Genomewide signatures of selection in Epichloë reveal candidate genes for host specialization

Journal Article

Author(s):

Schirrmann, Melanie K.; Zoller, Stefan; Croll, Daniel; Stukenbrock, Eva H.; Leuchtmann, Adrian (D); Fior, Simone

Publication date:

2018-08

Permanent link:

https://doi.org/10.3929/ethz-b-000281177

Rights / license:

In Copyright - Non-Commercial Use Permitted

Originally published in:

Molecular Ecology 27(15), https://doi.org/10.1111/mec. 14585

Funding acknowledgement:

138479 - Mechanisms of pre- and postzygotic isolation in cryptic Epichloë species (SNF)

Genome-wide signatures of selection in Epichloë reveal candidate genes for host specialization

Melanie K. Schirrmann ${ }^{1,2}$, Stefan Zoller ${ }^{3}$, Daniel Croll ${ }^{4}$, Eva. H. Stukenbrock ${ }^{5}$, Adrian Leuchtmann ${ }^{1}$ and Simone Fior ${ }^{1}$
${ }^{1}$ Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
${ }^{2}$ Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope,
Waedenswil, Switzerland
${ }^{3}$ Genetic Diversity Centre (GDC), ETH Zurich, Zürich, Switzerland
${ }^{4}$ Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
${ }^{5}$ Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany and Max Planck Institute for Evolutionary Biology, Plön, Germany.
Corresponding author
Melanie Katharina Schirrmann
Schloss 1
8820 WaedenswilEmail: m.schirrmann@live.de

$$
\text { Tel.: +41 } 584699007
$$

Running title

Host specialization candidates in Epichloë

Keywords

Endophytic fungi, host specialization, pathogens, population genomics, positive selection, secreted proteins

Abstract

Host specialization is a key process in ecological divergence and speciation of plantassociated fungi. The underlying determinants of host specialization are generally poorly understood, especially in endophytes, which constitute one of the most abundant components of the plant microbiome. We addressed the genetic basis of host specialization in two sympatric subspecies of grass-endophytic fungi from the Epichloë typhina complex; subsp. typhina and clarkii. The life cycle of these fungi entails unrestricted dispersal of gametes and sexual reproduction before infection of a new host, implying that the host imposes a selective barrier on viability of the progeny. We aimed to detect genes under divergent selection between subspecies, experiencing restricted gene flow due to adaptation to different hosts. Using pooled whole-genome sequencing data, we combined F_{ST} and D_{XY} population statistics in genome scans and detected 57 outlier genes showing strong differentiation between the two subspecies. Genome-wide analyses of nucleotide diversity (π), Tajima's D, and $d \mathrm{~N} / d \mathrm{~S}$ ratios indicated that these genes have evolved under positive selection. Genes encoding secreted proteins were enriched among the genes showing evidence of positive selection, suggesting that molecular plant-fungus interactions are strong drivers of endophyte divergence. We focused on five genes encoding secreted proteins, which were further sequenced in 28 additional isolates collected across Europe to assess genetic variation in a larger sample size. Signature of positive selection in these isolates and putative identification of pathogenic function supports

our findings that these genes represent strong candidates for host specialization genes in Epichloë endophytes. Our results highlight the role of secreted proteins as key determinants of host specialization.

Introduction

Ecological divergence is a process whereby natural selection drives adaptation of populations to distinct ecological environments (Arnegard et al. 2014). The genetic architecture and underlying function of adaptive traits is at the core of evolutionary biology studies aiming to understand how natural selection can lead to lineage divergence and speciation. In recent years, genome scans have provided unprecedented insights into the genetic determinants of ecological divergence in a number of organisms, including well-studied model systems in evolutionary biology such as sticklebacks (Jones et al. 2012), cichlid fishes (Brawand et al. 2014), flycatchers (Ellegren et al. 2012), stick insects (Soria-Carrasco et al. 2014), hooded crows (Poelstra et al. 2014), and Heliconius butterflies (Martin et al. 2013). One underlying principle of genome scan based studies is that loci under divergent selection experience less introgression compared to the rest of the genome as a consequence of selection acting on these loci. This "protection" from the homogenising effect of gene flow enables the formation of highly differentiated regions (Wu 2001; Nosil et al. 2005; Feder et al. 2012).

One of the most widespread forms of ecological divergence in plant-associated fungi is host-driven specialization (Vialle et al. 2013; Restrepo et al. 2014). The close association between a symbiotic fungus and its host depends on the co-evolution of physiological and life history traits linked to the interaction between the co-existing organisms. Fungal infection of host plants is mediated by multiple signalling events, including the secretion of proteins (often in the form of small secreted proteins, so called effectors) that suppress immune responses or manipulate host cell physiology in pathogenic systems (Rep 2005; Plissonneau et al. 2017). After successful infection, pathogens exploit their host plants for nutrients to sustain their
own growth and reproduction while inducing disease and compromising host viability and reproduction (Bronstein 2009). This antagonistic relationship of pathogens results in a co-evolutionary arms race (Dawkins \& Krebs 1979) by which genes involved in the host-fungus interaction are continuously subject to selection in response to changes occurring in the symbiotic partner (Presti et al. 2015). In particular, secreted proteins that directly interact with host molecules are expected to be strong targets of natural selection (Terauchi \& Yoshida 2010). This expectation was confirmed by the identification of signatures indicating positive selection on genes encoding secreted proteins in a number of plant pathogens (Win et al. 2007; Barrett et al. 2009; Poppe et al. 2015).

Genes encoding secreted proteins and other genetic determinants of host specialization may also play a central role in speciation of plant pathogens (Giraud et al. 2006; Giraud 2006). Some fungal plant pathogens are obligate biotrophs that complete their entire life cycle on a single compatible host plant, and undertake sexual reproduction within the plant without effective dispersal of gametes. As the ability to infect a host depends on the necessary repertoire of effector proteins, mating partners are determined by the set of effectors that allow infection of the same host (Giraud et al. 2010). Host specialization can thus form a strong postzygotic barrier preventing genome-wide introgression between strains specialized to distinct hosts (e.g. different host adapted races), leading to species formation (Giraud et al. 2006). Other pathogens have a life cycle that entails free movement of gametes mediated by wind or a vector before mating takes place outside (e.g. on the ground) or on the surface of the plant. After zygote formation and meiosis, haploid spores are dispersed and new infections are determined by the ability of the progeny to infect the plant on which spores have landed. In the absence of intrinsic prezygotic barriers and assortative
mating, selection on host specialization loci cannot impede exchange of neutral genomic regions between pathogen races. Selection will maintain host specialization alleles in each race, and reproductive isolation only evolves as a consequence of assortative mating or active host choice (Giraud et al. 2006; Giraud 2006).

Genome scans can be used to detect outlier regions in the genome that stand out with respect to the distribution of genetic variants. Different test statistics can be used to identify regions with either an increased or reduced nucleotide differentiation. Regions that have been subjected to divergent selection during ecological divergence of two populations can typically be recognized by an increased differentiation using F_{ST}-based statistics (Ellison et al. 2011; Branco et al. 2015). However, other processes not necessarily related to divergent ecological specialization can produce similar signatures in the genome sequence. Recent theoretical and empirical work have highlighted the role of linked selection in generating a signature of increased differentiation, especially in regions of low recombination (Cutter \& Payseur 2013; Wolf \& Ellegren 2016). Furthermore, demographic history, evolutionary rates and genomic architecture can affect the distribution of nucleotide differentiation (Vijay et al. 2016; Van Doren et al. 2017), calling for awareness on the methodology employed to associate highly differentiated regions with loci experiencing divergent selection (Burri 2017).

At advanced stages of lineage separation, net divergence given by the parameter D_{XY} (Nei 1987) is expected to capture the level of polymorphism accumulated since the divergence of populations. This parameter is suitable to infer variation in the rate of gene flow across the genome, while sensitive to signatures of selection in the ancestral population (Cruickshank \& Hahn 2014; Guerrero \& Hahn 2017). Loci underlying divergent selection are thus expected to show both high $F_{\text {ST }}$
and D_{XY} values between ecologically diverging populations or species (Nachman \& Payseur 2012; Cruickshank \& Hahn 2014). Additional test statistics to assess the impact of natural selection on sequence evolution include measures of nucleotide diversity (π), site frequency analyses (e.g. Tajima's D), and estimates of nonsynonymous and synonymous variation in coding sequences within and between species. Combined evidence from these measures can strengthen inferences of deviation from neutral evolution for putative adaptive loci (Wolf \& Ellegren 2016). Population genomics of host-specialized fungi have provided a powerful approach to identify genes that have been under selection during the divergence of populations, and that may have allowed the colonization of distinct hosts. Such analyses have been used to detect genes involved in divergent host specialization in the fungal pathogen species Zymoseptoria tritici (synonym Mycosphaerella graminicola) and Microbotryum lychnidis-dioicae (Stukenbrock et al. 2011; Poppe et al. 2015; Badouin et al. 2017). Both species establish intercellular networks that resemble endophytic growth within the host tissues after successful infection. While Z. tritici eventually switches to a necrotrophic growth after a long latent period, M. lychnidis-dioicae sterilises its host for its own reproduction without killing it. However, the genetic basis of host specialization remains poorly understood and more studies are needed to dissect the underlying mechanisms of lineage divergence and host specialization and to identify key determinants of symbiotic interactions.

