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Abstract

Wetlands are thought to be the major contributor to interannual variability in the growth rate of
atmospheric methane (CH,) with anomalies driven by the influence of the El Nifio-Southern
Oscillation (ENSO). Yet it remains unclear whether (i) the increase in total global CH, emissions
during El Nifio versus La Nifia events is from wetlands and (ii) how large the contribution of wetland
CH, emissions is to the interannual variability of atmospheric CH,. We used a terrestrial ecosystem
model that includes permafrost and wetland dynamics to estimate CH, emissions, forced by three
separate meteorological reanalyses and one gridded observational climate dataset, to simulate the
spatio-temporal dynamics of wetland CH, emissions from 1980-2016. The simulations show that
while wetland CH, responds with negative annual anomalies during the El Nifio events, the
instantaneous growth rate of wetland CH, emissions exhibits complex phase dynamics. We find that
wetland CH, instantaneous growth rates were declined at the onset of the 2015-2016 El Nifio event
but then increased to a record-high at later stages of the El Nifio event (January through May 2016).
We also find evidence for a step increase of CH, emissions by 7.8+1.6 Tg CH, yr~! during 2007-2014
compared to the average of 2000-2006 from simulations using meteorological reanalyses, which is
equivalent to a ~3.5 ppb yr~! rise in CH, concentrations. The step increase is mainly caused by the
expansion of wetland area in the tropics (30°S—-30°N) due to an enhancement of tropical precipitation
as indicated by the suite of the meteorological reanalyses. Our study highlights the role of wetlands,
and the complex temporal phasing with ENSO, in driving the variability and trends of atmospheric
CH, concentrations. In addition, the need to account for uncertainty in meteorological forcings is
highlighted in addressing the interannual variability and decadal-scale trends of wetland CH, fluxes.

Introduction

Methane (CHy) is a potent greenhouse gas and has
contributed to ~20% of observed warming since
pre-industrial times (IPCC 2013). Atmospheric CHy
concentrations have risen from preindustrial levels of
715 parts per billion (ppb) since the 1800s (Etheridge
et al 1998, MacFarling Meure et al 2006) to current
global concentration of ~1847 ppb, a 2.5 fold increase,

primarily driven by anthropogenic activities (Kirschke
et al 2013), e.g. fossil fuel activities, agriculture, and
also by the biogeochemical feedbacks of natural pro-
cesses to climate change (Arneth et al 2010, Tian et al
2016, Saunois et al 2016). However, the variability
in the annual growth rate of atmospheric CHy is
strongly related to the climatic sensitivity of biogenic
CHy, sources, of which global wetland CH, comprises
60%—-80% of natural emissions (Quiquet et al 2015,

© 2018 The Author(s). Published by IOP Publishing Ltd
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Hopcroft et al 2017) and this large role is likely to
persist into the future (Zhang et al 2017b). Thus, inter-
annual variability in the growth rate of atmospheric
CHy is largely affected by the response of global wet-
land CH, emissions to the year-to-year mode of global
climate variability such as the El Nifo-Southern Oscil-
lation (ENSO). ENSO is one of the largest climate
phenomena that drives carbon dynamics and their
anomalies across large portions of the globe (Chatterjee
etal2017).

El Nifio, the positive phase of ENSO, influences
water- and carbon- fluxes of tropical terrestrial ecosys-
tems through a change in patterns of atmospheric
pressure and sea surface temperature (Philander 1990).
These changes induce strong warming and reduced
precipitation patterns by shifting the Intertropical Con-
vergence Zone southward, causing amplified wildfires
(Worden et al 2013) and reduced wetland areal extent
and CH, emissions (Hodson et al2011). Tropical wet-
lands, which comprise 50%-70% of global wetland
CH, emissions (Bousquet et al 2006), are similarly
influenced by the periodic variations of air tem-
perature and precipitation related to ENSO phases
(Pison et al2013). Atmospheric measurements of CH,
provide evidence that the growth rate of global CH,
concentrations can rise during strong El Niflo years
(Nisbet et al 2016, Bousquet et al 2006), but terres-
trial biogeochemical models suggest that tropical and
global wetland CH, emissions are usually found to
decrease during El Nifio (Hodson et al 2011, Zhu et al
2017, Ringeval et al 2014).

