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Asynchronous Corner Detection and Tracking
for Event Cameras in Real-Time

Ignacio Alzugaray and Margarita Chli

Abstract—The recent emergence of bio-inspired event cam-
eras has opened up exciting new possibilities in high-frequency
tracking, bringing robustness to common problems in traditional
vision, such as lighting changes and motion blur. In order to
leverage these attractive attributes of the event cameras, research
has been focusing on understanding how to process their unusual
output: an asynchronous stream of events. With the majority
of existing techniques discretizing the event-stream essentially
forming frames of events grouped according to their timestamp,
we are still to exploit the power of these cameras.

In this spirit, this paper proposes a new, purely event-based
corner detector and a novel corner tracker, demonstrating that
it is possible to detect corners and track them directly on the
event-stream in real-time. Evaluation on benchmarking datasets
reveals a significant boost in the number of detected corners
and the repeatability of such detections over the state-of-the-art
even in challenging scenarios with the proposed approach, while
enabling more than a 4× speed-up when compared to the most
efficient algorithm in the literature. The proposed pipeline detects
and tracks corners at a rate of more than 7.5 million events per
second, promising great impact in high-speed applications.

Index Terms—Visual tracking, computer vision for other
robotic applications, SLAM.

I. INTRODUCTION

THE richness of information encoded in images together
with the portability and affordability of visible-light cam-

eras have justifiably set them as the de facto sensor of choice in
a variety of applications. One of the most important milestones
towards machine-vision perception has been the demonstration
of the ability to estimate the egomotion and scene employing
a single moving camera in real-time – commonly referred
to as the Simultaneous Localisation And Mapping (SLAM)
problem. Building on top of SLAM, several techniques have
been developed over the years with a significant impact in
Robotics, e.g. 3D scene reconstruction or place recognition

Despite their undeniable dominance in the Computer Vision,
conventional frame-based cameras, however, also present sev-
eral limitations derived from the most fundamentals of their
design. Discretizing the visual perception of a scene at fixed
frame-rate, global or rolling shutter cameras often suffer from
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Fig. 1. The proposed algorithm operates asynchronously on the event-stream
enabling reliable real-time corner detection and tracking even under high-
speed motions, where conventional cameras would experience motion blur.
Here, corners are identified in the event-stream on the shapes dataset [1] and
data association is used to generate feature tracks corresponding to different
colors (solid lines). The corresponding intensity image is also depicted for
clarity.

capturing redundant information when the camera and the
scene are static, for example. Conversely, in cases of a highly
dynamic scene or camera motion such cameras often capture
insufficient information. In the latter case, the captured images
may exhibit motion blur or prohibitive image distortion when
using global or rolling shutter cameras, respectively, resulting
in unusable frames in both cases.

Due to these limitations, the emergence of biologically-
inspired event cameras or Dynamic Vision Sensor (DVS)
[2], [3] has captured the interest of the community. In event
cameras, whenever the intensity of an individual pixel varies
beyond a specified threshold, an ‘event’ triggers in such pixel
location and is reported asynchronously and independently
from the rest of the pixels in the image array. Going beyond the
fixed frame-rate paradigm, event cameras compress the visual
scene in an asynchronous event-stream with high temporal
resolution (in the order of µs) while exhibiting much higher
dynamic range (up to 120dB) and lower power consumption
than conventional cameras.

In addition to the elimination of any conventional time-
discretization (e.g., in the form of frames) in the perception
pipeline, events only report incremental intensity changes at
each pixel instead of the absolute intensity values (i.e., that
conventional cameras capture in each frame). Consequentially,
the Computer Vision community is driven to revisit even
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the most established algorithms to process the event-stream.
Particularly, the feature detection cannot be directly addressed
by simply studying the distribution of the absolute intensity
levels of a local image area. Established approaches to describe
image regions, which most typically make use of the relative
intensity levels in a local neighbourhood, are also compro-
mised and thus, so is data association.

Driven by the need for effective feature processing on
the event-stream, in this paper, we propose a novel feature
(i.e., corner) detector and tracker, in a framework that runs
asynchronously, i.e. considering only the sequential nature of
the event-stream, in order to fully leverage the benefits of the
event cameras regarding their high sensing rate. Moreover, the
proposed approach is shown to be able to run in real-time even
under high-speed camera motions. In brief, the contributions
of this work are:
• a novel asynchronous corner detector, the ‘Arc*’ algo-

rithm, with enhanced detection repeatability and signifi-
cantly more efficient than the state-of-the-art,

• an efficient asynchronous corner tracker, able to estab-
lish correspondences across asynchronous detections in
real-time and operating directly in the event-stream, and

• a simple and generic event-based filter that effectively
reduces the event-stream to the most relevant events for
corner detection and tracking, capable of speeding up any
existing event-based algorithm.

