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Abstract

The scope of this thesis lies in the field of constrained optimal control.
More precisely, it is concerned with the constrained finite-time optimal

control of two system classes: piecewise affine systems and linear parameter-
varying systems.
Firstly, constrained finite-time optimal control (CFTOC) of piecewise affine
(PWA) systems is revisited. Since the actual computation of hybrid con-
trollers as the explicit solution to parametric CFTOC problems for piecewise
affine systems is already rather mature, this part deals with a post-processing
algorithm and the actual application of explicit hybrid controllers.
If the cost function of the CFTOC problem is quadratic, the optimization
problem at hand is a parametric mixed-integer quadratic program, which
can be solved by decomposing it into a number of quadratic programs.
Thereby redundant regions are computed, which increase the storage de-
mand and the online evaluation time of the resulting controller. Conse-
quently, we propose a post-processing algorithm for the removal of redun-
dant regions.
Furthermore, we examine the application of hybrid control methods to two
systems. In the first application, a mechanical system with backlash is es-
tablished as an experimental testbed for the evaluation of hybrid control
techniques. The second application considers autonomous vehicle steering
and involves a comparison of different MPC schemes in terms of control per-
formance and online computation times.
The second part of this thesis is devoted to constrained optimal control of lin-
ear parameter-varying (LPV) systems. A sequence of dynamic programming
procedures is proposed, in order to solve constrained finite-time optimal
control problems explicitly for LPV-A systems and for general LPV systems.
Both cases of an arbitrarily varying scheduling parameter and a bounded
rate of parameter variation are considered. Likewise, a procedure to solve
the constrained time-optimal control problems is proposed, enabling a low-
complexity alternative to explicit LPV-MPC with guaranteed stability. With
these developments, explicit MPC schemes and explicit minimum-time MPC
schemes are enriched by the class of LPV systems, increasing the possibili-
ties of their application.
Finally, we demonstrate such an application of explicit LPV-MPC to auton-
omous vehicle steering, in order to emphasize the potential benefits of con-
sidering scheduling parameters in the controller design.





Zusammenfassung

Der Schwerpunkt dieser Dissertation liegt im Gebiet der beschränk-
ten optimalen Regelung. Die vorliegende Arbeit beschäftigt sich mit

der Regelung von beschränkten stückweis affinen und linear parameter-vari-
ierenden Systemen basierend auf der Optimierung von Gütefunktionen mit
endlichem Zeithorizont.

Im ersten Teil wird die beschränkte optimale Regelung (engl. constrained
finite-time optimal control, CFTOC) von stückweis affinen (engl. piecewise
affine, PWA) Systemen rekapituliert. Da die Entwicklung von Methoden zur
Berechnung der hybriden Regelgesetze als Lösung der CFTOC Probleme für
stückweis affine Systeme bereits ziemlich weit fortgeschritten ist, handelt
dieser Teil von einem Algorithmus zur Effizienzsteigerung hybrider Regler
und von der Anwendung hybrider Regler.
Wenn die Kostenfunktion des CFTOC Problems quadratisch ist, ist das re-
sultierende Optimierungsproblem ein parametrisches gemischt-ganzzahliges
quadratisches Programm, das gelöst werden kann, indem man es in eine
Reihe von parametrischen quadratischen Programmen zerlegt. Bei dieser
Vorgehensweise werden redundante Regionen berechnet, die sowohl den
Speicherbedarf als auch die benötigte Auswertungszeit des Regelgesetzes
erhöhen. Um dem entgegen zu wirken, wird ein Algorithmus zur Detek-
tierung und Entfernung redundanter Regionen vorgestellt.
Zusätzlich testen wir die Anwendung hybrider Regelungsmethoden an zwei
Systemen. In der ersten Anwendung wird ein mechanisches System mit
Zahnspiel als experimenteller Versuchsstand für die Evaluierung hybrider
Regelungsmethoden zur Verfügung gestellt. Die zweite Anwendung beschäf-
tigt sich mit der autonomen Steuerung von Fahrzeugen und zieht einen Ver-
gleich verschiedener MPC Entwürfe anhand der Regelgüte und des online
Berechnungsaufwandes.

Der zweite Teil dieser Dissertation ist der beschränkten optimalen Regelung
von linear parameter-variierenden (LPV) Systemen gewidmet. Eine Reihe von
Varianten der dynamischen Programmierung wird vorgeschlagen, um Opti-
mierungsprobleme für die optimale Regelung von LPV-A Systemen und all-
gemeinen LPV Systemen explizit zu lösen. Sowohl der Fall eines willkürlich
variierenden Parameters als auch der Fall einer begrenzten Änderungsrate
des Parameters werden betrachtet. Zudem wird ein Verfahren zur Lösung
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von beschränkten zeit-optimalen Regelungsproblemen für LPV Systeme vor-
geschlagen, welches eine Alternative zu explizitem LPV-MPC darstellt, die
sich durch eine niedrige Reglerkomplexität und garantierte Stabilität ausze-
ichnet. Mit diesen Entwicklungen werden die Methoden des expliziten MPC
und des expliziten zeitminimalen MPC um die Klasse der LPV Systeme
angereichert und dadurch die Anzahl der möglichen Anwendungen dieser
Regelungsmethoden erhöht.
Abschließend wird solch eine Anwendung des expliziten LPV-MPC zur au-
tonomen Steuerung von Fahrzeugen demonstriert, um den möglichen Nut-
zen der Berücksichtigung von Parametern wie die Fahrzeuggeschwindigkeit
im Reglerentwurf hervor zu heben.

vi
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1 Introduction

‘Everything starts somewhere,
although many physicists
disagree.’

Terry Pratchett

The systems which control engineers face in practice most often incorpo-
rate some sort of nonlinear behaviour. Moreover, real-life systems are

typically accompanied by constraints on the state and/or the input. The
choice of an appropriate controller design method in this situation is mainly
driven by the following requirements: The control method should achieve
‘good’ control performance, and it should be inexpensive, i.e. easy to com-
prehend, effortless to apply and to tune to different kinds of systems, and
economical to implement.

Model predictive control (MPC) is a control method which takes constraints
directly into account, and it fulfils or excels in all of these requirements –
except the implementation costs. At the same time the application of MPC is
limited to systems with sufficiently slow dynamics. Around the millennium
this limitation was tackled by the proposal to apply parametric program-
ming and dynamic programming to the MPC optimization problem. The
solution to the MPC optimization problem is computed a-priori as an ex-
plicit function of the state – the so-called explicit MPC was born. Online, the
solution of the optimization problem reduces to the evaluation of a look-up
table, which can be performed by a common microprocessor in the range of
microseconds.

Unfortunately, explicit MPC is not as flexible as classical MPC. The compu-
tation of explicit control laws is only possible for systems of modest size and
only for certain types of systems. In the general case of nonlinear systems,
explicit solutions are only computable for tiny systems and difficult to store
and to evaluate. Apart from approximate grid-and-interpolation approaches,
this leaves the control engineer with the approximation of the system be-
haviour by a model of simpler structure, and to use this model to compute
an explicit MPC controller. Having this purpose in mind, we examine con-
strained optimal control of two system classes in this thesis: piecewise affine
systems and linear parameter-varying systems.



1 Introduction

Outline and Contributions

In the following section we provide a brief outline of the thesis. At the same
time we will summarize the aims of the presented work and the contribu-
tions to the field. It should be emphasized that the results were obtained in
close collaboration with various researchers, as indicated below.

The thesis itself is subdivided into three parts. Part I contains background
material which will be of use in the two subsequent parts of the thesis. In
Chapter 2 basic mathematical definitions, terminologies and system-theoreti-
cal concepts are provided. The prominent theorem of Pólya, which forms
a cornerstone of some of the computational procedures in later chapters, is
introduced.

In Chapter 3 ideas from constrained optimization are recapitulated. The
most common classes of mathematical programming and parametric pro-
gramming problems are presented. References to established solvers are
given, which will serve as our computational tools to solve constrained op-
timization problems. Afterwards the two optimization paradigms branch-
and-bound and dynamic programming are presented.

In Chapter 4 the basic concept of model predictive control is explained by
means of general nonlinear systems. In model predictive control, an opti-
mization problem is solved at each sampling instance using the optimiza-
tion tools defined in the previous chapter. Different types of finite-time op-
timal control optimal control problems, which reflect the variation of model
predictive control and the type of the system at hand, are presented, and
possible solution approaches using mathematical programming, parametric
programming or dynamic programming are indicated.

Part II is concerned with the post-processing and the application of optimal
control of piecewise affine (PWA) systems. PWA systems can be used to
model saturation effects, logics and switches. In Chapter 5, piecewise affine
systems are introduced, and the constrained finite-time optimal control prob-
lem for piecewise affine systems employing a quadratic cost function is dis-
cussed.

In Chapter 6 the first contribution of this thesis is covered. The Multi-Para-
metric Toolbox, version 2.6.2, contains an algorithm to compute optimal con-
trollers for piecewise affine systems employing a quadratic cost function.
During this computation however, many redundant regions are computed
and stored. Those regions will never be applied to the plant, but increase
the complexity of the resulting controllers and slow down the online evalu-
ation of the look-up table. Consequently an algorithm was developed and
implemented for the removal of redundant regions. Several measures were
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taken to improve the computational speed. This chapter provides an expla-
nation of this algorithm and is based on the technical report

Removal of Regions for Quadratic Norm Optimal Control of Piecewise
Affine Systems. T. Besselmann and M. Morari. Technical Report,
Automatic Control Laboratory, ETH Zurich, vol. AUT07-12, 2007.

In Chapter 7 the establishment of an experimental benchmark system for
control of hybrid systems is reported. Recent years saw a huge amount
of literature concerning the identification, the state estimation and the con-
troller design of hybrid systems, but relatively little literature on experimen-
tal applications and comparisons between competing methods. Following
this finding, a mechanical system with backlash was constructed and made
accessible over the internet. This benchmark system can serve researchers
worldwide as a test bench to test their methods and provides experimental
results. As a competing candidate, a hybrid approach including modelling,
control and state estimation of the benchmark system was pursued using
tools developed at the Automatic Control Laboratory. This chapter is based
on

A Hybrid Approach to Modeling, Control and State Estimation of Me-
chanical Systems with Backlash. P. Rostalski, T. Besselmann, M. Barić,
F. von Belzen and M. Morari. International Journal of Control, vol.
80, no. 11, pp. 1729 – 1740, Special Issue on “Automotive Systems
and Control”, 2007.

In Chapter 8 the development of controllers for autonomous vehicle steer-
ing is described. The lateral vehicle model of a car comprises nonlinearities
as well as state and input constraints. Tight performance criteria advocate
the use of advanced control techniques such as nonlinear model predictive
control. Previous publications revealed the success of nonlinear model pre-
dictive control in meeting the performance criteria, but also the difficulties
to cope with a limited amount of online computations. Responding to this
situation we provided a comparison of different model predictive control
schemes using approximative models ranging from a linear to the fully non-
linear model. This comparison, which forms the basis of Chapter 8, was
published in

Hybrid Parameter-Varying MPC for Autonomous Vehicle Steering. T.
Besselmann and M. Morari. European Journal of Control, vol. 14,
no. 5, pp. 418 – 431, 2008.

Hybrid Parameter-Varying Model Predictive Control for Lateral Vehicle
Stabilization. T. Besselmann, P. Rostalski and M. Morari. European
Control Conference, Kos, Greece, 2007.

3



1 Introduction

An important observation for the further course of this thesis was that ex-
plicit control schemes – while significantly reducing the required online
computational effort – were not able to take parameter-varying system dy-
namics into account. This observation led to the development of explicit
MPC schemes for linear parameter-varying systems, and thus to the scope
of Part III.

In Chapter 9 classical gain-scheduling is reviewed, leading to the concept of
linear parameter-varying (LPV) systems and a brief overview on the con-
troller design cycle for LPV gain scheduling. Finally, constraints on the
inputs and states are taken into account, and possible control approaches
for constrained LPV systems are listed. LPV systems can be used to model
systems whose dynamics depend on an external parameter, or to embed
nonlinearities in a quasi-linear framework.

In Chapter 10 we restrict ourselves to the class of LPV-A systems, where the
input matrix is independent of the scheduling parameter. It is shown that
using an affine input parametrization and the uncontrolled successor state
as parameter in the final dynamic programming step results in the optimal
state-feedback control law. This chapter is partially based on

Explicit MPC for Systems with Linear Parameter-Varying State Transi-
tion Matrix. T. Besselmann, J. Löfberg and M. Morari. IFAC World
Congress, Seoul, Korea, 2008.

The extension of the ideas behind this publication to other kinds of discrete-
time systems are straightforward, as long as the closed-loop system is a
polytopic system. This extension was the subject of the publication

Max-Min Optimal Control of Constrained Discrete-Time Systems. M.
Barić, S.V. Rakovic, T. Besselmann and M. Morari. IFAC World
Congress, Seoul, Korea, 2008.

In Chapter 11 the general case of LPV systems with a parameter-varying
input matrix is considered. Contrary to the previous chapter, the closed-
loop system is not polytopic, requiring a more involved solution machinery.
While the optimal solution to the considered problem is only an option for
trivial problems, a suboptimal solution to the dynamic programming prob-
lems can be computed by making use of Pólya’s relaxation. Different ap-
proaches to explicit model predictive control of LPV systems are proposed
and compared in numerical examples. This chapter is partly based on

Explicit MPC for LPV Systems. T. Besselmann, J. Löfberg and M.
Morari. IEEE Conference on Decision and Control, Cancun, Mex-
ico, 2008.

In Chapter 12 the schemes from the previous two chapters are extended to the
case, when a bound on the rate of parameter variation is known. Not taking

4



such limits into account can give rise to conservative control performance.
Hence a variation of the previous schemes is proposed which is able to take
a bound on the rate of parameter-variation into account. This chapter is
based on

Explicit LPV-MPC with Bounded Rate of Parameter Variation. T. Bessel-
mann, J. Löfberg and M. Morari. IFAC Symposium on Robust
Control Design, Haifa, Israel, 2009.

In Chapter 13 an explicit minimum-time MPC is developed for LPV systems.
Instead of optimizing a cost function, the number of time steps to reach
a target set are minimized. A comparison with explicit LPV-MPC reveals
that this scheme often results in significantly less complex controllers. This
chapter is based on

Constrained Time Optimal Control of Linear Parameter-Varying Sys-
tems. T. Besselmann, J. Löfberg and M. Morari. IEEE Conference
on Decision and Control, Shanghai, China, 2009.

Finally, in Chapter 14 the explicit LPV-MPC schemes from Chapter 10 and 12

are applied to the autonomous vehicle steering from Chapter 8. A signifi-
cant decrease in the online computational time can be observed, while the
controller is able to take the current values of the vehicle speed into account.
This chapter is based on

Autonomous Vehicle Steering Using Explicit LPV-MPC. T. Besselmann
and M. Morari. European Control Conference, Budapest, Hun-
gary, 2009.

An overview of the document structure is provided in Figure 1.1. It may
guide the reader through the single chapters of this thesis.

5
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Part III

Part I

Part II

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 6 Ch. 7 Ch. 8

Ch. 9

Ch. 10 Ch. 11

Ch. 12

Ch. 13

Ch. 14

Figure 1.1: Block diagram showing the interdependence of the chapters in this thesis.
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Part I

Background





2 Preliminaries

‘In most sciences one generation
tears down what another has
built and what one has
established another undoes. In
mathematics alone each
generations adds a new story to
the old structure.’

Hermann Hankel

Mathematical and system-theoretical concepts form the basis of the
topics treated in this thesis. Subsequently, this chapter on preliminar-

ies is added for the sake of completeness. At first, some system-theoretical
concepts such as Lyapunov stability or set invariance are recalled. Then
we introduce Pólya’s relaxation, a conservative criterium for the positivity
of polynomials over the standard simplex. In later chapters of this thesis,
Pólya’s relaxation will play an important role for the computation of explicit
MPC controllers for LPV systems. The used notation is summarized in Ap-
pendix A. For a clarification of mathematical definitions and terminology,
see Appendix B.



2 Preliminaries

2.1 System Theory

In this section discrete-time systems are introduced. A brief summary of
stability properties based on Lyapunov theory and set invariance is provided.
More details can be found e.g. in the textbooks [LaS86, BM08b, Kha00].

Discrete-time systems

Definition 2.1 (Discrete-time systems) Let k ∈ N denote discrete time. We
define the following discrete-time systems:

xk+1 = f (xk) (Autonomous system)
xk+1 = f (xk, uk) (Nonautonomous system)
xk+1 = f (xk, wk), xk+1 = f (xk, uk, wk) (Uncertain system)
xk+1 = f (xk, θk), xk+1 = f (xk, uk, θk) (Parameter-varying system)

with the system state xk ∈ Rnx, the control input uk ∈ Rnu, the uncertainty
wk ∈ Rnw and the scheduling parameter θk ∈ Rnθ .

A system without inputs is called autonomous system, otherwise nonau-
tonomous system. The control input uk, the uncertainty wk and the sched-
uling parameter θk all denote inputs to a system. While the control input
is determined by a controller, the uncertainty and the scheduling parameter
denote the remaining external inputs such as disturbances, process noise or
model variations. The distinction between uncertainty and scheduling pa-
rameter is based upon the existence of knowledge of the signal. While the
scheduling parameter is known to the controller, the uncertainty can only be
accessed indirectly via its influence on the state of the system.

Remark 2.1 Often the state of a system is not entirely accessible, but only a subset
of it, given by the output equation

yk = g(xk, uk, wk, θk) .

Then yk ∈ R
ny denotes the output of the dynamic system.

Definition 2.2 (Constrained system) A discrete-time system is called a con-
strained system if state and/or control input are constrained to a set,

xk ∈ Xk ⊂ R
nx ,

uk ∈ Uk ⊂ R
nu .

10



2.1 System Theory

Note that typically uncertainties and scheduling parameters are also bound-
ed,

wk ∈ Wk ⊂ R
nw ,

θk ∈ Θk ⊂ R
nθ ,

but the notion constrained system is only associated with constraints on the
control input and/or the state of a system.

Stability properties

Definition 2.3 (Equilibrium point) A point x̄ ∈ Rnx is called equilibrium point
of an autonomous discrete-time system f : R

nx → R
nx, if

x̄ = f (x̄)

holds.

A question one often encounters in system theory is if an equilibrium is sta-
ble, i.e. if after small deviations from the equilibrium point the state returns
to the equilibrium point. The stability of equilibrium points of discrete-time
systems is an important system-theoretic topic, see e.g. [LaS86].

In this work, we will often implicitly assume that the equilibrium point of
interest lies at the origin. This assumption poses no restriction since it is
always possible to shift an equilibrium point x̄ to the origin by considering
the state relative to this equilibrium point x̃ = x− x̄. Indeed this assumption
is so common in the control literature that stability of a system is often used
synonymously with stability of an equilibrium point at the origin. This how-
ever is only valid if the autonomous system at hand, as e.g. an autonomous
linear system, possesses only a single equilibrium point.

Definition 2.4 (Lyapunov stability) An equilibrium point of an autonomous dis-
crete-time system f : Rnx → Rnx at the origin is called (Lyapunov) stable, if for
each ε > 0 there exists a δ > 0, such that

‖x0‖ < δ ⇒ ‖xk‖ < ε ∀k ∈ N (2.1)

holds.

Definition 2.5 (Asymptotic stability) An equilibrium point of an autonomous
discrete-time system f : Rnx → Rnx at the origin is called asymptotically stable,
if it is stable and if there exists a δ > 0 such that

‖x0‖ < δ ⇒ lim
k→∞

‖xk‖ = 0 (2.2)

11



2 Preliminaries

holds.

Definition 2.6 (Exponential stability) An equilibrium point of an autonomous
discrete-time system f : Rnx → Rnx at the origin is called exponentially stable, if
there exists a δ > 0, λ ∈ [0, 1) and a c ∈ R, such that

‖x0‖ < δ ⇒ ‖xk‖ ≤ c‖x0‖λk (2.3)

holds.

Definition 2.7 (Quadratic stability) An equilibrium point of an autonomous dis-
crete-time system f : Rnx → Rnx at the origin is called quadratically stable, if the
system admits a quadratic Lyapunov function V(x) = xTPx, P = PT 	 0. P is
also called a Lyapunov matrix.

Definition 2.8 (Lyapunov function) Let f : Rnx → Rnx be a continuous func-
tion denoting an autonomous discrete-time system with an equilibrium point at the
origin. A positive definite function V : Rnx → R+ is called a Lyapunov function
for the system if the following conditions hold:

(i) V(0) = 0,

(ii) V(x) > 0 ∀x 
= 0,

(iii) V( f (x)) ≤ V(x) ∀x ∈ R
nx.

Theorem 2.1 (Lyapunov stability criteria) Let f : Rnx → Rnx be a continuous
function denoting an autonomous discrete-time system with an equilibrium point at
the origin. If there exists a Lyapunov function V : R

nx → R+, the origin is stable.
If in addition

V( f (x)) < V(x) ∀x 
= 0 ,

the origin is asymptotically stable. Moreover, if in addition V is radially un-
bounded, i.e.

V(x) → ∞ as ‖x‖ → ∞ ,

the origin is globally asymptotically stable, implying that it is the unique equilib-
rium point of the system.

A Lyapunov function can also be defined locally in a neighbourhood D ⊆
Rnx of the equilibrium point, f : D → R+, in order to determine local stability
in a domain of attraction.

Definition 2.9 (Domain of attraction) Let f : Rnx → Rnx be an autonomous
discrete-time system with an equilibrium point at the origin. The domain of attrac-
tion of the equilibrium point is defined as

D :=
{

x0 ∈ R
nx
∣∣∣ lim

k→∞
‖xk‖ = 0

}
.

12



2.1 System Theory

The concepts of stability can be extended to uncertain and parameter-varying
systems, requiring that the conditions are fulfilled for all wk ∈ Wk or for all
θk ∈ Θk, respectively. Since under the influence of external inputs stability
as defined above typically can not be achieved, one instead requires a nonau-
tonomous system to be uniformly ultimately bounded, [Kha00, BM08b].

Definition 2.10 (Boundedness) Let f : Rnx×Rnw → Rnx be an nonautonomous
uncertain discrete-time system. The solutions to the uncertain system are called

• uniformly bounded if, independent of k ∈ N, for each δ ∈ (0, δ̄) there exists
an ε > 0 such that

‖xk‖ < δ ⇒ ‖xk+i‖ < ε ∀i ∈ N , (2.4)

• globally uniformly bounded if it is uniformly bounded for arbitrarily large
δ̄,

• uniformly ultimately bounded if, independent of k ∈ N, for each δ ∈ (0, δ̄)
there exist an ε > 0 and a T ≥ 0 such that

‖xk‖ < δ ⇒ ‖xk+i+T‖ < ε ∀i ∈ N , (2.5)

• globally uniformly ultimately bounded if it is uniformly ultimately bound-
ed for arbitrarily large δ̄.

Set Invariance

The concept of invariant sets is a simple and basic one, nevertheless (or
hence) it acquired some attention due to its universal nature. In the area
of control, set invariance appears mainly in the context of constrained sys-
tems, for the analysis of regions of attraction and of controllability proper-
ties, [BM08b]. Intuitively speaking, a set is called invariant with regard to a
dynamic system if, under the evolution of the dynamic system, the system
state, once it enters the set, stays in the set forever.

Set invariance is a system property and has to be considered with regard
to a specific system and with regard to present constraints on the system.
Depending on the structure of the system at hand, different variations of set
invariance are defined.

Definition 2.11 ((Positive) invariant sets) Let f denote a constrained discrete-
time system with the state xk ∈ X ⊆ Rnx, and optionally a control input uk ∈ U ⊆
Rnu, an unknown but bounded uncertainty wk ∈ W ⊂ Rnw and/or a measurable
scheduling parameter θk ∈ Θ ⊂ Rnθ . Depending on the type of the system at hand,
we define the following invariance properties: A set Z ⊆ X is called

13
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• (positive) invariant w.r.t. the system xk+1 = f (xk) if

∀xk ∈ Z xk+1 = f (xk) ∈ Z .

• robust invariant w.r.t. the system xk+1 = f (xk, wk) if

∀xk ∈ Z ∀wk ∈ W xk+1 = f (xk, wk) ∈ Z .

• parameter invariant w.r.t. the system xk+1 = f (xk, θk) if

∀xk ∈ Z ∀θk ∈ Θ xk+1 = f (xk, θk) ∈ Z .

• control invariant w.r.t. the system xk+1 = f (xk, uk) if

∀xk ∈ Z ∃uk ∈ U : xk+1 = f (xk, uk) ∈ Z .

• robust control invariant w.r.t. the system xk+1 = f (xk, uk, wk) if

∀xk ∈ Z ∃uk ∈ U : ∀wk ∈ W xk+1 = f (xk, uk, wk) ∈ Z .

• parameter control invariant w.r.t. the system xk+1 = f (xk, uk, θk) if

∀xk ∈ Z ∀θk ∈ Θ ∃uk ∈ U : xk+1 = f (xk, uk, θk) ∈ Z .

Remark 2.2 Note that the distinction between unknown uncertainty wk and mea-
surable scheduling parameter θk is only interesting for controlled systems, where
knowledge of the uncertainty/parameter could be exploited for the applied control uk.
Consequently, there is no difference between the robust invariant and the parameter
invariant set, while the parameter control invariant set can be significantly larger
than its robust control invariant counterpart.

A property stronger than set invariance is the contractiveness of a set. Ana-
logue to set invariance, the set contractiveness is a property of the system at
hand.

Definition 2.12 (Contractive sets) Let f denote a constrained discrete-time sys-
tem with the state xk ∈ X ⊆ Rnx, and optionally a control input uk ∈ U ⊆ Rnu,
an unknown but bounded uncertainty wk ∈ W ⊂ Rnw and/or a measurable param-
eter θk ∈ Θ ⊂ Rnθ . A set Z is λ-contractive with regard to the system f , for some
contraction ratio λ ∈ [0, 1), if and only if it is invariant with regard to the system
f /λ.

14
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Many authors use the term λ-contractive set independently of the type of
the system, though the meaning of contractiveness differs depending on the
system type (compare Definition 2.11). For the computation of the region of
attraction one is typically interested in the largest invariant set or the largest
λ-contractive set.

Definition 2.13 (Maximum invariant sets) Let f denote a constrained discrete-
time system with the state xk ∈ X ⊆ Rnx, and optionally a control input uk ∈ U ⊆
R

nu, an unknown but bounded uncertainty wk ∈ W ⊂ R
nw and/or a measurable

scheduling parameter θk ∈ Θ ⊂ Rnθ . A set Z∞ ⊆ X is called the maximum
invariant set of a discrete-time system xk+1 = f (xk), if

(i) Z∞ is invariant,

(ii) Z∞ contains the origin and

(iii) Z∞ contains all invariant sets in X that contain the origin.

The maximum robust invariant set, the maximum parameter invariant set, the
maximum control invariant set, the maximum robust control invariant set and
the maximum parameter invariant set are defined by applying the variations of
invariance accordingly, see Definition 2.11.

The maximum invariant set of a discrete-time system can be computed by
making repeatedly use of presets.

Definition 2.14 (Presets Ω(Z)) Let f denote a constrained discrete-time system
with the state xk ∈ X ⊆ Rnx, and optionally a control input uk ∈ U ⊆ Rnu, an
unknown but bounded uncertainty wk ∈ W ⊂ R

nw and/or a measurable parameter
θk ∈ Θ ⊂ Rnθ . Depending on the type of the system at hand, we define the following
presets:

Ω(Z) := {x ∈ X | f (x) ∈ Z} ,
Ω(Z) := {x ∈ X | ∀w ∈ W f (x, w) ∈ Z} ,
Ω(Z) := {x ∈ X | ∀θ ∈ Θ f (x, θ) ∈ Z} ,
Ω(Z) := {x ∈ X | ∃u ∈ U : f (x, u) ∈ Z} ,
Ω(Z) := {x ∈ X | ∃u ∈ U : ∀w ∈ W f (x, u, w) ∈ Z} ,
Ω(Z) := {x ∈ X | ∀θ ∈ Θ ∃u ∈ U : f (x, u, θ) ∈ Z} .

More precisely, the computation of the maximal invariant set Z∞ can be
performed by executing Algorithm 2.1, initialized with some set of Z0 (e.g.
Z0 = X ). Analogue the maximum λ-contractive set can be computed by
performing Algorithm 2.1 replacing Ω(Zi) by Ω(λZi). One should mention
that the backpropagation algorithm is not guaranteed to terminate in finite
time, hence in a practical implementation some numerical tolerances should
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Algorithm 2.1 Backpropagation of sets

Input: Z0
Output: Z1, . . . ,Z∞

1: Z1 = Ω(Z0)
2: i = 1
3: while Zi 
= Zi−1 do
4: Zi+1 = Ω(Zi)
5: i = i + 1
6: end while
7: Z∞ = Zi

be introduced to terminate when the presets converged up to a numerical
precision.

Example 2.1 Figure 2.1 depicts the sets Z0, . . . ,Z∞ occurring during set backprop-
agation. In the example the sets converge after five iterations, this set is the maximal
invariant set, denoted by Z∞.

Z2Z1Z0
. . . Z∞

Figure 2.1: Example sets Z0, . . . ,Z∞ occurred during set backpropagation.

2.2 Pólya’s Theorem

One of the main ingredients for the techniques described in this thesis is
based on a theorem by the famous Hungarian mathematician György Pólya,
published in 1928, [Pól28]. It constitutes the theoretical basis for the treat-
ment of positivity requirements on polynomials. This section provides some
background information to Pólya’s theorem, following [PR06, Ros09].

Definition 2.15 (Monomial) Given the variables θ1, . . . , θnθ
and the multi-index

exponents α = (α1, . . . , αnθ
) ∈ Nnθ , a monomial is defined as

θα = θα1
1 θα2

2 · · · θ
αnθ
nθ

.
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The degree of a monomial is given by the sum of its exponents,

deg(θα) = |α| :=
nθ

∑
j=1

αi .

Definition 2.16 (Polynomial) A polynomial is a linear combination of finitely
many monomials,

p(θ) = ∑
α∈N

nθ

cαθα = ∑
α∈N

nθ

cαθ
α1
1 θα2

2 · · · θ
αnθ
nθ

,

consisting of the terms cαθα with the real coefficients cα ∈ R. The set of all
nonzero coefficients is denoted by

coef(p) := {cα | α ∈ N
nθ : cα 
= 0} ,

We denote the support of p as all monomials with nonzero coefficients,

supp(p) := {θα | α ∈ N
nθ : cα 
= 0} ,

the degree or order of p as the highest degree of the supporting monomials,

deg(p) := max
θα∈supp(p)

deg(θα) .

Definition 2.17 (Homogeneous polynomial) A homogeneous polynomial,
or a form, is a polynomial whose supporting monomials all have the same degree,

deg(θα) = deg(p) ∀θα ∈ supp(p) .

The set of all polynomials in nθ variables with real coefficients is denoted by
R[θ] := R[θ1, . . . , θnθ

]. R[θ] is called polynomial ring over R and is commuta-
tive with the usual addition and multiplication.

Theorem 2.2 (Pólya’s theorem) Let p(θ) ∈ R[θ] be a homogeneous polynomial
of degree d and let Θ be the standard simplex,

Θ :=

{
θ = [θ1, . . . , θnθ

]T ∈ R
nθ
+

∣∣∣∣∣
nθ

∑
j=1

θj = 1

}
.

If p is positive on Θ, all coefficients of the extended polynomial

pNp(θ) = p(θ) · (
nθ

∑
j=1

θj)
Np

are positive for a sufficiently large Pólya degree Np ∈ N.
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Theorem 2.2 follows directly from the proof of the original version of the
theorem, which was stated in Pólya’s original work from 1928 in German,
[Pól28]. The following theorem was taken from the book Inequalities in En-
glish, [HLP52].

Theorem 2.3 (Original version of Pólya’s theorem) If the form p(θ) ∈ R[θ]
is positive in the positive orthant,

θ ≥ 0,
nθ

∑
j=1

θj > 0 , (2.6)

then p may be expressed as p =
pNp(θ)

h(θ)
where pNp(θ) ∈ R[θ] and h(θ) ∈ R[θ] are

forms with positive coefficients. In particular we may suppose that

h(θ) = (
nθ

∑
j=1

θj)
Np (2.7)

for a suitable Np ∈ N.

Proof ([HLP52]) For notational simplicity we restrict ourselves to the case
nθ = 3; no new point of principle arises for general nθ .

The homogeneous polynomial p(θ) ∈ R[θ] is continuous and positive on the
standard simplex Θ, and has a positive minimum

p∗ := min
θ∈Θ

p(θ) > 0

in Θ. We write

p(θ) = ∑
|α|=d

cα
θα1

1 θα2
2 θα3

3
α1!α2!α3!

, (2.8)

with the summation being over all terms of degree d,

α ≥ 0 ,
3

∑
j=1

αj = d . (2.9)

Furthermore, we define

φ(θ, t) := td ∑
|α|=d

cα

(
θ1t−1

α1

)(
θ2t−1

α2

)(
θ3t−1

α3

)
, (2.10)

with t > 0 and where
(

θjt−1

αj

)
, j = 1, 2, 3, are the usual binomial coefficients,
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such that(
θjt−1

0

)
= 1 and tαj

(
θjt−1

αj

)
=

θj(θj − t)(θj − 2t) . . . (θj − (αj − 1)t)
1 · 2 · 3 · · · αj

.

It is obvious that φ(θ, t) → p(θ) for t → 0. If we write φ(θ, 0) = p(θ), then
φ(θ, t) is continuous in

θ ≥ 0 ,
3

∑
j=1

θj = 1 , 0 ≤ t ≤ 1 . (2.11)

Consequently, there exists an ε > 0 such that

φ(θ, t) > φ(θ, 0)− 0.5p∗ = p(θ)− 0.5p∗ ≥ 0.5p∗ > 0 (2.12)

for all t ∈ (0, ε) and for all θ ∈ Θ.

Given a degree d̂ > d, we also have

(
3

∑
j=1

θj)
d̂−d = (d̂− d)! ∑

|β|=d̂−d

θ
β1
1 θ

β2
2 θ

β3
3

β1!β2!β3!
, (2.13)

with the summation being over all terms of degree d̂− d,

β ≥ 0,
3

∑
j=1

β = d̂− d . (2.14)

By multiplying (2.8) and (2.13), we obtain

(
3

∑
j=1

θj)
d̂−d p(θ) = (d̂− d)! ∑

|α|=d
∑

|β|=d̂−d

cα
θ

α1+β1
1 θ

α2+β2
2 θ

α3+β3
3

α1!β1!α2!β2!α3!β3!
. (2.15)

Here we introduce
γj = αj + βj , j = 1, 2, 3 , (2.16)

so that γj vary over

γ ≥ 0 ,
3

∑
j=1

γj = d̂ (2.17)

and αj over

0 ≤ α ≤ γ ,
3

∑
j=1

αj = d . (2.18)
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We obtain

(
3

∑
j=1

θj)
d̂−d p(θ) = (d̂− d)! ∑

|γ|=d̂

θ
γ1
1 θ

γ2
2 θ

γ3
3

γ1!γ2!γ3!

′
∑
|α|=d

cα

(
γ1
α1

)(
γ2
α2

)(
γ3
α3

)
, (2.19)

where ∑
′
|α|=d indicates summation w.r.t. α over (2.18). But, since

(
γj
αj

)
= 0,

if αj > γj, we may replace this summation by summation over (2.9), i.e. by
∑|α|=d. We thus yield

(
3

∑
j=1

θj)
d̂−d p(θ) = (d̂− d)! ∑

|γ|=d̂

θ
γ1
1 θ

γ2
2 θ

γ3
3

γ1!γ2!γ3! ∑
|α|=d

cα

(
γ1
α1

)(
γ2
α2

)(
γ3
α3

)

= (d̂− d)!d̂d ∑
|γ|=d̂

φ(
γ

d̂
;

1
d̂
)

θ
γ1
1 θ

γ2
2 θ

γ3
3

γ1!γ2!γ3!
. (2.20)

The φ here is positive, by (2.12), if d̂ is sufficiently large, and this proves the
theorem. �

The main idea of the proof is to construct a sequence φ(θ, t) of real polyno-
mials with two properties:

1. The sequence φ converges uniformly to p on Θ with increasing Np.

2. The coefficients of the extended polynomial pNp are positive multiples
of values of the sequence members, evaluated at certain points on the
standard simplex.

If p is positive on Θ, then, for sufficiently large Np, we have that also the
members of the sequence are positive on the entire standard simplex. Since
the coefficients of the extended polynomial are positive multiples of evalu-
ations of the sequence members, this means in return that for sufficiently
large Np, the coefficients of all monomials of pNp are positive.

Pólya’s Relaxation

During this thesis, we will repeatedly make use of the more obvious re-
verse of Pólya’s theorem1, i.e. positive coefficients of the extended polyno-
mial mean positivity over the entire standard simplex. By applying Pólya’s
relaxation to a polynomial inequality, we mean the processing of the follow-
ing steps:

1The presented usage of Pólya’s theorem is implemented in Yalmip as one of the so called
filters in the robust optimization framework, [Löf08].
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2.2 Pólya’s Theorem

1. Reformulate the inequality into a positivity constraint of a polynomial
p(θ).

2. If required, homogenize the polynomial p(θ) by multiplying single
monomials with ∑

nθ
j=1 θj (which equals one on the standard simplex)

until all monomials have the same degree.

3. Set the Pólya degree Np, and compute the coefficients CNp = coef(pNp)
of the extended polynomial pNp(θ).

4. Replace the polynomial inequality by CNp > 0. In this step some con-
servatism may be introduced depending on the selection of Np. By
increasing the polynomial degree Np, the relaxations become tighter
until the exact problem is considered.

Example 2.2 Consider the polynomial

p(θ) = aθ2
1 + bθ1θ2 + aθ2

2 .

A sufficient condition for positivity over the standard simplex Θ is the positivity of
the coefficients C0 = {a, b}. By multiplying p(θ) with ∑

nθ
j=1 θj, we obtain

p1(θ) = aθ3
1 + (a + b)θ2

1θ2 + (b + a)θ1θ2
2 + aθ3

2

and the less conservative condition of positive coefficients C1 = {a, a + b}. Note
that the coefficients C1 of the extended polynomial are a conic combination of the
coefficients C0, i.e. they lie in the cone which is spanned by the coefficients C0.
Hence Ci1 > 0 implies Ci2 > 0 for all i2 ≥ i1. Pólya’s contribution was to show
that by repeated multiplication with ∑

nθ
j=1 θj, the condition of positive coefficients

indeed converges to the exact necessary and sufficient condition for positivity of the
polynomial over the standard simplex. Figure 2.2 shows the resulting conditions on
the coefficients of p(θ) for different Pólya degrees.

b

a

Np...

Figure 2.2: Abating conditions on the coefficients of p(θ) for increasing Pólya de-
grees Np = 0, 1, 3, 5, ..., ∞.
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Definition 2.18 (Polytopic Preset) LetZ ⊂ Rnx be a polytope. A set ΩNp(Z) ⊂
Rnx is called polytopic preset of Z , if (i) it is a polytope and (ii) it contains all
states which fulfil the polytopic constraints arising when applying Pólya’s relaxation
with degree Np to the preset Ω(Z).

Complexity Analysis

The authors of [HLP52] state:

The theorem gives a systematic process for deciding whether a
given form F is strictly positive for positive x. We multiply repeat-
edly by ∑ xi and, if the form is positive, we shall sooner or later
obtain a form with positive coefficients.

This quotation reveals the algorithmic nature of Pólya’s theorem. The ques-
tion remains how soon is sooner or later. In [PR01] the authors were able to
derive an explicit bound for the Pólya degree Np.

Theorem 2.4 (Qualitative Pólya’s theorem) Suppose that p(θ) ∈ R[θ] is a ho-
mogeneous polynomial of degree d and positive on the standard simplex Θ. Let the
maximum of the scaled coefficients of p(θ) be denoted by cmax and the minimum of
the polynomial over the simplex by p∗, i.e.

cmax := max
|α|=d

α1! · · · αnθ
!

d!
|cα| , p∗ := min

θ∈Θ
p(θ) .

For all

Np >
d(d− 1)

2
cmax

p∗
− d , (2.21)

the extended polynomial pNp = p(θ) · (∑
nθ
j=1 θj)

Np has positive coefficients.

Proof See [PR01]. �

Example 2.3 Consider again the polynomial

p(θ) = aθ2
1 + bθ1θ2 + aθ2

2 ,

with a = 1, b = −0.5. From Example 2.2 we know already that a Pólya degree
of Np = 1 suffices to verify positivity on the standard simplex. Here we want to
know the bound on the Pólya degree stemming from Theorem 2.4. The minimum on
the standard simplex is p∗ = 0.625, while the maximum of the scaled coefficients is
cmax = 1. By using Equation (2.21), the required Pólya degree can be determined to
be Np > 0.666, i.e. the bound is tight in this example.
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Unfortunately, Theorem 2.4 is only of limited use for our purposes, since
it requires a-priori knowledge of the minimum of the polynomial over the
standard simplex. If the minimum of the polynomial is known, so is the
positivity of the polynomial over the standard simplex. Note however that
Theorem 2.4 requires the Pólya degree Np → ∞ for p∗ → 0.

Corollary 2.5 (Number of coefficients) Let d ∈ N denote the degree of a homo-
geneous polynomial p(θ) ∈ R[θ]. The degree of the extended polynomial is given
by

d̂ := deg(pNp) = d + Np ,

and the extended polynomial possesses

ncoe f ≤
nθ

∑
i1=1

nθ

∑
i2=i1

· · ·
nθ

∑
id̂=id̂−1

1 ∈ O(n
d+Np
θ ) (2.22)

nonzero coefficients.

The correctness of Corollary 2.5 becomes comprehensible by noting that the
monomials of pNp consist of d̂ positions and that the indices i1, . . . , id̂ denote
the variables at all positions of each monomial, i.e. θα = θi1θi2 · · · θid̂

. Further-
more, the variables in the monomial are arranged in a non-decreasing order
to prevent redundancies.

The first inequality of (2.22) is tight if all monomials of degree d support the
polynomial p. The O-notation on the other hand just gives a rough upper
bound on the complexity; it ignores the required ordering of the monomi-
als.

Example 2.4 Consider a third time the polynomial

p(θ) = aθ2
1 + bθ1θ2 + aθ2

2 .

We have d = 2, nθ = 2. Hence the number of coefficients can be stated as ncoe f =
Np + 3.

Finally one can state that for the number of coefficients ncoe f to be small,
either the polynomial has to be sparse, the number of variables nθ has to be
small, or the Pólya degree Np has to be small.

Rational Functions

The application of Pólya’s relaxation is not limited to polynomial functions,
but extends to rational functions defined on the entire parameter simplex, as
will be discussed next.
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Definition 2.19 (Rational function) A function r : D → R with the domain
D ⊆ Rnθ is called a rational function, if it can be expressed as

r(θ) =
pnom(θ)

pden(θ)
,

with pnom ∈ R[θ] and pden ∈ R[θ] being polynomials in θ, and pden is not the zero
polynomial.

Corollary 2.6 (Extension of Pólya’s theorem to rational functions) Let
r : D → R be a rational function with the domain D ⊆ Rnθ , and let Θ be the
standard simplex. Assume r(θ) to be defined on the entire standard simplex, Θ ⊆
D. If r(θ) = pnom(θ)/pden(θ) is positive on Θ, all coefficients of the extended
polynomials

pnom(θ) · (
nθ

∑
j=1

θj)
Np and pden(θ) · (

nθ

∑
j=1

θj)
Np

are either jointly positive or negative for a sufficiently large Pólya degree Np.

For r(θ̂) to be positive at a given θ̂ ∈ Θ, both pnom(θ̂) and pden(θ̂) have
to be either positive or negative. Since r is defined on the entire standard
simplex Θ, it follows that pden(θ) 
= 0 ∀θ ∈ Θ. Polynomials are continuous,
sign changes of the denominator with varying scheduling θ are therefore
excluded. Positivity of r hence requires the joint positivity or negativity
of pnom and pden over the entire standard simplex. Application of Pólya’s
theorem yields the corollary.
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3 Constrained Optimization

‘The subject of optimization is a
fascinating blend of heuristics
and rigour, of theory and
experiment.’

Roger Fletcher

Optimization under constraints is part of our all lives, and we, con-
sciously or unconsciously, perform optimizations on an everyday basis.

What exactly is understood under the term optimization varies depending
on the context. In the following we will discuss the meaning of optimization
from a mathematical point of view.

Optimization is a major field in applied mathematics, devoted to the choice
of the best element in a set of alternatives. What is considered the best
element is determined by an objective function or cost function. Often the
set of alternatives is not unlimited, but underlies some restrictions, leading
to optimization under constraints, or constrained optimization. Constrained
optimization is a common tool in control nowadays, and will repeatedly be
applied in the succeeding chapters.

In this chapter basic notions and concepts of constrained optimization are
presented. Starting with mathematical programming, parametric program-
ming and finally the common optimization paradigms brand-and-bound
and dynamic programming are discussed.



3 Constrained Optimization

3.1 Mathematical Programming

The first section in this chapter is concerned with mathematical program-
ming, or optimization. After considering general nonlinear optimization
problems, common classes of optimization problems are introduced such
as linear programs, quadratic programs, semidefinite programs and mixed-
integer programs. For a good introduction into convex optimization see
[BV04].

