In the example shown in Figure 9
vertices v2,e and v1,s are not connected because of criteria in
equation 3 and vertices v1,e and v2,s are not connected because
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Fig. 5. Simulation results for the normal pricing structure (a) amount of trips
served with the PAV system (b) average distance of the PAV trips.

the vehicle cannot reach vertex v2,s in time because of the
criteria in equation 4. The vsource is vertex that is connected
to all stating points of PAV trips with a passenger and vsink is
a vertex that is connected to all end points of PAV trips with
a passenger.

The objective function is represented using equation 5. ci,j
represents the amount of vehicles moving over the edge ei,j
and is equal to either 0 or 1 (equation 8). Flow conservation
constraints (equations 6 and 7) show that the amount of
vehicles reaching vertices vi,s and leaving vertices vi,e needs
to be equal to 1.

Min
∑
i

ci,sink (5)

Subject to: ∑
k

ck,i = 1 ∀i ∈ {1, ..N} (6)

∑
l

ci,l = 1 ∀i ∈ {1, ..N} (7)

ci,j ∈ {0, 1} (8)
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Fig. 6. Simulation results for the normal pricing structure (a) average travel
time of PAV trips (b) Turnover of al PAV trips.

This problem is an example of a minimum cost network
flow problem. It was solved using a Gurobi optimizer.
Two most interesting cases to analyze are the ones with
the most PAV trips for two different price structures, that is
with the 30m/s cruising speed, 60 seconds liftoff time and
120 seconds access time. The minimum amount of required
vehicles for the case of normal pricing is 10 for 103 trips and
53 for 1,824 trips for the reduced pricing scenario. As the
amount of trips grows the ratio between the required fleet size
and the amount of served trips drops. Distances covered by
vehicles in these two scenarios can be seen in Figure 10. The
high covered distances show that depending on the range of
the PAVs used by the operator it might be necessary to increase
the fleet size in order to be able to satisfy the demand.

The average mileage of PAVs is quite high when we
consider the average PAV trip distance from Figures 5b and
7b. The reason is the empty mileage of PAVs which are around
65% of the time traveling without a passenger in order to reach
the next pick up location. This is undesirable and unprofitable.
Therefore, another optimization is required to minimize the
total distance of all PAVs in the system in order to minimize
variable costs. The directed graph G=(V,E) is formed in the
same way as in the previous optimization procedure using the
constraints in equations 3 and 4.
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Fig. 7. Simulation results for the reduced pricing structure (a) amount of trips
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The objective function for this optimization problem is shown
in equation 9. di,j represents the distance between vertices
vi,e and vj,s. Equation 12 represents the constraint that the
number of vehicles leaving the system has to be W which
was obtained from the previous optimization procedure.

Min
∑
i,j

ci,j · di,j (9)

Subject to: ∑
k

ck,i = 1 ∀i ∈ {1, ..N} (10)

∑
l

ci,l = 1 ∀i ∈ {1, ..N} (11)

∑
i

ci,sink =W (12)

ci,j ∈ {0, 1} (13)

Figures 11 and 12 show the total and passenger mileage per
PAV for these two scenarios. A substantial reduction in the
mileage is achieved by optimizing the empty flying distance.
In this way both fixed and variable costs for the operator
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are minimized given the demand. Moreover, with average
distances below 400km per PAV a wider range of possible PAV
technologies can be utilized to serve the demand estimated for
the Zurich region.

V. DISCUSSION

The results presented in the previous section show that PAVs
capabilities and their accessibility will have substantial effects
on the demand. More importantly, lowering the price from the
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currently envisioned price of 4CHF/km is crucial in order to
attract short distance users. What was however not discussed
so far, but needs to be pointed out are the limitations of the
approach presented here and further venues for research.

A. VOT sensitivity analysis for PAVs

Given that the value of travel time of this novel transporta-
tion mode is currently not known, a value equal to the public
transport value of travel time is assumed in this study. Studies
on autonomous vehicles using stated preference surveys have
shown that the value of travel time for this mode is in-between
that of the private conventional car and public transport [28],
[29] and sometimes very close to the value of travel time of
the public transport services [30]. Therefore, the assumption
to take the value of VOT for PAV service equal to the one
of public transport is justifiable. However, to see the effects
of different VOTs on the demand, additional simulations are
carried out with VOTs for PAVs ranging between those of
public transport and conventional car. The increase of VOT
as expected triggers a decrease in the amount of rentals. An
increase of 4.3%, 8.6%, 13.2% and 17.9% (which corresponds
to the VOT of a conventional vehicle) decrease the amount
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Fig. 12. Daily distances covered by PAVs with a passenger on board for the
scenarios with 30m/s speed, 60sec liftoff time and 120sec access time, with
the minimized both number of vehicles and empty mileage distance.

of rentals by 3.4%, 6.7%, 10.2% and 12.7% respectively.
Important to notice is that as the VOT raises the marginal
drop of PAV trips decreases.

B. Limitations

Several simplifications were made in the simulation of aerial
vehicles. PAVs were traveling in a straight line between the
origin and destination, thus not considering no-fly zones, pop-
ulation densities, weather conditions, topography. In order to
overcome this a simple detour factor could be incorporated into
the simulation. More accurate distance estimation however,
would require a tight collaboration with researchers developing
the aerial networks that can take different constraints into
account [22].