At decadal time scales, the relationship between the
annual CH, growth rate and variability in global wet-
land CH, emissions is not fully agreed upon, and the
observed pause in the growth rate during 2000-2006
and subsequent return of the growth rate since 2007
(Nisbet et al 2014) is not fully understood. A recent
study suggests that global wetlands have played a lim-
ited role during the renewed rise of the growth rate
through 2012 (Poulter et al 2017). However, isotopic
measurements indicate that the resumed increase in
the growth rate could originate either from biogenic
sources (Schwietzke et al 2016) like tropical wetlands
(Nisbet et al 2016), from agricultural sources (Schaefer
et al 2016), or from the combined effect of decreased
biomass burning (Worden et al 2017) and increased
fossil-fuel emissions (Helmig et al 2016). In addition,
simple-box models and more complex atmospheric
inversion models can attribute the recent CH, change
to varying hydroxyl radical (OH) concentration, the
major CHy sink in the atmosphere (Turner et al 2017,
Rigby et al 2017). Our poor understanding of wet-
land CH, responses at annual to decadal time scales
calls for revisiting the role of relationships between cli-
mate forcings and wetland CH, fluxes to help reconcile
top-down and bottom-up methodologies.

Previous El Nifio anomalies, in years 1982-1983,
1997-1998, and 2015-2016, had significant impacts
on terrestrial ecosystems and these events were con-
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Table 1. Model experiment descriptions. Climatic variables T, P, SW,
LW, CLD, and WETD represent temperature, precipitation,
shortwave radiation, longwave radiation, cloud cover, and wet days
respectively.

Run ID Forcing Temporal  Climatic Time
number resolution  variables periods

i MERRA2  Daily T,P,SW,LW  1980-2016
il MERRA2  Monthly T, P, SW,LW* 1980-2016
il ERA-I Daily T,P,SW,LW  1980-2016
iv ERA-I Monthly T, P,SW,LW  1980-2016
v JRA-55 Daily T,P,SW,LW  1980-2016
vi JRA-55 Monthly T, P, SW,LW?* 1980-2016
vii CRU Monthly T, P, CLD 1901-2016

2 CLD and WETD are from CRU for comparison.

sidered key drivers of the atmospheric CO, growth
rate variability (Liu et al 2017). The most recent El
Nifio event (2015-2016) caused unprecedented warm-
ing and extreme drought over most of the Amazonia
regions (Jiménez-Mufloz et al 2016, L'Heureux et al
2016, Lim et al 2017, Chatterjee et al 2017). The
occurrence of this extreme El Nifio event disrupted
regional ecosystems, causing sharp increases in atmo-
spheric CO, concentrations (Betts et al 2016) and a
doubling of fire-induced emissions in Southeast Asia
(Whitburn et al 2016). The more recent El Nifio event
may have also contributed to record warming during
2015 and the first third of 2016, with global air temper-
ature at 0.94 °C above the 20th century mean annual
average (www.ncdc.noaa.gov/sotc/global/201613, last
access in August 2017). Exactly how much the 2015-
2016 ENSO phenomenon has impacted global wetland
CH, emissions and to what extent it has affected the
annual growth rate of atmospheric CH, concentration
remains unknown due to challenges in monitoring and
modeling.

Here, we analyze the relationship between ENSO
phase and wetland CH, emissions by addressing two
main questions: first, how does ENSO, with particular
attention to the ENSO event in 2015-2016, affect the
interannual variability of CH, emissions from global
wetlands? Second, what are the major mechanisms
that link wetland CH, emissions to the atmospheric
increases observed since 2007¢