II. RELATED WORK

Since the development of the DVS, several works have been
dedicated to the identification of relevant features to track in
the event-stream. The first approaches tackled the detection
and tracking of simple features, such as lines [4], circles [5]
or manually seeded regions in the scene [6].

As event cameras promise significant impact in high-rate
motion and scene tracking, SLAM has become the holy
grail of event-based research. Despite of the fact that the
field is still in its infancy, event-based SLAM pipelines have
already made their debut in the literature. Although some of
them do not explicitly employ features [7], [8], avoiding the
data association problem, most recent approaches implement
interesting schemes to detect and track corner features [9],
[10]. Nonetheless, the latter feature-based approaches, [9] and
[10], make use of intermediate frame-like representations of
the scene, rendered from the accumulation past events within
an arbitrary window, in which they detect FAST corners
[11] and track them using Expectation-Maximization (EM)
and the Lukas-Kanade Tracker (KLT) [12], respectively. Both
algorithms rely on the compensation of the camera motion to
obtain the reliable frame-like representations of the scene, by
either using an expensive EM scheme in [9] or using cues
from an Inertial Measurement Unit (IMU) in [10].

In this work, we advocate for algorithms that do not require
any integration of events for an intermediate frame-based
representation. To exploit the true power of event cameras,
the algorithms have to asynchronously operate directly on
event-stream, this is, processing each event upon arrival while
coping with the high data rate of the DVS to perform in real-
time. In [13], for instance, incoming events are classified as

corners upon arrival based on the optical flow orientation in the
local neighbourhood [14]. The corner-events are then matched
and tracked based on their estimated velocity and predicted
position under the assumption of a constant velocity model.
In [15] an adaptation of the original Harris corner detector [16]
for event-streams is proposed. Employing a global window of
events, upon the arrival of a new event, the time-stamp of the
events last triggered in the neighborhood are used to compute
the structure tensor from [16], achieving remarkable accuracy
with moderate computational cost. An improved version of
this method was later proposed in [17] (we refer to this as
‘eHarris’ for brevity), in which the global window of events
is substituted by a local one. Additionally, [17] proposes a
method to detect corners in the event-stream inspired by FAST
[11] – we refer to this as ‘eFAST’. Although eFAST is similar
to eHarris in inspecting the timestamp of the latest events in
the surrounding pixels, eFAST is significantly more efficient
with a small trade-off in accuracy.

Inspired by eFAST, in this paper we present Arc*, a corner
algorithm able to detect corners more than 4x faster eFAST
and 50x faster than eHarris, while enhancing the repeatability
of the corner detections. Additionally, we also propose an
event-based corner tracker, demonstrated to operate success-
fully in real scenes while achieving real-time performance
when compared to other state-of-the-art event-based trackers.

III. METHODOLOGY

A. Data Stream from Event-based Cameras

Let I(x, y, t) be the log-intensity value measured at the pixel
location (x, y), where an event triggered at time t. A new
event e is generated if, after an arbitrary period of time ∆t,
the absolute difference of I reaches a specific threshold K.
Formally,

∆I(x, y) = I(x, y, t+ ∆t)− I(x, y, t) = pK , (1)

where p denotes the event’s polarity (i.e. is either 1 or −1)
to indicate whether I increases or decreases. Ideally, a new
event e = {t, x, y, p} is generated as soon as this condition
is met, and appended asynchronously to the event-stream. In
practice, however, the triggering of events in a single pixel
is also subject to the sensor/hardware internal configuration
(electronic biases).

B. Filter of Redundant Events

To classify a new event as a corner-event upon arrival, we
need to inspect previously triggered events in the stream. Since
exploring all the previous events would not be scalable, we use
a Surface of Active Events (SAE) [14], [17] to summarize the
event-stream at any given instant. Briefly, the SAE S is defined
as S : (x, y) ∈ R2 7→ tl ∈ R, where tl is the timestamp of the
latest event triggered at the pixel location (x, y). Following
the trend from [13], [15], [17], we separate the event-stream
according to polarity and process the two sets independently
in different SAEs.

