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Abstract

In urban road networks, the interactions between different modes can clearly impact
the overall travel production. Although those interactions can be quantified with the
multi-modal macroscopic fundamental diagram; so far, no functional form exists for this
diagram to explicitly capture operational and network properties. In this paper, we pro-
pose a methodology to generate such functional form, and we show its applicability to the
specific case of a bi-modal network with buses and cars. The proposed functional form
has two components. First, a three dimensional lower envelope limits travel production
to the theoretical best-case situation for any given number of vehicles for the different
modes. The lower envelopes parameters are derived from topology and operational fea-
tures of the road network. Second, a smoothing parameter quantifies how interactions
between all vehicle types reduce travel production from the theoretical best-case. The
smoothing parameter is estimated with network topology and traffic data. In the case no
traffic data is available, our functional form is still applicable. The lower envelope can be
approximated assuming fundamental parameters of traffic operations. For the smoothing
parameter, we show that it always hold similar values even for different networks, making
its approximation also possible. This feature of the proposed functional form is an ad-
vantage compared to curve fitting, as it provides a reasonable shape for the multi-modal
macroscopic fundamental diagram irrespective of traffic data availability. The method-
ology is illustrated and validated using simulation and empirical data sets from London
and Zurich.
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1 Introduction

Cities are complex and so are their transportation systems. As all modes of transportation
compete for scarce urban resources, such as space and funding, their interactions should
determine the allocation of urban resources needed to achieve optimal productivity of the
entire system. In terms of road traffic, one of the most recognizable interactions is between
cars and buses and/or trams on urban roads. There exist many studies that summarize
the trade-off between the cruising speed and space consumption of the two modes, raising
the question of the optimal share between them in terms of vehicles or space. Smeed (1968)
was among the first to discuss this problem analytically. However, methods beyond a
simple bus-car-equivalent for entire cities did not exist before the concept of the three-
dimensional macroscopic fundamental diagram (3D-MFD) was introduced (Geroliminis
et al., 2014).

The 3D-MFD originates from the unimodal macroscopic fundamental diagram (MFD)
initially proposed by Daganzo (2007). The novel thinking abstracts urban traffic with
vehicles flowing through reservoirs until they exit the network. In other words, with
this macroscopic perspective the goal is to find the travel time until a vehicle leaves the
network, for which the only information required is travel distance and the speed inside
each reservoir. The speed must be the average space-mean speed including all delays from
stopping at an intersection or bus stop, and/or congestion. Inside each reservoir, all traffic
states are captured by the MFD, a well-defined relationship between the accumulation of
vehicles and flow or speed of vehicles in each reservoir. The existence of such well-defined
relationship is based on several assumptions: traffic should be homogenously distributed,
demand should be slowly-varying, the network should be redundant, all links should be
relatively similar and their fundamental diagram should not be significantly affected by
turning maneuvers (Daganzo and Geroliminis, 2008). That being said, and despite the
complexity and irregularities in real urban networks, Geroliminis and Daganzo (2008)
showed that the MFD can also be obtained empirically. Moreover, insights from the
MFDs have real-world consequences, e.g. for traffic control (Haddad and Geroliminis,
2012) and space allocation in cities (Zheng and Geroliminis, 2013). Nevertheless, the
issues of measuring unbiased MFDs (Leclercq et al., 2014), identifying network dynamics
(Gayah and Daganzo, 2011), and accounting for the heterogeneous distribution of traffic
(Ji and Geroliminis, 2012), must be considered. MFDs are clearly not intended for detailed
planning of, e.g. intersection design; but they do provide a good compromise between
data requirements and network-wide performance indicators.
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In general, multi-modal MFDs (with three dimensions or more) capture the joint effects of
multiple modes on the total travel production of the network. In particular, the 3D-MFD
captures the joint effects of buses and cars on the total vehicle travel production. On the
x and y axes of the 3D-MFD are the accumulations of cars and buses, respectively, while
the z-axis describes the total travel production (in vehicle-kilometers per unit time) of
all vehicles in the network. With additional information on (average) vehicle occupancy
levels, the 3D-MFD can then be expressed in terms of passenger travel production (in
passenger-kilometers per unit time) (Geroliminis et al., 2014; Loder et al., 2017; Chiabaut,
2015). Multi-modal MFDs are a powerful tool to investigate and understand the multi-
modal performance of entire urban road networks (Ampountolas et al., 2017; Zheng et al.,
2017; Amirgholy et al., 2017). They can be estimated using both simulation and empirical
observations (Geroliminis et al., 2014; Loder et al., 2017; Castrillon and Laval, 2018; Dakic
and Menendez, 2018) or derived numerically (Boyaci and Geroliminis, 2011; Chiabaut,
2015; Dakic et al., 2019). So far, however, no particular functional form for multi-modal
MFD exists, and no proposal has been made to link the physical properties of the road
and bus network topology as well as the traffic operations to the shape of the 3D-MFD.
Such a perspective would facilitate the analysis of the productivity of entire multi-modal
urban networks, similarly to the MFD applied to car traffic only (Daganzo et al., 2011).
Therefore, in this paper we propose a geometric approach to a functional form for multi-
modal MFDs with a particular application to the 3D-MFD.

The proposed functional form has two components. First, a lower multi-dimensional
envelope limits travel production to the theoretical best-case situation for any given
combination of vehicles in the network (Daganzo and Geroliminis, 2008; Daganzo and
Knoop, 2016). Second, a smoothing parameter quantifies how interactions between all
vehicle types reduce travel production from the theoretical best-case (Ambühl et al., 2018).
The proposed method is inspired by the method of cuts for the MFD estimation (Daganzo
and Geroliminis, 2008; Leclercq et al., 2014) and is flexible to accommodate any physical
boundaries in urban traffic systems. The multi-dimensional envelope reflects physical
network properties and multi-modal traffic dynamics, e.g. traffic signals (Daganzo et al.,
2017; Daganzo and Geroliminis, 2008) and bus operations (Boyaci and Geroliminis, 2011;
He et al., 2018). The envelopes parameters can be obtained from the topology of the
network and traffic data related to the operations of the different modes. In the absence
of traffic data, fundamental parameters describing the overall traffic operations can be
used instead. The smoothing parameter can be estimated from observed traffic data. If
such data is not available, the smoothing parameter can be approximated given that it
shows simila values across networks.
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The remainder of the paper is organized as follows. Section 2 introduces the general func-
tional form for multi-modal MFDs and discusses its relevant mathematical constraints.
Then Section 3 proposes a functional form for the 3D-MFD, discusses its relevant parame-
ters, and shows how the lower envelope of the 3D-MFD is built based on the network and
operational properties. In Section 4, we propose how to derive the speed for buses and
cars based on the 3D-MFD. Then, Section 5 demonstrates how the passenger 3D-MFD
is generated using the proposed methodology. Finally, Section 6 discusses the estimation
of the lower envelope for the 3D-MFD in general, and then validates the functional form
for the 3D-MFD as well as the proposed speed functions using 3D-MFDs observed from
simulation data of an abstract grid network and two empirical data sets, one from London
(United Kingdom) and one from Zurich (Switzerland).

