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Abstract The ecologically important stream invertebrate

Gammarus fossarum is a morphospecies that includes at

least three genetically differentiated biological species. We

developed ten microsatellite markers and tested them in a

total of 208 individuals from all three known cryptic spe-

cies (types A, B and C). All markers were polymorphic and

successfully amplified in type A, nine in type B and five in

type C. There were up to 11 alleles per marker and species.
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The amphipod Gammarus fossarum is an ecologically

important stream macroinvertebrate widespread in Central

Europe. Müller (2000) identified three cryptic species

within this morphospecies, types A, B and C, which

probably split several million years ago and seem repro-

ductively isolated. Their geographical distributions overlap

in the Rhine drainage (Müller 2000; Westram et al., sub-

mitted manuscript). Distinguishing between the species and

knowing their ecological and genetic differences is espe-

cially important when G. fossarum is used for ecotoxico-

logical analyses or habitat quality assessment.

Ten polymorphic microsatellite markers for the G. fos-

sarum species complex were developed. An enriched

library was made by ecogenics GmbH (Zürich, Switzer-

land) from size selected genomic DNA ligated into SAU-

LA/SAULB-linker (Armour et al. 1994) and enriched by

magnetic bead selection with biotinlabelled (CT)13, (GT)13,

(TAC)10, (ATC)10, (ACC)10, (AGG)10, (GCT)9, (CGT)8,

(ACAG)7, (ACCT)7, (GTAT)7 and (GATA)7 oligonucleo-

tide repeats (Gautschi et al. 2000a, b). Of 1472 recombi-

nant colonies screened, 323 gave a positive signal after

hybridization. Plasmids from 205 positive clones were

sequenced and primers were designed for 29 microsatellite

inserts, of which 21 were tested for polymorphism. Ten

primer pairs produced a polymorphic, interpretable pattern

in at least 14 out of 15 test individuals (10 type A, 4 type B,

and 1 type C individuals; species identification by 16S

sequencing (Müller 2000)). As library development and

testing for polymorphism were predominantly performed

with type A individuals, the markers were expected to work

best in this species.

For further testing of the markers, we used larger sam-

ples from eight populations (types A and B: three popu-

lations each; type C: two populations), including different

major European drainages (type A: Danube and Rhine

drainage; types B and C: Rhine and Rhone drainage).

While for type A and B we used a minimum of 27 indi-

viduals per population, only eight and 17 individuals were

available per type C population.

The forward primers were labelled with four different

fluorescent dyes (Table 1). A ‘‘pigtail’’ sequence

(GTTTCTT) (Brownstein et al. 1996) was attached to each

reverse primer to avoid scoring problems due to plus-A

artefacts.

After DNA extraction (Montero-Pau et al. 2008) the

fragments were amplified by polymerase chain reaction
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(PCR) in two multiplex reactions (Table 1), using QIA-

GEN Multiplex PCR Kit chemicals. Reaction volumes of

12.5 ll contained 6.25 ll of PCR Master Mix, 1.25 ll Q

solution and 1 ll DNA. Primers were used in different

concentrations (Table 1). Reaction conditions were as

follows: 15 min of denaturation at 95�C, followed by 35

cycles of 94�C (30 s), 60�C (90 s), and 72�C (60 s), fol-

lowed by a final elongation step of 30 min at 60�C. The

PCR-amplified fragments were diluted 1:20, combined

with GeneScan 500 LIZ size standard (Applied Biosys-

tems) and analyzed on an Applied Biosystems 3730xl DNA

Analyzer. The electropherograms were analyzed and

manually edited using SoftGenetics GeneMarker software

(v. 1.80).

All loci were polymorphic in type A, while one and

three markers were monomorphic in types B and C,

respectively. Two loci did not amplify in type C (Table 2).

We tested for the presence of null alleles using the

program Micro-Checker (v. 2.2.3) and FIS-values calcu-

lated in Fstat (v. 2.9.3.2). Both methods gave similar

results. We found evidence for null alleles for several

population-locus combinations (Table 2), mostly in type B.

The observed imperfect cross-species amplification is

probably inevitable when species with such long diver-

gence times are considered.

We tested for linkage disequilibrium between loci and

calculated basic genetic diversity indices using Fstat (v.

2.9.3.2) and Arlequin (v. 3.5.1.2) software (Table 2).

Within types A and B, we detected no significant linkage

disequilibrium between any pair of loci (all P [ 0.01).

There were up to 11 alleles per locus and species. Observed

heterozygosity ranged from 0.033 to 0.806 (average: 0.446)

in type A, from 0.029 to 0.862 (average: 0.456) in type B

and from 0.059 to 0.941 (average: 0.337) in type C. Dif-

ferentiation at these markers is sufficient to discriminate

between types A and B. In the samples we used, the two

species do not share alleles at five loci (Gamfos 10, 13, 21,

24 and 27).

These polymorphic markers will be useful for analyses

of population genetic structure within the cryptic species.

In contrast to previously published G. fossarum micro-

satellite markers (Danancher et al. 2009), they were

developed explicitly for all three cryptic species, so that

comparisons between them with regard to genetic

diversity and postglacial recolonization processes are

possible.

Table 1 Primers and amplification conditions for ten microsatellite loci in three cryptic G. fossarum species

Name Primer sequences (50–30) Repeat type Multiplex Primer

concentration
(lM)

Dye

Gamfos 08 F: TTTGCTGGATGCTGTGAGAC (AC)8_(AC)5TT(AC)12GC(AC)2 1 0.6 Yakima yellow

R: *TGTGTCAATGTTTGCGACTG

Gamfos 10 F: GGCTGGGCTAGTTGTATTGC (CTA)10 1 0.2 ATTO565

R: *AAGACGACTAAGGGGTCTGC

Gamfos 13 F: ATCAGGTTGGCGGGTACTG (CTG)11 1 0.05 Fam

R: *TCAAGTCAAATGAGCCTGGAG

Gamfos 18 F: CAAAGAAGGGCGTGGTAGTG (GAG)4(GAC)10 1 0.1 Fam

R: *AGTGTAAAGCTGCCGACCTC

Gamfos 19 F: TTTTAGCTCCACGGCTTACC (GTT)12(GCT)8(ACT)(GCT)2(GTT)3 2 0.2 ATTO550

R: *TCTCAGCTTGATGTTGCATTG

Gamfos 21 F: GCTGCTATAACCACCGCTTC (GCA)22 2 0.2 Fam

R: *CAGCGAAGAAGATTTTGCAC

Gamfos 22 F: TGTAACAGCATCCAAGTGACG (GCA)7(GCG)(GTG)3 1 0.2 Yakima yellow

R: *ATCGGGGAAAGGTGTTGAG

Gamfos 24 F: AGGTCAGCAACCAAAGAAGG (TGC)9(TGT)2(AGC)(TGC)4 2 0.2 Yakima yellow

R: *CAACCTGTCCATCAACAACG

Gamfos 27 F: CGGCGCTAACCTTCTCATAG (TG)15AG(TG)5 1 0.2 ATTO550

R: *CAGACTCCCTCCCCCACA

Gamfos 28 F: ACCTCTCCATCCCTGATGC (AC)13 2 0.2 ATTO565

R: *CATCGACCCGTCAGTATGTG

* Indicates ‘‘pigtail’’ (see text). Primer concentration indicates the concentration of the respective primers in the PCR reaction
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a As the largest population was monomorphic for this locus, data from another population are shown
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