The local neighbourhood in S of the new event’s pixel
location at its arrival time, i.e. the temporal ordering of the
latest triggered events in the neighbouring pixels, is used
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Fig. 2. On the left, real events generated due to translation of a black
rectangle are depicted (brighter green indicates newer events). We illustrate
the timestamps of the latest events triggered in a small region (red segment) on
the right. Although a single contrast change occurs, the significant magnitude
of the change induces the triggering of multiple events in each of the pixels.
Our proposed filtered SAE S∗ (red) captures the timestamps of the first event
in each pixel, accurately representing the position of the rectangle at each time
(note the constant velocity profile). A naive SAE S (blue) would capture the
timestamp of consecutive latest events instead, which are subject to noise.

to test whether the new event is a corner. However, several
factors may compromise the reliability of such ordering and
thus the quality of the detection. A sudden and significant
contrast change, for instance, would trigger multiple events
in the same pixel almost instantly, according to Equation (1).
Due to hardware limitations, however, there exists a minimum
amount of time between consecutive events triggered at the
same pixel. As a consequence, the latest timestamps registered
in the SAE do not represent the time when visual stimulus was
captured accurately, corrupting the local ordering of the events
as illustrated in Fig. 2.

To overcome this undesired effect, we propose a more
restrictive SAE that monitors a new variable, the reference
time tr, such that S∗ : (x, y) ∈ R2 7→ (tr, tl) ∈ R2. When
querying for the values of each location in S∗ (e.g., for corner
detection), the stored reference time tr is retrieved instead of
the latest timestamp tl as in S. Upon the arrival of a new
event at time t, the value of tl in the location is always
updated, tl ← t, as for S. However, the reference time tr
is only updated if the previous event in the same location was
not triggered within the time-window κ, such that tr ← t if
t > tl +κ, or if the polarity of the latest event triggered in the
same location differs from the polarity of the incoming one.
Only the events that update the value of tr in S∗ are considered
in the proposed algorithm, rejecting the rest of events as too
noisy and redundant for corner detection. Experimentally, we
observe that the threshold κ can be set to conservatively to
high values, blocking most of events triggered in regions with
smooth intensity changes, while relying on the updates of S∗
due to change of polarity to cope with fast motions. Although
κ could be dynamically modified or specifically tuned for each
experiment, for the sake of fairness, we use a constant value
of κ = 50ms in this work.

The benefits of using S∗ are two-fold: (1) high contrast
regions are more accurately represented spatially and tempo-
rally identifying when they were firstly detected, and (2) the
event-stream to be considered for corner detection is reduced
significantly by removing redundant events, drastically saving
computation time. In Section IV, we evaluate both eHarris
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Fig. 3. We illustrate an example in which the same corner under two
different motion directions (Magenta arrows) may induce completely different
SAEs (Height represents the timestamps of the latest event triggered in each
location). Our algorithm, Arc*, and eFAST successfully detect the corner on
SAE depicted on the left, as the set of newest elements in in the inspected
circles (Blue and red) are distributed continuously. However, only Arc* (and
not eFAST) is able to detect the same corner from the SAE depicted on the
right, where the angle of arc of newest elements is now over 180◦.

and eFAST using the proposed filter (i.e. using S∗), referring
to them as eHarris* and eFAST*, respectively, for a fair
comparison with the proposed corner detector Arc*.

C. Event-based Corner Detection: The Arc* algorithm

The edges in the scene captured by the camera leave a trail
of timestamps in the SAE that, ideally and in the absence of
noise, decreases from the current edge’s location towards the
direction of relative motion (see Fig. 2) in the image plane.
When detecting corner-events with the eFAST algorithm, a
circular set of locations in the SAE is inspected, and a subset
of these locations with newest timestamps is selected. If this
subset is distributed as a contiguous circular arc and its angle
is within a pre-defined range, the incoming event is classified
as corner, similarly to the original FAST algorithm.

The maximum angle of the circular arc of newest elements
in eFAST, however, must be less than 180◦ to prevent the
incorrect classification of events generated by straight edges
as corners. Nonetheless, depending on the direction of motion,
the arc of newest events around the corner may exhibit
an angle greater than 180◦, as illustrated in Fig. 3, which
eFAST fails to detect (see Fig. 6). The proposed Arc* corner
detector extends the detection initially proposed by eFAST to
arcs that are greater than 180◦ by employing a significantly
more efficient iterative algorithm that minimizes the number
of operations to classify corner-events. As a consequence,
Arc* achieves a better corner detector repeatability, effectively
increasing the number of detected corners, while exhibiting
better computational efficiency as shown in Section IV.

