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Abstract

The sculpturing of the vertebrate body plan into segments begins with the sequential formation
of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled
by travelling waves of gene expression which sweep across the PSM. These kinetic waves
emerge from coupled cellular oscillators and travel in the direction of an increasing gradient of
oscillation period. The oscillations are driven by autorepression of HES/HER genes and are
synchronized via Notch signalling. These emergent properties have been studied in various
models of increasing complexity. We design a reduced mechanistic model of the zebrafish
PSM oscillator that recapitulates oscillator entrainments and travelling wave formation in the
presence of spatiotemporal time delay gradients. Our model shows that three key parameters,
the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient
to understand the emergence of the collective period, the collective amplitude, and the
synchronization of neighbouring HES/HER oscillators. Our theoretical framework allows us
to integrate and dissect key collective properties emerging from coupled oscillators. These
emergent properties are likely to represent a fundamental principle governing also other
developmental processes such as neurogenesis and angiogenesis.
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Key vocabulary

Angiogenesis The formation of new blood vessels in the developing embryo.

Autonomous oscillator An uncoupled cellular oscillator.

Autorepression An autorepressive gene codes for a protein that represses the
same gene within the same cell. Time-delayed autorepression
can drive cellular oscillators. (Lewis, 2003; Monk, 2003; Novak
& Tyson, 2008)

Cellular oscillator A cell with periodically oscillating expression of a certain gene
and cyclic levels of the corresponding mRNA and protein.

Cell-based model A model of the collective behaviour of individual cells and their
physical and/or biological interactions.

Coupling Communication between neighbouring oscillators. This leads to
adjustment of the individual oscillatory dynamics to a collective
period and amplitude. Coupling affects the synchronization
behaviour. (Morelli et al., 2009; Oates et al., 2012)

Delay equation Differential equations which incorporate explicit time delays.
During numerical simulations, the (partial) history of the system
is stored and affects the output of the next iteration. Can be
used to model e.g. time-delayed autorepression. (Novak & Tyson,
2008)

Dynamic salt-and-
pepper patterning

Tissue-wide pattern arising from anti-synchronization between
neighbouring cells (Kageyama et al., 2008).

Juxtacrine signalling Biological transmission of information from a sending cell to a
neighbouring receiving cell via interaction of a membrane-bound
ligand and receptor (e.g. Notch signalling).

HES/HER genes An autorepressive gene family, which drives the cellular oscillators
in the PSM (Oates & Ho, 2002; Bessho et al., 2003; Lewis, 2003;
Monk, 2003).

Kinematic wave A travelling wave without mass transport. The wave emerges
from static components with periodically changing states (Oates
et al., 2012). An example is the wave performed by the audience
in a sports stadium.
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Mechanistic model In systems biology, the components of a mechanistic model rep-
resent molecular species, which interact with each other through
kinetic reactions.

Neurogenesis The embryonic process where neural stem cells give rise to all
the neurons of the developing central nervous system (Götz &
Huttner, 2005).

Notch signalling A juxtacrine signalling pathway, which couples neighbouring
HES/HER oscillators in the PSM. The ligand (e.g. Delta) on the
membrane of the signal sending cell activates the Notch receptor
on the membrane of the signal receiving cell. (Andersson et al.,
2011)

Presomitic mesoderm
(PSM)

The embryonic tissue which will differentiate into somites at its
anterior boundary during somitogenesis. The posterior PSM is
continuous with the tail bud. (Oates et al., 2012)

Reduced model A model which explicitly does not describe the process in the
entire complexity that is suggested by the current state of knowl-
edge. It aims at identifying the fundamental principles that
govern the process. (Hermanns et al., 2016)

Scaling The phenomenon that biological patterns and structures are
built proportional to a reference size. This reference size is
usually the body size or the size of the patterned tissue domain.
Scaled relationships can be drawn across developmental time (e.g.
in a growing tissue) and/or across a population of individuals.
(Barkai & Shilo, 2013; Vollmer et al., 2017)

Somitogenesis/Somites Somites are precursors of the repetitive body segments consisting
of vertebrae and their associated muscles, occurring in verte-
brates. Somitogenesis is the embryonic developmental process
that gives rise to somites, which are formed from the PSM. (Oates
et al., 2012; Hubaud & Pourquié, 2014)

Synchronization
behaviour

Coordination of oscillation phases in neighbouring oscillators
with a common period mediated by coupling. In-phase patterns
lead to synchrony, while phase differences of half of the common
period lead to anti-synchrony. (Pikovsky et al., 2001)

Tail bud The posterior region where the tail structures grow in the devel-
oping zebrafish embryo (Oates et al., 2012).

Time delay Biological processes are not instantaneous. Processes can be slow
when they depend on elementary events with a low likelihood;
these processes can be modelled with kinetic rates (’soft’ time
delay). But there are processes, e.g. when information has to
cross physical space, that are delayed for every elementary event
(resembling a conveyor belt). Such explicit (’hard’) time delays
can be modelled with delay equations (Novak & Tyson, 2008).
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Trans-repression A certain gene represses the same gene in a neighbouring cell
through juxtacrine signalling. This term is currently not well-
established in the field and not to be confused with https:
//en.wikipedia.org/wiki/Transrepression.

Travelling wave A wave in which phase values (e.g. peaks of amplitudes) travel
through the medium.

Zebrafish A tropical freshwater fish, danio rerio, which is a convenient
vertebrate model organism because of its transparency (Spence
et al., 2007). It is also known for its regenerative capabilities
(Goldshmit et al., 2012).
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1. Introduction
The body axis of vertebrates is segmented into anatomical modules consisting of vertebrae and
their associated muscles. This segmentation has a key role in defining the mode of locomotion
of an animal (Ward & Mehta, 2011). The embryonic precursors of the segments are called
somites. The bilateral symmetric pairs of somites form in a process referred to as somitogenesis
(Oates et al., 2012; Hubaud & Pourquié, 2014). At the same time as somitogenesis proceeds,
the body axis is elongated posteriorly at the so-called tail bud by proliferation of presomitic
mesoderm (PSM) cells originating from the marginal zone in zebrafish and frogs or the
primitive streak in chicken and mice. Periodically, a pair of somites buds off from the anterior
end of the PSM, which lies on both sides of the neural tube. In zebrafish, a new pair of
somites is formed in the anterior trunk constantly every 23 min at 28.5 ◦C until this rhythm is
gradually slowed down during the tail segmentation (Schröter et al., 2008). The rhythmicity is
controlled by travelling waves of gene expression which sweep from the tail bud to the anterior
end of the PSM (Palmeirim et al., 1997). The travelling waves emerge from the coordinated
oscillation in individual cells (Jiang et al., 2000). In the following, we will first discuss a
well-established theoretical model of somitogenesis, the clock-and-wavefront model. We will
then in detail report what is known about the individual cellular oscillator, the coupling
between neighbouring cells and the emergence of the travelling waves.

1.1. Rhythmical formation of somites: clock and wavefront
The most widely accepted model for the sequential formation of somites is the clock-and-
wavefront model (Cooke & Zeeman, 1976; Oates et al., 2012; Hubaud & Pourquié, 2014). It
postulates that cells located at the anterior boundary of the PSM, the wavefront, undergo an
abrupt change in cellular properties triggered by a periodic segmentation signal of the clock
(Cooke & Zeeman, 1976). This clock, the first component of the model, has been shown to
entail the oscillatory expression of genes involved in the Notch, WNT and FGF signalling
pathways (Palmeirim et al., 1997; Dequeant et al., 2006). The most prominent examples are
genes of the HES/HER family (Palmeirim et al., 1997; Cooke, 1998; Bessho et al., 2003).
The oscillations in HES/HER were shown to be based on time-delayed autorepression, where
the time delay originates from mRNA splicing and nuclear export processes (Lewis, 2003;
Monk, 2003; Takashima et al., 2011; Hoyle & Ish-Horowicz, 2013). In principle, the oscillations
in individual cells are synchronized perpendicularly to the body axis, such that they form
travelling waves propagating in the anterior direction (Oates et al., 2012; Hubaud & Pourquié,
2014). Strictly, the bilateral symmetric travelling waves acquire a folded shape in zebrafish,
termed a chevron, which is thought to arise from mechanical forces (Rost et al., 2014). The
underlying synchronicity of neighbouring HES/HER oscillators is mediated by juxtracrine
Notch signalling (Jiang et al., 2000; Lewis, 2003; Liao & Oates, 2016) and is discussed below
(Section 1.2).

