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to the 2015–2016 El Nĩno-Southern Oscillation event

Zhen Zhang1,2,7 , Niklaus E Zimmermann2,3, Leonardo Calle4, George Hurtt1, Abhishek Chatterjee5,6 and
Benjamin Poulter5

1 Department of Geographical Sciences, University of Maryland, College Park, MD 20740, United States of America
2 Dynamic Macroecology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf 8903, Switzerland
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Abstract
Wetlands are thought to be the major contributor to interannual variability in the growth rate of
atmospheric methane (CH4) with anomalies driven by the influence of the El Niño-Southern
Oscillation (ENSO). Yet it remains unclear whether (i) the increase in total global CH4 emissions
during El Niño versus La Niña events is from wetlands and (ii) how large the contribution of wetland
CH4 emissions is to the interannual variability of atmospheric CH4. We used a terrestrial ecosystem
model that includes permafrost and wetland dynamics to estimate CH4 emissions, forced by three
separate meteorological reanalyses and one gridded observational climate dataset, to simulate the
spatio-temporal dynamics of wetland CH4 emissions from 1980–2016. The simulations show that
while wetland CH4 responds with negative annual anomalies during the El Niño events, the
instantaneous growth rate of wetland CH4 emissions exhibits complex phase dynamics. We find that
wetland CH4 instantaneous growth rates were declined at the onset of the 2015–2016 El Niño event
but then increased to a record-high at later stages of the El Niño event (January through May 2016).
We also find evidence for a step increase of CH4 emissions by 7.8±1.6 Tg CH4 yr−1 during 2007–2014
compared to the average of 2000–2006 from simulations using meteorological reanalyses, which is
equivalent to a ∼3.5 ppb yr−1 rise in CH4 concentrations. The step increase is mainly caused by the
expansion of wetland area in the tropics (30◦S–30◦N) due to an enhancement of tropical precipitation
as indicated by the suite of the meteorological reanalyses. Our study highlights the role of wetlands,
and the complex temporal phasing with ENSO, in driving the variability and trends of atmospheric
CH4 concentrations. In addition, the need to account for uncertainty in meteorological forcings is
highlighted in addressing the interannual variability and decadal-scale trends of wetland CH4 fluxes.

Introduction

Methane (CH4) is a potent greenhouse gas and has
contributed to ∼20% of observed warming since
pre-industrial times (IPCC 2013). Atmospheric CH4
concentrations have risen from preindustrial levels of
715 parts per billion (ppb) since the 1800s (Etheridge
et al 1998, MacFarling Meure et al 2006) to current
global concentration of ∼1847 ppb, a 2.5 fold increase,

primarily driven by anthropogenic activities (Kirschke
et al 2013), e.g. fossil fuel activities, agriculture, and
also by the biogeochemical feedbacks of natural pro-
cesses to climate change (Arneth et al 2010, Tian et al
2016, Saunois et al 2016). However, the variability
in the annual growth rate of atmospheric CH4 is
strongly related to the climatic sensitivity of biogenic
CH4 sources, of which global wetland CH4 comprises
60%–80% of natural emissions (Quiquet et al 2015,
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Hopcroft et al 2017) and this large role is likely to
persist into the future (Zhang et al 2017b). Thus, inter-
annual variability in the growth rate of atmospheric
CH4 is largely affected by the response of global wet-
land CH4 emissions to the year-to-year mode of global
climate variability such as the El Niño-Southern Oscil-
lation (ENSO). ENSO is one of the largest climate
phenomena that drives carbon dynamics and their
anomalies across large portions of the globe (Chatterjee
et al 2017).

El Niño, the positive phase of ENSO, influences
water- and carbon- fluxes of tropical terrestrial ecosys-
tems through a change in patterns of atmospheric
pressure and sea surface temperature (Philander 1990).
These changes induce strong warming and reduced
precipitationpatterns by shifting the Intertropical Con-
vergence Zone southward, causing amplified wildfires
(Worden et al 2013) and reduced wetland areal extent
and CH4 emissions (Hodson et al 2011). Tropical wet-
lands, which comprise 50%–70% of global wetland
CH4 emissions (Bousquet et al 2006), are similarly
influenced by the periodic variations of air tem-
perature and precipitation related to ENSO phases
(Pison et al 2013). Atmospheric measurements of CH4
provide evidence that the growth rate of global CH4
concentrations can rise during strong El Niño years
(Nisbet et al 2016, Bousquet et al 2006), but terres-
trial biogeochemical models suggest that tropical and
global wetland CH4 emissions are usually found to
decrease during El Niño (Hodson et al 2011, Zhu et al
2017, Ringeval et al 2014).