2 A new functional form for the multi-modal
macroscopic fundamental diagram

The proposed geometric approach to derive a functional form for multi-modal MFDs
considers an urban network of total length L with M different modes circulating on it.
Each mode m ∈ M can have its dedicated infrastructure, using a ηm share of L. The
share of mixed-used infrastructure used by all modes is then ηmixed = 1−

∑
m∈M ηm. Each

modes vehicle accumulation is Nm, and we define that N in RM
+ is the vector of vehicle

accumulations with elements (N1;N2; . . . ;NM). Each mode has a travel production of
πm ∈ R+ and all modes together have a joint travel production of Π ∈ R+.

Physical constraints limit the number of vehicles an urban network can accommodate, as
well as the travel production for any accumulation N. Thus, we are interested in iden-
tifying the M + 1 dimensional boundary between the physically possible and impossible
traffic states (i.e. the maximum travel production that can be obtained for different com-
binations of Nm, ∀m ∈ M). That multi-dimensional space includes M dimensions (one
for the accumulation of each mode), plus one dimension for the total travel production
Π across all modes. The boundary then corresponds to a theoretical best-case situation,
which for a variety of intuitive reasons will never be achieved in reality, e.g. heterogeneity
of traffic, dynamics of the different modes, vehicle interactions.

We expect the boundary to look differently in each network as infrastructure and vehicle
technology parameters can substantially influence the theoretical best-case situation and
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thus the resulting boundary. This makes a general mathematical formulation difficult.
Suppose that we can define a set of J functions Πj∈J : N → Π, where each Πj provides
a physically meaningful constraint of one feature of multi-modal traffic (e.g. gridlock,
saturation) relating N and the theoretical best-case travel production Π. Then the net-
work overall theoretical best-case situation across all modes and traffic states is the lower
envelope (i.e. minimum ) of all Πj functions as formulated by Eqn. 1. Each Πj function
can be seen as a hyperplane of M + 1 dimensions.

Π(N) = min (Π1 (N) ; Π2 (N) ; . . . ; ΠJ (N)) (1)

The definition of functions Πj (N) is context specific (e.g. in our application to the
3D-MFD in Section 3, we use seven linear functions, i.e. planes, to create the lower
envelope). Nevertheless, the function resulting from Eqn. 1 must satisfy the following
physical properties.

First, we denote κm as the maximum accumulation of vehicles of mode m in the network,
and we assume that each possible maximum accumulation leads to gridlock. κm is clearly
a function of the number of vehicles N across all modes, because different modes might
share a portion of the infrastructure, ηmixed. Eqn. 2 shows this constraint for κm. Assum-
ing lm is the jam spacing for mode m, then κm (N) is equal to the gridlock accumulation
of mode m on its dedicated and mixed-used infrastructure, minus the number of vehicles
from other modes m′ ∈ M \ {m} present on the mixed-use infrastructure. For simplicity,
we assume that each mode m is fully using its dedicated infrastructure. Thus, κm has
lower and upper bounds given by L

lm
ηm ≤ κm ≤ L

lm
(ηm + ηmixed) ,∀m ∈ M .

κm (N) =
L

lm
(ηm + ηmixed)−

∑
m′∈M\{m}

lm′

lm

(
κm′ − L

lm′
ηm′

)
, ∀m ∈ M (2)

Second, we require that travel production is always positive as long as the accumulation
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of any mode is non-negative and not all modes are gridlocked. See Eqn. 3.

Π(N) > 0 for 0 < Nm < κm, ∀m ∈ M (3)

Third, we define the average network speed as V ≡ Π/
∑

m Nm, so that it must always
decrease with any accumulation of vehicles, as given by Eqn. 4.

∂V

∂Nm

< 0, ∀m ∈ M (4)

Fourth, we require that the production is zero, i.e. Π(N) = 0, if either no vehicles
circulate on the network, or all modes reach κm, or any combination of these two cases,
as formulated in Eqn. 5.

Π(N) = 0, if Nm = κm ∨Nm = 0, ∀m ∈ M (5)

Fifth, we require that that the total production Π (in Eqn. 6) equals the sum of all
modes productions πm. As Eqn. 1 provides a lower envelope for the theoretical best-
case situation, we are particularly interested in the maximum possible production for any
accumulation of vehicles. Thus, we have to find the distribution of vehicles among ηm

and ηmixed that maximizes Π.

Π(N) = max
∑
m∈M

πm (Nm) (6)

Eqns. 1-6 provide a meaningful lower envelope for a theoretical best-case situation. As
it is expected that this best-case situation will never be achieved, we propose to reduce
the travel production by λ (N), as formulated in Eqn. 7 with the smooth approximation
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of the minimum operator (Cook, 2011; Bliemer et al., 2017; Ambühl et al., 2018).

Π(N) = −λ (N) log

(
exp

(
−Π1 (N)

λ (N)

)
+ exp

(
−Π2 (N)

λ (N)

)
+ · · ·+ exp

(
−ΠJ (N)

λ (N)

))
(7)

The smoothing parameter λ (N) has an interesting interpretation in this context as it
quantifies with a single metric the losses in the travel production due to vehicle interac-
tions not captured by the functions Πj. It is clear that this parameter is non-linear, but
provides an opportunity to reduce the complexity of the problem. The larger the value
for λ (N) is, the stronger the vehicle interactions become, resulting in higher reduction
of the total production. In case λ (N) = 0, no vehicle interactions in addition to those
captured by functions Πj take place.

To be precise, as Ambühl et al. (2018) show, λ (N) is also a measure of heterogeneity
in the network. Thus, λ (N) not only describes the flow reduction from the theoretical
best-case due to between-vehicle interactions, but also other unobserved factors that lead
to an observed production that is normally below the theoretical best-case, e.g. spatial
and temporal heterogeneity of flow, irregularities in traffic operations, etc. Unfortunately,
so far, no approach exists to determine the precise contributions of all these sources to
λ (N).

A potential procedure to estimate λ (N) is to use a non-linear regression on multi-modal
MFD observations, e.g. empirical or simulation data (Ambühl et al., 2018). More details
are provided later in this paper. However, future research could explore whether λ (N) can
be derived analytically or predicted with a model estimated from empirical observations.

3 A functional form for the 3D-MFD

Here, as a particular application of the multi-modal MFD described above, we create a
functional form for the 3D-MFD by defining a three dimensional lower envelope consist-
ing of J planes, which provides an upper limit for the travel production, given different
accumulations of cars and buses. The 3D-MFD must be specified for each city context.
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The set of planes required for a fully operational functional form for the 3D-MFD must
create a geometric shape of a closed cover without holes and other irregularities. Fur-
ther, the chosen planes should result in a geometric shape that resembles the 3D-MFD
very closely. Therefore, planes should describe free-flow, saturated and congested traffic
conditions as well as mark the gridlock states for both modes. Only when the planes are
carefully selected, the functional form will provide a physically meaningful representation
of macroscopic bus and car traffic in cities. Here, we propose to use seven planes. For
this, we use the following notation. Eqn. 8 defines plane j in the three-dimensional space
given by Nc, Nb, and Π, where (car0,j, bus0,j, π0,j) are the coordinates of a point in plane
j, and (carn,j, busn,j, πn,j) is the corresponding normal vector.


 Nc

Nb

Π

−

 car0,i

bus0,i

π0,i




T

·

 carn,i

busn,i

πn,i

 = 0 (8)

After solving Eqn. 8 for Π, we obtain Eqn. 9 for plane Πj as a function of both modes
vehicle accumulations. Recall that each plane Πj (Nc, Nb) is a function required for the
general functional form as given in Eqn. 7.