Methods

We use a process-based ecosystem model LPJ-wsl
(Lund-Potsdam-Jena model, WSL version) forced with
four different meteorological forcings to simulate wet-
land CH, emissions from 1980-2016. These drivers
include one station-based monthly geo-interpolation
dataset (CRU) and three meteorological reanalyses
products (table 1). We use multiple climate datasets
to investigate uncertainty from meteorological forcing
driving simulated atmospheric CH, concentrations,
and hence, to better characterize CH, variation in
response to climate variations.
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LPJ-wsl (Poulter et al 2011) is a process-based
dynamic global vegetation model (DGVM) developed
for studying terrestrial ecosystems, based on an ear-
lier LPJ core model (Sitch et al 2003). The version of
the model applied in this study includes a new hydrol-
ogy model, TOPMODEL, to determine wetland area
and its inter- and intra-annual dynamics (Zhang et al
2016), a permatrost and dynamic snow model (Wania
et al 2009), and a prognostic wetland CH, emis-
sion model (Hodson et al 2011), each of which is
incorporated into the LPJ-wsl framework with explicit
representation of the effects of snow and freeze/thaw
cycles on soil temperature and moisture and thus CH,
emissions (Zhang et al 2016). We apply an empiri-
cal model to estimate CH, emissions in the model
which is based on soil respiration, inundated area,
and a temperature-based ecosystem emission efficiency
(Christensen et al 1996). Soil respiration is mod-
elled empirically in response to temperature and soil
moisture based on an Arrhenius type equation where
varying effective activation energies for respiration
and a dampening of the temperature sensitivity (Qy)
due to acclimation were considered (Sitch et al
2003). The simulated dynamics of wetland area and
CH, emissions have been evaluated against large-
scale observations in previous studies (Hodson et al
2011, Zhang et al 2016, Zhang et al 2017b). Here,
we calibrated temperature-modified CH, emitting fac-
tors by scaling simulated global estimates to match
172 TgCH, yr~! in 2004, which was estimated from
an independent atmospheric inversion study (Spahni
et al 2011), and is in agreement with independent
satellite-based methods from Bloom et al (2010). We
improved inundation estimates by calibrating the TOP-
MODEL parameter ‘maximum inundation potential’
(Fnax) (Zhang et al 2016) using an independent
inundation dataset (Poulter et al 2017) that was
derived fromasatellite-based Surface Water Microwave
Product Series (SWAMPS) (Schroeder et al 2015),
an inventory-based dataset Global Lakes and Wet-
lands Database (GLWD) (Lehner and Déll 2004),
and a regional wetland map derived from satellite
retrievals for Amazonia (Hess et al 2015). To avoid
confusion regarding double counting (Thornton et al
2016), we clarify that our simulated wetland area
includes seasonally inundated wetlands, e.g. flood-
plains, and permanently inundated vegetated wetlands,
but excludes rice agriculture, non-vegetated reservoirs,
medium to large sized lakes, rivers, and coastal wetlands
that are not accounted for by the GLWD.

The climate datasets included the monthly meteo-
rology from the Climate Research Unit (CRU) TS 3.25
(Harris et al 2014) and three state-of-the-art metro-
logical reanalysis products. The reanalysis products
were comprised of 1 hourly reanalysis Modern-Era
Retrospective analysis for Research and Applica-
tions Version 2 (MERRA2) (Gelaro et al 2017)
from the NASA Global Modeling and Assimilation
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Office (GMAO), 6 hourly ERA-Interim (ERA-I) (Dee
et al 2011) from the European Centre for Medium-
Range Weather Forecasts (ECMWF) data assimilation
system and, and lastly, a 6 hourly Japanese 55 year
Reanalysis (JRA-55) (Kobayashi et al 2015) from the
Japan Meteorological Agency. The reanalysis data (total
precipitation, 2 m air temperature, downward short-
wave radiation, and downward longwave radiation)
were aggregated to a common daily time-step and
downscaled to 0.5° spatial resolution grid using first
order conservative interpolation. The soils dataset
we used was the Harmonized World Soil Database
v1.2 (Nachtergaele et al 2008) and using pedotrans-
fer functions of the surface soil texture (Cosby et al
1984) to estimate volumetric water holding capac-
ity. For the monthly CRU data, LPJ-wsl was set
up to use a wet-day frequency dataset, a weather
generator (Geng et al 1986) to generate daily pre-
cipitations, and a set of simplified equations with
monthly cloud cover as input to calculate daily
photosynthetically active radiation flux and potential
evapotranspiration (Prentice et al 1993). Additional
details of the climate datasets and model experiments
are in the supplementary material (table S1 available
at stacks.iop.org/ERL/13/074009/mmedia). The LPJ-
wsl state variables (i.e. carbon in vegetation, litter, and
soils) were simulated to reach equilibrium by using a
1000 year spinup, with fire dynamics, and a 398 year
spinup for land use change using Land-Use Harmo-
nization dataset (LUHv2) (Hurtt et al 2011). Spin-up
was done using randomly selected climate inputs from
1901-1930 for CRU and 1980-2000 for reanalysis with
fixed atmospheric CO, to the 1860 value. After equilib-
rium, a transient simulation with fire effects and varying
land cover was performed for the years 1901-2016
(for CRU) and 1980-2016 (for reanalysis), forced with
changing climate conditions and varying atmospheric
CO, concentration (www.esrl.noaa.gov/ccgg/trends,
last access at August 2017). The simulations con-
sider gross land-use transitions (with no wood harvest)
with primary and secondary lands treated separately
(for details, see Arneth et al 2017), where the soil
moisture and soil respiration were calculated by
fraction-weighting individual land stands within a grid
cell.