At decadal time scales, the relationship between the
annual CH4 growth rate and variability in global wet-
land CH4 emissions is not fully agreed upon, and the
observed pause in the growth rate during 2000–2006
and subsequent return of the growth rate since 2007
(Nisbet et al 2014) is not fully understood. A recent
study suggests that global wetlands have played a lim-
ited role during the renewed rise of the growth rate
through 2012 (Poulter et al 2017). However, isotopic
measurements indicate that the resumed increase in
the growth rate could originate either from biogenic
sources (Schwietzke et al 2016) like tropical wetlands
(Nisbet et al 2016), from agricultural sources (Schaefer
et al 2016), or from the combined effect of decreased
biomass burning (Worden et al 2017) and increased
fossil-fuel emissions (Helmig et al 2016). In addition,
simple-box models and more complex atmospheric
inversion models can attribute the recent CH4 change
to varying hydroxyl radical (OH) concentration, the
major CH4 sink in the atmosphere (Turner et al 2017,
Rigby et al 2017). Our poor understanding of wet-
land CH4 responses at annual to decadal time scales
calls for revisiting the role of relationships between cli-
mate forcings and wetland CH4 fluxes to help reconcile
top-down and bottom-up methodologies.

Previous El Niño anomalies, in years 1982–1983,
1997–1998, and 2015–2016, had significant impacts
on terrestrial ecosystems and these events were con-

Table 1. Model experiment descriptions. Climatic variables T, P, SW,
LW, CLD, and WETD represent temperature, precipitation,
shortwave radiation, longwave radiation, cloud cover, and wet days
respectively.

Run ID

number

Forcing Temporal

resolution

Climatic

variables

Time

periods

i MERRA2 Daily T, P, SW, LW 1980–2016
ii MERRA2 Monthly T, P, SW, LWa 1980–2016
iii ERA-I Daily T, P, SW, LW 1980–2016
iv ERA-I Monthly T, P, SW, LW 1980–2016
v JRA-55 Daily T, P, SW, LW 1980–2016
vi JRA-55 Monthly T, P, SW, LWa 1980–2016
vii CRU Monthly T, P, CLD,

WETD

1901–2016

a CLD and WETD are from CRU for comparison.

sidered key drivers of the atmospheric CO2 growth
rate variability (Liu et al 2017). The most recent El
Niño event (2015–2016) caused unprecedented warm-
ing and extreme drought over most of the Amazonia
regions (Jiménez-Muñoz et al 2016, L’Heureux et al
2016, Lim et al 2017, Chatterjee et al 2017). The
occurrence of this extreme El Niño event disrupted
regional ecosystems, causing sharp increases in atmo-
spheric CO2 concentrations (Betts et al 2016) and a
doubling of fire-induced emissions in Southeast Asia
(Whitburn et al 2016). The more recent El Niño event
may have also contributed to record warming during
2015 and the first third of 2016, with global air temper-
ature at 0.94 ◦C above the 20th century mean annual
average (www.ncdc.noaa.gov/sotc/global/201613, last
access in August 2017). Exactly how much the 2015–
2016 ENSO phenomenon has impacted global wetland
CH4 emissions and to what extent it has affected the
annual growth rate of atmospheric CH4 concentration
remains unknown due to challenges in monitoring and
modeling.

Here, we analyze the relationship between ENSO
phase and wetland CH4 emissions by addressing two
main questions: first, how does ENSO, with particular
attention to the ENSO event in 2015–2016, affect the
interannual variability of CH4 emissions from global
wetlands? Second, what are the major mechanisms
that link wetland CH4 emissions to the atmospheric
increases observed since 2007?