The second component of the clock-and-wavefront model, the wavefront, has been hypoth-
esised to be defined via a threshold in the FGF or WNT gradients, which decline towards
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the anterior end of the PSM (Dubrulle et al., 2001; Sawada et al., 2001; Aulehla et al., 2003,
2008; Dunty et al., 2008; Naiche et al., 2011; Bajard et al., 2014). The FGF signalling gradient
forms because the corresponding ligand-expressing gene fgf8 is transcribed only in the tail
bud and its mRNA is gradually decaying in the presomitic cells that are left behind by the
proliferating tail bud (Dubrulle & Pourquié, 2004). More generally, this is referred to as a
’gradient by inheritance’ - established by simultaneous cell flow and ligand mRNA or protein
decay - and such a mechanism is thought to also govern the graded expression of wnt3A in the
PSM (Aulehla & Pourquié, 2010; Bajard et al., 2014). Due to continuous axis elongation, the
source of the ligand in the tail bud is progressively drawn further away from the anterior. The
wavefront, presumably specified by a threshold in one of these gradients, is shifted accordingly.
An opposing retinoic acid gradient shows highest concentration in the somites and is thought
to antagonize the FGF gradient by mutual inhibition (Niederreither et al., 1997; Diez del
Corral et al., 2003; Goldbeter et al., 2007; Jörg et al., 2016).

According to the clock-and-wavefront model, segmentation is initiated when the clock signal
reaches the moving wavefront (Cooke & Zeeman, 1976). This leads to a transition of the
synchronized presomitic cell patches to distinct blocks of epithelial cells, the somites, that bud
off from the PSM (Saga, 2012). The MESP genes are essential in triggering this mesenchymal-
to-epithelial transition (Saga et al., 1997; Takahashi et al., 2000; Sawada et al., 2000). In
mice, Mesp2 has been linked to both, the clock and wavefront, being positively regulated by
Notch and negatively regulated by FGF signalling (Yasuhiko et al., 2006; Oginuma et al., 2008;
Naiche et al., 2011). In zebrafish, expression of MESP genes seems to be similarly controlled
by the wavefront, but the connection to the clock remains unclear (Sawada et al., 2001; Bajard
et al., 2014; Wanglar et al., 2014; Yabe & Takada, 2016).

1.2. Architecture and synchrony of coupled HER oscillators
The autorepressive HES and HER genes lie at the core of the segmentation clock in mice
and zebrafish, respectively. These genes encode basic helix loop helix (bHLH) transcriptional
repressors. In zebrafish, which serves us as a biological model organism, either of the two
proteins Her1 and Her7 represses both corresponding genes in a redundant manner (Oates
& Ho, 2002; Henry et al., 2007; Giudicelli et al., 2007). Another bHLH factor gene, hes6, is
expressed in an FGF-dependent posterior-to-anterior gradient in the PSM (Kawamura et al.,
2005). Together Her1, Her7 and Hes6 span a topology of homo- and heterodimers, of which
only Her1:Her1 and Her7:Hes6 are active repressors, targeting the promoters of her1, her7
and deltaC (Schröter et al., 2012). The latter is the link that couples neighbouring oscillators:
due to periodic repression by active Her dimers, deltaC is expressed cyclically and activates
the HER genes in neighbouring cells via Notch signalling (Jiang et al., 2000; Lewis, 2003; Liao
& Oates, 2016). PSM cells have been shown to oscillate autonomously when uncoupled or
isolated, although with a lower precision and persistence (Maroto et al., 2005; Masamizu et al.,
2006; Webb et al., 2016).

The fact that the cells of the PSM synchronize their oscillations perpendicular to the
direction of propagation of the travelling waves is intriguing. This synchronization requires
cell-cell contact and is mediated by the coupling via Notch signalling (Jiang et al., 2000;
Maroto et al., 2005; Horikawa et al., 2006; Riedel-Kruse et al., 2007; Özbudak & Lewis, 2008).
However, it has been shown that the synchrony is initiated in the presumptive mesoderm ring
independently of Notch signalling (Riedel-Kruse et al., 2007). In Notch pathway mutants, a
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few intact anterior somites are formed, but as segmentation proceeds to the posterior, severe
defects occur (Jiang et al., 2000). The widely-supported desynchronization hypothesis has been
founded on this observation and states that the only role of Notch signalling is to maintain
the initial synchrony (Jiang et al., 2000; Riedel-Kruse et al., 2007; Özbudak & Lewis, 2008;
Liao & Oates, 2016).

Theoretical models show that trans-repression can lead to either synchronization or salt-and-
pepper pattern of oscillation phases, depending on the time delay involved in trans-repression
(Lewis, 2003; Tiedemann et al., 2007; Ay et al., 2013). This time delay is dominated by the
translational delay of DeltaC, which has been measured to be approximately 30 min at 28 ◦C
(Giudicelli et al., 2007). Mathematical formulations show that the collective period of coupled
oscillators might differ from the period of uncoupled oscillators, depending in a non-trivial
way on both, the coupling strength and the coupling delay (Niebur et al., 1991; Morelli et al.,
2009; Herrgen et al., 2010; Wang et al., 2014). In the PSM, the collective period is a local
property and related measurements are discussed below (Section 1.3; Fig. 1.1).

DeltaD, another ligand of the Notch pathway, is not expressed cyclically but in a decreasing
gradient from posterior to anterior (Holley et al., 2002; Mara et al., 2007; Wright et al.,
2011). In contrast to DeltaC, DeltaD is thought to cis-inhibit Notch (Matsuda & Chitnis,
2009). It has been suggested that DeltaD, unable to activate Notch by itself, could potentiate
trans-repression via DeltaC by heterodimerization (Wright et al., 2011).

1.3. Travelling waves of genetic expression
In zebrafish, the most prominent cyclically expressed genes that constitute the travelling wave
are her1, her7 and deltaC (Krol et al., 2011; Oates et al., 2012). From the posterior to the
anterior, the travelling wave is slowing gradually while its wavelength decreases (Palmeirim
et al., 1997; Giudicelli et al., 2007; Fig. 1.1). Initially, the clock-and-wavefront model was
thought to entail a genetic oscillator with a single, well-defined period that governs the
rhythmicity of the segmentation clock (Cooke & Zeeman, 1976; Oates et al., 2012). This
simplistic picture has since been revisited with emphasis on the distinction between different
notions of periods involved in the process.

On a tissue level, one observes that the segmentation or somitogenesis period, the period
with which the somites are formed, is equivalent to the period at which the travelling waves
reach the wavefront (Soroldoni et al., 2014). The segmentation is accelerated compared to
the frequency at which travelling waves exit the tailbud due to a Doppler effect: relative to
the tailbud, the anterior boundary is moving towards the approaching travelling waves and
thus registers an increased frequency of wave signals (Soroldoni et al., 2014; Fig. 1.1). In
vivo, the PSM shortens non-linearly and therefore the wave pattern does not scale in time.
Consequently, a steady-state description of this process, where the proliferation rate equals
the segmentation rate, is not adequate (Soroldoni et al., 2014; Jörg et al., 2015).

The somitogenesis period is lengthened by the autorepression delay, as well as shortened in
zebrafish or lengthened in mouse by Notch signalling (Harima et al., 2013; Kim et al., 2011;
Herrgen et al., 2010; Liao et al., 2016). The accelerating Doppler effect on the somitogenesis
period is decreased by the so-called Dynamical Wavelength effect, the shortening of the
wavelength of the travelling wave in time (Soroldoni et al., 2014; Jörg et al., 2015). The size
of the forming somite, referred to as S0, has been determined to be half of the wavelength at
the PSM-somite border; the formation of S0 is completed when a full period of oscillation is
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Figure 1.1.: Schematic representation of somitogenesis from the reference frame of
individual cells. The anterior boundary of the PSM approaches the cells faster
than the posterior boundary recedes due to proliferation; satisfying vA(t) > vP (t)
during the entire process (Soroldoni et al., 2014). This leads to a shrinkage of
the PSM over time (Soroldoni et al., 2014). Consequently, a Doppler effect is
experienced at the anterior boundary when receiving the signal of the travelling
wave (Soroldoni et al., 2014). The individual cellular oscillators will synchronize
perpendicularly to the travelling wave direction, attaining a collective period and
amplitude of cyclic components such as Her1. Both, the collective period and
amplitude, increase as the anterior boundary is approaching (bottom left; Delaune
et al., 2012; Shih et al., 2015). The forming somite’s size S0, the somitogenesis
period T and the velocity of the anterior boundary vA are interdependent (bottom
right; Jörg et al., 2015).

cycled at this border (Shih et al., 2015; Fig. 1.1). Given a local estimate for the velocity of
the anterior PSM boundary ṽA, the somite size S is approximated as S ≈ ṽAT , where T is
the somitogenesis period (Jörg et al., 2015; Fig. 1.1, bottom right). There is also evidence
suggesting that somite size is linked to the phase gradient (Lauschke et al., 2013; Shih et al.,
2015). However, the mechanism of oscillation arrest in S0 remains elusive (Shih et al., 2015;
Jörg et al., 2015). Furthermore, the segmentation scales with the body size (Cooke, 1975;
Tam, 1981). Scaling of somite size, oscillation phase and travelling wave velocity has also
been recently reported to occur during an ex vivo segmentation process, but the mechanism
remains unknown (Lauschke et al., 2013). In vivo, somite size is a non-linear function of time
and therefore does not scale similarly (Jörg et al., 2015). I introduce ex vivo scaling, sketch
possible mechanisms at work, and discuss biological hypotheses, separately in Appendix A.3.