We used the Multivariate ENSO index (MEI) for
representing the ENSO strength (Wolter and Timlin
1998). The MEI index represents the first unrotated
principal component of the combined, normalized
fields of the primary climate variables observed over
the tropical Pacific, reflecting a global signal of climate-
land-atmosphere interaction for both El Nifio and La
Nifia events. Given that previous studies (Fang et al
2017, Liu et al 2017) have shown a hysteresis in the
Earth systems response to changes in temperature
and precipitation patterns, we carried out a cross-
correlation analysis to examine possible time-lag effects
of wetland CH, response to El Nifio events.
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To test whether annual wetland CH, anoma-
lies contributed to the growth rate of atmospheric
CH,, we compared our results against the annual
mean global CH, growth rate and monthly CH,
trend derived from NOAA/ESRL (www.esrl.noaa.gov/
gmd/ccgg/tlask.php, last access at August 2017). We
then used the first derivative of spline-smoothed
monthly wetland CH, anomalies to calculate the wet-
land CH, instantaneous growth rate. The time series
of CH, concentration measurements, derived from
NOAA cooperative air sampling network, were pro-
cessed with a curve fitting method (Thoning et al
1989) that decomposes the full signal into a long-term
growth rate fit by a polynomial function, seasonal oscil-
lations by a harmonic function, and a low pass digital
filter to retain interannual and short-term variations.
From the decomposed signal, we derived component
signals such as trend, growth rate, and annual ampli-
tude. The CH, amplitude of the seasonal cycle from
Mauna Loa surface site (MLO: 19.53°N, 155.58°W) in
NOAA/ESRL was applied to the analysis as an indica-
tor of the strength of CH, seasonality in the northern
tropics, where CH, amplitude is mainly controlled
by OH and fluxes from the land biosphere. Given
that wetlands contribute the largest fraction of natu-
ral CHy sources and that the interannual variability
of OH is relatively small (Montzka et al 2011), the
changing trends in the CH, amplitude consequently
imply that the variation in the trend is largely affected
by changing CH, dynamics in wetland ecosystems.
To test whether the shifting spatio-temporal patterns
of simulated wetland CH, dynamics are consistent
with observations, we compared the observed MLO
CH, amplitude with simulated wetland CH, ampli-
tude, which was calculated as the difference between
annual maxima and minima in spline-smoothed
monthly wetland CH, anomalies.

For evaluation of wetland areal changes we used ter-
restrial water storage (TWS) anomalies, observed by the
Gravity Recovery and Climate Experiment (GRACE)
satellite measurement, as a proxy for groundwater stor-
age and surface inundation Bloom et al (2012, Boening
et al 2012). We used the Level-3 monthly ‘solutions’,
version RLO5, from Geo Forschung Zentrum, the Uni-
versity of Texas Center for Space Research, and the
Jet Propulsion Laboratory from April 2002 to Decem-
ber 2016 to analyze the temporal variations of water
mass in the tropics. The monthly TWS was multiplied
by a spatial grid of scaling coefficients derived from
post-processing of GRACE observations (Landerer and
Swenson 2012) to restore the signals attenuated in
the processing at small spatial scales. We used the
ensemble mean of monthly TWS from three different
products in the analysis because the ensemble mean
was the most effective in reducing the noise in grav-
ity fields solutions from GRACE data (Sakumura et al
2014).
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Results and discussion