Methods

We use a process-based ecosystem model LPJ-wsl
(Lund-Potsdam-Jena model, WSL version) forced with
four different meteorological forcings to simulate wet-
land CH4 emissions from 1980–2016. These drivers
include one station-based monthly geo-interpolation
dataset (CRU) and three meteorological reanalyses
products (table 1). We use multiple climate datasets
to investigate uncertainty from meteorological forcing
driving simulated atmospheric CH4 concentrations,
and hence, to better characterize CH4 variation in
response to climate variations.
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LPJ-wsl (Poulter et al 2011) is a process-based
dynamic global vegetation model (DGVM) developed
for studying terrestrial ecosystems, based on an ear-
lier LPJ core model (Sitch et al 2003). The version of
the model applied in this study includes a new hydrol-
ogy model, TOPMODEL, to determine wetland area
and its inter- and intra-annual dynamics (Zhang et al
2016), a permafrost and dynamic snow model (Wania
et al 2009), and a prognostic wetland CH4 emis-
sion model (Hodson et al 2011), each of which is
incorporated into the LPJ-wsl framework with explicit
representation of the effects of snow and freeze/thaw
cycles on soil temperature and moisture and thus CH4
emissions (Zhang et al 2016). We apply an empiri-
cal model to estimate CH4 emissions in the model
which is based on soil respiration, inundated area,
and a temperature-based ecosystem emission efficiency
(Christensen et al 1996). Soil respiration is mod-
elled empirically in response to temperature and soil
moisture based on an Arrhenius type equation where
varying effective activation energies for respiration
and a dampening of the temperature sensitivity (Q10)
due to acclimation were considered (Sitch et al
2003). The simulated dynamics of wetland area and
CH4 emissions have been evaluated against large-
scale observations in previous studies (Hodson et al
2011, Zhang et al 2016, Zhang et al 2017b). Here,
we calibrated temperature-modified CH4 emitting fac-
tors by scaling simulated global estimates to match
172 Tg CH4 yr−1 in 2004, which was estimated from
an independent atmospheric inversion study (Spahni
et al 2011), and is in agreement with independent
satellite-based methods from Bloom et al (2010). We
improved inundationestimatesby calibrating theTOP-
MODEL parameter ‘maximum inundation potential’
(Fmax) (Zhang et al 2016) using an independent
inundation dataset (Poulter et al 2017) that was
derived fromasatellite-basedSurfaceWaterMicrowave
Product Series (SWAMPS) (Schroeder et al 2015),
an inventory-based dataset Global Lakes and Wet-
lands Database (GLWD) (Lehner and Döll 2004),
and a regional wetland map derived from satellite
retrievals for Amazonia (Hess et al 2015). To avoid
confusion regarding double counting (Thornton et al
2016), we clarify that our simulated wetland area
includes seasonally inundated wetlands, e.g. flood-
plains, and permanently inundated vegetated wetlands,
but excludes rice agriculture, non-vegetated reservoirs,
mediumto large sized lakes, rivers, andcoastalwetlands
that are not accounted for by the GLWD.

The climate datasets included the monthly meteo-
rology from the Climate Research Unit (CRU) TS 3.25
(Harris et al 2014) and three state-of-the-art metro-
logical reanalysis products. The reanalysis products
were comprised of 1 hourly reanalysis Modern-Era
Retrospective analysis for Research and Applica-
tions Version 2 (MERRA2) (Gelaro et al 2017)
from the NASA Global Modeling and Assimilation

Office (GMAO), 6 hourly ERA-Interim (ERA-I) (Dee
et al 2011) from the European Centre for Medium-
Range Weather Forecasts (ECMWF) data assimilation
system and, and lastly, a 6 hourly Japanese 55 year
Reanalysis (JRA-55) (Kobayashi et al 2015) from the
JapanMeteorologicalAgency.The reanalysis data (total
precipitation, 2 m air temperature, downward short-
wave radiation, and downward longwave radiation)
were aggregated to a common daily time-step and
downscaled to 0.5◦ spatial resolution grid using first
order conservative interpolation. The soils dataset
we used was the Harmonized World Soil Database
v1.2 (Nachtergaele et al 2008) and using pedotrans-
fer functions of the surface soil texture (Cosby et al
1984) to estimate volumetric water holding capac-
ity. For the monthly CRU data, LPJ-wsl was set
up to use a wet-day frequency dataset, a weather
generator (Geng et al 1986) to generate daily pre-
cipitations, and a set of simplified equations with
monthly cloud cover as input to calculate daily
photosynthetically active radiation flux and potential
evapotranspiration (Prentice et al 1993). Additional
details of the climate datasets and model experiments
are in the supplementary material (table S1 available
at stacks.iop.org/ERL/13/074009/mmedia). The LPJ-
wsl state variables (i.e. carbon in vegetation, litter, and
soils) were simulated to reach equilibrium by using a
1000 year spinup, with fire dynamics, and a 398 year
spinup for land use change using Land-Use Harmo-
nization dataset (LUHv2) (Hurtt et al 2011). Spin-up
was done using randomly selected climate inputs from
1901–1930 for CRU and 1980–2000 for reanalysis with
fixed atmospheric CO2 to the 1860 value. After equilib-
rium, a transient simulationwithfire effects andvarying
land cover was performed for the years 1901–2016
(for CRU) and 1980–2016 (for reanalysis), forced with
changing climate conditions and varying atmospheric
CO2 concentration (www.esrl.noaa.gov/ccgg/trends,
last access at August 2017). The simulations con-
sider gross land-use transitions (with no wood harvest)
with primary and secondary lands treated separately
(for details, see Arneth et al 2017), where the soil
moisture and soil respiration were calculated by
fraction-weighting individual land stands within a grid
cell.

