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Flow Map Composition to Identify Coherent Structures

Steven L. Brunton

Abstract

The flow map of a dynamical system plays a major role in the computation of finite-time
Lyapunov exponents (FTLE), and the Perron-Frobenius and Koopman operators, each of which
are important for visualizing coherent structures and quantifying uncertainty in unsteady fluid
dynamics. However, the flow map calculation is expensive, both in terms of computation time and
memory requirements. In this work, we continue to develop the theory of flow map composition,
whereby long-time flow maps are constructed as the composition of multiple short-time flow maps
to eliminate redundant computations. In particular, we provide an error analysis and investigate
flow map composition for simple discrete-time maps (e.g., logistic and tent maps) as well as for
fluid flow data.

1 Introduction
Integrating initial conditions through a dynamical system provides insight into the geometric organi-
zation of trajectories, aiding in the identification of coherent structures and separatrices in the flow.
The resulting flow map may be approximated numerically on a grid of initial conditions from ve-
locity fields obtained either via simulations or experimentally, making these methods data-driven.
Flow maps are central to the computation of almost invariant sets (AIS) [1], finite-time Lyapunov
exponents (FTLE) and the resulting Lagrangian coherent structures (LCS) [2, 3, 4, 5], and the prop-
agation of a probability density through a dynamical system. There are many compelling examples,
including animal predation [6], three-dimensional turbulence [7], geophysical flows [8, 4], and car-
diovascular flows [9]. FTLE fields have also been used extensively to study the motion of inertial
particles [10, 11], including airborne microbes [12, 13], transport in the ocean [14], plankton fleeing
predators [15], urban flows [16, 17], and hurricane dynamics [18].

For time-varying dynamics, it may be necessary to compute a time-series of flow maps to visualize
these structures evolving in time (see Fig. 1 for frames in a movie of flow past a pitching plate, sim-
ulated using the immersed boundary projection method [19, 20]). This is computationally expensive,
and there is significant overlap in the particle integrations from neighboring flow map computations.
The fast FTLE method [21] speeds up neighboring flow map computations by computing and stor-
ing intermediate flow maps, which are used to construct longer-time flow maps by composition; the
earlier phase-flow method provides similar speed-ups for autonomous systems [22]. Flow map com-
position has also been applied to generalized polynomial chaos (gPC) [23, 24, 25, 26], extending it
for long-time integrations [27]. In this work, flow map composition is investigated further on a class
of discrete dynamical systems, and an in-depth error analysis is provided.
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Figure 1: Flow visualization with finite time Lyapunov exponents for flow past an airfoil at Reynolds
number 100 after a rapid pitch-up maneuver.

2 Background on flow map composition
Consider a dynamical system on a domain D ⊆ Rn:

ẋ = f(x, t) (1)

where x ∈ D and f : D × R→ Rn is Lipschitz. For an initial condition, x(t0) = x0, trajectories are
denoted x(t; t0, x0).

Definition 2.1. The flow map φtft0 : D → D maps x0 to x(t; t0, x0) and is given by:

φ
tf
t0 : x(t0) 7→ x(t0) +

∫ tf

t0

f(x(τ), τ)dτ. (2)

Definition 2.2. The finite-time Lyapunov exponent (FTLE) σ is given by:

σ =
1

|tf − t0|
log
√
λmax (∆) (3)

where ∆ = (Dφ)∗ (Dφ) is the Cauchy-Green deformation tensor, and Dφ = ∂φi
∂xj

is the flow map
Jacobian.

Remark 1. The maximum singular value of the flow map Jacobian, Dφtft0 , is given by the following
operator norm:

‖Dφtft0‖2 := max
ε6=0

‖Dφtft0 · ε‖2

‖ε‖2

= exp(σ|tf − t0|). (4)

Therefore, the following inequality holds for all vectors ε ∈ Rn:

‖Dφtft0 · ε‖2 ≤ exp(σ|tf − t0|)‖ε‖2. (5)
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3 Error analysis of flow map composition
If the dynamical system (1) is time-varying, then it may be necessary to compute a time-series of flow
maps, φt0+T

t0 , at neighboring discrete points in time, t0 ∈ k∆t for k ∈ Z, on the same spatial domain.
The fast FTLE method [21] speeds up neighboring flow map computations by computing and storing
intermediate flow maps, φt0+∆t

t0 , which are used to construct longer-time flow maps by composition.
For t0 = 0 and T = N∆t, this becomes:

φN∆t
0 = φN∆t

(N−1)∆t ◦ · · · ◦ φ∆t
0 . (6)

In practice, we seek the flow map on a discrete set of points, X0 ⊂ D. However, the intermediate
flow maps, φk∆t

(k−1)∆t restricted to X0 may not map to X0. For example, if X0 is a uniform grid,
it is unlikely that a flow will map these points to exactly the same grid. Therefore, it is necessary
to interpolate the grid X0 through the various flow maps. The quantitative and qualitative effect
of interpolation on flow map composition error has been extensively numerically investigated for
continuous-time fluid systems, in [21]. However, there is a need for a general error analysis for the
flow map composition, which is provided here.