In the Arc* detector, described in Algorithm 1, the location
of a new event is used as the center of a circular mask of
a predefined radius as shown in Fig. 4. This circular mask
defines a set of locations, from which we retrieve their value
in SAE S∗, using the same polarity as the new event, and
create a circular set of elements C. We initialize the arc of
newest elements Anew with the newest element in C and a
pair of supporting elements in the adjacent clockwise (CW)
and counter clockwise (CCW) positions, ECW and ECCW .

In each iteration of the algorithm we select the newest
of the supporting elements ECW or ECCW . If the oldest
element in Anew is older than the selected newest supporting
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Fig. 4. Upon the arrival of a new event (green) located in a corner (grey background), we inspect a circular set of elements C (blue) in the local SAE as in
(a). In (b), we initialize the arc Anew (yellow) from the newest element (higher values mean newer timestamps) and ECW (cyan) and ECCW (red) from the
adjacent ones. We initially expand Anew up to a minimum size Lmin = 3 using, in this case, the newest supporting element ECW as in (c). In the following
iterations, we keep updating the position of ECW clockwise (since it is newer than ECCW during these iterations) and only extend Anew as soon as ECW

reaches the positions with the values ‘14’ and ‘15’ as depicted in (d). In (e), the algorithm updates the position of the now newest supporting element ECCW ,
until the circle C is completed. Here the incoming event is classified as a corner (conversely to eFAST) since the length of the complementary continuous
arc C \Anew , i.e. the elements not belonging to Anew , is 4 and thus, lies within the range [Lmin, Lmax] = [3, 6] specified for this circle radius.

element, we expand Anew up to such element (including it)
and update the position of the selected ECW or ECCW to the
following CW or CCW position in the circle, respectively. As
an initialization step, we always expand Anew following the
previous procedure up to a minimum length of Lmin elements,
even if the aforementioned condition is not met. The iterative
procedure is repeated until ECW points to the same element
as ECCW , this is, the oldest element in C. The incoming event
is classified as a corner if the final length of the continuous
arc Anew or its complementary arc in the circle C \ Anew is
between Lmin and Lmax elements.

To robustify our algorithm against noise, we employ the
same strategy as eFAST, employing two different circle radii
in our detection and only classifying the incoming event as
a corner if the test is passed in both. For a fair comparison
with eFAST, we employ circular masks computed from Bre-
senham’s circles of radii 3 and 4 and arc length thresholds of
[Lmin, Lmax] = [3, 6] or [4, 8] elements, respectively. These
thresholds account for the angle range of the detectable cor-
ners, imposing with Lmax a maximum angle of approximately
135◦ and Lmin preventing noisy detections using too small
arcs.

D. Event-based Corner Tracking

Assuming that the corner-events are detected accurately,
they describe continuous trajectories in the image plane due
to the asynchronous nature of the detections. Exploiting this
continuity of tracks, the proposed tracker establishes data asso-
ciation of corners in the event-stream by relying on proximity
of detections. Note that the described tracker is agnostic to the
corner detector used, only requiring continuous detections in
the image plane.

Our event-based tracker employs a directed graph G =
{V,E} to represent corner-event tracks, where the vertices
v ∈ V represent the detected corner-events and the edges
e ∈ E represent the associations between such detections.
Each vertex encodes the same information as the correspond-
ing corner-event, excluding its polarity, i.e. v = {t, x, y}. The
tracker discriminates between active and non-active vertices,
indicating whether they are viable candidates for data associ-
ation or not, respectively. The graph is structured in smaller

Algorithm 1: Arc* – Corner-Event Detection
Input: Event = {t, x, y, p}, S∗, Radius, Lmin, Lmax

1 C = CircleMask(x, y, p,S∗,Radius)
2 Initialize Anew = NewestElement(C)
3 Initialize ECW = NextElementCW(Anew, C)
4 Initialize ECCW = NextElementCCW(Anew, C)
5 while ECW 6= ECCW do
6 if ECW > ECCW then
7 if OldestElement(Anew) ≤ ECW OR
8 Length(Anew) < Lmin then
9 ExpandUntilElement(Anew, ECW )