We used the Multivariate ENSO index (MEI) for
representing the ENSO strength (Wolter and Timlin
1998). The MEI index represents the first unrotated
principal component of the combined, normalized
fields of the primary climate variables observed over
the tropical Pacific, reflecting a global signal of climate-
land-atmosphere interaction for both El Niño and La
Niña events. Given that previous studies (Fang et al
2017, Liu et al 2017) have shown a hysteresis in the
Earth systems response to changes in temperature
and precipitation patterns, we carried out a cross-
correlation analysis to examine possible time-lag effects
of wetland CH4 response to El Niño events.
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To test whether annual wetland CH4 anoma-
lies contributed to the growth rate of atmospheric
CH4, we compared our results against the annual
mean global CH4 growth rate and monthly CH4
trend derived from NOAA/ESRL (www.esrl.noaa.gov/
gmd/ccgg/flask.php, last access at August 2017). We
then used the first derivative of spline-smoothed
monthly wetland CH4 anomalies to calculate the wet-
land CH4 instantaneous growth rate. The time series
of CH4 concentration measurements, derived from
NOAA cooperative air sampling network, were pro-
cessed with a curve fitting method (Thoning et al
1989) that decomposes the full signal into a long-term
growth rate fit by a polynomial function, seasonal oscil-
lations by a harmonic function, and a low pass digital
filter to retain interannual and short-term variations.
From the decomposed signal, we derived component
signals such as trend, growth rate, and annual ampli-
tude. The CH4 amplitude of the seasonal cycle from
Mauna Loa surface site (MLO: 19.53◦N, 155.58◦W) in
NOAA/ESRL was applied to the analysis as an indica-
tor of the strength of CH4 seasonality in the northern
tropics, where CH4 amplitude is mainly controlled
by OH and fluxes from the land biosphere. Given
that wetlands contribute the largest fraction of natu-
ral CH4 sources and that the interannual variability
of OH is relatively small (Montzka et al 2011), the
changing trends in the CH4 amplitude consequently
imply that the variation in the trend is largely affected
by changing CH4 dynamics in wetland ecosystems.
To test whether the shifting spatio-temporal patterns
of simulated wetland CH4 dynamics are consistent
with observations, we compared the observed MLO
CH4 amplitude with simulated wetland CH4 ampli-
tude, which was calculated as the difference between
annual maxima and minima in spline-smoothed
monthly wetland CH4 anomalies.

For evaluationofwetlandareal changeswe used ter-
restrialwater storage (TWS)anomalies, observed by the
Gravity Recovery and Climate Experiment (GRACE)
satellite measurement, as a proxy for groundwater stor-
age and surface inundation Bloom et al (2012, Boening
et al 2012). We used the Level-3 monthly ‘solutions’,
version RL05, from Geo Forschung Zentrum, the Uni-
versity of Texas Center for Space Research, and the
Jet Propulsion Laboratory from April 2002 to Decem-
ber 2016 to analyze the temporal variations of water
mass in the tropics. The monthly TWS was multiplied
by a spatial grid of scaling coefficients derived from
post-processingof GRACE observations (Landerer and
Swenson 2012) to restore the signals attenuated in
the processing at small spatial scales. We used the
ensemble mean of monthly TWS from three different
products in the analysis because the ensemble mean
was the most effective in reducing the noise in grav-
ity fields solutions from GRACE data (Sakumura et al
2014).

Results and discussion

Long-term response of wetland CH4 to ENSO
The ensemble climate simulations indicate a strong
link between ENSO and wetland CH4 emissions, with
higher emissions during La Niña and lower emissions
during El Niño (figure 1(a)). We find significant neg-
ative correlations (rMERRA2 =−0.51, rERA−I =−0.36,
rCRU =−0.45, rJRA−55 =−0.35, d.f. = 443, p< 0.01)
between the ENSO MEI index and monthly wetland
CH4 anomalies, regardless of the climate data used in
the simulations. This is consistent with findings from
bottom-up modeling estimates (Hodson et al 2011,
McNorton et al 2016, Zhu et al 2017), atmospheric
modeling (Pison et al 2013, Chen and Prinn 2006) and
satellite observations. For instance, the atmospheric
CH4 variations of the mid-troposphere measured by
the Infrared Atmospheric Sounding Interferometer
aboard METOP satellite, and by the Atmospheric
Infrared Sounder aboard NASA’s Aqua satellite, also
show higher increases in 2007–2008 and 2010–2011
whenstrongLaNiñaeventsoccurred(Xiong et al2016).
Airborne-based estimates of the interannual variability
of CH4 fluxes for eastern Amazon Basin also provide
ancillary evidence that the CH4 emissions are great-
est in 2008, a year of La Niña phase (Basso et al
2016). Recent satellite observations from the Green-
house gases Observing SATellite (GOSAT) also suggest
large-scale fluctuations in atmospheric CH4 during
ENSO events, indicating that wetland CH4 emissions
are ∼5% higher during La Niña events (Pandey et al
2017). The increase in CH4 emissions from wetlands
during La Niña can be attributed to a large increase in
flood extent, primarily over tropical areas (including
SE Australia, northern South America, and Southeast
Asia) (Boeninget al2012),whereas thedecreasesduring
El Niño are possibly due to drought-induced decreases
in flooded area. All of the evidence above suggests a
robust negative relationship between annual anoma-
lies of wetland CH4 emissions and ENSO events, i.e.
positive anomalies during La Niña and vice versa.