Πj (Nc, Nb) = π0,j − (carn,j (Nc − car0,j) + busn,j (Nb − bus0,j)) /πn,j (9)

The planes for Eqn. 7 will be defined from eleven points that we will introduce below.
Figure 5 shows the location of all these points in the 3D-MFD. Here, we focus primarily
on planes defining a theoretical best-case situation based on geometric and operational
issues. For the operational features, we follow in most cases the basic ideas by Daganzo
and Geroliminis (2008) to calculate the points that account for the delays at the network
level caused by intersections and signals. Importantly, our proposed set of planes can
be further extended and refined with city-specific operational features of multi-modal
traffic. All planes are defined by at least three points in the 3D-MFD, which are given in
the Cartesian coordinate system in the order of Nc, Nb and Π. All resulting planes are
summarized in Table 2.
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Name Key Unit Additional comments

Variables
Accumulation of cars Nc [veh] Normalized to density

by dividing by the car
network length (1 −
ηb)L.

Accumulation of buses Nb [veh] Normalized to density
by dividing by the bus
network length (1 −
ηc)L.

Total travel production Π [veh-km/h]
Average speed in the network vMFD [km/h]
Speed of cars in the network vc,MFD [km/h]
Speed of buses in the network vb,MFD [km/h]

Parameters
Smoothing parameter λ [-] Value is shape specific.
Total network length L [km] Entire urban road in-

frastructure.
Fraction of car only roads ηc [-]
Fraction of bus only roads ηb [-]
Jam spacing of cars lc [km]
Passenger car equivalent of buses φ [-]
Average car delay at intersections δc [h]
Free-flow speed of cars in links vc,0 [km/h]
Backward wave speed of cars in links wc,0 [km/h]
Free-flow speed of buses in links vb,0 [km/h]
Backward wave speed of buses in links wb,0 [km/h]
Car saturation rate at intersections sc [veh/h-lane]
Bus saturation rate at intersections sb [veh/h-lane] Computed from the bus

fundamental diagram.
Average link length l [km]
Average bus stop spacing p [km]
Average dwell time ∆ [s]
Average cycle length C [s]
Average effective green time G [s]
Public transport strategy ζ [-] 0,if buses have ultimate

priority at signals. 1, if
buses are entirely mixed
with cars and experi-
ence the same delay.

Table 1: 3D-MFD variables in the upper part and input parameters for the lower envelope
for the 3D-MFD. Further parameters calculated from these input parameters are
not shown for convenience.
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3.1 Definition of points

In this section, we consider that intersections are spaced on average at a distance l. The
entire network length is, as before, given by L and expressed in lane-kilometers. We
distinguish three different types of lanes: dedicated car lanes, dedicated bus lanes, and
mixed lanes. Here, we consider ηb and ηc, i.e. the fraction of the network length where
only buses and cars circulate, respectively. Thus, the total network length where only
cars circulate is ηcL, where only buses circulate is ηbL, and where both modes circulate
is (1 − ηb − ηc)L. The bus stops are spaced on average with a distance p. The headway
of buses then follows from the design of the network and the number of buses (Daganzo,
2010). Table 1 summarizes all variables and parameters used here.

One trivial point in the system is point P0 = (0, 0, 0)T at the origin, where no vehicles in
the network circulate and there is no travel production. Consider then the top down view
on the car and bus accumulation coordinates in Figure 1. Cars can drive on (1− ηb)L

of the network and have a jam spacing lc. The point P1 is the maximum accumulation
in the network of cars that can be achieved when no public transport operates and the
network is gridlocked. The point then equals to:

P1 =

 (1− ηb)L/lc

0

0


The point P2 considers the case when no cars circulate and the bus system is gridlocked on
(1− ηc)L of the network. For buses, we make the assumption that the bus-car equivalent
is φ. Then, the point is defined by:

P2 =

 0

(1− ηc)L/ (lcφ)

0



Next, we define the gridlock boundary under mixed traffic conditions with points P3 and
P4, where the production of traffic is still zero. The point P3 describes the gridlock case
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Figure 1: Top-down view on the 3D-MFD which shows the bimodal vehicle accumula-
tion plane. For the defined points, total travel production is zero. The lines
connecting the points also represent all combinations of accumulations where
travel production is zero.

for all car and mixed lanes, as well as the gridlock scenario on all dedicated bus lanes:

P3 =

 (1− ηb)L/lc

ηbL/ (lcφ)

0


On the other hand, the point P4 mirrors this behavior for buses and is defined with

P4 =

 ηcL/lc

(1− ηc)L/ (lcφ)

0



We now consider the situation where no public transport operates, i.e. Nb = 0 (Figure 2).
At intersections, cars experience on average a delay of δc that reduces the road free-flow
speed vc,0 at the network level to vc. Here, we approximate the network-wide average
free-flow speed vc as by Eqn. 10, although other more sophisticated approaches could
also be used, e.g. by Daganzo and Geroliminis (2008). We use the procedure by Daganzo
and Geroliminis (2008) to obtain the network-wide average backward wave speed for cars
wc based on Eqn. 10. In detail, Daganzo and Geroliminis (2008) reverse the direction of
the moving observer by replacing vc,0 with wc,0 and account for the cycle length in the
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Figure 2: Side view on the 3D-MFD on the total travel production and car accumulation
plane. For the defined points, no public transport operates.

signal offsets (for simplicity not included here).

vc =
l

l

vc,0
+ δc

(10)

Figure 2 shows the discussed situation with Nb = 0 and the network-wide speeds vc and
wc, which is basically the car MFD. The points P0 and P1 are already defined (see Figure
1) and only points P5 and P6 remain to be defined. Both points share the common total
travel production given by Eqn. 11.

Πc = sc
G

C
(1− ηb)L (11)

Equation 11 is derived from the stationary cut defined by Daganzo and Geroliminis (2008)
with the saturation flow sc, the average cycle length C, and the average effective green
time G. We derive Nc for both points with the fundamental relationship of traffic using
the free flow speed vc and backward wave speed wc as shown in Figure 2. Then, points
P5 and P6 equal to:
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Figure 3: Side view on the 3D-MFD with the total travel production versus the accumu-
lation of buses. For the defined points, no cars are operating.