10 ECW = NextElementCW(ECW , C)

11 else
12 if OldestElement(Anew) ≤ ECCW OR
13 Length(Anew) < Lmin then
14 ExpandUntilElement(Anew, ECCW )

15 ECCW = NextElementCCW(ECCW , C)

16 if Lmin ≤ Length(Anew) ≤ Lmax OR
17 Lmin ≤ Length(C \Anew) ≤ Lmax then
18 return true

19 else return false

tree subgraphs T ⊂ G, where each tree T represents a set of
different hypotheses of trajectories for the same single tracked
corner defined in spatio-temporal space. The tracker, described
in Algorithm 2, addresses the asynchronous growth of the trees
as new corner-events are included in the graph (as illustrated
in Fig. 5).

A new corner-event generates an equivalent active vertex
vnew, which the tracker attempts to associate with any of the
newest active vertices located in its neighbourhood, namely
the subset Vneigh. The neighbourhood expands in the image
plane up to a maximum range of dconn pixels centered around
vnew. Ideally, assuming continuous feature tracks, we could
set dconn = 1px. However, in order to cope with missed
detections in real scenarios, we set dconn = 5px in this
work. The neighbourhood is also temporally constrained, so
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Fig. 5. In (a), we depict a simplified 1D scenario with the trees T1 (red)
and T2 (blue), consisting of active (full circle) and inactive vertices (striped
circle). Upon the arrival of a new corner-event (green), the set of newest
neighbouring active vertices Vneigh (vertices connected by dashed lines) is
retrieved from the spatio-temporal window (yellow area), determined by the
parameters dconn and ∆tmax. The closest and newest vertex from T1 is
selected for data association, growing the tree as depicted in (b). However,
the inclusion of the new vertex triggers the forgetting process as it increases
the maximum depth of the tree ρmax, inducing the deactivation of previous
vertices according to ρthresh. Lastly, in (c) the best track encoded in T1 can
be retrieved from the deepest branch, i.e. ‘Branch 2’ in this case (green path).

that vertices older than ∆tmax with respect to vnew are not
considered. Essentially, ∆tmax defines a temporal window to
prevent data association with older and noisy parts of the
graph, and is tuned conservatively to ∆tmax = 0.1s to cope
with slow feature motions.

We split the set of neighbouring vertices Vneigh into leaf and
non-leaf vertices, namely Vleaf and V¬leaf , respectively. The
closest vertex to vnew in the image plane from Vleaf is defined
as vparent or, if there are several vertices at the same distance,
the newest one among them. If there are no leaf nodes (Vleaf =
∅), we extract vparent from V¬leaf instead. We establish then
data association between both nodes, assigning vnew to the tree
to which vparent belongs, Tparent, and growing it by adding a
new edge between vertices. In case there are no active vertices
in the neighbourhood, Vneigh = ∅, vnew becomes the root of
a new tree Tnew instead.

Each vertex stores its relative depth to the root of its tree.
If the maximum depth ρmax within a tree increases after
adding a new vertex, we deactivate any vertex whose relative
depth compared to ρmax exceeds ρthresh. This adaptive de-
activation process acts as an event-based driven forgetting
horizon, keeping active only the vertices in the most promising
branches as the tree grows. The parameter ρthresh can be finely
tuned according to the capabilities of the corner-detector to
perform non-maximum suppression or the proximity of the
corners in the scene. In our experiments, however, we set
ρthresh = 5.

At any given instant, we can extract the best hypothesis
for the corner trajectory from the deepest branch in the tree
T , representing the branch with the highest spatio-temporal
consensus. Nonetheless, note that, when the best trajectory
hypothesis is computed at run time, the newest vertices that
are still active and within the forgetting horizon determined by
ρthresh are not reliable to determine the corner position. In our
experiments, we grow the graph and establish data association
in real-time and then post-process each tree to retrieve the best
track, ignoring those that do not last longer than 0.5s.