However, negative anomalies of annual wetland
CH4 emissions do not necessarily lead to a decrease
in the instantaneous growth rate of wetland CH4 emis-
sions during El Niño. We find that the growth rate of
wetland CH4 emissions is initially decreased but then
is in a rising phase during the later stages of strong
El Niño events. Although, the amplitude of the ris-
ing varied depending on which meteorological forcing
was used in the simulations (figure 1(b)). This is
mainly because strong El Niño events drive negative
wetland CH4 growth rates at the beginning of the
ENSO anomaly, but then the growth rate rapidly recov-
ers to positive values. Despite positive atmospheric
methane growth rate correlations with El Niño events,
the general decline in wetland area causes declines
in wetland CH4 emissions at the beginning of strong
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Figure 1. Global anomalies of monthly wetland CH4 emissions (a) and instantaneous growth rates of wetland CH4 emission anomalies
from 1980–2016 for the global (b), tropics (middle, 30◦S–30◦N) (c), and Northern Hemisphere (bottom, >30◦N) (d). The global
anomalies of wetland CH4 emissions were calculated relative to monthly average from 1980–2016. The instantaneous growth rate for
each simulation is a time derivative of the smoothed monthly CH4 anomalies using spline functions. The Spearman rank correlation
coefficients between the multivariate ENSO index (MEI) and monthly wetland anomalies were derived from cross correlation analyses
(figure S1) at 3 month lags (Lag =−3), with different colors corresponding to specific runs. Shaded grey areas represent the strong El
Niño phases with MEI strength > 60 according to MEI ranks (www.esrl.noaa.gov/psd/enso/mei/rank.html, last access January 2018).

El Niño phases. The high temperatures over the tropics
strongly increase the CH4 growth rate due to higher
soil decomposition rates during the later stages of the
2015–2016 El Niño event. Cross-correlation analyses
between the monthly growth rate of wetland CH4
emissions and the MEI index suggest that the peak
correlation occurs at a 3 month lag (when ENSO leads
ΔCH4/Δt) for the globe. As expected, the timing of
wetland response to ENSO varies regionally, where
tropical Asia and tropical South America exhibit a

∼4 month lag and no lag, respectively (figure S1).
The Interannual Variability (IAV) of wetland CH4
emissions is dominated by the tropics (30◦S–30◦N)
with relatively small contributions from the Northern
Hemisphere (figures 1(c) and (d)). MERRA2 showed
the highest IAV among all four simulations, whereas
the CRU-based simulation had the lowest IAV. The
rise of wetland CH4 emission growth rate is consistent
with the observed spikes of atmospheric CH4 growth
rates during strong El Niño events (Nisbet et al 2016).
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Impact of 2015–2016 El Niño on wetland CH4
The amplitude of instantaneous growth in wetland
CH4 emissions during the 2015–2016 El Niño was
higher than that in the previous periods 1982–1983
and 1997–1998, suggesting an increased sensitivity
of wetland CH4 in response to the recent El Niño
(figure 1(b)). Our results captured the magnitude of
this large increase in wetland CH4 emissions with an
instantaneous growth rate of ∼7.6±1.6 Tg CH4 yr−1

during 2015–2016 El Niño. The meteorological
datasets drove instantaneous growth rates that ranged
between 9.2 Tg CH4 month−1, 8.6 Tg CH4 yr−1,
7.2 Tg CH4 yr−1, and 5.5 Tg CH4 yr−1 using MERRA2,
JRA-55, CRU, and ERA-I, respectively. Although the
2015–2016 El Niño was not as strong as the 1997–1998
El Niño according to the MEI index (∼3 in 1997–1998
and ∼2.5 in 2015–2016), the combined effect of rising
CO2 concentrations and high temperatures most likely
amplified the impact, causing 1.8 times the maximum
growth rate of CH4 of the 1997–1998 El Niño event
(mean growth rate of ∼4.2 ± 1.4 Tg CH4 yr−1 for the
respective time period).