P5 =

 Πc/vc

0

Πc



P6 =


(1− ηb)

L

lc
− Πc/wc

0

Πc



We now follow the same rationale for the case with only buses operating and no cars
circulating, i.e. Nc = 0. Figure 3 exhibits this situation where the points P0 and P2 are
already defined (see Figure 1). Thus, we define points P7 and P8 similarly to P5 and P6.
However, buses have to stop not only at intersections but also at bus stops for boarding
and alighting of passengers during the dwell time period ∆. For simplicity, we assume that
the dwell time also includes deceleration and acceleration, and that the public transport
operator has defined for each stop a scheduled arrival and departure time so that ∆ is,
under normal circumstances, independent of the demand and human behavior.
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Some public transport agencies might include a buffer in the travel time between two
stops that allows an operation within a rigid time table even under more congested traffic
situations. For that purpose, buses would be equipped with a device that gives drivers
advice about the scheduled travel time and that tells them to drive faster or slower, e.g.
as implemented in Zurich’s bus and tram system. As a consequence, buses would drive
at a maximum speed vb,0 lower than that of cars vc,0 in light traffic conditions. Bus stops
are placed at an average distance p. Some cities, e.g. Zurich, have decided to give public
transport full priority at each intersection to minimize delay for public transport vehicles,
but other cities do not make a difference between cars and public transport vehicles
so that public transport vehicles experience the same delay as cars. To capture these
different strategies, we define the public transport strategy parameter ζ ∈ [0, 1]. The
value zero means full public transport priority and one means buses are fully integrated
in traffic, i.e. they experience all car delays. Thus, the maximum commercial speed of
buses vb that includes dwelling, intersections delay, and the time table buffer is given by
Eqn. 12 that follows the idea by Daganzo (2010), but accounts for the public transport
priority strategy ζ and simplifies the dwelling behavior. The bus backward wave speed
wb is then obtained using the same procedure as for cars in Eqn. 10.

vb =
p

p

vb,0
+ δcζ

p

l
+∆

(12)

We assume that the maximum travel production of buses Πb is achieved for the case of full
public transport priority (ζ = 0) with no delay at intersections. Πb will be lower in case of
similar delays at intersections for buses and cars (ζ = 1). Similar to Πc in Eqn. 11 for car
traffic, we then define Πb for the bus system in Eqn. 13 with two parts. First, the left part
with term sbL (1− ηc) quantifies the possible maximum production in case of no delays or
in case no bus stops are considered. Second, the right part quantifies the fraction of this
possible maximum production that can be realized when delays and stopping behavior
are accounted for. This idea is inspired by the stationary cut in Daganzo and Geroliminis
(2008), where in the G/C ratio G describes moving and C moving and waiting part. Here,
this part considers the average fraction of time buses are moving during the journey from
one stop to the next, where buses move for time p/vb,0, but also experience intersection
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Figure 4: Additional points for the capacity in the 3D-MFD when buses on their dedicated
lanes increase travel production from saturated car traffic.

delays δcζ at p/l crossing between two stops and delays due to dwelling ∆.

Πb = sbL (1− ηc)


p

vb,0
p

vb,0
+ δcζ

p

l
+∆

 (13)

Consequently, points P7 and P8 are defined by:

P7 =

 0

Πb/vb

Πb



P8 =

 0

(1− ηc)L/ (lcφ)− Πb/wb

Πb


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We then define two additional points P9 and P10. They describe the influence of dedicated
bus lanes on the multi-modal capacity of the network. Consider the case with buses
running on dedicated lanes. Car traffic is not obstructed by buses and when more buses
are added to the system, the travel production is increased at the same level of car
accumulation. Given that in this framework we are interested in providing an upper
bound for bi-modal traffic, the highest travel production is achieved when all dedicated
bus lanes operate at capacity and the remaining part of the network, i.e. all dedicated
car and mixed lanes, are saturated with cars.

Thus, the points P9 and P10 are at the same car accumulation as P5 and P6, and at
a public transport accumulation where capacity is reached on the dedicated bus lanes.
The latter sounds rather unrealistic when buses only use their dedicated lanes and not
the mixed lanes as they usually run on fixed routes. Nevertheless, as we are interested
in finding the highest possible production of bus kilometers points P9 and P10 are then
defined as:

P9 =


Πc/vc

Πb
ηb

1− ηc
/vb

Πb
ηb

1− ηc
+Πc



P10 =


(1− ηb)

L

lc
− Πc/wc

Πb
ηb

1− ηc
/vb

Πb
ηb

1− ηc
+Πc



The previously discussed set of points describes the physical limits of the system from a
geometric perspective, from which we derive the lower envelope for the 3D-MFD. Points
P0 to P4 clearly satisfy conditions for the functional form proposed in Eqn. 2 and 5,
while points P5 to P10 satisfy Eqn. 6. However, there are many operational features
in multi-modal networks that might further limit their productivity. These operational
aspects can describe conflicts in mixed traffic, bus bunching, dwelling behavior, effects of
the built environment, bus stop design (curb side or bus bay), public transport network
design, and routing in the network.
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Plane Points Description

I P0, P7, P9 Free flow traffic conditions in both modes. The tilting of the
plane describes the trade-off between cars and buses achieving
the same travel production.

II P1, P3, P10 Congested traffic states for car traffic.
III P5, P6, P9, P10 Describes increase in travel production when car network is

saturated and buses on their dedicated network add to the
travel production.

IV P3, P4, P9 Wave speed of mixed traffic. The points P9 is favored over P10

as traffic states might deteriorate faster due to mixed traffic
conditions.

V P7, P8, P9 Capacity trade-off between buses and cars when the bus sys-
tem operates in the saturated state.

V I P2, P8, P9 Capacity trade-off between buses and cars when the bus sys-
tem operates in the congested state.

V II P2, P4, P9 Capacity trade-off between buses and cars when both system
operate in the saturated state. We extend this plane also to
the congested state of buses to reduce the number of planes.

Table 2: Construction of the seven planes from the eleven points.

3.2 Definition of the planes

Based on the eleven points introduced above, we now propose a lower envelope for the
3D-MFD defined by a set of seven planes. Table 2 numbers the planes and shows which
combination of points defines each plane. Figure 5 shows the resulting planes, as well
as the resulting shape of the 3D-MFD for an artificial network1. We consider this set as
the minimal amount of planes required to describe the fundamental relationships in the
3D-MFD. The proposed set of planes then satisfies Eqns. 3 and 4. It should be clear,
however, that this set of eleven points and the set of seven planes is not the ultimate
and complete solution to describe the 3D-MFD. Some other points can also be defined
to capture certain traffic characteristics. Also, more planes can be introduced, out of
which some can become non-binding. It is also worth mentioning that there might be
other combinations of points for the proposed planes that lead to a comparable 3D-MFD
shape. Following the rationale for points P9 and P10, for example, one would argue for two
similar points and the related planes to describe the influence of the dedicated car lanes.
However, we omit those because the resulting planes would chop the lower envelope and
thus create an unreasonable 3D-MFD shape for typical common bus and car parameters.

1In Figure 5 and in Section 6, we use the vehicle density (having the unit of vehicles per lane-meter)
instead of accumulation, and express the travel production in vehicle kilometers per second instead
of hour to achieve manageable and more comprehensible numbers.
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(a) Planes I-VII, view A (b) Planes I-VII, view B

(c) 3D-MFD with planes I-VII, view A (d) 3D-MFD with planes I-VII, view B

Figure 5: Illustrating the planes and the resulting 3D-MFD

In the following, we explain the psychical meaning of each of the defined planes.