1.4. Individual cell dynamics induce travelling wave formation
On the level of an individual cellular oscillator, single cell analyses reveal that both, the
locally collective period and amplitude of Her1, are increasing as the cell is flowing across the
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PSM (Delaune et al., 2012; Shih et al., 2015; Fig. 1.1). Several computational models show
that in the presence of such a gradient in oscillation period, travelling waves emerge (Kærn
et al., 2000; Jaeger & Goodwin, 2001; Tiedemann et al., 2007; Uriu et al., 2009; Ay et al.,
2014). Mechanistically, a gradient in oscillation period, and therefore travelling waves, can be
established by imposing a gradient of a model parameter, such as intronic delays or degradation
rates (Tiedemann et al., 2007; Uriu et al., 2009; Ay et al., 2014). Hypothetically, such a
reaction rate could be regulated by paracrine signalling, namely the FGF/WNT gradient
present in the PSM. Because single-cell data is scarce and reaction rate estimates broad,
these models still lag in accuracy behind non-mechanistic descriptions, which for instance can
approximate somite size reasonably well (Morelli et al., 2009; Herrgen et al., 2010; Jörg et al.,
2015, 2016).

1.5. State of the field and contribution of the thesis
In summary, the travelling waves observed in the PSM carry a repetitive segmentation signal,
which is read out at the moving wavefront (Oates et al., 2012; Hubaud & Pourquié, 2014;
Soroldoni et al., 2014; Shih et al., 2015). The formation of these travelling waves is based on
three main principles: the oscillation of autorepressive HES/HER genes (Palmeirim et al.,
1997; Cooke, 1998; Bessho et al., 2003; Lewis, 2003; Monk, 2003), the local synchronization
of neighbouring HER/HES oscillators via Notch signalling (Jiang et al., 2000; Lewis, 2003;
Giudicelli et al., 2007; Liao & Oates, 2016), and an increasing gradient of oscillation period,
which defines the direction of propagation of the travelling wave (Kærn et al., 2000; Jaeger
& Goodwin, 2001; Tiedemann et al., 2007; Uriu et al., 2009; Ay et al., 2014). Each of these
principles has been studied in different mechanistic models of largely varying complexity
(Lewis, 2003; Monk, 2003; Tiedemann et al., 2007; Uriu et al., 2009; Hester et al., 2011; Ay
et al., 2014).

Here, we develop a reduced mechanistic model that can account for the three principles
mentioned above. For that, we revisit a simple model of the zebrafish her1 oscillator proposed
by Julian Lewis (Lewis, 2003). Lewis used both, the her1 and the her7 oscillator to couple
neighbouring cells via deltaC (Lewis, 2003). In contrast, we couple only the her1 oscillators,
similarly as previously done in analytical studies (Wang et al., 2014), but our model incorporates
only two time delays, instead of three. Using this reductive approach, we can recapitulate the
principles that govern the travelling wave. We find that both, the dynamics of the individual
cellular oscillator and the synchronization of neighbouring PSM cells, are modulated by three
key parameters of the model: the HES/HER autorepression delay, the intercellular coupling
delay, and the coupling strength between neighbouring cells. These insights allow us to discuss
the general role of Notch-mediated oscillation coupling in differentiation processes involved
not only in somitogenesis, but also in other developmental processes such as neurogenesis and
angiogenesis.
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2. Methods

2.1. A reduced model of the zebrafish her1 oscillator
The travelling waves occurring in the PSM are induced by the dynamics of individual cellular
oscillators (Tiedemann et al., 2007; Uriu et al., 2009; Ay et al., 2014). The basis of a
computational model of the travelling wave is therefore the cellular oscillator, which is driven
by two negative feedback loops in zebrafish, one over the Her1 homodimer and one over the
Her7:Hes6 heterodimer (Schröter et al., 2012). The two loops are thought to be redundant and
the her7;hes6 double mutant is segmented normally in most cases (Schröter et al., 2012). A
reduced model, incorporating the autorepressive loop of her1 only, should therefore be capable,
in principle, to represent the PSM oscillator adequately. A mathematical representation of
this reduced model of the uncoupled, or autonomous, zebrafish oscillator has been proposed
as two delayed differential equations (Lewis, 2003; Fig. 2.1):

ṗ(t) = am(t− τp)− bp(t) (2.1)

ṁ(t) = k

autorepression︷ ︸︸ ︷
H−(p(t− τm), nA, p0)−cm(t) (2.2)

The two components of the model are the cytosolic mRNA, m, and the nuclear protein, p,
of Her1. The nuclear protein is produced at a translation rate a = 4.5 min−1 and degraded at
a rate b = 0.23 min−1 (Lewis, 2003). The transcription rate is given by k = 33 min−1 and the
mRNA is degraded at c = 0.23 min−1, the same degradation rate as for the protein (Lewis,
2003). A negative Hill function H− (see Eq. (A.1)) is used to model autorepression, with a
Hill constant p0 = 40 and a Hill coefficient nA = 2. The translational and transcriptional
delays have been estimated to be τp ≈ 2.8 min and τm ≈ 10 min, respectively (Lewis, 2003;
Hanisch et al., 2013).

Additionally, we couple neighbouring oscillators by trans-repression, representing Notch
signalling (Eqs. (2.3) and (2.4); Fig. 2.1).

ṗ(t) = am(t)− bp(t) (2.3)

ṁ(t) = k

autorepression︷ ︸︸ ︷
H−(p(t− τA), nA, p0)

trans-repression︷ ︸︸ ︷
((1− ε) + εH−(pext(t− τC), nC , p0))−cm(t) (2.4)

Different coupling mechanisms have been introduced, including very similar formulations
(Lewis, 2003; Tiedemann et al., 2007; Kim et al., 2010; Wang et al., 2014). Lewis himself
coupled neighbouring oscillators consisting of both, a her1 and a her7 circuit, and represented
deltaC explicitly (Lewis, 2003). The transcription is repressed by the Notch signal, which
depends in our model on the average Her1 concentration in neighbouring cells pext. Again,
we use a negative Hill function to model trans-repression, with a Hill constant p0 = 40 and a
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Figure 2.1.: Graphical representation of the reduced model for the cellular oscilla-
tors in the PSM. Each cell contains a loop over the autorepressive protein,
p, and its mRNA, m, with an autorepression delay τA, which delays mRNA
transcription. The oscillators are coupled between neighbours by trans-repression
with a coupling delay τC . This coupling delay represents the time needed to
transmit the phase information between cyclic protein levels in neighbouring cells.
The model is mathematically described by Eqs. (2.3) and (2.4).

Hill coefficient nC = 1. We introduced the parameter ε ∈ [0, 1] to regulate coupling strength;
as a default, we use maximal coupling, ε = 1. We also summarize the transcriptional and
translational delays into one autorepression delay τA, rendering the model more abstract, but
simpler to understand. The default value τA = 10 min deviates from the sum τp+τm ≈ 12.8 min
moderately and yields good synchronization results. The expression of deltaC is delayed by
translational and transcriptional delays, which have been measured to be roughly 30 min and
10 min, respectively, resulting in a total deltaC expression delay τD ≈ 40 min (Giudicelli et al.,
2007; Hanisch et al., 2013). The juxtacrine signalling delay via Notch, referred to as the
coupling delay, is defined as

τC = τA + τD (2.5)

Consequently, its duration is approximated as τC ≈ 50 min.
The zebrafish segmentation process is sensitive to body size and temperature (Cooke, 1975;

Tam, 1981; Schröter et al., 2008). Additionally, the somitogenesis period of the her7;hes6
double mutant is slower relative to the wild type (Schröter et al., 2012). Therefore, although
the reductive approach of our model allows us to make conceptual conclusions, quantitative
predictions are not advised.

Additional considerations, which lead us to the selection of the model described above, are
found in the Appendix A.2.

2.2. Cell-based simulations
The delay equations (Eqs. (2.3) and (2.4)) are computationally solved using Pydelay (Flunkert
& Schoell, 2009). To approximate the PSM locally, we use 4× 4 cell patches on a quadratic
lattice with periodic boundary conditions and homogeneous parameter values, similarly to
previous studies (Tiedemann et al., 2007; Ay et al., 2013). We calculate the oscillation
properties after the cells have reached a stable oscillating state. To measure synchronization
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of Her1 protein levels across such a tissue, we take the average pairwise Pearson’s r coefficient
of Her1 concentration trajectories among all cells of the tissue. The corresponding value lies
between −1, for perfect anti-synchronization, and 1, for perfect synchronization. The noise
is implemented using the method provided by Pydelay (Flunkert & Schoell, 2009) and the
Gaussian white noise of unit variance is scaled additionally with the maximum concentration
observed in the oscillation of the corresponding model component (protein or mRNA).