The spatial distribution of wetland CH4 anomalies
demonstrated that the large increases in soil respira-
tion drove the strong growth rate and occurred during
the March–April–May (MAM) season in 2016 as a
consequence of warming and droughts in the wet sea-
sons (October 2015–May 2016) (figure 2). There was
a widespread increase in CH4 emissions over western
Amazonia, mainly attributed to increased soil respi-
ration. Despite a large decline in wetland extent due
to severe drought, significant positive anomalies in
CH4 emission peaked across the western Amazonian
basin, likely due to high temperatures. Temperature
is the primary climatic variable driving the increas-
ing long-term trend in CH4 emissions (Zhang et al
2017b). However, precipitation is the dominant cli-
matic variable regulating interannual variability in CH4
emissions by altering the inundation extent and creat-
ing anaerobic conditions suitable for methanogenesis
in the tropics (Zhang et al 2017b).

Wetland CH4 trends between 2000–2006 and post-
2007
Using the meteorological reanalysis data, we find evi-
dence for a step increase in global annual wetland
emissions between the periods of 2007–2014 relative
to that of 2000–2006 (figure 3(a)). These simula-
tions suggest that the average annual CH4 emissions
from 2007–2014 increased by ∼7.8 ± 1.6 Tg CH4 yr−1

compared to the average of 2000–2006, which is equiv-
alent to an increase in the growth rate of up to
∼3.5 ppb CH4 yr−1 for the post-2007 period, or about
half of the observed increase in concentrations. The
CRU-based simulation in this study did not show a
strong step-increase between these two periods, sug-
gesting only a marginal contribution from wetlands
witha1.5 Tg CH4 yr−1 increase in thepost-2007growth
rate. This is consistent with findings from an ensemble

Table 2. Summary of mean annual CH4 emissions of the tropics
(30◦S–30◦N, denoted as TRO), the northern extratropics (denoted as
NET), and the southern extratropics (denoted SET) for 2000–2006,
and 2007–2014 from simulations with daily meteorological forcings
MERRA2, ERA-I, and JRA-55 and with a spatial-interpolated climate
dataset CRU that is based on interpolations from meteorological
stations.

Time period Forcing eCH4 (Tg CH4 yr−1)
TRO NET SET Global

2000–2006 CRU 138.1 32.3 1.8 172.2
MERRA2 136.1 32.5 2.1 170.7

ERA-I 142.3 26.6 1.9 170.9
JRA-55 141.5 29.8 1.8 173.1

2007–2014 CRU 139.1 33.0 1.7 173.8
MERRA2 145.6 32.8 1.9 180.3

ERA-I 148.6 27.0 1.8 177.4
JRA-55 147.7 31.1 1.8 180.6

modeling experiment using CRU as a forcing dataset,
which found no significant increase of global wetland
CH4 emissions during the period of renewed atmo-
spheric CH4 growth (Poulter et al 2017). Another
recent atmospheric modeling study, also using CRU
as forcing for their prior inputs, likewise suggested that
wetlands made only a small contribution to the post-
2007 growth at ∼1 ppb yr−1 (McNorton et al 2016).
In contrast to the CRU simulations just listed, all our
simulations using meteorological reanalysis data sug-
gest that more than 90% of the increase in the growth
rate of wetland CH4 is from the tropics (table 2),
and mainly due to increases in precipitation across
South America, tropical Africa, and Southeast Asia
since 2007. MERRA2-based simulations suggest that
the post-2007 rise in global CH4 concentrations pri-
marily comes from South America and tropical Africa,
whereas ERA-I and JRA-55 identify South America
as the largest contributor to the CH4 growth rate
(figure S2).