Epichloë (Ascomycota, Clavicipitaceae) belongs to the large group of fungal endophytes, one of the most diverse and abundant components of the plant microbiome (Ganley et al. 2004; Busby et al. 2016). Sexual species of this genus grow symptomless within plant tissues with no clear sign of defence response from the plant during the plant vegetative phase (Schardl et al. 2004), but they severely
affect the plant inflorescence during the plant reproductive phase, which coincides with the sexual stage of the fungal life cycle (Fig. 1; Leuchtmann \& Schardl 1998). At this time, the haploid fungal mycelium proliferates massively within the expanding grass inflorescence to produce external fruiting structures (i.e. stromata) including both male gametes (i.e. spermatia) and corresponding female receptive hyphae (White et al. 1997). The reproduction of the fungus finally results in the sterilisation of host flowering stems, causing a syndrome known as 'choke disease' (Western \& Cavett 1959; Kirby 1961). Epichloë species are heterothallic (i.e. different mating types prevent fertilization between spermatia and female structures from the same stroma), and host plants are infected with only one strain, thus obligate outcrossing occurs between genotypes having infected different plants. After successful mating, karyogamy and meiosis take place on the stroma and haploid ascospores are winddispersed and mediate horizontal transmission to new hosts by infection of grass florets and seeds (Fig. 1).

In previous work, we focused on two sympatrically growing subspecies of sexually reproducing E. typhina subsp. typhina infecting Dactylis glomerata and E. typhina subsp. clarkii infecting Holcus lanatus (hereafter E.t. typhina and E.t. clarkii). We found clear genotypic differentiation between the two subspecies (Schirrmann et al. 2015), and reciprocal infections with host-associated strains showed host specificity (Schirrmann \& Leuchtmann 2015). Subspecies within the same species complex can be crossed in artificial experiments (Leuchtmann \& Schardl 1998), and hybrids are viable in vivo following infection of parental as well as extra-parental host plants (Schirrmann \& Leuchtmann 2015). In natural ecosystems, mating is vectored by non-selective flies of the genus Botanophila (Anthomyiidae) in a process similar to pollination (Bultman et al. 1998), with potential hybridization of fungal subspecies
occurring in geographic proximity. Indeed, hybrid ascospores between E.t. typhina and E.t. clarkii have previously been identified (Bultman et al. 2011). The life cycle of E.t. typhina and E.t. clarkii conforms to a model of sexual reproduction where mating can occur between individuals specialized to different host plants. More specifically, there are effectively no intrinsic pre- and post-zygotic barriers to hybrid formation, and selection imposed by host specialization may thus be the key determinant of the ability of hybrid spore genotypes to infect a new host and reproduce successfully. Following the classical model of lineage divergence occurring in the presence of gene flow, strong allelic differentiation is expected at loci underlying host specialization in contrast to the rest of the genome.

In this study, we aimed to identify candidate genes underlying host specialization of E.t. typhina and E.t. clarkii. Epichloë fungi interact with the host grass throughout its entire life cycle to establish and maintain infection. Given the strict host specificity of the studied subspecies, we expected to find signatures of divergent selection (i.e. selection acting in different directions on the two subspecies) on genes encoding secreted proteins, as these may be involved in the specific interaction with host molecules, as it has been shown in other pathogenic fungi (e.g. Rep 2005; Terauchi \& Yoshida 2010; Presti et al. 2015; Poppe et al. 2015; Badouin et al. 2017). We analysed whole-genome pooled sequencing data from the two sympatrically growing subspecies to detect outlier loci with signatures of increased divergence. Our approach combined analyses of nucleotide differentiation based on F_{ST} and D_{XY} to detect divergent selection between the two subspecies, and neutrality tests (i.e. nucleotide diversity π and Tajima's D) to detect deviations from neutrality within the two subspecies. Furthermore, we inferred gene-wise estimates of nonsynonymous and synonymous divergence and polymorphisms to compute $d \mathrm{~N} / d \mathrm{~S}$
ratios between subspecies and to perform a McDonald-Kreitman (MK) test within subspecies to detect signatures of positive selection (McDonald \& Kreitman 1991; Goldman \& Yang 1994). By combining the outcome of selection scans with functional gene predictions, we identified five candidate genes encoding secreted proteins for which we confirmed signatures of positive selection using additional 28 isolates from European populations. We consider these five genes strong candidates for host specialization determinants.

Methods

Population genomics sequencing

A total of twenty haploid E.t. typhina stromata (i.e. fruiting structures) and twenty haploid E.t. clarkii stromata, respectively, were sampled in spring 2013 from sympatric populations at Aubonne, Switzerland. Individual stromata were collected from infected plants spaced every five meters along eight transects. Given that stromata contain both fungal and grass material, the interior part of each stroma was split open under sterile conditions to separate mycelium from visible grass tissues. Mycelial DNA was extracted using the DNeasy Plant Kit (Quiagen, Germantown, MD, USA). DNA quality was checked on 1.5% agarose gels stained with GelRed using a UV-Vis Spectrometer and DNA quantity was measured with a Qubit fluorometer using the broad-range dsDNA standard. The population genomic dataset was obtained using a pool sequencing (Pool-Seq) approach (Schlötterer et al. 2014). High-quality DNA from mycelium of stromata of each subspecies was pooled in equimolar amounts, producing one $5 \mu \mathrm{~g}$ RNA-free genomic DNA sample for each of the subspecies. Illumina libraries of $\sim 600 \mathrm{bp}$ insert size were generated following the instructions of the Illumina Paired-End Sample Preparation Kit. Sequencing was
performed on an Illumina MiSeq lane using 150 bp paired-end reads to produce an expected coverage of $\sim 150 \mathrm{X}$ for each subspecies and an expected coverage of $\sim 7.5 \mathrm{X}$ per individual. Reads have been submitted to the NCBI Sequence Read Archive (SRA) under accession numbers SRR5571977 - SRR5571978.

Illumina read mapping and SNP calling

To filter sequence reads, we used Trimmomatic (Bolger et al. 2014) to remove Illumina adapters, bases at the start and end of a read below a quality threshold of 5, and low-quality segments from the end of a read using a 4 bp sliding window and threshold for average quality of 15 . Trimmed reads shorter than 50 bp were discarded. Remaining reads were mapped to an existing E. typhina subsp. poae genome assembly (E.t. poae; E5819; http://www.endophyte.uky.edu; Schardl et al. 2013). E.t. poae is a close relative of the studied subspecies and belongs to the same species complex (Leuchtmann \& Schardl 1998; Craven et al. 2001). The E.t. poae reference genome includes 34 Mb assembled in 2072 contigs, with an N50 value of 36475 bp (Schardl et al. 2013). In total, genic regions (including UTRs, exons and introns) comprise 15.2 Mb (44.7%), coding sequences (exons only) compromise 10.5 Mb (30.9\%), and repetitive DNA compromises 41.6% (Schardl et al. 2013). Reads were mapped with BWA-MEM version 0.7 .8 using the default settings (Li \& Durbin 2009). Alignments were filtered for a minimum mapping quality of 20, and remaining highquality reads were sorted and indexed with Samtools v. 0.1.18 (http://samtools.sourceforge.net/). Single nucleotide polymorphisms (SNPs) within each of the two host-associated subspecies were called with Samtools (mpileup; Li et al. 2009) using default settings, and population statistic measures were computed using software specifically developed for Pool-Seq data, i.e. PoPoolation (Kofler et
al. 2011a) and PoPoolation2 (Kofler et al. 2011b).

Population genomics analyses

Given the higher proportion of reads mapping to coding regions of the E.t. poae reference genome (see Results), all population genomic analyses were performed on gene coding sequences. To detect candidate genes involved in host specialization, our approach aimed to identify loci showing elevated differentiation and divergence as inferred from F_{ST} and D_{XY} statistics, respectively. As a relative measure of differentiation, F_{ST} is sensitive to variation in within-population genetic diversity, and heterogeneous patterns across the genome can arise from processes unrelated to host specialization. D_{XY} measures the average number of nucleotide differences between populations, and is expected to be highest in genomic regions protected from gene flow. Because sorting of ancestral variation and new mutations must occur in the diverging populations for D_{XY} to increase, a longer divergence time compared to F_{ST} is required before a significant signal arises. Therefore, a signal is only detected at advanced stages of divergence compared to F_{ST}. Importantly, the signals from F_{ST} and D_{XY} are expected to overlap for loci under divergent selection that experience reduced gene flow (Cruickshank \& Hahn 2014). Inference of differentiation across the aligned E.t. typhina and E.t. clarkii sequences was performed by computing F_{ST} following the approach of Hartl \& Clark (2007) given by the formula $F_{\mathrm{ST}}=\left(\pi_{\mathrm{T}}-\pi_{\mathrm{S}}\right) / \pi_{\mathrm{T}}$, where π_{T} is the expected heterozygosity in the total sample and π_{S} is the expected average heterozygosity in each population. Inference of divergence was calculated as $D_{\mathrm{XY}}=$ $\sum x_{i} y_{i} d_{i j}$, where, $d_{i j}$ measures the number of nucleotide differences between the $i^{\text {th }}$ haplotype from population X and the $j^{\text {th }}$ haplotype from population Y (Cruickshank \& Hahn 2014).