Algorithm 2: Corner-Event Tracking
Input: Detection = {t, x, y, p}, dconn, ∆tmax, ρthresh

1 Initialize Vertex: vnew = {t, x, y};
2 Vneigh = GetActiveNeighbourVertices(vnew, dconn) ;
3 Vneigh = DiscardOldVertices(Vneigh,∆tmax);
4 if Vneigh 6= ∅ then
5 {Vleaf , V¬leaf} = SegmentLeafVertices(Vneigh) ;
6 if Vleaf 6= ∅ then
7 vparent = GetClosestAndNewestVertex(Vleaf );
8 else
9 vparent = GetClosestAndNewestVertex(V¬leaf );

10 Tparent = GrowExistingTree(vparent, vnew);
11 UpdateActiveVerticesInTree(Tparent, ρthresh);
12 else
13 Tnew = InitializeNewTreeFromVertex(v);

IV. EXPERIMENTS

We evaluated the proposed pipeline on the publicly available
event-camera dataset of [1]. This dataset was recorded with a
Dynamic and Active-pixel Vision Sensor (DAVIS) [3], which
has a resolution of 240× 180 pixels and captures both event-
based cues and intensity (frame-based) images using the same
chip. While the proposed approach works only on the event-
stream, we use the intensity frames to extract ground-truth
for some of the proposed metrics. This dataset is composed
of different scenes recorded using different camera motions.
For our evaluation, we select a representative subset of these
scenes with increasing complexity and event-rate – namely,
we test on the shapes, dynamic, poster and boxes
scenes. Note that we use the same subset of experiments
employed in the evaluation of eFAST against eHarris [17],
in order to enable a fair comparison against all methods.
Unless stated otherwise, due to space limitations, we group
the performance according to the scene, combining all the
recorded experiments with different motions, and report the
mean for each of the proposed metrics. In our metrics, we
compare the performance of our Arc* corner detector to
the state-of-the-art eHarris and eFAST (using the original
implementations provided by the authors1), and their modified
versions eHarris* and eFAST* employing the proposed filter
of redundant events. The proposed corner tracker algorithm is
evaluated using our corner detector.

A. Ground-truth for Event Cameras

Obtaining ground-truth to evaluated purely event-based ap-
proaches is particularly challenging as simulated data does
not guarantee the capture of the true sensor’s behaviour. In the
event-based detector literature, [13] and [15] manually labelled
groups of corners in the event-stream and thus, this approach is
limited in practice to simple scenes with clear corners. In [17],
an automatic labelling method is proposed which evaluates
the spatio-temporal distribution of events classified as corners.
Such method, however, cannot account for missed detections

1https://github.com/uzh-rpg/rpg corner events
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TABLE I
THE PERCENTAGE OF THE EVENTS BLOCKED BY THE PROPOSED FILTER

AND THE PERCENTAGE OF CORNER-EVENTS DETECTED PER SCENE.

Experiment Block Corner events [%]
[%] eHarris eFAST eHarris* eFAST* Arc*

shapes 52.6 8.2 12.5 5.1 7.8 12.1
dynamic 48.0 4.8 3.6 3.3 2.5 7.1
poster 45.6 7.5 4.3 5.2 3.2 8.3
boxes 43.2 7.6 3.3 5.2 2.6 6.4

and does not guarantee that the detections correspond to actual
corners in the scene.

In our evaluation, we make use of the available intensity
frames in the dataset to detect corners using the (original)
Harris detector [16] and track them using KLT [12], similarly
to [18]. We exhaustively refine the tracks and interpolate their
position in the image plane using cubic splines to match the
temporal resolution of the events, while discarding noisy and
short tracks.

In our accuracy-related metrics, we only consider the events
that are triggered within a neighbourhood of up to 5 pixels (in
the image space) of any intensity-based track. In the algorithms
employing the proposed filter, the considered events are further
restricted to those not filtered in the event-stream. Restricting
our metrics to this subset of events close to intensity-based
tracks, we ensure those events have actually correspondence
to real corners in the image space, where ground-truth is
available. While the DVS allows us to detect more corners
in the scene (e.g. with low intensity contrast or motion blur),
the proposed evaluation strategy is reproducible and reliable to
enable ground-truth comparisons. As the selected experiments
are recorded with increasing velocity, we limit the length of
each experiment to the first 10 seconds, leaving out the images
where significant motion blur affects the fidelity of the ground-
truth tracks.

Metrics that are not related to intensity-based tracks are
not subject to the aforementioned restrictions, and are thus
evaluated by processing the whole event-stream for each
experiment, offering evidence and insights of the applicability
of the proposed pipeline even under high-dynamic motions.

B. Filtering and Reduction to Corner Events

Reducing the event-stream to the most relevant events
decreases the amount of data that needs to be processed by
modules further down in the pipeline. This reduction can
be achieved by filtering the event-stream, as done with the
proposed filter eliminating redundant events, and/or detecting
corners in the stream from which a high-level representation
of the scene is obtained.