Long-term response of wetland CH, to ENSO
The ensemble climate simulations indicate a strong
link between ENSO and wetland CH, emissions, with
higher emissions during La Nifia and lower emissions
during El Nifio (figure 1(a)). We find significant neg-
ative correlations (ryrrra2 =—0.51, rgra_1=—0.36,
reru = —0.45, fpa_ss =—0.35, d.f.=443, p<0.01)
between the ENSO MEI index and monthly wetland
CH, anomalies, regardless of the climate data used in
the simulations. This is consistent with findings from
bottom-up modeling estimates (Hodson et al 2011,
McNorton et al 2016, Zhu et al 2017), atmospheric
modeling (Pison et al 2013, Chen and Prinn 2006) and
satellite observations. For instance, the atmospheric
CH, variations of the mid-troposphere measured by
the Infrared Atmospheric Sounding Interferometer
aboard METOP satellite, and by the Atmospheric
Infrared Sounder aboard NASA’s Aqua satellite, also
show higher increases in 2007-2008 and 2010-2011
when strong La Nifia events occurred (Xiong et al2016).
Airborne-based estimates of the interannual variability
of CH, fluxes for eastern Amazon Basin also provide
ancillary evidence that the CH, emissions are great-
est in 2008, a year of La Nifla phase (Basso et al
2016). Recent satellite observations from the Green-
house gases Observing SATellite (GOSAT) also suggest
large-scale fluctuations in atmospheric CH, during
ENSO events, indicating that wetland CH, emissions
are ~5% higher during La Nifa events (Pandey et al
2017). The increase in CH, emissions from wetlands
during La Nifia can be attributed to a large increase in
flood extent, primarily over tropical areas (including
SE Australia, northern South America, and Southeast
Asia) (Boening et al2012), whereas the decreases during
El Nifio are possibly due to drought-induced decreases
in flooded area. All of the evidence above suggests a
robust negative relationship between annual anoma-
lies of wetland CH, emissions and ENSO events, i.e.
positive anomalies during La Nifia and vice versa.
However, negative anomalies of annual wetland
CH, emissions do not necessarily lead to a decrease
in the instantaneous growth rate of wetland CH, emis-
sions during El Nifio. We find that the growth rate of
wetland CH,4 emissions is initially decreased but then
is in a rising phase during the later stages of strong
El Nifio events. Although, the amplitude of the ris-
ing varied depending on which meteorological forcing
was used in the simulations (figure 1(b)). This is
mainly because strong El Nifio events drive negative
wetland CH, growth rates at the beginning of the
ENSO anomaly, but then the growth rate rapidly recov-
ers to positive values. Despite positive atmospheric
methane growth rate correlations with El Nifio events,
the general decline in wetland area causes declines
in wetland CH, emissions at the beginning of strong
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Figure 1. Global anomalies of monthly wetland CH, emissions (a) and instantaneous growth rates of wetland CH, emission anomalies

anomalies of wetland CH,4 emissions were calculated relative to monthly average from 1980-2016. The instantaneous growth rate for
each simulation is a time derivative of the smoothed monthly CH, anomalies using spline functions. The Spearman rank correlation
coefficients between the multivariate ENSO index (MEI) and monthly wetland anomalies were derived from cross correlation analyses
(figure S1) at 3 month lags (Lag = —3), with different colors corresponding to specific runs. Shaded grey areas represent the strong El
Niflo phases with MEI strength > 60 according to MEI ranks (www.esrl.noaa.gov/psd/enso/mei/rank.html, last access January 2018).

19‘98 20‘00 20‘02 20‘04 20‘06 20‘08 20‘10 20‘12 20‘14 20‘16

) (¢), and Northern Hemisphere (bottom, >30°N) (d). The global

El Nifio phases. The high temperatures over the tropics
strongly increase the CH, growth rate due to higher
soil decomposition rates during the later stages of the
2015-2016 El Nifio event. Cross-correlation analyses
between the monthly growth rate of wetland CHy,
emissions and the MEI index suggest that the peak
correlation occurs at a 3 month lag (when ENSO leads
ACH,/At) for the globe. As expected, the timing of
wetland response to ENSO varies regionally, where
tropical Asia and tropical South America exhibit a

~4 month lag and no lag, respectively (figure S1).
The Interannual Variability (IAV) of wetland CH,
emissions is dominated by the tropics (30°S-30°N)
with relatively small contributions from the Northern
Hemisphere (figures 1(¢) and (d)). MERRA2 showed
the highest IAV among all four simulations, whereas
the CRU-based simulation had the lowest IAV. The
rise of wetland CH, emission growth rate is consistent
with the observed spikes of atmospheric CH, growth
rates during strong El Nifio events (Nisbet et al 2016).
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Impact of 2015-2016 El Nifio on wetland CH,