Gene-wise $F_{\text {ST }}$ values were calculated using Popoolation2 (Kofler et al. 2011b), which allows comparison of allelic SNP frequencies between two or more populations. Scripts mentioned below are included in this package unless otherwise specified. Synchronisation and filtering of the Samtools mpileup-file were performed using mpileup2sync.jar. The gene annotation of E.t. poae was transferred onto the synchronized file using create-genewise-sync.pl to generate a gene-based dataset for population statistics. $F_{\text {ST }}$ estimates were obtained with f st-sliding.pl, setting the number of chromosomes pooled per population to 20 and the window size $(40,000$ bp) longer than the length of any E.t. poae gene, as recommended by the authors of the program (Kofler et al. 2011b). The minor allele count was set to two for each gene, and at least 50% of SNPs had to fulfil the minimum coverage of six and maximum coverage of 60 in each subspecies to minimise the risk of calling variants in poorly mapped or repetitive regions. Allele frequencies based on SNPs were estimated with snp-frequency-diff.pl, filtering with the same thresholds as described for F_{ST} estimates.

We computed the measure of divergence D_{XY} for bi-allelic loci $(\sim 99.2 \%$ of the total allele estimates) as the average number of nucleotide differences for each gene based on the formula using allele frequencies from Smith \& Kronforst (2013) defined as $D_{\mathrm{XY}}=\frac{1}{n} \sum_{i=1}^{n} \hat{p}_{i x}\left(1-\hat{p}_{i y}\right)+\hat{p} i y\left(1-\hat{p}_{i x}\right)$. Genes with values above the 95% quantile in both F_{ST} and D_{XY} population statistics were defined as outliers $\left(F_{\mathrm{ST}}-D_{\mathrm{XY}}\right.$ outliers) and considered as candidate genes involved in host specialization. To obtain further estimates of sequence diversity to confirm signatures of divergent selection for the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers we calculated nucleotide diversity π (Nei \& Li 1979) and Tajima's D (Tajima 1989). Reduced levels of nucleotide diversity and Tajima's D at candidate genes conforms to expectations of positive selection acting on these loci. In
particular, Tajima's D is 0 in a population evolving with mutation-drift equilibrium, Tajima's $D>1$ is indicative of balancing selection or population contraction, and Tajima's $D<1$ is indicative of recent positive selection or population expansion. Although similar patterns in diversity measures can be generated by different demographic processes, evidence from these statistics can be informative to support departure from neutrality. Within both subspecies, gene-wise π (Nei \& Li 1979) and Tajima's D were computed using variance-at-position.pl in PoPoolation (Kofler et al. 2011a). Minimum requirements for coverage and allele count used in SNP calling were set as described above for the F_{ST} calculations. All statistical analyses were conducted in R version 2.13.0 (R Development Core Team, 2011).

Prediction of gene functions

The reference genome of E.t. poae (Schardl et al. 2013) includes a structural annotation of genic regions, but a functional annotation is currently not available. We produced a de novo functional annotation for E.t. poae using Blast2Go with a similarity search against a local installation of the NCBI non-redundant (nr) database (Conesa et al. 2005). A list of the functional annotations for all genes is available as supplementary material (Table S1, Supporting information). In addition, protein domain detection was performed with a local installation of InterProScan v.5RC7 (Jones et al. 2014).

To identify the biological processes associated with the genes identified as candidates for host specialization among the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, we performed a Gene Ontology (GO) enrichment analysis using Blast2Go (Conesa \& Götz 2007). Significance of each individual GO category was computed using a Fisher's exact test with a significance threshold of 1%. Correction for multiple testing was performed
using a false discovery rate (FDR) of 0.05 . The E.t. poae genes used for the F_{ST} analyses were used as background reference for the analyses in E.t. typhina and E.t. clarkii. Given that genes encoding secreted proteins may be involved in host-fungus interactions, we screened predicted extra-cellular protein sequences for the presence of a secretion signal, and transmembrane, cytoplasmic and extracellular domains using a combination of SignalP v.4.1 (Petersen et al. 2011), Phobius v.1.01 (Käll et al. 2004) and TMHMM v.2.0 (Krogh et al. 2001). Protein sequences of genes included in the final candidate selection were further characterized with InterProScan v.5.16-55.0 (Jones et al. 2014). To this end, we assigned protein sequence motifs to protein families (PFAM) and GO categories based on hidden Markov models (HMM) implemented in InterProScan.

Detection of orthologous and paralogous genes

Genes underlying host specialization (in particular candidate effector genes) were found to exist as gene families in the genome of a number of plant pathogens (Plissonneau et al. 2017). Gene families are created by gene duplication events, which can lead to paralog formation. The presence of such paralogs can interfere with the assessment of polymorphism (and by extension estimates of $d \mathrm{~N} / d \mathrm{~S}$ ratios) as sequencing reads originating from one paralog might map to another paralog and generate erroneous variant calls. Ortholog identification analysis was performed on coding sequences (CDS) extracted from E.t. poae gene models and from consensus sequences of E.t. typhina and E.t. clarkii. Encoded protein sequences were translated using transeq (EMBOSS 6.6.0.0; Rice et al. 2000) and analysed for orthology/paralogy using OMA (version 2.1.1; default settings except MinSeqLen =

30; Altenhoff et al. 2015). OMA results were examined for 1-to-1, 1-to-many, many-to-1 and many-to-many ortholog relationships.

Detection of positive selection driven by host specialization

To further identify signatures of positive selection in E.t. typhina and E.t. clarkii we computed ratios of non-synonymous ($d \mathrm{~N}$) and synonymous ($d \mathrm{~S}$) substitutions (Goldman \& Yang 1994). The ratio of the two parameters is indicative of the type of selection that has acted on a gene, where $d \mathrm{~N} / d \mathrm{~S}<1$ indicates purifying selection, $d \mathrm{~N} / d \mathrm{~S}>1$ indicates positive selection and $d \mathrm{~N} / d \mathrm{~S}=1$ indicates neutral evolution. We computed 90% majority consensus sequences from the Pool-Seq data for all genes from each subspecies with a custom script. Polymorphisms with alternate allele frequencies above the 90% threshold were considered as fixed between subspecies, and shared polymorphisms with allele frequencies below the threshold in either subspecies were excluded from the analyses. We calculated $d \mathrm{~N} / d \mathrm{~S}$ ratios for 8,211 genes with the BUSTED method (Murrell et al. 2015) implemented in the Hyphy package (Kosakovsky Pond et al. 2005). BUSTED provides a likelihood ratio test for positive selection and reports a gene-wise $d \mathrm{~N} / d \mathrm{~S}$ value and the probability (i.e. p value) of a gene to have experienced positive selection in at least one site and on at least one branch.

We performed a GO enrichment analysis using Blast2Go (Conesa \& Götz 2007) for 58 genes with $d \mathrm{~N} / d \mathrm{~S}$ values significantly >1. Significance of each individual GO category was computed using Fisher's exact test with a significance threshold of 5%. Correction for multiple testing was performed using a false discovery rate (FDR) of 0.05 . We tested for an enrichment of $d \mathrm{~N} / d \mathrm{~S}$ values significantly >1 in 24 genes predicted to encode secreted proteins, and compared the
$d \mathrm{~N} / d \mathrm{~S}$ values of the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers to the distribution of the rest of the aligned genes. We then focused our downstream analyses on five candidate genes encoding secreted proteins within the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, and tested for signatures of positive selection using the MK test on http://mkt.uab.es/mkt/ (Egea et al. 2008). The MK test compares the within and between species proportions of non-synonymous and synonymous variation, and can provide convincing evidence on the type of selection acting on specific candidate genes. An excess of non-synonymous substitutions relative to non-synonymous polymorphisms suggests that a gene has been under positive selection during species divergence and has therefore fixed more nonsynonymous mutations (McDonald \& Kreitman 1991). A minority consensus sequence was generated by calling polymorphic sites within each population using the same parameters as in the PoPoolation analyses.

Targeted Sanger sequencing of candidate genes in additional isolates

To further assess within subspecies variation in the five candidate genes encoding secreted proteins, we collected sequence data from a larger population sampling to provide evidence that signature of positive selection is persistent across the subspecies distribution. To this end, we designed new primer pairs for PCR amplification using the consensus sequences of E.t. typhina and E.t. clarkii in Geneious 6.1.8 (Table S2, Supporting information) (Drummond et al. 2013). Targeted Sanger sequences were produced for the same 40 individuals from the Aubonne site included in the Pool-Seq data set, and a sampling of 21 E.t. typhina individuals and seven E.t. clarkii individuals from different locations across Europe (Table S3, Supporting information).

We used the Sanger sequences obtained for the individuals originating from the Aubonne site to validate allele frequencies from the Pool-Seq data. The data set
including only the European sampling was used to compute a multi-locus MK test that we could compare to the signals of selection recovered in the Pool-Seq data from the Aubonne individuals. Because primers were designed on outer exons of a coding sequence, the Sanger sequences of the European sampling may lack a number of nucleotides at the beginning or the end of a gene compared to data from whole genome sequencing. To ensure that excluded nucleotides did not bias the results of the MK test performed on the European sampling, we repeated the test on samples from the Aubonne site using the individual Sanger sequences and compared the results to those obtained from the Pool-Seq approach.

DNA of the European samples was extracted following the procedure reported above. For all samples, PCRs were performed in $15 \mu 1$ reaction volumes containing 1 $\mu \mathrm{l}$ DNA, $0.075 \mu \mathrm{l}$ GoTaq Polymerase (Promega), $3 \mu \mathrm{l}$ buffer, 10 mM of each primer, 2.5 mM dNTPs, and 25 mM MgCl 2 . An initial polymerase activation step of 3 min at $94^{\circ} \mathrm{C}$ was followed by 35 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 1 min at $72^{\circ} \mathrm{C}$, and a final step of 7 min at $72^{\circ} \mathrm{C}$. PCR reactions were sequenced using BigDye Terminator v. 3.1 on a 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Forward and reverse strands were assembled in Geneious v. 6.1.8 (Drummond et al. 2013), and consensus sequences were aligned using the default plugin of the software. The obtained nucleotide sequences have been submitted to GenBank under accessions KU566808-KU567105 (Table S4, Supporting information).