To simulate travelling waves in the PSM, we use a cylindrical domain of 4 × 4 cells on
a quadratic lattice and induced parameter value inhomogeneity across the cylinder height
spanning 50 cells, which represents the anterior-posterior axis. For simulations on dynamic
domains we adopt the approach of Ay et al. (2014): Firstly, we simulated 4×20 cells for 84 min.
This domain represents the tail bud, which we assume to be homogeneous in parameter values,
with a common period (Oates et al., 2012). Secondly, we divide the 4 posterior-most cells
every 6 min for 150 min, until the entire 4× 50 cell domain is filled (Ay et al., 2014). After a
cell exits the tail bud, the time delay parameters increase every 6 min as it moves toward the
anterior boundary (as suggested by the results described below). Thirdly, we model continuous
cell flow, by additionally removing the 4 anterior-most cells every 6 min (Ay et al., 2014).
Note, that such a steady-state cell flow is a simplifying assumption and does not allow for
quantitative descriptions of the travelling wave (Soroldoni et al., 2014; Jörg et al., 2015).

The Python code is available on GitHub (see Appendix A.4).
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3. Results

3.1. The autorepression delay in autonomous HES/HER
oscillations

The HES and HER genes drive the PSM oscillator in mice and zebrafish, respectively. Numerical
and analytical results show that the period of the autonomous HES/HER oscillator depends
on the autorepression delay and the protein and mRNA half-lives (Fig. A.1; Lewis, 2003;
Monk, 2003; Hori et al., 2013). In our model, when the autorepression delay of her1, τA, is
lengthened, both, the autonomous period and amplitude increase (Fig. 3.1). There is a lower
limit τA ≈ 7.5 min for the existence of oscillations, which depends on the kinetic rates and the
Hill coefficient (Fig. 3.1A; Hori et al., 2013; Novak & Tyson, 2008).

Figure 3.1.: The autorepression delay can modulate the period and amplitude in an autonomous
Her1 oscillator. (A) The period and amplitude of autonomous oscillations depend
on the autorepression delay; values represent averages over 4 × 4 cells. (B) A
simple thought experiment relates the autorepression delay and the autonomous
period of the Her1 oscillator. An increase of the autorepression delay expands the
orange region, where Eq. (3.1) is satisfied, because the maximal repression signal
takes longer to shut-down her1 expression, which leads to a longer oscillation
period.

To understand the effect of the autorepression delay intuitively, we follow a simple thought
experiment (Fig. 3.1B): To maintain the oscillation, the autorepression of an oscillator must
peak in the phase where the oscillation amplitude is decreasing. Therefore, for oscillatory
curves that are symmetric in peaks and troughs, such as sinusoidal functions, with a period
Ta, the autorepression delay τA satisfies:

τA ∈ [kTa, (k + 1
2)Ta] with k ∈ N (3.1)

17



If the autorepression delay τA is lengthened, starting at a peak, it will take longer to repress
her1 expression maximally and reach the oscillation trough. Consequently the autonomous
period Ta lengthens, such that the condition is still satisfied (Figure 3A).

3.2. Juxtacrine coupling controls cell-cell synchronization and
robustness against noise

Riedel-Kruse et al. (2007) proposed that an initial synchrony of the cellular HER oscillators is
established in the presumptive mesoderm by simultaneous gene induction. In Notch pathway
mutants, where oscillations are thought be autonomous, this synchrony is lost gradually (Jiang
et al., 2000; Riedel-Kruse et al., 2007; Özbudak & Lewis, 2008; Liao & Oates, 2016). In
our model, by setting all initial concentrations to zero and starting expression in all cells
simultaneously, we observe a first peak of Her1 oscillation that is massively increased relative
to the consecutive peaks, because the system initially has no memory of autorepression
(Fig. 3.2A). As time goes, in the absence of intercellular coupling, the autonomously oscillating
cells lose their synchrony due to noise (Fig. 3.2A).

In the wild type, autonomous oscillators are coupled via Notch signalling, which increases
robustness of synchronization (Jiang et al., 2000; Riedel-Kruse et al., 2007; Özbudak & Lewis,
2008; Soza-Ried et al., 2014; Jenkins et al., 2015; Liao & Oates, 2016). To investigate the
effect of cell-cell coupling, we simulated a tissue of cells with different levels of noise and
coupling strength, and we confirm that coupling increases the robustness of synchronization,
i.e. it renders the synchronization less sensitive to noise (Fig. 3.2B). We further simulated
how sudden coupling coordinates oscillators which lost their synchrony in presence of noise
(Fig. 3.2C,D). Consistent with previous studies (Lewis, 2003; Tiedemann et al., 2007; Morelli
et al., 2009; Herrgen et al., 2010), we observe that the cells either synchronize (Fig. 3.2C) or
anti-synchronize (Fig. 3.2D), depending on the value of the coupling delay. On a tissue level,
the latter is also referred to as dynamic salt-and-pepper patterning and has been proposed
to regulate the maintenance of neural progenitors during brain development (Shimojo et al.,
2008; Kageyama et al., 2008).

Taken together, we observe in our model that the strength of juxtacrine coupling is determin-
ing the robustness of cell-cell synchronization, while the delay of this coupling is determining
whether expression of her1 in neighbouring cells is synchronized or anti-synchronized. In
the following section, we examine how exactly the coupling delay influences the collective
behaviour of her1 oscillators.

3.3. The coupling delay critically modulates collective oscillatory
dynamics

In our model, we observe alternating regions of synchronization and anti-synchronization for
a range of coupling delays τC (Fig. 3.3; for exemplary simulations see Fig. 3.2C,D). In each
region, the collective period increases monotonically (Fig. 3.3A) and the collective amplitude
describes a parabola with a local maximum (Fig. 3.3B). A similar pattern has been reported
partially in the context of the zebrafish PSM oscillator, HES/HER oscillations in neural
differentiation, and a variety of synchronization phenomena across the natural sciences (Wang
et al., 2014; Morelli et al., 2009; Herrgen et al., 2010; Momiji & Monk, 2009; Sadeghi &
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Figure 3.2.: Coupling leads to robust cell-cell synchronization or dynamic salt-and-
pepper patterning. (A) Simultaneous onset of her1 expression leads to syn-
chrony, which is lost over time in the absence of coupling. (B) Stronger coupling
renders synchronization more robust, i.e. less sensitive to noise (average over 5
replicates). (C, D) At the endpoint of (A) which is now referred to as timepoint 0,
the cells are coupled with coupling delays (C) τC ≈ 50 min (default value) or (D)
τC ≈ 30 min. The spatial patterns are displayed (bottom) for the last 90 minutes
of the corresponding concentration trajectories (top). The noise level in (C, D)
corresponds to the value of 10−2 in (B); see Section 2.2 for details. All data has
been recorded for 4× 4 cell patches.

Valizadeh, 2014; Pavlides et al., 2015; Vanag et al., 2016; Wetzel et al., 2017). In contrast
to other mathematical descriptions, however, we do not observe oscillation death, a stable
non-oscillating state, which has been hypothesized to occur between the synchronization and
anti-synchronization phase space regions (Fig. 3.3B, Shimojo et al., 2016).

Again, to understand the behaviour intuitively, we propose a thought experiment (Fig. 3.3C,
left). Suppose two synchronized oscillators A and B with a collective period Tc that mutually
repress each other. They will maintain synchrony only if trans-repression of B by A peaks
within the oscillation phase of B where the amplitude is decreasing, and vice versa. Based on
that, a relation between the common coupling delay τC and the collective period Tc analogous
to Eq. (3.1) can be formulated — for oscillatory curves that are symmetric in peaks and
troughs synchronized oscillators satisfy:

τC ∈ [kTc, (k + 1
2)Tc] with k ∈ N (3.2)

Conversely, if this condition is not satisfied, the oscillators will adjust their phases, such that
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Figure 3.3.: Collective period, collective amplitude and synchronization of Her1
oscillators critically depend on the coupling delay. (A, B) Dark blue
points represent the synchronization (correlation in expression) between cells
calculated by our model. The blue region represents synchronized behaviour
predicted by Eq. (3.2). (A) Dark green points represent the collective period and
(B) dark red points represent the collective amplitude (B) of Her1 for different
coupling delays. As a reference, we plot the autonomous period/amplitude of Her1
(light green/red line); data points correspond to 4× 4 cell patches starting in a
desynchronized initial condition (Fig. 3.2A). (C) A thought experiment intuitively
summarizes the dependence of synchronization and anti-synchronization on the
collective period and the coupling delay. The peak of trans-repression lies in the
phase of the receiving oscillator where it decreases in amplitude; this determines
the synchronization mode if the coupling delay and the collective period are given.
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trans-repression of B by A still peaks within the oscillation phase of B with a negative derivative:
the two oscillators will anti-synchronize (Fig. 3.3C, right; Lewis, 2003; Tiedemann et al., 2007;
Morelli et al., 2009; Herrgen et al., 2010). The condition given by Eq. (3.2) successfully
subdivides the phase space in our model (Fig. 3.3A,B, blue regions for synchronization and
white regions for anti-synchronization). The estimated coupling delay τC ≈ 50 min lies in the
second region of synchronization (Fig. 3.3A,B), which implies that phase information is not
transmitted to the same cycle in the neighbour (Fig. 3.3C, left), but to the consecutive cycle
(k = 1 in Eq. (3.2)).