Consider a number of flow maps, φtj of duration tj . From (5), we may choose each duration tj
sufficiently small for the following bound to hold:

1 ≤ ‖Dφtj‖2 = exp(σ|tj|) < αj ≤ α. (7)

Consider the following composition of flow maps, with the addition of some bounded interpola-
tion error, εj ∈ Rn, such that each ‖εj‖2 < β � 1:

φt2
(
φt1(x) + ε

)
≈ φt2

(
φt1(x)

)
+ Dφt2

(
φt1(x)

)
· ε+O(ε2). (8)

Neglecting higher order terms, the error is Dφt2 (φt1(x)) · ε < αβ. Adding a third flow map, the
expression becomes:

φt3
(
φt2
(
φt1(x) + ε1

)
+ ε2

)
≈ φt3

(
φt2
(
φt1(x)

))
+ Dφt3

(
φt2
(
φt1(x)

))
·
[
ε2 + Dφt2

(
φt1(x)

)
· ε1
]

+O(εiεj).
(9)

Again, the error is given by Dφt3 (φt2 (φt1(x))) · [ε2 + Dφt2 (φt1(x)) · ε1] ≤ αβ(α + 1). This estab-
lishes a recursion. Adding a fourth composition, the error is bounded by αβ [1 + α + α2]. For N
compositions, the error is bounded by:

αβ
(
1− αN−1

)
1− α

. (10)

For two-dimensional incompressible flows, the local flow map Jacobian has determinant equal to one,
so that the best case scenario is α = 1. Thus, there is a lower bound to the error, given by:

(N − 1)β. (11)

This is a reasonable lower bound, since error may accumulate linearly. However, for any region of
positive FTLE, α > 1, and the expression for the upper bound in Eq. (10) diverges. This is consistent
with the observations in [21], where local errors may be amplified by the local finite-time Lyapunov
exponent. Fortunately, regions with high local FTLE generally repel particles, so that particles tend
to only spend a short amount of time in regions of large positive FTLE.

It is possible to be more careful about the error expression using the errors αj from Eq. (7):

βαN (1 + αN−1 (1 + αN−2 (· · ·α3 (1 + α2)))) . (12)

Thus, it is clear that the error will only grow significantly when the exponential stretching is persistent
over a long period of time.
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Figure 2: The case of linear interpolation of the logistic map with N = 3 interpolation nodes is
equivalent to the tent map with half amplitude (left). As the number of linear interpolation nodes
increases, additional features are resolved (middle). In the limit as the number of interpolation nodes
becomes very large, we recover the exact logistic map (right).

4 Discrete-time dynamical systems
Even for continuous-time dynamical systems, the flow map establishes a discrete-time system. There-
fore, it is fruitful to investigate error accumulation from interpolation for the broader class of discrete-
time dynamical systems.

As a simple example, consider the logistic map:

xk+1 = rxk(1− xk), (13)

which is given by a quadratic nonlinearity. If three interpolation points are used to approximate the
quadratic map, the result is a hat map:

xk+1 =

{
µxk, for xk < 1/2
µ(1− xk), for xk ≥ 1/2

. (14)

Interestingly, as the number of interpolation points increases, additional features of the bifurcation
plot appear, although there are remnants of hat maps in the fine details, as shown in Fig. 2. A cubic
spline interpolation yields perfect results, even with three points, as the flow map is quite simple.
Several other discrete-time systems have been analyzed with similar results.

5 Conclusion
In conclusion, this work has investigated the use of short-time flow map composition and interpola-
tion for the extraction of coherent sets and attracting structures in dynamical systems. In particular,
a detailed error analysis of flow map composition illustrates the various types of error and how they
manifest, providing both an upper and lower bound. In addition, flow map composition and interpo-
lation is investigated on discrete-time dynamical systems, where it is found that the effect of the order
of interpolation is more pronounced than the number of interpolation points. Connecting the error
analysis above to more sophisticated flows and to the theoretical error analysis of Ying and Candès
for autonomous systems [22], is the subject of ongoing work.
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