Plane I characterizes mixed traffic conditions when both modes operate in the free flow
conditions. The tilting of this plane represents the number of cars that can be replaced by
a bus to maintain the same travel production. Plane II captures the traffic states when
car traffic is congested and buses operate in the free flow conditions. Plane III describes
the behavior in the network such that, when all roads where cars can circulate operate in
the saturated state, running more buses on the dedicated bus network increases the total
travel production. This contribution is usually rather small, but can become substantial
in case of bus rapid transit systems and when the traffic performance is analyzed from
a passenger perspective. Plane IV models the congested states in both modes and all
sub-networks. We propose to use P6 instead of possibly more obvious P10 for two reasons.
First, once the multi-modal system reaches its capacity, we consider that the system in
mixed traffic deteriorates faster to gridlock than if only cars would circulate. Second,
with this approach, we require a fewer number of planes, making the entire formulation
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of the 3D-MFD much simpler. We include planes V and V I to complement plane I in
the domain of saturated and congested bus operations and to limit the travel production
between the defined maximum points of buses and cars. Although these traffic states
might be rarely observed in bus networks, considering these planes might be relevant to
cities where bus lines at central hub locations are overlapping to a large extent, e.g. in
Zurich or Brisbane. The last required plane is plane V II that closes the 3D-MFD and
creates the familiar shape. It describes the trade-off between buses and cars when both
are operating in the saturated state. We extend this plane to the congested regime of
buses so that we can reduce the number of planes and thereby the complexity of the
formulations.

In Figures 5(c) and 5(d) we then use the set of planes from Table 2 and Eqn. 7 to derive
the functional form for the 3D-MFD and to obtain the familiar shape as introduced by
Geroliminis et al. (2014). For simplicity, we assume an average value of λ that we set to
λ = 0.1. This ensures a tight fit of the curve to the shape defined by the planes, resulting
in a rather edged-shape 3D-MFD. Recall that the larger the value for parameter λ is, the
smoother the entire shape would become.

It is important to underline that the definitions and assumptions for the points are opti-
mistic and describe the highest possible travel production for any combination of bus and
car accumulations. Although empirical observations will be, by definition, always below
the defined curve of the 3D-MFD, the deviation can be substantial when the vehicle inter-
actions (measured by λ) are rather strong and spatial heterogeneity is large (for details
see Ambühl et al. (2018)). However, as Eqn. 7 is flexible to accommodate more realistic
points and planes, especially in terms of bus operations, a more accurate 3D-MFD for
the specific context can be obtained. For example, the method of cuts by Daganzo and
Geroliminis (2008) can further be used - if applicable - to derive more points and planes,
potentially resulting in a tighter 3D-MFD shape.

In this section, we implicitly assume that all points for the planes are defined based
on external data and that λ is the only free parameter that can either be estimated
from observations or simply derived from other studies. However, it is also possible to
estimate some points for the planes from observations to obtain a tighter (and better)
fit of the lower envelope (lower RMSE), but this may partially cut down the functional
form’s physical interpretation. In the end, the analyst has to decide and balance his/her
priorities in how (s)he wants to work with this flexible functional form.
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4 Derivation of speed functions

Unfortunately, in the definition of the 3D-MFD as given in Eqn. 7, bus speed vb,MFD

and car speed vc,MFD cannot endogenously be derived from the 3D-MFD itself as the 3D-
MFD only provides the average speed of the system with vMFD : = Π/ (Nc +Nb). Thus,
to solve for each modes commercial speed, we require another constraint. Geroliminis
et al. (2014) proposed to use a linear relationship between the speeds of both modes as
provided by Eqn. 14.

vb ∼= θvc + β (14)

The parameter β is the intercept and θ is the slope of the linear relation and the param-
eters have to be estimated from data. Based on Eqn. 14, the speed of buses vb and of
cars vc then follow according to Eqns. 15 and 16, respectively.

vb =
Π− βNb

Nc + θNb

θ + β (15)

vc =
Π− βNb

Nc + θNb

(16)

For our analysis, we propose to approximate θ and β of Eqn. 14 with the parameters
of the 3D-MFD shape as provided by Table 1 instead of an estimation from data. As
we require only two points for a linear relationship, we evaluate bus speeds, first, at the
maximum car speed (vc,MFD = vc) and, second, at the minimum car speed vc,MFD = 0.
First, in light traffic, i.e. vc,MFD = vc, buses are not obstructed by cars, and thus buses are
running at vb,MFD = vb. Second, when the entire car network is jammed, i.e. vc,MFD = 0,
buses are only able to move on their dedicated lanes with vb and are jammed everywhere
else. Thus, we simply consider vb,MFD = vbηb/(1− ηc) because only the fraction of buses
running on dedicated lanes are producing vehicle kilometers. Then, the approximations
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for β and θ follow according to Eqn. 17 and 18, respectively.

β = vb
ηb

1− ηc
(17)

θ =
vb
vc

(
1− ηb

1− ηc

)
(18)

Nevertheless, we consider that Eqn. 14 only holds approximately and not over the entire
range of vehicle accumulations, especially at the interval borders of one of the variables.
Thus, we require additional constraints for the speed of buses from Eqn. 15 and cars
from Eqn. 16 to ensure that speeds do not exceed physical limits. In particular, we
require that, for each mode, the speed is always within the fundamental diagram of
that mode by using the minimum operator as given for bus speeds in Eqn. 19 and car
speeds in Eqn. 20. Here, we consider a trapezoidal fundamental diagram (Daganzo, 1994)
with parameters from Table 1. The speeds are obtained by evaluating the fundamental
diagram at the respective density (dividing vehicle accumulations by network length) of
each mode, for buses vb,FD (Nb/(1− ηc)) and for cars vc,FD (Nc/(1− ηb)). Additionally
in Eqn. 19, we require that the bus speed equals the MFD speed in cases when the car
network is approaching gridlock to avoid negative bus speeds.

vb,MFD (Nb, Nc) = min

(
vb,FD (Nb) ;

Π− βNb

Nc + θNb

θ + β; vMFD (Nb, Nc)

)
(19)

vc,MFD (Nb, Nc) = min

(
vc,FD (Nc) ;

Π− βNb

Nc + θNb

)
(20)
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5 Applications of the functional form: The passenger
3D-MFD

So far, we have followed only a vehicle perspective, but since the goal of urban trans-
portation systems is to transport people and not vehicles, we discuss in this section how
the proposed functional form aligns with a passenger perspective, namely the passenger
3D-MFD (Geroliminis et al., 2014; Chiabaut, 2015; Loder et al., 2017). Generally, we can
assume that the passenger travel production Πpax follows from Eqn. 21.

Πpax = Nbhbvb,MFD +Nchcvc,MFD (21)

where hb and hc are the vehicle occupancies for buses and cars, respectively.

Below, we show three different possibilities to estimate the passenger 3D-MFD. First, in
Section 5.1 we discuss the passenger capacity 3D-MFD. This one describes the maximum
number of passengers that could be accommodated in an urban network, using hb and hc

as the vehicle passenger capacity, i.e. the maximum possible number of passengers inside
a single vehicle. Second, in Section 5.2 we discuss the passenger preference 3D-MFD. In
this case, hb and hc result from travelers preferences for a certain mode given a set of
explanatory variables, e.g. travel times, network features, and vehicle crowding. Third,
in Section 5.3 we discuss the measured passenger 3D-MFD. Here, we assume that hb and
hc are available from observations, and can vary in time and space.