In summary, when varying the coupling delay in our model, we observe alternating regions
of synchronization and anti-synchronization with a repetitive pattern of collective periods and
amplitudes (Fig. 3.3), consistent with a variety of previous theoretical frameworks (Wang
et al., 2014; Morelli et al., 2009; Herrgen et al., 2010; Momiji & Monk, 2009). We note that
the exchange of phase information between neighbouring PSM cells is skipping one oscillation
cycle (k = 1 in Eq. (3.2)).

3.4. Time delays control the collective behaviour of cellular
oscillators across the PSM

We have shown above that for a given autorepression delay, modulations of the coupling will
critically define collective properties of cellular her1 oscillators (Fig. 3.3). We have observed
alternating regions of synchronization anti-synchronization with respect to the coupling delay
(Fig. 3.3). Evaluating the combined effect of both, the autorepression and the coupling delay,
we observe that the regions of synchronization and anti-synchronization gradually shift towards
higher coupling delay values when increasing the autorepression delay (Fig. 3.4A). Because the
autorepression delay τA is included in the coupling delay τC (Eq. (2.5)), τA > τC is infeasible
(Fig. 3.4A) and possible trajectories in the time delay phase space are restricted: the change
in coupling delay must be greater than or equal to the change in the autorepression delay,
∆τC ≥ ∆τA.

Recently, experiments tracking the expression of single cells have revealed that the period of
Her1 oscillations increases ∼ 1.5-fold from the posterior to the anterior, while the amplitude
roughly doubles (Shih et al., 2015). Concordantly with a previous mechanistic model (Ay
et al., 2014), we observe that modulated time delays could achieve such variations across the
PSM (Fig. 3.4B,C). Moreover, to remain within the second region of synchronization, in which
phase information is transmitted to the consecutive cycle in the neighbour (k = 1 in Eq. (3.2)),
both involved delays must increase as the oscillator travels across the PSM (Fig. 3.4B,C).
More precisely, according to our model, it is not sufficient to increase the coupling delay τC

only by lengthening the autorepression delay τA, but an additional DeltaC-dependent time
delay change ∆τD is needed, such that ∆τC = ∆τA + ∆τD > ∆τA. For instance, the delays
would change from τA,post = 10 min and τC,post = 50 min in the posterior to τA,ant = 20 min
and τC,ant = 80 min in the anterior PSM (Fig. 3.4B,C, black arrow); these values are taken as
default in the following.

Importantly, we find that the other parameters of the her1 oscillator are not suitable
modulators of the collective period. Firstly, the collective period is not sensitive enough with
respect to the kinetic rates of synthesis, translation and transcription (Fig. A.2; Ay et al.,
2014; Wang et al., 2015). The same is true for the coupling strength, which furthermore
affects robustness of synchronization (Figs. A.3 and 3.2A). Lastly, changes in degradation
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rates of Her1 protein or mRNA cannot increase both, the collective period and amplitude,
simultaneously (Fig. A.2).

Taken together, our model suggests that gradients in the autorepression and coupling delays
are critical to increase of the collective period and amplitude as experimentally observed (Shih
et al., 2015), while allowing neighbouring cells to remain in a synchronized condition.

Figure 3.4.: The time delay phase space of coupled Her1 oscillators reveals a path
for synchronized oscillations with increasing collective periods and am-
plitudes. (A) Regions of synchronization (dark blue) and anti-synchronization
(light blue) observed in the time delay phase space; the coupling delay contains
the autorepression delay (Eq. (2.5)), which constrains the phase space (infeasible
region coloured in light grey). (B, C) A subspace of (A) is shown (indicated by
the orange frames); the anti-synchronized states are hidden (white region); the
black arrows represent an exemplary path for cellular oscillator as it moves across
the PSM (Fig. 1.1), with increasing collective period (B) and amplitude (C) as
indicated from experiments (Shih et al., 2015). All data points correspond to
4× 4 cell patches starting in a desynchronized initial condition (Fig. 3.2A).

3.5. Travelling waves in the presence of spatiotemporal time delay
gradients

In Notch pathway mutants, the coupling between neighbouring cells is interrupted and the
expression of HES/HER oscillates autonomously. In this case, their oscillatory dynamics that
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can be regulated on a large scale only by the autorepression delay (Figs. 3.1 and A.4). In
contrast, in the wild type, HES/HER oscillatory dynamics arise from a different mechanism
(Fig. 3.3): cells attain a locally collective period and amplitude, both of which can be modulated
on a large scale only by changing both time delays of the system at the same time (Figs. 3.4
and A.4). In the following, we show that both mechanisms, in the wild type and the mutant,
lead to travelling waves, in principle.

First, we simulate the temporal behaviour of a local group of homogeneous cells while
increasing the time delays as suggested above (Fig. 3.4A,B, black arrow), which leads to
successively longer oscillations with higher amplitude in both scenarios, with autonomous and
coupled oscillators (Fig. 3.5A,B). When assuming continuous cell flow, the time a group of
cells has spent travelling across the domain is also reflected by their position. It is unknown,
whether the dynamics of the cellular oscillators are controlled by positional or temporal
information (Oates et al., 2012; Shih et al., 2015). Both interpretations are possible.

We observe that in the case of uncoupled oscillators, initial synchrony is gradually lost
(Fig. 3.5A), leading to severe irregularities in the wave pattern (Fig. 3.5C). This corresponds
well with experimentally observed posterior segmentation defects in Notch pathway mutants
(Jiang et al., 2000).

Our model suggests that in the case of autonomous cells, representing the Notch mutant,
only a gradient in the autorepression delay τA is needed to control the oscillatory dynamics
(Fig. 3.5A) and to form travelling waves. However, for coupled cells, i.e. when Notch signalling
is present, changing the autorepression delay, which is also included in the coupling delay
τC , is not sufficient. Such a case would lead to a switch to a salt-and-pepper patterning
regime (Fig. A.5). As we have hypothesized above, an additional DeltaC-dependent time
delay change ∆τD is needed for the emergence of travelling waves (Fig. 3.5D), such that
∆τC = ∆τA + ∆τD > ∆τA.

Taken together, we show that in the absence of cell-cell coupling, a delay in the HES/HER
autorepression alone is sufficient to lead to travelling waves of HES/HER expression. In
contrast, when the cells are coupled, an additional DeltaC-dependent delay is required in order
to maintain the cells synchronized.
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Figure 3.5.: Travelling waves of autonomous or coupled oscillators. (A, B) Trajectories
of autonomous (A) and coupled Her1 oscillations (B) in a group of 4× 4 cells, in
the presence of a temporal linear gradient in the autorepression delay τA and the
coupling delay τC between the timepoints 0 min and 180 min (small embedded
plots); black lines correspond to the average trajectories. (C, D) Kymographs of
travelling wave series formed by autonomous (C) and coupled Her1 oscillators
(D) under the influence of time delay gradients (bottom); at every time point (6
min intervals), the 4× 50 tissue representing the PSM has been averaged over the
medio-lateral axis; after 264 min, a steady cell flow is maintained (for details refer
to the Methods section). All time delay gradients correspond to the black arrow
in Fig. 3.4B,C. The noise level in the simulations corresponds to the value 10−2

in Fig. 3.2B (see Section 2.2 for details).
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4. Discussion

4.1. A reduced mechanistic model recapitulates travelling waves in
the PSM

Recent cell-based models of somitogenesis have aimed to integrate explicitly the increasing
amount of new experimental observations in a mechanistic network (Hester et al., 2011;
Tiedemann et al., 2012; Ay et al., 2013). Incidentally, this resulted in increasingly complex
models, compared to the first simple autorepression models of the segmentation clock (Lewis,
2003; Monk, 2003). We are convinced that examining minimal models can be an instructive
approach to gain a more fundamental understanding of complex processes (Goldenfeld &
Kadanoff, 2008). Therefore, we propose a simple model in a reduced form, compared to
the model of Julian Lewis (Lewis, 2003; Eqs. (2.1) and (2.2)). Our model includes only
one autorepression cycle over her1 and couples neighbouring oscillators via trans-repression
(Eqs. (2.3) and (2.4)). A similar model has been used for analytical purposes by Wang et al.
(2014), but we incorporate only two time delays, instead of three. Because the her7;hes6
double mutant is segmented normally in most cases, we assume that her1 is sufficient to drive
the cellular oscillators in the PSM. In appreciation of Julian Lewis, we show that his simple
initial her1 model is still remarkably powerful (Lewis, 2003; Lander, 2014). It is the key which
we use to understand the principles governing the travelling wave that controls the rhythmicity
of the vertebrate segmentation. On this foundation, we offer a reduced mechanistic model
which recapitulates the properties of travelling waves in the PSM studied over decades in
experiments and a variety of theoretical frameworks.