Infrastructure like landing platforms, parking locations or
ground communication devices are not taken into account. All
these can limit the demand and influence the operational costs.
In case the PAVs are designed to land on landing platforms
and not in backyards or streets, proper design and planning
is necessary. Location of the landing platforms can have a
substantial effect on the demand. In already built cities this
can pose a problem if there is not available space to place
such structures.

Capacities of PAVs in our study was assumed to be 1 for
two reasons. Firstly, because most of the current PAV designs
are expected to carry one or two passengers. Secondly, because
the goal of the paper was to observe the maximum potential
demand for this kind of service, therefore PAV service was
accessible to every agent in the study area. However, even
though the average occupancy of a car is close to 1 in peak
hours this might not be the case for PAVs, especially if
they have a higher cost, so it might be preferable to share
a ride. Therefore, a more detailed system would need to be
implemented in MATSim in order to be able to deal with this
level of detail.

Here, the benefits of the interaction between ground au-
tonomous vehicles and PAVs was not investigated since the
goal of this study was to solely look at the potential demand
for PAVs. However, if the PAVs would require landing stations,
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the PAV service might benefit of having autonomous vehicles
moving people to and from these stations. This will increase
the accessibility of PAV service, so the access time can be
in order of minutes. A very detailed autonomous vehicles
extension of MATSim already exists, so it would be important
to pair these two strands of transportation and see how they
can impact, benefit and complement each other.

VI. CONCLUSION

In this study a glimpse at the future of transportation
systems with the introduction of on-demand urban air mobility
is presented. More than 60 simulations are carried out to
investigate how variations in the PAV concept design can
influence the demand for this novel transportation mode. The
findings show that with the low level of automation and
prices set to Uber Black prices, the demand is rather low and
the PAVs would mostly serve mid-distance trips. These trips
are usually over terrains with obstacles, like lakes, hills or
mountains. Importantly, the results also show that unlike for
car and public transport services, the vehicle parameters of
PAVs have a substantial impact on the demand and turnover.
With the reduction of variable costs for the users an increase
in the number of trips as well as turnover for the operator is
observed. It must be however, pointed out that this does not
necessarily mean an increase of profit since many aspects need
to be considered in order to provide a clear evaluation.
Optimization procedures show that both minimization of the
fleet size in order to reduce the fixed costs for the operator as
well as the minimization of empty mileage to reduce variable
costs is required. This enables operators to chose from a higher
range of PAVs as the required range of vehicles becomes
smaller.
Future work needs to be focused on more detailed implementa-
tion of the PAVs in MATSim. Infrastructure requirements like
number of landing and parking spaces, proper flying corridors,
interaction with other modes need to be developed.
Of importance is also the interaction between autonomous
ground vehicles and PAVs and how these two future modes can
benefit and complement each other. The combination of these
two systems might allow for substantial decrease of congestion
and negative effects of pollution if planned and implemented
in a right way.
Despite the above mentioned limitations this research gives
important insights into how the demand for PAVs can be
affected by different vehicle parameters. The methodology and
results obtained provide a backbone for further research on
urban air mobility solutions.

ACKNOWLEDGMENT

The authors would like to thank Maxim Janzen and Relja
Arandjelovic for their valuable insights while writing this
paper.

REFERENCES

[1] D. Schmitt and V. Gollnick, “Historical development of air transport,”
in Air Transport System. Springer, 2016, pp. 19–38.

[2] TomTom , “Congestion in Mexico City,” webpage, December 2017.
[Online]. Available: www.tomtom.com/

[3] A. Horni, K. Nagel, and K. W. Axhausen, Eds., The Multi-Agent
Transport Simulation MATSim. London: Ubiquity, 2016.

[4] X.-Y. Ni and D. J. Sun, “Agent-based modelling and simulation to
assess the impact of parking reservation system,” Journal of Advanced
Transportation, vol. 2017, 2017.

[5] J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, and K. Zhang, “Polaris:
Agent-based modeling framework development and implementation for
integrated travel demand and network and operations simulations,”
Transportation Research Part C: Emerging Technologies, vol. 64, pp.
101–116, 2016.

[6] C. Rodier and S. A. Shaheen, “Carsharing and carfree housing: predicted
travel, emission, and economic benefits,” in 83rd Annual Meeting of the
Transportation Research Board, Washington, D.C., January 2004.

[7] SIMMOD, “SIMMOD,” webpage, July 2017. [Online]. Available:
www.airporttools.com

[8] AirTop, “AirTop,” webpage, July 2017. [Online]. Available:
www.airtopsoft.com

[9] RAMSrams, “RAMSrams plus,” webpage, July 2017. [Online].
Available: www.ramsplus.com

[10] S. Alam, H. A. Abbass, and M. Barlow, “Atoms: Air traffic operations
and management simulator,” IEEE Transactions on intelligent trans-
portation systems, vol. 9, no. 2, pp. 209–225, 2008.

[11] K. Bilimoria, B. Sridhar, G. B. Chatterji, K. Sheth, and S. Grabbe,
“Facet: Future atm concepts evaluation tool,” Air Traffic Control Quar-
terly, vol. 9, no. 1, pp. 1–20, 2001.
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