We consider the constrained optimization problem, or mathematical program, of
the form

J∗ = inf
u

J(u) (3.1a)

s.t. gi(u) ≤ 0 , i = 1, . . . , nc . (3.1b)

We call u ∈ Rnu the optimization variable and J : Rnu → R the objective or
cost function. The optimal value of the optimization problem is denoted by
J∗, while the functions gi : Rnu → R, i = 1, . . . , nc, denote the constraints
of the optimization problem. A problem is called unconstrained if nc = 0.
The constraints, together with the domains of the objective and constraints,
define the set of feasible points, or the feasible set,

U =

{
u ∈ dom J(u) ∩

nc⋂
i=1

dom gi(u)

∣∣∣∣∣ gi(u) ≤ 0 , i = 1, . . . , nc

}
.

A constraint is called redundant, if the feasible set is unaffected by the inclu-
sion/neglection of this constraint. The optimization problem (3.1) is called
feasible if U 
= ∅, and infeasible otherwise.

We call u∗ ∈ U a solution to (3.1) or an optimal point, if J(u∗) = J∗ with
J∗ > −∞. The optimization problem (3.1) is called solvable, and the optimal
value J∗ is attained, if the optimal set

U∗ = {u ∈ U | J(u) = J∗}

is non-empty. For a given u, a constraint is called active if gi(u) = 0, and
inactive if gi(u) < 0. If u is not specified, the set of active constraints (also called
optimal active set) denotes the constraints which are active for all solutions of
(3.1),

A = {i ∈ {1, . . . , nc} | gi(u∗) = 0 ∀u∗ ∈ U∗} . (3.2)

With the set of inactive constraints we denote the complement of the set of
active constraints, i.e.

I = {i ∈ {1, . . . , nc} | ∃u∗ ∈ U∗ : gi(u∗) < 0} . (3.3)

26



3.1 Mathematical Programming

We will use the set of (in-)active constraints also in subscript notation, i.e.
gA := {gi : i ∈ A} or gI := {gi : i ∈ I}.

Definition 3.1 (Locally optimal point) A point ū is called locally optimal if
there exists an ε > 0 such that J(u) ≥ J(ū) holds for all elements of a ball B of
radius ε, B(ū, ε) = {u ∈ U : ‖u− ū‖ ≤ ε}.

If the feasible set U is convex, and J is a convex function, (3.1) is called a
convex optimization problem. The most striking consequence of convexity of
the optimization problem (3.1) is that all local optimal points are solutions to
(3.1). Moreover, there exist well-established solvers for convex optimization
problems, which are based on oracles and/or efficient barriers. Given an
oracle that verifies the set membership of a point u to the feasible set U ,
convex optimization solvers either provide a close-to-optimal solution within
polynomial time, or provide a certificate for the nonexistence of a solution.

In the remainder of this work we will occasionally make use of epigraph
reformulations. The epigraph form of the optimization problem (3.1) is the
problem

J∗ = inf
{u,t}

t (3.4a)

s.t. gi(u) ≤ 0 , i = 1, . . . , nc , (3.4b)
J(u) − t ≤ 0 , (3.4c)

where an epigraph variable t ∈ R is introduced. It can easily be shown that
(3.4) is equivalent to (3.1) in the sense that (u∗, t∗) is a solution to (3.4) if and
only if u∗ is a solution to (3.1) and J∗ = t∗.

Remark 3.1 The main benefit of the epigraph formulation is the transformation
into a problem with linear objective function. One example for a common epigraph
reformulation is the minimization of a convex piecewise affine cost function under
linear constraints, which can be transformed into a linear program by using an
epigraph reformulation.

Remark 3.2 In this work we consider optimization problems with a continuous
objective function J over a compact feasible set U . Therefore the conditions of the
Weierstrass theorem are fulfilled, [Ber95], and the optimal value is always attained.
As a consequence, the infimum in (3.1) can be replaced by minimum.

The most commonly used necessary conditions for optimal points are the
first order Karush-Kuhn-Tucker conditions (or KKT conditions for short),
which were discovered independently by Karush, [Kar39], and later by Kuhn
and Tucker, [KT51]. For more details on convex optimization, see e.g. [BV04],
[Ber03].
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3 Constrained Optimization

Linear Program

A linear program (LP) denotes an optimization problem with linear objective
function and linear constraints. It can be stated in several different forms,
e.g. as inequality form LP,

J∗ = min
u

cTu (3.5a)

s.t. Au ≤ b , (3.5b)

with u ∈ Rnu , c ∈ Rnu , A ∈ Rnc×nu and b ∈ Rnc . There exist efficient solvers
for linear programs, based on the simplex method, [Dan98, Mur83], or on the
interior-point method, [Kar84, NN94]. Common solvers for linear programs
are NAG, [Num02], or CPLEX, [CPL94].

The feasible set of a linear program is given by the constraints (3.5b) which
describe a polyhedron in the space of the optimization variables. When solv-
ing a linear program without redundant constraints, four different results
can be obtained:

(i) the LP is infeasible,

(ii) the LP is unbounded (J∗ = −∞),

(iii) the LP is bounded and we obtain a unique solution u∗, and

(iv) the LP is bounded, but the solution is not unique.

In the first case, the feasible set is empty and we set J∗ = ∞ by convention. In
the second case the polyhedron is unbounded in a descent direction. In case
(iii) the solution is attained at one of the vertices of the feasible set U , and the
number of active constraints equals the number of optimization variables. In
case (iv) the optimal set U∗ is a face of the feasible set, and the number of
active constraints is greater than zero and smaller than nu. In general we can
also encounter redundant constraints, and instead of the regular behaviour
discussed above, the linear program can be of degenerate nature.

Quadratic Program

A quadratic program (QP) refers to a convex optimization problem with quad-
ratic objective function and linear constraints. It can be stated in the form

min
u

1
2

uTQu + cTu (3.6a)

s.t. Au ≤ b , (3.6b)
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3.1 Mathematical Programming

with u ∈ Rnu , Q ∈ Rnu×nu , c ∈ Rnu , A ∈ Rnc×nu and b ∈ Rnc . Note that Q
has to be positive semidefinite for the objective function to be convex. If Q
is positive definite, the solution to (3.6) is unique. It can be shown that a
single negative eigenvalue of Q renders (3.6) NP-hard, [PV91]. From now
on, and if not mentioned otherwise, we will implicitly assume a quadratic
program to be convex. There exist efficient solvers for quadratic programs,
based on the active set method or the interior-point method. Details on these
solution methods can be found e.g. in [NW06, GT01]. Common solvers for
quadratic programs are NAG, [Num02], or CPLEX, [CPL94].

Contrary to the LP case, the solution to a QP can also be attained at the
interior of the feasible set U . The number of active constraints at the QP
solution can vary between 0 (solution lies in the interior) to nc (all constraints
are active).

Semidefinite Program

A large subfield within convex optimization is conic optimization, which is
based on the concept of generalized inequality constraints. The element-
wise inequalities are replaced by vector-valued inequalities stemming from
a convex cone. If the generalized inequalities stem from the cone of positive
semidefinite matrices Sn

+, the cone problem is referred to as semidefinite pro-
gram (SDP). Analogue to the inequality form LP, the inequality form SDP is
defined as

min
u

cTu (3.7a)

s.t. A1u1 + · · ·+ Anu unu � B , (3.7b)

with u =
[
u1 · · · unu

]T ∈ R
nu , B, A1, . . . , Anu ∈ S

nc and c ∈ R
nu . The

constraint (3.7b) is called Linear Matrix Inequality (LMI). The term LMI be-
came so popular in the control community that some authors (falsely) denote
semidefinite programs as LMIs.

Semidefinite programs contain the quadratic program (3.6) and the linear
program (3.5) as special cases. SDPs however are far more general and a
large number of nonlinear convex optimization problems can be cast and
solved as semidefinite programs. For an introduction to semidefinite pro-
gramming and its various applications to control see [WSV00, BEGFB94,
BV04]. Decent SDP solvers as SeDuMi, [Stu99], or SDPT3, [TTT99], are freely
available, and can be addressed conveniently under Matlab via the neat in-
terface Yalmip, [Löf04].
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3 Constrained Optimization

Mixed-Integer Program

Another class of optimization problems optimizes not only over continuous
variables, but also over binaries or integer variables. This class of problems is
called mixed-integer programs, or mixed-integer nonlinear problems (MINLP).
A common special case is to consider binary variables instead of integers.
Although the notation mixed-binary program would be more precise, the
standard notation in the control literature denotes this class of problems
also as mixed-integer programs, which can be stated in the form

min
u∈Rnuc×{0,1}nub

J(u) (3.8a)

s.t. g(u) ≤ 0 , (3.8b)

with the optimization variable u = [uT
c uT

b ]T, uc ∈ Rnuc , ub ∈ {0, 1}nub .

Mixed-integer programs are usually solved with branch-and-bound tech-
niques, as discussed in Section 3.3, with cutting-plane methods, or with
branch-and-cut, a mixture of both. See [Sch86, Flo95] for further details.

Remark 3.3 With the exception of trivial cases, mixed integer programs do not fall
into the class of convex optimization problems, because the domain of the binary
variables, {0, 1}, is not convex.

The main classes in mixed integer programming are the mixed-integer linear
program (MILP) and the mixed-integer quadratic program (MIQP). They can
both be stated analogously to their continuous counterpart, i.e.

min
u∈Rnuc×{0,1}nub

cTu (3.9a)

s.t. Au ≤ b , (3.9b)

and

min
u∈Rnuc×{0,1}nub

1
2

uTQu + cTu (3.10a)

s.t. Au ≤ b , (3.10b)

the only difference being that some of the optimization variables are not con-
tinuous but binary variables, u = [uT

c uT
b ]T, uc ∈ R

nub , ub ∈ {0, 1}nb . The
modification of the domain of the optimization problem renders previously
easily solvable LPs and QPs NP-hard. More details on mixed-integer quad-
ratic programs can be found e.g. in [VRS87, Axe08].

Note that for fixed binary variables ub, an MILP (/MIQP) reduces to an LP
(/QP). Hence an MILP (/MIQP) can always be solved by enumerating all
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combinations of binary variables and comparing the solutions of all emerg-
ing LPs (/QPs). For the solution of mixed-integer problems under Matlab,
free software such as Yalmip, [Löf04], or commercial solvers such as CPLEX,
[CPL94], can be used.

3.2 Parametric Programming

In this section we introduce the concept of parametric programming, which
refers to the solution of optimization problems in dependence of a parameter.
After considering the general nonlinear case, we recall the main results for
parametric linear programs (pLP), parametric quadratic programs (pQP) and
parametric mixed-integer programs.

Parametric programming is an extension of sensitivity analysis, where the de-
pendence of the solution of an optimization problem to small perturbations
of the problem data is investigated. Contrary to the sensitivity analysis, in
parametric programming not only small perturbations are considered, but a
whole set of possible parameter values.

Some authors in the literature use the term multi-parametric programming to
emphasize the fact that the considered parameter is not a scalar, but a vector.
Since the discussed concepts in this thesis are not affected by this distinction,
we will not follow this convention, but use the term parametric program-
ming for both cases. For a detailed description of the mathematical concept
and properties of parametric programming, see [BGK+82].

We consider a (multi-) parametric program of the form

J∗(x) = min
u

J(u; x) (3.11a)

s.t. gi(u; x) ≤ 0 , i = 1, . . . , nc , (3.11b)

with the optimization variable u ∈ Rnu , the parameter x ∈ Rnx , the cost
function J : Rnu ×Rnx → R and the constraints gi : Rnu ×Rnx → R.

Contrary to the optimization problem (3.1), we are interested in solving (3.11)
for a set of parameters, x ∈ X . Instead of an optimal value we obtain an
optimal value function over the parameter, J∗ : Rnx → R. Concepts such as
feasibility or optimality depend on both elements of the pair (u, x). Since
our point of view is often that of a map for a given parameter x, we will
define these concepts accordingly. The feasible set map denotes a point-to-set
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mapping on the parameter value,

U(x) =

{
u ∈ domu(J) ∩

nc⋂
i=1

domu(gi)

∣∣∣∣∣ gi(u; x) ≤ 0 , i = 1, . . . , nc

}
.

A parameter value x is called feasible if U(x) 
= ∅, otherwise infeasible. The
set of feasible parameters is denoted by

X f = {x ∈ X | U(x) 
= ∅} .

We call a parametric program infeasible if U(x) = ∅ ∀x ∈ X , otherwise
feasible. Analogue to the feasible set map, we denote the optimal set map by

U∗(x) = {u ∈ U(x) | J(u; x) = J∗(x)} .

A solution of a parametric program is not necessarily unique, and denotes
any function u∗ : Rnx → Rnu which is a single representative of the optimal
set map, u∗(x) ∈ U∗(x).

By set of active constraints we denote the constraints which are active for all
solutions of (3.11),

A(x) = {i ∈ {1, . . . , nc} | gi(u∗(x); x)) = 0 ∀u∗(x) ∈ U∗(x)} .

By set of inactive constraints we denote the complement of the set of active
constraints, i.e.

I(x) = {i ∈ {1, . . . , nc} | ∃u∗(x) ∈ U∗(x) : gi(u∗(x); x) < 0} .

Note that the set of active constraints depends on the value of the parame-
ter, such that there are parameter values with the same and others with a
different set of active constraints.

Definition 3.2 (Critical region) We call a critical region the set of all x ∈ X f
with the same set of active constraints,

R := {x ∈ X f | A(x) = A} .

Parametric programming is, in general, a difficult task. Already small exam-
ples with simple and smooth constraints can be provided, where the feasible
set map U(x) and the optimal set map U∗(x) are not continuous in the pa-
rameter x. Moreover, the critical regions of the optimal set map are not
necessarily easily storable objects. For instance, the critical regions could
be semi-algebraic sets, i.e. defined by a finite number of polynomial equali-
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ties and inequalities. Therefore the computed critical regions are, in general,
difficult to store and to evaluate.

Due to these limitations, the application of parametric programming is main-
ly restricted to tiny problems with few constraints and a small dimension
of the parameter x. The main exception to this observation are paramet-
ric programs with polytopic constraints and a linear or quadratic objective
functions. Here the critical regions are polyhedra, and can be stored and
evaluated more easily. Subsequently, these subclasses are the most common
representatives of parametric programming, and will be discussed next.

Parametric Linear Programming

By (multi-)parametric linear program (pLP) we denote a linear program, where
the right-hand side of the constraints depends affinely on a parameter, i.e. a
parametric optimization problem of the form

min
u

cTu (3.12a)

s.t. Au ≤ b + Ex , (3.12b)

with u ∈ R
nu , x ∈ R

nx , c ∈ R
nu , A ∈ R

nc×nu , b ∈ R
nc and E ∈ R

nc×nx .

The solution of parametric linear programs was first considered in the Mas-
ter’s thesis of Orchard-Hays in 1952, and was published in [SG54] and
[OH55]. A good overview of parametric linear programing is provided in
[Gal95, GG97]. Different solvers were proposed for the solution of para-
metric linear programs, see e.g. [GN72]. A more recent method utilizes
lexicographic perturbation to yield a unique solution to parametric linear
programs, [JMK07].

Theorem 3.1 (Solution to parametric linear program) Consider the paramet-
ric linear program (3.12). The following statements hold:

(i) The set of feasible parameters X f is a closed polyhedral set in Rnx, and X f is
partitioned into a finite number of polyhedral critical regions.

(ii) The optimal value function J∗(x) is continuous, convex and piecewise affine
over X f and affine in each critical region R.

(iii) The optimal set map U∗(x) contains a continuous piecewise affine solution
u∗(x).

Definition 3.3 A parametric linear program (3.12) is called primal degenerate for
a x ∈ X f if there exists a u∗(x) ∈ U∗(x) such that the number of active constraints
at the optimum is greater than the number nu of optimization variables.

33



3 Constrained Optimization

Definition 3.4 A parametric linear program (3.12) is called dual degenerate for
a x ∈ X f if its dual problem is primal degenerate.

If a parametric linear program is dual degenerate, its solution u∗(x) may not
be unique for some x ∈ X f .

Parametric Quadratic Programming

By (multi-)parametric quadratic program (pQP) we denote a quadratic program,
where the constraints and the cost function depend affinely on the parameter
in the way which follows by

min
u

1
2

uTQu + xTFu (3.13a)

s.t. Au ≤ b + Ex , (3.13b)

with u ∈ Rnu , Q ∈ Rnu×nu , F ∈ Rnx×nu , A ∈ Rnc×nu , b ∈ Rnc and E ∈
Rnc×nx .

The mathematical properties of parametric quadratic programs were stud-
ied in [BGK+82]. There exist several pQP solvers following the ideas of
[BMDP02, Bao02, TJB01].

Theorem 3.2 (Solution to parametric quadratic program) Consider the
parametric quadratic program (3.13) with Q 	 0, and assume that LICQ holds.
Then the following statements hold:

(i) The set of feasible parameters X f is a polyhedron in Rnx, and X f is partitioned
into a finite number of polyhedral critical regions.

(ii) The optimal value function J∗(x) is continuous, convex and piecewise quad-
ratic on polyhedra. Moreover, the LICQ ensures that J∗(x) is continuously
differentiable.

(iii) The optimizer u∗(x) is continuous and piecewise affine on polyhedra, and it is
affine in each critical region. Moreover, u∗(x) is unique (since Q 	 0).

Definition 3.5 We define a constraint to be weakly active, if it is active and the
corresponding Lagrange multiplier is zero.

Definition 3.6 We say that the linear independence constraint qualification
(LICQ) holds, if the gradients of the set of active constraints, i.e. the corresponding
rows of A (also denoted by AA), are linearly independent.

If LICQ holds, primal degeneracy can not occur.
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Parametric Mixed-Integer Programming

Parametric mixed-integer programs were also considered in the literature,
the common classes being parametric mixed-integer linear programs (pMILP)
and parametric mixed-integer quadratic programs (pMIQP). For details and
solvers for pMILPs see [DP00, AP97].

In the following we consider the (multi-)parametric mixed-integer quadratic pro-
gram (pMIQP) which is stated by

min
u∈Rnuc×{0,1}nub

uTQu + xT Fu (3.14a)

s.t. Au ≤ b + Ex , (3.14b)

with Q ∈ R
nu×nu , F ∈ R

nx×nu , A ∈ R
nc×nu , b ∈ R

nc and E ∈ R
nc×nx and

b ∈ Rnc . Contrary to a pQP, some of the optimization variables are binaries,
u = [uT

c uT
b ]T, with uc ∈ Rnuc , ub ∈ {0, 1}nub and nu = nuc + nub.

Theorem 3.3 (Solution to parametric mixed-integer quadratic program)
Consider the parametric mixed-integer quadratic program stated in (3.14). The fol-
lowing statements hold:

(i) The set of feasible parameters X f is a union of polyhedra in Rnx, and X f is
partitioned into nr critical regions Rr, r = 1, . . . , nr, whose closure is of the
form

R̄r =
{

x ∈ R
nx
∣∣∣ xT Hix + qix ≤ ri , i = 1, . . . , nc

}
. (3.15)

The critical regions are not necessarily convex, nor is the set of feasible param-
eters X f necessarily convex or connected.

(ii) The optimal value function J∗(x) is piecewise quadratic on X f , but, in general,
neither continuous nor convex.

(iii) The optimizer u∗(x) is piecewise affine on X f , and it is affine in each critical
region. The optimizer u∗(x) is, in general, not continuous.

Contrary to parametric mixed-integer linear programs, the critical regions
of parametric mixed-integer quadratic program cannot be decomposed into
convex polyhedra. This fact hinders the efficient storage and evaluation of
the solution in a look-up table.

For fixed binary values, the pMIQP becomes a pQP. Hence one solution strat-
egy for pMIQPs is to compute the solution to the pQPs for all combinations
of binary variables. The minimum over the resulting cost functions deter-
mines the solution to the pMIQP, see [Bor03]. While each pQP results in
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polyhedral critical regions, the minimization between piecewise quadratic
cost functions results in critical regions of the form (3.15).

A solver for the special case that binary variables enter only affinely in con-
straints can be found in [DBP02], while a solution approach for the general
case (3.14) is indicated in [Bor03].

3.3 Optimization paradigms

This chapter is closed with a brief outlook on two optimization paradigms,
branch-and-bound and dynamic programming. Both paradigms are general
concepts which can be applied for the solution of certain types of optimiza-
tion problems.

Branch-and-bound

This section introduces the concept of branch-and-bound, which was pro-
posed by Land and Doig in 1960, [LD60], in the area of Operations Research.
Branch-and-bound is a general concept for the solution of various optimization
problems, e.g. combinatorial optimization, integer programming, nonlinear
programming or nonconvex programming. Depending on the problem at
hand, there exist specific algorithms which are all based on the same prin-
ciple. See e.g. [Dak65] for a branch-and-bound algorithm for mixed integer
programming problems. In the following we will state the main principle of
branch-and-bound.

We consider the general optimization problem

min
u

J(u) (3.16a)

s.t. u ∈ U (3.16b)

with the optimization variable u ∈ Rnu , the objective function J : Rnu → R and
the set of candidate solutions U ⊆ Rnu . The set of candidate solutions is usu-
ally a discrete set consisting of many candidates, such that an enumeration
of all candidates would be intractable.

As the name indicates, a branch-and-bound scheme comprises the two com-
ponents branching and bounding. In the branching step the optimization
problem is divided into a series of simpler subproblems. A recursive appli-
cation of the branch step leads to a tree structure, whose nodes are related
to subsets of U . The root node covers the entire set of candidate solutions

36



3.3 Optimization paradigms

U , while the leaves correspond to single candidates. In the bounding step,
suboptimal parts of this tree are cut, if certain criteria are met. These criteria
are usually the satisfaction of bounds derived from relaxed versions of the
optimization problem. In a successful application of branch-and-bound, the
optimizer of (3.16) is found, while the number of investigated candidates is
far less than the number of elements in U .

Dynamic Programming

One of the most frequently used tools in this work is dynamic programming
(DP). In the following we will describe the main idea of dynamic program-
ming by presenting it in its basic form. More details on dynamic program-
ming can be found in [Ber95].

Consider the discrete-time dynamic system

xk+1 = fk(xk, uk) (3.17)

with the discrete time k ∈ N, the (discrete or continuous) state xk ∈ Rnx and
the control uk ∈ Rnu . The state is constrained to a set xk ∈ Xk, and only
controls within a set, possibly depending on the current state, are possible,
uk ∈ Uk(xk). In dynamic programming we are interested in the computation
of control laws, uk = μk(xk), which map states to controls. We call a control
law admissible, if μk(xk) ∈ Uk(xk) for all xk ∈ Xk. We call a sequence of
control laws, π = {μ0, . . . , μN−1}, a (control) policy, and a policy belongs
to the set of admissible policies π ∈ Π, if it consists of admissible control
laws.

Starting with an initial state x0, we will sustain some stage costs Lk(xk, uk) at
each stage, which accumulate over time to the additive cost function

J(π; x0) = LN(xN) +
N−1

∑
k=0

Lk(xk, uk) , (3.18)

where N denotes the considered horizon, and LN(xN) the terminal cost at
the end of this horizon. The aim of dynamic programming is to compute a
policy which minimizes the occurring cost function by solving the optimiza-
tion problem

J∗(x0) = inf
π∈Π

J(π; x0) , π
∗(x0) = arg inf

π∈Π
J(π; x0) . (3.19)

We call J∗(x0) the optimal value function, and π
∗(x0) a (not necessarily unique)

optimal policy.
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Dynamic programming is based on the Principle of Optimality, which goes
back to Bellman, [Bel57].

Principle of Optimality: Let π
∗ = {μ∗0, . . . , μ∗N−1} be an optimal policy

for the system (3.17) by means of the cost function (3.18). Then for all
k ∈ {1, . . . , N − 1}, the policy tail π

∗
k = {μ∗k , . . . , μ∗N−1} is an optimal pol-

icy regarding the corresponding truncated cost function

Jk(πk; xk) = LN(xN) +
N−1

∑
i=k

Li(xi, ui) . (3.20)

Dynamic programming exploits the principle of optimality by resolving the
optimization problem (3.19) into a sequence of simpler optimization prob-
lems. Instead of solving (3.19) directly, it is solved step-by-step going back-
wards in time.

Proposition 3.4 (Dynamic programming algorithm) For any given initial
state x0, the optimal value J∗(x0) obtained by solving the optimization problem
(3.19) equals the optimal value J0(x0) obtained by executing the following algorithm.
The algorithm is initialized with

JN(xN) = LN(xN) . (3.21)

Then the following optimization problems from k = N − 1 to k = 0 are solved
backwards in time

Jk(xk) = inf
uk∈Uk(xk)

Lk(xk, uk) + Jk+1( fk(xk, uk)) . (3.22)

Furthermore, the sequence of the resulting control laws π
∗ = {μ∗0, . . . , μ∗N−1} is

optimal.

The functions Jk(xk) are also referred to as cost-to-go. For the sake of com-
pleteness, we will restate a proof for Proposition 3.4, which holds under
mild technical assumptions (i.e. that the functions Jk are well-defined and
finite).

Proof ([Ber95]) Let J∗k (xk) be the optimal cost for the optimization problem

J∗k (xk) = inf
πk

LN(xN) +
N−1

∑
i=k

Li(xi, μi(xi)) . (3.23)

For k = N, we define J∗N(xN) = LN(xN). We will show by induction that
J∗k (xk) = Jk(xk) as defined in (3.22) which for k = 0 incorporates Proposi-
tion 3.4. By definition we have J∗N(xN) = JN(xN) = LN(xN). Under the
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assumption that J∗k+1(xk+1) = Jk+1(xk+1) holds for some k ∈ {1, . . . , N − 1},
it follows that

J∗k (xk) = inf
{μk,πk+1}

Lk(xk, μk(xk)) + LN(xN) +
N−1

∑
i=k+1

Li(xi, μi(xi))

= inf
μk

Lk(xk, μk(xk)) + inf
πk+1

[
LN(xN) +

N−1

∑
i=k+1

Li(xi, μi(xi))

]

= inf
μk

Lk(xk, μk(xk)) + J∗i+1( fk(xk, μk(xk)))

= inf
μk

Lk(xk, μk(xk)) + Jk+1( fk(xk, μk(xk)))

= inf
uk∈Uk(xk)

Lk(xk, uk) + Jk+1( fk(xk, uk))

= Jk(xk) (3.24)
�
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4 Optimal Control of Constrained
Discrete-Time Systems

‘The more unpredictable the
world is the more we rely on
predictions.’

Steve Rivkin

Model predictive control (MPC) is the subject of interest in this chap-
ter. The basic concepts of model predictive control are explained for

rather general nonlinear systems without going into the details of numerical
computations.

In model predictive control, the applied control inputs are determined as
the solution to some optimal control problems, which are based on model
predictions over a finite-time horizon. Therefore the first sections of this
chapter consider a series of finite-time optimal control problems and solu-
tion approaches to tackle them. Each of these optimal control problems is
related to a different type of discrete-time dynamical system, or a different
control objective. These sections on the different optimization problems are
rather similar, and it is recommended that the interested reader picks the
optimization problem related to his problem at hand without the need to
read through all other sections.

Finally the employment of these optimization problems in model predictive
control is presented. Extensions to classical MPC schemes are mentioned
and references to more elaborated works are given.



4 Optimal Control of Constrained Discrete-Time Systems

4.1 Constrained Finite-Time Optimal Control

At first we consider the constrained finite-time optimal control problem.
More precisely, we consider a discrete-time model of the system to be con-
trolled,

xk+1 = f (xk, uk) , (4.1)

with the discrete time k ∈ N, the state xk ∈ Rnx and the control (action)
uk ∈ R

nu . The state is constrained to a set xk ∈ X ⊆ R
nx , and only controls

within a set, possibly depending on the current state, are possible, uk ∈
U(xk) ⊆ Rnu . The constrained discrete-time system (4.1) shall be controlled
by state feedback, uk = μ(xk), as illustrated in Figure 4.1.

Starting with our current state xk, we assume that at each stage we will
sustain some stage costs Li(xk+i , uk+i), which accumulate over time to the
additive cost function

J(Uk; xk) = LN(xk+N) +
N−1

∑
i=0

Li(xk+i , uk+i) , (4.2)

where N denotes the considered prediction horizon, and the term LN(xN) de-
notes the terminal cost at the end of this horizon, and penalizes the assumed
costs beyond the prediction horizon. For notational simplicity we denote the
sequence of control inputs during the prediction horizon by

Uk = {uk, uk+1, . . . , uk+N−1} . (4.3)

At best, the finite-horizon cost function (4.2) with the terminal cost LN(xN)
is equivalent to the infinite horizon cost without the need to let N → ∞,
[NP97, MRRS00].

The objective of constrained finite-time optimal control is to apply a se-
quence of control actions (4.3), which is optimal by means of the finite-time
cost function (4.2) for the constrained system (4.1). Or, to put it mathemati-
cally, the objective is to solve the constrained finite-time optimal control (CFTOC)
problem

J∗(xk) = min
Uk

J(Uk; xk) (4.4a)

s.t. xk+i ∈ X , i = 0, . . . , N − 1 , (4.4b)
xk+N ∈ XT , (4.4c)
uk+i ∈ U(xk+i), i = 0, . . . , N− 1 , (4.4d)
xk+i+1 = f (xk+i , uk+i), i = 0, . . . , N− 1 , (4.4e)

where XT ⊆ Rnx is the terminal set describing the target set of the state at the
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fμ

Figure 4.1: Control loop considered in constrained finite-time optimal control.

end of the prediction horizon. The choice of XT and the terminal cost term
LN(xN) is typically determined by the satisfaction of stability guarantees in
a receding horizon approach (more details on the receding horizon strategy
will be given in Section 4.5). These stability guarantees can lead to conser-
vatism if the resulting CFTOC problem resembles the infinite-horizon cost
only poorly.

Remark 4.1 Note that the system (4.1) as well as the stage costs in the cost function
(4.2) are time-invariant, such that the CFTOC problem (4.4) is only depending on
the initial state xk and the applied input sequence, but not on time k. It would be
straightforward to extend the problem to a time-varying optimal control problem,
but this would necessitate a different solution at each sampling instance.

Solution of CFTOC problems by mathematical programming

The CFTOC problem (4.4) is an optimization problem as discussed in Sec-
tion 3.1 on mathematical programming. Hence the most straightforward
approach to solve (4.4) is to insert the value of the current state xk, and to
solve (4.4) by using an appropriate optimization technique. In this approach
the state feedback uk = μ(xk) in Figure 4.1 is an implicit relation specified by
the CFTOC problem (4.4). We call the resulting J∗ the optimal value and the
solution

U∗k = {u∗k , u∗k+1, . . . , u∗k+N−1}

the optimal control sequence. Depending on the discrete-time system at hand,
and on the choice of the cost function, the CFTOC problem (4.4) can take the
form of a specific optimization problem, e.g. a QP for a linear system with
linear constraints and a quadratic cost function.

Solution of CFTOC problems by parametric programming

A different approach for solving the CFTOC problem (4.4) is to make use
of the parametric optimization techniques presented in Section 3.2. In this
approach the optimizer of the CFTOC problem is not a sequence of control
actions, but a sequence of control laws which map the current state to future
controls,

uk+i = μi(xk), i = 0, . . . , N − 1 . (4.5)
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4 Optimal Control of Constrained Discrete-Time Systems

We call J∗(xk) the optimal value function, and π
∗(xk) = {μ∗0, μ∗1, . . . , μ∗N−1} a

(not necessarily unique) optimal policy. Note that the predicted future control
laws depend on the current state xk.

With parametric programming the state feedback uk = μ(xk) in Figure 4.1
can be obtained explicitly. The parametric programming approach has the
advantage that the optimization does not have to be repeated for different
states xk, but that the parametric solution, once obtained, can be used for
a whole range of states. On the other hand, the solution of parametric op-
timization problems is a difficult task, and only possible if the problem to
solve is simple enough. Moreover, efficient solvers do only exist for paramet-
ric linear programs and parametric quadratic programs, such that in practice
one basically is constrained to these problem classes.

Solution of CFTOC problems by dynamic programming

Another possibility to solve the CFTOC problem (4.4) utilizes dynamic pro-
gramming, which was introduced in Section 3.3. Dynamic programming is
based on the Principle of Optimality, and traces back to Bellman, [Bel57]. In
dynamic programming we are interested in the computation of control laws,
which map the future states to future controls,

uk+i = μi(xk+i) i = 0, . . . , N− 1 . (4.6)

Note that in contrast to (4.5), the predicted future control laws are functions
of the predicted future states. For the CFTOC problem considered so far
the distinction between control actions / control laws of the current state
on the one side and control laws of the predicted state on the other side
is merely of conceptual interest and all three approaches yield the same
sequence of control actions U∗k for a specific xk. We will see later on that this
distinction indeed has practical significance if the prediction model differs
from the system to be controlled. If uncertainties are taken into account by
the prediction model, this distinction will even lead to a different sequence
of control actions, see Section 4.2.

Dynamic programming exploits the principle of optimality by decompos-
ing the optimization problem (4.4) into a sequence of simpler optimization
problems. Instead of solving the CFTOC problem (4.4) directly, it is solved
step-by-step going backwards in time. Contrary to the direct parametric so-
lution of the whole CFTOC problem, the parametric solver optimizes only
over a single control law in each iteration. Nevertheless, the dynamic pro-
gramming approach is also based on parametric programming and as such
limited to small problems, which can be transformed into pLPs or pQPs.
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Figure 4.2: Control loop considered in constrained robust optimal control.

4.2 Constrained Robust Optimal Control

When controlling a dynamical system, an acquired model typically has a
certain accuracy, and is only an approximation of the system at hand. More-
over, dynamical systems are affected by disturbances and process noise, and
the perceived state of the system is often estimated and/or affected by mea-
surement noise. Guarantees on stability and performance are therefore of
limited use if they are not valid under the influence of some uncertainty.

A control system is called robust if stability and performance requirements
are satisfied for a specified range of uncertainty. A whole branch of control is
dedicated to the design of robust control systems, [ZDG96, SP05]. By taking
uncertainties during the controller design into account, a robust controller is
computed which meets the requirements as long as the uncertainty remains
in the specified range. The robust control of constrained discrete-time sys-
tems probably started with the pioneering work of Witsenhausen, [Wit68].
In the following section we will review an extension of the CFTOC prob-
lem for uncertain systems, the constrained robust optimal control (CROC)
problem.

We consider a discrete-time uncertain model of the system to be controlled,

xk+1 = f (xk, uk, wk) , (4.7)

with the discrete time k ∈ N, the state xk ∈ Rnx , the control (action) uk ∈ Rnu

and the uncertainty wk ∈ Rnw (which models exogenous disturbances and
parametric uncertainties). The state is constrained to a set xk ∈ X ⊆ Rnx ,
and only controls within a set, possibly depending on the current state, are
possible, uk ∈ U(xk) ⊆ Rnu . Moreover we assume that the exact values of
the uncertainty wk are unknown, merely the uncertainty is known to be con-
strained to a bounded set, wk ∈ W ⊂ Rnw . The uncertain discrete-time sys-
tem (4.7) shall be controlled by state feedback as illustrated in Figure 4.2.

Analogue to the CFTOC problem, we assume that starting with our current
state xk at each stage we will sustain some stage costs Li(xk+i , uk+i), which
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accumulate over time to the additive cost function

J(Uk, Wk; xk) = LN(xk+N) +
N−1

∑
i=0

Li(xk+i , uk+i) , (4.8)

where N denotes the considered prediction horizon, and the term LN(xN) de-
notes the terminal cost at the end of this horizon, and penalizes the assumed
costs beyond the prediction horizon. For notational simplicity we denote the
sequence of control inputs and the sequence of uncertainties during the prediction
horizon by

Uk = {uk, uk+1, . . . , uk+N−1} , and Wk = {wk, wk+1, . . . , wk+N−1} ,

respectively. Note that the cost function (4.8) depends implicitly on the se-
quence of uncertainties via (4.7).

If more information about the uncertainty such as the probability density
function is available, this information can be exploited in the optimization
problem, leading to stochastic optimization approaches [BIRS98]. In the fol-
lowing however it is assumed that no probability information about the un-
certainty is available. In order to accommodate for the uncertainty, usually a
min-max approach is chosen, minimizing the worst-case cost function while
satisfying the constraints for all possible realizations of the uncertainty. Two
approaches are distinguished, the former one being the open-loop constrained
robust optimal control (OL-CROC) problem,

J∗(xk) = min
Uk

max
Wk

J(Uk, Wk; xk) (4.9a)

s.t. xk+i ∈ X , i = 0, . . . , N − 1 , (4.9b)
xk+N ∈ XT , (4.9c)
uk+i ∈ U(xk+i), i = 0, . . . , N − 1 , (4.9d)
wk+i ∈ W , i = 0, . . . , N − 1 , (4.9e)
xk+i+1 = f (xk+i , uk+i , wk+i), i = 0, . . . , N− 1 . (4.9f)

The latter one is called closed-loop constrained robust optimal control (CL-CROC)
problem,

J∗(xk) = min
uk

max
wk

. . . min
uk+N−1

max
wk+N−1

J(Uk, Wk; xk) (4.10a)

s.t. xk+i ∈ X , i = 0, . . . , N− 1 , (4.10b)
xk+N ∈ XT , (4.10c)
uk+i ∈ U(xk+i), i = 0, . . . , N − 1 , (4.10d)
wk+i ∈ W , i = 0, . . . , N− 1 , (4.10e)
xk+i+1 = f (xk+i , uk+i , wk+i), i = 0, . . . , N− 1 . (4.10f)
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The min-max formulation (4.9) is based on open-loop predictions, while the
formulation (4.10) employs closed-loop predictions. The conceptual differ-
ence between open-loop and closed-loop predictions lies in the assumption
of future control actions to be able to react to experienced disturbances
(closed-loop predictions), or not (open-loop predictions). Depending on
the system at hand, the OL-CROC problem typically results in simpler opti-
mization problems than CL-CROC, but suffers from excessive conservatism,
[Bem98].

The reason for this conservatism becomes understandable by considering
the control input and the uncertainty as opponents in a dynamic game. The
control input wants to minimize the costs, while the disturbance wants to
maximize the cost function. In the open-loop setup, the control input has
to reveal all his moves to the uncertainty. The uncertainty is able to take
this information into account, when deciding about its own moves. Hence
the uncertainty gains advantage just by the order of the moves, which can
even lead to infeasibility of the optimization problem. In the closed-loop
predictions on the other hand, the players’ moves alternate, such that it is
easier for the control input to mitigate the influence of the uncertainty.

Solution of CROC problems

Due to the considered uncertainty, constrained robust optimal control prob-
lems are typically more difficult to solve than CFTOC problems. A common
approach for the solution of CROC problems is to minimize a tight upper
bound of the cost function which coincides at the solution with the original
problem, and thus to recast the CROC problem as a convex optimization
problem, [BBM03, KBM96]. In the case of the CL-CROC problem this is typ-
ically accompanied by a more or less restrictive parametrization of the input
as a function of the predicted state or uncertainty. These parametrizations
reduce the computational effort required to solve the CROC problem. A
common class of input parametrizations is the so-called affine disturbance
feedback, [Löf03], which recently was shown to be optimal for a certain class
of systems, [BIP09].

For some system and problem classes it is possible to solve the CROC prob-
lem parametrically, yielding control laws instead of control actions. The
OL-CROC problem is typically solved by two parametric programs, and the
obtained control laws are functions of the current state,

uk+i = μi(xk) . (4.11)
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The CL-CROC problem is typically solved by dynamic programming. The
control laws are functions of the predicted state,

uk+i = μi(xk+i) = μi(xk, wk, . . . , wk+i−1) , (4.12)

and thus are responsive to the preceding realizations of the uncertainty. The
previous control inputs are also functions of the current state xk and the
preceding uncertainties and thus are absorbed by (4.12). By comparing (4.11)
with (4.12), the benefit of using closed-loop predictions becomes obvious: the
control action can be adapted based on knowledge of previous uncertainty
values, while the open-predictions assume the control to be insensitive to
previous uncertainty values, yielding conservative predictions.

4.3 Constrained Parameter-Varying Optimal
Control

Another extension of the CFTOC problem occurs, when the system dynamics
depend on some scheduling parameter (not to be mistaken for the parameter
in a parametric program). Contrary to uncertainty, a scheduling parameter
is assumed to be accessible at the current time step, but its future values are
unknown a-priori. Examples would be measurable disturbances, or time-
varying system parameters. Knowledge of the scheduling parameter can
and should be exploited to adapt the applied control actions and thus to
improve control performance. In this section we will investigate the con-
strained finite-time optimal control problem for systems affected by such a
scheduling parameter.

We consider a discrete-time parameter-varying model of the system to be
controlled,

xk+1 = f (xk, uk, θk) , (4.13)

with the discrete time k ∈ N, the state xk ∈ Rnx , the control (action) uk ∈ Rnu

and the scheduling parameter θk ∈ Rnθ . The state is constrained to a set
xk ∈ X ⊆ Rnx , and only controls within a set, possibly depending on the
current state, are possible, uk ∈ U(xk) ⊆ Rnu . Moreover we assume that
the scheduling parameter θk is measurable such that the current value of the
scheduling parameter is known, but future values of the scheduling param-
eter are unknown a-priori, merely the scheduling parameter is known to be
constrained to a bounded set, θk ∈ Θ ⊂ Rnθ . The parameter-varying discrete-
time system (4.13) shall be controlled by a state and scheduling parameter
feedback as illustrated in Figure 4.3.

Analogue to the CFTOC problem, we assume that starting with our current
state xk at each stage we will sustain some stage costs Li(xk+i , uk+i), which
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Figure 4.3: Control loop considered in constrained parameter-varying optimal con-
trol.

accumulate over time to the additive cost function

J(Uk, Tk; xk, θk) = LN(xk+N) +
N−1

∑
i=0

Li(xk+i , uk+i) , (4.14)

where N denotes the considered prediction horizon, and the term LN(xN) de-
notes the terminal cost at the end of this horizon, and penalizes the assumed
costs beyond the prediction horizon. For notational simplicity we denote the
sequence of control inputs during the prediction horizon by

Uk = {uk, uk+1, . . . , uk+N−1} ,

and the unknown sequence of future scheduling parameters by

Tk = {θk+1, . . . , θk+N−1} ,

respectively. Note that the cost function (4.14) depends implicitly on the
sequence of scheduling parameters via (4.13).

One typically wants to exploit the scheduling parameter information for con-
trol purposes, while guaranteeing constraint satisfaction for all realizations
of the future scheduling parameter. Mathematically speaking this can be
posed as a problem very similar to the CL-CROC problem, the constrained
parameter-varying optimal control (CPVOC) problem,

J∗(xk, θk) = min
uk

max
θk+1

min
uk+1

. . . max
θk+N−1

min
uk+N−1

J(Uk, Tk; xk, θk) (4.15a)

s.t. xk+i ∈ X , i = 0, . . . , N − 1 , (4.15b)
xk+N ∈ XT , (4.15c)
uk+i ∈ U(xk+i), i = 0, . . . , N − 1 , (4.15d)
θk+i ∈ Θ, i = 0, . . . , N − 1 , (4.15e)
xk+i+1 = f (xk+i , uk+i , θk+i), i = 0, . . . , N − 1 . (4.15f)

Note that from a game-theoretic point of view the order of the moves of the
control input and the scheduling parameter changed, when compared to the
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CL-CROC problem. The control input can make each move after the move of
the scheduling parameter, reflecting the fact, that the scheduling parameter
θk+i will be known to the controller at the time instance k + i.

Solution of CPVOC Problems

The constrained parameter-varying optimal control problem is again a con-
strained optimization problem, and thus could be solved with the mathemat-
ical programming tools described in Section 3.1.

We are interested in solving the CPVOC problem by means of dynamic pro-
gramming, yielding control laws instead of control actions. Note that the
final dynamic programming step differs from the previous ones, since a
maximization over the current scheduling parameter is not necessary. Each
control law of the optimal policy is a function of the predicted state and the
predicted scheduling parameter,

uk+i = μi(xk+i , θk+i) = μi(xk, θk, . . . , θk+i−1) . (4.16)

Contrary to the optimal policy of the CL-CROC problem, these control laws
are in possession of knowledge of the current scheduling parameter val-
ues.

4.4 Constrained Time-Optimal Control

While the CROC problem and the CPVOC problem are variations of the
CFTOC problem, which incorporate model uncertainties or scheduling pa-
rameters into the constrained finite-time optimal control problem, the con-
strained time-optimal control (CTOC) problem considers a different control
objective. Instead of minimizing a cost function, the number of time steps
to reach a target set shall be minimized. In the following, we will describe
the constrained time optimal control problem for nonlinear discrete-time
systems; extensions which take model uncertainties and/or scheduling pa-
rameters into account, are possible.

In constrained time-optimal control we consider a discrete-time model of the
system to be controlled,

xk+1 = f (xk, uk) , (4.17)

with the discrete time k ∈ N, the state xk ∈ Rnx and the control (action)
uk ∈ Rnu . We assume the state to be constrained to a set xk ∈ X ⊆ Rnx ,
and only controls within a set, possibly depending on the current state, are
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applicable, uk ∈ U(xk) ⊆ Rnu . For notational simplicity, we use a sequence of
control actions

Uk = {uk, uk+1, . . . , uk+N−1} .