5.1 Passenger capacity 3D-MFD

In Figure 6 we provide an example for a passenger capacity 3D-MFD which is based
on the 3D-MFD shown in Figure 5. We assume an average car occupancy of hc = 2

passengers and an average bus occupancy of hb = 80 passengers, corresponding to peak
hour conditions, thus unrealistically high for low demand periods. These 3D-MFDs can be
seen as the maximum possible production of the system if every public transport vehicle
was used to capacity. Figure 6(a) shows the passenger capacity 3D-MFD based on the
average speed vMFD in the 3D-MFD and Figure 6(b) based on each modes’ individual
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(a) Passenger capacity 3D-MFDs based on
3D-MFD average speed

(b) Passenger capacity 3D-MFDs based on in-
dividual mode’s speed

Figure 6: Comparing passenger capacity 3D-MFDs. Car occupancy is assumed to be
equal to two, while bus occupancy is assumed to be 80. The underlying 3D-
MFD is identical to those shown in Figure 5.

speed vc,MFD and vb,MFD.

Both passenger capacity 3D-MFDs clearly show a maximum at non zero density of buses.
This is in accordance with the previous studies on the 3D-MFDs (Geroliminis et al., 2014;
Loder et al., 2017). However, differences between both types of passenger capacity 3D-
MFDs are visible. While the point of maximum travel production is similar, the peak is
more distinct in the case of considering each modes’ speed in Figure 6(b). This also leads
to a stronger drop in production compared to the mean speed 3D-MFD in Figure 6(a).

5.2 Passenger-preference 3D-MFD

For the passenger preference 3D-MFD, we assume that hb and hc are a function of human
preferences and a set of explanatory variables. In the context of the 3D-MFD, travelers
make a discrete choice between buses and cars aiming to minimize the generalized cost
for their trips. The generalized cost usually combines travel cost and travel time for both
modes, as well as waiting time, access and egress time to the bus stop for the bus mode.
The preferences then reflect the particular valuation of each of these elements. The list
of elements above is not exhaustive as many other (personal) factors can influence mode
choice as well.

For the generalized cost, we can obtain the travel time from the 3D-MFD itself. The
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required bus network variables can be derived, for example, using the design approach by
Daganzo (2010). Other preferences and the valuation of the cost elements require travel
surveys. Using a multinomial logit (MNL) or similar function to translate all modes
generalized cost into choice probabilities (Ben-Akiva and Lerman, 1985), allows us to
determine what portion of the travelers choose the car or the bus (i.e. the modal split).
In other words, this provides hb and Nc, because hc and Nb are usually fixed. The first
one is fixed as cars are rarely occupied by more than 1-2 passengers. The latter is fixed
because it is determined by the structure of the bus network.

To be more specific, let us consider the situation shown in Figure 7. We want to un-
derstand how for different levels of demand (in # pax) and different bus headways (in
minutes) travelers make their mode choice. With this information, we can then deter-
mine the total passenger travel production accounting for preferences. We can clearly see
that for very long headways, few travelers are transported at lower speeds compared to a
situation with shorter headways. This is intuitive as shorter headways not only provide
more capacity for travelers, but also lead to more attractive travel times in the network,
and thus attract more passengers. Importantly, the parameters for human preferences
are always context specific and must be carefully identified for each application. As a
detailed discussion of this is out of scope of this paper and we only want to illustrate the
idea of a passenger preference 3D-MFD based on our proposed functional form, we do
not discuss details of the model any further.

5.3 Measured passenger 3D-MFD

Intuitively, the measured passenger 3D-MFD is the simplest to explain, but most likely
the hardest to obtain. Here, hc and hb are measured, for example as Loder et al. (2017)
did for Zurich. While one can make a fairly good assumption on hc based on travel
surveys, hb requires extensive measurements. However, ticketing measures that require
“tapping in and out” in buses provide a very good data source, but might be not available
for many cities.
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Figure 7: The passenger preference 3D-MFD in the dimensions of total number of trav-
ellers and design headway of the system. The underlying network is identical to
those used in Figure 5. For the logit function, we choose a simple formulation
for the generalized cost (utility) U and probability Pr = 1/ (1 + exp (−U)) of
riding the bus with the commercial speed of buses (Eqn. 12), bus headway
and vehicle crowding. The latter variable is the number of travellers divided by
the maximum capacity of all buses in the network. Arguably, using congested
travel times instead of the commercial speed of buses in the choice requires a
traffic assignment based on Eqns. 19 and 20. We assumed typical values for
the valuation of generalized cost elements. As the parameters for the valuation
of the generalized cost elements differ from context to context and must be
carefully identified for each application, we do not discuss this aspect here any
further.

6 Comparison of the observed 3D-MFDs

Here, we first discuss in Section 6.1 how the functional form for the 3D-MFD can be
constructed and estimated. Then, in Section 6.2 we validate the proposed functional
form for the 3D-MFD with data obtained from a microscopic traffic simulator as well as
empirical data from London and Zurich. Last, in Section 6.3 we validate the proposed
speed functions from Section 4.

6.1 Derivation of the lower envelope and the smoothing parameter

The proposed functional form for the 3D-MFD must be estimated separately for each
network by finding the values for each parameter listed in Table 1. Here, we have to
distinguish between parameters that can be easily derived from the topology of the bus
and road networks and the operational parameters of cars and buses.
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First, network topology parameters L, ηc, ηb, l and p can be found using spatial data of
the road and bus networks, e.g. from OpenStreetMap and the public transport agency.
The network cutout for the 3D-MFD can be identified with network partitioning algo-
rithms (e.g. Saeedmanesh and Geroliminis, 2016; Ambühl et al., 2019). Then the network
topology parameters can be calculated using spatial analysis tools. Importantly, ηb de-
notes the share of the total infrastructure devoted to buses; thus overlapping bus routes
must not be counted multiple times, but only once.

Second, operational parameters might be obtained from prior traffic measurements, or
approximated based on fundamental traffic principles. The jam spacing of cars lc can be
approximated using traffic departments or car clubs vehicle statistics, while the passenger
car-equivalent φ can be calculated using the mean vehicle length of the entire fleet of the
public transport agency. The average cycle length C and effective green time G can be
observed on the real network or obtained directly from the traffic departments. For cars,
detector and trajectory measurements can be used to estimate the fundamental diagram,
including values for the cars free flow speed vc,0 and backward wave speed wc,0, as well
as the saturation rate sc. The average intersection delay δc can either be measured or
calculated using the formula provided by Daganzo and Geroliminis (2008). For public
transport, many agencies record the vehicle trajectories which allow to determine or
approximate the fundamental diagram parameters vb,0, wb,0, and sb, as well as the average
dwell time ∆. The strategy parameter ζ must be either measured or derived from the
bus-priority control algorithm.