The different IAV patterns of CH4 emissions
among these simulations suggest considerable uncer-
tainties in CH4 emissions due to climate drivers
(figure 3(a)). The model experiments demonstrated
that the discrepancy originates mainly from differ-
ent model behavior when using products like CRU
and meteorological reanalyses like MERRA2, ERA-
I, and JRA-55, regardless of the temporal resolution
of climate inputs used (figure S3). We found only
minor differences using a daily or monthly tempo-
ral resolution, which likely reduced uncertainties from
applying the simulated weather generator and thus
show that the weather generator covered the internal
climatic variability at monthly scale. The importance
of considering uncertainty of climate forcing was
also reflected in the representation of the seasonal
cycle of CH4 emissions. The comparison of simulated
CH4 emissions with independent estimates using an
atmospheric model STILT based on CARVE airborne
experiments (Zona et al 2016) suggested a dominant
role of climate forcings in capturing CH4 seasonal-
ity in arctic regions (figure 3(b)). MERRA2, ERA-I,
and JRA-55 underestimated the peak CH4 emission in
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Figure 2. Spatial distributions of seasonal ensemble mean anomalies in wetland CH4 emissions (a): (eCH4, Unit: g CH4 m−2 mon−1),
inundated areas (b): (Awet , Unit: %), and heterotrophic respiration (c): (Rh, Unit: g C m−2 mon−1) of the greater Amazonia region for
the March–April–May season, 2016, where eCH4 shows the highest growth rate during the 2015–2016 ENSO event. The anomalies
are calculated as seasonal means during the MAM season of 2016 relative to average over the period of 1980–2016 level, with the
uncertainty calculated as one-standard deviation from the four simulations forced by each meteorological dataset.

growing season but were able to capture the general
seasonal cycle in CH4 emissions for the North Slope of
Alaska, while CRU-based estimates failed to reproduce
a similar pattern. The seasonal cycle of CH4 emissions
was also generally underestimated by most bottom-
up models that used CRU climate data in a synthesis
modeling experiment (Melton et al 2013), highlight-
ing the need to better constrain the CH4 emissions
by taking into account several datasets that represent
climate forcing uncertainty.

Sensitivity of wetland CH4 emissions to ENSO
To further investigate whether the influence of ENSO
on global wetland CH4 fluctuation was strengthening,
we evaluated the average sensitivity of simulated wet-
land CH4 emissions and wetland areas in the tropics to
ENSO events. To this means we calculated the ratio of
the annual anomaly of CH4 emission/wetland area to
the annual MEI index for three different time peri-
ods, 1980–1999, 2000–2006, and 2007–2016 (figure
4). We observed a minor change in the sensitivity of
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Figure 3. Simulated temporal patterns of CH4 from all model experiments (see details in table 1). (a) Time series of annual CH4
emissions using climate forcings with daily and monthly temporal resolution. The daily forcings were aggregated to monthly values to
evaluate the influence of daily variations of climate variables on CH4 estimations. Solid and dotted lines represent daily and monthly
inputs, respectively. The horizontal lines represent averaged annual CH4 emissions for two time periods, 2000–2006 and 2007–2014,
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Alaska for 2012–2014 in comparison to the observed regional CH4 fluxes (dots) estimated from analysis of 15 aircraft flights by the
National Aeronautics and Space Administration’s Carbon in Arctic Vulnerability Experiment (CARVE).

CH4 emissions and wetland areas between 1980–1999
and 2000–2006, which suggests a subtle change in the
response of global wetland CH4 emissions to increas-
ing global temperatures. However, the sensitivity of the
modeled results strongly increased for the period of
2007–2016 relative to the two previous time periods.
The sensitivity in CH4 emissions increased by ∼200%
in MERRA2, ERA-I, and JRA-55, whereas the CRU
run resulted in a lower percent increase (42%) com-
pared to the other model experiments. The concurrent
increase in the sensitivity of CH4 emissions and wet-
land areas indicates that the increase of CH4 emissions
since 2007 can mainly be attributed to an increased
sensitivity of wetland areas, which was driven by the
changing precipitation patterns found in meteorologi-
cal reanalysis products. The GRACE measurement for
relative equivalent water storage confirms the large
increase for the period of 2007–2014 compared to
earlier periods (figure 5), suggesting that our simu-
lated increases in tropical wetland areas are robust.
All of the modeled wetland areas have significant cor-
relations (rMERRA2 = 0.59, rERA−I = 0.59, rCRU = 0.56,
rJRA−55 = 0.5, d.f. = 176, p< 0.01) with GRACE TWS,
and suggest a ∼150 103 km2 increase in inundation
over time period of 2007–2014. This also implies that,

despite anobserveddecline inopenwaters in the tropics
(due to the anthropogenic effect from denser pop-
ulations and impacts from human activities for the
period of 1990s and early 2000s (Prigent et al 2012)),
the enhanced precipitation since 2007 (Sun et al 2017,
Rodell et al 2018) was primarily related to the ENSO
phase over tropical land, which has affected wetland
patterns and CH4 emissions globally.