Contrary to the CFTOC problem, we do not want to minimize a predicted
cost function, but we want to apply a control sequence which minimizes the
number of time steps needed to reach a target region XT ⊆ Rnx from our
current state xk. The constrained time-optimal control (CTOC) problem (also
called constrained minimum-time control problem) is defined as

min
{Uk,N}

N(Uk; xk) (4.18a)

s.t. xk+i ∈ X , i = 0, . . . , N − 1 , (4.18b)
xk+N ∈ XT , (4.18c)
uk+i ∈ U(xk+i), i = 0, . . . , N − 1 , (4.18d)
xk+i+1 = f (xk+i , uk+i), i = 0, . . . , N − 1 , (4.18e)

where N denotes the number of time steps needed to reach the target set.

Solution of CTOC problems

One strategy to solve the CTOC problem straightforward would be to start
with N = 0 and then to increment N iteratively while checking if the result-
ing constraints of (4.18) are feasible for the current state xk. As soon as the
optimization problem becomes feasible for a certain N∗, apply any feasible
sequence of control actions. Assuming it is possible to steer the state xk to
the target set, this procedure will eventually return an optimal solution U∗k
to the CTOC problem (4.18).

Nevertheless, there are some shortcomings of this strategy. The first is that
the number of steps to reach the target set would have to be computed over
and over again, while the sets of states, which require a certain number of
steps, are constant in time. Consequently a common strategy is to precom-
pute these sets of states, which can be mapped to the target set in a certain
number of steps. This computation can be performed by applying the back-
wards propagation algorithm from page 16, initialized with the target set
XT. The sets Z0,Z1, . . . ,Z∞ are stored, where Z0 = XT, and Z∞ denotes the
maximum control invariant set. The determination of the minimum number
of steps to reach the target set from xk then reduces to some set membership
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tests, which can be stated as

N∗ = min
i

i (4.19a)

s.t. xk ∈ Zi . (4.19b)

After determining N∗, a feasible control law has to be computed. The pre-
computed set collection {Zi}∞

i=0 can help to simplify this computation, be-
cause, in order to maintain time-optimality, it suffices if the succeeding state
xk+1 is an element of ZN∗−1. One property of constrained time-optimal
control is that all feasible sequences of control actions for N∗ are optimal
solutions of (4.18), i.e. all feasible solutions are considered equally good.
However, this is an inappropriate assessment in a control setting since con-
trol practitioners want to be able to adjust the closed-loop behaviour to their
preferences. Hence, often an auxiliary cost function J(uk ; xk) is introduced,
leading to the following optimization problem:

J∗(xk) = min
uk

J(uk ; xk) (4.20a)

s.t. xk+1 ∈ Zi−1 , (4.20b)
xk ∈ X , (4.20c)
uk ∈ U(xk) , (4.20d)
xk+1 = f (xk, uk) , (4.20e)

where Zi−1 refers to ZN∗−1. Note the similarity of (4.20) to the CFTOC prob-
lem (4.4). When the same cost function is used, the difference is the number
of variables and the number of constraints, which is typically smaller in the
CTOC problem.

If the considered system and the cost function are such that the optimiza-
tion problem (4.20) is a sufficiently small linear or quadratic program, it is
possible to solve (4.20) parametrically. By applying a dynamic programming
approach, the set collection {Zi}∞

i=0 and the corresponding control laws can
be precomputed at once. Starting with i = 1 and the terminal set Z0 = XT,
the solution of (4.20) provides a control law μ1(xk) and the set of feasible
states Z1. Then i is incremented and the next iteration is proceeded until the
maximum control invariant set Z∞ is reached. Online, the set membership
test (4.19) is executed and the control law μN∗(xk) is evaluated.

4.5 Model Predictive Control

In this section the control method model predictive control (MPC) is pre-
sented. Different aspects such as reference tracking, move blocking or stabil-
ity properties are discussed. Finally, explicit MPC is introduced.
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The solution of a single finite-time optimal control problem for a given state
xk is not sufficient to control a constrained dynamical system in practice.
Sooner or later the end of the prediction horizon is reached, such that new
control inputs are needed. But there is a more pressing reason for an earlier
re-computation of the control inputs: the model which we have identified
for the system at hand is only of limited accuracy, and does not account for
disturbances and noise in the process or measurements.

In order to add feedback to the control system, another approach is taken in
which only the current control action u∗k is applied, whereas the solution of
the finite-time optimal control problem is repeated at each time step. In-
formation contained in the current measurements of the system can thus
be taken into account, allowing the system to react to unpredicted events
and adding a certain robustness to the control. This approach is commonly
referred to as the receding horizon strategy (because the prediction horizon
recedes at every step). The receding horizon strategy ensures that at each
time step the computed inputs depend on predictions of the same horizon
length.

The solution of a constrained finite-time optimal control problem online at
each time step in a receding horizon strategy is what is usually referred to as
Model Predictive Control (MPC). In MPC the control inputs are computed by
repeatedly solving optimization problems which incorporate finite-horizon
predictions based on a discrete-time model of the system. More precisely, in
MPC the following algorithm is executed repeatedly:

Algorithm 4.1 MPC Algorithm

1: Measure the current state xk (and the scheduling parameter θk).
2: Determine the optimal control sequence u∗k , u∗k+1, . . . , u∗k+N−1.
3: Apply u∗k .
4: Increment k.

In variations of MPC different optimization problems are solved repeatedly
online, some of which were discussed earlier in this chapter. Examples for
such variations of MPC are robust MPC, where instead of the CFTOC prob-
lem a CROC problem is solved in a receding horizon fashion, or minimum-
time MPC, where the CTOC problem is solved instead. In the context of ro-
bust MPC, one distinguishes open-loop MPC and closed-loop MPC approaches,
depending on the fact if in the prediction future control actions can react
on experienced uncertainties, as in the CL-CROC problem, or not, as in the
OL-CROC problem. In the following we will describe MPC in its standard
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4 Optimal Control of Constrained Discrete-Time Systems

form including the solution of the CFTOC problem at each time instance,
but the reader should keep in mind that these variations exist, and that the
consideration of other finite-horizon optimal control problems is possible.

Model predictive control traces back at least until 1963, when Propoi pre-
sented basic ideas of MPC, [Mac01, RM09]. Contrary to many other modern
control techniques, model predictive control has been used in a vast amount
of applications over the last decades, mainly in the process industry, [QB03].
The reasons for the success of MPC lie mainly in the flexibility towards the
system and problem description, the ability to take constraints on the states
and inputs directly into account, and, compared to other methods, the rela-
tively small engineering effort to accomplish all this. Moreover, the choice
of the objective function gives the opportunity to tune the behaviour of the
closed-loop system to the needs of the application at hand. On the other
hand, MPC requires the solution of optimization problems at each time step.
Consequently, it is restricted to relatively slow systems and/or requires a
considerable amount of computational power.

Choice of the Cost Function

Until now we did not specify the exact shape of the cost function. In general
an additive cost function

J(Uk; xk) = LN(xk+N) +
N−1

∑
i=0

Li(xk+i , uk+i) (4.21)

is used, as already introduced earlier in this chapter. The terminal cost
LN(xk+N) and the stage costs Li(xk+i , uk+i) are usually positive (semi-)defi-
nite functions. We will now discuss typical choices of the cost function.

A natural choice for the stage costs and terminal cost is a quadratic cost func-
tion over the predicted states and inputs,

Li(xk+i , uk+i) = xT
k+iQxk+i + uT

k+iRuk+i , (4.22)

LN(xk+N) = xT
k+N Pxk+N , (4.23)

with the real, positive (semi-)definite weight matrices Q � 0, R 	 0 and
P 	 0. Usually diagonal matrices are chosen, but this is not necessary. The
weight matrices may also vary over the prediction horizon, Q → Qi and
R → Ri. Occasionally the quadratic terms of the cost function are written
as ‖x‖2

Q := xTQx. Some authors refer to the quadratic cost function also
as the quadratic norm, though it is no norm in a strict sense. The quadratic
cost function is motivated by its emulation of a generalized ‘energy’ of a
signal. Furthermore, if the system is linear and the constraints polyhedral,
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the CFTOC problem is a quadratic problem, which can be solved easily with
a QP solver (cf. Section 3.1). Given R is positive definite, the optimizer of
the QP is unique. The quadratic terms penalize strong deviations from the
origin much more than small deviations, leading to large control actions for
a large error and smooth behaviour close to the origin. Finally, the tuning
effort is modest, since the optimizer varies smoothly with the selected weight
matrices.

Another common type of cost functions are induced by polyhedral norms as
defined in Def. B.55 on page 260, usually the 1-norm or the ∞-norm. Some
authors refer to these norms also as linear norms, though polyhedral norms
result not in linear, but in piecewise linear cost functions. In this setup, the
stage costs and terminal cost are

Li(xk+i , uk+i) = ‖Qxk+i‖p + ‖Ruk+i‖p , (4.24)
LN(xk+N) = ‖Pxk+N‖p , (4.25)

with p denoting the polyhedral norm, and the real, full-column rank matri-
ces Q, R and P denoting weight matrices. Although not linear, these cost
functions are sometimes referred to as linear cost functions. The motivation
for piecewise linear cost functions comes from economics, where the sum of
absolute costs should be minimized (1-norm), or from worst-case minimiza-
tions (∞-norm). The main benefits of piecewise linear cost functions are of
computational nature. If the system and constraints are linear, the CFTOC
problem becomes a linear program, which can be solved easily with an LP
solver. Moreover, the epigraph of such an optimization problem is a polyhe-
dron which can be crucial for the application of dynamic programming. A
price has to be paid for these benefits, the optimizer of an LP is not neces-
sarily unique, and the tuning is more difficult, since the optimizer ‘jumps’
spontaneously from one vertex to the next. The deviations from the origin
are penalized proportionally to their distance, which, compared to quadratic
cost functions, leads to potentially less control action far from the origin, and
more action close to the origin.

Reference Tracking

In most parts of this thesis we are dealing with the regulator problem, i.e.
it is implicitly assumed that the control objective is to stabilize the system
towards the origin. Often this is a realistic assumption, since we can shift
any desired operating point x̄ to the origin by working with state variables
relative to this operating point x̃ = x− x̄. In the context of varying operat-
ing points and state constraints however, we might be interested in a refer-
ence tracking MPC scheme, which can be used for a set of reference points,
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[MBM09]. In this situation the reference point can be added as an additional
parameter to the optimization problem, and the cost function is written as

Li(xk+i , uk+i) = ‖Q(xk+i − xref,k+i)‖p + ‖RΔuk+i‖p , (4.26)
LN(xk+N) = ‖P(xk+N − xref,k+N)‖p , (4.27)

where xref,k+i denotes the desired reference point and Δuk+i := uk+i− uk+i−1
is the input rate. By penalizing the input rate instead of the inputs, the
steady-state input required to track the reference points is not penalized,
rather the variations in the input signal mitigating chattering. This is also
known as Δu-formulation. Note that the number of parameters in the CFTOC
problem increases by the number of reference variables and the number of
inputs, increasing the complexity of the resulting explicit control law. An
alternative to the Δu-formulation is to penalize the difference of the input to
the steady-state input required to keep the system at the desired reference
point.

Soft Constraints

The objective of the state constraints xk+i ∈ X (also called hard constraints)
in the CFTOC problem is to guarantee the future states to be members of
a certain set. However, there are applications where uncertainties such as
disturbances, measurement errors and/or model inaccuracies can render the
constraint satisfaction impossible, leading to infeasibility of the CFTOC prob-
lem. Additionally to not being able to meet the state constraints, the control
input can not be computed. One way to avoid this situation is the use of soft
constraints, [Mac01]. The state constraints are replaced by

xk+i + si ∈ X , (4.28)

with si ∈ Rnx denoting a slack variable. The slack variables are penalized
in the cost function (4.21), using a high weight. If designed properly, soft
constraints operate exactly as hard constraints as long as the constraints can
be met. If constraint satisfaction becomes impossible however, the CFTOC
problem does not become infeasible, permitting the computation of control
inputs. More details on soft constraints can be found in [KM00].

Move Blocking

Move blocking is an extension to Model Predictive Control, where the op-
timization variables are kept constant over several prediction steps. The
benefit of move blocking is the reduction of optimization variables, leading
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to a simpler optimization problem at each time instance and thus to a faster
computation of the control input. The drawback is that by fixing these op-
timization variables the number of degrees of freedom are reduced, which
may result in a smaller feasible set, a higher cost function and even to unsta-
ble behaviour of the closed-loop system. More details about move blocking
can be found e.g. in [CGKM07]. The most common move blocking strategy
involves the definition of a control horizon Nc, which separates the sequence
of control inputs

Uk = {uk, uk+1, . . . , uk+N−1}

into two parts. The control inputs within the control horizon uk, . . . , uk+Nc−1
can vary freely, while the remaining control actions are set to a common
value, uk+Nc = · · · = uk+N−1.

Stability and Feasibility

Unfortunately, MPC is not guaranteed to stabilize a dynamic system per se.
Even worse, the dependence of stability on the tuning parameters N, Q, R, P
and XT can be not obvious, as was pointed out in [Löf03]. Additionally,
MPC does not provide a guarantee for recursive feasibility.

Definition 4.1 (Recursive feasibility) An MPC problem is called feasible, if for
the current state xk the underlying optimal control problem is feasible. An MPC
controller is called recursive feasible, if a feasible MPC problem for the current
state xk implies feasible MPC problems for all future states xk+i , i ∈ N.

There exists a range of possible remedies which can be applied to provide
guarantees for stability and recursive feasibility. An overview about these
methods is presented in [MRRS00]. Extensions to the case of non-continuous
systems can be found e.g. in [Laz06]. Here we will just state the main ideas
of the most common approaches.

One possibility is to use an infinite prediction horizon, N → ∞. The optimal
cost function

J∗(U∗k ; xk) =
∞

∑
i=0

L(xk+i , u∗k+i) (4.29)

can be employed as a Lyapunov function, under the assumptions that the
stage cost L is a continuous, positive definite function, and the dynamic
system is a continuous, definite function. Furthermore, the sets X and U
are assumed to be C-sets. Considering an infinite-horizon optimal control
problem is desirable but often not possible, because of the complexity of the
infinite-horizon problem and the limited computational power. If instead
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of N = ∞ the prediction horizon is selected large enough, stability and
recursive feasibility are also guaranteed, [MRRS00].

A second possibility is the terminal equality constraint,

xk+N = 0 . (4.30)

With this additional constraint, the infinite-horizon cost (4.29) reduces to fi-
nite horizon, while it can still serve as a Lyapunov function. On the other
hand the terminal equality constraint imposes a strong restriction on the
CFTOC problem, leading to a considerably smaller feasible set and to a de-
terioration of control performance.

In order to mitigate the restrictions of the terminal equality constraint one
can relax them to a terminal inequality constraint, xk+N ∈ XT with the C-
set XT denoting the terminal region, and apply a terminal region controller
μT(xk) if xk ∈ XT. The resulting infinite-horizon cost (4.29) comprise the
finite-horizon costs and a terminal cost term LN(xk) for the costs under the
terminal region controller μT(xk). Under the assumptions

(i) XT ⊆ X ,

(ii) μT(xk) ∈ U ∀xk ∈ XT,

(iii) xk ∈ XT ⇒ f (xk, μT(xk)) ∈ XT,

(iv) LN( f (xk, μT(xk)))− LN(xk) ≤ −L(xk , μT(xk)) ∀xk ∈ XT,

the resulting MPC controller is guaranteed to be stable and recursive feasible.
Note that this approach, though to a minor extent than the terminal equality
constraint, still comes with some conservatism. The conditions are merely
sufficient.

Finally, one could analyze the stability and recursive feasibility a-posteriori.
The benefit is that no adjustments of the CFTOC problem have to be per-
formed which could result in a poor approximation of the infinite-horizon
cost. On the other hand, a-posteriori analyses are difficult as long as the
control law is not given in an analytical form. Hence this approach is mainly
restricted to the case when the control law u∗k = μ(xk) is known explicitly.

Explicit Model Predictive Control

One important aspect of the receding horizon strategy is that only the cur-
rent control action u∗k is ever applied to the system, whereas the predicted
control actions u∗k+1, . . . , u∗k+N−1 are only needed for the predictions itself.
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The online solution of the CFTOC problem can therefore be seen as an eval-
uation of the implicit relation

uk = μ∗k (xk) . (4.31)

By solving the optimization problem parametrically, we obtain this control
law explicitly. The precomputed control laws are piecewise affine functions
of the state and can be stored in a look-up table. This allows us to avoid
the solution of an optimization problem at each time step, but to apply the
receding horizon strategy by evaluating the look-up table instead. The ap-
plication of parametric programming to solve constrained optimal control
problems explicitly was initialized around the millennium, and is referred
to as Explicit MPC, [BM99, PDB+00, BBM02]. Explicit MPC is based on para-
metric programming, which allows to solve linear and quadratic programs
over a range of parameters (see Section 3.1). The receding horizon strategy
has the neat side-effect that for explicit MPC only the current control law
needs to be stored and not the whole finite-horizon sequence of control laws.
Efficient algorithms for the computation of explicit solutions to the CFTOC
problem were developed for linear systems, [BBM00], for hybrid systems,
[Bor03] and for uncertain linear systems, [BBM03].

Definition 4.2 (Region of explicit MPC controller) A region R of an explicit
MPC control law is a full-dimensional, closed and convex set of the state space,
where the control law is a common, typically affine, function of the state.

Usually the regions of an explicit MPC controller emerge from the closure of
critical regions of the underlying parametric program, see Definition 3.2 on
page 32. Note however that there is no one-to-one relation between controller
regions and critical regions. Controller regions are full-dimensional, while
critical regions can also be lower-dimensional. A region of the controller, as
closure of a full-dimensional critical region, can also contain other, lower-
dimensional critical regions on the boundary. Moreover, multiple critical
regions may be merged to a single controller region, if they possess the same
control law.

Definition 4.3 (Partition of explicit MPC controller) A partition P =
{Ri}nr

i=1 of an explicit MPC control law is a collection of nr controller regions
Ri ⊂ Rnx, stemming from an underlying optimization problem.

Definition 4.4 (Complexity of explicit MPC controller) The term complexity
usually refers to the number of regions of an explicit control law. Sometimes complex-
ity is meant in a numerical way, i.e. the required number of operations to evaluate
the explicit control law.

Computing the explicit control law inherits several advantages. Replacing
the solution of an optimization problem online by an evaluation of an ex-
plicit function can reduce the online numerical effort significantly. Hence it
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is possible to apply MPC to systems with a higher sampling rate, even in
the range of microseconds, [BMC+09, GPM09]. The computational equip-
ment required to execute an MPC controller is reduced, the function eval-
uation can often be performed on a microprocessor, making an application
of explicit MPC inexpensive compared to a traditional MPC scheme. The
evaluation of the explicit control law can be performed quickly and reliable,
and it is easier to derive realistic worst-case bounds for the online compu-
tation times. Moreover, the explicit form of the control law allows for an
analysis of stability and performance of the closed-loop system, and to per-
form post-processing algorithms as reduction of the number of regions or an
approximation of the optimal solution.

On the other hand, the computation of explicit control laws also exhibits
drawbacks. The flexibility of MPC is partially lost, since explicit control
laws can only be computed for systems of a certain type and size. The
weight matrices can not be adapted online, but require a recomputation of
the explicit control law. The gain in online computational time depends on
the complexity of the control law. If the complexity of the resulting control
law is too high, the function evaluation might be as time consuming as the
solution of the optimization problem in the first place. Since the complexity
of the control laws grows starkly (in the worst-case exponentially) with the
number of parameters in the underlying parametric program, explicit MPC
is mainly limited to problems of modest size.
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Piecewise Affine Systems





5 Optimal Control of PWA
Systems

‘Among other advantages, it
should be noted that the use of
piecewise linear systems permits
introducing thresholds and other
discontinuities in a natural way
that is not available in other
algebraic approaches to
nonlinear system theory.’

Eduardo Sontag

Piecewise affine systems are a system class commonly appearing in prac-
tical problems. In this chapter we briefly recapitulate constrained finite-

time optimal control of piecewise affine systems based on a quadratic cost
function. The explicit solution of the resulting mixed-integer quadratic pro-
gram by means of parametric programming is considered. Properties of
the resulting optimal state-feedback solution are stated, and an established
solution approach is presented.



5 Optimal Control of PWA Systems

5.1 Introduction

During the last years a lot of effort has been spent on the development of
control and analysis methodologies for hybrid systems. Hybrid systems are
systems which contain continuous as well as discrete states, and are used
to model nonlinear effects as saturation, switches and other logic elements,
[Son81, BM99]. The dominating technique behind control of hybrid systems
is Model Predictive Control (MPC), and a vast variety of controller synthesis
methods are based on it, [ML99].

Around the millennium, the application of parametric programming to con-
strained optimal control problems, so-called explicit MPC, was initiated. Para-
metric programming allows one to solve the optimal control problems explic-
itly and moves the computational effort of MPC from online to offline. The
pre-computed control laws are stored in a look-up table, which thereafter
is evaluated online. The mathematical backgrounds of parametric program-
ming were developed already in the 1970s and can be found in [BGK+82].
Until today, several procedures were proposed which enable the employ-
ment of parametric programming for MPC. An introduction to explicit MPC
for constrained linear and hybrid systems and further references are given
e.g. in [Bor03, Bao05].

Model Predictive Control contains the minimization of a cost function to de-
termine the optimal control inputs. A natural choice for this cost function
is a quadratic function of the predicted states and inputs, reflecting a gen-
eralized energy concept in the control problem. Quadratic costs are chosen
frequently by control engineers not only in MPC but also in Linear Quad-
ratic Control, because they result in smooth control behaviour close to the
reference values, and large control action far away from it. In the context of
explicit MPC, the use of quadratic cost functions usually results in a smaller
number of regions compared to polyhedral norm objectives, and thus to less
complex control laws. In some cases, quadratic cost functions allow the use
of a smaller prediction horizon and thus result in even less complex control
laws. The computation of quadratic cost optimal control laws with dynamic
programming can be found in [BBBM05].

5.2 Quadratic Cost Optimal Control of PWA
Systems

A large class of hybrid systems can be described as piecewise affine (PWA) sys-
tems, [HdSB01]. Piecewise affine systems are defined by associating different
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dynamics with polyhedral regions in the state-input space,

xk+1 = fPWA(xk, uk)

:= Ajxk + Bjuk + f j if [xT
k uT

k ]T ∈ Dj , (5.1)

with the discrete time k ∈ N, the state xk ∈ R
nx , the input uk ∈ R

nu , and nD
polyhedral regions

Dj :=

{[
x
u

]
∈ R

nx+nu

∣∣∣∣∣ Px,jx + Pu,ju ≤ pj

}

which assemble to a bounded polyhedral partition of the domain D =⋃nD
j=1Dj in the state-input space. Aj, Bj, Px,j, Pu,j and f j, pj are real matrices

and real vectors of appropriate dimensions, respectively. The polyhedral
regions Dj, j = 1, . . . , nD, define both regions in which a particular state
update equation is valid as well as constraints on the state and the input. A
PWA system is called well-posed if fPWA is a single-valued function.

Under some technical assumptions, the PWA system representation is equiva-
lent to several other models of hybrid systems and it was shown in [HdSB01]
how one can convert one form into the other. Among others, the PWA de-
scription of a hybrid system is equivalent to the mixed logical dynamical (MLD)
system, [MBB03, Bem04],

xk+1 = Axk + B1uk + B2δk + B3zk (5.2a)
yk = Cxk + D1uk + D2δk + D3zk (5.2b)

E2δk + E3zk ≤ E1uk + E4xk + e5 (5.2c)

with the state xk = [xT
k,c xT

k,b]
T ∈ R

nxc×{0, 1}nxb , the input uk = [uT
k,c uT

k,b]
T ∈

R
nuc×{0, 1}nub and the output yk = [yT

k,c yT
k,b]

T ∈ R
nyc×{0, 1}nyb comprising

continuous and binary elements. zk ∈ Rnz and δk ∈ {0, 1}nδ denote contin-
uous and binary auxiliary variables, and A, Bi , C, Di , Ei and e5 denote real
matrices and a real vector of appropriate dimensions, respectively. An MLD
system is called well-posed if δk and zk are uniquely determined by (5.2c) for
given xk, uk, implying that also xk+1 and yk are uniquely determined. MLD
systems comprise the continuous evolution of dynamical systems as well as
discrete behaviour of automata. The equivalence of PWA and MLD system
simplifies the implementation in a Matlab environment using the hybrid
system description language HYSDEL, [TBB+02].

In quadratic cost optimal control, a cost function is defined as a quadratic
function of the states and inputs within the prediction horizon N,

J(Uk; xk) = xT
k+N Pxk+N +

N−1

∑
i=0

xT
k+iQxk+i + uT

k+iRuk+i , (5.3)
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where Uk = {uk, . . . , uk+N−1} denotes the sequence of control actions, and
the weight matrices P, Q ∈ S

nx
+ and R ∈ S

nu
++ are assumed to be positive

(semi)definite (compare Section 4.5 on MPC with a quadratic cost function).
Extensions to incorporate the tracking of a reference state xref are straight-
forward, but in the following we will restrict ourselves to the regulation
problem for notational simplicity.

Consider the following constrained finite-time optimal control (CFTOC) prob-
lem for piecewise affine systems:

J∗(xk) = min
Uk

J(Uk; xk) (5.4a)

s.t. xk+i+1 = fPWA(xk+i , uk+i), i = 0, . . . , N − 1 , (5.4b)
xk+N ∈ XT . (5.4c)

Note that state and input constraints are included in the description of the
PWA system (5.4b). The set XT is a compact polyhedral terminal set, reflect-
ing the set of admissible states at the final (finite) time instance N.

A classical implementation of MPC uses online optimization with a reced-
ing horizon policy, to compute the optimal input sequence U∗k , [Mac01]. The
CFTOC problem (5.4) is solved at each time instance k for the current state
xk which amounts to solving a mixed-integer quadratic program (MIQP) as dis-
cussed in Section 3.1 on mixed-integer programming. From the resulting
control sequence U∗k , only u∗k is used as control input at time k, and the
subsequent control inputs are discarded. In the next step, the prediction
horizon is shifted and the procedure repeated. Due to the computational re-
quirements, this approach becomes intractable for control systems requiring
a high sampling rate.

Properties of the CFTOC Solution

A different approach is to solve the optimization problem (5.4) parametri-
cally. The advantage of this approach is that the access to the optimal input
sequence can be speed-up significantly. As shown in [BBBM05], the CFTOC
problem (5.4) for PWA systems can be solved explicitly off-line using paramet-
ric programming (compare Section 3.2). The generated explicit solution is a
look-up table whose structure is defined by the properties of the solution to
the problem (5.4). Those are summarized by the following theorem, [Bor03]:

Theorem 5.1 (CFTOC solution for PWA systems) The solution to the optimal
control problem (5.4) with the quadratic cost function (5.3) is a PWA state feedback
control law:

u∗k (xk) = Frxk + gr if xk ∈ Rr (5.5)

66



5.2 Quadratic Cost Optimal Control of PWA Systems

with Fr ∈ Rnu×nx , gr ∈ Rnu , r = 1, . . . , nr, and where the controller regions Rr,
whose closure is given by:

R̄r =
{

x ∈ R
nx
∣∣∣ xT Hix + qix ≤ ri , i = 1, . . . , nc

}
,

define a partition of the set of feasible states.

Once the explicit solution is computed, the on-line operation of the controller
consists of the identification of the pre-computed affine feedback control law
for a measured (estimated) state xk by searching for a region Ri containing
the state vector xk. In this way, much of the computational effort is moved
off-line, enabling optimal control of hybrid systems under much tighter time
constraints.

Solution Approach to the CFTOC Problem

Solving the CFTOC problem beforehand for all possible initial states xk ∈ X ,
as discussed in Section 4.1, requires the solution of a parametric mixed-integer
quadratic program (pMIQP), see Section 3.2. As stated in Theorem 5.1, the
explicit solution is not defined on polytopes. One way to deal with the
pMIQP related to the CFTOC problem (5.4) is to decompose it into paramet-
ric quadratic programs (pQPs) by fixing the modes mi of the PWA system
(5.1) in each prediction step i and to enforce a specific switching sequence
s = (m0, . . . , mi, . . . , mN−1). For each switching sequence a pQP of the form

J∗(xk) = min
Uk

J(Uk; xk) (5.6a)

s.t. xk+i+1 = fPWA(xk+i , uk+i) , i = 0, . . . , N − 1 , (5.6b)

[xT
k+i uT

k+i]
T ∈ Dmi , i = 0, . . . , N − 1 , (5.6c)

xk+N ∈ XT . (5.6d)

results. The number of possible switching sequences is ns = (nD)N . For
some switching sequences the corresponding pQPs might be infeasible due
to the state-input constraints in every step. Following Theorem 3.2 on page 34,
we can state: Each of the np ≤ ns remaining pQPs leads to a polyhedral par-
tition P p ⊆ Rnx , p = 1, . . . , np, in the state space consisting of np

r polyhedral
regions Rp

r ⊆ Rnx , r = 1, . . . , np
r , and is associated with a PWA control law

uk = μ
p
r (xk) = Fp

r xk + gp
r if xk ∈ Rp

r (5.7)
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5 Optimal Control of PWA Systems

and with a piecewise quadratic (PWQ) cost function Jp : Rnx → R, which is
a quadratic function in each region,

Jp
r (xk) = xT

k Ap
r xk + (bp

r )Txk + cp
r if xk ∈ Rp

r . (5.8)

Every cost function Jp is optimal for the related switching sequence; the
remaining task is the determination of the switching sequence which yields
the lowest cost, such that

J∗(xk) = min
p

Jp(xk) (5.9)

is the solution to the CFTOC problem (5.4). Therefore it is suggested in
[Bor03] to solve (5.6) parametrically offline for all possible switching se-
quences and to store the resulting cost functions Jp, p = 1, . . . , np, as well
as the resulting control laws μp, p = 1, . . . , np. Online at each time instance
k, the control input uk is determined by solving (5.9) for the current state xk.
This procedure is implemented in the Multi-Parametric Toolbox (MPT) 2.6.2 ,
[KGBM04].
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6 Region Removal for Optimal
Control of PWA Systems

‘The ability to simplify means to
eliminate the unnecessary so that
the necessary may speak.’

Hans Hofmann

Redundant regions in the look-up table of an explicit MPC controller
increase the required storage space and retard the efficient evaluation

online. Consequently, the control law should contain little or no redundant
regions. This chapter describes a post-processing algorithm for quadratic
cost explicit model predictive controllers of piecewise affine systems. Re-
dundant regions of explicit control laws are identified and removed. The
algorithm reduces the complexity of the control laws without sacrificing op-
timality of the control performance. The resulting control laws need signif-
icantly less storage space and hence require also less online computational
effort. The algorithm described in this chapter was implemented in MPT.



6 Region Removal for Optimal Control of PWA Systems

6.1 Introduction

The computation of optimal control laws for piecewise affine systems is de-
scribed in Section 5.2. If a polyhedral norm is used in the cost function,
it can be shown that the optimal control law is a piecewise affine function
defined over polytopes. If instead a quadratic cost function is employed,
the optimization problem to be solved is a pMIQP of the form (3.14), and
the optimal control law is piecewise affine, but unfortunately not over poly-
topes. Therefore it is suggested in [Bor03] to determine the cost functions
Jp, p = 1, . . . , np, and the corresponding control laws μp, p = 1, . . . , np,
for all possible switching sequences by solving the related pQP. Online the
control action is determined by comparing all values Jp(xk) for the current
state xk. The obvious drawback is that instead of one, all np partitions with
the total number of regions nr together with the associated cost functions
and the associated control laws have to be stored. However, many of the
stored regions might be suboptimal and as such they will never be used
while the online computational effort is increased due to a larger number of
regions and due to the comparisons of cost functions. In order to lower the
needed storage space and the number of online comparisons, we propose an
algorithm for the detection and removal of unnecessary regions.

6.2 Removal of Redundant Regions

The basic task of the post-processing algorithm described in this chapter is
to determine if a region Rp

r ⊂ Rnx is redundant and hence can be removed.

Definition 6.1 We call a region Rp
r ⊂ Rnx dominated by a finite set of controller

regions {Ri}n
i=1 ⊂ R

nx, iff

(i) Rp
r ⊆ {Ri}n

i=1

(ii) ∀x ∈ Rp
r , ∃ i ∈ {1, . . . , n} : x ∈ Ri ∧ Ji(x) ≤ Jp

r (x)

A dominated region is also called redundant.

Definition 6.2 Rp
r ⊂ Rnx is partially dominated by a finite set of controller

regions {Ri}n
i=1 ⊂ R

nx, iff there exists a nonempty common domain ΔR := Rp
r ∩

{Ri}n
i=1 
= ∅ such that

(i) ΔR ⊂ Rp
r

(ii) ∀x ∈ ΔR, ∃i ∈ {1, . . . , n} : x ∈ Ri ∧ Ji(x) ≤ Jp
r (x)
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6.2 Removal of Redundant Regions

In order to determine redundant regions, comparisons of the quadratic cost
functions have to be executed which is equivalent to checking if the differ-
ence of two quadratic functions,

ΔJ =Jp
r − J p̂

r̂

=xT(Ap
r − Ap̂

r̂ )x + (bp
r − bp̂

r̂ )Tx + (cp
r − cp̂

r̂ )

=xTΔAx + ΔbT x + Δc , (6.1)

and thus its minimum, is non-negative on the common domain. Note that
the difference of two quadratic functions is not necessarily convex. The min-
imization of nonconvex quadratic functions over a polytope is known to be
NP-hard, [PV91]. In order to determine the minimal value of the cost differ-
ence ΔJ, a minimization of a possibly nonconvex function over a polytope
has to be performed. What makes this procedure computationally demand-
ing is the fact that the number of these comparisons grows quadratically
with the total number of regions of the handled control law.

In this chapter we follow an approach which involves several preprocessing
steps, in order to prevent many unnecessary nonconvex minimizations and
thus to reduce the required computation time. The remaining minimiza-
tions are performed using either a general branch-and-bound scheme, or an
enumeration of the facets.

Algorithm 6.1 Region removal: Main algorithm

Input: P p, p = 1, . . . , np
Output: P p, p = 1, . . . , np

1: Initialization
2: for ipart = 1 : np do
3: for jpart = ipart + 1 : np do
4: Pre-select candidates
5: Verify candidates
6: end for
7: end for
8: Removal of redundant regions

The main algorithm for the removal of regions is presented as Algorithm 6.1.
This algorithm consists of four phases. While the initial phase is performed
once in the beginning and the actual removal of regions once in the very
end of the algorithm, the pre-selection of candidates and the verification of
these candidates are repeated for every possible combination of partitions,
∑

np
p=1(p− 1) times.
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x2 Bb(R1)

Bb(R2)

Bb(R3)

x1

R2

R1

R3

Figure 6.1: Three regions R1,R2,R3 and their corresponding bounding boxes
Bb(R1), Bb(R2),Bb(R3).

Initialization

In the initialization phase some technical tasks as pre-allocation of variables
are executed. Then for each partition and each region, a bounding box is
computed.1 The computation of the bounding box of a polytope in Rnx

requires the computation of 2nx Linear Programs (LPs), so the total number
of LPs in the initialization is 2nx(nr + np). The bounding boxes are stored
for later use.

Pre-select Candidates

In this phase of the algorithm, we have two partitions at hand, and want to
determine candidate regions which potentially are dominated by regions of
the other partition. Before the cost functions of two regions are compared
by performing a possibly nonconvex minimization, a number of simple pre-
processing steps are executed to decrease the number of required minimiza-
tions.

Bit by bit, each region of both partitions at hand is compared to each region
of the opposite partition. First it is determined if the two regions at hand
intersect. A necessary condition for the intersection of two regions is the
intersection of their bounding boxes, which can easily be determined by
value comparisons. This pre-test is visualized in Figure 6.1, where three
regions and their corresponding bounding boxes are displayed. From the
bounding boxes it is obvious that region R3 is intersecting neither region R1
nor region R2. However, if R1 and R2 intersect can not be decided from
the bounding boxes. The bounding boxes facilitate an easy way to exclude
many intersections between regions.

1In the default preferences of the Multi-Parametric Toolbox (MPT), the bounding box is
already stored in the polytope object and this step can be skipped.
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x2 Bc(R2 ∩R)

Bc(R3 ∩R)

Bc(R1 ∩R)

R3R2

R1

x1

R

Figure 6.2: Intersection of a region R with three other regions Ri and their intersec-
tion Chebyshev balls Bc(Ri ∩R).

If the bounding boxes of both regions intersect, the intersection of both re-
gions is verified by computing the radius rc of the Chebyshev ball, i.e. the
largest ball contained in both regions. This computation requires only one
LP per tested intersection. If the LP finishes with a positive radius rc, the
regions indeed intersect. An example for the intersection checking with
Chebyshev balls is presented in Figure 6.2, where the intersection of a re-
gion R with three other regions (indicated by dashed lines) is visualized.
Note also the Chebyshev balls with their Chebyshev centres.

While determining the intersections between all regions of the partitions at
hand, possible candidates for removal are identified. In order to determine
these candidates, the cost functions are evaluated in the Chebyshev centre
xc of all intersections. The Chebyshev centre is a by-product when com-
puting the Chebyshev ball, and the evaluation of the cost functions in the
Chebyshev centre is a cheap operation. This heuristic pre-test helps avoid-
ing cost comparisons and thus saves computation time. Each region whose
cost function in the Chebyshev centre is greater than the cost function of all
intersecting regions, is a candidate for removal. If the cost function is lower
in any of the intersection Chebyshev centres, the region is not dominated by
the other partition, and does not have to be considered further.

Remark 6.1 Regions, which fail in one of these Chebyshev tests, are not considered
further, since this would require significantly more computational effort. The num-
ber of candidates would be increased significantly, and thus retard the execution of
the proposed algorithm.

In the end of this phase of the algorithm, we have for both partitions a list
of candidate regions which potentially are redundant and have to be inves-
tigated further. Moreover, for each candidate we are in possession of a list
with regions of the other partition, which intersect the candidate region.
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6 Region Removal for Optimal Control of PWA Systems

Verify Candidates

In this phase of the algorithm, we are considering two partitions. For each
partition we are in possession of a list of candidates, and for each candidate
a list of intersecting regions of the opposite partition. All candidates are
compared to their previously determined list of intersecting regions, and for
each comparison, a possibly nonconvex minimization is carried out.

The algorithm offers two different methods, one for problems of lower di-
mensions and one suited for medium-size problems: When the low com-
plexity option was chosen, all nonconvex comparisons are done by facet
enumeration, otherwise by branch-and-bound.

Algorithm 6.2 Region removal: Facet enumeration

Input: ΔA, Δb, Δc,R
Output: partial dominance

1: Check definiteness of M
2: if positive definite then
3: return
4: else
5: Check eigenvalues of ΔA
6: if convex then
7: solve QP
8: else if concave then
9: Enumerate vertices

10: else
11: Enumerate facets
12: end if
13: end if

Algorithm 6.2 represents the algorithm behind facet enumeration. Before start-
ing with the actual cost comparison, a last pre-check is executed. Equa-
tion (6.1) can be rewritten as

ΔJ =

(
x
1

)T [
ΔA Δb/2

ΔbT/2 Δc

] (
x
1

)
=

(
x
1

)T

M
(

x
1

)
. (6.2)

If the matrix M is positive definite, the cost difference function ΔJ is positive
over the whole Rnx , and thus also over the intersection of the regions at
hand. Hence the considered candidate is dominated in this intersection, and
the next intersection is investigated.
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6.2 Removal of Redundant Regions

Otherwise, the minimum of ΔJ over the intersection of both regions is de-
termined. Therefore the convexity of the cost difference function ΔJ is com-
puted by determining the eigenvalues of ΔA. If the difference function is
convex, a quadratic program (QP) is solved to find the minimum. If the dif-
ference function ΔJ is concave, the minimal value is obtained at one of the
vertices, and a vertex enumeration is performed.

In the case of an indefinite difference function, the minimum is attained
on the boundary of the intersection polytope, but not necessarily at one of
the vertices. Then the minimum on each face is computed separately. For
all faces of the intersection polytope, the facet enumeration is performed
by executing Algorithm 6.2. Compared to the intersection polytope, the
dimension of the minimization problem on its faces is decreased by one,
since one inequality is set to equality to describe the face.

The facet enumeration algorithm is applied recursively to all faces, then to
all ridges and so on, until the difference functions become convex or concave
on the facets. To avoid multiple checking of the same facets, a directed facet
enumeration is performed, which means that all inequalities are numbered
beforehand, and inequalities are only equalized in an ascending order. If on
one facet the difference function obtains a negative value, the comparison is
aborted for this region and the considered region is not dominated by the
opposite partition. Otherwise the region is dominated by its counterpart,
and the next intersection can be investigated.

For problems of higher dimensions, procedures as vertex enumeration and
facet enumeration become more and more inefficient. Therefore another op-
tion is offered in the algorithm, which is based on branch-and-bound. Here
also the eigenvalues are checked first to treat convex problems faster in a QP.
If the cost difference function is not convex, a branch-and-bound algorithm,
which is part of Yalmip, is used, [Löf04]. Nonconvex minimization based on
branch-and-bound is explained e.g. in [Sah00].

If a candidate region is identified as dominated by all intersecting regions of
a partition, it is checked by vertex enumeration (or by polytope comparison
for higher-dimensional problems) if the candidate region is a subset of the
opposing partition. In this case the region is marked as redundant, otherwise
the region is marked as partially dominated.

Remark 6.2 Facet enumeration and directed facet enumeration can both be seen
as specific branch-and-bound schemes with the whole polytope as root node and the
vertices and local minima as leaves.
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Removal of Regions

The last part of the algorithm is performed only once after the completion
of all comparisons. Regions which were marked as partially redundant, are
checked again. All parts which are redundant, are removed and the con-
vex hull of the remaining parts is saved. Finally the redundant regions are
removed.

Remark 6.3 This reduction of partially dominated regions is a computationally ex-
pensive operation, and thus only performed optionally.

Remark 6.4 The proposed algorithm is only removing regions which are dominated
by a single partition. In fact there may also appear redundant regions which are not
dominated by a single partition, but by a set of regions of different partitions. In
order to remove also these regions, the computational effort would grow significantly.
Many more nonconvex minimizations would have to be carried out (in fact for all
intersections), in order to determine a set of regions, which dominate the region at
hand.

6.3 Numerical Example

In this section we will investigate the application of the proposed algorithms.
In the first example, we compare the solution times of indefinite QPs by
means of branch-and-bound and by means of directed facet enumeration. In
the second example we apply the region removal algorithm to hybrid MPC
controllers of different prediction horizons.

Example 6.1 (Facet Enumeration vs. Branch-And-Bound)

In the first example the computation times of directed facet enumeration
(Algorithm 6.2) are compared to the computation times of Yalmip’s internal
branch-and-bound solver. Both methods were tested in the task to deter-
mine the positivity of the minima of random indefinite quadratic functions
over random simplices. The dimension of the simplices was increased from
nx = 2 up to nx = 5, while for each dimension 1000 random samples were
investigated.

The total computation times for 1000 samples of each tested dimension and
for both methods are depicted in Figure 6.3. While the use of directed facet
enumeration is computationally beneficial for problems of dimension nx = 2
and nx = 3, for larger problems the branch-and-bound scheme is faster. In
all tested instances both methods delivered the same results concerning the
positivity of the quadratic function on the simplex.
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Figure 6.3: Total computation times for solving 1000 random indefinite QPs vs. the
state dimension nx with branch-and-bound (black bars) and directed
facet enumeration (white bars).

Example 6.2 (Region Removal for the Sine-Cosine System)

In order to indicate potentially achievable complexity reductions, we exam-
ine the application of the proposed region removal algorithm to optimal con-
trol laws for the constrained PWA sine-cosine system presented in [BM99],

xk+1 = 4
5

[
cos αk − sin αk
sin αk cos αk

]
xk +

[
0
1

]
uk,

αk =

{
π
3 if

[
1 0

]
xk ≥ 0,

−π
3 if

[
1 0

]
xk < 0,

(6.3a)

under the constraints

‖xk‖∞ ≤ 10 , |uk| ≤ 1 ∀k ∈ N . (6.3b)

The CFTOC problem (5.4) was solved for different prediction horizons N,
using the weights Q = I, R = 1 and a quadratic cost function2. How many
regions the resulting optimal control laws consist of, and how many regions
remain after the application of the region removal algorithm, is shows graph-
ically in Figure 6.4. An exponential relation between the prediction horizon
and the number of redundant regions can be observed, culminating in a
reduction from 7512 to 522 regions at a prediction horizon of N = 8. Al-
though this example is by no means sufficient to substantiate this relation in
general, there is a certain probability based on the fact that the number of

2All computations have been performed on a 3 GHz Pentium 4 with MPT 2.6.2, [KGBM04],
and the commercial NAG solver, [Num02].
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Figure 6.4: Number of regions vs. the prediction horizon N before (black bars) and
after (white bars) applying Algorithm 6.1.

switching sequences s grows exponentially with the prediction horizon N,
such that also the likelihood of overlapping regions increases. The number
of redundant controller regions is in fact problem dependent.