Results

Population genomics sequencing and read mapping

Sequencing of pooled DNA resulted in 38.4 million paired-end reads for E.t. typhina and 30.6 million paired-end reads for E.t. clarkii (Table S5, Supporting information),
corresponding to a total of 8.5 Gb of sequence data. These data sets include sequences from both the endophytes and the hosts. After adapter and quality filtering, we retained 37.4 million paired-end reads from the E.t. typhina dataset ($\sim 97.4 \%$) and 30.1 million paired-end reads from the E.t. clarkii dataset ($\sim 98.4 \%$) with a median Phredscore of 38 (Table S5, Supporting information). Approximately 21.4% and 16.9% of all quality filtered reads from E.t. typhina and E.t. clarkii, respectively, mapped to the reference genome of E.t. poae. Overall, the sequencing data could be mapped to 1911 (E.t. typhina) and 1875 (E.t. clarkii) contigs of a total of 2027 contigs in the reference genome. The E.t. typhina and E.t. clarkii mappings respectively covered 79% and 78% of the E.t. poae genome with at least one read. Median genome-wide coverage was 39X and 22X for E.t. typhina and E.t. clarkii, respectively, and 42X and 24X for genes annotated in the reference genome. We observed an increased proportion of alignment coverage in coding regions of E.t. poae in comparison to intergenic regions, as expected for more conserved regions. In coding regions, 97% and 96% of the E.t. poae reference genome was covered by at least one read for E.t. typhina and E.t. clarkii, respectively.

To investigate the source of the unmapped reads, we mapped these to the genome of the model grass Brachypodium distachyon Bd21-1 a (downloaded from the Brachypodium Genome Database; http://www. brachypodium.org). Brachypodium distachyon belongs to the same subfamily (Pooideae) as the endophyte host grasses D. glomerata and H. lanatus. In total, 35% of the reads could be aligned, confirming that a large proportion of the unmapped reads represented plant genomic DNA. We hypothesize that the remaining unmapped reads comprised reads from regions specific to E.t. typhina and E.t. clarkii, repeats, and plant regions specific to D. glomerata and H. lanatus.

Genomic divergence of E.t. typhina and E.t. clarkii

In the two-subspecies dataset for the F_{ST} analyses, we identified 177,421 variable sites within 8,206 mapped genes that fulfilled the coverage thresholds. Overall, the mean number of variable sites per gene was 21.9 (mean gene length $1,400 \mathrm{bp}$). We computed F_{ST} and D_{XY} values for all genes, and found genome-wide mean values of 0.53 and 0.008 , respectively. Genes with $F_{\text {ST }}$ above the 95% quantile of the distribution, corresponding to a threshold of 0.843 , were considered as strongly differentiated outliers (Fig. 2). These included 410 genes and 3.0\% of all variable sites in the data set. D_{XY} outlier genes above the 95% quantile of the distribution, corresponding to a threshold of 0.019 , included 396 genes and 9.6% of variable sites (Fig. 2). The overlap of the F_{ST} and D_{XY} outliers ($F_{\mathrm{ST}}-D_{\mathrm{XY}}$; Fig. 2) included 57 genes, which formed the primary set of candidate genes under divergent selection in E.t. typhina and E.t. clarkii (Table S6, Supporting information).

To seek evidence of positive selection on nucleotide sequences within each of the two subspecies, we computed the summary statistics π and Tajima's D of genetic variation based on polymorphisms within E.t. typhina and E.t. clarkii, respectively. Interestingly, we found a remarkable difference in the level of genetic variation in the two Epichloë subspecies. In E.t. typhina we identified $124,896 \mathrm{SNPs}$ and in E.t. clarkii we identified 41,523 SNPs within 8,814 mapped genes (mean number of SNPs per gene $=14.2$ and 4.1, respectively). We used the SNP data to compute nucleotide diversity (π) as 0.0039 in E.t. typhina and 0.0017 in E.t. clarkii, suggesting highly different effective population sizes of the two endophyte subspecies (Table 1). When comparing π between $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers and non-outliers, we found that π was significantly reduced in $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes in E.t. clarkii compared to the rest of
the genome (two-tailed Wilcoxon rank-sum test; $p=0.022$). This finding supports a scenario of positive selection acting on these loci during divergence of lineages, while the reduced variation at the within-species-level reflects recent positive selection. In E.t. typhina, this difference was not significant (two-tailed Wilcoxon rank-sum test; p $=0.507$; Table 1).

Another parameter that reflects the distribution of genetic variation within the two subspecies is Tajima's D. Tajima's D was slightly negative in both E.t. typhina and E.t. clarkii, with mean values of -0.514 and -0.308 , respectively, indicating a skew of the site frequency spectrum and an overall excess of low frequency alleles compared to neutral expectations. In E.t. typhina, Tajima's D was significantly reduced in genes within $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers compared to the rest of the genome (twotailed Wilcoxon rank-sum test; $p=0.007$; Table 1), indicating an excess of rare alleles in this set of genes possibly reflecting past selective sweeps at the loci. In E.t. clarkii, this difference was not significant (two-tailed Wilcoxon rank-sum test; $p=0.358$).

Prediction of gene functions

To address the potential functional relevance of the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes, we conducted a functional annotation of the predicted gene sequences in the Epichloë genomes. Gene ontology (GO) categories could be assigned to 5,669 (64\%) of all 8,739 genes aligned between E.t. typhina, E.t. clarkii and the reference genome of E.t. poae. Among the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, GO categories could be assigned to 22 genes (0.38% of genes with an assigned GO category). Among these, we found 19 categories to be significantly overrepresented (Fisher's exact test; $p<0.01$; Table 2). These categories could be assigned to three main biological processes: modification of the cell wall (GO:0042545), secretion of proteins (GO:0009306) and catabolic
processes of xylan, a group of hemicelluloses found in plant cell walls (GO:0045493) (Bastawde 1992). Possibly because of the low sample size of the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes, these GO categories were not significantly enriched after correction for a FDR of 5% (Pawitan et al. 2005). This is a common result when the tested categories are not independent; in this case one gene can have several GO categories (Clarke \& Hall 2009).

Because we were mainly interested in genes involved in host specialization, we focused further analyses on genes predicted to encode secreted proteins; among the rest of the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, we did not predict functions that can be directly associated with plant-fungus interactions. Overall, 624 of all 8206 genes that mapped to the E.t. poae reference genome encoded signal peptides and were predicted to be extra-cellularly secreted in E.t. typhina and E.t. clarkii. Among the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, five genes were predicted to encode proteins secreted to the extracellular space (Table 3). We considered these genes to be strong candidates involved in divergent host specialization. Of these five candidate genes, two did not have any similarity to proteins in databases (Table 4). The remaining three genes were similar to genes essential for pathogenicity in fungal plant pathogens (Eaton et al. 2015; Rudd et al. 2015). Two of these genes encoded enzymes that may be involved in the degradation of cell walls (a carbohydrate esterase family 8 protein and an endo-1,4-beta-xylanase; Eaton et al. 2015), and one encoded a chloroperoxidase with a putative role in the suppression of host defence (Rudd et al. 2015).

Detection of orthologous and paralogous genes

As genes underlying host specialization may belong to gene families subject to duplication events (Plissonneau et al. 2017), we performed an orthology analysis
between the genes sequenced in E.t. typhina and E.t. clarkii. This analysis revealed 1-to-1 relationships for 8650 genes, many-to-1 or 1-to-many relationships for 32 genes, and many-to-many relationships for 38 genes. Eighty genes were shorter than 30 amino acids and could therefore not be analysed. All five candidate genes encoding secreted proteins had 1-to-1 relationships suggesting that these genes have not experienced duplication events. Fifty-five of the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers had a 1-to-1 relationship, while two genes had sequences shorter than 30 amino acids. We also screened 25 genes with the highest $d \mathrm{~N} / d \mathrm{~S}$ values (ranging from 4.435 to 9.749 , see below). Of these, 24 genes had a 1-to-1 relationship and one gene had a sequence shorter than 30 amino acids. This indicates that our genes of interest that were of sufficient length for the analyses were all orthologs in the Epichloë subspecies investigated here.

Signatures of positive selection in E.t. typhina and E.t. clarkii

We next addressed the signatures of positive selection in E.t. typhina and E.t. clarkii by inferring and comparing the proportion of non-synonymous to synonymous substitutions over all aligned genes. A list of the $d \mathrm{~N} / d \mathrm{~S}$ ratios of all genes is available as supplementary material (Table S7, Supporting information). Our automated procedure for computing the 90% majority consensus sequences of the Pool-Seq data identified 8,211 genes (93.2% of all mapped genes of E.t. typhina and E.t. clarkii, respectively) with a valid protein translation, and the dataset for the $d \mathrm{~N} / d \mathrm{~S}$ analyses included 174,916 fixed differences (i.e. substitutions) between E.t. typhina and E.t. clarkii (mean number of substitutions per gene $=22.6$). We tested the accuracy of the automated alignment of the entire dataset by comparing $d \mathrm{~N} / d \mathrm{~S}$ ratios to those obtained from a subset of 15 manually aligned genes among $F_{\text {ST }}$ outliers encoding
secreted proteins. The correlation was highly significant (Spearman's rank-order correlation; $\rho=0.897 ; p<0.001$; Fig. S1, Supporting information), confirming the reliability of our alignment procedure.