We show that the travelling wave formation in zebrafish can be understood by the control of
three parameters: the HES/HER autorepression delay, the intercellular coupling delay, and the
coupling strength. These three parameters critically define three emergent local properties: the
collective period, the collective amplitude, and the synchronization of neighbouring presomitic
cells. As found in a more complex framework (Ay et al., 2014), we observe that a spatiotemporal
gradient in the time delays can explain the cellular oscillator dynamics monitored in vivo
(Fig. 3.4B,C; Shih et al., 2015). Concomitantly, a synchronizing condition is maintained
(Fig. 3.4A). There are many related topics which are not addressed by our reduced her1
model and remain unresolved mechanistically, such as (i) the control of the wavefront and
the oscillation arrest (Oates et al., 2012; Shih et al., 2015), (ii) the temperature sensitivity
of the somitogenesis period (Schröter et al., 2008), (iii) the scaling of the pattern with the
body size (Cooke, 1975; Tam, 1981), and (iv) the scaling observed during ex vivo segmentation
(Lauschke et al., 2013). Concerning the latter, I discuss theoretical and biological hypotheses
separately in Appendix A.3.
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4.2. Time delays in autonomous and coupled her1 oscillators and
their spatiotemporal control

We find that the oscillatory dynamics within the travelling wave in the PSM are best understood
by examining the trajectory of the PSM cells through their time delay phase space (Fig. 3.4).
Firstly, we emphasize the role of the autorepression delay in modulating the period of the
autonomous Her1 oscillator (Fig. 3.1). A successive increase of this delay in autonomous
oscillators will lead to a period and amplitude profile which is on the same scale as measured
experimentally in the wild type (Figs. 3.5A and A.4; Shih et al., 2015). An effective
translational delay gradient of Her1 has been measured experimentally (Ay et al., 2014).
The desynchronization hypothesis states that uncoupled oscillators will lose their synchrony
successively; this synchrony is established earlier in development by simultaneous gene induction
of her1 (Figs. 3.2A and 3.5A,C; Jiang et al., 2000; Riedel-Kruse et al., 2007; Özbudak &
Lewis, 2008; Liao & Oates, 2016).

The second time delay in our model, the coupling delay, represents the time needed
for coupled oscillators to exchange Her1 oscillation phase information. This delay is not
relevant in Notch pathway mutants, where juxtacrine coupling is interrupted and cells oscillate
autonomously. We notice that due to the long deltaC expression delay of 40 min, the
information exchange in the wild type must be skipping one oscillation cycle (k = 1 in
Eq. (3.2), second region of synchronization in Figs. 3.3 and 3.4A). In general, the coupling
delay is a potent regulator of collective period and amplitude, and defines sharp transitions
between synchronization and salt-and-pepper patterning (Figs. 3.2C,D and 3.3; see further
discussion below).

Because the coupling delay incorporates the autorepression delay, changes in coupling delay
must be greater or equal to the changes in autorepression delay for an individual cell that
moves through the time delay phase space (Fig. 3.4A). We have discussed that for autonomous
Her1 oscillators it is only possible to modulate the autorepression delay to achieve reasonable
period and amplitude gradients (Figs. 3.5A and A.4). This mechanism, however, is not
applicable for the coupled Her1 oscillators (Fig. A.5), which modulate their autonomous period
additionally by exchanging phase information with their neighbours. For the wild type, our
model indicates only one mechanism to achieve gradients in collective period and amplitude,
and to remain in the same region of synchronization (Fig. 3.4): besides the autorepression
delay gradient, an additional spatiotemporal gradient in the deltaC expression delay is required
to form travelling waves (Fig. 3.5D). These predictions are in line with a more complex model
proposed by others (Ay et al., 2014). The fact that the DeltaC stripe precedes the Her1
stripe only in the middle of the PSM is an additional indication for differential spatiotemporal
modulation of time delays (Jülich et al., 2005).

Our results put the desynchronization hypothesis, that the essential role of Notch signalling
in somitogenesis is to maintain synchrony in neighbouring PSM oscillators (Jiang et al., 2000;
Riedel-Kruse et al., 2007; Özbudak & Lewis, 2008; Liao & Oates, 2016), into perspective:
Notch signalling also regulates the collective dynamics of cellular oscillators in terms of period
and amplitude — and thereby shapes the travelling wave pattern.

Whether the oscillatory dynamics across the PSM are controlled by positional or temporal
information is an open question (Oates et al., 2012; Shih et al., 2015). The ’gradient by
inheritance’ model suggests that fgf8, and possibly also wnt3A, are transcribed only in the
tail bud and their mRNA is gradually decaying in the presomitic cells that are left behind
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by the proliferating tail bud (Dubrulle & Pourquié, 2004; Aulehla & Pourquié, 2010; Bajard
et al., 2014). If one of these two signalling pathways would be involved in the shortening of
the autorepression and coupling time delays, this would explain how temporal information of
mRNA decay progression is translated into positional information by successive cell flow. In
contrast, my current understanding of the ex vivo segmentation process, indicates that the
oscillatory dynamics are controlled by positional information (see Appendix A.3).

4.3. Unifying hypotheses for the role of time delays in juxtacrine
signalling

A wide variety of time-delayed coupling phenomena similar to the one investigated here, are
currently studied across the natural sciences (Sadeghi & Valizadeh, 2014; Pavlides et al., 2015;
Vanag et al., 2016; Wetzel et al., 2017). Recently, a unifying hypothesis for the time-delayed
coupling mediated by Notch in neurogenesis and somitogenesis has been proposed (Shimojo
et al., 2016; Shimojo & Kageyama, 2016): a difference in coupling delays between biological
tissues could explain why dynamic salt-and-pepper patterning is observed in the developing
brain and synchronization is observed in the PSM (Shimojo et al., 2016; Shimojo & Kageyama,
2016). Mice mutants with different gene length, and therefore different transcriptional delays,
exhibited oscillation death in the PSM on a tissue level (Shimojo & Kageyama, 2016). Still,
to gain a broader understanding, single cell oscillations remain to be tracked under these
intriguing new experimental conditions. Based on our model of the zebrafish PSM oscillator,
we hypothesize that tissue-level oscillations are damped in coupling delay mutants by the shift
to a dynamic salt-and-pepper patterning regime (Figs. 3.2C,D and 3.3). But importantly,
the idea that the coupling delay varies between different tissues could apply in an even wider
scope: It has been shown that during angiogenesis, upregulation of Dll4 by high Vegf signalling
leads to a switch from dynamic salt-and-pepper patterning, required for tip versus stalk fate
selection, to pathological synchronization of Dll4-Notch dynamics, leading to vessel expansion
(Ubezio et al., 2016). Within our theoretical framework, such a switch would imply that
Dll4 upregulation modulates the ratio of the collective period and the coupling delay of the
cellular oscillators (illustrated in Fig. 3.3C), driving the system into a region of synchronization
(Fig. 3.4A). The sensitivity analysis of the emergent collective period (Figs. 3.4B, A.2 and
A.3) suggests that time delays are the most potent regulators — and their modulation could
be responsible for such a switch. Time delays might control both, the oscillatory dynamics
within the PSM and the varying synchronization behaviour among different tissues. Currently,
a biological mechanism explaining how time delays are regulated, is not known.

Altogether, these recent advances in somitogenesis, neurogenesis and angiogenesis support
the view that time-delayed coupling of cellular oscillators via juxtacrine Notch signalling is a
fundamental principle of developmental biology (Shimojo & Kageyama, 2016). The coupling
behaviour controls whether cells differentiate collectively as in the PSM or whether a number
of individual cells differentiate, as it is the case during the formation of the cerebral cortex or
the branching of blood vessels. Additionally, the cellular oscillators in the PSM, in an intricate
way, define the rhythmicity of segmentation via the formation of travelling waves.
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5. Conclusion and Outlook

In this thesis, I have studied the theoretical basis of travelling waves occurring in the presomitic
mesoderm of developing vertebrates. These waves of gene expression control the rhythm with
which pairs of somites sequentially emerge on both sides of the notochord (Oates et al., 2012;
Hubaud & Pourquié, 2014). The differentiation of these somites into anatomical modules of
vertebrae and muscles, sculptures the body plan of the developing embryo — and it will later
define its mode of locomotion (Ward & Mehta, 2011).

The travelling waves emerge from cells with oscillating gene expression. The oscillations
are driven by delayed autorepression: a gene represses itself in a negative feedback loop via
the protein it encodes for (Palmeirim et al., 1997; Cooke, 1998; Bessho et al., 2003; Lewis,
2003; Monk, 2003). The travelling waves emerge, when the cyclic gene expression of cells is
locally synchronized (Jiang et al., 2000; Lewis, 2003; Giudicelli et al., 2007; Liao & Oates,
2016) and a gradient in oscillation period is present (Kærn et al., 2000; Jaeger & Goodwin,
2001; Tiedemann et al., 2007; Uriu et al., 2009; Ay et al., 2014).