The computation times of the region removal algorithm and, as point of
reference, of the related pMIQP for computing the optimal control law are
listed in Table 6.1. The removal of regions was performed using directed
facet enumeration (Alg. 6.2). The time needed to perform the complexity
reduction increased roughly quadratically with the prediction horizon. A
worst-case bound for the computation time can be stated as O(n2

r ), which is
only tight, if all controller regions overlap.

6.4 Conclusions and Outlook

An algorithm for the identification and removal of redundant regions in ex-
plicit model predictive control laws, which arise during the solution of the
quadratic cost CFTOC problem for piecewise affine systems, was developed.
It proceeds partition-by-partition and involves a number of preprocessing
steps to reduce the inherent computational effort of nonconvex minimiza-
tions. Two possible alternatives for the comparison of quadratic functions,
directed facet enumeration and a general branch-and-bound scheme, have
been included in the algorithm. The application of the algorithm was demon-
strated in a numerical example as indicator for the potentially possible reduc-
tion of complexity.
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prediction time1 of pMIQP time1 of Alg. 6.1
horizon in s in s

2 2 1
3 8 3
4 11 10
5 24 30
6 64 100
7 200 345
8 521 1273

Table 6.1: Computation times of the region removal for different prediction hori-
zons N.

A similar region removal algorithm was presented in [AB06]. Here the piece-
wise quadratic (PWQ) cost functions of the partitions are approximated from
above by PWA functions based on an initial Delauney triangulation of the
common domain, [YF05]. Redundant regions are identified by comparing
PWQ cost functions with the PWA approximations of other regions. If neces-
sary, the triangulation grid is refined and the procedure recursively repeated
for each subset. The advantage of this procedure is the avoidance of direct
comparisons of PWQ functions and thus of nonconvex minimization prob-
lems. On the other hand, a possibly very fine triangulation grid of each par-
tition has to be determined. A possible branch for future research would be
the comparison of the algorithms presented in this chapter with the method
in [AB06], and the investigation if one could benefit from merging them.
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7 Mechanical System with
Backlash

Backlash:
1. A sudden backward motion.
2. A reaction, objection or outcry,
especially of a violent or abrupt
nature.
3. The distance through which
one part of connected machinery,
as a wheel, piston, or screw, can
be moved without moving the
connected parts, resulting from
looseness in fitting or from wear.

Wiktionary, the free dictionary

Most publications on hybrid systems focus on theoretical or computa-
tional aspects, and as such contain only small simulation examples,

but no experimental verifications of the proposed methods. The objective
of this project was (i) to verify the usefulness of considering the hybrid na-
ture of a dynamical system by demonstrating the application of hybrid control
methods to a real laboratory system, and (ii) to establish a hybrid benchmark
system which then can be used by other researchers or interested users to
compare different identification, estimation and control schemes for hybrid
systems.

A mechanical system with backlash was selected, because it is a system well
studied by many control practitioners. This interest has been motivated by
the fact that backlash in mechanical systems can cause severe performance
degradation and lead to instability of the control system. Furthermore, high
impact forces in backlash systems can lead to a lower durability of the com-
ponents and to strokes and peaks in the output. This work was supported
by the European Commission research project FP6-IST-511368 Hybrid Control
(HYCON).



7 Mechanical System with Backlash

7.1 Introduction

Backlash is a common problem in mechanical systems occurring whenever
there is a gap in the transmission link, e.g. in the differential gearbox of
a power train. This transmission gap causes problems, when the system
input changes from acceleration to braking or vice versa. During a short
time interval the driving torque will not be transmitted to the load. When
the backlash gap is traversed, sudden contact will cause a large change in
the torque exercised on the load, causing undesirable bumps and possible
damages of the mechanical elements in contact. Furthermore, improperly
designed control for mechanical systems with backlash may cause undesired
vibrations, thus limiting performance and causing additional wear of the
mechanical parts.

The problem of controlling mechanical systems with backlash has been con-
sidered for a long time by the control community. Surveys of this topic
define the scopes of [Lag01] and [NG02]. A detailed treatment of different
approaches towards control and estimation of mechanical systems with back-
lash is given in [Lag04]. New developments have emerged in the theory of
hybrid systems, [MBB03], and (relatively) recent achievements in the area of
model predictive control (MPC), [BBBM05].

A natural way to model a mechanical system with backlash is to distinguish
between two operating modes, namely the “backlash mode”, when the two
mechanical parts are not in contact, and the “contact mode”, when the con-
tact between the two mechanical parts is established and the transmission
of the momentum takes place. The inherent switching between these two
modes makes this system a prime example of a hybrid system and motivates
the “hybrid approach” to modelling and control of mechanical systems with
backlash.

A model predictive control strategy is particularly convenient, when the sys-
tem to be controlled is subject to constraints. The explicit solution to an MPC
problem, which is obtained off-line, makes the application of this control
scheme possible also for systems requiring a fast control sampling rate. The
approach has proven to be successful for constrained linear systems, as well
as for a class of hybrid systems, namely piecewise affine (PWA) systems. The
application of MPC to mechanical systems containing backlash is particu-
larly attractive, since it enables a control design incorporating constraints
which could increase the safety and reduce the wear of mechanical parts,
while preserving satisfactory control performance. An application of MPC
to automotive powertrains with backlash has been reported in [LE05], where
the authors deploy a linear acceleration controller for the system in contact
mode and MPC to traverse the backlash gap.
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In this chapter, we demonstrate a comparative study of three different con-
trol strategies on a mechanical system with elastic shaft and backlash in
the transmission. We compare the performance of a classical LQR design
with a switched observer to MPC designed for a linear prediction model
(and applied to the actual system with backlash) and MPC designed using a
hybrid prediction model of the system. Unlike [LE05], we present a more holis-
tic approach by modelling the mechanical system as a hybrid system and
computing the explicit MPC for the entire system, i.e. we design a single
explicit MPC controller for both modes. The emphasis of the whole project
is on potential benefits that could be obtained by applying MPC to such
systems, in particular, related to the satisfaction of different constraints. Fur-
thermore, our aim is also to demonstrate a systematic hybrid control design
procedure based on freely available MPC controller design tools, [KGBM04]
and [Löf04]. In the comparison, both performance and complexity of the
controllers are taken into account.

This chapter is structured as follows. After a brief description (Section 7.2)
of the physical system at hand, Section 7.3 describes the modelling of the
experimental system in terms of a PWA system as well as the parameter
estimation. In Section 7.4 a switched observer is introduced to recover un-
measurable states. After describing the design of different controllers and
their complexity in Section 7.5, a comparison of experimental results (Sec-
tion 7.6) is given.

7.2 Mechanical System with Backlash

In order to be able to evaluate control and estimation results not only in the-
ory, but in a real application, a laboratory physical model of a mechanical
system with backlash has been constructed. This laboratory setup, which
models an automotive powertrain system, can be seen in Figure 7.1. The
main elements of the experimental system are two rotating masses, the back-
lash element, a spring, two DC motors and two encoders which provide
position measurements. The system is driven by one motor while the other
motor of the same type is used on the load side. The rotating masses repre-
sent the inertia of the motor and the load. The spring connecting both sides
(see Figure 7.1) has been included to model the flexibility of the shaft. In
contrast to automotive powertrains, where shafts are usually rather stiff, we
have chosen an elastic shaft, to make the laboratory-scale experiment more
demanding. The backlash gap size of the backlash element can be changed
to four different values, either 2◦, 4◦, 6◦ or 10◦. The measured signals are
the angles of the motor shaft θm and the load shaft θl , which are obtained
from two incremental encoders with a resolution of 2000 counts per revolu-
tion, i.e. approximately 0.0031 rad. This resolution is sufficient to measure

83



7 Mechanical System with Backlash

Figure 7.1: The experimental setup of a mechanical system with backlash.

the position of the system in backlash mode for the smallest backlash gap
used (2◦ ≈ 0.035 rad). However, if only sensors with a lower resolution are
available, Kalman filters as proposed by [LE03a] can be used.

7.3 Modelling and Parameter Identification

The mechanical system with backlash, which is described in Section 7.2, has
been modelled using a first-principle model. The modelling and parameter
identification procedure is illustrated in this section.

Modelling of Hybrid Systems

Recognizing the hybrid nature of the system makes the process of modelling,
control and state estimation more accurate and systematic. The models pre-
sented will be given in the form of piecewise-affine (PWA) systems

xk+1 = fPWA(xk, uk) = Ajxk + Bjuk + f j, if
[

xk
uk

]
∈ Dj, (7.1a)

with

Dj :=

{[
x
u

]
∈ R

nx+nu

∣∣∣∣∣ Px,jx + Pu,ju ≤ pj

}
(7.1b)

where k ∈ N denotes the discrete time, xk ∈ Rn the state vector, uk ∈ Rm the
control vector and

{
Dj
}nD

j=1 a bounded polyhedral partition of the state-input
space. The polyhedral inequalities Px,jx + Pu,ju ≤ pj define both regions in
which a particular state-update equation is valid as well as constraints on the
state and input variables. Aj, Bj, Px,j, Pu,j and f j, pj are real matrices or real
vectors of appropriate dimensions. Under some technical assumptions, the
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Figure 7.2: Schematic representation of a rotating mechanical system with backlash.

PWA system representation is equivalent to several other models of hybrid
systems and one can convert one into the other, [HdSB01].

Backlash Model

A schematic representation of the rotating mechanical system with backlash
is shown in Figure 7.2. The motor M1 is the driving motor. The second
motor, M2, can be used to model disturbance torques caused e.g. by different
road friction. The angle, rotational speed and torque are denoted by θm, ωm
and Tm for the motor shaft, likewise θl , ωl and Tl for the load shaft. The
inertia Im represents the motor flywheel, whereas the inertia Il represents the
load. The dampers bm and bl represent viscous friction. The spring-damper
combination with spring coefficient c and damping factor b models a flexible
shaft with damping.An important parameter in a rotating mechanical system
with backlash is the size of the backlash gap, which shall be denoted as 2α.
The position in the backlash gap is denoted by θb. The torque of the shaft
connecting the spring-damper and the backlash element is denoted by Tsh.

The configuration of Figure 7.2 can be described approximately by the fol-
lowing differential equations, using balance of moments:

Imω̇m = −bmωm + Tm − Tsh , (7.2a)
Ilω̇l = −blωl + Tsh + Tl . (7.2b)

The load torque Tl acts as a disturbance and is considered to be zero under
nominal conditions. When shaft damping is taken into account, the shaft
torque, Tsh, is given by

Tsh =

{
c(Δθ − θb) + b(ωm −ωl) (Contact)
0 (Backlash)

(7.3)

Here, the angle Δθ := θm − θl is the total shaft displacement. The backlash
position angle θb can be described by the following nonlinear differential
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Figure 7.3: Distribution of backlash and contact mode. Thick line: contact mode,
white space: backlash mode

equation, [NGG97],

θ̇b =

⎧⎨
⎩

max[0, Δθ̇ + c
b(Δθ − θb)] if θb = −α

Δθ̇ + c
b(Δθ − θb) if |θb| < α

min[0, Δθ̇ + c
b(Δθ − θb)] if θb = α

, (7.4)

where α is half the backlash gap size. From this differential equation for θb
conditions can be derived which define when the system is in backlash mode.
The system is in backlash mode if one of the following three conditions holds

|θb| < α , (7.5a)

θb = α ∧ Δθ̇ +
c
b
(Δθ − θb) < 0 , (7.5b)

θb = −α ∧ Δθ̇ +
c
b
(Δθ − θb) > 0 . (7.5c)

Conditions (7.5b) or (7.5c) become true when the system is in positive or neg-
ative contact mode, respectively, and the backlash elements starts to move
away from the driving shaft. The distribution of the backlash and the contact
mode vs. the backlash angle θb and its derivative θ̇b is visualized in Figure 7.3.
While the contact mode is marked by the two thick lines, the backlash mode
consists of the remaining reachable space.

This leads to the state update equation:

ẋ(t) =

⎧⎨
⎩

Acox(t) + Bu(t) (Positive contact)
Abl x(t) + Bu(t) (Backlash)
Acox(t) + Bu(t) (Negative contact)

(7.6)

where the state is x =
[

ωm ωl θm θl θb
]T , and the system matrices are
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given by

Aco =

⎡
⎢⎢⎢⎢⎢⎣

− bm+b
Im

b
Im

− c
Im

c
Im

c
Im

b
Il

− bl+b
Il

c
Il

− c
Il
− c

Il
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , Abl =

⎡
⎢⎢⎢⎢⎢⎣

− bm
Im

0 0 0 0
0 − bl

Il
0 0 0

1 0 0 0 0
0 1 0 0 0
1 −1 c

b − c
b − c

b

⎤
⎥⎥⎥⎥⎥⎦ ,

B =
[

K
Jm

0 0 0 0
]T

.

Note that since Δθ̇ = ωm−ωl can be expressed in terms of the state variables,
Equation (7.4) together with Equation (7.6) describes a continuous-time PWA
system defined over a polyhedral partition. For using discrete-time model
predictive control, the continuous model from Equation (7.6) still has to be
discretized. This can be done for each linear subsystem separately either
straightforward via the Euler discretization or with a more sophisticated
discretization algorithm. Finally, a discrete-time hybrid model

xk+1 =

⎧⎨
⎩

Ãcoxk + B̃uk (Positive contact)
Ãbl xk + B̃uk (Backlash)
Ãcoxk + B̃uk (Negative contact)

(7.7)

can be obtained where the ˜ denotes matrices of the corresponding linear,
discrete-time model.

One should be aware that the discretization of continuous-time PWA mod-
els introduces some modelling errors; mode changes for instance can be
reflected by a continuous-time PWA model at any time, whereas they can
only be reflected at each sampling instance by a discrete-time PWA model.
The discrete-time PWA model (7.7) is thus only an approximation of the
continuous-time model (7.6).

The PWA model (7.7) was described in the modelling language HYSDEL,
alongside Matlab, [TBB+02]. For the simulation of PWA systems and the
design and simulation of controllers for PWA systems the Multi-Parametric
Toolbox (MPT) was used, see [KGBM04].

A linear prediction model of the mechanical system with backlash can be
obtained by ignoring the backlash gap, and thus by considering solely the
contact mode of the discrete-time PWA model (7.7), resulting in the linear
state-update equation

xk+1 = Ãcoxk + B̃uk . (7.8)
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Parameter Identification

In order to identify the parameters for the model, the backlash element
was removed from the experimental system and the shafts were connected,
[Alt07]. This leads to a system with almost linear behaviour governed by the
following differential equations:

Imω̇m = −bmωm − c(θm − θl)− b(ωm −ωl) + Tm , (7.9a)
Ilω̇l = −blωl + c(θm − θl) + b(ωm − ωl) . (7.9b)

The numerical values for the parameter can now be obtained using linear
identification methods, e.g. with the System Identification Toolbox, [Lju06].
Since we used a first principle modelling approach, the parameters of the
linear system are the same as the corresponding contact mode parameters in
the hybrid model. Therefore, the identified parameters of the linear system
can be used in the hybrid model that includes backlash. Afterwards the
backlash mode parameters can be extracted by means of physical relations.
For the identification of the system in contact mode, a pseudo-random binary
signal has been used with an amplitude of ±5 V.

7.4 State Estimation

In the experimental setup considered here, only the motor and load posi-
tions are directly available through measurements. For the purpose of state-
feedback control, the remaining states, i.e. the position in backlash θb and
the rotational speed of motor and load, ωm and ωl , need to be estimated.
This motivates the design of a state estimator as described in this section.

In applications where the switching signal is assumed to be available or
can be derived easily by observing sign changes in the motor input signal,
switching between linear observers can be used to recover the states of the
system, [AC01]. Due to the high elasticity of the spring in the experimental
system at hand, a considerable time delay between sign changes in the input
signal and the actual switching may occur. In order to cope with this, a
switching observer is designed, which does not rely on an external switching
sequence, [LE03b].

The size of the backlash gap 2α is considered to be known. However, in
general this gap size may be unknown. In these cases this parameter can
either be identified in the model identification process or estimated during
the system operation. In [LE03b] it is argued that in most cases on-line
estimation is the only feasible option.
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Since the piecewise affine model (7.6) comprises only two distinct linear dy-
namics, the design of an extended Kalman filter (EKF) is similar to the design
of two Kalman filters, one for each linear dynamic. A linearization of the
nonlinear dynamics at each time step in a classical EKF is nothing more
than using the linear dynamics valid in each region. The advantage of this
decoupled design, proposed in [LE03b], is that linear steady state gains can
be calculated as stationary solutions to the Riccati equation. In general this
is not possible in EKF design.

For the switched observer we choose the following structure

˙̂x(t) =

{
Acox̂(t) + Bu(t) + L1Δy(t) (Contact)
Abl x̂(t) + Bu(t) + L2Δy(t) (Backlash)

, (7.10a)

ŷ(t) =
[
0 0 1 1 0

]
x̂(t), (7.10b)

and the switching conditions:

(Contact) :
{

θ̂b = −α ∧ ω̂m − ω̂l + c
b(Δθ̂ − θ̂b) < 0

∨ θ̂b = α ∧ ω̂m − ω̂l + c
b(Δθ̂ − θ̂b) > 0

, (7.11a)

(Backlash) :

⎧⎨
⎩

θ̂b = −α ∧ ω̂m − ω̂l + c
b(Δθ̂ − θ̂b) ≥ 0

∨ |θ̂b| < α

∨ θ̂b = α ∧ ω̂m − ω̂l + c
b(Δθ̂ − θ̂b) ≤ 0

, (7.11b)

where x̂(t) = [ω̂m , ω̂l , θ̂m, θ̂l , θ̂b]
T ∈ R5 is the estimated state vector at

time t, Δy(t) = y(t) − ŷ(t) is the output estimation error at time t and the
real matrices L1, L2 ∈ R5×2 are Kalman filter gains, computed for each linear
subsystem separately. Following the notation above, the estimated difference
between motor and load angle is denoted by Δθ̂ = θ̂m − θ̂l .

While this rather straightforward state estimation scheme was shown to
work satisfactorily in an experimental validation, [Los07], there is still space
for future improvements. In a more sophisticated estimation setup, one
could e.g. follow the Luenberger-type observer approach in [JHW07], or
employ a moving horizon estimation scheme, [FMM02].

7.5 Controller Design

In this section the design of an explicit MPC controller based on the PWA
model presented in Section 7.3 is described. For the comparison we also
design an MPC controller based on the linear model (7.8) describing the sys-
tem in contact mode (i.e. ignoring the backlash mode). The goal we wish to
achieve with MPC is to track a speed reference for the load, while satisfying
certain constraints. A general description of MPC can be found in Section 4.5,

89



7 Mechanical System with Backlash

while more specific properties of the quadratic cost optimal control problem
for piecewise affine systems are discussed in Section 5.2. The model of the
mechanical system with backlash includes the position in backlash, θb, and
a single MPC controller based on this model is designed. This is in con-
trast to the approach described in [LE05], where MPC is combined with an
additional LQ controller. This incorporation allows us to use all available
information from the state observer presented in the previous section and
may lead to better control performance.

During operation, the following constraints need to be fulfilled:

|u| ≤ 5 V , (7.12a)
|θb| ≤ α = 5◦ , (7.12b)

|Δω| ≤ π

2
rad/s , (7.12c)

where the last one, Equation (7.12c), is added as a soft constraint in the MPC
design. We introduce constraints on the difference between ωm and ωl in or-
der to reduce the impact forces between the mechanical parts when travers-
ing from backlash to contact mode. While it is physically impossible to
exceed the input and the backlash angle constraints (7.12a) and (7.12b), the
safety constraint on Δω may be violated. In order to avoid feasibility prob-
lems that might occur from this constraint, we define this constraint on the
speed difference as a soft constraint. In the sequel we will sometimes refer
to this constraint as safety constraint.

Since we are interested only in the reference tracking of a particular state (the
speed of the load ωl), we modify the general formulation by augmenting the
state vector in the following way:

xaug,k :=
[
ωm,k ωl,k Δθk θb,k uk−1 ωl,ref

]T ∈ R
6 ,

where k ∈ N denotes discrete time, Δθk := θm,k − θl,k is the relative angle
between motor and load shaft, uk−1 is the control input in the previous
sampling interval and ωl,ref is a reference value for the rotational speed of
the load. Instead of computing the steady-state values for uk, we use ΔUk :=
{Δuk , . . . , Δuk+Nc−1} with Δuk+i := uk+i − uk+i−1, i = 0, . . . , Nc − 1, as the
optimization variable. The formulation of the underlying CFTOC problem
is the following:

min
ΔUk,s

‖s‖2
qs

+
N−1

∑
i=0
‖ωl,k+i −ωl,ref‖2

Q +
Nc−1

∑
i=0

‖Δuk+i‖2
R , (7.13a)

s.t. xaug,k+i+1 = fDYN(xaug,k+i, uk+i) , i = 0, . . . , N − 1 , (7.13b)
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|ωl,k+i −ωm,k+i| ≤ Δωmax + s , i = 0, . . . , N − 1 , (7.13c)
s ≥ 0 , (7.13d)
(7.12a) and (7.12b) , (7.13e)

where s is a slack variable introduced to enforce the soft constraints and
Δωmax is the maximal difference allowed between the rotational speeds at
the load and the motor. The abbreviations ‖x‖2

Q := xTQx were used.

The state-update function fDYN may be easily derived from the PWA model
(7.7) or the linear model (7.8), respectively. For all control schemes a large
weight is put on the term penalizing the tracking error in the cost function.
For MPC we used a prediction horizon N = 4 and discrete-time models with
a sampling period of Ts = 0.04 s.

Several measures were necessary to reduce the complexity of the explicit so-
lution sufficiently to be able to evaluate the control law within the sampling
time. The augmentation of the state vector, needed for the tracking of arbi-
trary references, increases the dimension of the explicit solution. In order
to reduce the complexity of the parametric problem, a prediction model of
lower order is employed, where the absolute shaft angles are substituted by
the relative angle, Δθ = θm − θl (compare xaug,k).

Furthermore, a move-blocking strategy with the control horizon Nc = 2 is
used, i.e. the optimization problem (7.13) is simplified by considering only
uk and uk+1 as optimization variables and set the value uk+i = uk+1 for
i = 2, . . . , N − 1. The move-blocking strategy introduces more constraints to
the CFTOC problem, and thus results in some suboptimality of the solution
and a potential reduction of the feasible set. On the other hand, the move-
blocking strategy was able to reduce the number of regions of the explicit
hybrid MPC controller from 21593 to 3289, i.e. by a factor of more than 6.

After the controller computation the region removal algorithm from Chap-
ter 6 was applied, which resulted in the removal of merely 78 regions. One
should note that the move-blocking strategy renders many switching se-
quences infeasible, since the future control control actions are set to an equal
value. Consequently the potential for a region removal is already quite low,
which explains the low number of identified redundant regions. With the
described setup, we obtained an explicit MPC based on the hybrid model
comprising 3211 polyhedral regions in 6 dimensions. With the linear pre-
diction model, the obtained explicit linear MPC controller comprises 101
polyhedral regions.
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Figure 7.4: Experimental results: State evolution of the backlash system under LQ
control.

7.6 Comparison of Different Control Strategies

This section describes the comparison of different control strategies applied
to the mechanical system with backlash. As mentioned in the introduction,
the performance of a standard LQ controller shall be compared to MPC
based on the constrained linear model and to MPC using the hybrid PWA
model of the backlash system, as described in Section 7.5. Therefore a control
experiment is considered where the control aim is to have the load shaft
follow a certain speed reference trajectory.

The experiments were conducted on the laboratory-scale system using Mat-
lab Real-Time Workshop with xPC Target. A computer, connected to the
experimental system was used to run observer and controller. The sampling
time of this xPC Target platform was chosen to be Tsim = 5 ms in order to
obtain appropriate state estimations, whereas the MPC controllers were up-
dated every Ts = 40 ms. All three controllers have been tuned in such a
way, that they show a similar performance in tracking the reference signal.
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Figure 7.5: Experimental results: State evolution of the backlash system under linear
MPC.

Therefore, the evaluation of these three control strategies can be done by
considering the complexity issue and the satisfaction of constraints (7.12).

LQ control with a switching observer admits a very simple control law and
provides a satisfying tracking performance. However, the constraint (7.12c)
on the speed difference between the load and the motor cannot be enforced
without sacrificing performance. While the LQ controller was tuned less
aggressive than the MPC controllers, the closed-loop behaviour shows a sig-
nificant violation of the safety-constraint, see Figure 7.4.

MPC based on the linear model (Figure 7.5) is relatively simple in structure
and shows a satisfying control performance. While being tuned more aggres-
sively than the LQ controller and thus achieving a faster reference tracking,
the linear MPC controller nevertheless comes quite close to fulfilling the
safety constraint on Δω (Figure 7.5 (c)). However, violations of the safety
constraint still occur. Moreover there are small overshoots whenever the ex-
perimental system enters the backlash mode. This comes as no surprise since
the backlash mode is not included in the linear prediction model.
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Figure 7.6: Experimental results: State evolution of the backlash system under hy-
brid MPC.

In order to reduce the occurrence of the spikes in Δω even further and to im-
prove control performance, a full hybrid model was used for the predictions,
leading to a hybrid MPC framework as described in Section 7.5. A faster,
smoother response and a slight reduction of safety constraint violations can
be observed (Figure 7.6). Knowledge of the backlash mode seems to be able
to remove the small overshoots during the mode transitions. Nevertheless,
the hybrid MPC controller is not capable to consistently satisfy the safety
constraint.

7.7 Addendum: Robustness Issues

When we published the result of this project initially in [RBB+07], we re-
ported robustness issues with the hybrid MPC approach, which in some
runs led to performance degradations and occasionally even to a loss of sta-
bility. After the publication of [RBB+07], the robustness issues of the hybrid
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MPC approach were analyzed in detail, [Chu08]. It turned out that the be-
haviour was caused by a simple implementation error in a rate transition
block within Simulink, independent of the methods discussed previously.
Since this implementation error was removed the robustness issues disap-
peared entirely.

7.8 Conclusion and Outlook

A mechanical system with backlash has been specified and built, providing a
benchmark system for hybrid control and identification strategies with this
experimental setup. Modern control strategies for hybrid systems can be
verified and their realizability on a real system can be investigated. A hybrid
system benchmark problem was created, [Alt07], which can be accessed by
other researchers via the webpage

https://control.ee.ethz.ch/~backlash/

The full design cycle containing modelling, estimation and control design for
this rotational system with backlash has been performed. An observer, based
on [LE03b], was implemented and tested in experiments with the laboratory
setup. The aim was to design a controller that tracks the rotational speed
of the load shaft while minimizing bumps or damages that can occur when
the system is operated and backlash is not taken into account. This was
realized by constraining the difference in speed between the drive and the
load ωm −ωl .

Three different controllers were designed and investigated in a typical start-
stop scenario. A standard LQ controller, where constraints cannot be consid-
ered directly, was compared to model predictive control for a linear and a
hybrid model. The different effectiveness of the investigated controllers in
handling constraints was shown. While the constraints are violated signif-
icantly with LQ control, MPC with a linear model shows only small viola-
tions of the constraints. With a hybrid model, accounting for backlash in the
system, violations of the constraints could be reduced even further.

What are the lessons learnt? What can be deduced from this experiment to
the general application of hybrid control? The experiments on the mechan-
ical system with backlash have shown that considering the hybrid nature
of the system in the MPC scheme is a way to improve control performance
and constraint satisfaction of the system. However, the improvements over
the linear MPC scheme are not significant for the system at hand. In prac-
tice, the use of the more complex hybrid prediction model should at least
be put into question. This brings us to the more general question for factors
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which should influence the consideration of a certain mode in the prediction
model.

Compared to other systems affected by backlash, the selected size of the
backlash angle is quite high. Nevertheless, the backlash is traversed within
a few time steps such that the prediction errors of the linear MPC approach
by not considering the backlash mode are rather low. The larger the size of
the backlash gap, the larger the possible benefit of including the backlash
mode on the control performance. Therefore the size of the backlash gap, or
in general the time spent in a certain mode, should influence the decision if
a mode is considered in the prediction model or not.

Another significant factor is the quality of estimation. Though the used
incremental encoders are accurate, it is not possible to measure the mode
of the system, due to the spring. Rather, the correct mode as well as some
of the system states have to be estimated. The hybrid control practitioner
should keep in mind that a sophisticated model of a hybrid system can be of
no use, if the mode and/or state of the hybrid system can not be measured
or estimated reliably.

Another factor are the nonlinearities of the system at hand. While the ben-
efits of considering the hybrid nature of the backlash system in the MPC
scheme were demonstrated, there is still space for improvements, especially
the constraint on the speed difference is not guaranteed with the current
scheme. This can be explained by the fact that the hybrid model is only an
approximation of the true dynamic behaviour of the system. Nonlinearities,
as they are caused by the DC motors and by occurring mechanical friction,
are not taken into account. The general question should be how large the in-
fluence of the hybrid nature of the system is in comparison to other neglected
nonlinearities. It might turn out that the neglected nonlinearities undermine
all efforts spent to model the hybrid modes of a system accurately. A robust
approach might be appropriate.
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‘The dream of cars driving
themselves is becoming a reality.
Before, the question was whether
it was possible. Now we know it
is.’

Sebastian Thrun

Autonomous steering of automobiles is the subject of interest in this
chapter. A case study on different MPC schemes for autonomous vehi-

cle steering is presented. The objective of this project was the reduction of
the online computational effort of the control scheme, while maintaining the
control performance of nonlinear MPC, [KFB+06]. For this task the nonlinear
lateral vehicle model was approximated by a linear model, a hybrid model
and a hybrid parameter-varying (HPV) model. A comparison between con-
trollers using prediction models varying from the full nonlinear model, as
an indication for the maximal achievable performance, to a linear model was
performed. In the investigated scenarios, the displacement of a car on an icy
road due to a side wind gust shall be mitigated, and a double lane-change
maneuver shall be performed autonomously. This project was supported
by the European Commission research project FP6-IST-511368 Hybrid Control
(HYCON).



8 Autonomous Vehicle Steering (I)

8.1 Introduction

In recent years, the number of road accident fatalities in developed countries
were on the decline. This is mainly due to the improved safety of automo-
biles and to the development of driver assistance systems like the Antilock
Braking System or the Electronic Stability Program. Nevertheless, road acci-
dents are still one of the major causes of death among young people. The
development and improvement of driver assistance systems is consequently
an area of active research.

Autonomous Vehicle Steering is a driver assistance system which could not
only support the driver in emergency situations and thus improve road traf-
fic safety, but it could also be part of an autonomous driving system replac-
ing the driver in a long-term perspective. Contrary to the aforementioned
systems, autonomous steering does not utilize the brakes but the steering
angle of the wheels to control the lateral dynamics and thus the vehicle tra-
jectory.

Trigonometric relations between angles and forces lead to a nonlinear control
problem, further complicated by the presence of varying road friction and
longitudinal dynamics, which influence the lateral dynamics of the vehicle.
Robust control techniques are one possible way to deal with these complica-
tions. The application of robust control techniques for autonomous steering
has been studied intensively, for instance in [AGS+95, Ack99, STS04].

Keviczky et al. presented a way to apply nonlinear model predictive control
(MPC) to autonomous vehicle steering, [KFB+06]. This predictive control
approach is able to achieve high performance while respecting constraints
on the state and the input signal. For this purpose, a nonlinear model to-
gether with the commercial solver NPSOL is used for the nonlinear optimiza-
tion. Although remarkable control performance could be achieved, the high
computational burden is a drawback for practical implementations.

In this chapter, three simplified models are derived, all of them allow the
use of quadratic programming (QP) solvers instead of nonlinear programming
(NP) solvers, and thus a reduction in computational complexity. The em-
phasis lies on a hybrid parameter-varying model with parameter-varying
system matrices to improve the accuracy of the model. As a direct competi-
tor a purely hybrid model with constant system matrices in each region is
considered. The improvements due to the hybrid nature of the aforemen-
tioned models are illustrated in a comparison to a linear model. The MPC
schemes are compared in two simulated driving scenarios.

This chapter is structured as follows. Section 8.2 shows how to derive the
nonlinear model of the lateral vehicle dynamics and its approximation by
a piecewise affine parameter-varying model, a piecewise affine model and
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Figure 8.1: Scheme for single-track model.

a linear model, [JR03]. In Section 8.3, the design of the compared MPC
schemes is exposed. The application of the MPC schemes in a side wind
rejection scenario is examined in Section 8.4. Section 8.5 presents the appli-
cation of the model predictive control schemes to the double lane-change
maneuver and the required adaptations to the MPC schemes. Finally conclu-
sions are drawn.

8.2 Modelling

This section describes the modelling of the lateral vehicle dynamics. Firstly,
a nonlinear model is derived, which is then approximated by two hybrid
models, one of them parameter dependent, and one linear model.

Nonlinear Model

A nonlinear model of the lateral dynamics has been presented in [KFB+06].
In order to clarify our approximations of this nonlinear model, its derivation
is stated in this section. Figure 8.1 shows a standard single-track model of a
car, as derived in [MA91]. Here, the width of the car is neglected and only
the length is considered. The distance between the centre of mass and the
front wheels is a and the distance to the rear wheels is b. The model assumes
the mass to be centred. All forces and moments are transformed to this

99



8 Autonomous Vehicle Steering (I)

centre of mass in order to obtain ordinary differential equations describing
the lateral motion. Two coordinate systems are defined, one relative to the
car position, (x, y, ψ), and one fixed to the road, (X, Y, ψ).

A balance of the moments and forces leads to the following differential equa-
tions:

mÿ = −mvxψ̇ + 2Fy, f + 2Fy,r + Fw , (8.1a)

Iψ̈ = 2aFy, f − 2bFy,r + Mw . (8.1b)

The external moment Mw and force Fw model the effect of sidewind, acting
on the car’s body. The dependence on the wind speed vw is assumed to be

Fw =
2.5π

2
v2

w , (8.2)

Mw =

(
2.5π

2
− 3.3

(π

2

)3
)

v2
w +

a− b
2

Fw . (8.3)

The forces Fy,i in (8.1), where i = { f , r} denotes the front or rear wheels,
are the transformed tire forces, resulting from the contact between tire and
ground,

[
Fx,i
Fy,i

]
=

[
cos(δi) − sin(δi)
sin(δi) cos(δi)

] [
Fl,i
Fc,i

]
. (8.4)

The most important part of the lateral vehicle model is the contact behaviour
of the tires with the ground. Several studies have investigated the behaviour
of the contact forces for different road conditions and tire geometries. It can
be distinguished between two basic types of tire models, static and dynamic
tire models. In this project the tire dynamics are neglected and the static
Pacejka tire model is used, [BNP87, BO97].

In the Pacejka tire model, the longitudinal and corner forces Fl,i, Fc,i for all
tires are calculated as functions of the slip ratio si, the adhesion coefficient
μ, the slip angle αi and the normal tire forces Fz,i. The slip ratio si is de-
fined as the difference between the actual longitudinal velocity at the axle of
the wheel and the equivalent rotational velocity of the tire, see e.g. [Raj06].
Assuming constant normal tire forces leads to the force dependencies

Fl,i = Fl,i(αi, si, μ), Fc,i = Fc,i(αi, si, μ), i = { f , r} .

The cornering and longitudinal tire forces Fc,i and Fl,i are the main nonlinear-
ities in the lateral dynamical system (8.1). The exact shape of the assumed
nonlinear relations are provided by the Pacejka tire force model. As an exam-
ple for the shape of the tire forces in the Pacejka tire force model, Figure 8.2
shows the corner tire force Fc,i for μ = 0.9.
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Figure 8.2: Cornering tire force Fc, f (α f , s f ) as function of slip angle α f and slip s f for
μ = 0.9.

As illustrated in Figure 8.1, the slip angles αi depend on the longitudinal and
lateral speed of the tires:

αi = tan−1
(

vc,i

vl,i

)
. (8.5)

These velocities again relate to the velocity of the vehicle in the following
way:

vl, f = (ẏ + aψ̇) sin(δ f ) + vx cos(δ f ) , (8.6a)

vc, f = (ẏ + aψ̇) cos(δ f )− vx sin(δ f ) , (8.6b)

vl,r = (ẏ− bψ̇) sin(δr) + vx cos(δr) , (8.6c)
vc,r = (ẏ− bψ̇) cos(δr)− vx sin(δr) . (8.6d)

Using the state vector
x =

[
Y Ẏ ψ ψ̇

]T ,

where Y belongs to the fixed coordinates and is related to the car coordinates
via

Ẏ = vx sin(ψ) + ẏ cos(ψ) , (8.7)

we conclude from (8.5) – (8.7) that αi = αi(x, δi) and consequently Fy,i =
Fy,i(x, δi , si, μ). Moreover, the lateral vehicle dynamics can be modelled by
nonlinear differential equations including (8.1) – (8.7). The resulting system
is visualized in a block diagram in Figure 8.3, and can be stated as

d
dt

⎡
⎢⎢⎣

Y
Ẏ
ψ
ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ẏ
1
m(2Fy, f + 2Fy,r + Fw) cos(ψ) + (vx sin(ψ)− Ẏ)ψ̇ tan(ψ)

ψ̇
1
J (2aFy, f − 2bFy,r + Mw)

⎤
⎥⎥⎥⎦ .

(8.8)

101



8 Autonomous Vehicle Steering (I)

y

output
Systemx

vw

dynamics
SystemFy,i

μsi

αi

Tire model
δi

Slip angle

Figure 8.3: Block diagram of the open-loop system.

Hybrid Parameter-Varying Model

This section describes the linearizations made to yield a hybrid parameter-
varying (HPV) model of the lateral car dynamics. Linear Parameter-Varying
(LPV) models and the design of LPV gain-scheduling controllers will be
described in detail in Chapter 9. For the moment it is sufficient to regard
HPV models as an extension of PWA models, inspired by LPV models. HPV
systems can be stated via

ẋ = Aj(θ)x + Bj(θ)u + f j(θ) ,
y = Cj(θ)x + Dj(θ)u ,

if
[

x
u

]
∈ Dj (8.9)

with the state x(t) ∈ Rnx , the input u(t) ∈ Rnu and the output y(t) ∈ R
ny ,

and where the index j = 1, . . . , nD denotes one of the parameter-dependent,
polyhedral regions

Dj :=

{[
x
u

]
∈ R

nx+nu

∣∣∣∣∣ Px,j(θ)x + Pu,j(θ)u ≤ pj(θ)

}

within the state-input space. The system matrices Aj(θ), Bj(θ), Cj(θ), Dj(θ)
and the affine term f j(θ) of each region Dj are not constant, but depend on
a time-varying parameter vector

θ(t) =
[
θ1(t) θ2(t) . . . θnθ

(t)
]
∈ Θ ⊆ R

nθ . (8.10)

The parameter vector θ(t) itself depends on a vector of scheduling variables
ρ ∈ R

nρ ,
θ(t) = fρ(ρ(t)). (8.11)

While the scheduling variables ρ are measured or estimated signals, Equa-
tion (8.11) allows the definition of an favourable parameter space Θ ⊆ Rnθ .

In order to obtain such a hybrid parameter-varying (HPV) model, the non-
linear model (8.8) is linearized. The following assumptions were made for
these linearizations:

102



8.2 Modelling

• constant longitudinal speed vx,

• constant normal tire forces Fz, f , Fz,r,

• small angles: ψ, δ f � 1,

• front wheel steering: sr = δr = 0 .

With these assumptions, system (8.8) can be linearized to

d
dt

⎡
⎢⎢⎣

Y
Ẏ
ψ
ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ẏ
1
m(2Fy, f + 2Fy,r + Fw)

ψ̇
1
J (2aFy, f − 2bFy,r + Mw)

⎤
⎥⎥⎥⎦ , (8.12)

where the lateral forces Fy,i can be computed from the longitudinal and cor-
ner forces of the tires via the linearized force transformation (cf. (8.4))

Fy,i = Fl,iδi + Fc,i , i ∈ { f , r} . (8.13)

These tire forces shall now be approximated. In the Pacejka tire force model,
the longitudinal and corner forces are nonlinear functions of the slip ratios
si, the slip angles αi and the friction coefficient μ. The slip angles αi are
depending in a nonlinear way on the state and input of the system, see (8.5)
and (8.6). These relations can be linearized to

α f = −δ f − ψ + (Ẏ + aψ̇)/vx , (8.14a)

αr = −δr − ψ + (Ẏ− bψ̇)/vx , (8.14b)

where the relation between car coordinate ẏ and global coordinate Ẏ from
(8.7) has been linearized to

Ẏ = ẏ + vxψ . (8.15)

The hybrid parameter-varying model (8.9) is piecewise-affine in its state x
and its control input u, whereas its system matrices can depend on the sched-
uling signals ρ in any functional manner. In our case the control input u is
the steering angle δ f such that the longitudinal forces Fl,i contribute to the
input matrix B(θ), see (8.13). From (8.12) to (8.14b) follows that in order to
obtain a model which depends on the state x and the control input δ f in a
piecewise affine manner, we have to approximate the longitudinal tire forces
Fl,i to be independent of the slip angles αi.

The selected approximations of the tire forces are illustrated in the following
figures. The longitudinal force Fl, f can be approximated by evaluating the
Pacejka tire force for α f = 0. Figure 8.4 shows the longitudinal force Fl, f and
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Figure 8.4: Longitudinal tire force of the front wheels Fl, f (− · −) and its approxi-
mation F̂l, f (—) vs. slip ratio s f . The arrows point into the direction of
increasing slip angle α f .
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Figure 8.5: Corner tire force for rear wheels Fc,r (− · −) and its approximation F̂c,r
(—) vs. slip angle αr.

the selected approximation F̂l, f vs. s f for two different values of the friction
coefficient μ. The approximation of the longitudinal force Fl,r can be set to
zero as δr is zero, cf. (8.13).

The approximations of the corner forces Fc, f and Fc,r, as shown in Figure 8.5
and Figure 8.6, can depend on αi in a piecewise affine way, since they are
not multiplied by the control input δ f in (8.12). The hybrid aspect of the
HPV model makes it particular suitable to model the saturating effects of
the cornering forces. Note that the approximation of Fc, f is far more difficult
as Fc, f depends on three variables (α f , s f and μ), whereas Fc,r only depends
on two (sr = 0).

Finally, the force approximations can be stated as piecewise affine functions
of the slip angles,
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(a) Approximation F̂c, f for μ = 0.9.
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(b) Approximation error for μ = 0.9.

Figure 8.6: Approximation of cornering tire force for front wheels Fc, f and approxi-
mation error vs. slip angle α f and slip ratio s f for μ = 0.9.

F̂c, f = θ1α f + θ2 , F̂l, f = θ5 , (8.16a)

F̂c,r = θ3αr + θ4 , F̂l,r = 0 , (8.16b)

where the scheduling parameters θ1, . . . , θ5 depend on the scheduling signals
ρ = [s f μ vw]T, and on possible saturations of the force approximations

F̃c, f = c1(exp(
c2μ

|s f + ε|+ c3
)− 1)α f , (8.17)

F̃c,r = k1(exp(k2μ)− 1)αr , (8.18)

using the coefficients c1, c2, c3, k1, k2.

Inserting the force approximations (8.16) into the linearized model (8.12)
yields the matrices of the Hybrid Parameter-Varying Model:

Aj(θ) =

⎡
⎢⎢⎢⎣

0 1 0 0
0 2(θ1+θ3)

mvx

−2(θ1+θ3)
m

2(θ1a−θ3b)
mvx

0 0 0 1

0 2(θ1a−θ3b)
Jvx

−2(θ1a−θ3b)
J

2(θ1a2+θ3b2)
Jvx

⎤
⎥⎥⎥⎦ , Bj(θ) =

⎡
⎢⎢⎢⎣

0
2(θ5−θ1)

m
0

2a(θ5−θ1)
J

⎤
⎥⎥⎥⎦

f j(θ) =

⎡
⎢⎢⎢⎣

0
2θ2+2θ4+θ6

m
0

2aθ2−2bθ4+θ7
J

⎤
⎥⎥⎥⎦ , Cj(θ) = I4 , Dj(θ) = O4 , (8.19)

with the scheduling parameters
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θ1 =

⎧⎪⎨
⎪⎩

c6 , F̃c, f > c5μ

c1(exp(
c2μ

|s f +ε|+c3
)− 1) , |F̃c, f | < c5μ

c6 , F̃c, f < −c5μ

(8.20a)

θ2 =

⎧⎨
⎩

c4μ , F̃c, f > c5μ

0 , |F̃c, f | < c5μ

−c4μ , F̃c, f < −c5μ

(8.20b)

θ3 =

⎧⎨
⎩

k4 , F̃c,r > k5μ
k1(exp(k2μ)− 1) , |F̃c,r| < k5μ

k4 , F̃c,r < −k5μ
(8.20c)

θ4 =

⎧⎨
⎩

k3μ , F̃c,r > k5μ
0 , |F̃c,r| < k5μ

−k3μ , F̃c,r < −k5μ
(8.20d)

θ5 = Fl, f (α f = 0) , (8.20e)

θ6 = Fw , θ7 = Mw , (8.20f)

and with the constants c1, . . . , c5 and k1, . . . , k5.