The genome-wide mean $d \mathrm{~N} / d \mathrm{~S}$ ratio of 8,211 genes between E.t. typhina and E.t. clarkii was 0.424 (Fig. 3A). Among all genes, 58 genes with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1 ($p<0.05$; LRT) were identified, with a mean $d \mathrm{~N} / d \mathrm{~S}$ ratio of 2.507, and 32 genes encoded secreted proteins, with a mean $d \mathrm{~N} / d \mathrm{~S}$ ratio of 2.453 (Table 3). Among 410 genes within the 5% upper tail of the $d \mathrm{~N} / d \mathrm{~S}$ distribution ($d \mathrm{~N} / d \mathrm{~S}>1.349$), 58 genes encoded secreted proteins, with a mean $d \mathrm{~N} / d \mathrm{~S}$ ratio of 2.328 , and nine genes encoded secreted proteins with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1 ($p>0.05$; LRT), with a mean $d \mathrm{~N} / d \mathrm{~S}$ ratio of 3.340 (Table 3). Among all genes, we found the $d \mathrm{~N} / d \mathrm{~S}$ ratios of genes encoding secreted proteins significantly increased compared to genes encoding non-secreted proteins (two-tailed Wilcoxon rank-sum test; $p<0.001$; Fig. 3B). This is in line with an enrichment of genes encoding secreted proteins with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1 compared to genes encoding non-secreted proteins (X^{2} test; $p<$ 0.001; Table 5). The enrichment shows that secreted proteins-encoding genes are evolving more rapidly than genes encoding non-secreted proteins. Among genes with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1 ($p>0.05$; LRT), we found 28 categories (including 0.49% of all genes with an assigned GO category) to be significantly overrepresented (Fisher's exact test; $p<0.05$; Table S8, Supporting information). These GO categories were predicted to be involved in four main biological processes of lipoate biosynthetic process (GO:0009107), urea catabolic process (GO:0043149), xylan catabolic process (GO:0045493), and interaction with host via protein secretion (GO:0052051). However, these were not significantly enriched when correcting for multiple testing (FDR $<5 \%$).

Within the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, $d \mathrm{~N} / d \mathrm{~S}$ ratios were significantly increased compared to non-outlier genes, with a mean value of 0.95 (two-tailed Wilcoxon ranksum test $; p<0.001$; Table 1). Three out of the five candidate genes (gene IDs: 477_41, 477_55, and 175_57) showed evidence of positive selection as indicated by $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1 and fell within the 5% upper tail of the $d \mathrm{~N} / d \mathrm{~S}$ distribution, whereas the other two genes (gene IDs: 572_15 and 1280_17) had $d \mathrm{~N} / d \mathrm{~S}$ ratios not significantly >1 but were included in the upper range of the genome-wide distribution (Fig. 3A; Table 4).

To further detect and infer the rate of positive selection within the two subspecies on the molecular level, we conducted a MK test. While the $d \mathrm{~N} / d \mathrm{~S}$ ratios are based on fixed non-synonymous and synonymous substitutions of comparative data between E.t. typhina and E.t. clarkii, the MK test contrasts polymorphisms within one subspecies to substitutions between the two subspecies (Zhai et al. 2009). The MK test revealed an excess of fixed non-synonymous substitutions compared to non-synonymous polymorphisms for the five $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ candidate genes within E.t. typhina, indicating positive selection. However, we only found statistical significance for one of these genes (i.e. 175_57; X^{2} test; $p<0.01$; Table S9, Supporting information); the low within-species level of polymorphism for the other four genes provided little power for this statistical test (Bierne \& Eyre-Walker 2004; Fay 2011). To overcome this limitation, we employed the multi-locus MK test on the five candidate genes, which allows the comparison of independent genomic regions in a single statistic test, and increases the power to detect a significant signal (Egea et al. 2008). We found a significant excess of fixed non-synonymous substitutions compared to non-synonymous polymorphisms in the five candidate genes within E.t. typhina (X^{2} test; $p<0.01$; Table 6). This evidence, complementary to the $d \mathrm{~N} / d \mathrm{~S}$
analyses, further supports a scenario of positive selection acting on our five candidate genes within E.t. typhina. On the other hand, no significant signal of selection was detected when we conducted the MK test using polymorphism data from E.t. clarkii (data not shown). We suggest that the low genetic variation within this subspecies reduced the ability to detect signatures of selection based on within-population variation.

Signatures of positive selection in additional European populations

The signatures of positive selection in the five candidate genes encoding secreted proteins suggest that these loci have played a role in the host specialization of E.t. typhina and E.t. clarkii at the Aubonne site. To investigate whether a similar signature of selection could be identified in a broader sampling of the two subspecies we set out to characterize genetic variation in the five genes in additional E.t. typhina and E.t. clarkii isolates. To this end, we designed primers for PCR amplification of the five candidate genes from representative samples of the European distribution of E.t. typhina and E.t. clarkii. We obtained complete PCR products for four genes (Table S2, Supporting information). For the fifth gene (gene ID: 572_15) we could only amplify a fragment of the sequence, thus the locus was excluded from further analyses. The four-gene data set included both isolates from the Aubonne site and from a larger European sampling. The Aubonne data set included sequences for all 40 individuals and comprised 149 variable sites. We calculated allele frequencies for both the E.t. typhina and E.t. clarkii subspecies, and tested the correlation with allele frequencies inferred from the Pool-Seq data. The correlation was positive and highly significant (Spearman's rank-order correlation $\rho=0.983 ; p<0.001$; Fig. S2, Supporting information), and neither approach showed a tendency to yield higher or lower allele
frequency estimates, thus confirming the reliability of estimates from the Pool-Seq data (Rellstab et al. 2013; Fracassetti et al. 2015). For the European sampling, we obtained a total 111 of 112 expected sequences, comprising 173 variable sites. The multi-locus MK test revealed signatures of selection consistent with findings from the Aubonne site: significant positive selection was recovered within E.t. typhina (X^{2} test; $p<0.05$; Table 6), whereas no signal was detected in E.t. clarkii. The multi-locus MK test performed on the individual Sanger sequences from the Aubonne individuals confirmed a significant signal of positive selection on the four candidate genes $\left(X^{2}\right.$ test; $p<0.01$; Table 6), as obtained from the Pool-Seq data, proving a negligible effect of the variation in sequence length between the Sanger and the Pool-Seq data sets.

Discussion

Detection of genes involved in host specialization

In this study, we set out to explore the genetic basis of host specialization in fungal endophytes using population genomic data of the sympatric Epichloë typhina subspecies E.t. typhina and E.t. clarkii. The genome-wide distribution of $F_{\text {ST }}$ between E.t. typhina and E.t. clarkii revealed high values of relative differentiation, indicative of advanced stages of divergence between the studied populations. Alternatively, such inflation could result from demographic processes that are known to affect this summary statistics, e.g. population size contractions causing genome-wide loss of diversity in either or both subspecies. The inference of outliers from such distribution may be problematic, as loci included in the tail are more likely to be false positives resulting from stochastic processes. As a measure of absolute divergence, D_{XY} is independent of within-population variation, and requires a longer divergence time to
acquire a signal compared to $F_{\text {ST }}$ (Cruickshank \& Hahn 2014). In fact, between E.t. typhina and E.t. clarkii D_{XY} has a distribution centred at very low values, and genes in the tail of the distribution constitute likely candidates experiencing reduced levels of gene flow. Genes showing high levels of relative and absolute differentiation in comparison to the rest of the genome, as determined by the overlap of outliers of the F_{ST} and D_{XY} summary statistics, constituted our main candidates for host specialization between E.t. typhina and E.t. clarkii. We identified 57 outlier genes, and substantiated our findings with additional evidence of positive selection underlying the process of divergence at these loci.

The distribution of the two studied subspecies includes populations of E.t. clarkii often in proximity to the more widespread E.t. typhina (pers. observation). Consequently, the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes may represent loci that have differentiated in sympatry because of divergent selection imposed by the two hosts and heterogeneous levels of gene flow along the endophyte genomes. However, an alternative hypothesis is that divergence and specialization to different hosts occurred after geographic isolation, and present-day sympatric populations represent a case of secondary contact between the subspecies. Dobzhansky-Muller (DM) incompatibilities are predicted to develop during geographic isolation (Orr 1995), and these may be coupled with loci under selection for host specialization upon secondary contact (Bierne et al. 2011). In this scenario, loci involved in DM incompatibilities, though not under divergent selection, may show high differentiation between the diverged subspecies, and appear as outliers in genome scans. Moreover, outlier genes of both F_{ST} and D_{XY} statistics may arise from allelic classes under balancing selection in the ancestral population, and become sorted by random processes in the descendant lineages, without necessarily being involved in the adaptation process (Guerrero \& Hahn 2017). Indeed,
genomic signatures arising from these processes are difficult to disentangle from those linked to adaptation in the extant populations. Although we cannot rule out the possibility that these processes played a role, complementary analyses based on methods to detect positive selection and functional predictions support our hypothesis that our candidate genes have indeed experienced divergent selection due to their likely role in host-fungus interactions. In particular, π and Tajima's D were significantly reduced in the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes in E.t. clarkii and E.t. typhina, respectively, while $d \mathrm{~N} / d \mathrm{~S}$ ratios were significantly higher in $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes compared to the rest of the genes, supporting the role of positive selection in the evolution of coding sequences. Consistent strong signatures of positive selection recovered for five candidate genes encoding secreted proteins at the Aubonne site and in the European populations further suggest that these specific genes evolved under divergent selection on a broader evolutionary scale. Finally, comparisons between orthologous proteins suggested that three of our candidate genes may be involved in responses to plant defence mechanisms and in the degradation of cell walls (Eaton et al. 2015; Rudd et al. 2015), thus supporting the notion that they play a role in host interactions.