The amplitude of instantaneous growth in wetland
CH, emissions during the 2015-2016 El Nifio was
higher than that in the previous periods 1982-1983
and 1997-1998, suggesting an increased sensitivity
of wetland CH, in response to the recent El Niflo
(figure 1(b)). Our results captured the magnitude of
this large increase in wetland CH, emissions with an
instantaneous growth rate of ~7.6+1.6TgCH,yr™!
during 2015-2016 El Niflo. The meteorological
datasets drove instantaneous growth rates that ranged
between 9.2 TgCH, month™', 8.6 TgCH,yr™!,
7.2TgCH, yr~!,and 5.5 Tg CH, yr~! using MERRA2,
JRA-55, CRU, and ERA-I, respectively. Although the
2015-2016 El Niflo was not as strong as the 1997-1998
El Nifio according to the MEI index (~3 in 1997-1998
and ~2.5in 2015-2016), the combined effect of rising
CO, concentrations and high temperatures most likely
amplified the impact, causing 1.8 times the maximum
growth rate of CHy of the 1997-1998 El Nifio event
(mean growth rate of ~4.2 + 1.4 Tg CH, yr~! for the
respective time period).

The spatial distribution of wetland CH, anomalies
demonstrated that the large increases in soil respira-
tion drove the strong growth rate and occurred during
the March—April-May (MAM) season in 2016 as a
consequence of warming and droughts in the wet sea-
sons (October 2015-May 2016) (figure 2). There was
a widespread increase in CH, emissions over western
Amazonia, mainly attributed to increased soil respi-
ration. Despite a large decline in wetland extent due
to severe drought, significant positive anomalies in
CH, emission peaked across the western Amazonian
basin, likely due to high temperatures. Temperature
is the primary climatic variable driving the increas-
ing long-term trend in CH, emissions (Zhang et al
2017b). However, precipitation is the dominant cli-
matic variable regulating interannual variability in CH,
emissions by altering the inundation extent and creat-
ing anaerobic conditions suitable for methanogenesis
in the tropics (Zhang et al 2017b).

Wetland CH, trends between 2000-2006 and post-
2007

Using the meteorological reanalysis data, we find evi-
dence for a step increase in global annual wetland
emissions between the periods of 2007-2014 relative
to that of 2000-2006 (figure 3(a)). These simula-
tions suggest that the average annual CH, emissions
from 2007-2014 increased by ~7.8 + 1.6 Tg CH, yr™!
compared to the average of 2000-2006, which is equiv-
alent to an increase in the growth rate of up to
~3.5ppb CH, yr~! for the post-2007 period, or about
half of the observed increase in concentrations. The
CRU-based simulation in this study did not show a
strong step-increase between these two periods, sug-
gesting only a marginal contribution from wetlands
witha 1.5 Tg CH, yr~! increase in the post-2007 growth
rate. This is consistent with findings from an ensemble
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Table 2. Summary of mean annual CH, emissions of the tropics
(30°S-30°N, denoted as TRO), the northern extratropics (denoted as
NET), and the southern extratropics (denoted SET) for 2000-2006,
and 2007-2014 from simulations with daily meteorological forcings
MERRA2, ERA-I, and JRA-55 and with a spatial-interpolated climate
dataset CRU that is based on interpolations from meteorological
stations.

Time period Forcing eCH, (Tg CHyyr™")

TRO NET  SET Global

2000-2006 CRU 138.1 32.3 1.8 172.2
MERRA2 136.1 32.5 2.1 170.7

ERA-I 142.3 26.6 1.9 170.9

JRA-55 141.5 29.8 1.8 173.1

2007-2014 CRU 139.1 33.0 1.7 173.8
MERRA2 145.6 32.8 1.9 180.3

ERA-I 148.6 27.0 1.8 177.4

JRA-55 147.7 31.1 1.8 180.6

modeling experiment using CRU as a forcing dataset,
which found no significant increase of global wetland
CH, emissions during the period of renewed atmo-
spheric CH, growth (Poulter et al 2017). Another
recent atmospheric modeling study, also using CRU
as forcing for their prior inputs, likewise suggested that
wetlands made only a small contribution to the post-
2007 growth at ~1ppbyr~! (McNorton et al 2016).
In contrast to the CRU simulations just listed, all our
simulations using meteorological reanalysis data sug-
gest that more than 90% of the increase in the growth
rate of wetland CH, is from the tropics (table 2),
and mainly due to increases in precipitation across
South America, tropical Africa, and Southeast Asia
since 2007. MERRA2-based simulations suggest that
the post-2007 rise in global CH, concentrations pri-
marily comes from South America and tropical Africa,
whereas ERA-I and JRA-55 identify South America
as the largest contributor to the CH, growth rate
(figure S2).

The different IAV patterns of CH, emissions
among these simulations suggest considerable uncer-
t