The values of the scheduling parameters depend solely on the scheduling
signals, θ = fρ(ρ), whereas the distinction of the hybrid modesDj is not only
depending on the scheduling signals ρ, but for each value of the scheduling
signal a polytopic function in the state space. Taking into account that the
distinction of cases for the parameters in (8.20) yields 9 different modes, it
becomes clear that the model (8.19) - (8.20) is indeed a hybrid parameter-
varying model of the form (8.9). Note also that Cj(θ) = I4 and Dj(θ) =
O4 are constant matrices while Aj(θ), Bj(θ) and f j(θ) are parameter-varying
with θ = [θ1, . . . , θ7]

T as parameters.

Hybrid Model

The following section describes the hybrid model derived from the HPV
model (8.19) - (8.20). The HPV model makes use of parameter-varying sys-
tem matrices to adjust to different values of the scheduling variables si, μ and
vw. The parameter dependence facilitates a more accurate model, but at the
price of non-constant system matrices. In order to achieve a hybrid model
with multiple, but parameter-independent system matrices, the scheduling
variables are replaced by constant values. The following values have been
chosen:

s f = 0 , μ = 0.1 , vw = 0 m/s .
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8.2 Modelling

The front slip ratio and the sidewind speed have been set to s f = vw = 0,
because this represents their average values. The road friction on the other
hand has been fixed to μ = 0.1, which means the controller is assuming to
drive permanently on ice. The worst case is assumed here to ensure accuracy
and thus safety on icy roads, albeit at the price of a worse performance when
driving on roads with higher adhesion.

By fixing the scheduling variables in (8.20), the parameters are restricted to
discrete values, such that we obtain the Hybrid Model:

Aj =

⎡
⎢⎢⎢⎣

0 1 0 0
0 2(θ1+θ3)

mvx

−2(θ1+θ3)
m

2(θ1a−θ3b)
mvx

0 0 0 1

0 2(θ1a−θ3b)
Jvx

−2(θ1a−θ3b)
J

2(θ1a2+θ3b2)
Jvx

⎤
⎥⎥⎥⎦ , Bj =

⎡
⎢⎢⎢⎣

0
2(θ5−θ1)

m
0

2a(θ5−θ1)
J

⎤
⎥⎥⎥⎦

f j =

⎡
⎢⎢⎢⎣

0
2θ2+2θ4+θ6

m
0

2aθ2−2bθ4+θ7
J

⎤
⎥⎥⎥⎦ , Cj = I4 , Dj = O4 , (8.21)

with the discrete parameter values

θ1 =

⎧⎪⎨
⎪⎩

c6 , F̃c, f > 0.1c5

c1(exp( 0.1c2
|ε|+c3

)− 1) , |F̃c, f | < 0.1c5

c6 , F̃c, f < −0.1c5

(8.22a)

θ2 =

⎧⎨
⎩

0.1c4 , F̃c, f > 0.1c5
0 , |F̃c, f | < 0.1c5

−0.1c4 , F̃c, f < −0.1c5

(8.22b)

θ3 =

⎧⎨
⎩

k4 , F̃c,r > 0.1k5
k1(exp(0.1k2)− 1) , |F̃c,r| < 0.1k5

k4 , F̃c,r < −0.1k5

(8.22c)

θ4 =

⎧⎨
⎩

0.1k3 , F̃c,r > 0.1k5
0 , |F̃c,r| < 0.1k5

−0.1k3 , F̃c,r < −0.1k5

(8.22d)

θ5 = Fl, f (α f = 0) , (8.22e)

θ6 = 0 , θ7 = 0 , (8.22f)

and with the constants c1, . . . , c5 and k1, . . . , k5. In contrast to the nonlinear
and the HPV model, online information about the current scheduling signal
ρ = [s f μ vw]T is not required by the hybrid model.
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Linear Model

Finally, a linear model of the lateral dynamics is considered. This model can
be obtained from the hybrid model (8.21) - (8.22) by neglecting the saturating
effects of the tire forces. Subsequently no distinction of discrete modes is
considered in (8.22) and the hybrid model simplifies to the Linear Model:

A =

⎡
⎢⎢⎢⎣

0 1 0 0
0 2(θ1+θ3)

mvx

−2(θ1+θ3)
m

2(θ1a−θ3b)
mvx

0 0 0 1

0 2(θ1a−θ3b)
Jvx

−2(θ1a−θ3b)
J

2(θ1a2+θ3b2)
Jvx

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
2(θ5−θ1)

m
0

2a(θ5−θ1)
J

⎤
⎥⎥⎥⎦ ,

f =

⎡
⎢⎢⎢⎣

0
2θ2+2θ4+θ6

m
0

2aθ2−2bθ4+θ7
J

⎤
⎥⎥⎥⎦ , C = I4 , D = O4 , (8.23)

with the fixed parameter values

θ1 = c1(exp(
0.1c2

|ε|+ c3
)− 1) , (8.24a)

θ2 = 0 , (8.24b)
θ3 = k1(exp(0.1k2)− 1) , (8.24c)
θ4 = 0 , (8.24d)
θ5 = Fl, f (α f = 0) , (8.24e)

θ6 = 0 , θ7 = 0 (8.24f)

and with the constants c1, . . . , c5 and k1, . . . , k5.

8.3 Controller Design

In this section the design of four MPC controllers, using the discrete-time ver-
sions of the prediction models presented in Section 8.2, is described. Model
predictive control was chosen due to its straightforward design methodology
and its ability to deal with constraints, [GPM89]. For the simulation of the
car in the control scenario, the nonlinear model (8.8) is used. The objective is
to reduce the yaw angle ψ and the displacement Y of the car in a coordinate
system fixed with respect to the road, i.e. to keep the car on the road and
pointing in the desired direction.
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A standard MPC approach is applied using the quadratic cost function,

J(Uk; xk, ρk) =
N

∑
i=1
‖xk+i‖2

Q +
Nc−1

∑
i=0

‖Δuk+i‖2
R ,

which penalizes the predicted state vector xk =
[
Yk Ẏk ψk ψ̇k

]T ∈ R4

and the predicted input rate Δuk = Δδ f ,k ∈ R at time k ∈ N. For the
ease of notation we introduce the sequence of optimization variables Uk :=
{Δuk, Δuk+1, . . . , Δuk+Nc−1}. The scheduling variables ρk are assumed to stay
constant over the prediction horizon.

The following controller parameters yield reasonable simulation results. A
prediction horizon of N = 5 and a control horizon of Nc = 2 is chosen with
a sampling time of Ts = 0.05 s. The weights are chosen as

Q =

⎡
⎢⎢⎣

100 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ and R = 1 .

Using the above stated parameters, we can formulate the constrained finite-
time optimal control (CFTOC) problem, which is solved at each time step k,

min
Uk

J(Uk; xk, ρk) (8.26a)

s.t. umin ≤ uk+i ≤ umax, i = 0, . . . , N− 1 , (8.26b)
Δumin ≤ Δuk+i ≤ Δu max, i = 0, . . . , Nc − 1 , (8.26c)
uk+i = uk+i−1 + Δuk+i , i = 0, . . . , Nc − 1, (8.26d)
uk+i = uk+i−1, i = Nc, . . . , N − 1, (8.26e)
xk+i+1 = fDYN(xk+i , uk+i , ρk), i = 0, . . . , N− 1, (8.26f)

denoting the particular prediction model by fDYN. Note that a discretization
procedure has to be used to derive this discrete-time model fDYN from the
corresponding continuous-time model in Section 8.2. We employ a receding
horizon control strategy, i.e. only the first input uk = uk−1 + Δuk is applied at
time k, and another optimization is performed at the next time step.

Integral action is not regarded in the MPC schemes, because it mainly acts
in a time scale where control should remain a task of the driver, [Ack01]. See
Section 4.5 for more details on model predictive control.

It is a known issue in MPC that closed-loop stability is not guaranteed under
the control law computed as the solution to the CFTOC problem (8.26). This
is mainly due to the fact that we are optimizing over a limited time horizon,
while the long-term effects of the control actions are not taken into account.
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As discussed in Section 4.5, it is possible to extend the CFTOC formulation
by including terminal set constraints, xk+N ∈ XT and adapt the terminal cost
term. However, since augmentations of the CFTOC problem for ensuring sta-
bility usually lead to performance degradations, we did not include it in our
formulation. A detailed treatment of stability in MPC lies out of the focus of
this project and can be found e.g. in [MRRS00]. A recent application of an
MPC scheme to Active Steering with guaranteed stability is in [FBT+08].

Nonlinear Model Predictive Control

In the first MPC approach, the nonlinear model (8.8) is employed to predict
the behaviour of the system. Since model predictive control utilizes discrete-
time models, the nonlinear model (8.8) is discretized by an explicit Euler al-
gorithm (whereby discretization errors are introduced into the predictions).
The resulting nonlinear discrete-time model is inserted as fDYN(xk+i , uk+i , ρk)
in the CFTOC problem (8.26). The nonlinear model requires the scheduling
signal ρ to be measured or estimated by an underlying traction control sys-
tem. Since the future scheduling signal values are unknown, the scheduling
signal is assumed to stay constant, i.e. ρk = ρk+1 = · · · = ρk+N−1. At every
time instance k of the nonlinear MPC algorithm, the following actions are
executed:

1. Measure or estimate the current state xk and the current values of the
scheduling variables ρk =

[
s f ,k μk vw,k

]T.

2. Solve the CFTOC problem (8.26) using the discrete-time counterpart of
the nonlinear model (8.8) as prediction model fDYN(xk+i , uk+i , ρk). The
optimization is performed by the commercial solver NPSOL, [GMSW].

3. Apply the optimal control action u∗k .

4. Increment k.

Locally Linear Model Predictive Control

The second model employed for prediction is the hybrid parameter-varying
model (8.19) – (8.20). Hereby the HPV model is used to determine a local
linearization of the nonlinear system at each time step. Note that an online
linearization of the nonlinear model at each time instance is not performed,
but the HPV model is evaluated using the measured scheduling signal. In
order to obtain a linear approximation, the scheduling signal ρk as well as
the system matrices are assumed constant over the prediction horizon. More
precisely, in every time step k of the locally linear MPC algorithm, the fol-
lowing actions are executed:
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1. Measure or estimate the current state xk and the current values of the
scheduling variables ρk =

[
s f ,k μk vw,k

]T.

2. Evaluate the system matrices Aj(θk), Bj(θk) and f j(θk) in (8.19) to obtain
the current continuous-time linearization.

3. Discretize the current linearization with respect to time yielding the
prediction model fDYN(xk+i , uk+i , ρk).

4. Solve the resulting CFTOC problem (8.26). By assuming the system
matrices to stay constant over the prediction horizon, the CFTOC prob-
lem at hand is a quadratic program (QP). In order to solve this QP, the
solver CPLEX was chosen, using the Matlab interface Yalmip, [Löf04].

5. Apply the optimal control action u∗k .

6. Increment k.

Explicit Hybrid Model Predictive Control

As a third controller candidate, an explicit hybrid model predictive con-
troller was computed. For this purpose the hybrid model (8.21) – (8.22) was
discretized using an explicit Euler algorithm. With a discrete-time hybrid
model, the CFTOC problem (8.26) becomes a mixed-integer quadratic pro-
gram (MIQP). As discussed in Section 5.2, it is possible to solve the MIQP
parametrically in order to obtain an explicit controller which contains the op-
timal control law as a piecewise affine (PWA) function of the state, see also
[BBBM05]. The explicit controller can be stored in a look-up table and allows
a quick online access, thus leading to a reduction of computational effort. In-
stead of solving an optimization problem at each time step k, the look-up
table is evaluated. No online information about the scheduling variables is
needed. More information about explicit MPC can be found in Section 4.5.

The Multi-Parametric Toolbox (MPT) was used to solve the CFTOC problem
(8.26) parametrically with the discrete-time counterpart of the hybrid model
(8.21) – (8.22) as prediction model fDYN(xk+i , uk+i), [KGBM04]. The obtained
explicit hybrid MPC controller comprises 9669 regions.

Online, in every time step k of the explicit hybrid MPC algorithm, the fol-
lowing actions are executed:

1. Measure or estimate the current state xk.

2. Evaluate the precomputed look-up table to obtain the optimal control
action u∗k .

3. Apply the optimal control action u∗k .
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4. Increment k.

Explicit Linear Model Predictive Control

Finally the linear model (8.23) – (8.24) from Section 8.2 was used for model
predictive control. Again the model was discretized to obtain an discrete-
time model for the predictions. With a linear discrete-time model, the CFTOC
problem (8.26) becomes a QP, which can be solved parametrically since the
system matrices are constant. Analogue to the explicit hybrid MPC ap-
proach, an explicit linear MPC controller comprising 145 regions was com-
puted using the discrete-time counterpart of the linear discrete-time model
(8.23) – (8.24). Online, the procedure in every time step k of the explicit linear
MPC algorithm does not differ from the explicit hybrid MPC approach:

1. Measure or estimate the current state xk.

2. Evaluate the precomputed look-up table to obtain the optimal control
action u∗k .

3. Apply the optimal control action u∗k .

4. Increment k.

8.4 Side Wind Rejection Scenario

This section shows the simulation results for the four previously described
model predictive controllers and compares the different methods in terms of
performance and complexity. The problem considered here is the rejection
of side wind disturbances acting on a vehicle.

In the control scenario proposed in [KFB+06], a car is driving with constant
longitudinal speed vx = 15 m/s on a dry road. It will be assumed that a
tracking control system ensures a constant longitudinal velocity even in dif-
ferent driving situations and under disturbances. After t = 0.5 s a sidewind
gust appears with vw = 10 m/s which acts as a disturbance on the vehicle.
In this benchmark example the road is assumed to have an initial friction co-
efficient (adhesion) of μ = 0.9. The road conditions change at t = 2 s passing
from a normal road to an icy road with μ = 0.1, while the sidewind is still
persistent.

The slip ratios are functions of the longitudinal dynamics, and they depend
on the controllers in closed loop. However, in order to be able to focus on
the lateral dynamics, the slip ratios are considered as external signals, and
an underlying traction control system is assumed to produce the front slip
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Figure 8.7: Slip ratio s f of the front wheels during scenario.
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Figure 8.8: Lateral displacement Y in the open-loop simulation.

ratios shown in Figure 8.7, [KFB+06]. The slip of the rear wheels is assumed
to be zero as front wheel steering is used and no braking occurs. Hence the
vector of scheduling variables is given by ρ(t) = [s f , μ, vw]T.

The control task is to mitigate lateral displacements of the vehicle due to the
sidewind gust, and to stabilize the vehicle trajectory. The control input is
the steering angle of the front wheels δ f . As in [KFB+06], the input and the
input rate are constrained to

umax/min = ±3 deg , Δumax/min = ±25 deg/s .

Figure 8.8 shows the lateral displacement of the vehicle for the simulated
case of no reaction of the driver. Within seconds, the vehicle leaves the road
and entirely changes its direction. Previous investigations have shown that
a human driver has severe difficulties in stabilizing the car in this situation,
when only front-wheel steering is available, [HAF00]. Even in the case of
4-wheel steering this might lead to dangerous situations. This shows the im-
manent need for additional steering control. In order to investigate the best
performance achievable with MPC, the nonlinear model is employed for pre-
diction in nonlinear model predictive control. In later stages the hybrid mod-
els and finally the linear model is used for prediction and its performance
will be investigated and compared to the controller with the full nonlinear
prediction model.
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(a) NMPC.
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(b) Locally linear MPC.

Figure 8.9: Simulation results for the side wind rejection scenario using nonlinear
MPC and locally linear MPC.

Nonlinear Model Predictive Control

Figure 8.9(a) shows the simulation results with the nonlinear prediction
model. The evolution of the displacement Y, the yaw angle ψ, the steer-
ing angle δ f and the slip angles α f and αr during the side wind scenario are
displayed. A peak deviation of merely 0.3 mm in the displacement Y can
be noted. The nonlinear MPC scheme requires the solution of a nonlinear
optimization problem at each time instance. The solution of these nonlinear
optimization problems took 0.15 s on average and 0.38 s in the worst case
with the commercial solver NPSOL, [GMSW], on a 3 GHz Pentium 4 proces-
sor. Similar results were obtained in [KFB+06]. However, both algorithms
take far too long for a real application, when a sampling time of 0.05 s is
needed.

Locally Linear Model Predictive Control

In Figure 8.9(b), the simulation results with the locally linear MPC controller
are visualized. Due to the parameter dependence of the HPV model, the
absolute peak deviation can be kept below 0.7 mm. A steady-state offset of
0.3 mm must be noted.
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(a) Explicit hybrid MPC.
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(b) Explicit linear MPC.

Figure 8.10: Simulation results for the side wind rejection scenario using explicit hy-
brid MPC and explicit linear MPC.

The solution of the quadratic problem took on average 0.06 s and in the
worst case 0.08 s on a 3 GHz Pentium 4 processor. This is still larger than
the sampling time, but means a speedup by a factor 2 to 3 compared to the
nonlinear MPC. It must be mentioned that the procedure was implemented
using Matlab and that substantial improvements can be achieved with a
more sophisticated implementation, e.g. in C.

Explicit Hybrid Model Predictive Control

The simulation results for the explicit hybrid MPC controller can be seen in
Figure 8.10(a), where a maximal displacement of 4 mm, but also a steady-
state error can be noted. While the nonlinear and the HPV model adapt
to the values of the scheduling signal, the hybrid and the linear model are
parameter independent. The advantage of parameter-dependent system ma-
trices can be seen by comparing the displacement of the car during the first
two seconds of the investigated scenario, while being controlled by the non-
linear/locally linearized MPC controller (Figure 8.9) vs. the hybrid/ linear
MPC controller (Figure 8.10). During this part of the scenario the road fric-
tion coefficient is μ = 0.9.
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The nonlinear model and the hybrid parameter-varying model adapt to this
value of the road friction coefficient, while the purely hybrid model does
not. This adaptation leads to 6 times smaller displacements. By using the
explicit hybrid MPC controller, the computational effort can be reduced even
further. The evaluation of the lookup table facilitates a worst-case computa-
tion time of 0.02 s at each time instance. An implementation in a real car
would be possible, and further reductions in the online computational times
are conceivable with a more sophisticated implementation.

Explicit Linear Model Predictive Control

The simulation results for the explicit linear MPC controller can be seen in
Figure 8.10(b). A peak deviation of 2.4 mm and a steady-state deviation of
1.2 mm can be noted. Using the presented linear and hybrid approximation
of the nonlinear dynamics and the same specified horizons, the linear pre-
diction model yielded a smaller peak deviation than the hybrid model, but
a higher steady-state error. Due to the small number of regions, the com-
putational time at each time instance was much less then 0.01 s on 3 GHz
Pentium 4 processor.

8.5 Double Lane-Change Manoeuver

After testing the four MPC schemes in the side wind rejection scenario, this
section presents their application to autonomous vehicle steering in a double
lane-change maneuver on snow, [KFB+06]. In this control scenario, a car is
driving with constant longitudinal speed vx = 15 m/s on a snowy road (μ =
0.3). The double lane change shall be proceeded by following a reference
trajectory in Y and ψ, assuming that this reference is supplied by a trajectory
planning system. The control objective is to track the reference trajectory as
closely as possible. The vehicle is assumed to coast during the maneuver,
no braking or accelerating is proceeded. These assumptions leave us with
the scheduling variable ρ(t) = μ(t). The control input is again the steering
angle of the front wheels δ f , which is now constrained to

umax/min = ±30 deg , Δumax/min = ±20 deg/s .

During the double lane-change scenario, the small angle assumption (ψ, δ f �
1), which forms the basis for all approximation models, is not valid anymore.
This led to a significant reduction of control performance and unnatural high
slip angles α f in first simulations when employing the approximation mod-
els. In order to prevent the system from leaving the area of acceptable model
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accuracy, the front slip angle α f is constrained to αmax/min = ±2 deg. This
constraint is implemented as a soft constraint, meaning that α f violating its
constraints is not strictly prevented, but mitigated by resulting in an increase
in the cost function. The advantage of using soft constraints is that the opti-
mization problem still remains feasible in case the desired constraint can not
be fulfilled. The soft constraint for α f is also included in the nonlinear MPC
to increase the comparability between the MPC schemes.

The basic structure of the CFTOC problem (8.26) is unchanged, while the
cost function and the controller parameters do change. The cost function for
the optimal control problem is chosen analogue to (8.25), with the difference
that not the state itself, but its difference to the reference value is penalized.
The resulting cost function of the CFTOC problem is then

J(Uk; xk, ρk, Xref,k) =
N

∑
i=1
‖xk+i − xref,k+i‖2

Q +
N−1

∑
i=1
‖sk+i‖2

qs +
Nc−1

∑
i=0

‖Δuk+i‖2
R

(8.27)
with the sequence of reference values, Xref,k = {xref,k+1, . . . , xref,k+N}, and
the slack variables, sk+i ∈ R, i = 1, . . . , N − 1, for the inclusion of the soft
constraints

αmin ≤ α f ,k+i + sk+i ≤ αmax, i = 0, . . . , N − 1 (8.28)

to the CFTOC problem (8.26).

The following control settings yield reasonable simulation results: Again a
prediction horizon of N = 4 and a control horizon of Nc = 2 is chosen with
a sampling time of Ts = 0.05 s. The weights are chosen as

Q =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 40 0
0 0 0 0

⎤
⎥⎥⎦ , qs = 1000 and R = 1 .

Nonlinear MPC

Besides the changes described above, the nonlinear MPC approach is the
same as for the side-wind scenario. The online computation times of the
nonlinear MPC in the double lane-change maneuver were 0.08 s on average,
but with a worst case of 0.30 s. Figure 8.11(a) shows the simulation results:
The maximal deviation from the reference trajectory is ΔYmax = 2.61 m and
Δψmax = 10.2 deg, respectively. The cumulated cost function, evaluated for
the actual states and inputs during the simulation, amounts to Jcum = 183.
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(a) NMPC.
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(b) Locally linear MPC.

Figure 8.11: Simulation results during the double lane-change scenario using nonlin-
ear MPC and locally linear MPC.

Locally Linear Model Predictive Control

When employing the hybrid parameter-varying prediction model, the online
computation time was 0.03 s on average and 0.06 s in the worst case. The ma-
neuver under the locally linear MPC controller is presented in Figure 8.11(b).
A violation of the soft constraints for the front slip angle appeared. As max-
imal deviations, ΔYmax = 2.64 m and Δψmax = 9.8 deg were observed, and
the cumulated costs are Jcum = 195.

Explicit Hybrid Model Predictive Control

While the online MPC schemes utilizing the nonlinear and the HPV model
basically can be re-used for the double lane-change scenario (after adapt-
ing the cost function and the controller parameters), the explicit solutions to
the optimization problems for the hybrid and the linear prediction models
had to be recomputed. The explicit hybrid MPC for the double-lane change
scenario comprises 24699 regions. The increase in the number of regions
compared to the side wind rejection scenario is due to the fact that tracking
is now included in the design, increasing the dimension of the optimization
problem by the reference signals. The online computations are on average
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(a) Explicit hybrid MPC.
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(b) Explicit linear MPC.

Figure 8.12: Simulation results during the double lane-change scenario using explicit
hybrid MPC and explicit linear MPC.

0.03 s and in the worst case less than 0.04 s, and the simulation results are
shown in Figure 8.12(a). The maximal lateral deviation is ΔYmax = 3.08 m
and the maximal yaw deviation Δψmax = 12.1 deg. The overall costs cumu-
late to Jcum = 274.

The hybrid MPC schemes obtained a ‘delayed’ version of the lateral position
in the nonlinear MPC scheme. The reason for this delay is not only the model
simplifications, but also different knowledge about the future reference tra-
jectory: While the nonlinear and the HPV model account for the full infor-
mation of the reference trajectory during the prediction horizon, the explicit
MPC schemes utilize the values of the current reference and assume it to
stay constant during the prediction. Therefore changes in future references
are not predicted in the optimization and the reaction to reference changes
is delayed. By including future references in the optimization problem, this
drawback could be prevented, but to the price of an even higher dimension
of the optimization problem and thus a much more complex control law.

Explicit Linear Model Predictive Control

The explicit controller for the linear prediction model comprises 1443 regions
and results in an online computation time of less than 0.01 s on average as
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Figure 8.13: Vehicle position Y during side wind rejection scenario under model
predictive control with nonlinear model (—), hybrid parameter-varying
model (− · −), hybrid model (−−) and linear model (· · · ).

well as in worst case. The results are shown in Figure 8.12(b). The maximal
errors are ΔYmax = 2.94 m and Δψmax = 11.5 deg. The cumulated costs are
Jcum = 235.

The hybrid MPC shows a somewhat surprisingly weak performance com-
pared to the linear MPC. The difference between the two models is the satu-
ration incorporated in the hybrid model. Both models are based on a road
friction of μ = 0.1, where saturation appears already at smaller forces than
for the road friction of μ = 0.3 used in the double lane-change maneuver.
Hence taking the saturation effects into account led to a less accurate model
for a road friction of μ = 0.3 and in the occurred state values.

8.6 Conclusions and Outlook

Model Predictive Control with four different models has been applied for
side wind rejection and in a double lane-change maneuver. In order to sim-
plify the nonlinear model, a linear model, a purely hybrid model and a
locally linear model based on a hybrid parameter-varying model have been
proposed and verified in simulations.

Figure 8.13 shows the comparison of the displacements for all four prediction
models during the side wind rejection scenario. The best results are obtained
with a nonlinear model predictive control scheme, using the full nonlinear
model. Due to the costs and time needed for solving the nonlinear optimiza-
tion problem, this is hardly implementable on a real vehicle. The locally
linear MPC scheme based on the hybrid parameter-varying model showed a
tradeoff between satisfying control performance and complexity. Although
still computationally demanding, its computation time was slightly larger
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Figure 8.14: Vehicle position Y during double lane-change maneuver under model
predictive control with nonlinear model (—), hybrid parameter-varying
model (− · −), hybrid model (−−) and linear model (· · · ).

than the sampling time and the approach seems to be useable with a more
sophisticated implementation. The locally linear MPC scheme yields a sat-
isfying control performance, but still needs modern computing equipment.
The purely hybrid and the linear models could achieve only worse perfor-
mance within this comparison, but still stabilize the systems and lead to
displacements of less than 5 mm. For both prediction models, an explicit
solution was computed, which afterwards can be stored in a look-up table.
The on-line computations are then reduced to evaluate this look-up table,
which means a significant reduction of on-line computational effort.

For the double lane-change scenario, the controllers were enhanced by track-
ing of reference signals. Figure 8.14 shows the evolution of the lateral po-
sition during the maneuver for all four MPC schemes. Here basically the
same observations as in the side wind rejection scenario could be made, in
addition to the following remarks: Taking the saturation effects into account
for a different road friction led to a performance loss of the hybrid MPC.
Additionally, by including the reference values, the complexity of the hybrid
MPC was increased such that an evaluation of the look-up table is nearly as
time consuming as solving the optimization problem online.

In future research, the proposed control strategies should be tested in a
real car application. Towards this goal the hybrid parameter-varying MPC
scheme has to be implemented in a more efficient manner (e.g. in C) to be
usable within the sampling time of 0.05 s. Thereby a non-constant vehicle
speed should also be considered.

During the work on this project, one aspect became more and more obvi-
ous: The inclusion of a varying parameter in the system matrices of the HPV
model improved the quality of the predictions substantially, and resulted in
a better control performance than the hybrid and linear MPC approaches.
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On the other hand, the use of a hybrid or linear model allows for the com-
putation of explicit control laws by using standard parametric solvers (see
Section 3.2 on parametric programming). A similar approach for parameter-
varying systems did not exist, which motivated the main part of this disser-
tation: The computation of explicit model predictive control laws for linear
parameter-varying systems.
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9 LPV Systems in Control

Gain scheduling
A method of eliminating
influences of variations in the
process dynamics of a control
system by changing the
parameters of the regulator as
functions of auxiliary variables
which correlate well with those
dynamics.

The free dictionary

Linear parameter-varying (LPV) systems lie at the heart of this thesis. In
this chapter we will review classical gain-scheduling approaches, which

initiated the academic interest in the class of LPV systems. Then we will
summarize important system properties, and examine existing approaches
for control systems design using LPV models. Finally we will formulate the
motivation for Part III of this thesis: High-speed (close-to-)optimal control
of constrained LPV systems.



9 LPV Systems in Control

9.1 Introduction

In practice, the vast majority of systems to be controlled exhibits nonlinear
behaviour. Control inputs are seldom unbounded, but saturate. States are
required to be within certain limits. System dynamics may change rapidly,
due to switches, logics, hysteresis, backlash or saturation; or smoothly with
the state or the point of operation. Often system gains and parameters do
depend on the amplitude of signals.

A classical approach to deal with nonlinearities is to linearize around an op-
erating point, and compute a linear controller for the linearized model of the
plant. While the benefits of applying linear control techniques are apparent,
there is also a drawback in the described linearization approach. The lin-
earized model of the nonlinear system is only accurate in a neighbourhood
around the operating point, while the system might be operated in a larger
part of the state space, with entirely different dynamics.

Gain scheduling is a direct extension of the linearization approach. As such,
gain scheduling shares the central aspect of the linearization approach, i.e.
the application of linear control techniques to control a nonlinear plant. In gain
scheduling instead of one, a family of linear controllers is used to control the
system. Each controller is designed for a linearized model at a specific op-
erating point. Scheduling variables are used to determine what region the
system is in and which controller, or which blend of controllers, is applied.
The interpolation of the linear controllers obeys a function of the schedul-
ing variables, the scheduling function. The resulting controllers have a linear
structure, but its parameters depend in a nonlinear way on the scheduling
variables, hence the name linear parameter-varying. Gain scheduling belongs
to the class of adaptive control techniques, though no online system identifi-
cation is involved (the scheduling can be considered as an adaptation of the
linear model), [ÅW95].

Similar to the linearization approach, gain scheduling enjoys a broad ac-
ceptance in practice. The past has seen numerous successful applications,
especially in the aerospace and automotive industries, [SL91, PSSU80]. This
success is based upon the fact that gain scheduling – apart from being a
straightforward control approach – typically yields a reasonably good con-
trol performance. The concentration on locally linear models during the
controller design hinders the introduction of conservatism due to model un-
certainties, as it is inherent e.g. in robust control techniques.

On the other hand, gain scheduling is mainly limited to slowly varying
scheduling variables, [SA90, SA91]. The linear controllers are designed for
locally accurate models, and fast variations of the scheduling variable can
be problematic. Stability of the local linear models under the corresponding
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linear controllers does not imply stability of the nonlinear system under the
interpolated gain-scheduling controller; and one can construct simple exam-
ples, where the mere variation between interpolations of two stable linear
systems can result in instability, [ABGH96]. The limitation to ‘sufficiently
slowly’ varying scheduling variables, and the lack of strong, precise guaran-
tees motivated the development of more holistic approaches, considering not
only local linear models, but making use of linear parameter-varying models of
the nonlinear plant.

9.2 LPV Systems

The study of Linear Parameter-Varying (LPV) systems is motivated by their
use in gain-scheduling control techniques for nonlinear systems, [SA90],
[SA91], [AGB95]. Classical gain-scheduling approaches work with an inter-
polation of controller gains among a set of linear time-invariant (LTI) con-
trollers, which are designed for linearized models of the system. While
those gain-scheduling techniques work well in practice, it is hard to give
precise stability/performance statements taking changes in the system dy-
namics into account. This drawback led to the development of the LPV
gain-scheduling framework. LPV systems account for changes in the system
dynamics by parameter-varying system matrices. The parameters lie in a
bounded set, such that an LPV system describes a family of linear systems.
In the LPV gain-scheduling framework, the interpolation is brought from
the controller level to the modelling level, and controllers are designed for
an entire LPV system. The LPV framework constitutes a useful theoretical
foundation and allows statements on stability and performance which take
variations of the scheduling parameter directly into account.

In the remainder of this work, we will consider discrete-time LPV systems
in a polytopic representation. Polytopic descriptions are among the most com-
mon in the LPV framework, [AGB95]. Note however that there exists a se-
ries of other descriptions, e.g. input-output LPV representations, linear frac-
tional representations, where the model depends rationally on the schedul-
ing parameter, the behavioural description or kernel representations, [Tót08].
Moreover, those representations are not necessarily equivalent, [THVdH07].

Definition 9.1 (LPV systems) Let k ∈ Z denote discrete time. We define the
following LPV systems:

xk+1 = A(θk)xk + B(θk)uk , (9.1a)

with

A(θk) =
nθ

∑
j=1

Ajθk,j , B(θk) =
nθ

∑
j=1

Bjθk,j , (9.1b)
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and

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (9.1c)

The variables xk ∈ Rnx , uk ∈ Rnu, and θk ∈ Rnθ denote the state, the control
input, and the time-varying scheduling parameter, respectively. The system matrices
A(θk) : Rnθ → Rnx×nx and B(θk) : Rnθ → Rnx×nu are known to lie in polytopes
with the description (9.1b), where Aj ∈ Rnx×nx , Bj ∈ Rnx×nu denote the jth vertices
of the corresponding polytope. The scheduling parameter θk = [ θk,1 . . . θk,nθ

]T ∈
Rnθ is constrained to the standard simplex in (9.1c).

We assume that the state xk is either measurable or observable. The essential
assumption behind LPV control is that the scheduling parameter is mea-
sured online and known to the controller, while future values are not known.
This assumption is referred to as the LPV paradigm by some authors.

In the LPV framework there are three scenarios regarding the a-priori knowl-
edge of future scheduling parameters:

(S1) The scheduling parameter varies arbitrarily fast.
In this scenario no further information about future scheduling param-
eter values are given. This scenario was one of the main motivations
for the development of LPV gain-scheduling approaches: Being able
to give guarantees on the stability and achievable performance, inde-
pendent of the movement of the scheduling parameter (inside some
bounds). This scenario is considered in the control methods developed
in Chapter 10, Chapter 11 and Chapter 13.

(S2) The scheduling parameter varies with a bounded rate of variation.
In this scenario it is assumed that the scheduling parameter varies only
with a limited speed. This knowledge can be utilized for the controller
design to increase control performance. Control methods which as-
sume this scenario are presented in Chapter 12.

(S3) The scheduling parameter varies slowly enough to be considered constant.
In this scenario the parameter variations are much slower than the sys-
tem dynamics. This scenario is a common assumption in classical gain-
scheduling approaches. This scenario is a special case of (S2) and as
such also considered in Chapter 12.

Stability Properties of LPV Systems

In the following we present some results concerning the stability and sta-
bilizability of LPV systems. If not stated otherwise, these results are taken
from [BM08b]. Initially we consider an arbitrarily fast varying scheduling
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parameter (Scenario (S1)). We start with the notion of quadratic stability
of autonomous LPV systems. Note that in the case of autonomous LPV
systems, there is no difference between the scheduling parameter θk and an
uncertainty wk, because there is no control input which could take advantage
of knowledge of the scheduling parameter.

Theorem 9.1 (Quadratic stability, autonomous LPV system) The autono-
mous LPV system

xk+1 = A(θk)xk ,

where the parameter-dependent matrix A : Dθ → Rnx×nx is a function with the
domain Dθ ∈ Rnθ , is quadratically stable, if there exists a positive definite Lya-
punov matrix P 	 0, such that

A(θ)T PA(θ)− P ≺ 0 (9.2)

holds ∀θ ∈ Dθ .

The conditions of Theorem 9.1 imply the existence of a quadratic Lyapunov
function V(x) = xTPx. The LMI (9.2) in Theorem 9.1 has to be satisfied for
all possible values of the scheduling parameter, which might be difficult to
verify in practice. Fortunately, the conditions simplify in the case of autono-
mous polytopic LPV systems:

xk+1 = A(θk)xk =
nθ

∑
j=1

Ajθk,jxk , (9.3a)

where

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (9.3b)

For the class of autonomous polytopic LPV systems, quadratic stability is
easier to verify due to the following theorem:

Theorem 9.2 (Quadratic stability, autonomous polytopic LPV system) The
autonomous polytopic LPV system (9.3) is quadratically stable, if there exists a
positive definite Lyapunov matrix P 	 0, such that

AT
j PAj − P ≺ 0 , j = 1, . . . , nθ

holds.

Quadratic Lyapunov functions are a common vehicle to verify the stability
of LPV systems. This is due to their simple structure (also in higher dimen-
sions), and due to the possibility to verify quadratic stability relatively easy.
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However, quadratic stability is only sufficient but not necessary for the stabil-
ity of autonomous polytopic LPV systems. A necessary and sufficient for the
asymptotic stability of autonomous polytopic LPV systems is the existence
of a polyhedral Lyapunov function.

Theorem 9.3 (Polyhedral stability, autonomous polytopic LPV system)
Consider the autonomous polytopic LPV system (9.3). The following statements are
equivalent:

1. The autonomous polytopic LPV system is asymptotically stable.

2. The autonomous polytopic LPV system is exponentially stable.

3. The autonomous polytopic LPV system admits a polyhedral norm ‖Px‖∞ as a
Lyapunov function.

4. All vertex systems xk+1 = Ajxk of (9.3) share a common polyhedral Lyapunov
function ‖Px‖∞ .

After reviewing stability properties of autonomous polytopic LPV systems,
we return to the initial class of interest, to LPV systems in a polytopic rep-
resentation, (9.1). The next theorem follows from Theorem 9.1, and is a
straightforward extension of a similar theorem in [BM08b].

Theorem 9.4 (Quadratic stabilizability, polytopic LPV system) Consider
the polytopic LPV system (9.1). The LPV system is quadratically stabilizable, if
there exists a matrix Y 	 0 and a parameter-dependent matrix F : Θ → R

nu×nx,
such that[ −Y A(θ)Y + B(θ)F(θ)

YA(θ)T + F(θ)T B(θ)T −Y

]
≺ 0 , ∀θ ∈ Θ (9.4)

holds.

Proof Assume the state feedback to be of the form uk = K(θk)xk with the
parameter-dependent state feedback matrix K : Θ → Rnu×nx . Inserting the
state feedback and the system equation (9.1) in (9.2) yields

(A(θ) + B(θ)K(θ))T P (A(θ) + B(θ)K(θ)) − P ≺ 0 , ∀θ ∈ Θ .

By pre- and post-multiplying this equation with Y := P−1, and by substitut-
ing F(θk) := K(θk)Y, we obtain

(YA(θ)T + F(θ)T B(θ)T)Y−1(A(θ)Y + B(θ)F(θ) −Y ≺ 0 , ∀θ ∈ Θ .

Applying Schur’s complement formula completes the proof. �
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Similar to Theorem 9.1, it might be difficult to verify the LMI (9.4) for all
scheduling parameter values in practice. There are two special cases, when
this verification can be performed easily: the case of a constant input matrix
B and an affine controller matrix F(θk) = ∑

nθ
j=1 θk,jFj, and the case of a robust

(parameter-independent) controller F.

In both situations, the LMI (9.4) depends affinely on the scheduling parame-
ter, and can thus be verified by considering the vertices only, i.e.[

−Y AjY + BFj
YAT

j + FT
j BT −Y

]
≺ 0 , j = 1, . . . , nθ , (9.5)

or [
−Y AjY + BjF

YAT
j + FTBT

j −Y

]
≺ 0 , j = 1, . . . , nθ , (9.6)

respectively.

If both the input matrix and the controller depend on the scheduling param-
eter, the vertex condition is only necessary, but not sufficient to guarantee
constraint satisfaction over the entire parameter simplex Θ. In similar situa-
tions, gridding approaches were recommended to cope with LMIs polynomi-
ally depending on the scheduling parameter, [AA98]. One should be aware
that such gridding approaches per se guarantee the desired properties only
at the grid points, such that a guarantee for constraint satisfaction between
the grid points requires additional measures.

A different approach is to use a sufficient condition for the satisfaction of
LMIs such as (9.4), which depend polynomially on the scheduling parameter
over the parameter simplex. This approach is facilitated by a matrix-valued
version of Pólya’s relaxation, [SH04], which is discussed in Section 2.2. By
applying Pólya’s relaxation to the LMI (9.4), we obtain sufficient conditions
for quadratic stabilizability of (9.1) in the form of a parameter-independent
LMI.

Quadratic stabilizability is only sufficient for stabilizability of an LPV sys-
tem, and several approaches were proposed to mitigate the inherent conser-
vatism. We will mention one extension to Theorem 9.4, which may be of
use in the case of a limited rate of parameter variation (Scenarios (S2) and
(S3)). Instead of ensuring stabilizability by means of a quadratic Lyapunov
function, one might use a parameter-dependent Lyapunov function of the
form V(x) = xTP(θ)x, [AA98]. The gained freedom might indeed result in
a reduction of conservatism, but is computationally more demanding, such
that the authors of [AA98] resort to gridding approaches.
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Relation to Common System Classes

How do other system classes relate to LPV systems? Many system classes
can easily be embedded into the LPV framework:

• If the scheduling parameter is constant, θk = θ̄, ∀k ∈ N, an LPV system
is a linear system.

• It is a common misconception to equate LPV systems with linear time-
varying (LTV) systems. The conceptual difference between both system
classes lies in the possible behaviour. For each nonconstant scheduling
parameter trajectory, an LPV system represents a specific LTV system,
such that a LPV system contains a continuum of LTV systems, depend-
ing on the scheduling parameter θ. From an control engineer point
of view, the values of the scheduling parameter trajectory typically are
assumed to be known a-priori in the LTV framework, while they are
assumed unknown a-priori in the LPV framework.

• Bilinear systems can be regarded as a special case of an LPV system,
where the scheduling parameter equals either the input or the state of
the system.

• With a small extension of Definition 9.1, namely the inclusion of a
parameter-dependent affine term in the state-update equation (9.1a),
LPV systems even comprise the class of piecewise affine systems. In re-
turn, piecewise affine systems can be regarded as special case of LPV
systems, where the scheduling parameter only attains discrete values
depending on the state and input of the system. The extension requires
either the ability of the LPV control method to cope directly with an
affine term, or an external treatment of the steady-state offset. Both
approaches are possible with the procedures proposed in the following
chapters.

9.3 LPV Modelling and Quasi-LPV Systems

This section is concerned with the embedding of nonlinear systems into the
LPV framework. In this context, the concept of quasi-LPV systems is intro-
duced.

In practice, the scheduling of the system matrices is often not affine as in
Equation (9.1b), but there is a nonlinear dependence on some measurable
scheduling variables ρk ∈ Pρ ⊆ R

nρ . In order to obtain an LPV system
of the form (9.1), the scheduling parameter θk is introduced, such that the
system matrices depend affinely on θk, and such that a scheduling function
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Figure 9.1: LPV system (a) and quasi-LPV system (b).

fρ : R
nρ → Rnθ describes the relation between the scheduling parameter and

the scheduling variables,
θk = fρ(ρk) . (9.7)

In LPV controller design methods this scheduling function is usually ig-
nored. Instead, a controller is designed which works for all θk ∈ Θ indepen-
dent of how θk was determined. The scheduling function, however, plays
a significant role in LPV modelling. In this context, the definition of LPV
systems (Definition 9.1) is sometimes extended by the scheduling function
(9.7) and the set of possible scheduling variables Pρ ,[Kwi07], and the LPV
system is defined by the tuple(

A(θ), B(θ), fρ ,Pρ

)
, with θ = fρ(ρ), ρ ∈ Pρ . (9.8)

In this definition of LPV systems, the scheduling variable ρ is considered to
be an external variable. In the majority of instances however, the scheduling
variable includes information of the output or even the input of the system.
To distinguish those systems, the concept of quasi-LPV systems was estab-
lished. Figure 9.1 depicts LPV systems with exclusively external scheduling
variables and quasi-LPV systems with internal and external scheduling vari-
ables. The dotted lines indicate optional dependencies.

The quasi-LPV framework can be used to embed nonlinear systems. In this
embedding process, nonlinearities in the plant dynamics are disguised as
time-varying parameters, that are subsequently used as scheduling param-
eters. How to embed nonlinear systems into the quasi-LPV framework is
a research topic on its own, because of two characteristics: non-uniqueness
and overbounding.

Definition 9.2 (Equivalence of LPV systems) Two LPV systems of the form
(9.8) are called equivalent if the scheduling variables are limited to the same set Pρ,
and if their system matrices are the same for all scheduling variables ρ ∈ Pρ, i.e.[

A( fρ(ρ)) B( fρ(ρ))
]

=
[
Ã( f̃ρ(ρ)) B̃( f̃ρ(ρ))

]
∀ρ ∈ Pρ .
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Figure 9.2: Example for overbounding.

Two LPV models can be equivalent, but at the same time they can be dif-
ferently advantageous for control purposes. One reason is the so-called over-
bounding which means that the LPV model contains behaviour which is never
actually put in execution by the nonlinear plant. In Figure 9.2 such a case of
overbounding is displayed. On the left-hand side we see the scheduling vari-
able ρk observed while the nonlinear plant is in operation. The scheduling
parameter values corresponding to this scheduling trajectory are shown on
the right-hand side: The parameter simplex Θ is not entirely occupied, some
parts are never visited. Most LPV control approaches on the other hand are
designed for the whole parameter simplex, such that overbounding intro-
duces conservatism to the controller. Hence the objective in LPV modelling
is to derive a model which contains as little overbounding as possible. In the
ideal case the LPV model contains only behaviour which is possible with the
nonlinear plant, in that case we call the LPV model exact.