Together with Dr. Marcelo Boareto and Dr. Prof. Dagmar Iber, I have aimed to integrate
these principles — with the care and rigour — in the simplest form that would allow to discuss
the knowledge gathered over decades of scientific research in the field. Our model characterizes,
how cells communicate locally via Notch signalling, how they synchronize and how they adapt
their behaviour collectively. The oscillatory dynamics of the cyclic components in these cells,
shape the travelling wave and are likely to be controlled by time delays (Ay et al., 2014). Our
model summarizes these delays in two fundamentally different abstract delays: the delay in
the autorepression loop and the delay that transmits phase information to the neighbouring
cells.

We hypothesize that the properties controlled by these two time delays not only lead to
travelling wave formation in somitogenesis, but also govern neurogenesis (Shimojo et al., 2016;
Shimojo & Kageyama, 2016) and angiogenesis. During these two developmental processes,
dynamic salt-and-pepper patterning of Delta-Notch expression is observed (Kageyama et al.,
2008; Shimojo et al., 2008; Ubezio et al., 2016). Our model suggests that differences in
the two time delays that we define, are most likely involved between tissues with different
synchronization behaviour of the Notch-Delta dynamics.

With this thesis, I want to contribute to the understanding of somitogenesis as an intricately
and beautifully timed and regulated process. This complex machinery is adaptive to varying
body size (Cooke, 1975; Tam, 1981) and temperature (Schröter et al., 2008) - a fascinating
fact, for which no explanation is currently known. With my last contribution, the theoretical
study of the ex vivo segmentation, I have gained an insight into the open questions posed
by this current mystery. How does the travelling wave pattern scale with the size of the
presomitic mesoderm? Is it shaped by temporal or spatial cues? And how does it encode for
segmentation events? Once the scientific community sheds more light into these unknown
grounds, our reduced mechanistic model could be of value again — to extend it in simple
terms and to gain a conceptual understanding of the principles that govern development.
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(2008). A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell
Biol. 10, 186-193.
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expression waves during vertebrate segmentation. New J. Phys. 17, 093042.
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A. Appendices

A.1. Supplementary figures for the reduced her1 model

Figure A.1.: Modulation of the autonomous period of Her1 oscillators. The au-
tonomous period of Her1 is controlled by the autorepression delay and the
degradation rates of the mRNA c (shown) and the protein b (equivalent to c).
All data points correspond to 4× 4 cell patches.

Figure A.2.: Sensitivity analysis of the kinetic rates associated with the Her1 oscil-
lator in terms of collective period and amplitude. The effect of kinetic
rates in Eqs. (2.3) and (2.4) on the collective period (A) and amplitude (B). Note,
that the default values (scaling factor 1) are maximal estimates (Lewis, 2003).
All data points correspond to 4 × 4 cell patches starting in a desynchronized
initial condition (Fig. 3.2A).
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Figure A.3.: The role of the coupling strength. The collective periods (A) and ampli-
tudes (B) of Her1 vary more with stronger coupling. The anti-synchronized
states are hidden. The synchronized regions are moderately shifted with varying
coupling strength. All data points correspond to 4× 4 cell patches starting in a
desynchronized initial condition (Fig. 3.2A).

Figure A.4.: Spatial time delay gradients on a static domain. (A, B) Collective period
and amplitude profiles of Her1 for static and cylindric 4× 50 cell tissues with a
default linear gradients in the autorepression delay τA and the coupling delay τC

(embedded small plots) along the longer axis (posterior-anterior, P-A); recorded
for autonomous (A) and coupled Her1 oscillators (B). In Fig. 3.4, we have used
4× 4 cell patches with homogeneous parameter values to approximate the PSM
locally, similarly to the approach of others (Tiedemann et al., 2007; Ay et al., 2013).
We have concluded that a spatiotemporal gradient in time delays (Fig. 3.4B,C,
black arrow) could explain the oscillatory dynamics of recorded across the PSM
(Shih et al., 2015). Indeed, when imposing such a gradient spatially, we observe
resultant linear gradients of collective period and amplitude of Her1, in space (A,
B). For the exemplary gradient, the period and amplitude pattern that we record
in the autonomous (A) and the coupled scenario (B) are similar and roughly
approximate the single cell wild-type data measured in the PSM by others (Shih
et al., 2015).
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Figure A.5.: An autorepression delay gradient is not sufficient for travelling wave
emergence in the wild type. Simulation of coupling behaviour in presence
of a temporal gradient in the autorepression delay τA, which is included in the
coupling delay τC . Trajectories of coupled Her1 oscillations (bottom) in a group
of 4× 4cells, in the presence of a temporal linear gradient in time delays between
the timepoints 0 min and 180 min (top). The noise level corresponds to the value
10−2 in Fig. 3.2B.

A.2. Modelling biological autorepression oscillators
Time-delayed autorepression can be modelled by two different approaches (Novak & Tyson,
2008). The first approach is based on four intermediate components that could represent the
shuttling of the mRNA and the protein across the nuclear membrane (Novak & Tyson, 2008).
The protein represses the transcription of its gene in the nucleus and the mRNA is translated
in the cytosol. The second approach uses delay equations such that the mRNA expression at
time t is repressed by the protein abundance at time t0 = t− ti, where ti is the time required
for mRNA processing and nuclear export as suggested for the PSM oscillator (Lewis, 2003;
Takashima et al., 2011; Hoyle & Ish-Horowicz, 2013). In both cases, repression is modelled by
a negative Hill function, which is given as

H−(x, x0, n) = 1
1 + ( x

x0
)n

(A.1)

where x is the protein level, x0 the Hill constant, and n the Hill coefficient.
We have analysed both approaches and we have found that for a shuttling-based oscillator,

an unphysiologically high Hill coefficient of roughly n = 8 is needed to allow oscillations. This
result has been known already (Griffith, 1968). The Hill coefficient represents the cooperativity
of the repressing protein. Hes/Her proteins form dimers, implying that an Hill coefficient
n ≈ 2 is expected (Lewis, 2003; Schröter et al., 2012). A lower Hill coefficient can be used by
introducing non-linear terms into the differential equations (Novak & Tyson, 2008).

We have decided to use the delay equations in our model of the PSM oscillator due to
multiple reasons. First, we do not need additional non-linear terms or high Hill coefficients, as
in the case of the shuttling-based oscillator described above. Secondly, we can base our model
on the parameters which Julian Lewis estimated for the zebrafish PSM oscillator (Lewis, 2003).
The zebrafish oscillator appears to be more reduced than, for instance, the one of mice (Krol
et al., 2011), which suits our purposes of addressing conceptual questions.

Most importantly, I think that explicit time delays are more realistic than series of kinetic
rates. With explicit time delays, every elementary event is delayed. Which is reasonable,
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when considering that mRNAs and proteins change their subcellular location in the process
of gene expression and protein secretion. Also, molecular machines, such as polymerases,
spliceosomes or ribosomes, have a certain maximal pace at which they process information
(Lewis, 2003). These processes are delayed in the order of tens of minutes in the zebrafish
PSM (Lewis, 2003; Hanisch et al., 2013; Giudicelli et al., 2007). Using a series of slow kinetic
rates, it would be possible, although unlikely, that a gene is instantly transcribed and the
corresponding membrane protein molecule occurs at the cell surface in a few time iterations,
already — which is physically impossible.

A.3. Ex vivo scaling of the oscillation phase gradient
Scaling is a universal biological phenomenon: structures and patterns form proportionally to
a reference size, such as the body size or the size of the patterned domain. This phenomenon
is still not understood, with intriguing open questions such as (Barkai & Shilo, 2013; Vollmer
et al., 2017): How is tissue size measured? How is growth of developing structures terminated
in various systems?

In the context of somitogenesis, Lauschke et al. (2013) recently introduced an ex vivo
system, in which scaling of a travelling wave pattern is observed in time during shrinkage of
the patterned domain. The scaling of this pattern, i.e. the scaling of the phase gradient in
the underlying oscillators, is suggested to directly control the scaling of the segments that
are formed during somitogenesis. New questions arise from these observations (Barkai &
Shilo, 2013): Could this mechanism also compensate for size variation within a population of
individuals? How does the wave pattern encode the formation of the next segment? What is
the biological basis for the scaled phase gradient?

Lauschke et al. (2013) explanted a monolayer of presomitc mesoderm tissue (mPSM) from
the tail bud in mice and monitored a reporter of Lunatic fringe. Lunatic fringe is involved in
Notch signalling and is a component of the mice PSM oscillator (Lauschke et al., 2013). In
their setup, concentric travelling waves sweep from the center to the periphery of the mPSM
(Lauschke et al., 2013). The tissue grows for approximately 20 hours, until segments start
to form sequentially from the periphery towards the center (Lauschke et al., 2013). Similar
to the in vivo case, segmentation coincides with oscillation arrest and expression of Mesp2
(Lauschke et al., 2013).