Our study is limited in the proportion of the genome that has been surveyed. The regions of E.t. typhina and E.t. clarkii genomes that could not be mapped to the E.t. poae reference genome were not analysed here. Furthermore, for 13% of the coding regions in our data set, we could not assign a functional prediction. It is also possible that we have left out important candidate genes by focusing solely on genes encoding secreted proteins, e.g. genes encoding secondary metabolites or small RNAs, or proteins secreted via non-conventional pathways (Weiberg et al. 2013). Further analyses using a specific reference genome with improved annotation will
likely reveal further genomic elements that are important for host specialization in Epichloë endophytes.

Secreted proteins as determinants of host specialization

The GO enrichment analyses of the $57 F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes indicated three main biological processes putatively involved in the selective process for host specialization, including cell wall modification, xylan catabolic processes, and secreted proteins. Genes encoding secreted proteins are known to physically interact with host molecules (Presti et al. 2015), thus they constitute primary candidates involved in host specialization. Though GO categories were not significant after correcting for multiple testing, enrichment of genes encoding secreted proteins with high $d \mathrm{~N} / d \mathrm{~S}$ ratios supports a role for these genes in host specialization. These results are further supported by the involvement of genes with high $d \mathrm{~N} / d \mathrm{~S}$ ratios in, inter alia, xylan catabolic processes, and the interaction with host via protein secretion as indicated by the GO enrichment analysis. Moreover, we found strong evidence for positive selection acting on the coding sequences of five genes encoding secreted proteins within the $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, as the $d \mathrm{~N} / d \mathrm{~S}$ ratios fell in the upper range of the genome-wide distribution, and for three genes even above the 95% quantile with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly >1. Additional evidence of positive selection was found in E.t. typhina using the MK test in both the Aubonne individuals and a representative European sampling. The lack of a significant signal in E.t. clarkii likely resulted from the low levels of polymorphisms in this subspecies (Terauchi \& Yoshida 2010). Overall, this evidence points to a central role of secreted proteins in establishing hostfungus interactions in an endophyte system that sterilizes its host for sexual reproduction.

So far, our knowledge on the genetics underlying host specialization has largely come from pathogenic and castrating systems with a sexual reproduction, where secreted proteins are known to mediate interactions with the host, suppress host defence responses, or manipulate host cell physiology (Rep 2005; Kamoun 2007; Presti et al. 2015). Underlying genes are thus predicted to be primary targets of selection imposed by the host in a co-evolutionary arms race between the two interacting systems (Dawkins \& Krebs 1979; Giraud et al. 2008; Stukenbrock 2013). Selection on genes encoding secreted proteins has been studied in Z. tritici (Stukenbrock et al. 2011) and M. lychnidis-dioicae (Badouin et al. 2017). In sexual Epichloë species, the life cycle entails an intriguing sequence of interactions with the host grasses. First, the interaction is symptomless during within-plant growth, and then switches to antagonistic during sexual reproduction. Indeed, the sterilising effect caused by the fungus on the plant inflorescence resembles that of Microbotryum, which grows endophytically in its host until it reaches the bud meristems and anthers, where pollen is replaced with fungal teliospores (Akhter \& Antonovics 1999). Among our five candidate genes, three presumably play a pathogenic role in response to plant defense mechanisms or cell wall degradation (Eaton et al. 2015; Rudd et al. 2015). Purely mutualistic systems such as mycorrhizal fungi possess a very restricted repertoire of cell wall degrading enzymes (Martin et al. 2008; Tisserant et al. 2012), and a comparative genomic study indicated few pathogenicity-related proteins in endophytes compared to more aggressive pathogens (Gazis et al. 2016). However, these may be crucial for highly specialized endophytes such as sexual Epichloë. Epichloë festucae has been shown to possess genes encoding a variety of degrading enzymes (Eaton et al. 2015) likely required to degrade cuticle and epidermal cell walls of the host to facilitate an increased uptake of host derived nutrients when the
endophyte switches to proliferative external growth during stromata formation (Lam et al. 1995; Eaton et al. 2011). Moreover, in this system, the upregulation of genes encoding cell wall degrading enzymes was observed in antagonistic mutants disrupted in key signalling genes for mutualism (Dupont et al. 2015). Degrading enzymes therefore appear to be associated with the antagonistic relationship engaged by the fungus during stroma formation. The derived position of highly specialized mutualistic interactions within a larger clade of grass pathogens indicates that mutualists have evolved from pathogenic ancestors (Clay \& Schardl 2002), thus it can be hypothesized that cell wall degrading enzymes of sexual Epichloë species were retained from the ancestral repertoire to modify the formation of plant inflorescences and enable stromata formation. The putative functions of three of our five candidate genes suggests that these may be associated with the reproductive phase of the life cycle in our system. Experimental evidence demonstrating at which stage the genes are expressed and functional validation of their role is needed to test this hypothesis.

Conclusions

Host specialization is a fundamental process that underlies many associations between microbes and their hosts. Understanding the co-evolutionary dynamics that shape the complex interactions between hosts and microbes is of particular relevance to assess the emergence of agriculturally important pathogens and for predicting movements of disease-causing microbes to humans (Lips et al. 2006; Burokiene et al. 2015; Munck et al. 2015). We leveraged on the life cycle of the fungus Epichloë to investigate the genetic basis of host specialization between the sympatric populations of E.t. typhina and E.t. clarkii. The reproductive model of these obligate sexual subspecies is characterized by unconstrained dispersal of haploid gametes in a process similar to
pollination, followed by fertilization and the production of meiotic ascospores that are transmitted to infect new hosts. The host imposes selection on the ability of hybrid genotypes to infect and establish symbiosis, effectively enforcing an extrinsic postzygotic barrier and thus conferring selection on loci underlying host specialization. Lineage separation in such systems conform to a model of divergence in the face of gene flow, and genome scans relying on measures of population differentiation can be used to detect loci underlying host specialization. As the reproductive model of sexual Epichloë is shared among many Ascomycetes, similar analyses could be more broadly applied to identify the genetic determinants of coevolution between plants and fungi. However, similar approaches are unlikely to be appropriate for obligate biothrophs where mating occurs within the host. In such systems, host adaptation establishes a complete postzygotic barrier with subsequent genome-wide divergence among host specialized lineages.

Consistent with the expectation that secreted proteins play a dominant role in host specialization of plant pathogens, we found strong signatures of divergent selection in five genes encoding secreted proteins. Strong positive selection in three of these genes is indicative of crucial role in the specialization to distinct hosts. These genes may play a role during the antagonistic phase of the infections, where stromata are formed and the plant inflorescence is sterilized. The convergence on small secreted proteins playing a major role in pathogenicity is a striking feature of all plant pathogens across kingdoms (Kamoun 2007; Presti et al. 2015). Despite independent evolutionary trajectories, nearly all plant pathogens have evolved a large complement of small secreted proteins that interfere with the host immune system. Identifying the molecular functions of pathogenicity-related proteins will provide a comprehensive and mechanistic insight in the evolution of host specialization.

Acknowledgements

This study was funded by Swiss National Science Foundation grant 31003A_138479 (AL). Sequences and genomic data were generated at the Genetic Diversity Centre (ETH Zurich). C.L. Schardl provided the reference genome and access to the structural annotation. A. Widmer provided key support for the genomics work and scientific advice. We thank M.C. Fischer, M. Scharmann, N. Zemp, and J. Buckley for methodological advice and scientific discussions, C. Michel for laboratory assistance, and D. Barry for helpful comments on the manuscript. We acknowledge the Editor and four anonymous reviewers for helpful comments that greatly improved the manuscript.

Data accessibility

The datasets supporting the conclusions of this article are available in Sequence Read Archive SRA (SRR5571977; https://www.ncbi.nlm.nih.gov/sra), and in GenBank (KU566808; https://www.ncbi.nlm.nih.gov/genbank).

Authors' contributions

SF designed research, MKS preformed research, MKS and SZ analyzed data, MKS, SZ, DC, EHS, AL and SF interpreted results and wrote the manuscript.