Stability and Performance Properties of Quasi-LPV Systems

In the following we want to discuss stability and performance properties of
quasi-LPV systems. Especially, we are interested in the question, if and how
guarantees of stability and performance of an LPV system carry over to a
nonlinear system embedded in the quasi-LPV framework.

Theorems 9.1 and 9.4 ensure stability or stabilizability, respectively, for all
possible scheduling parameters θ ∈ Θ of an LPV system (Scenario (S1)).
Hereby it is not important, if the scheduling variables ρ, which determine the
actual values of the scheduling parameter, are purely external or incorporate
parts of the system state and the input. Similar statements can be made
related to performance guarantees, or in the case of limitations to the rate
of parameter variation. Consecutively, stability and performance guarantees
of an LPV system do not differ from stability and performance guarantees
of the corresponding quasi-LPV system. Moreover, they imply stability and
performance of a nonlinear plant embedded in the quasi-LPV framework –
under the assumption that the scheduling matrices of the quasi-LPV system
represent the true dynamics of the nonlinear plant.

134
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This assumption is not only technical, but has some important practical im-
plications due to the boundedness of the parameter simplex (9.1c). In the
following we will illustrate possible issues with the boundedness of the pa-
rameter simplex by means of two small example systems.

Example 9.1 Consider the following nonlinear autonomous systems:

xk+1 = 0.5 sin(xk)xk , and xk+1 = 0.5x2
k . (9.9)

It is possible to embed both systems into the quasi-LPV framework by using the state
xk as scheduling variable ρk. This way we obtain the quasi-LPV system

xk+1 = A(θk)xk = (A1θk,1 + A2θk,2) xk = (0.5θk,1 − 0.5θk,2) xk , (9.10)

with either of the scheduling functions,

θk =

[
0.5 + 0.5 sin(xk)
0.5− 0.5 sin(xk)

]
, and θk =

[
0.5 + xk
0.5− xk

]
, (9.11)

respectively. Application of Theorem 9.2 reveals that the quasi-LPV system (9.10)
admits the quadratic, radially unbounded Lyapunov function V(x) = xTx, and is
thus globally asymptotically stable. Note that the former scheduling function in
(9.11) will deliver for all states xk ∈ Rnx an element of the parameter simplex, such
that the quasi-LPV system together with the first scheduling function represents
the true dynamics of the first nonlinear plant independent of the current state xk.
It follows that all stability and performance guarantees for the quasi-LPV system
(9.10) carry over to the first nonlinear system (9.9), such that we can infer that
(9.9) is globally asymptotically stable. With the latter scheduling function on the
other hand, the true dynamics of the second nonlinear plant are only represented by
the quasi-LPV system for xk ∈ [−0.5, 0.5] (for which θk ∈ Θ), and we can not
infer global asymptotic stability of the second nonlinear system, but only asymptotic
stability within a certain domain of attraction.

The previous example illustrates the impact of the boundedness of the sched-
uling function on the transfer of stability and performance properties from
the quasi-LPV system to a nonlinear system. In the case of a bounded sched-
uling function, it is often possible to scale the scheduling function in order
to obtain a subset of the parameter simplex as the image. Subsequently, we
can infer global stability properties of the nonlinear system from the LPV
system. On the other hand, if the scheduling function is unbounded, we
can not have θk ∈ Θ for all scheduling variables ρ. For consistency of the
quasi-LPV system with the nonlinear system we have to respect additional
constraints on the scheduling variable ρ, hence on the state or the input of
the nonlinear system. A systematic controller design should take the resulting
state and input constraints directly into account. In order to provide statements

135



9 LPV Systems in Control

on the stability of the nonlinear system based on the quasi-LPV system, one
has to verify the perpetual satisfaction of these constraints. Eventually the in-
ducible stability and performance properties are limited to a certain domain
of attraction.

One should also note that there is a gap between stability of a nonlinear sys-
tem, and stability of a quasi-LPV system, since knowledge of the scheduling
function fρ is ignored to determine stability of the latter. Therefore stability
of the quasi-LPV system is only sufficient for stability of the nonlinear sys-
tem. Furthermore quadratic stability of an LPV system is only sufficient for
stability of the LPV system.

The distinction between LPV systems and quasi-LPV systems plays an im-
portant role for modelling and system identification, [Kwi07]. For the con-
troller synthesis however it is common practice to neglect the dependencies
on internal variables and to treat quasi-LPV systems not differently from
LPV systems. Consequently for the remainder of this work we will use the
term LPV systems for both LPV and quasi-LPV systems.

9.4 Control Systems Design Using LPV Models

After the introduction of LPV systems we investigate the steps which are
needed to control a dynamical system using an LPV model. The complete
design cycle to control a dynamical system contains the steps:

1. Modelling

2. Observer design

3. Controller synthesis

Finally the performance of the closed-loop system is assessed, potentially
requiring another iteration of the design steps. In the following, not all of
these steps will be covered in the depth they deserve. Nevertheless, the main
aspects shall be mentioned and references to the literature shall be given.

LPV Modelling

For the application of a model-based control technique, a model of the dy-
namical system is required. Modelling and identification of nonlinear plants
using LPV models has gained quite some interest in the past, resulting in
a high number of publications. An overview about different identification
methods and more references can be found in [Tót08]. Furthermore, a novel
identification approach based on orthonormal basis functions is presented.
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A different approach is to identify a nonlinear model or a set of local linear
models, and to derive an LPV model from those. A survey on different ways
to model an LPV system based e.g. on local linear models or on a full nonlin-
ear model can be found in [Kwi07]. Moreover, this reference contains some
tools to support the control engineer in the task of LPV modelling: An auto-
mated generation of affine LPV models from a nonlinear state-space model,
the assessment of LPV models using a measure for overbounding, and the
reduction of overbounding and of the number of scheduling parameters by
a method called parameter set mapping which is based on a principal com-
ponent analysis.

Some recent promising developments which are not covered in the refer-
ences above are an identification approach using neural networks, [LAW08],
an identification approach using instrumental variables, [AW09], and an
optimization-based LPV approximation from a set of local linear models,
[PL09].

Observer design for LPV Systems

In the polytopic LPV representation described in Section 9.2, we intention-
ally omitted the system output. The control methods we consider in this
thesis are state-feedback methods and require knowledge of the state of the
system. This might be a serious limitation and the extension of the proposed
methods to support output feedback should be considered as a direction
of future research. However, state feedback does typically not require that
all states are measured; if the system is observable, state observers can be
applied, [SM67]. Moreover, the past values of the scheduling parameter val-
ues are known, such that the state observation for LPV systems does not
differ from the state observation for LTV systems, and classical techniques
can be used. It is straightforward to modify a Luenberger observer or a
Kalman filter to varying system matrices, [Bes07]. More specific material on
the state observation and state estimation for LPV systems can be found in
[BDRK00, DBK00, BM03].

A possible alternative is moving horizon estimation (MHE) which allows the
incorporation of constraints in the estimation procedure. Details on moving
horizon estimation for nonlinear systems can be found in the thesis from
Rao, [Rao00], which is straightforward to adapt to LPV systems. However,
this technique requires some computational power, similar to what is needed
for model predictive control.
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Controller Synthesis

The development of controller synthesis methods for LPV gain-scheduling
followed the propagation of semidefinite programming (see Section 3.1) in
the mid 1990s. Most of these gain-scheduling methods stem from frequency
methods such as mixed sensitivity design and H∞-optimal control for LTI
systems and extend ideas from robust control of uncertain systems to the
case of LPV systems. In difference to classical interpolation techniques, the
interpolation is brought to the modelling level, allowing for a-priori state-
ments related to stability and control performance. Stability is guaranteed
by the determination of a quadratic, possibly parameter-varying, Lyapunov
function for the closed-loop system. As a measure of performance the in-
duced L2 gain between the exogenous inputs and some fictitious outputs
of the closed-loop system is taken. The synthesis of stabilizing LPV gain-
scheduling controllers can be formulated as semidefinite programs as was
shown e.g. in [ABGH96, AG95].

Many publications followed investigating alternative formulations which ex-
tended and/or improved the LPV gain-scheduling approaches, among oth-
ers [IS01, ZD98, Sch96, Sch01]. The resulting controller typically possesses
the same model order as the generalized plant. In applications, however,
the situation can occur when one wants to use a gain-scheduling controller
with a fixed structure (e.g. a PID structure). The design of LPV gain-sched-
uling controllers of fixed structure forms the background of [CW06, FW04,
FW06].

9.5 Control of Constrained LPV Systems

The previous section provided some aspects of the complete control system
design cycle for LPV gain scheduling, i.e. modelling, observer design and
controller synthesis. In the following we will investigate possible strategies
in the case of significant constraints on the state and input. Since the mod-
elling and the observer design can be adapted rather easily, we will focus
solely on the controller synthesis. More precisely, the objective of the sub-
sequent part of this thesis is high-speed (close-to-) optimal control of constrained
LPV systems. We will approach this objective in three steps, considering
successively the building blocks input constraints, output constraints and
high-speed approaches.
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Figure 9.3: Strategies to deal with input constraints. Unconstrained control law (· · · ),
modified control law (—).

Control of Input-Constrained LPV Systems

Constraints are one of the most often occurring nonlinearities in control,
and as such they were already mentioned in the introduction of this chap-
ter. In practice nearly every plant is affected by limitations on the inputs.
Consequently many different strategies to deal with input constraints were
developed, including:

• Saturate-and-Clip
In this approach a controller is designed as for the unconstrained sys-
tem. Whenever the control action of the unconstrained control exceeds
the input limitations, it is replaced by the closest point in the set of ad-
missible inputs. An example for such a saturated state-feedback control
law is visualized in Figure 9.3(a) for a single-input system. The dot-
ted line indicates the control law for the unconstrained system, while
the solid line corresponds to the control law for the system with input
constraints. In the case of a static state-feedback controller, this strat-
egy often results in a reasonable, but not optimal control performance.
There are cases however, in which the saturation leads to windup ef-
fects, possibly deteriorating the control performance or even resulting
in an unstable closed-loop system.

• Detuning
In this approach the aggressiveness of the unconstrained controller is
reduced to avoid input saturation. This strategy is visualized in Figure
9.3(b), where the original control law is indicated by the dotted line,
and the detuned control law by the solid line. There are two major
drawbacks of detuning. (i) The detuned controller will violate the input
constraints for large state values, resulting in a limited region in the
state space, for which the detuned control input is admissible. (ii) The
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Figure 9.4: LPV anti-windup controller structure.

controller gains are also reduced near the origin, not only in regions
where the input eventually saturates, thus reducing the overall control
performance.

• Anti-windup techniques
There are a number of other, more or less sophisticated, anti-windup
techniques which deal with input constraints. The control structure of
a common LPV anti-windup scheme is depicted in Figure 9.4. Note
that in most anti-windup schemes, the anti-windup element only be-
comes active when the input saturates, uk 
= sat(uk). For an overview of
practical anti-windup strategies see [GS03] or [KG02]. An anti-windup
technique more specifically for LPV gain scheduling can be found in
[WGP00]. In this approach, the input saturation is embedded in the
quasi-LPV framework, such that a gain scheduling controller is com-
puted, which takes the input saturation directly into account.

Control of Input- and Output-Constrained LPV Systems

An LPV system might not only be affected by input constraints, but also
by state constraints. Constraints on the states of a system can either be
imposed by the application at hand, or they are introduced somewhat ar-
tificially to enforce the state to stay in a region where the model reflects
the dynamics of the system sufficiently well. As discussed in the section
on quasi-LPV systems, the embedding of nonlinear systems into the LPV
framework can lead to state and input constraints, which ensure the validity
of the quasi-LPV model. Among the strengths of model predictive control
(see Section 4.5) is the ability to take state and input constraints explicitly
into account. The model predictive control community has considered LPV
systems in the past, enabling finite-horizon optimal control under state and
input constraints, [LA00b], [CFZ03].

Since the future scheduling parameter values are unknown, the underlying
optimization is similar to robust MPC for uncertain systems, such that it
is no surprise that most MPC approaches for LPV systems trace back to

140



9.5 Control of Constrained LPV Systems

the robust MPC approach of Kothare et al. for uncertain systems, [KBM96].
In this approach a quadratic upper bound on the infinite-horizon cost was
minimized by solving a semi-definite program at each sampling instance.
The benefit of employing MPC was the incorporation of constraints, and
the adaptation of the quadratic cost function to the current system state,
enabling less conservative control compared to approaches utilizing a single
constant quadratic cost function.

Lu and Arkun adapted this approach to the case of LPV systems, the so-
called Quasi-Min-Max MPC, [LA00b]. At each sampling instance, after mea-
suring the state xk and the scheduling parameter θk, the following semidefi-
nite program is solved:

min
γ,uk,Yk,Fk,X

γ (9.12a)

s.t.

⎡
⎢⎢⎣

1 � � �

A(θk)xk + B(θk)uk Yk � �

Q1/2xk O γI �

R1/2uk O O γI

⎤
⎥⎥⎦ � O (9.12b)

|uk,j| ≤ uj,max, j = 1, . . . , nu (9.12c)

‖C(A(θk)xk + B(θk)uk)‖2 ≤ ymax (9.12d)⎡
⎢⎢⎣

Yk � � �

AjYk + BjFk Yk � �

Q1/2Yk O γI �

R1/2Fk O O γI

⎤
⎥⎥⎦ � O, j = 1, . . . , nθ (9.12e)

[
X �

FT
k Yk

]
� O, with Xjj ≤ u2

j,max, j = 1, . . . , nu (9.12f)[
Yk �

C(AjYk + BjFk) y2
max

]
� O, j = 1, . . . , nθ (9.12g)

The main idea behind Quasi-Min-Max MPC is to decompose the quadratic
infinite-horizon cost function into current and future costs. The future costs
are approximated from above by a quadratic function,

Vk(xk+1) = xT
k+1Pkxk+1 , (9.13)

where Pk = γY−1
k ; and the future control inputs are assumed to be parameter-

independent state-feedback control laws,

uk+i = Kkxk+i , i = 1, . . . , N− 1 , (9.14)

where Fk = KkYk. The constraints (9.12e) - (9.12g) ensure
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9 LPV Systems in Control

• the decrease of the quadratic upper bound (9.13) by some stage costs,

Vk(xk+i+1)−Vk(xk+i) ≤ −xT
k+iQxk+i − uT

k+iRuk+i , (9.15)

• the satisfaction of the input constraints |uk+i,j| ≤ uj,max,

• the satisfaction of output constraints ‖yk+i+1‖2 ≤ ymax,

at each time step i ≥ 1 independent of the future scheduling parameter val-
ues. Hereby the invariance of the ellipsoid E = {z | zTPz ≤ γ} is exploited
in order to infer satisfaction of input and output constraints for all times
from the satisfaction for all z ∈ E . The constraints (9.12b) - (9.12d) ensure
the minimization of the quadratic upper bound on the infinite-horizon cost,

J(uk; xk, θk) = xT
k Qxk + uT

k Ruk + Vk(xk+1) , (9.16)

while respecting the constraints on the current input uk and the output con-
straints at step k + 1.

Remark 9.1 Note that the predicted future state-feedback control laws (9.14) are
parameter-independent, i.e. robust and not scheduling. In the case of an LPV-A
system (an LPV system, where the input matrix B does not depend on the sched-
uling parameter), the constraints of (9.12) can be adapted to facilitate parameter-
dependent state-feedback control laws: uk+i = ∑

nθ
j=1 θk+i,jKk,jxk+i , i = 1, . . . ,

N − 1.

Several extensions followed, incorporating a bounded rate of parameter vari-
ation, finite-horizon predictions, closed-loop state-feedback control laws and
/or a parameter-varying terminal weighting matrix, [LA00a], [CFF02], [PJ04],
[LW06], [SS06]. The common trait amongst these references is the minimiza-
tion of a quadratic upper bound on the infinite-horizon cost and the solu-
tion of semi-definite programs in each iteration. This is often accompanied
by simplifications such as the restriction to input constraints, a parameter-
independent input matrix and/or the use of parameter-independent state
feedback laws in the predictions.

High-Speed Control of Constrained LPV Systems

The main drawback of MPC is, in general, the computational effort needed
to solve the optimization problem at each sampling instance. This effort can
prevent the application of MPC to systems with a high sampling rate, or at
least make such an application expensive, since the necessary computational
equipment has to be provided. Quasi-Min-Max MPC requires the solution of
a semidefinite program in each sampling interval, such that its application is
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9.5 Control of Constrained LPV Systems

limited to systems with sufficiently slow dynamics. In the subsequent chap-
ters we will propose novel methods based on explicit MPC, which enable
(close-to-)optimal control of constrained LPV systems with a high sampling
rate.

Before we start with the explicit MPC schemes for LPV systems, we present
alternative solution strategies to the stated problem. These strategies share
the property of being straightforward workarounds, but also inherit differ-
ent disadvantages. Nevertheless, due to their simplicity, they might be of
use for the control practitioner and shall be covered here for the sake of
completeness.

Approach 1: Grid and Interpolate

Whenever there is a complex nonlinear function to be approximated, one of
the first tools of the engineer is a gridding and interpolation approach. Also
the MPC control law for LPV systems can be regarded as such a nonlinear
function of the state and the scheduling parameter. A straightforward ap-
proach is thus, similar to classical gain scheduling, to grid the parameter
simplex, and compute an explicit control law for each grid point, assuming
the parameter to stay constant over the prediction horizon. Online we mea-
sure the scheduling parameter, evaluate the neighbouring look-up tables and
interpolate the neighbouring grid-point solutions.

The benefits of this approach are that at each grid point we are dealing with
a linear system instead of an LPV system, simplifying the computation of
the explicit solutions. Linear systems allow for a greater flexibility in the
cost function, we are not restricted to polyhedral norms, but can also em-
ploy quadratic cost functions. The selection of grid points can be adapted to
the needs of the problem at hand. It is obvious that this approach is espe-
cially beneficial in Scenario (S3) when the scheduling parameter varies only
marginally over the prediction horizon. But it is also possible to adapt the
gridding method proposed above for Scenario (S1), by employing a dynamic
programming approach.

Nevertheless, there are no guarantees for stability, constraint satisfaction or
control performance in between grid points. Those properties have to be
verified by extensive simulations or an a-posteriori analysis. Therefore this
approach can be regarded as an analogon to classical gain scheduling for the
case of constrained parameter-varying systems.
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9 LPV Systems in Control

Approach 2: Treat parameter as uncertainty

Another solution approach is to ignore the scheduling parameter information
and to treat the scheduling parameter as a parametric uncertainty. This
allows us to solve the closed-loop constrained robust control (CL-CROC)
problem from Section 4.2 explicitly, and use the resulting explicit robust
control law to control the LPV system, [BBM03].

The benefits are that there is no loss of guarantees, i.e. if robust stability
and robust performance could be verified for the uncertain system, they also
hold for the LPV system. Furthermore, no knowledge of the scheduling
parameter is required, possibly saving sensing equipment.

One objective of the numerical examples in the following chapters was to
justify the utilization of the scheduling parameter in the control system.
Therefore in some of the examples the robust approach was positioned as
a competitor to the proposed control schemes. As will be seen, the effects
of ignoring scheduling parameter information can include a performance
degradation and/or a smaller feasible set. More importantly, there are sys-
tems which are stabilizable by taking the scheduling parameter into account,
but which are not stabilizable with a robust approach.
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10 Optimal Control of Constrained
LPV-A Systems

‘If you can’t solve a problem,
then there is an easier problem
you can solve: find it.’

George Pólya

Before considering the general class of LPV systems, we restrict our-
selves to so-called LPV-A systems, linear discrete-time systems with a

parameter-varying state transition matrix. LPV-A systems are a subclass of
LPV systems where the input matrix is constant. The reason for considering
LPV-A systems separately is that they allow for a simpler computation of
the state-feedback control laws, and, as will be shown later, the considered
closed-loop MPC problem can be solved optimally. We propose a closed-
loop max-min MPC algorithm based on dynamic programming, to compute
the explicit solution of the constrained parameter-varying optimal control
(CPVOC) problem. The considered approach enables the controller to ex-
ploit parameter information to improve performance compared to a standard
robust approach where no uncertainty knowledge is used, while keeping the
benefits of fast online computations. The off-line computational burden is
similar to what is required for computing explicit control laws for uncertain
or nominal LTI systems.



10 Optimal Control of Constrained LPV-A Systems

10.1 Problem Statement

The class of systems we consider is the class of LPV-A systems, linear dis-
crete-time systems with parameter-varying system matrices, which are de-
fined by the state-update equation

xk+1 = A(θk)xk + Buk , (10.1a)

with

A(θk) =
nθ

∑
j=1

Ajθk,j , (10.1b)

and

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (10.1c)

The discrete time is denoted by k ∈ Z, whereas the variables xk ∈ Rnx ,
uk ∈ Rnu , and θk ∈ Rnθ denote the state, the control input, and the time-
varying scheduling parameter, respectively. We assume that the state xk is
either measurable or observable. The system matrix A(θk) : Rnθ → Rnx×nx

is known to lie in a polytope with the description (10.1b), where Aj ∈
Rnx×nx , Bj ∈ Rnx×nu denote the jth vertices of the corresponding polytope.
The scheduling parameter θk = [θk,1 . . . θk,nθ

]T ∈ Rnθ is constrained to the
standard simplex (10.1c). This polytopic description is a common assump-
tion in the LPV framework, see e.g. [AGB95].

Furthermore, the LPV-A system (10.1) is constrained, uk ∈ U and xk ∈ X .
The constraint sets U and X are assumed to be bounded polyhedra,

uk ∈ U = {uk ∈ R
nu | Huuk ≤ 1} , (10.2a)

xk ∈ X = {xk ∈ R
nx | Hxxk ≤ 1} , (10.2b)

which contain the origin in their interiors, since we are interested in the
regulator problem.

Remark 10.1 For ease of notation, we restrict ourselves to separate constraints on
the state and inputs in (10.2). It is straightforward to modify the presented algorithm
in this chapter to the case of mixed polytopic constraints, i.e. Exx + Euu ≤ fxu.

Remark 10.2 The proposed procedure in this chapter can easily be extended to sys-
tems, where the scheduling parameter lives in arbitrary polytopes instead of the
standard simplex (10.1c). Nonlinear dependencies of the system matrices on the
scheduling signal can be embedded in a conservative way into the shown framework
by defining Θ appropriately.

Remark 10.3 LPV systems with varying input matrix B(θ) : Rnθ → Rnx×nu are
the subject of Chapter 11. Note that LPV systems with varying input matrix
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B(θ) : Rnθ → Rnx×nu can also be reformulated to LPV-A systems by the Δu-
formulation, [Bar83, BMS07],(

xk+1
uk+1

)
=

[
A(θk) B(θk)

0 I

] (
xk
uk

)
+

[
0
I

]
Δuk . (10.3)

The price to pay is an increase in the system dimension by the number of inputs, and
the introduction of an input delay which counteracts the idea of the input to depend
on the current parameter. But the Δu-formulation also exhibits advantages as the
possibility to constrain and/or penalize input variations, and zero steady-state errors
when tracking reference steps.

The essential assumption behind LPV control is that the scheduling parame-
ter is measured online and known to the controller. Future values are however
only known to be constrained to the standard simplex. In this setting, we
want to compute an explicit state feedback control law

uk = μ(xk, θk) , (10.4)

for the described class of LPV-A systems, which makes use of the informa-
tion of the current θk. This assumption is referred to as the LPV paradigm
by some authors. For the control problem to make sense, it is assumed
that system (10.1) is controllable and observable for all admissible θk, [SM67,
BBS03].

To compute the control law (10.4) within a model predictive control scheme,
a finite-horizon cost function is to be minimized. According to standard
MPC, our cost function is defined as

J(πN ; xk, θk, Tk) = ‖Pxk+N‖p +
N−1

∑
i=0
‖Qxk+i‖p + ‖Ruk+i‖p , (10.5)

where p denotes a polyhedral norm, e.g. the 1-norm or the ∞-norm. Poly-
hedral norms enable a parametric solution to the stated problem using dy-
namic programming. For the minimization of the cost function (10.5) we
have to consider the current as well as the unknown future parameter val-
ues, as the state trajectories are parameter-dependent. We will optimize over
finite-horizon control policies

πN := {μ0, μ1, . . . , μN−1}

under the influence of the unknown sequence of future scheduling parameters

Tk := {θk+1, . . . , θk+N−1} .
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10 Optimal Control of Constrained LPV-A Systems

In a closed-loop MPC approach (cf. Section 4.3), one assumes that the future
control action uk+1 is calculated optimally over the horizon N − 1 not un-
til xk+1 and θk+1 are available. But as the future values of the scheduling
parameters are unknown, all possible cases must be considered in order to
accommodate for the worst-case scenario. This way it is assured that the ac-
tual cost function will be less or equal to the computed one, no matter how
the scheduling parameters evolve. The optimization problem to solve in a
closed-loop MPC approach is thus

μ∗(xk, θk) = arg min
μ0

max
θk+1

min
μ1
· · · max

θk+N−1
min
μN−1

J(πN , Tk; xk, θk) (10.6a)

s.t. ∀i ∈ {0, . . . , N− 1}
xk+i+1 = A(θk+i)xk+i + Bμi(xk+i , θk+i) , (10.6b)
μi(xk+i , θk+i) ∈ U , (10.6c)
xk+i ∈ X , (10.6d)
θk+i ∈ Θ . (10.6e)

Remark 10.4 It is straightforward to add terminal state constraints xk+N ∈ XT
to the optimization problem (10.6) in order to obtain a-priori stability guarantees.
However, for complexity reasons we recommend not to use terminal state constraints,
but to verify stability a-posteriori (for more details on stability guarantees see the
discussion in Section 10.3).

10.2 Computation of Explicit MPC Controllers

Here we propose a dynamic programming (DP) procedure to solve (10.6) by
iterating backwards in time. For more details on dynamic programming, see
Section 3.3. We start at the prediction horizon N with the initial cost function

J∗N(xk+N) = ‖Pxk+N‖p . (10.7)

We iterate backwards in time, with the iteration index i decreasing from
N − 1 to 1. At each iteration of the dynamic programming procedure we
solve the parametric optimization problem

J∗i (xk+i) = ‖Qxk+i‖p + max
θk+i

min
μi
‖Rμi(xk+i , θk+i)‖p + J∗i+1(xk+i+1) (10.8a)

s.t. xk+i+1 = A(θk+i)xk+i + Bμi(xk+i , θk+i) , (10.8b)
μi(xk+i , θk+i) ∈ U ∀ θk+i ∈ Θ , (10.8c)
xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (10.8d)
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xk+i ∈ X , (10.8e)
θk+i ∈ Θ , (10.8f)

where the polytopic set Xi+1 denotes all states for which the optimal value
function J∗i+1 of the previous DP iteration is finite.

The constraint (10.8e) on the parameter of the parametric optimization prob-
lem ensures the satisfaction of the state constraints (10.2b). For the paramet-
ric optimization problem at hand it is not a constraint on the optimization
variable, but determines the set of states where a solution is wanted.

Theorem 10.1 (Solution properties of the DP iterations) Consider the para-
metric optimization problem (10.8). The following statements hold:

(i) The set of feasible states Xi is a closed polyhedral set in Rnx, and Xi is parti-
tioned into polyhedral critical regions.

(ii) The optimal value function J∗i (xk+i) is continuous, convex and piecewise affine
over Xi, and affine in each critical region R.

(iii) The optimal solution μ∗i (xk+i , θk+i) is a continuous piecewise affine function
of the state xk+i and an affine function of the scheduling parameter θk+i , i.e. of
the form

μ∗i (xk+i , θk+i) =
nθ

∑
j=1

θk+i,jμ
∗
i,j(xk+i) (10.9)

with μ∗i,j(xk+i) being continuous and polyhedral piecewise affine over Xi.

Remark 10.5 If one denotes the parameter dependence of the optimal solution linear
or affine is a matter of perspective. While (10.9) by itself is clearly a linear function
in θk+i , the scheduling parameters are restricted to the parameter simplex Θ, which
does not contain the origin. Considering that the elements of θk+i are not indepen-
dent, we can substitute one element of θk+i via ∑

nθ
j=1 θk+i,j = 1 in Equation (10.9)

and obtain a function affine in the remaining elements of θk+i .

In the following we will proof Theorem 10.1 by first showing that (10.9) is the
optimal input parametrization, and then reformulating the parametric opti-
mization problem (10.8) into a parametric linear program, whose solution
properties were stated in Theorem 3.1.

Proof For the time being assume that the set Xi+1 is a polyhedron and the
optimal cost function of the previous DP iteration J∗i+1 is a continuous, con-
vex and polyhedral piecewise affine function. Introducing the epigraph vari-
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10 Optimal Control of Constrained LPV-A Systems

able ti, we apply an epigraph reformulation,

J∗i (xk+i) = ‖Qxk+i‖p + max
θk+i

min
{μi,ti}

ti(xk+i , θk+i) (10.10a)

s.t. xk+i+1 = A(θk+i)xk+i + Bμi(xk+i , θk+i) , (10.10b)
‖Rμi(xk+i , θk+i)‖p + J∗i+1(xk+i+1) ≤ ti(xk+i , θk+i) ∀ θk+i ∈ Θ ,

(10.10c)

μi(xk+i , θk+i) ∈ U ∀ θk+i ∈ Θ , (10.10d)
xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (10.10e)
xk+i ∈ X , (10.10f)
θk+i ∈ Θ . (10.10g)

Note that the constraints (10.10c) - (10.10e) describe a polyhedron in the
space spanned by μi, ti and xk+i+1. Hence those constraints can be rewritten
by a number of polytopic inequalities. By inserting the state-update equation
to replace xk+i+1 in J∗i+1, we can rewrite the optimization problem as

J∗i (xk+i) = ‖Qxk+i‖p + max
θk+i

min
{μi,ti}

ti(xk+i , θk+i) (10.11a)

s.t. Cμt

[
μi(xk+i , θk+i)
ti(xk+i , θk+i)

]
≤ c− Cx

(
nθ

∑
j=1

Ajθk+i,jxk+i

)
∀ θk+i ∈ Θ ,

(10.11b)

xk+i ∈ X , (10.11c)
θk+i ∈ Θ , (10.11d)

with Cμt, Cx and c being matrices and a vector of appropriate dimensions
describing the hyperplanes of this polyhedron.

When solving the optimization problem (10.11) parametrically, we are only
interested in regions which are full-dimensional with respect to the state
xk+i , i.e. where the constraints (10.11c) are inactive. Thus the set of active
constraints (in the following denoted by the subscript A) in each controller
region will be a subset of the constraints (10.11b), and we can conclude on
the structure of the optimization variables

[
μi(xk+i , θk+i)
ti(xk+i , θk+i)

]
=
(
Cμt,A

)−1

(
cA − Cx,A

(
nθ

∑
j=1

Ajθk+i,jxk+i

))

=
nθ

∑
j=1

θk+i,j

((
Cμt,A

)−1 (cA − Cx,AAjxk+i
))

=:
nθ

∑
j=1

θk+i,j

[
μi,j(xk+i)
ti,j(xk+i)

]
. (10.12)
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This equation shows that μi(xk+i , θk+i) and ti(xk+i , θk+i) depend affinely on
the scheduling parameter in each controller region. Hence we can conclude
that the affine input parametrization (10.12) is the optimal input parametriza-
tion for the optimization problem (10.11). Next we insert this input paramet-
rization (10.12) together with the state update equation (10.1) into (10.10).
Convexity of the polyhedral norm ‖ · ‖p as well as of J∗i+1 allows us to factor
out the scheduling parameter, yielding the optimization problem

J∗i (xk+i) = ‖Qxk+i‖p + max
θk+i

min
{μi,j,ti,j}

nθ

∑
j=1

θk+i,jti,j(xk+i) (10.13a)

s.t.
nθ

∑
j=1

θk+i,j
(
‖Rμi,j(xk+i)‖p + (10.13b)

+ J∗i+1(Ajxk+i + Bμi,j(xk+i))− ti,j(xk+i)
)
≤ 0 ∀ θk+i ∈ Θ ,

nθ

∑
j=1

θk+i,jμi,j(xk+i) ∈ U ∀ θk+i ∈ Θ , (10.13c)

nθ

∑
j=1

θk+i,j(Ajxk+i + Bμi,j(xk+i)) ∈ Xi+1 ∀ θk+i ∈ Θ , (10.13d)

xk+i ∈ X , (10.13e)
θk+i ∈ Θ . (10.13f)

The constraints (10.13b) - (10.13d) are satisfied ∀θk+i ∈ Θ if and only if
they are satisfied at the vertices of the parameter simplex. Moreover, the
maximum is attained at a vertex of the parameter simplex, such that the
(10.13) can be restated as

J∗i (xk+i) = ‖Qxk+i‖p + max
j

min
{μi,j,ti,j}

ti,j(xk+i) (10.14a)

s.t. ‖Rμi,j(xk+i)‖p + J∗i+1(Ajxk+i + Bμi,j(xk+i)) ≤ ti,j(xk+i)

∀ j ∈ [1, nθ ] , (10.14b)
μi,j(xk+i) ∈ U ∀ j ∈ [1, nθ ] , (10.14c)

Ajxk+i + Bμi,j(xk+i) ∈ Xi+1 ∀ j ∈ [1, nθ ] , (10.14d)

xk+i ∈ X . (10.14e)

Since we are not interested in the optimization variables μi,j(xk+i) per se, but
only in the cost function J∗i (xk+i), the optimization problem can be simplified
by replacing ti,j(xk+i) by t̄i(xk+i) := maxj ti,j(xk+i), followed by solving the
optimization problem

J∗i (xk+i) = ‖Qxk+i‖p + min
{μi,j,t̄i}

t̄i(xk+i) (10.15a)
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10 Optimal Control of Constrained LPV-A Systems

s.t. ‖Rμi,j(xk+i)‖p + J∗i+1(Ajxk+i + Bμi,j(xk+i)) ≤ t̄i(xk+i)

∀ j ∈ [1, nθ ] , (10.15b)
μi,j(xk+i) ∈ U ∀ j ∈ [1, nθ ] , (10.15c)

Ajxk+i + Bμi,j(xk+i) ∈ Xi+1 ∀ j ∈ [1, nθ ] , (10.15d)

xk+i ∈ X , (10.15e)

instead. Note that the parametric optimization problem (10.15) is a paramet-
ric linear program, which leads to the remaining properties of Theorem 10.1.
The initial assumption of a polytopic set Xi+1 and a convex, polyhedral piece-
wise affine J∗i+1 can be shown by induction. �

Basically, the unknown future parameters are dealt with by performing an
epigraph reformulation, and parameter-dependent constraints are replaced
by a constraint for each vertex of the parameter simplex. Due to the epi-
graph reformulation (cf. Equation (3.4)), the objective function is converted
to a constraint. In order to stay in the class of parametric linear programs,
which require polyhedral constraints, we are limited to objective functions
which are representable by convex piecewise affine functions. Unfortunately,
quadratic cost functions are not possible, since we have no efficient methods
for parametric programming for problems with quadratic constraints.

By using polyhedral norms, the optimal cost functions J∗i are convex, polyhe-
dral piecewise affine functions of the state xk+i , such that in every iteration
the optimization problem (10.15) can be solved parametrically with respect
to xk+i . Contrary to the closed-loop MPC approach for uncertain systems,
the predicted future inputs are functions of the future scheduling parame-
ters, uk+i = μi(xk+i , θk+i).

Using the terminology of the robust optimization community, in every step
of the proposed dynamic programming procedure, we are solving the Affinely
Adjustable Robust Counterpart (AARC) of an uncertain linear program in a
parametric fashion. By restricting the input matrix B to be constant, this
AARC is of fixed recourse, ensuring computational tractability. For more de-
tails on this robust optimization framework, see e.g. [BTGGN04].

The final step of the dynamic programming procedure differs from the previous
steps. As the parameter θk is measured and known, this information can,
and should, be taken into account instead of considering the worst case.
The problem to solve in the final DP step is thus the nonlinear parametric
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program

J∗(xk, θk) = min
μ0
‖Rμ0(xk, θk)‖p + J∗1 (xk+1) (10.16a)

s.t. xk+1 = A(θk)xk + Bμ0(xk, θk) , (10.16b)
μ0(xk, θk) ∈ U , (10.16c)
xk+1 ∈ X1 , (10.16d)
xk ∈ X , (10.16e)
θk ∈ Θ , (10.16f)

Unfortunately, some of the constraints of this optimization problem depend
bilinearly on the parametric variables (xk, θk), which prevents a standard
parametric solution strategy. One way around this is to solve the optimiza-
tion problem not parametrically in (xk, θk), but in the uncontrolled successor
state,

zk := (
nθ

∑
j=1

Ajθk,j)xk , (10.17)

which was first introduced in [BLM08] and in generalized form constitutes
a cornerstone of [BRBM08]. By solving the optimization problem parametri-
cally in the uncontrolled successor state zk, the optimization problem (10.16)
can be rewritten as

J∗(zk) = min
{μ,tk}

tk(zk) (10.18a)

s.t. Cμt[μ(zk), tk(zk)]
T ≤ c− Cxzk , (10.18b)

which can be solved parametrically with respect to the uncontrolled succes-
sor state as a standard parametric linear program. The solution is an explicit
control law

uk = μ(zk) =

⎧⎪⎨
⎪⎩

F1zk + g1 , zk ∈ R1 ,
...

...
Fnr zk + gnr , zk ∈ Rnr

(10.19)

with Fr ∈ Rnu×nx , gr ∈ Rnu forming the feedback in the rth controller region
Rr. Online, all we have to do is to compute the uncontrolled successor state
zk, which is completely determined by the measured state xk and scheduling
parameter θk, and evaluate the look-up table to obtain the optimal control
input uk.

The DP procedure finishes with a piecewise affine control law, not defined
over a set of current states xk, but of feasible uncontrolled successor states
zk,

Z f = {z ∈ R
nx | Ezz ≤ fz} . (10.20)
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However, it might be interesting to compute a region which tells us which
actual initial states are feasible, moreover, which initial states are admissible,
such that for all parameter values the uncontrolled successor state is feasible.
This way we guarantee that a solution exists for all initial states of the ad-
missible state set, independent from the parameter value. For a fixed state
xk, the set of all possible uncontrolled successor states (10.20) is a polytope,
where Aj determines the jth vertex. For convexity reasons it is sufficient to
check if all vertices of this polytope lie in the polytope (10.20), such that the
set of admissible initial states can be stated as

X f =

⎧⎪⎨
⎪⎩x ∈ R

nx

∣∣∣∣∣
⎡
⎢⎣ EzA1

...
EzAnθ

⎤
⎥⎦ x ≤

⎡
⎢⎣ fz

...
fz

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (10.21)

10.3 Stability

This section is concerned with stability of the resulting closed-loop system,
when explicit control laws are applied to LPV-A systems. Note that the pro-
posed procedure does not guarantee stability a-priori, which is a classical is-
sue in finite-horizon MPC. As discussed in Section 4.5, there are known vari-
ations of the model predictive control scheme which can be employed, for ex-
ample dual mode MPC or the (overly conservative) terminal equality constraint.
One can guarantee (i) asymptotic stability, (ii) constraint satisfaction, and (iii)
recursive feasibility a-priori for all feasible states, by considering a dual mode
approach and by choosing the terminal state constraints XT and the polyhe-
dral terminal cost LN(xk+N) appropriately, [MRRS00]. From [MRRS00] we
have the following conditions for asymptotic stability:

A1: XT ⊆ X ,XT closed and contains the origin.

A2: μT(xk, θk) ∈ U ∀xk ∈ XT ∀θk ∈ Θ.

A3: xk+1 = A(θk)xk + B(θk)μT(xk, θk) ∈ XT ∀xk ∈ XT ∀θk ∈ Θ

A4: LN(xk)− LN(xk+1) ≤ ‖Qxk‖p + ‖RμT(xk, θk)‖p ∀xk ∈ XT ∀θk ∈ Θ.

Furthermore, it is a well-known fact, that stability is preserved in the case
of a suboptimal solution, as long as the suboptimality of the cost function
does not exceed one stage cost, [SMR99]. Consider the following procedure,
which is based on [BLM09] and [BBM02]:
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1. Compute an asymptotically stabilizing terminal region parameter-vary-
ing state-feedback controller

uk = μT(xk, θk) = K(θk)xk =
nθ

∑
j=1

Kjθk,jxk (10.22)

for the unconstrained system (10.1), e.g. by the procedure in Section 13.

2. Determine a polytopic λ-contractive terminal region XT by pre-image
computations, such that

∀xk ∈ XT, ∀θk ∈ Θ ∃μT(xk, θk) ∈ U : A(θk)xk + B(θk)μT(xk, θk) ∈ λXT
(10.23)

holds for some λ ∈ [0, 1).

3. Scale the Minkowski function

ψXT(xk) := min
α
{α ∈ R+ | xk ∈ αXT} , (10.24)

induced by the terminal region XT, by a factor β∗ ∈ R+, which can be
determined by the linear program

β∗ = min
β

β (10.25a)

s.t. β(1− λ) ≥ ‖Qvi‖p + ‖RKjvi‖p

∀vi ∈ vert(XT) ∀j ∈ {1, . . . , nθ} . (10.25b)

4. Define LN(xk+N) := β∗ψXT(xk+N).

Theorem 10.2 Assume that there exists a terminal region control μT(xk, θk) of the
form (10.22), which renders the polytope XT λ-contractive as in (10.23) with λ ∈
[0, 1). Then, for the terminal region XT and the terminal cost LN(xk) = β∗ψXT(xk),
as defined in (10.24)-(10.25), the conditions A1 to A4 are satisfied, such that we have
asymptotic stability, constraint satisfaction and recursive feasibility for all feasible
points.

Proof Conditions A1 to A3 follow immediately from the properties of the
λ-contractive terminal set XT.
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Condition A4 follows from

βψXT (xk)− βψXT(xk+1) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇐ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇐ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p +
nθ

∑
j=1

θk,j‖RKjxk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇔
nθ

∑
j=1

θk,jβ(1− λ)ψXT (xk) ≥
nθ

∑
j=1

θk,j‖Qx‖p +
nθ

∑
j=1

θk,j‖RKjxk‖p

∀xk ∈ XT ∀θk ∈ Θ

⇔ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p + ‖RKjxk‖p ∀xk ∈ XT ∀j ∈ {1, . . . , nθ}
⇔ β(1− λ) ≥ ‖Qvi‖p + ‖RKjvi‖p ∀vi ∈ vert(XT) ∀j ∈ {1, . . . , nθ} �

Note that a symmetric terminal set XT implies a Minkowski function which
can be expressed as LN(xk+N) = ‖Pxk+N‖∞ with some matrix P. However,
the described procedures work also for convex polyhedral piecewise affine
terminal cost LN(xk+N). For more results on stability of LPV-A systems, see
e.g. [BM08b].

The drawback of adding terminal state constraints is that in general they
lead to a loss of performance, a smaller feasible space and an increase in
complexity of the resulting control law. While the former two effects can
be mitigated by extending the prediction horizon, this typically leads to a
further increase in the complexity of the control law. In order to avoid these
downsides in practical implementations, a possibility is to omit the termi-
nal state constraints and to verify stability a-posteriori, following the theory
described in [BM08b].

This stability analysis is performed in the space of the uncontrolled successor
state zk, where the LPV-A system (10.1) under the PWA control law uk =
μ(zk) from Equation (10.19) corresponds to the piecewise affine closed-loop
system

zk+1 = A(θk+1) (zk + Bμ(zk))

=

⎧⎪⎨
⎪⎩

A(θk+1)(I + BF1)zk + A(θk+1)Bg1 , zk ∈ R1
...

...
A(θk+1)(I + BFnr)zk + A(θk+1)Bgnr , zk ∈ Rnr

(10.26)

with polytopic uncertainty.

The stability analysis consists of three steps, which can be easily automated.
In the following we will focus on the regulator problem, i.e. the stabilization
to the origin. Note that all other reference values in the state space corre-
spond to a set of reference values in z–space, depending on the scheduling
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parameter θk. Asymptotic stability to reference values x̄ 
= 0 requires con-
stant scheduling parameter values (Scenario (S3)). For varying scheduling
parameter values, instead of asymptotic stability to some reference value
x̄ 
= 0, only ultimate boundedness to a target set can be certified.

Definition 10.1 Let I be the index set of all controller regions containing the origin,

I := {r ∈ {1, . . . , nr} | 0 ∈ Rr} .

The index set I is single-valued if the origin is contained in the interior of a
controller region, and multi-valued if the origin lies on the facet of several
controller regions.

1. Invariance of the origin
At first we require the origin to be invariant, i.e. to be an equilibrium
point of the closed-loop system. This is the case, if the condition

gr = 0 ∀r ∈ I (10.27)

holds. Since X and U include the origin, there always exists a controller
which fulfils this condition. If Condition (10.27) is violated, the origin is
not an equilibrium point, and at most ultimate boundedness to a target
set can be present.