Third, the smoothing parameter λ can be estimated from observations in at least two
different ways: (i) If bus and car measurements are available and the empirical 3D-MFD
can be estimated, λ can be obtained with a nonlinear regression minimizing the difference
between the 3D-MFD from the calibrated lower envelope and the empirical 3D-MFD. (ii)
If only the MFD from car measurements can be estimated, but we also have bus headway
information and the desired commercial speed, then, Eqns. 1-4 provided by Daganzo
(2010) can be used to approximate the number of buses and the bus travel production.
This production can be added to the car MFD to obtain an approximation of the 3D-MFD.
We illustrate this procedure in Section 6.2 using the Zurich data. With this approximated
3D-MFD we can calculate λ as before. In this case, however, we expect λ to be smaller,
because the approximated 3D-MFD does not account for all interaction effects given that
we use the scheduled and not the actual bus production. That being said, as we find
in the next section that λ always falls within a certain range, the 3D-MFD for a given
network can even be estimated without an observed (3D)-MFD, by assuming a λ value
within the reported range in Table 3 scaled by network length (see Section 6.2).
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6.2 Validation of the 3D-MFD

Using planes I-V II for the 3D-MFD, we now compare Eqn. 7 to the outcome of a
microscopic traffic simulation and to two empirical data sets (see Appendix A for details).
Here, we consider an average, i.e. constant, λ for the entire network and all vehicle
accumulations. For the simulation, we use an abstract network with a 10 × 10 grid,
with 180 links and the average block length of 150 m. For the simulation platform,
we use a VISSIM microsimulation. Two network configurations are investigated: (i) a
homogeneous network with identical links and no road hierarchy (Figure 8a); and (ii)
a heterogeneous network with three levels of road hierarchy denoted as L1, L2, and L3
(Figure 8b). In the former configuration, each signalized intersection was modeled with
a saturation flow of s = 1800 veh/h, cycle length of C = 60 sec, and G = 30 sec of green
(including 3 sec of lost time) for all conflicting signal phases. In the latter configuration,
we vary road capacity and signal timing parameters as follows: L1 has s = 2000 veh/h,
C = 80 sec, and G = 40 sec; L2 has s = 1800 veh/h, C = 70 sec, and G = 35 sec; and
L3 has s = 1600 veh/h, C = 60 sec, and G = 30 sec. For intersections between different
capacity roads, the cycle and green time for the highest capacity road is used. Notice
that this hierarchical network leads to more heterogeneous traffic conditions (Muhlich
et al., 2015). The tested traffic scenarios have public transport lines covering 20 % of the
network length, where buses operate in a mixed-lane fashion, i.e. no dedicated lanes are
allocated to public transport vehicles. For the empirical data sets, we use data collected
from inductive loop detectors, providing vehicle flows and occupancy in London and
Zurich. Figures 8c to d show the experimental sites in London and Zurich. The bus data
is collected from the automated vehicle location devices (AVL), used to reconstruct the
trajectories of vehicles and to estimate the averages of speed and density. The data from
Zurich has been previously used by Loder et al. (2017) and Dakic and Menendez (2018).
All required parameters for applying the proposed functional form on both simulation
and empirical data sets are listed in Table 3, where those related to the network topology
of London and Zurich are obtained from OpenStreetMap.

For all four data sets, we estimate λ with non-linear least squares. The estimated value
for each 3D-MFD is given in Table 3. We show in Figure 9a to l the fitted functional
form with the measurements given in red. Here we see that our proposed functional
form aligns well with the observations for all four case studies. The third figure in each
row in Figure 9 provides the residuals of the fit. We find residuals of around 30 % of
the observed capacity for both simulation networks, with a slightly larger value for the
heterogeneous network, and around 5-10 % for the empirical cases. Arguably, the residuals
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Figure 8: Network exhibits for the estimation of the 3D-MFDs. (a) shows the grid net-
work in a homogeneous road configuration, while (b) shows a heterogeneous
network with road hierarchy L1>L2>L3. (c) shows the neighborhood in Lon-
don (UK) and (d) the neighborhood selected in Zurich (CH).

for the simulation are larger because the wider range of densities amplifies two effects not
accounted for in the lower envelope: nonlinearities and network dynamics. When further
comparing the estimated 3D-MFDs from both simulation networks, we find two different
patterns. In the homogeneous network, the curve describes well the observed capacity
and then overestimates the congested branch, while it underestimates the capacity and
congested traffic states in the heterogeneous case. Arguably, this difference is caused by
the difference in the two networks. With more heterogeneity, the similarity between the
observed traffic states and the lower envelope decreases. Capturing this in our functional
forms single parameter λ is difficult and consequently, the fit of the functional form
in Figure 9 is less ideal in the heterogeneous case compared to the homogeneous case.
Nevertheless, even in the case of a heterogeneous network, our proposed functional form
stills provides a meaningful 3D-MFD shape.

For the value of λ, we normalize the accumulations to vehicle densities, while we keep
the vertical axis in terms of production. As a result, and as previously noted by Ambühl
et al. (2018), λ is not scale-invariant; hence it cannot be directly compared across networks.
However, scaling λ by L brings λ to the order of magnitude of λ ≈ 10−2 in this study,
which is in the same range reported by Ambühl et al. (2018) for the unimodal case.
Therefore, even if no observations are available for the λ estimation, it is possible to
use the previous finding of λ ≈ 10−2 (normalized for network length) to approximate it
with reasonable certainty. We further conclude, that this holds even in heterogeneous
network configurations as shown in Figure 8b. That being said, if the heterogeneity
increases significantly, the network should be further partitioned to guarantee that the
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Figure 9: Validating the functional form for the 3D-MFD from simulation data for a
homogeneous network (a to c), from simulation with a heterogeneous network
(d to f), empirical traffic data from London (g to i), and empirical traffic data
from Zurich (j to o). The first two columns show the estimated 3D-MFD
from two different angles, while the third column shows the residuals of the λ
estimation. For Zurich, j to l show the estimated 3D-MFD if traffic data from
buses and cars is available, while m to o show the estimated 3D-MFD if no bus
data is available and is approximated using Eqns. 22 and 23.
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MFD homogeneity requirements are satisfied. Further research is required to investigate
whether λ can be analytically derived as a function of different explanatory variables.

We now discuss the estimation of λ if no public transport measurements, like the ones we
used for the validation of London and Zurich, are available. To do so, we follow Daganzo’s
2010 idea and we use the Zurich case as an example. In this case, we require the total
network length for buses B and the headway H. Using GIS tools, B can be calculated
from spatial bus network data, which is usually available from the local agency. For our
Zurich network, we have a total network length of B = 43.6 km. Note that this is more
than the total infrastructure for buses in Table 3 as many routes overlap. According to the
time table of Zurich, during peak hour, most services run with a headway of H = 0.1 h.
Then, the production of buses during peak hour is given by Eqn. 22.

πb =
B

H
= 436 veh-km h-1 (22)

With our observed data from Zurich, we find that during peak hour the maximum public
transport production is πb ≈ 470 veh-km h-1. This means an error of around 7 % with Eqn.
22 and the proposed approach; so we can conclude that this is a reasonable approximation.

We now need to calculate the number of buses during peak hour Nb with Eqn. 23 as used
by Daganzo (2010).

Nb =
πb

vb
(23)

Here, vb is the commercial speed of buses, which can be either derived using Eqn. 12
from this paper, Eqn. 4 from Daganzo (2010), or based on measurements during peak
hour. Suppose that we estimate vb during peak hour at vb ≈ 11 km h-1 as Loder et al.
(2017) reported. This then results in Nb = 436/11 ≈ 40 veh, which is close to the
observed Nb ≈ 43 veh during peak hour (with an error of about 7 %). Adding πb and
Nb to the observations of car traffic and then estimating the 3D-MFD function leads to
λ = 1.120 with a standard error of 0.006 (normalized λ ≈ 0.024). This value is very close
to the λ estimated for the measured 3D-MFD (see Table 3). Consequently, the resulting
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estimated 3D-MFD in Figures 9 m to o looks very similar to the 3D-MFD estimated
using all empirical data in Figures 9 j to l.