References

Akhter S, Antonovics J (1999) Use of internal transcribed spacer primers and fungicide treatments to study the anther-smut disease, Microbotryum violaceum (= Ustilago violacea), of white campion Silene alba (= Silene latifolia). International Journal of Plant Sciences, 160, 1171-1176.
Altenhoff AM, Škunca N, Glover N et al. (2015) The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Research, 43, D240-9.
Arnegard ME, McGee MD, Matthews B et al. (2014) Genetics of ecological divergence during speciation. Nature, 511, 307-311.
Badouin H, Gladieux P, Gouzy J et al. (2017) Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Molecular Ecology, 26, 2041-2062.
Barrett LG, Thrall PH, Dodds PN et al. (2009) Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Molecular Biology and Evolution, 26, 2499-2513.
Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology \& Biotechnology, 8, 353-368.
Bierne N, Eyre-Walker A (2004) The genomic rate of adaptive amino acid substitution in Drosophila. Molecular Biology and Evolution, 21, 1350-1360.
Bierne N, Welch J, Loire E, Bonhomme F, David P (2011) The coupling hypothesis: why genome scans may fail to map local adaptation genes. Molecular Ecology, 20, 2044-2072.
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
Branco S, Gladieux P, Ellison CE et al. (2015) Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 24, 2747-2758.
Brawand D, Wagner CE, Li YI et al. (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature, 513, 375-381.
Bronstein JL (2009) The evolution of facilitation and mutualism. Journal of Ecology, 97, 1160-1170.
Bultman TL, Leuchtmann A, Sullivan TJ, Dreyer AP (2011) Do Botanophila flies provide reproductive isolation between two species of Epichloë fungi? A field test. New Phytologist, 190, 206-212.
Bultman TL, White JF Jr, Bowdish TI, Welch AM (1998) A new kind of mutualism between fungi and insects. Mycological Research, 102, 235-238.
Burokiene D, Prospero S, Jung E et al. (2015) Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biological Invasions, 17, 2743-2756.
Burri R (2017) Interpreting differentiation landscapes in the light of long-term linked selection. Evolution Letters, 1, 118-135.
Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645-655.
Clarke S, Hall P (2009) Robustness of multiple testing procedures against dependence. The Annals of Statistics, 37, 332-358.
Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. American Naturalist, 160, 99-127.
Conesa A, Götz S (2007) Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 2008, 619832.
Conesa A, Götz S, García-Gómez JM et al. (2005) Blast2GO: a universal tool for
annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.
Craven KD, Hsiau P, Leuchtmann A, Hollin W, Schardl CL (2001) Multigene phylogeny of Epichloë species, fungal symbionts of grasses. Annals of the Missouri Botanical Garden, 88, 14-34.
Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23, 3133-3157.
Cutter AD, Payseur BA (2013) Genomic signatures of selection at linked sites: unifying the disparity among species. Nature Reviews Genetics, 14, 262-274.
Dawkins R, Krebs JR (1979) Arms races between and within species. Proceedings of the Royal Society B: Biological Sciences, 205, 489-511.
Drummond AJ, Ashton B, Buxton S et al. (2013) Geneious v6.1 created by Biomatters. www.geneious.com.
Dupont P-Y, Eaton CJ, Wargent JJ et al. (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 208, 1227-1240.
Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Science, 180, 190-195.
Eaton CJ, Dupont P-Y, Solomon P et al. (2015) A core gene set describes the molecular basis of mutualism and antagonism in Epichloë spp. Molecular PlantMicrobe Interactions, 28, 218-231.
Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonaldKreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Research, 36, W157-62.
Ellegren H, Smeds L, Burri R et al. (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature, 491, 756-760.
Ellison CE, Hall C, Kowbel D et al. (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 108, 2831-2836.
Fay JC (2011) Weighing the evidence for adaptationat the molecular level. Trends in Genetics, 27, 343-349.
Feder JL, Egan SP, Forbes AA (2012) Ecological adaptation and speciation: the evolutionary significance of habitat avoidance as a postzygotic reproductive barrier to gene flow. International Journal of Ecology, 2012.
Fracassetti M, Griffin PC, Willi Y (2015) Validation of pooled whole-genome resequencing in Arabidopsis lyrata. PloS One, 10, e0140462.
Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proceedings of the National Academy of Sciences of the United States of America, 101, 10107-10112.
Gazis R, Kuo A, Riley R et al. (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biology, 120, 26-42.
Giraud T (2006) Selection against migrant pathogens: the immigrant inviability barrier in pathogens. Heredity, 97, 316-318.
Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology \& Evolution, 25, 387-395.
Giraud T, Refrégier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genetics and Biology, 45, 791-802.
Giraud T, Villaréal LMMA, Austerlitz F, Le Gac M, Lavigne C (2006) Importance of the life cycle in sympatric host race formation and speciation of pathogens.

Phytopathology, 96, 280-287.
Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution, 11, 725-736.
Guerrero RF, Hahn MW (2017) Speciation as a sieve for ancestral polymorphism. Molecular Ecology, 26, 5362-5368.
Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates, Sunderland, MA, USA.
Jones FC, Grabherr MG, Chan YF et al. (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484, 55-61.
Jones P, Binns D, Chang H-Y et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics, 30, 1236-1240.
Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Current Opinion in Plant Biology, 10, 358-365.
Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338, 1027-1036.
Kirby EJM (1961) Host-parasite relations in the choke disease of grasses. Transactions of the British Mycological Society, 44, 493-503.
Kofler R, Orozco-terWengel P, De Maio N et al. (2011a) PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PloS One, 6, e15925.
Kofler R, Pandey RV, Schlötterer C (2011b) PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 27, 3435-3436.
Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21, 676-679.
Krogh A, Larsson B, Heijne von G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567-580.
Lam CK, Belanger FC, White JF Jr, Daie J (1995) Invertase activity in Epichloë/Acremonium fungal endophytes and its possible role in choke disease. Mycological Research, 99, 867-873.
Leuchtmann A, Schardl CL (1998) Mating compatibility and phylogenetic relationships among two new species of Epichloë and other congeneric European species. Mycological Research, 102, 1169-1182.
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.
Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
Lips KR, Brem F, Brenes R et al. (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America, 103, 3165-3170.
Martin F, Aerts A, Ahrén D et al. (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452, 88-92.
Martin SH, Dasmahapatra KK, Nadeau NJ et al. (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research, 23, 18171828.

McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652-654.
Munck I, Livingston W, Lombard K et al. (2015) Extent and severity of caliciopsis canker in New England, USA: an emerging disease of eastern white pine (Pinus
strobus L.). Forests, 6, 4360-4373.
Murrell B, Weaver S, Smith MD et al. (2015) Gene-wide identification of episodic selection. Molecular Biology and Evolution, 32, 1365-1371.
Nachman MW, Payseur BA (2012) Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 409-421.
Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York.
Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 5269-5273.
Nosil P, Vines TH, Funk DJ (2005) Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution, 59, 705719.

Orr A (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics, 139, 1805-1813.
Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 30173024.

Petersen TN, Brunak S, Heijne von G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785-786.
Plissonneau C, Benevenuto J, Mohd-Assaad N et al. (2017) Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Frontiers in Plant Science, 8, 656.
Poelstra JW, Vijay N, Bossu CM et al. (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science, 344, 1410-1414.
Poppe S, Dorsheimer L, Happel P, Stukenbrock EH (2015) Rapidly evolving genes are key players in host specialization and virulence of the fungal wheat pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PloS Pathogens, 11, e1005055.
Presti Lo L, Lanver D, Schweizer G et al. (2015) Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513-545.
Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: Contrasts among genes from Drosophila, mice, and humans. Molecular Biology and Evolution, 13, 735-748.
Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC (2013) Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species. PloS One, 8, e80422.
Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiology Letters, 253, 19-27.
Restrepo S, Tabima JF, Mideros MF, Grünwald NJ, Matute DR (2014) Speciation in fungal and oomycete plant pathogens. Annual Review of Phytopathology, 52, 289-316.
Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends in Genetics, 16, 276-277.
Rudd JJ, Kanyuka K, Hassani-Pak K et al. (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiology, 167, 1158-1185.

Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 55, 315-340.
Schardl CL, Young CA, Hesse U et al. (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics, 9, e1003323.
Schirrmann MK, Leuchtmann A (2015) The role of host-specificity in the reproductive isolation of Epichloë endophytes revealed by reciprocal infections. Fungal Ecology, 15, 29-38.
Schirrmann MK, Zoller S, Fior S, Leuchtmann A (2015) Genetic evidence for reproductive isolation among sympatric Epichloë endophytes as inferred from newly developed microsatellite markers. Microbial Ecology, 70, 51-60.
Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU (2014) Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity, 114, 431-440.
Smith J, Kronforst MR (2013) Do Heliconius butterfly species exchange mimicry alleles? Biology Letters, 9, 20130503.
Soria-Carrasco V, Gompert Z, Comeault AA et al. (2014) Stick insect genomes reveal natural selection's role in parallel speciation. Science, 344, 738-742.
Stukenbrock EH (2013) Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytologist, 199, 895-907.
Stukenbrock EH, Bataillon T, Dutheil JY et al. (2011) The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Research, 21, 2157-2166.
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.
Terauchi R, Yoshida K (2010) Towards population genomics of effector-effector target interactions. New Phytologist, 187, 929-939.
Tisserant E, Kohler A, Dozolme-Seddas P et al. (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 193, 755-769.
Van Doren BM, Campagna L, Helm B et al. (2017) Correlated patterns of genetic diversity and differentiation across an avian family. Molecular Ecology, 26, 3982-3997.
Vialle A, Feau N, Frey P, Bernier L, Hamelin RC (2013) Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Molecular Phylogenetics and Evolution, 66, 628-644.
Vijay N, Bossu CM, Poelstra JW et al. (2016) Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nature Communications, 7, 13195.
Weiberg A, Wang M, Lin F-M et al. (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342, 118-123.
Western JH, Cavett JJ (1959) The choke disease of cocksfoot (Dactylis glomerata) caused by Epichloë typhina (Fr.) Tul. Transactions of the British Mycological Society, 42, 298-307.
White JF Jr, Bacon CW, Hinton DM (1997) Modifications of host cells and tissues by the biotrophic endophyte Epichloë amarillans (Clavicipitaceae; Ascomycotina). Canadian Journal of Botany-Revue Canadienne De Botanique, 75, 1061-1069.
Win J, Morgan W, Bos J et al. (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. The Plant Cell, 19,

2349-2369.
Wolf JBW, Ellegren H (2016) Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 18, 87-100.
Wu CI (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865.
Zhai W, Nielsen R, Slatkin M (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Molecular Biology and Evolution, 26, 273-283.