2. Contractiveness of a target set
After verifying invariance of the origin, the size of the region of attrac-
tion shall be determined. First we establish contractiveness of a target
set. If the index set I of regions containing the origin is single-valued, a
robust invariant target set can be determined by a set backpropagation
as in Algorithm 2.1, starting with Z0 = Rr and repeatedly using the
contractive preset

Ω(Zi,Rr) =

{
zk ∈ R

nx

∣∣∣∣∣ Aj(I + BFr)zk + AjBgr ∈ λZi, j = 1, . . . , nθ

zk ∈ Rr

}
,

(10.28)
with λ ∈ [0, 1) denoting the contraction ratio. If Zi ⊆ Ω(Zi,Rr), the al-
gorithm is terminated with T := Zi, otherwise we set Zi+1 = Ω(Zi,Rr)
and perform the next iteration. If the index set I is multi-valued, the
backpropagation runs in parallel for each regarded region r ∈ I, start-
ing with Z0 = {Rr}r∈I, and merging the presets after each iteration
Zi+1 =

⋃
r∈I Ω(Zi,Rr). The resulting target region T is λ-contractive,

and asymptotically stable due to the following proposition.

Proposition 10.3 Let T ⊆ ⋃
r∈IRr ⊂ Rnx be a polytope containing the

origin in its interior and let Condition (10.27) hold. If ∀r ∈ I, all vertices
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vi
r of T ⋂Rr are mapped into λT , 0 ≤ λ < 1, then μT is λ-contractive
∀μ ∈ [0, 1].

Proof Consider any ẑk ∈ μ(T ⋂Rr) ⇒ z̃k = ẑk/μ ∈ (T ⋂Rr) ⇔ ∃αi
r ∈

R+, ∑i αi
r = 1 : z̃k = ∑i αivi

r ⇒ ẑk = μ ∑i αivi
r ⇒ ẑk+1 ∈ μ ∑i αiλT =

μλT . �

Proposition 10.3, together with the properties of the gauge function
ψT (z) induced by T suffices to establish asymptotic stability inside T
by using ψT (z) as a Lyapunov function.

3. Reachability analysis
Finally a reachability analysis is performed to determine all states which
are mapped to the target region T . In this reachability analysis, the
backpropagation algorithm (Algorithm 2.1) is performed, using again
the preset (10.28). We start the backpropagation with Z0 = T . In each
iteration i we compute Ω(Zi,Rr), r = 1, . . . , nr and merge the resulting
presets to Zi+1 =

⋃nr
r=1 Ω(Zi,Rr).

The iterations terminate when Zi+1 ⊆ Zi or when the entire feasible
space is covered. The resulting region of attraction is denoted by Z∞.
All uncontrolled successor states zk ∈ Z∞ are controlled to the target
set T and eventually to the origin by construction. The required algo-
rithms to perform the backpropagations boil down to polytopic manip-
ulations and can be adapted from the algorithms given in the references
mentioned above. The set of stable states can be determined similar to
(10.21) by ensuring that the uncontrolled successor state is in Z∞ inde-
pendent of the current parameter.

In the following, we will show that stability properties of the uncontrolled
successor state zk imply stability properties of the actual state xk.

Lemma 10.4 The uncontrolled successor state obeys the following upper and lower
bounds:

(a) For every LPV-A system (10.1) there exists an ε1 > 0, such that the uncon-
trolled successor state (10.17) can be bounded by

‖zk‖ ≤ ε1‖xk‖ . (10.29a)

(b) Under the assumption of (10.27) and for a small-enough δ2 > 0, there exists
an ε2 > 0 such that

‖zk‖ < δ2 ⇒ ‖xk+1‖ ≤ ε2‖zk‖ (10.29b)

holds.
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Proof (a) Using the definition of the uncontrolled successor state, it fol-
lows that

‖zk‖ = ‖A(θk)xk‖
≤ ‖A(θk)‖‖xk‖
≤ max

θk∈Θ
‖A(θk)‖‖xk‖ =: ε1‖xk‖ .

(b) If δ2 is small enough, the uncontrolled successor state is an element of⋃
r∈IRr. Using the state-update equation, the control law (10.19) and

Condition (10.27), we infer

‖xk+1‖ = ‖zk + Bμ(zk)‖
≤ ‖max

r∈I
(I + BFr)zk‖

≤ max
r∈I
‖(I + BFr)‖‖zk‖ =: ε2‖zk‖ . �

Proposition 10.5 Lyapunov stability and asymptotic stability of xk = 0 follow
directly from Lyapunov stability and asymptotic stability of zk = 0, respectively.

Proof Proposition 10.5 is trivial, if the state-update matrix A(θ) is invertible.
If A(θ) is singular, it possesses a (parameter-dependent) null space, contain-
ing states xk which are not necessarily zero if zk = 0. Fortunately, we just
need to let pass one time step in order to show Proposition 10.5 in this case.

With Lemma (10.4) and under the assumption of ε ≤ δ2, we obtain from the
Lyapunov stability of zk = 0:

‖xk‖ ≤ δ′ :=
δ

ε1
⇒ ‖zk‖ ≤ δ

⇒ ‖zk+i‖ ≤ ε ∀i ∈ N

⇒ ‖xk+i+1‖ ≤ ε2ε =: ε′ ∀i ∈ N .

Similarly, we infer asymptotic stability of xk = 0 from asymptotic stability of
zk = 0, using again Lemma (10.4),

‖xk‖ ≤ δ′ :=
δ

ε1
⇒ ‖zk‖ ≤ δ

⇒ lim
k→∞

‖zk‖ = 0

⇒ lim
k→∞

ε2‖xk+1‖ = 0

⇔ lim
k→∞

‖xk‖ = 0 . �
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Remark 10.6 Note that Condition (10.27) is used in Lemma 10.4(b), and is thus
also required for Proposition 10.5 to hold. However, Condition (10.27) is contained
in the assumptions of Proposition 10.5, since it is a necessary condition for stability
of zk = 0.

Remark 10.7 The assumption ε ≤ δ2 is not a necessary condition for Lyapunov
stability of xk = 0. There will always be a small-enough ε′, such that ε ≤ δ2 is
fulfilled.

10.4 Numerical Examples

This section consists of three numerical examples, demonstrating the appli-
cation of the proposed algorithm and comparing it to Quasi-Min-Max MPC,
explicit robust MPC and to explicit MPC for piecewise affine systems.

Example 10.1 (Comparison with Quasi-Min-Max MPC)

In the first example the potential of Explicit LPV-A MPC in reducing the
online computational effort is demonstrated. The example system is taken
from [LA99]. It represents an unstable LPV-A system of the form (10.1) with
the system matrices

A1 =

⎡
⎢⎢⎣

1.3333 −0.6667 1.3333 −0.6667
0.1 0 0 0

1.3333 −0.6667 1.3333 −0.6667
0.1 0 0 0

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

1.3333 −0.6667 1.3333 −0.6667
1 0 1 0

1.3333 −0.6667 1.3333 −0.6667
1 0 1 0

⎤
⎥⎥⎦ ,

B =
[
1 0 0 0

]
.

The states are constrained to be xk,i ≤ 1.14, i ∈ [1, 4], and the input is
constrained to be uk ≤ 4.15. In this example, the states of the LPV-A system
shall be regulated from the initial state

x0 =
[
−0.3964 0.4377 −1.0905 1.1137

]
to the origin by means of two control methods: The explicit MPC scheme
presented in Section 10.2, and the Quasi-Min-Max MPC scheme from Sec-
tion 9.5, which was proposed together with the original example in [LA99].
The evolution of the scheduling parameter is depicted in Figure 10.1.
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Figure 10.1: Evolution of the scheduling parameter, θk,1 (—), θk,2 (· · ·), in Exam-
ple 10.1.

The Multi-Parametric Toolbox (MPT) and Yalmip were used to compute the
explicit control law, [KGBM04, Löf08]. The weight matrices

Q = diag(
[
1 1 1 1

]
) , R = 0.1 , P = Q ,

and a prediction horizon of N = 4 were chosen. The ∞-norm was used in
the cost function (10.5). The control law was computed for all states in the
hyperbox −10 ≤ xk,i ≤ 1.14, i ∈ [1, 4]. Afterwards, the resulting controller
regions were merged using a greedy merge, resulting in a total number of
740 regions. For this control law a binary search tree was generated, which
can be evaluated under C with small computational effort, [TJB03]. MPT
supports the export of binary search trees into C code, which can then be
compiled as mex functions callable from within Matlab. A pure C imple-
mentation would even further decrease the required computation times.

The solution of the semi-definite programs within the Quasi-Min-Max MPC
scheme was performed by SeDuMi, [Stu99], interfaced via Yalmip [Löf04].
Since the input matrix B is constant, the future state feedback control laws
were chosen parameter-dependent, in order to reduce the conservatism of
the approach. Apart from the selected cost function, which is quadratic in
the Quasi-Min-Max MPC scheme, the setup is identic to the explicit LPV-A
MPC scheme.

The simulation results for both control methods are depicted in Figure 10.2.
It can be seen that the closed-loop trajectories of the states and the inputs are
nearly the same, although two different objective functions were minimized
(quadratic upper bound on the infinite horizon cost vs. piecewise linear
finite-horizon cost). Under both control methods, the required input and
state constraints are satisfied.

The actual difference lies in the required online computational effort. While
explicit MPC requires a computation time of less than 0.02 ms in each step,
Quasi-Min-Max MPC requires between 0.2 s and 0.3 s, which is more than 4
orders of magnitude difference1 longer.

1All computations were performed on a 3 GHz Pentium 4 processor using Matlab 7.
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Figure 10.2: Closed-loop trajectories of the states and the input, and the required
online CPU time in Example 10.1. Comparison of Explicit LPV-A MPC
(—) and Quasi-Min-Max MPC (− · −).

Example 10.2 (Comparison with robust MPC)

In the second example explicit control laws for a system of the form (10.1)
were computed, once utilizing knowledge the scheduling parameter θk and
once treating the scheduling parameter as uncertainty. In the latter case,
the closed-loop constrained robust optimal control (CL-CROC) problem is
solved explicitly, resulting in the control input being independent of the pa-
rameter, uk = μ(xk). It makes sense to assume that utilizing the current
scheduling parameter information improves performance, and this intuition
has already been verified in several examples, for instance in [LA99]. There-
fore we focus here on the question how the complexity of the two resulting
explicit control laws relates to each other.

The example system is taken from [LA00b], and consists of the matrices

A1 =

⎡
⎢⎢⎣

0.2730 0.0660 0.3021 −0.5012
0.2717 0.4416 0.5602 −0.7123
0.3051 −0.7865 0.7651 0.3121
0.7962 −0.1452 0.5231 −0.9345

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

0.2093 −0.1981 −0.2394 0.5671
0.2717 0.4598 0.5602 1.3782
−0.4700 0.6700 −0.8600 −1.2400

0.3456 −0.6312 −1.4594 1.8936

⎤
⎥⎥⎦ ,

B =
[

0.2300 0.2601 0.1213 1.3452
]T .
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Figure 10.3: Evolution of the scheduling parameter, θk,1 (—) and θk,2 (– ·), in Exam-
ple 10.2.
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(a) Explicit robust MPC.
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(b) Explicit LPV-A MPC.

Figure 10.4: Closed-loop trajectories of the states and the input, and the actual costs
in Example 10.2. Comparison of explicit LPV-A MPC and explicit robust
MPC with prediction horizon N = 1 (—-), N = 2 (− · −) and N = 3
(· · · ).

The control aim is to regulate the system from the initial point

x0 =
[
−0.3964 0.4377 −1.0905 1.1137

]T

to the origin, while the state is bounded to ‖xk‖∞ ≤ 20, the input is bounded
to |uk| ≤ 1.91, and the parameter/uncertainty follows the trajectory shown
in Figure 10.3. As weights for the MPC schemes, Q = I and R = 0.01 were
chosen. The terminal cost matrix P was selected to be equal to Q, and the
norm, with p = ∞, was minimized in the cost function.

The simulation results are depicted in Figure 10.4. It can be observed that
the explicit robust controllers have far more difficulties to handle the system
than the explicit LPV-MPC controllers. Moreover, the control performance
of explicit LPV-MPC increases with longer prediction horizons, whereas the
control performance of explicit robust MPC decreases.
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Horizon Explicit LPV-A MPC Explicit Robust MPC

regions costs regions costs

1 32 10.14 244 69.26
2 838 5.64 4392 71.15
3 6550 5.50 43168 161.33

Table 10.1: Number of regions and cumulated costs for different prediction horizons
in Example 10.2.

Table 10.1 summarizes the complexity of the computed control laws and
the cumulated costs in the control scenario for different prediction horizons.
As expected, using the parameter information improves the control perfor-
mance, but also the complexity of the resulting control law decreased by a
factor of 4 – 8. This is mainly due to the uncontrolled successor state zk in
the final step of the proposed DP algorithm, which indeed reduced the num-
ber of regions of the control law. While the min-max steps of the CL-CROC
problem and the max-min steps of the CPVOC problem differ mainly in the
number of optimization variables, the parametric linear program in the final
step of the CPVOC problem is not a max-min optimization problem, such
that the number of constraints is lower compared to the final step of the
CL-CROC problem.

Example 10.3 (Comparison with hybrid MPC)

In the third example we examine the application of the proposed procedure
by computing explicit control laws for the nonlinear Hénon map. An LPV
model and a PWA model is derived to investigate when a parameter-varying
model could be of use.

The Hénon map is a nonlinear second-order system and a popular example
for chaotic systems, [Hén76]. It is defined as

xk+1,1 = −a(xk,1)
2 + xk,2 + 1 , (10.30a)

xk+1,2 = bxk,1 , (10.30b)

where the second subscript indicates the element of the state vector. When
the coefficients are a = 1.4, b = 0.3, the system has an unstable fixed point
at

x̄ = (−1/4 +

√
609
28

)
[
1 0.3

]T ≈
[
0.63 0.19

]T .

Already small deviations from this fixed point lead to chaotic behaviour, and
the system moves along a so-called chaotic attractor. A chaotic attractor has
the property that during an infinite amount of time, the system is getting
arbitrary close to every point on the attractor.
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In order to control the Hénon map, we introduce an input to obtain the
controlled Hénon map,

xk+1,1 = −a(xk,1)
2 + xk,2 + 1 + u , (10.31a)

xk+1,2 = bxk,1 + cu , (10.31b)

The input coefficient in the controlled Hénon map (10.31) is set to c = 0.1. A
linear controller can stabilize this system to the fixed point from a surround-
ing domain of attraction, [Vin97].

In the following, two methods are used to compute explicit control laws
for the controlled Hénon map: One is to model the Hénon map by an LPV
model and apply the method described above. As an alternative approach
the Hénon map is approximated by a PWA model and the associated optimal
control law is computed.

LPV model of the Hénon map

For the computation of an explicit MPC controller with the proposed method,
we have to embed the Hénon map (10.31) into an LPV-A system of the
form (10.1). Due to the affine term in (10.31), this is not directly possi-
ble. However, the proposed algorithm easily extends to LPV-A systems with
affine terms in the state prediction. In a first step, the Hénon map is rewrit-
ten as

xk+1 =

[−axk,1 1
b 0

]
xk +

[
1
c

]
uk +

[
1
0

]
. (10.32)

The next step is the selection of a suitable scheduling function θk = fρ(ρk),
with the scheduling variable ρk = xk,1, and where we want the scheduling
parameter θk to vary in [0, 1]. This involves the decision for a domain of xk,1,
for which the LPV model represents the dynamics of the nonlinear system
accurately. On the one hand we want the state transition matrix A(θk) to
vary as little as possible to mitigate the introduced conservatism of the LPV
approach, on the other hand we want to make the domain as large as possi-
ble. As the chaotic attractor lies in [−1.5, 1.5], this interval was chosen and
led to the description

xk+1 =

[
3aθk − 1.5a 1

b 0

]
xk +

[
1
c

]
uk +

[
1
0

]
, (10.33)

θk = (1.5− xk,1)/3 . (10.34)

Note that the first entry of the state transition matrix can take values in the
interval [−2.1, 2.1]. The parameter causes such a severe change of dynamics,
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Figure 10.5: PWA approximation of the quadratic term of the Hénon map.

that a robust min-max MPC scheme, assuming uncertain parameter θk, failed
to stabilize (10.33) to x̄.

PWA model of the Hénon map

It is also possible to obtain a piecewise affine approximation of (10.31) and
compute the optimal control for this system. For this approach, the quadratic
term in (10.31) has to be approximated by a piecewise affine function. The
quadratic term as well as a possible piecewise affine approximation with 5

affine terms is shown in Figure 10.5. The used approximation is

−a(xk,1)
2 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2.5axk,1 + 25a
16 , xk,1 < −0.94,

1.26axk,1 + 0.4a, −0.94 ≤ xk,1 < −0.32,
0, −0.32 ≤ xk,1 < 0.32,

−1.26axk,1 + 0.4a, 0.32 ≤ xk,1 < 0.94,
−2.5axk,1 + 25a

16 , 0.94 ≤ xk,1 .

(10.35)

The affine terms were selected to be tangential to the quadratic term, which is
especially important at the equilibrium point x̄, where approximation errors
would lead to steady-state errors, when stabilizing to x̄. With this approxima-
tion a piecewise affine model of the Hénon map can be derived, consisting
of five regions with different dynamics.

The approximation would become more accurate by using more affine terms.
However, with a more complex PWA model, the complexity of the explicit
controller grows rapidly, and the computations become intractable already
for very short prediction horizons. For more details on piecewise affine
systems see Chapter 5.
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10.4 Numerical Examples

Model type Controller regions Computation time5

PWA 344 181 secs
LPV 93 24 secs

Table 10.2: Comparison of optimal control laws in Example 10.3.

Comparison of optimal control laws

For both models of the nonlinear system the optimal control laws were com-
puted that minimize the cost function (10.5). In both cases, the weight ma-
trices Q = I, R = 0.1 and a prediction horizon of N = 4 was chosen. The
terminal cost matrix P was selected to be equal to Q, and the 1-norm was
minimized in the cost function. Instead of penalizing the weighted 1-norm
of the state, the difference to the fixed point x̄ was penalized, which trivially
can be incorporated in both algorithms.

The Multi-Parametric Toolbox (MPT) and Yalmip were used to compute the
explicit control laws, [KGBM04, Löf04].2 The complexity of the resulting con-
trol laws can be seen in Table 10.2. The explicit control law for the LPV model
was computed faster3 and resulted in less regions than the explicit control
law for the PWA model. This is due to transitions between the regions of
the PWA model, which have to be handled in a combinatorial fashion. The
most time in the PWA case was spent to remove redundant regions from
overlapping partitions. This phenomenon of overlapping partitions does not
appear in the LPV case. Moreover, the cost function and feasible state set of

x1
x2

J 1
0(

x)

-1
0

1

-1
0

1

0

1

2

3

Figure 10.6: Actual 10-steps-costs of LPV, PWA and optimal nonlinear control in Ex-
ample 10.3.

2A complete implementation of the example can be found at
http://control.ee.ethz.ch/∼joloef/wiki/pmwiki.php?n=Examples.Examples

3All computations were performed on a 3 GHz Pentium 4.
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Figure 10.7: State evolution from x0 = [1,−1]T under LPV (—), PWA (– ·) and opti-
mal nonlinear (· · · ) control in Example 10.3.

the controller for the LPV model are convex, which allows a faster evalua-
tion of the look-up table online, [Bor03]. The ultimate boundedness of the
controlled Hénon map under explicit LPV-MPC to a target region in z-space
has been verified for the box [−1.5, 1.5]2 following the reachability analysis
in Section 10.3.

Both control laws were tested in simulations by controlling the system from
400 initial points x0, uniformly distributed over the box [−1.5, 1.5]2, to the
fix-point x̄. Since the approximation with a PWA model leads to a nonzero
steady-state input ūPWA, this was subtracted from the control signal of the
PWA controller during simulations. The actual simulated costs accumulated
over 10 steps can be seen in Figure 10.6. The truly optimal solution, based
on solving the optimal control problem for the nonlinear system model, is
also shown. The solution was computed using the global branch-and-bound
based solver available in Yalmip. The differences are hardly visible, relative
to the optimal control, the LPV control exhibits an average cost increase of
2.3 % and the PWA control of 3.9 %.

For a closer look, the state evolution of the system under LPV-, PWA- and
optimal control, starting from x0 = [1,−1]T , is shown in Figure 10.7. In-
deed, the PWA control has a small steady-state error due to modelling errors.
These errors would vanish, if the region including the fixed point would be
a tangent in the fixed point. However, this is only possible for the regulation
to certain points, but not for tracking of arbitrary reference values.

The question remains in which cases modelling a nonlinear system with an
LPV model instead of a PWA model should be preferred. A PWA model
comprises a finite number of different linearizations of the nonlinear sys-
tem appointed on a spatial basis. The more considered linearizations, the
more complex the resulting control law, which limits us to nonlinear systems
which can be approximated using a small number of different linearizations.
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10.5 Conclusions

The closed-loop control performance is determined by the accuracy of the
PWA approximation of the nonlinear system. If a nonlinear system can
be approximated accurately by a PWA model using only a few different
linearizations, this approach should be considered. An LPV model on the
other hand comprises a continuum of different linearizations of the nonlinear
system appointed on a temporal basis. Hence LPV models cover a broader
range of dynamic behaviour, but as long as the future appointed lineariza-
tions are unknown, some uncertainty is introduced to the predictions. The
more varying the state transition matrix of the LPV model, the more severe
is the introduced conservatism. Consequently an LPV model should be con-
sidered if the uncertainty in the future predictions is not severe and/or if a
simple and accurate approximation with an PWA model is not possible.

10.5 Conclusions

In this chapter a method was proposed to compute explicit control laws for
LPV-A systems, linear time-discrete systems with a parameter-varying state
transition matrix. For these LPV-A systems an affine parametrization of the
input was shown to be optimal and consequently used in a dynamic pro-
gramming approach similar to explicit min-max MPC for uncertain systems.
The benefits of using an explicit solution by means of the online computa-
tional effort were shown in a comparison with Quasi-Min-Max MPC. Our
approach fits between two different explicit MPC approaches to approxi-
mately solve nonlinear optimal control problems, which are the robust and
the PWA approach. A drawback of explicit control laws is that the number
of controller regions grows exponentially with the prediction horizon and
the number of states. As the suggested approach is based on parametric
programming, it participates in this drawback, and is thus only tractable for
systems of a limited size. However, the final step tends to reduce the number
of regions and the resulting number of regions is typically smaller than the
number of regions one would obtain when solving the CL-CROC problem
(assuming no knowledge of the uncertainty).

Our procedure enables an alternative to constrained optimal control of piece-
wise affine systems, when PWA models are approximating nonlinear sys-
tems. As an example, optimal control laws were computed for an LPV
model and a PWA model of the nonlinear Hénon map. The resulting explicit
control laws were compared by means of control performance and complex-
ity. Though conservatism is introduced in the LPV approach by considering
the worst case for future parameter values, no approximation errors are in-
troduced as in the approximation by a PWA model and the cumbersome
incorporation of region transitions in the prediction is omitted.
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11 (Sub-)Optimal Control of
Constrained LPV Systems

‘Every now and then go away,
have a little relaxation, for when
you come back to your work
your judgement will be surer.´

Leonardo Da Vinci

This chapter is concerned with the computation of explicit state feedback
control laws for the more general class of discrete-time LPV systems.

Contrary to the previous chapter, the input matrix is now assumed to de-
pend affinely on the scheduling parameter. We demonstrate how one can
reformulate the MPC problem for LPV systems into a series of paramet-
ric linear programs in a closed-loop min-max MPC scheme based on dy-
namic programming. A relaxation technique is employed to reformulate con-
straints which are polynomial in the scheduling parameters to parameter-
independent constraints. The algorithm allows the computation of explicit
control laws for linear parameter-varying systems and enables the controller
to exploit information about the scheduling parameter. This improves the
control performance compared to a standard robust approach where no un-
certainty knowledge is used, while keeping the benefits of fast online com-
putations. In order to investigate different variations of the proposed proce-
dure, several examples are included.



11 (Sub-)Optimal Control of Constrained LPV Systems

11.1 Problem Statement

The class of systems we consider is the class of LPV systems, linear discrete-
time systems with parameter-varying system matrices, which are defined by
the state-update equation

xk+1 = A(θk)xk + B(θk)uk , (11.1a)

with

A(θk) =
nθ

∑
j=1

Ajθk,j , B(θk) =
nθ

∑
j=1

Bjθk,j , (11.1b)

and

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (11.1c)

The discrete time is denoted by k ∈ Z, whereas the variables xk ∈ Rnx ,
uk ∈ Rnu , and θk ∈ Rnθ denote the state, the control input, and the time-
varying scheduling parameter, respectively. We assume that the state xk is
either measurable or observable. The system matrices A(θk) : Rnθ → Rnx×nx

and B(θk) : Rnθ → Rnx×nu are known to lie in polytopes with the description
(11.1b), where Aj ∈ Rnx×nx , Bj ∈ Rnx×nu denote the jth vertices of the corre-
sponding polytope. The scheduling parameter θk = [θk,1 . . . θk,nθ

]T ∈ R
nθ

is constrained to the standard simplex (11.1c). This polytopic description is
a common assumption in the LPV framework, see e.g. [AGB95].

Furthermore, the LPV system (11.1) is constrained, uk ∈ U and xk ∈ X . The
constraint sets U and X are assumed to be bounded polyhedra,

uk ∈ U = {uk ∈ R
nu | Huuk ≤ 1} , (11.2a)

xk ∈ X = {xk ∈ R
nx | Hxxk ≤ 1} , (11.2b)

which contain the origin in their interiors, since we are interested in the
regulator problem.

Remark 11.1 For ease of notation, we restrict ourselves to separate constraints on
the state and inputs in (11.2). It is straightforward to modify the presented algorithm
in this chapter to the case of mixed polytopic constraints, i.e. Exx + Euu ≤ fxu.

Remark 11.2 With a change of coordinates, arbitrary polytopes can be transformed
into (higher dimensional) standard simplices Θ. In Chapter 12 a possibility to gen-
eralize the standard simplex to arbitrary polytopes without an increase in the dimen-
sion will be shown. Nonlinear dependencies of the system matrices on the scheduling
signal can be embedded in a conservative way into the shown framework by defining
Θ appropriately.
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11.1 Problem Statement

The essential assumption behind LPV control is that the scheduling parame-
ter is measured online and known to the controller. Future values are however
only known to be constrained to the standard simplex. This assumption is
referred to as the LPV paradigm by some authors.

For the described class of LPV systems we want to compute an explicit state
feedback control law

uk = μ(xk, θk), (11.3)

which makes use of the information of the current θk. For the control prob-
lem to make sense, it is assumed that system (11.1) is controllable and ob-
servable for all admissible θk, [SM67, BBS03].

To compute the control law (11.3) within a model predictive control scheme,
a finite-horizon cost function is to be minimized. We will optimize over
finite-horizon control policies

πN := {μ0, μ1, . . . , μN−1}

under the influence of the unknown sequence of future scheduling parameters

Tk := {θk+1, . . . , θk+N−1} .

According to standard MPC, our cost function is defined as

J(πN ; xk, θk, Tk) = ‖Pxk+N‖p +
N−1

∑
i=0
‖Qxk+i‖p + ‖Ruk+i‖p , (11.4)

where p denotes a polyhedral norm, e.g. the 1-norm or the ∞-norm. Poly-
hedral norms1 enable a parametric solution to the stated problem using dy-
namic programming. For the minimization of the cost function (11.4) we
have to consider the current as well as the unknown future parameter val-
ues, as the state trajectories are parameter-dependent.

In a closed-loop MPC approach (cf. Section 4.3), one assumes that the future
control action uk+1 is calculated optimally over the horizon N − 1 not un-
til xk+1 and θk+1 are available. But as the future values of the scheduling
parameters are unknown, all possible cases must be regarded in order to
accommodate for the worst-case scenario. This way it is assured that the ac-
tual cost function will be less or equal to the computed one, no matter how
the scheduling parameters evolve. The optimization problem to solve in a

1Quadratic cost functions are not possible since our procedure relies on epigraph reformu-
lations, which would render the original problem a parametric quadratically constrained
quadratic program, for which no efficient solution techniques are known.
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11 (Sub-)Optimal Control of Constrained LPV Systems

closed-loop MPC approach is thus

μ∗(xk, θk) = arg min
μ0

max
θk+1

min
μ1
· · · max

θk+N−1
min
μN−1

J(πN , Tk; xk, θk) (11.5a)

s.t. ∀i ∈ {0, . . . , N − 1}
xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (11.5b)
μi(xk+i , θk+i) ∈ U , (11.5c)
xk+i ∈ X , (11.5d)
θk+i ∈ Θ . (11.5e)

Remark 11.3 It is straightforward to add terminal state constraints xk+N ∈ XT
to the optimization problem (11.5). However, for complexity reasons we recommend
not to use terminal state constraints, but to verify stability a-posteriori (see the
discussion in Section 11.3).

11.2 Computation of Explicit MPC Controllers

Following the dynamic programming procedure from Section 10.2, we would
obtain an optimization problem similar to (10.11), but with the scheduling
parameter appearing in the constraint matrix, Cμt = Cμt(θk+i). Parametric
optimization problems with a parameter-dependent constraint matrix are
known to be difficult problems, and are far less understood than parametric
linear programs with a parameter-dependent objective function and right-
hand side, [BGK+82]. Some interesting aspects were presented in [KP03]
for the case of a single parameter. The solution for a single critical region
was computed by solving an extended linear program. This solution how-
ever turns out to be a rational function of the scheduling parameter with
a degree equal to the number of active constraints. Each coefficient of this
rational function is an optimization variable in the linear program, which
would render the optimal control laws very complex, already for tiny LPV
systems. Moreover, the critical regions are generally not polyhedra, and the
optimal cost function is not a convex piecewise affine function. These obsta-
cles cumber the computation, the storage and the efficient evaluation of the
optimal solution and render the optimal solution to (11.5) impractical.

Consequently we are proposing a suboptimal solution by restricting the para-
metrization of the input. In the following we will assume the control law to
be an affine function of the scheduling parameter,

uk+i = μi(xk+i , θk+i) =
nθ

∑
j=1

θk+i,jμi,j(xk+i) . (11.6)
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11.2 Computation of Explicit MPC Controllers

Remark 11.4 Note that in principle any polynomial in the parameter θk and also
rational functions are possible with our proposed method. The choice of the input
parametrization is a tradeoff between solution complexity and control performance,
and depends on the problem at hand. For an investigation of different input para-
metrizations see also Example 11.1 on page 187.

Remark 11.5 It is also possible to choose different parametrizations at different
steps of the dynamic programming procedure. One promising approach is e.g. to
choose the predicted future control laws to be parameter-independent, and to use an
affine parametrization for the actually applied control law in the final DP step.

In the case of the affine parametrization (11.6), the function μi,j(xk+i) corre-
sponds to the control law in the jth vertex of the parameter simplex (11.1c).
In order to simplify notation, we introduce the basis

Ui := {μi,1, μi,2, . . . , μi,nθ
} .

Instead of minimizing over the control policy πN = {μ0, μ1, . . . , μN−1}, we
are minimizing over the policy of basis functions {U0, U1, . . . , UN−1}. Since
these basis functions are parameter-independent, the considered problem be-
comes a robust min-max optimization problem. Eventually, the optimization
problem to solve in closed-loop MPC can be stated as

μ∗(xk, θk) = arg min
μ0

min
U1

max
θk+1

· · · min
UN−1

max
θk+N−1

J(πN , Tk; xk, θk) (11.7a)

s.t. ∀i ∈ {0, . . . , N− 1}
xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (11.7b)
μi(xk+i , θk+i) ∈ U , (11.7c)
xk+i+1 ∈ X , (11.7d)
θk+i ∈ Θ . (11.7e)

Analogue to Section 10.2, we solve (11.7) by a dynamic programming (DP)
procedure iterating backwards in time. We start at the prediction horizon N
with the initial cost-to-go function

J∗N(xk+N) = ‖Pxk+N‖p . (11.8)

Then at each iteration we use

xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) (11.9)

to substitute xk+i+1 in J∗i+1(xk+i+1). As θk+i is unknown at time instance k,
we consider the worst case, which leads to
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J∗i (xk+i) = ‖Qxk+i‖p + min
Ui

max
θk+i

‖Rμi(xk+i , θk+i)‖p + J∗i+1(xk+i+1) (11.10a)

s.t. xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (11.10b)
μi(xk+i , θk+i) ∈ U ∀ θk+i ∈ Θ , (11.10c)
xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (11.10d)
xk+i ∈ X , (11.10e)
θk+i ∈ Θ , (11.10f)

In order to determine the worst-case parameters of (11.10), we first apply an
epigraph reformulation to the optimization problem in order to transfer the
parameter dependence to the constraints. Introducing the epigraph variable
ti(xk+i) this leads to the following semi-infinite optimization problem

J∗i (xk+i) = ‖Qxk+i‖p + min
{Ui,ti}

ti(xk+i) (11.11a)

s.t. xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (11.11b)
‖Rμi(xk+i , θk+i)‖p + J∗i+1(xk+i+1) ≤ ti(xk+i) ∀ θk+i ∈ Θ ,

(11.11c)

μi(xk+i , θk+i) ∈ U ∀ θk+i ∈ Θ , (11.11d)
xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θ , (11.11e)
xk+i ∈ X , (11.11f)
θk+i ∈ Θ . (11.11g)

Remark 11.6 There exist two special cases which facilitate a different solution ap-
proach to (11.11). If the control law is chosen to be parameter-independent, the
constraints in (11.11) depend affinely on the scheduling parameter, such that those
constraints are fulfilled if and only if they are fulfilled at the vertices of the parameter
simplex. Thus they can be substituted by the vertex constraints to yield a parameter-
independent pLP. For a constant input matrix B with parameter-varying control
law, the resulting constraints depend affinely on the scheduling parameter, which
again allows for a substitution by the vertex constraints. This case was tackled in
detail in Chapter 10.

In general, we will be faced with a non-constant input matrix B(θk) and
an affinely or even polynomially parameterized input, uk+i = μi(xk+i , θk+i).
Hence the constraints of (11.11) are polynomial in the scheduling parameters
and the vertex constraints are not sufficient to ensure constraint satisfaction
over the whole simplex. However, the constraint satisfaction of the semi-
infinite optimization problem (11.11) can be ensured, conservatively, over
the whole parameter simplex following Pólya’s theorem.
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11.2 Computation of Explicit MPC Controllers

We will make use of the more obvious reverse of Pólya’s theorem2, i.e. posi-
tive coefficients of the extended polynomial mean positivity over the whole
simplex. This reverse is also known as Pólya’s relaxation and is elaborated
in Section 2.2. If all coefficients CNp of the extended polynomial pNp are
non-negative, the constraints (11.11c) – (11.11e) are satisfied. Hence the semi-
infinite optimization problem (11.11) can be transformed into the following
parametric linear program:

J∗i (xk+i) = ‖Qxk+i‖p + min
{Ui,ti}

ti(xk+i) (11.12a)

s.t. CNp(Ui, ti; xk+i) ≥ 0 , (11.12b)

xk+i ∈ X . (11.12c)

Note that the coefficients CNp of the extended polynomial lie in the cone
which is spanned by the coefficients of the polynomial constraints in (11.11),
and the piecewise affine dependence of the coefficients on the state is pre-
served.

Remark 11.7 The choice of the Pólya degree Np for the Pólya relaxation is a trade-
off between solution complexity and introduced conservatism. The larger the Pólya
degree, the less conservative the relaxation, but also the greater the number of con-
straints in (11.12). See also Section 2.2, or Example 11.1 for a comparison of differ-
ent Pólya relaxations.

By using polyhedral norms, the optimal cost-to-go functions J∗i are convex
piecewise affine functions of the state xk+i , such that in every iteration the
optimization problem (11.11) can be formulated as the parametric linear pro-
gram (11.12) and solved parametrically with respect to xk+i . Contrary to
the closed-loop MPC approach for uncertain systems, the future inputs are
functions of the future scheduling parameters.

Remark 11.8 Instead of using an affine or even polynomial input parametrization,
it is also possible to select a parameter-independent control law in all but the
final dynamic programming iterations, following a robust approach. This approach
typically results in less complex control laws, since instead of Pólya’s relaxation a
vertex enumeration as in the case of LPV-A systems is sufficient, and since (11.6)
simplifies to a single control law. On the other hand, this approach will result in a
more conservative control law, since the predicted future inputs are assumed to be
parameter-independent (see also Example 11.2).

The final step of the dynamic programming procedure differs from the preceding
steps, since knowledge of the current scheduling parameter values can be

2The presented usage of Pólya’s theorem is implemented in Yalmip as one of the so-called
filters in the robust optimization framework, [Löf08].
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exploited to improve control performance. The problem we want to solve is

μ∗(xk, θk) = arg min
μ

‖Rμ(xk , θk)‖p + J∗1 (xk+1) (11.13a)

s.t. xk+1 = A(θk)xk + B(θk)μ(xk, θk) , (11.13b)
μ(xk, θk) ∈ U ∀ θk ∈ Θ , (11.13c)
xk+1 ∈ X1 ∀ θk ∈ Θ , (11.13d)
xk ∈ X , (11.13e)
θk ∈ Θ , (11.13f)

which is again a parametric optimization problem with a parametric con-
straint matrix. Yielding an explicit solution to (11.13) is more demanding
than in the previous DP steps, since we are not only interested in minimiz-
ing the worst-case cost, but in minimizing the costs for all possible schedul-
ing parameter values. The input parametrization should not only be able to
cope with the worst-case scheduling parameter, but be as non-restrictive as
possible for all scheduling parameter values. Ideally, one would prefer the
control law to consider only the measured scheduling parameter θk, and not
be conservative due to other possible values of the scheduling parameter.

One possible approach which has this property, is of course to store the
cost-to-go J∗1 (xk+1) and to solve

u∗k = arg min
{uk,tk}

tk (11.14a)

s.t. xk+1 = A(θk)xk + B(θk)uk , (11.14b)
‖Ruk‖p + J∗1 (xk+1) ≤ tk , (11.14c)
uk ∈ U , (11.14d)
xk+1 ∈ X1 , (11.14e)

online at each sampling instance when the scheduling parameter is known.
Since the linear program (11.14) is minimizing only over the current control
action, the number of optimization variables is low and (11.14) can be solved
quite quickly. Moreover, there exist dual LP solvers which are tailor-made
for problems as (11.14), with a small number of optimization variables and
a potentially large number of constraints.

Computing an entirely explicit solution without the need to solve linear pro-
grams online is more complicated. Again we are dealing with a paramet-
ric optimization problem with parameters in the constraint matrix. Due to
the scheduling parameter in the input matrix B(θ), it is unfortunately not
possible to remove the scheduling parameter entirely from the optimization
problem by solving the problem parametrically in the uncontrolled succes-
sor state as it was possible in the case of LPV-A systems. By the introduction
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11.2 Computation of Explicit MPC Controllers

of an input parametrization as in (11.6), some conservatism is introduced.
To counteract, one can choose a more flexible input parametrization in the
final DP step, to the price of a more complex control law. Finally, there is
still the need to transform the optimization problem (11.13) to a parametric
linear program, which can be solved efficiently.

There exist several options on how to select the input parametrization and
how to transform the optimization problem. This selection is a tradeoff
between control performance and complexity, and unfortunately, there is
no distinct superior approach. We list three options here.

1. Grid-and-interpolate
One option is to grid the parameter simplex and to compute one explicit
control law for each grid point. Online these control laws are then
interpolated. In contrast to the other two options, each control law is
determined based on its local grid point only. Additional measures are
required to ensure constraint satisfaction for intermediate values of the
scheduling parameter.

This approach offers flexibility in terms of the dependence on the sched-
uling parameter; the interpolated control law is a piecewise affine func-
tion of the scheduling parameter. On the other hand it requires a rela-
tively large storage space, since for each grid point a separate control
law is needed.

2. Average cost minimization
Another option is to consider again a grid of scheduling parameter val-
ues, but to fit a single parametrized control law to the averaged costs at
those grid points. Unfortunately, in this approach the limited structure
in the scheduling parameter is compensated by creating many regions
in the state space, resulting again in complex control laws. In order to
counteract one can decrease the number of grid points. Possible grid
points are e.g. the vertices of the parameter simplex, resulting in the
optimization problem

J∗(zk) = min
{U0,t}

t(zk) (11.15a)

s.t.
1
nθ

nθ

∑
j=1
‖Rμ(zk , ej)‖p + ‖J∗1 (zk + Bjμ(zk, ej))‖p ≤ t(zk) ,

(11.15b)

μ(zk, θk) ∈ U ∀ θk ∈ Θ , (11.15c)
zk + B(θk)μ(zk, θk) ∈ X1 ∀ θk ∈ Θ . (11.15d)

This approach makes use of the uncontrolled successor state zk from Equa-
tion (10.17).
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3. Worst-case cost minimization
Our preferred approach makes also use of the uncontrolled successor
state, combined with a worst-case minimization. By parameterizing
the parametric problem not in the measured state xk, but in the un-
controlled successor state zk, the parameter dependence of A(θk) can
directly be taken into account. In lack of an equivalent scheme for the
input, we employ the input parametrization

uk = μ(zk, θk) =
nθ

∑
j=1

θk,jμ0,j(zk) (11.16)

and minimize the worst-case gain-scheduled cost, i.e. solve the semi-
infinite optimization problem

J∗(zk) = min
{U0,t,s}

t(zk) + s(zk) (11.17a)

s.t. ‖Rμ(zk , θk)‖p + J∗1 (zk + B(θk)μ(zk, θk)) ≤ t(zk) ∀ θk ∈ Θ ,
(11.17b)

μ(zk, θk) ∈ U ∀ θk ∈ Θ , (11.17c)
zk + B(θk)μ(zk, θk) ∈ X1 ∀ θk ∈ Θ , (11.17d)

ε
nθ

∑
j=1
‖Q(zk + Bjμ(zk, ej))‖p ≤ s(zk) , (11.17e)

where s denotes an additional epigraph variable and ej the jth stan-
dard basis vector. For many problems, the worst-case cost depend
solely on a single control law μ0,j(zk) at one vertex of the parameter
simplex. The remaining optimization variables are not unique, when
solving the parametric problem (11.17), which can lead to undesired
control laws at the other vertices of the parameter simplex. Therefore
a small regularization weight, 0 < ε � 1, which penalizes the sum of
the successor states at all vertices of the parameter simplex, is added
as an ad-hoc measure. While this virtually does not change the shape
of the cost function, it turns out that the actual achieved performance
is improved, because the non-uniqueness of the vertex solutions is mit-
igated. The polynomial dependence on the scheduling parameter can
again be treated by employing Pólya’s theorem to transform (11.17) into
a parametric linear program.

In our test simulations, this approach turned out to be a good tradeoff
between complexity and control performance. Note however that it is
merely a heuristic, and for specific systems other approaches might be
more successful. Moreover, the use of the uncontrolled successor state
might decrease the feasible space, since artificial combinations of state-
update and input matrices are considered.
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When applying the computed control law online, in each step the state xk
and the scheduling parameter θk are measured and used to compute the
uncontrolled successor state zk, which is then inserted in the parametric so-
lution to obtain the control input uk. Analogue to Section 10.2 is the set of
feasible uncontrolled successor states,

Z f = {z ∈ R
nx | Ezz ≤ fz}, (11.18)

and the set of admissible initial states, i.e. which result in a feasible uncon-
trolled successor state for all parameter values,

X f =

⎧⎪⎨
⎪⎩x ∈ R

nx

∣∣∣∣∣
⎡
⎢⎣ EzA1

...
EzAnθ

⎤
⎥⎦ x ≤

⎡
⎢⎣ fz

...
fz

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (11.19)

11.3 Stability

This section is concerned with stability of the resulting closed-loop system,
when explicit control laws are applied to LPV systems. Note that the pro-
posed procedure does not guarantee stability a-priori, which is a classical is-
sue in finite-horizon MPC. As discussed in Section 4.5, there are known vari-
ations of the model predictive control scheme which can be employed, for ex-
ample dual mode MPC or the (overly conservative) terminal equality constraint.
One can guarantee (i) asymptotic stability, (ii) constraint satisfaction, and (iii)
recursive feasibility a-priori for all feasible states, by considering a dual mode
approach and by choosing the terminal state constraints XT and the polyhe-
dral terminal cost LN(xk+N) appropriately, [MRRS00]. From [MRRS00] we
have the following conditions for asymptotic stability:

A1: XT ⊆ X ,XT closed and contains the origin.

A2: μT(xk, θk) ∈ U ∀xk ∈ XT ∀θk ∈ Θ.

A3: xk+1 = A(θk)xk + B(θk)μT(xk, θk) ∈ XT ∀xk ∈ XT ∀θk ∈ Θ

A4: LN(xk)− LN(xk+1) ≤ ‖Qxk‖p + ‖RμT(xk, θk)‖p ∀xk ∈ XT ∀θk ∈ Θ.

Furthermore, it is a well-known fact, that stability is preserved in the case
of a suboptimal solution, as long as the suboptimality of the cost function
does not exceed one stage cost, [SMR99]. Consider the following procedure,
which is based on [BLM09] and [BBM02]:
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1. Compute an asymptotically stabilizing terminal region parameter-vary-
ing state-feedback controller

uk = μT(xk, θk) = K(θk)xk =
nθ

∑
j=1

Kjθk,jxk (11.20)

for the unconstrained system (11.1), e.g. by the procedure in Section 13.

2. Determine a polytopic λ-contractive terminal region XT by pre-image
computations, such that

∀xk ∈ XT, ∀θk ∈ Θ ∃μT(xk, θk) ∈ U : A(θk)xk + B(θk)μT(xk, θk) ∈ λXT
(11.21)

holds for some λ ∈ [0, 1).