We then compare our proposed functional form with Drakes generalized exponential func-
tion proposed by Geroliminis et al. (2014). The latter function has six model parameters
that need to be fitted to the data and cannot be defined a priori, as they do not have
any physical meaning. Our functional form, on the other hand, has a single parame-
ter, λ, and as we already showed, it can be reasonably assumed given that it seems to
be always within the same range when normalized for network length. Not surprising,
we find a better fit of Drakes generalized exponential function to the data compared to
our functional form. In particular, we first obtain for the simulation an RMSE of 0.323
for Drakes generalized exponential function and 0.770 for our proposed functional form
for the homogeneous network, as well as 0.306 for Drake’s function and 0.820 for our
functional form in case of heterogeneous network configuration. This increase in RSME
(error) of our proposed function is intuitive. The similarity between the theoretical best-
case situation and the observed traffic states decreases with heterogeneity, which makes
it difficult to describe with just a single parameter the observed traffic states. Second, for
London we obtain an RMSE of 1.80 for Drakes generalized exponential function and 2.28
for our proposed functional form, although MATLABs fmincon solver exited for Drakes
generalized exponential function with the status local minimum possible (see the resulting
issue in Figure 10). Third, for Zurich we obtain an RMSE of 0.110 for Drakes generalized
exponential function and 0.183 for our proposed functional form. However, Figure 10
emphasizes that it is difficult to obtain a satisfying 3D-MFD shape with Drakes gener-
alized exponential function: Only with a full range of densities as exclusively available
from a simulator, the 3D-MFD shape is satisfying. For empirical observations, the result-
ing 3D-MFD shapes are inevitably unsatisfying and consequently not applicable without
concerns: As the parameter estimation for London converged only to a possible local
optimum, the familiar 3D-MFD shape is clearly not recovered, although the proposed
constraints are satisfied. For Zurich, we see that at least a shape similar to a 3D-MFD is
recovered, but production decreases towards zero for higher bus accumulations faster than
what is observed in reality, and production is non-zero at jam density of cars and zero
accumulations of buses. None of these issues can arise with our proposed functional form,
which in addition, can be potentially constructed from scratch without any traffic data,
in contrast with Drake’s exponential function that needs the full range of observations
across the two modes.

32



Figure 10: Estimation of Drake’s exponential function as proposed by Geroliminis et al.
(2014): (a) results from the simulation with the homogeneous network configu-
ration, (b) results from the simulation with the heterogeneous network config-
uration, (c) shows the function estimated for London with the inset showing
that the speed constraint is satisfied, and (d) shows the function estimated
for Zurich.

6.3 Validation of speed functions

Here, we validate the approximation of the speed relationship between buses and cars
proposed by Geroliminis et al. (2014) in Eqns. 14-16 as well as our proposed speed
model in Eqns. 19 and 20. Figure 11 shows the bivariate scatter plots of the observed
speeds of cars and buses for the four previously used data sets. Recall that these are
the average speeds in the network, so they account for all delays including that from
stopping at intersections and/or bus stops as well as congestion. We add to the scatter
plots a linear fit (dashed lines) and our proposed speed model (solid line). Generally,
we observe a linear trend between both modes speeds despite the scatter. Even though
there are some differences between the proposed model and both the linear fit and the
observations, the overlap is still significant. Therefore, we can reasonably assume that
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Figure 11: Validation of the proposed speed functions: (a) results from the simulation
with the homogeneous network configuration, (b) results from the simulation
with the heterogeneous network configuration, (c) shows the relationship for
London, and (d) shows the relationship for Zurich.

the proposed linear relationship by Geroliminis et al. (2014) as well as our proposed speed
model approximates the observed behavior relatively well.

7 Conclusions

This paper proposes a new general functional form for multi-modal MFDs from a geo-
metric perspective with an detailed application to the 3D-MFD. The proposed functional
form has two components. First, a lower envelope limits travel production to the the-
oretical best-case situation for any given vehicle accumulation. Second, a smoothing
parameter quantifies how interactions between all vehicles types reduce travel production
from the theoretical best-case.
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For the 3D-MFD, the shape defining parameters are derived from the physical and op-
erational characteristics of the multi-modal urban networks. The smoothing parameter
can either be estimated from 3D-MFDs observed from traffic data or if such data is not
available, our finding that the smoothing parameter is of similar value across networks
allows a good approximation of its value. The proposed methodology is flexible to accom-
modate further city-specific characteristics in the traffic operations such as taxi and mini
bus operations. MFD analysts can use the proposed functional form for the 3D-MFD
to analyze changes in the urban resource allocation on the overall productivity of urban
road networks. By doing so, this approach allows a rather quick determination whether
a city is full and demands other means of transportation such as an underground system.

The proposed macroscopic approach of multi-modal urban transportation describes in-
teractions under steady-state conditions, but lacks microscopic detail and does not con-
sider dynamic aspects of urban traffic. Future research needs to investigate these issues.
Moreover, the current definition of functions for the lower envelope considers only the
main aspects of the analytical approaches to the MFD (Daganzo and Geroliminis, 2008;
Leclercq et al., 2014) and bus operations (Daganzo, 2010; Eichler and Daganzo, 2006), but
accounting for more detailed aspects might improve the fit of the functional form. Fur-
ther, considering the effects of bus network design (e.g. Daganzo, 2010; Saade et al., 2018;
Chen et al., 2015) on the shape of the 3D-MFD would generate important contributions.

The discussed application of the functional form for the 3D-MFD, and the passenger 3D-
MFD, emphasizes the practical and policy relevant implications of this research. First, it
allows to understand multi-modal urban traffic even with few data requirements. Second,
it allows to consider infrastructure variables as endogenous in optimization problems in
a continuous representation of multi-modal urban traffic.
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A Empirical data preparation

The bus and car traffic data for London and Zurich come from different kind of sources.
The bus data comes from Automatic vehicle location (AVL) systems that record buses’ lo-
cations with a time-stamp that allows to generate their trajectories in the network. From
these trajectories, we calculate in each analysis interval T the distance traveled di and
travel time ti within that interval T and the analyzed region. With these measurements
we are able to obtain the measurements of space-mean speed of buses vb by evaluating
Eqn. 24.

vb,MFD =

∑
di (t)∑
ti (t)

(24)
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Additionally, we derive the total accumulation of buses with Eqn. 25.

Nb (t) =

∑
ti (t)

T
(25)

Then, we can calculate the total travel production of buses with Eqn. 13.

Πb (t) = Nb (t) vb (t) (26)

The car traffic data comes from inductive stationary sensors in the road network. During
an observation interval T , each detector i reports the count of vehicles, qi, as well as the
fraction of time, where the detector was physically occupied with vehicles, oi. Commonly,
occupancy is understand as an indicator for traffic density. We then obtain the network
average for the MFD by calculating the weighted averages of flow and occupancy weighted
by the link length li of each monitored lane according to Eqns. 27 and 28.

qc,MFD (t) =

∑
liqi (t)∑
li

(27)

oMFD (t) =

∑
lioi (t)∑

li
(28)

We then calibrate our MFDs, in particular traffic density, by using refernce space-mean
speeds in the same regions obtained from the google directions API. In detail, we identify
the on average hour in the MFD and the network, typically in the early morning, and
request 1000 random directions from the API at the same hour of the day. We then
ensure that the means of the direction API speeds match with the MFD speeds from the
same hour of the day.
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