Relationship between wetland CH4 and atmospheric
growth rate
There was a statistically significant (p< 0.10) positive
trend in the simulated annual amplitude of wetland
CH4 emissions, suggesting an increasingly enhanced
sensitivity of wetland CH4 emissions to climate change
in recent decades (figure 6). All model simulations
indicated positive trends of the annual amplitude of
wetland CH4 emissions with small differences depend-
ingon climate forcings. These simulated positive trends
are consistent with observed trends in CH4 ampli-
tude at the MLO site, for which MERRA2, ERA-I,
and JRA-55 runs were correlated with MLO obser-
vations (rMERRA2 = 0.36, rERA−I = 0.42, rCRU = 0.29,
rJRA−55 = 0.37, d.f. = 30, p< 0.05) and only CRU-
based simulations showed a weak correlation between

8



Environ. Res. Lett. 13 (2018) 074009

C
H

4 
se

n
si

ti
vi

ty
 (

T
g

 C
H

4
/M

E
I)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1980 1999 2000 2006 2007 2016

MERRA2 ERA I CRU JRA 55

(a)

W
et

ar
ea

 s
en

si
ti

vi
ty

 (
M

km
2
/M

E
I)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1980 1999 2000 2006 2007 2016

(b)
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wetland CH4 emissions and enhanced global CH4
seasonality. These significant correlations suggest rela-
tionships between atmospheric CH4 seasonality and
natural wetland emissions, despite the major role of
OH in determining CH4 seasonality. The increasing
trends in CH4 amplitude also imply a high likelihood

that there is an underlying shift of CH4 seasonality in
wetland ecosystems and this shift in seasonality is likely
greatest in tropical regions.

We found a small, but significant, positive corre-
lation between annual wetland CH4 emissions and the
annual atmospheric CH4 growth rate in simulations
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forced by the daily meteorological datasets MERRA2
(r = 0.31, d.f. = 33, p< 0.1), ERA-I (r = 0.36, d.f. = 33,
p< 0.1), and JRA-55 (r = 0.38, d.f. = 33, p< 0.05) for
the period of 2000–2015, whereas no significant corre-
lationwas found inCRU-based runs (r = 0.07, d.f. = 33,
p> 0.75). For the period of 1980–1999, none of the
simulations showed a significant correlation with the
annual atmospheric CH4 growth rate. The atmospheric
CH4 growth rate is not exclusively a result of changes in
wetland emissions, but rather due to a combined influ-
ence of anthropogenic and natural sources, and also
due to a hydroxyl radical sink (Turner et al 2017, Rigby
et al 2017). Recent studies have reported an increase
in annual CH4 emissions from global livestock (Wolf
et al 2017) and an expansion of agricultural areas for
rice paddies in southern Asia (Zhang et al 2017a), a
region where precipitation has largely increased since
2007. Thus, we hypothesize that a combination of
tropical wetlands and agricultural sources are likely
responsible for the resumed growth rate of atmo-
spheric CH4 concentrations, which is consistent with
the depletion in the global isotopic signature in 13CH4
(Schaefer et al 2016) and with regional measurements
of 13CH4 in the tropics (Nisbet et al 2016).

Conclusions

We demonstrate that global wetland CH4 emission
anomalies are strongly related to ENSO variability

using an extended, multi-meteorological ensemble.
At sub-annual time-scales, we also found that the
instantaneous growth rate of wetland CH4 anomalies
was positively correlated with ENSO strengths, which
provides an explanation for the observed rise of atmo-
spheric CH4 growth rate during strong El Niño events.
The ongoing warming trend, as well as the shifting pat-
terns of global precipitation, has likely had a significant
impact on increasing global CH4 interannual variabil-
ity. The strong El Niño event in 2015–2016, associated
with extreme heat and drought over the Amazonian
regions, caused record-high growth rates of wetland
CH4 emissionscompared to theprevious threedecades.
We also found an increasing sensitivity of wetland CH4
emissions to ENSO oscillation since 2007, which we
attribute to increases in the areal extent of tropical
wetlands from increased precipitation. Our study also
highlights the need to account for uncertainty in the
climate forcing for estimating wetland CH4 emissions.

Data availability

The data that support the findings of this study
are available upon request, for access please con-
tact Z Zhang (yuisheng@gmail.com). Atmospheric
CH4 concentration datasets were obtained from the
NOAA ESRL GMD Carbon Cycle Cooperative Global
Air Sampling Network (www.esrl.noaa.gov/gmd/
ccgg/flask.php, last access at August 2017). The annual
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mean global CH4 growth rate and monthly trend
were derived from NOAA/ESRL (www.esrl.noaa.gov/
gmd/ccgg/trends_ch4/). Terrestrial Water Storage
products were derived from the GRACE website
(https://grace.jpl.nasa.gov/data/get-data/, last accessed
on October 2017). We used the multivariate ENSO
index (MEI) (www.esrl.noaa.gov/psd/enso/mei/, last
access at October 2017) as indices for representing
ENSO strength.
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