Interestingly, Lauschke et al. (2013) report that while the process proceeds, the segment
width scales with the gradually shorted length (radius) of the remaining mPSM tissue. But
not only does the segment width scale - also the wave pattern does: the phase gradient from
the center to the outer boundary of the mPSM becomes gradually steeper, such that the time
of flight of each kinetic wave remains constant (Lauschke et al., 2013). Moreover, the phase
difference between the center at the periphery remains constant at 2π throughout the entire
recorded process (Lauschke et al., 2013).

I assume that during the ex vivo segmentation described above, the proliferation of the tissue
is neglectable. This is not rigorously validated in the paper of (Lauschke et al., 2013), but in
the supplementary movies, there is certainly no cell flow visible, as it is in vivo. When this
assumption holds, this experimental setup becomes very interesting to study: the travelling
wave becomes purely kinematic, without any underlying mass transport. In contrast, in vivo,
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cell flow renders it very challenging to relate spatial oscillation patterns to the oscillation
dynamics of individual oscillators (Soroldoni et al., 2014; Jörg et al., 2015).

Interestingly, during my study of the reduced her1 oscillator, I have noticed the following:
the wavelength of the waves, which travel across a static domain with oscillators of linearly
increasing oscillation period, decreases in time (Fig. A.6). Therefore, if this domain would
shrink artificially to the right extent, representing the segmentation process ex vivo, the
travelling wave pattern could be scaled in time. Marcelo Boareto introduced me to an
interesting phenomenon that I noticed is analogous to this pattern that I observe in our her1
model: Pendulum waves occur in an array of pendulums with an increasing pendulum length,
i.e. an increasing oscillation period. These pendulum waves also decrease in wavelength in
time (until the wavelength is so short that strange patterns arise).

Figure A.6.: The wavelength of Her1 travelling waves decreases in time on a static
domain. The simulation setup is identical to Fig. A.4B. The collective oscillation
period and amplitude are increasing from 0 to L. The plot is a kymograph, where
the 4 × 50 tissue has been averaged over the medio-lateral axis for each time
point.

Lauschke et al. (2013) have not measured the spatial variation of periods and amplitudes
across the mPSM. But considering (i) the visual intensity (i.e. amplitude) distribution in
their kymographs, (ii) our knowledge, that travelling waves form in presence of an gradient in
oscillation period (Kærn et al., 2000; Jaeger & Goodwin, 2001; Tiedemann et al., 2007; Uriu
et al., 2009; Ay et al., 2014), and (iii) the resemblance of Fig. A.6 with the kymographs of
Lauschke et al. (2013), I have decided to model the ex vivo mPSM as an array of sine-based
oscillators with increasing periods T (x) and amplitudes. For such an array, I plot a kymograph
(Fig. A.7A) by sampling the signal S for time points ti and locations xi ∈ [0, L]:

S(ti, xi) = (xi + 1) sin( 2πti
T (xi)

) + xi + 1 (A.2)

Having this complete kymograph, I initiate a segmentation event each time a wave reaches the
boundary of the ’mPSM’ (Fig. A.7A, upper white dashed line). At such a segmentation event,
I determine the width of the somite, by searching spatially for the steepest point in the signal
(Fig. A.7B, blue line). I define that the new segment is formed between the previous boundary
of the ’mPSM’ and this steepest point, which defines the new boundary of the ’mPSM’.

This very abstract segmentation procedure leads to a pattern that is similar to the one
recorded by Lauschke et al. (2013), e.g. in their Figure 4a. Also, I calculate somite widths
(Fig. A.7C) and travelling wave velocities Fig. A.7 that scale with the shrinking mPSM length,
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Figure A.7.: Artificial segmentation leads to scaling in a array of sine oscillators
with increasing period and amplitude. (A) Kymograph of a sine-based
model (Eq. (A.2)) of the mPSM. Black dotted lines indicate travelling wave
propagation. Upper white dashed line represents the peripheral boundary of the
mPSM. Segmentation events are triggered when the peak of the wave reaches this
outer mPSM boundary. Lower white dashed line indicates the ’central boundary
of the mPSM’, when reproducing the experimentally measured phase gradient
amplitude of 2π (Lauschke et al., 2013). Phase difference in two neighbouring
cells (white squares) increases over time. (B) First segmentation event. The
new boundary of the mPSM is defined by the steepest point of the signal in the
mPSM. (C,D) In our segmentation model (A), somite size (C) and wave velocity
(D) scale with the length of the shrinking mPSM, as observed experimentally by
Lauschke et al. (2013).

similar to the results shown in the Figure 3a,b of Lauschke et al. (2013). The measured
phase gradient amplitude of 2π mentioned above, could be explained in two ways. Either by
moderate growth (Fig. A.7, lower white dahed line) at the center, which corresponds to the
posterior PSM boundary in vivo. Or, when considering Figure S5 of Lauschke et al. (2013), it
could be that this 2π phase span arises from the method of measurement: it is not entirely
clear, how the phase gradient amplitude is measured by Lauschke et al. (2013).

What are the biological implications of these considerations? In my opinion, there is a
strong indidcation that the travelling waves in the mPSM/PSM are shaped by what I call
the ’pendulum wave effect’: two cells that are initially in-phase, but have a different period,
are accumulating phase difference in time. I.e., in the mPSM, the phases of two neighbouring
cells that are aligned on the medio-lateral axis, are gradually getting out of phase over time
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(Fig. A.7A, white cells). The same is observed in vivo: cells aligned on the posterior-anterior
axis increase in phase difference as they approach the anterior boundary. This is reflected
in the width of the travelling wave stripes (i.e. the wavelength, which decreases towards the
anterior (Palmeirim et al., 1997; Jiang et al., 2000; Giudicelli et al., 2007).

In vivo, decreasing wavelengths of travelling waves have been also reported and are referred
to as the Dynamic Wavelength effect (Soroldoni et al., 2014; Jörg et al., 2015). To what degree
the ’pendulum wave effect’ contributes to the in vivo Dynamic Wavelength effect is not clear
to me, at the moment. A possibility that would explain the in vivo Dynamical wavelength
effect is scaling of the period gradient: A period gradient which becomes steeper in time leads
to a larger period difference in two neighbouring cells that are aligned on the posterior-anterior
axis. Consequently, the phase difference in these two cells accumulates faster with a steeper
period gradient, leading to decreasing wavelengths of the travelling waves. Interestingly, in our
very abstract model, such a scaled period gradient is not needed for the ex vivo segmentation.

In our model, the period gradient is static on a domain with static cell. This would imply
that the dynamics of the oscillators are controlled by positional information — not temporal
information (see Section 4.2).

The biological link of the travelling wave pattern to the segment formation remains elusive
(Lauschke et al., 2013; Shih et al., 2015). The results of Shih et al. (2015) show that the arrest
of the cellular oscillators, which underlay the travelling wave, is initiated at the posterior
boundary of the forming somite S0 (Fig. 1.1). In my sine-based segmentation model, this
posterior boundary of S0 is defined via the spatial derivative of the travelling wave signal
(Fig. A.7B). Biologically, ’sensing’ the spatial derivative of the signal in an array of static
cells could suggest that oscillation coupling is involved in the segment formation. However,
oscillation arrest and segmentation occur in Notch pathway mutants, where coupling is
interrupted (Jiang et al., 2000; Liao & Oates, 2016), discouraging this interpretation.

In summary, my model suggests that the scaling of the phase gradient in the ex vivo
segmentation process reported by Lauschke et al. (2013), does not necessarily require a scaled
period gradient. According to this model of sine-based static oscillators, two mechanisms
are involved in phase gradient scaling. Firstly, a physical property of oscillator arrays with
static period gradients, referred to as the ’pendulum wave effect’, which leads to an decreasing
wavelength of travelling waves on a static domain, in time. The model suggests that the period
gradient is controlled by positional, not temporal, information. For instance, the time delay
gradients (see Section 4.2) could be controlled by a morphogen source in the center of the
mPSM, representing the tail bud in vivo — contrasting with the hypothesis of a temporally
’gradient by inheritance’ (see Section 4.2). Secondly, a phase-gradient-linked segmentation
process is responsible for the shortening of the PSM length. My model uses information of
the spatial signal derivative to establish the link between the phase gradient and the segment
formation. It remains open, if this is the only mechanism that can qualitatively reproduce the
experimentally observed scaling.

These results and considerations are preliminary and highly hypothetical.

A.4. Data availability
The python code is available on my GitHub repositories.
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Code for the her1 model (main and supplementary figures):
https://github.com/ttomka/her1_somitogenesis

Code for the models of ex vivo scaling:
https://github.com/ttomka/ExVivoScaling_Somitogenesis
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