Table I summarizes the reduction of the data stream as a per-
centage of the total number of events per scene. The proposed
filter blocks between 40-50% of the events. Consequentially,
the modified versions eHarris* and eFAST* employing our
filter have an equivalent drop in the number of detected
corners. Despite the reduced number of corners detected, the
results in Section IV-C provide evidence that the quality of
the detection is not significantly affected as only redundant

events are filtered out whereas the computational performance
experiences a substantial improvement. When limited to the
filtered event-stream, the proposed corner detector detects
most corners, approaching comparable figures to the number
of corners detected in the unfiltered event-stream with eHarris
and eFAST.

C. Corner Detector Performance

By design, eHarris has a weak response to corners with
wide angles (inherited from the original Harris detector),
whereas eFAST misses the detection of some of the corners
depending on their relative motion with respect to the camera
(as explained in Section III-C). Our method Arc* is able
to extend the detection of corner-events to those cases, as
depicted in Fig. 6, where we also compare the percentage of
the total length of intensity-based track detected using each
algorithm. A segment of the intensity-tracks is considered
detected if there exists at least one corner-event detected in
the past 0.1s at maximum 3.5 pixels away from the track.

To assess the quality of the detections, we report the True
Positive Rate (TPR) and False Positive Rate (FPR) per detector
and scene in Fig. 7, including the ‘Overall’ as the mean across
all the scenes weighted accordingly to the number of events.
To this end, a corner-event is labelled as true positive if it is
closer than 3.5 pixels away from an intensity-based track or
true negative otherwise, up to a maximum of 5 pixels distance.
The proposed Arc* outperforms all others in terms of TPR, i.e.
we detect more real corners from the scene. However, as we
drastically increase the number of detections, we also incur in
an equivalent increment of FPR. Note that the performance
of Arc*, in terms of both TPR and FPR, approaches the
performance of eHarris as the scene’s complexity increases.
The algorithms eHarris* and eFAST* employing our filter
shows no significant difference in these metrics, although the
boost in computational performance is significant as reported
Section IV-E.

The reported results suggest that eHarris is the most robust
algorithm for complex scenes in presence of significant noise
(poster and boxes), only performing marginally worse in
simpler scenes (poster and dynamic) and keeping in all
the cases a stable FPR and TPR score. In contrast, eFAST is
excessively restrictive in its detections, incurring in low FPR
but also low TPR, and, as consequence, it can only retrieve a
small number of all the corner tracks in the scene (See Fig. 6).
The proposed method Arc* drastically increases the number
of detections, improving the TPR but scoring worse FPR, this
is, detecting more real corners of the scene but also incurring
in more noisy detections. The proposed method extracts more
information from the scene to the tracker, allowing the system
to keep track of a higher number of features while relying on
the common consensus among the detections to remove the
noisy ones. Moreover, Arc* is significantly more efficient than
the eFAST and eHarris (i.e. 50× and 4.5× faster, respectively),
being the only method able to process all the event-stream of
the tested scenes in real time.

In terms of accuracy, measured as the mean distance of a
corner-event to its closest intensity-based track, no significant
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0

5

10

15

20

0

10

20

30

40

50
eHarris
eHarris*
eFAST
eFAST*
Arc*

shapes dynamic poster boxes OverallFa
ls

e 
Po

si
tiv

e 
R

at
e 

[%
]

shapes dynamic poster boxes Overall

Tr
ue

Po
si

tiv
e 

R
at

e 
[%

]

Fig. 7. The True Positive Rate and False Positive Rate of corner-event
detections for each scene and detector.

is revealed across the methods, only depending on the scene
complexity: namely, 2.3 ± 0.1px in shapes, 2.8 ± 0.2px in
dynamic, 3.0±0.1px in poster and 3.0±0.1px in boxes.
Such values match the expected range of 2-3px reported in
previous publications such as [15].

D. Corner Tracker Performance

Illustrative examples of the proposed tracking system in
action are depicted in Fig. 1 and Fig. 8 employing the corners
detected with Arc*. The tracker’s “Accuracy” is evaluated
using the mean minimum distance between event-based and
intensity-based tracks, considering only the tracks’ segments
closer than 5 pixels to each other, equivalently to the accuracy
evaluation in corner detection. The results in Table II report an
improved accuracy score compared to the corner detection and
evidence that the tracker prune some of the noisy detections
while composing the feature track from the most reliable ones.