Figure legends
Fig. 1: Life cycle of Epichloë fungi. After systemic growth of haploid hyphae within seed (1) and vegetative plant tissues (2) sexual reproduction is initiated by forming an external fruiting body (stroma) around developing host inflorescences causing choke (3). On stroma surface, spermatia (male gametes) are produced (4) that are dispersed to stromata on other plants by Botanophila flies (5). Mating types prevent fertilization between spermatia and female structures on stromata from the same plant individual. Mating, karyogamy and meiosis take place on the fungal stroma (6). Ascospore progeny, which may be the result of mating within or between subspecies, are winddispersed (7) and mediate horizontal transmission to new hosts by infecting grass florets and then seeds (8). Figure modified from Leuchtmann \& Schardl (1998).

Fig. 2: F_{ST} values plotted against D_{XY} values of all analysed genes in the genome. The horizontal line represents the threshold for the 5% quantile $\mathrm{F}_{S T}$ outliers (>0.843) and the vertical line the threshold for the 5% quantile D_{XY} outliers (>0.019). The overlap between F_{ST} and D_{XY} outliers is shown in the rectangle in the upper right. On the top of the x-axes is the frequency distribution of gene-wise $F_{\text {ST }}$ values and on the right of the y-axes the frequency distribution of genewise D_{XY} values shown.

Fig. 3: (A) Frequency distribution of $d \mathrm{~N} / d \mathrm{~S}$ ratios between E.t. typhina and E.t. clarkii. The 95% threshold for the positive $d \mathrm{~N} / d \mathrm{~S}$ outliers (> 1.371) is shown with a solid vertical line. The $d \mathrm{~N} / d \mathrm{~S}$ ratios of the five candidate genes are indicated by dashed lines. (B) Boxplots of $d \mathrm{~N} / d \mathrm{~S}$ ratios of genes encoding non-secreted proteins and genes encoding secreted proteins. Asterisks indicate a significant difference between both categories ($* * * p<0.001$).

Table 1: Population genetic summary statistics of $\mathrm{F}_{S T}-\mathrm{D}_{X Y}$ outlier genes compared to nonoutlier genes, including Tajima's D and π within E.t. typhina and E.t. clarkii, and $d \mathrm{~N} / d \mathrm{~S}$ ratios. For each statistic, mean values are shown. Asterisks indicate significant differences between $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers and non-outliers ($* * * p<0.001 ; * * p<0.01 ; * p<0.5$).

Population	$F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers	Non-outliers	P-value
π	0.0035	0.0039	0.507
E.t. typhina 0.0010 0.0017 0.022^{*} E.t. clarkii Tajima's D $0.007^{* *}$ E.t. typhina -0.865 -0.514 0.358 E.t. clarkii d $\mathrm{N} /$ dS -0.236 -0.308 Inter-population 0.948 0.405 $1.538 \mathrm{e}-09^{* * *}$$.$ l			

Table 2: The 19 enriched GO categories significantly overrepresented before multiple testing (Fischer's exact test: $p<0.01$) among $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers in E.t. typhina and E.t. clarkii.

GO ID	GO category	P-value
GO:0071554	cell wall organization or biogenesis	$1.80 \mathrm{E}-04$
GO:0044036	cell wall macromolecule metabolic process	$8.92 \mathrm{E}-04$
GO:0005618	cell wall	$1.82 \mathrm{E}-03$
GO:0030312	external encapsulating structure	$2.04 \mathrm{E}-03$
GO:0004713	protein tyrosine kinase activity	$2.78 \mathrm{E}-03$
GO:0031176	endo-1,4-beta-xylanase activity	$3.81 \mathrm{E}-03$
GO:0019028	viral capsid	$3.81 \mathrm{E}-03$
GO:0019013	viral nucleocapsid	$3.81 \mathrm{E}-03$
GO:0030599	pectinesterase activity	$3.81 \mathrm{E}-03$
GO:0042545	cell wall modification	$3.81 \mathrm{E}-03$
GO:0006807	nitrogen compound metabolic process	$3.89 \mathrm{E}-03$
GO:0005976	polysaccharide metabolic process	$4.92 \mathrm{E}-03$
GO:1901e360	organic cyclic compound metabolic process	$7.22 \mathrm{E}-03$
GO:0045493	xylan catabolic process	$7.61 \mathrm{E}-03$
GO:0045491	xylan metabolic process	$7.61 \mathrm{E}-03$
GO:0009306	protein secretion	$7.61 \mathrm{E}-03$
GO:0004114	3',5'-cyclic-nucleotide phosphodiesterase activity	$7.61 \mathrm{E}-03$
GO:0004112	cyclic-nucleotide phosphodiesterase activity	$7.61 \mathrm{E}-03$
GO:0010410	hemicellulose metabolic process	$7.61 \mathrm{E}-03$

Table 3: Number of all genes (\# all) and of genes encoding for secreted proteins (\# secreted) within the whole genome, $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, genes with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly $>1(d \mathrm{~N} / d \mathrm{~S}$ significant), and genes within the 5% upper tail of the $d \mathrm{~N} / d \mathrm{~S}$ distribution ($d \mathrm{~N} / d \mathrm{~S}>1.349$).

	\# all	\# secreted
Whole genome	8206	624
$F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers	57	5
$d \mathrm{~N} / d \mathrm{~S}$ significant	58	32
$d \mathrm{~N} / d \mathrm{~S}>1.349$	410	58

Table 4: Population genetic summary statistics of $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outlier genes encoding for putative secreted proteins compared to non-outlier genes, including $F_{S T}, D_{\mathrm{XY}}$, Tajima's D and π, and $d \mathrm{~N} / d \mathrm{~S}$ ratios. For candidate genes, the function is reported as well as p-values of likelihood ratio tests of the $d \mathrm{~N} / d \mathrm{~S}$ ratios, the presence of a secretion signal, an extracellular domain, a transmembrane domain and a cytoplasmic domain.

Gene ID	Gene name	Gene function	$F_{\text {ST }}$	D_{XY}	$D_{\text {Ett }}$	$D_{\text {Etc }}$	$\pi_{\text {Ett }}$	$\pi_{\text {Etc }}$	$d \mathrm{~N} / d \mathrm{~S}$	P-value	SS	EC	TD	CD
	Non-outliers		0.52	0.0074	-0.514	-0.308	0.0039	0.0017	0.394					
	$F_{\text {ST }}-D_{\text {XY }}$ outliers		0.90	0.0252	-0.865	-0.236	0.0035	0.0010	0.920					
477_41	maker-contig00477- fgenesh-gene-0.41	Pectinesterase	0.92	0.0373	-1.757	0	0.0023	0	1.384	0.005**	+	+	+	-
1280_17	maker-contig01280- augustus-gene-0.17	Peroxidase, family 2 (Chloroperoxidase)	0.91	0.0318	-0.852	-1.133	0.0025	0.0003	0.894	1	+	+	+	-
175_57	maker-contig00175- fgenesh-gene-0.57	Glycosyl hydrolase family 10 (endo-1,4-beta-xylanase)	0.88	0.0511	-0.630	0	0.0085	0	2.751	0.001***	+	+	+	-
477_55	maker-contig00477- augustus-gene-0.55	NA	0.86	0.0483	0.015	0.001	0.3080	-0.4684	2.176	0.035*	+	+	$-/+{ }^{\dagger}$	-
572_15	snap-masked-contig00572-processed-gene-0.15	CVNH domain	0.86	0.0615	-1.293	-0.808	0.0062	0.0032	1.040	0.235	+	+	+	-

$D_{E t t}-$ Tajima's D E.t. typhina, $D_{E t c}-$ Tajima's D E.t. clarkii, $\pi_{E t t}-\pi$ E.t. typhina, $\pi_{E t c}-\pi$ E.t. clarkii, CD - cytoplasmic domain; SS - secretion signal; EC - extracellular domain; TD - transmembrane domain; NA - not available; \dagger transmembrane domain detected by TMHMM but not Phobius; ${ }^{* * *} p<0.001 ; * * p<0.01 ;{ }^{*} p<0.05$

Table 5: Number of genes encoding non-secreted and secreted proteins with $d \mathrm{~N} / d \mathrm{~S}$ ratios significantly $>1,1$ and $<1\left(X^{2}=41.653 ; p=9.021 \mathrm{e}-10^{* * *}\right)$.

	<1	1	>1
Non-secreted	96	2	26
Secreted	4	0	32

Table 6: Results of the multi-locus McDonald-Kreitman test between E.t. typhina and E.t. clarkii for genes encoding for putative secreted proteins within $F_{\mathrm{ST}}-D_{\mathrm{XY}}$ outliers, and for individual sequences from Aubonne and Europe.

Outlier	α	$\omega_{\mathrm{MH}}{ }^{\text {a }}$	P-value
$F_{\mathrm{ST}}-D_{\mathrm{XY}}$	0.614	0.35	$0.006^{* *}$
Aubonne	0.75	0.253	$0.009^{* *}$
Europe	0.645	0.347	0.012^{*}

α - mean proportion of adaptive substitutions; ω_{MH} - Mantel-Haenszel estimator (equivalent to Neutrality Index; Rand \& Kann 1996); ${ }^{* *} p<0.01 ;{ }^{*} p<0.05$