Our method associates the corner-events based on proximity
under the assumption that the corner detections are well local-
ized at a real corner. When this assumption is compromised

TABLE II
THE PERFORMANCE OF THE PROPOSED CORNER-EVENT TRACKER IN

TERMS OF THE MEAN ACCURACY, TRACK LIFETIME AND UNIQUENESS IN
TRACKING THE SAME REAL CORNER PER SCENE.

Experiment Accuracy Lifetime Uniqueness
[pixels] [s] [%]

shapes 2.2 0.9 71
dynamic 2.6 0.5 23
poster 2.8 0.5 17
boxes 2.9 0.4 18

Ti
m
e

Fig. 8. Event-based tracks associating corner-events (different colors) within
a time-window in the image space (left) and with respect to time (right)
evaluated on shapes during high-speed camera rotation. The intensity image
is superimposed for illustration.

(as in highly textured environments), a single feature track
associated to an specific real corner may jump to another
corner during its lifetime. As our method does not explicitly
report such tracking failure, for the sake of fairness, we
report the mean “Lifetime” as the time a single feature track
spent tracking the same intensity-based corner. In case more
than a single intensity-based corner characterizes an event-
based track, we report the percentage of the longest time
spent tracking the same intensity-based corner as the score
“Uniqueness”, indicating the additional confusion incurred in
complex scenes. Note that the quality of the proposed tracker is
comparable to other state-of-the-art event-based corner tracker
(e.g., [13]), while achieving significantly longer valid track
lifetime in far more challenging scenarios.

E. Computational Performance

All experiments are run on a Xeon E3-1505M CPU with
2.80GHz and 16GB of RAM and using a single threaded C++
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TABLE III
COMPUTATIONAL PERFORMANCE OF THE DIFFERENT CORNER DETECTOR

METHODS AND THE PROPOSED TRACKING SYSTEM.

Algorithm Time per event Max. event rate
[µs/ev] [Mev/s]

eHarris [15], [17] 6.96 0.14
eFAST [17] 0.60 1.67

eHarris* 4.56 0.22
eFAST* 0.35 2.85

Arc* 0.13 7.52
Corner Tracker 1.97 0.51

implementation. Table III reports the average time spent to pro-
cess a single event and the equivalent maximum event rate in
Millions of events per second for each algorithm. On average,
the proposed Arc* corner detector runs more than a than 50×
faster than eHarris and up to 4.5× faster than the eFAST using
the implementation provided by the authors. While eFAST
can achieve, on average, real-time performance in the low-
textured scenes (shapes and dynamic), it cannot cope with
the average event rate of over 2 Mev/s of the complex scenes
(poster and boxes). Despite the increased robustness of
eHarris compared to Arc* and eFAST, it performs always
slower than real-time, e.g. 2× slower than-real time in the
simplest shapes scene.

Note the significant computational performance boost due
to the proposed filter in eHarris* and eFAST*. The cost to
process a single event is improved by approximately 35%,
while the performance of the algorithms is not significantly
affected as reported in Section IV-C.

Finally, Table III also reports the processing time required
to establish data association between corner-events with the
proposed tracker. While the time per event is significantly
larger than in detection, note that the tracker only processes
corner-events, which, in the worst case scenario, account up
to 12% (see Table I) of the the original event-stream and thus
applicable in real-time even in high-speed applications.

V. CONCLUSIONS

This paper presents a novel event-based visual front-end
pipeline, that pre-filters the event-stream, detects corners in it
and tracks them in real-time in a completely asynchronous
fashion and thus, can fully leverage the benefits of event
cameras. The proposed event-based filter is shown to reduce
the amount of redundant information, effectively boosting
the performance of even existing state-of-the-art corner-event
detectors. Evaluation on benchmarking datasets reveals a
significant speed-up offered by the proposed Arc* corner-
event detector, with real-time performance even under high-
speed motions, and with improved repeatability and number
of detections. Lastly, the proposed novel asynchronous corner
tracker establishes correspondences across corner-events also
in real-time and can be used to retrieve spatio-temporal event-
based feature tracks. We believe that the proposed pipeline
opens up exciting new research directions for high-speed
camera and scene tracking towards the development of a
completely asynchronous and event-based SLAM framework
in the future.
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