3. Scale the Minkowski function

ψXT(xk) := min
α
{α ∈ R+ | xk ∈ αXT} , (11.22)

induced by the terminal region XT, by a factor β∗ ∈ R+, which can be
determined by the linear program

β∗ = min
β

β (11.23a)

s.t. β(1− λ) ≥ ‖Qvi‖p + ‖RKjvi‖p

∀vi ∈ vert(XT) ∀j ∈ {1, . . . , nθ} . (11.23b)

4. Define LN(xk+N) := β∗ψXT(xk+N).

Theorem 11.1 Assume that there exists a terminal region control μT(xk, θk) of the
form (11.20), which renders the polytope XT λ-contractive as in (11.21) with λ ∈
[0, 1). Then, for the terminal region XT and the terminal cost LN(xk) = β∗ψXT(xk),
as defined in (11.22)-(11.23), the conditions A1 to A4 are satisfied, such that we have
asymptotic stability, constraint satisfaction and recursive feasibility for all feasible
points.

Proof Conditions A1 to A3 follow immediately from the properties of the
λ-contractive terminal set XT. Condition A4 follows from

βψXT (xk)− βψXT(xk+1) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇐ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p + ‖RK(θk)xk‖p ∀xk ∈ XT ∀θk ∈ Θ
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⇐ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p +
nθ

∑
j=1

θk,j‖RKjxk‖p ∀xk ∈ XT ∀θk ∈ Θ

⇔
nθ

∑
j=1

θk,jβ(1− λ)ψXT (xk) ≥
nθ

∑
j=1

θk,j‖Qx‖p +
nθ

∑
j=1

θk,j‖RKjxk‖p

∀xk ∈ XT ∀θk ∈ Θ

⇔ β(1− λ)ψXT (xk) ≥ ‖Qxk‖p + ‖RKjxk‖p ∀xk ∈ XT ∀j ∈ {1, . . . , nθ}
⇔ β(1− λ) ≥ ‖Qvi‖p + ‖RKjvi‖p ∀vi ∈ vert(XT) ∀j ∈ {1, . . . , nθ} �

Note that a symmetric terminal set XT implies a Minkowski function which
can be expressed as LN(xk+N) = ‖Pxk+N‖∞ with some matrix P. However,
the described procedures work also for convex polyhedral piecewise affine
terminal cost LN(xk+N).

The drawback of adding terminal state constraints is that in general they
lead to a loss of performance, a smaller feasible space and an increase in
complexity of the resulting control law. While the former two effects can
be mitigated by extending the prediction horizon, this typically leads to a
further increase in the complexity of the control law. See Example 11.5 for
possible consequences of ensuring stability a-priori. In order to avoid these
downsides in practical implementations, a possibility is to omit the termi-
nal state constraints and to verify stability a-posteriori, following the theory
described in [BM08b].

Fortunately, stability of the control law (11.16) can also be verified a-posteriori
by performing a reachability analysis of the closed-loop system in the space
of the uncontrolled successor state towards a λ-contractive target region T
around the origin, [BM08b, Bla94, Bla95]. The closed-loop system is given
by

zk+1 = A(θk+1)xk+1 = A(θk+1){zk + B(θk)μ(zk, θk)}

=

⎧⎪⎨
⎪⎩

A(θk+1)(I + B(θk)F1(θk))zk + A(θk+1)B(θk)g1(θk) , zk ∈ R1
...

...
A(θk+1)(I + B(θk)Fnr(θk))zk + A(θk+1)B(θk)gnr(θk) , zk ∈ Rnr

(11.24)

where the polyhedral controller regions in the space of the uncontrolled suc-
cessor state zk are denoted byR1, . . . ,Rnr . If the uncontrolled successor state
is not utilized in the control law, a similar stability analysis can be performed
in the regular state space. In the following we will focus on the regulator
problem, i.e. the stabilization to the origin. Note that all other reference
values in the state space correspond to a set of reference values in z–space,
depending on the scheduling parameter θk. Asymptotic stability to reference
values x̄ 
= 0 requires constant scheduling parameter values (Scenario (S3)).
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For varying scheduling parameter values, instead of asymptotic stability to
some reference value x̄ 
= 0, only ultimate boundedness to a target set can
be certified.

Definition 11.1 Let I be the index set of all controller regions containing the origin,

I := {r ∈ {1, . . . , nr} | 0 ∈ Rr} .

The index set I is single-valued if the origin is contained in the interior of a
controller region, and multi-valued if the origin lies on the facet of several
controller regions.

The stability analysis can be performed in three steps; the first verifies the
origin to be an equilibrium point, the second considers the stability of the
target region T , and in the third a reachability analysis is performed.

1. Invariance of the origin
At first we require the origin to be invariant, i.e. to be an equilibrium
of the closed-loop system. This is the case, if the condition

gr(θk) = 0 ∀θk ∈ Θ , r ∈ I (11.25)

holds. Since X and U include the origin, there always exists a controller
which fulfils this condition. If Condition (11.25) is violated, the origin is
not an equilibrium point, and at most ultimate boundedness to a target
set can be present.

2. Contractiveness of the target region
We infer asymptotic stability of the origin from the existence of a λ-
contractive target region T . The contractive preset of a set Zi ⊂ Rnx

w.r.t. the closed-loop system (11.24) is given by

Ω(Zi,Rr) =

{
zk ∈ Rr

∣∣∣∣∣ Aj(I + B(θk)Fr(θk))zk + AjB(θk)gr(θk) ∈ λZi
j = 1, . . . , nθ , ∀θk ∈ Θ

}
,

(11.26)
where λ ∈ [0, 1) denotes the contraction ratio. For an efficient treatment
of the sets Zi we require them to be polytopes. Since the contractive
presets Ω(Zi,Rr) are convex but not polytopes, we determine the poly-
topic preset ΩNp(Zi,Rr) of Zi by applying Pólya’s relaxation to (11.26).
If the index set I of regions containing the origin is single-valued, a
robust invariant target set can be determined by a set backpropagation
as in Algorithm 2.1, starting with Z0 = Rr and repeatedly computing
the polytopic presets. If the index set I is multi-valued, the backprop-
agation runs in parallel for each regarded region r ∈ I, starting with
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a polytope Z0 ⊆
⋃

r∈IRr containing the origin in the interior and de-
termining the largest polytope contained in the union of the polytopic
presets after each iteration Zi+1 ⊆

⋃
r∈I Ω(Zi,Rr).

If Zi ⊆ Zi+1, the algorithm is terminated with T := Zi, and the re-
sulting target region T is λ-contractive with regard to the closed-loop
system (11.24). It follows from the succeeding proposition that the exis-
tence of a λ-contractive polytope T induces asymptotic stability of the
origin.

Proposition 11.2 Let T ⊆ ⋃
r∈IRr ⊂ Rnx be a polytope containing the

origin in its interior and let Condition (11.25) hold. If ∀r ∈ I, all vertices
vi

r of T ⋂Rr are mapped into λT , 0 ≤ λ < 1, then μT is λ-contractive
∀μ ∈ [0, 1].

Proof Consider any ẑk ∈ μ(T ⋂Rr) ⇒ z̃k = ẑk/μ ∈ (T ⋂Rr)⇔ ∃αi
r ∈

R+, ∑i αi
r = 1 : z̃k = ∑i αivi

r ⇒ ẑk = μ ∑i αivi
r ⇒ ẑk+1 ∈ μ ∑i αiλT =

μλT . �

Proposition 11.2, together with the properties of the gauge function
ψT (z) induced by T suffices to establish asymptotic stability inside T
by using ψT (z) as a Lyapunov function.

3. Reachability analysis
A reachability analysis can be performed to check which states are
mapped into the target set T under the computed control law. In this
reachability analysis, the backpropagation algorithm 2.1 is performed,
using again the polytopic preset arising from applying Pólya’s relax-
ation to (11.26). We start the backpropagation with Z0 = T . In each
iteration i we compute ΩNp(Zi,Rr), r = 1, . . . , nr and merge the result-
ing presets to Zi+1 =

⋃nr
r=1 ΩNp(Zi,Rr).

The iterations terminate when Zi+1 ⊆ Zi or when the entire feasible
space is covered. The resulting region of attraction is denoted by Z∞.
All uncontrolled successor states zk ∈ Z∞ are controlled to the target
set T and eventually to the origin by construction. The required proce-
dures to perform the backpropagations boil down to polytopic manipu-
lations and can be adapted from the algorithms given in the references
mentioned above.

In the following, we will show that stability properties of the uncontrolled
successor state zk imply stability properties of the actual state xk.

Lemma 11.3 The uncontrolled successor state obeys the following upper and lower
bounds:

185



11 (Sub-)Optimal Control of Constrained LPV Systems

(a) For every LPV system (11.1) there exists an ε1 > 0, such that the uncontrolled
successor state (10.17) can be bounded by

‖zk‖ ≤ ε1‖xk‖ . (11.27a)

(b) Under the assumption of (11.25) and for a small-enough δ2 > 0, there exists
an ε2 > 0 such that

‖zk‖ < δ2 ⇒ ‖xk+1‖ ≤ ε2‖zk‖ (11.27b)

holds.

Proof (a) Using the definition of the uncontrolled successor state, it fol-
lows that

‖zk‖ = ‖A(θk)xk‖ ≤ ‖A(θk)‖‖xk‖ ≤ max
θk∈Θ

‖A(θk)‖‖xk‖ =: ε1‖xk‖ .

(b) If δ2 is small enough, the uncontrolled successor state is an element of⋃
r∈IRr. Using the state-update equation, the control law (11.3) and

Condition (11.25), we infer

‖xk+1‖ = ‖zk + B(θk)μ(zk, θk)‖
≤ ‖ max

r∈I,θk∈Θ
(I + B(θk)Fr(θk))zk‖

≤ max
r∈I,θk∈Θ

‖(I + B(θk)Fr(θk))‖‖zk‖ =: ε2‖zk‖ . �

Proposition 11.4 Lyapunov stability and asymptotic stability of xk = 0 follow
directly from Lyapunov stability and asymptotic stability of zk = 0, respectively.

Proof Proposition 11.4 is plain, if the state-update matrix A(θ) is invertible.
If A(θ) is singular, it possesses a (parameter-dependent) null space, contain-
ing states xk which are not necessarily zero if zk = 0. Fortunately, we just
need to let pass one time step in order to show Proposition 11.4 in this case.

With Lemma (11.3) and under the assumption of ε ≤ δ2, we obtain from the
Lyapunov stability of zk = 0:

‖xk‖ ≤ δ′ :=
δ

ε1
⇒ ‖zk‖ ≤ δ

⇒ ‖zk+i‖ ≤ ε ∀i ∈ N

⇒ ‖xk+i+1‖ ≤ ε2ε =: ε′ ∀i ∈ N .
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Similarly, we infer asymptotic stability of xk = 0 from asymptotic stability of
zk = 0, using again Lemma (11.3),

‖xk‖ ≤ δ′ :=
δ

ε1
⇒ ‖zk‖ ≤ δ

⇒ lim
k→∞

‖zk‖ = 0

⇒ lim
k→∞

ε2‖xk+1‖ = 0

⇔ lim
k→∞

‖xk‖ = 0 .

Note that Condition (11.25) has to be fulfilled for the origin to be an equi-
librium point of the closed-loop system (11.24), and thus already for the
stability of zk = 0. �

Remark 11.9 The assumption ε ≤ δ2 is not a necessary condition for Lyapunov
stability of xk = 0. There will always be a small-enough ε′, such that ε ≤ δ2 is
fulfilled.

11.4 Numerical Examples

This section consists of four examples which show different aspects and
variations of the proposed explicit MPC scheme. In the first example dif-
ferent input parametrizations and Pólya relaxations are compared by means
of controlling a nonlinear system. The second example focusses on the influ-
ence of different input parametrizations on the optimal cost-to-go functions,
while the third example examines different options for the final DP step.
Finally, the fourth example shows the benefits in terms of online computa-
tional times compared to Quasi-Min-Max MPC.

Example 11.1 (Comparison of Different Relaxations)

In the first example the application of the explicit LPV MPC is demonstrated.
It shall be investigated, how the proposed method compares to explicit ro-
bust MPC and nonlinear MPC in terms of control performance and controller
complexity. We also investigate different input parametrizations and Pólya
relaxations of different degrees. We consider the following nonlinear system:

xk+1,1 = 0.85xk,1 + uk , (11.28a)

xk+1,2 = (0.25− 0.55(0.1xk,2)
2)xk,1 + 0.65xk,2 + (−1 + 2(0.1xk,2)

2)uk ,
(11.28b)
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under the constraints

−0.5 ≤ uk ≤ 1,
( −10
−10

)
≤ xk ≤

(
8
8

)
(11.29)

This system can be modelled as an quasi-LPV system of the form (11.1) by
defining the following scheduling parameter

θk =
[
1− (0.1xk,2)

2 (0.1xk,2)
2]T , (11.30)

resulting in the parameter-varying system matrices (11.1b) with the vertices

A1 =

[
0.85 0
0.25 0.65

]
, B1 =

[
1
−1

]
,

A2 =

[
0.85 0
−0.3 0.65

]
, B2 =

[
1
1

]
.

The Multi-Parametric Toolbox (MPT) and Yalmip were used to compute the
control laws, [KGBM04, Löf08]. The weight matrices

Q =

[
1 0
0 1

]
, R = 0.01 , P = Q ,

and a prediction horizon of N = 3 were chosen. The ∞-norm was used in
the cost function.

Five different controllers for this system were compared in terms of com-
plexity and control performance. By considering the scheduling parameter
(11.30) as an unknown, bounded parametric uncertainty, an explicit robust
controller was computed, in the following indicated by rob. This robust
MPC scheme was presented in detail in [BBM03], where it is derived as the
solution to the closed-loop constrained robust optimal (CL-CROC) problem
(see also Section 4.2).

Following the proposed procedure in this chapter, three explicit LPV-MPC
controllers were computed, with

(i) aff2 – an affine input parametrization and Pólya degree Np = 2,

(ii) aff10 – an affine parametrization and Pólya degree Np = 10, and

(iii) quad2 – a quadratic parametrization and Pólya degree Np = 2.

In the final DP step the optimization problem (11.17) was solved using the
uncontrolled successor state zk and minimizing the worst-case cost. Finally,
the truly optimal solution, based on solving the optimal control problem for
the nonlinear model online with the global branch-and-bound based solver

188



11.4 Numerical Examples

x1 x2

J(
x)

-10

0

10

-10

0

10
0

20

40

60

80

Figure 11.1: Actual costs in Example 11.1 simulated over 40 steps.

Controller: rob aff2 aff10 quad2

No. of regions: 31 53 55 117

Avg. cost increase: 23.3 % 0.4 % 0.4 % 0.2 %

Table 11.1: Complexity of the explicit control laws and average cost increase com-
pared to nonlinear MPC, Example 11.1.

in Yalmip, was also used (nl). Stability of the closed-loop systems under ex-
plicit LPV control was verified for the whole feasible space (11.29) following
the reachability analysis presented in Section 11.3.

All control laws were tested in simulations by controlling the system from
400 initial points, uniformly distributed over the feasible space. Figure 11.1
shows the actual simulated costs accumulated over 40 steps. It can be ob-
served that the robust control yields a higher cost, while the other control
laws are in about the same range.

This observation is quantified in Table 11.1, which reveals that there is vir-
tually no difference in performance between the LPV controllers aff2 and
aff10. The quadratic controller quad2 shows a slightly better behaviour.
One has to mention here that we lack a guarantee of obtaining a better
accumulated cost when using a less conservative approximation, since we
optimize worst-case performance over a finite horizon.

Table 11.1 also shows the complexity of the explicit control laws. There is an
increase in complexity from the robust to the affine parametrization and then
to the quadratic parametrization. This is due to the number of piecewise
affine control laws μi,j(zk) needed to compose the explicit control laws. In
this example the choice of the Pólya degree only had a small influence on
the complexity of the resulting controllers.
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Example 11.2 (Comparison of future input parametrization)

In the second example we want to investigate the influence of different input
parametrizations on the normal dynamic programming iterations. In order
to focus on the normal dynamic programming iterations, we do not perform
the final DP step, but examine the cost-to-go J∗1 (xk+1), which is the result of
the normal DP steps.

The second example system is a marginally stable LPV system of the form
(11.1), and was taken from [PRSDM05]. The system matrices of this LPV
system are stated as

A1 =

[
1 0.1
0 1

]
, B1 =

[
0
1

]
, (11.32a)

A2 =

[
1 0.2
0 1

]
, B2 =

[
0

1.5

]
, (11.32b)

and the system is subject to state and input constraints,

xk ∈ X =

{
xk ∈ R

2
∣∣∣∣
( −10
−10

)
≤ xk ≤

(
8
8

)}
,

uk ∈ U = {uk ∈ R | − 0.5 ≤ uk ≤ 1} .

Contrary to [PRSDM05], we assume that the LPV paradigm holds, i.e. the
current scheduling parameter value is known to the controller. Moreover,
a terminal state constraint was added, enforcing ‖xk+N‖∞ ≤ 1. We do not
recommend the use of terminal state constraints for the controller design,
but we want to add it in this example to demonstrate that the choice of
the input parametrization can affect the size of the polytopic presets. The
∞-norm is minimized in the cost function (11.4). The weight matrices

Q =

[
1 0
0 1

]
, R = 0.01 , P = Q

and a prediction horizon of N = 5 were chosen, i.e. four subsequent normal
DP iterations were computed.

Three different input parametrizations were tested. The first one is a parameter-
independent input, denoted by rob. In this approach Pólya’s relaxation is
not required, but an epigraph formulation is sufficient to perform the DP
steps. In the second approach an affine input parametrization with a Pólya
degree of Np = 0 is used, denoted by aff0, and the third input parametriza-
tion is quadratic with a Pólya degree of Np = 0, denoted by quad0. All
three approaches were compared against a lower bound on the cost-to-go,
denoted by grid5. This lower bound is based on a uniform grid of the
parameter simplex with 5 grid points. The optimization problem (11.10) at
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Figure 11.2: Domain of the cost-to-go functions J∗1,rob (blue), J∗1,aff2 (green) in Exam-
ple 11.2.

each DP step is solved separately for each grid point, and the maximum of
the single cost-to-go functions was taken as cost-to-go in the succeeding DP
step.

A general fact concerning the solution of parametric optimization problems
is that the less restricted a parametric program is, the larger the feasible
set and the lower the optimal cost function. In our case we are dealing
with a series of parametric optimization problems, the difference being the
flexibility of the control inputs. The robust parametrization is a special case
of the affine parametrization and the affine parametrization is a special case
of the quadratic parametrization. Hence we know already that the domains
of the three cost-to-go functions J∗1 are nested with

dom(J∗1,rob) ⊆ dom(J∗1,aff0) ⊆ dom(J∗1,quad0) (11.33)

and

J∗1,rob(xk+1) ≥ J∗1,aff0(xk+1) ≥ J∗1,quad0(xk+1) ∀xk+1 ∈ X . (11.34)

Figure 11.2 depicts the domain of the cost-to-go J∗1,rob and J∗1,aff0. With an
affine input parametrization, the domain of the cost-to-go is slightly larger
than with a robust approach. The domains of the cost-to-go of the quad-
ratic input parametrization, J∗1,quad0, and of the gridding approach, J∗1,grid5,
coincide with the one of the affine input parametrization.

More details on the cost-to-go functions are stated in Table 11.2. The number
of regions of the cost-to-go functions is roughly doubled between the robust,
the affine and the quadratic input parametrization. The average and the max-
imum cost increase relative to J∗1,grid5, which is a lower bound on the opti-
mal cost-to-go function J∗1 , is stated. The optimality gap is smaller than 4.68%
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Approach: rob aff0 quad0

No. of regions: 304 544 1085

Avg. cost increase: 0.16 % 0.002 % 0.00003 %
Max. cost increase: 4.68 % 0.20 % 0.009 %

Table 11.2: Complexity of the cost-to-go functions J∗1,rob, J∗1,aff2 and J∗1,quad2, and cost
increase relative to the gridding approach grid5 in Example 11.2.

with the parameter-independent approach rob, smaller than 0.2% with the
affine input parametrization aff0, and smaller than 0.009% with the quad-
ratic input parametrization quad0. Again we are dealing with a tradeoff be-
tween control performance and complexity, which has to be decided based
on the problem at hand.

Example 11.3 (Comparison of final DP approaches)

After examining in the previous example the choice of different input para-
metrizations in the normal DP steps, the third example is devoted to the final
DP step. As will be seen, the success of the different approaches depends
on the system at hand, hence we are considering not only a single example,
but 20 random LPV systems. The example systems consist of two states and
one input. The scheduling parameters live in standard 2-simplices, and the
elements of the system matrices are uniformly distributed random numbers
in the interval [−1, 1], i.e. also unstable systems are considered. The state
and input constraints were chosen to be

X = {x ∈ R
2 | ‖x‖∞ ≤ 10} , U = {u ∈ R | |u| ≤ 1} .

The setup of the four approaches is as follows. The cost function (11.4) using
the maximum norm p = ∞ is minimized. The stage cost matrices are

Q =

[
1 0
0 1

]
, P = Q , R = 1 ,

and the prediction horizon was set to N = 3. In all DP steps of all approaches
an affine input parametrization and a Pólya degree of Np = 2 was chosen.
While the normal DP steps are exactly the same in all approaches, the fi-
nal DP steps differ in the utilization of the uncontrolled successor state zk
and/or in the minimization of the average vertex costs instead of worst-case
minimizations.

In particular, the first approach is the one considered in Section (11.2) with
the uncontrolled successor state zk, the input parametrization (11.16) and
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Figure 11.3: Complexity of the explicit control laws eMPCzWC (black), eMPCzAC (dark
grey), eMPCxWC (light grey), and eMPCxAC (white) for 20 random exam-
ple systems.

minimizing the worst-case cost as in (11.17). In the following, this control
approach is denoted by eMPCzWC. The second approach uses also the input
parametrization (11.16) with the uncontrolled successor state zk, but instead
of minimizing the worst-case cost, the average of the vertex costs is min-
imized, i.e. the optimization problem (11.15) is solved. The obtained con-
trollers will be denoted by eMPCzAC. We were also interested in the role of
the uncontrolled successor state zk, which is why the last two approaches
are not using the uncontrolled successor state, but employ an affine input
parametrization as in (11.6). The third type of controllers, based on the min-
imization of the worst-case cost as in (11.17), will be denoted by eMPCxWC,
while the last control approach, which is based on the minimization of the av-
erage vertex costs as in (11.15), will be denoted by eMPCxAC. For all compu-
tations we employed the NAG solver, [Num02], under MPT 2.6, [KGBM04],
interfaced via Yalmip, [Löf08].

Figure 11.3 depicts the complexity of the four controller types for all 20 ran-
dom systems. Unfortunately, there is no control approach which is superior
for all tested systems, the results are different depending on the system at
hand. However, there are some trends. Apart from Systems 9 and 13, the
controllers eMPCzWC are of relatively low complexity, while the controllers
eMPCzAC tend to be of higher complexity. The controller complexities of the
remaining two approaches differ, ranging from the least complex to the most
complex solution.

In order to compare the control performance of the four approaches, 900 grid
points, uniformly distributed over the hyperbox X , were selected, which
served as initial states for the closed-loop systems. The closed-loop systems
were simulated for 50 time steps, while at each time step the scheduling
parameter values were selected randomly in the parameter simplex. These
simulations were repeated ten times with different scheduling parameter
values (all control methods were confronted with the same scheduling pa-
rameter values, of course). During the simulations the actually experienced
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Figure 11.4: Average relative performance of the explicit control laws eMPCzWC
(black), eMPCzAC (dark grey), eMPCxWC (light grey), and eMPCxAC
(white) for 20 random example systems.

stage costs,

Jact =
50

∑
k=1
‖Qxk‖∞ + ‖Ruk‖∞ ,

were added up. After each run, the costs relative to the costs of eMPCzWC
were determined. Finally the average of the relative cost values over all
grid points and all simulations were taken. These average relative costs are
displayed in Figure 11.4 for all 20 systems.

The results varied again. While in the majority of cases eMPCzWC outper-
forms the other approaches, the control performance is significantly worse
than the remaining approaches for Systems 4, 15 and 17. The third approach
eMPCxWC often yields the worst performance, with a few exceptions. The
minimization of the average vertex costs in eMPCzAC and eMPCxAC often
resulted in average relative costs in between the two worst-case approaches,
with a small advantage for eMPCzAC.

What can be learnt from this series of examples? The approach eMPCzWC
which was presented in Section (11.2) turns out to be the best option by
means of complexity and control performance for many example systems.
However, it is not always the best option, for some systems, the other con-
sidered methods are the better choice. eMPCzAC tends to be rather complex,
while eMPCxWC tends to result in a worse control performance. The last ap-
proach eMPCxAC delivered a range of different results. We recommend to
use eMPCzWC as a first choice, but to keep in mind that for some systems
other approaches might be more successful.

Example 11.4 (Comparison of online computation times)

In the final example we want to demonstrate the actual motivation for using
explicit LPV-MPC: The possible reduction of online computation times. As
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discussed in Section 11.2, the proposed explicit MPC scheme for LPV sys-
tems is not the optimal solution to the parametric optimization problem, but
a suboptimal heuristic. Especially the last DP step has a large influence on
complexity and performance of the resulting control law, and should be cho-
sen with care. Hence we take the opportunity and use this example to test
different approaches to explicit LPV-MPC.

The example system is again the LPV system from [PRSDM05], which was
already described in Example 11.2. No terminal state constraints were en-
forced, and the weight matrices

Q =

[
1 0
0 1

]
, R = 0.01 , P = Q (11.35)

and a prediction horizon of N = 4 of were chosen. The ∞-norm was mini-
mized in the cost function (11.4).

Four methods are compared by means of control performance and online
computational effort, when regulating the LPV system (11.32) to the origin.

1. The first method is the Quasi-Min-Max MPC method from Section 10.2.
Since the system has a parameter-varying input matrix, the predicted
future control laws were chosen to be independent of the scheduling pa-
rameter in order to keep the semi-definite program linear in the sched-
uling parameter. More information about Quasi-Min-Max MPC can be
found in [LA00b].

2. For the second considered method, in order to avoid a parameter-vary-
ing input matrix, an input delay is introduced and the system is aug-
mented to the LPV-A system[

xk+1
uk+1

]
=

[
A(θ) B(θ)

0 0

] [
xk
uk

]
+

[
0
I

]
ũk . (11.36)

Afterwards the arising parametric optimization problem for the aug-
mented system (11.36) is solved, resulting in a control law with 189
regions.

3. The computation of an explicit control law for the unaugmented LPV
system (11.32) following the procedure in Section 11.2 led to an inap-
propriate high number of regions during the final DP step. Therefore
the final DP step was adapted and in the third considered method the
optimization problem (11.15) was solved instead of (11.17). In this alter-
native approach for the final DP step, instead of the worst-case cost, the
average costs of the vertices of the parameter simplex are minimized.
Pólya’s relaxation is only needed for the constraint (11.15d). Including
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the solution of (11.15), an explicit control law comprising 230 regions
was computed.

4. As the last considered control method, the DP procedure is terminated
before the last DP step, and the final DP step (11.14) is solved online
instead.

All four control methods were tested in simulations by controlling the system
from 400 initial points, uniformly distributed over the hyperbox ‖x‖∞ ≤
10, to the origin. To account for the varying scheduling parameter, these
test were repeated ten times, each time with different random scheduling
parameter values. During the simulations the actual quadratic costs,

Jact =
50

∑
k=1

xT
k Qxk + uT

k Ruk ,

using the weight matrices (11.35), were collected to compute the actual closed-
loop costs over a horizon of 50 time steps. Note that only the Quasi-Min-Max
MPC approach minimizes a quadratic cost function, while all other tested
approaches minimize the ∞-norm, i.e. the performance criterion (11.4) is
in favour of the Quasi-Min-Max MPC approach. Additionally, the average
computation times per step were taken.

Table 11.3 presents these data for initial points which were feasible under all
control methods. The average actual costs during the simulations show the
drawback of introducing an input delay to the LPV system: The controller
cannot react as quickly to the variations in the scheduling parameter, leading
to a performance degradation. This degradation will be even more severe
in practice, since disturbances were not considered during the simulations,
which would have to be compensated for with delay. Although the actual
costs were measured in the quadratic form (11.4), the Quasi-Min-Max MPC
has a worse performance than the Explicit LPV-MPC approaches.

This becomes more comprehensible, when one considers that the Quasi-Min-
Max MPC scheme introduces some conservatism by considering a quad-
ratic upper bound on the predicted cost, and moreover uses parameter-
independent state feedback laws in the predictions. In this example this
conservatism is on average more severe than the conservatism introduced
by the explicit LPV-MPC schemes.

The computation times confirm the observations already made in Exam-
ple 10.1 for the case of LPV-A systems: The evaluation of the control laws is
orders of magnitude faster than the solution of the semi-definite programs
in the Quasi-Min-Max MPC scheme. Computing the final step of the Explicit
LPV-MPC scheme online reduces also the computation times compared to
Quasi-Min-Max MPC, but with one order of magnitude not as significant as
the completely explicit solution. The solution of the semi-definite programs
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MPC controller Quasi-Min-Max Expl. (LPV-A) Expl. Semi-expl.

Avg. costs 376.14 445.03 366.23 363.58

tCPU (mean) 148 ms 5.5 μs 4.8 μs 23.6 ms

Table 11.3: Average actual quadratic costs and online computation times for the four
compared MPC approaches in Example 11.4.

within the Quasi-Min-Max MPC scheme was performed by SeDuMi, [Stu99],
interfaced via Yalmip [Löf04].

Example 11.5 (A-priori stability guarantees)

In the second example we want to illustrate possible consequences of ensur-
ing a-priori stability guarantees on the complexity of the explicit solution
and on the size of the region of attraction. This example shall demonstrate
that in some cases it is beneficial to verify stability a-posteriori instead. We
consider an unstable LPV system with the system matrices

A1 =

[
1.1 0
0.2 1.1

]
, B1 =

[
1

0.8

]
, (11.37a)

A2 =

[
1.1 0
0.4 1.1

]
, B2 =

[
1
1

]
, (11.37b)

under the constraints

xk ∈ X = {xk ∈ R
2 | ‖xk‖∞ ≤ 10} , uk ∈ U = {uk ∈ R | |uk| ≤ 1} .

The weight matrices Q = diag([ 1 1 ]) , R = 0.01 , and the ∞-norm were em-
ployed in the cost function (10.5). The explicit control laws were computed
for the prediction horizons N = 2, . . . , 5, and the worst-case costs were min-
imized in the final DP step. In the first approach, denoted by a-priori,
terminal cost and terminal constraints were determined by means of the pro-
cedure described in Section 11.3 in order to guarantee stability a-priori for
all feasible states. In the second approach, denoted by a-posteriori, the
terminal weight P = Q and no terminal constraints were used, such that no
a-priori stability guarantee can be given. Instead the region of attraction was
determined afterwards by a reachability analysis.

The resulting complexities of the computed control laws are reported in Ta-
ble 11.4. The number of regions for a-priori is higher than the number
of regions for a-posteriori, which comes to no surprise, since terminal
region constraints typically add to the solution complexity.

The size of the region of attraction for the different closed-loop systems is
illustrated in Figure 11.5. In the approach with a-priori stability guarantees,
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Prediction horizon N 2 3 4 5

No. of regions, a-priori 106 182 268 388
No. of regions, a-posteriori 69 115 149 204

Table 11.4: Number of controller regions with the approaches a-priori and
a-posteriori for different prediction horizons in Example 11.5.
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Figure 11.5: Region of attraction of the closed-loop systems with the approaches
a-priori (black) and a-posteriori (blue) for different prediction
horizons in Example 11.5.

the region of attraction coincides with the set of feasible states. This set is
indicated in black in Figure 11.5. The region of attraction increases with
increasing prediction horizon, but only slowly. A-posteriori on the other
hand results in larger regions of attraction. By omitting a-priori stability
guarantees, the region of attraction is only a subset of the set of feasible
states, but larger than the region of attraction of a-priori. Moreover one
would require a much longer prediction horizon with a-priori to obtain
similar regions of attraction, which typically results in even more controller
regions.

11.5 Conclusions

In this chapter the computation of explicit MPC controllers for LPV systems
was considered. A suboptimal approach incorporating an input parametriza-
tion and Pólya’s relaxation was proposed to transform the closed-loop MPC
problem to a series of parametric linear programs. This enables the advan-
tages of explicit MPC – control under constraint satisfaction for systems with
high sampling rate – for the class of LPV systems. In four examples differ-
ent variations and parametrization possibilities were examined, and com-
parisons with other techniques such as Quasi-Min-Max MPC, robust MPC
and nonlinear MPC were performed to demonstrate the application in dif-
ferent control situations and to illuminate the pros and cons of the different
approaches.
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12 (Sub-)Optimal Control of
Constrained LPV Systems with
Bounded Rate of Parameter
Variation

‘Do not anticipate trouble or
worry about what may never
happen. Keep in the sunlight.´

Benjamin Franklin

In the previous chapter it was shown how one can reformulate the MPC
problem for LPV systems to a series of parametric linear programs by a

closed-loop min-max MPC algorithm based on dynamic programming. A
relaxation technique is employed to reformulate constraints which are poly-
nomial in the scheduling parameters to parameter-independent constraints.
The algorithm allows the computation of explicit control laws for LPV sys-
tems and enables the controller to exploit information about the scheduling
parameter. This improves the control performance compared to a standard
robust approach where no uncertainty knowledge is used, while keeping the
benefits of fast online computations.

The presented algorithm is based on the assumption that the scheduling
parameter - apart from being an element of the parameter simplex - can
vary arbitrarily, and that the future scheduling parameter values can not be
anticipated. In many applications however, the scheduling parameter varies
only with a limited rate of variation, or even stays close to constant during
the considered prediction horizon. Taking these limitations not into account
can result in overly conservative control.

In this chapter we present an extension to the explicit LPV-MPC scheme in
order to incorporate limits on the rate of parameter variation in the con-
troller design. Taking these limits into account mitigates the mentioned con-
servatism since impossible trajectories of the scheduling parameter are not
considered during control law computations.
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12.1 Problem Statement

The class of systems we consider is the class of LPV systems, linear discrete-
time systems with parameter-varying system matrices, which are defined by
the state-update equation

xk+1 = A(θk)xk + B(θk)uk , (12.1a)

with

A(θk) =
nθ

∑
j=1

Ajθk,j , B(θk) =
nθ

∑
j=1

Bjθk,j , (12.1b)

and

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (12.1c)

The discrete time is denoted by k ∈ Z, whereas the variables xk ∈ Rnx ,
uk ∈ R

nu , and θk ∈ R
nθ denote the state, the control input, and the time-

varying scheduling parameter, respectively. We assume that the state xk is
either measurable or observable. The system matrices A(θk) : Rnθ → Rnx×nx

and B(θk) : Rnθ → Rnx×nu are known to lie in polytopes with the description
(12.1b), where Aj ∈ Rnx×nx , Bj ∈ Rnx×nu denote the jth vertices of the corre-
sponding polytope. The scheduling parameter θk = [θk,1 . . . θk,nθ

]T ∈ R
nθ

is constrained to the standard simplex (12.1c). This polytopic description is
a common assumption in the LPV framework, see e.g. [AGB95].

Furthermore, the LPV system (12.1) is constrained, uk ∈ U and xk ∈ X . The
constraint sets U and X are assumed to be bounded polyhedra,

uk ∈ U = {uk ∈ R
nu | Huuk ≤ 1} , (12.2a)

xk ∈ X = {xk ∈ R
nx | Hxxk ≤ 1} , (12.2b)

which contain the origin in their interiors, since we are interested in the
regulator problem1.

Remark 12.1 For ease of notation, we restrict ourselves to separate constraints on
the state and inputs in (12.2). It is straightforward to modify the presented algorithm
in this chapter to the case of mixed polytopic constraints, i.e. Exx + Euu ≤ fxu.

The essential assumption to LPV control is that the scheduling parameter is
measured online and known to the controller. Future values are however only
known to be constrained to the scheduling parameter and to the bound on
the rate of variation.

1From a computational perspective the origin needs not to be included in these polytopic
constraints.
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Contrary to the previous chapters, we assume that the rate of variation Δθk ∈
Rnθ is limited,

Δθk = θk+1 − θk ∈ Γ ⊂ R
nθ . (12.3)

The set Γ ⊂ R
nθ is assumed to be a polytope containing the origin in the

interior, which denotes all possible variations of the scheduling parameter
within one time step. The size of Γ is determined by the bound on the rate
of parameter variation. In the limit the scheduling parameter stays constant
over the prediction horizon (Scenario (S3)), such that Γ contains only the
origin.

For the class of LPV systems with bounded rate of variation (BRV) we want
to compute an explicit state feedback control law

uk = μΓ(xk, θk), (12.4)

which makes use of the information of the current θk. The subscript Γ

indicates that the control law takes the bounds on the rate of parameter
variation into account. For the control problem to make sense2, it is as-
sumed that system (12.1) is controllable and observable for all admissible θk,
[SM67, BBS03].

To compute this bounded rate of variation control law (12.4) within a model
predictive control scheme, a finite-horizon cost function is to be minimized.
We will optimize over finite-horizon control policies

πN = {μ0, μ1, . . . , μN−1} (12.5)

under the influence of the unknown sequence of future scheduling parameters

Tk = {θk+1, . . . , θk+N−1} . (12.6)

According to standard MPC, our cost function is defined as

J(πN ; xk, θk, Tk) = ‖Pxk+N‖p +
N−1

∑
i=0
‖Qxk+i‖p + ‖Ruk+i‖p , (12.7)

where p denotes a polyhedral norm, e.g. the 1-norm or the ∞-norm. Poly-
hedral norms3 enable a parametric solution to the stated problem using dy-
namic programming. For the minimization of the cost function (12.7) we
have to consider the current as well as the unknown future parameter val-
ues, as the state trajectories are parameter-dependent.

2This assumption is not necessary for the actual computations of the proposed procedure.
3Quadratic cost functions are not possible since our procedure relies on epigraph reformu-

lations, which would render the original problem a parametric quadratically constrained
quadratic program, for which no efficient solution techniques are available.

201



12 (Sub-)Optimal Control of Constrained LPV Systems with BRV

In a closed-loop MPC approach (cf. Section 4.3), one would assume that the
future control action uk+1 is calculated optimally over the horizon N− 1 not
until xk+1 and θk+1 are available. But as the future values of the scheduling
parameters are unknown, all possible cases must be regarded in order to
accommodate for the worst-case scenario. This way it is assured that the
actual cost function will be less or equal to the computed one, no matter
how the scheduling parameters evolve. The optimization problem to solve
in a closed-loop MPC approach is thus

μ∗Γ(xk, θk) = arg min
μ0

max
θk+1

min
μ1
· · · max

θk+N−1
min
μN−1

J(π N, Tk; xk, θk) (12.8a)

s.t. ∀i ∈ {0, . . . , N − 1}
xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (12.8b)
μi(xk+i , θk+i) ∈ U , (12.8c)
xk+i+1 ∈ X , (12.8d)
θk+i ∈ Θ (12.8e)
Δθk+i ∈ Γ . (12.8f)

Remark 12.2 It is straightforward to add terminal state constraints xk+N ∈ XT
to the optimization problem (12.8). However, for complexity reasons we recommend
not to use terminal state constraints, but to verify stability a-posteriori (see the
discussion in Section 11.3).

12.2 Computation of Explicit MPC Controllers

In the following we will extend the results from the preceding chapters to
incorporate limits on the rate of parameter variation in the controller com-
putations. This extension is applicable to both the procedure in Chapter 10

for LPV-A systems and in Chapter 11 for LPV systems, respectively.

When the rate of parameter variation is limited, it follows that, starting from
a certain initial scheduling parameter value, not all points in the parameter
simplex can be attained in the succeeding time steps, but depending on time,
some parts of the parameter simplex can be excluded. Which parts can be
excluded depends on the value of the current scheduling parameter, such
that the constraints of the future DP iterations depend on the value of the
current scheduling parameter.

In order to solve the CPVOC problem (12.8) to optimality, one would have
to respect the interconnection between the scheduling parameter values over
time. The scheduling parameter values in earlier time instances would
become parameters in the parametric optimization problems of later time
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Figure 12.1: Determination of the sub-simplices Θc,i,s of the 2-dimensional parameter
simplex Θ.

instances, when applying the dynamic programming procedures of Chap-
ters 10 and 11. Unfortunately, the dependence on those scheduling parame-
ters is nonlinear, preventing an efficient solution with a parametric linear pro-
gramming solver. Moreover, the optimal solution, when computed, would
not be defined over polytopes and thus is cumbersome to evaluate online.
Hence we are proposing a suboptimal solution to the CPVOC problem (12.8)
which is based on a relaxation of the constraint (12.8f).

One way to incorporate the change of the constraints in the DP algorithm
is to consider different parts of the parameter simplex individually, which
leads to the central point of this section: The adaptation of the dynamic
programming procedures in Sections 10.2 and 11.2 for the computation of
control laws μΘ1, . . . , μΘns for separate subsets Θ1, . . . , Θns of the parameter
simplex Θ. The resulting control law (12.4) is composed of these separate
control laws,

uk = μΓ(xk, θk) =

⎧⎪⎨
⎪⎩

μΘ1(xk, θk) , θk ∈ Θ1 ,
...

μΘns(xk, θk) , θk ∈ Θns .
(12.9)

The adaptation of the presented procedures firstly involves the determina-
tion of appropriate subsets of the parameter simplex Θ for each time step of
the DP procedure.

1. Partition the parameter simplex Θ into ns sub-simplices Θ1, . . . Θc, . . . , Θns.
A possible partition of a 2-dimensional parameter simplex into four
simplices is depicted in Figure 12.1(a). Note that the partition is not
required to be symmetric but can be adapted to the needs of the appli-
cation at hand.

2. Determine the evolution of each sub-simplex Θc over time, Θc,0, . . . , Θc,N−1.
Each simplex Θc represents one initial region Θc,0 for the scheduling
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parameter. Due to the limitation of the rate of parameter variation, the
future scheduling parameters θk+i , starting from the simplex Θc,0, have
to lie within

Θc,i = (Θc,i−1
⊕

Γ)
⋂

Θ . (12.10)

Figure 12.1(b) depicts the evolution of the simplex Θ3 over two predic-
tion steps.

3. Triangulate each polytope Θc,i to obtain the simplices Θc,i,1, . . . , Θc,i,ns,c,i .
The application of Pólya’s relaxation as shown in Section 11.2 requires
the scheduling parameter to live in the standard simplex. For this pur-
pose the polytopes Θc,i at each prediction step are divided by a Delau-
nay triangulation, [Del34], resulting in a number nc,i of simplices. After-
wards each simplex Θc,i,s can be transformed to the standard simplex
by a simple coordinate transformation. The Delaunay triangulation of
polytope Θ3,2 is shown in Figure 12.1(c).

Remark 12.3 Step 3 is not necessary when we are dealing with an LPV-A system
with constant input matrix as in Section 10.2, since in that case the application
of Pólya’s relaxation simplifies to a vertex enumeration, which can be applied to
arbitrary polytopes.

With all subsets Θc,i,s of the parameter simplex Θ at hand – where the first
subscript c denotes the considered control law, the second subscript i the
prediction step and the third index s the simplex from the Delaunay trian-
gulation – we can start the actual computation of the LPV-MPC control law.
For every sub-simplex Θc a separate control law μΘc(xk, θk) is computed us-
ing a modified version of the presented DP procedures. In the following
we will focus on the required modifications for the normal DP steps using
Pólya’s relaxation starting from (11.11). These modifications are applied in
an analogous fashion to the final DP step (11.17) and to the case of a vertex
enumeration instead of Pólya’s relaxation.

Instead of solving the semi-infinite optimization problem (11.11) at the (N−
i)th step of the DP procedure, we propose to solve

J∗i (xk+i) = ‖Qxk+i‖p + min
{Ui,ti}

ti(xk+i) (12.11a)

s.t. xk+i+1 = A(θk+i)xk+i + B(θk+i)μi(xk+i , θk+i) , (12.11b)
‖Rμi(xk+i , θk+i)‖p + J∗i+1(xk+i+1) ≤ ti(xk+i) ∀ θk+i ∈ Θc,i ,

(12.11c)

μi(xk+i , θk+i) ∈ U ∀ θk+i ∈ Θc,i , (12.11d)
xk+i+1 ∈ Xi+1 ∀ θk+i ∈ Θc,i , (12.11e)
xk+i ∈ X , (12.11f)
θk+i ∈ Θc,i . (12.11g)
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for each sub-simplex Θc. Note that Θ is replaced by Θc,i. In the case that Θc,i
is not a simplex, each sub-simplex Θc,i,s from the Delaunay triangulation is
treated separately,

J∗i (xk+i) = ‖Qxk+i‖p + min
{Ui,ti}

ti(xk+i) (12.12a)

s.t. ∀s :
xk+i+1 = A(θk+i,s)xk+i + B(θk+i,s)μi(xk+i , θk+i,s) , (12.12b)
‖Rμi(xk+i , θk+i,s)‖p + J∗i+1(xk+i+1) ≤ ti(xk+i) ∀ θk+i,s ∈ Θc,i,s ,

(12.12c)

μi(xk+i , θk+i,s) ∈ U ∀ θk+i,s ∈ Θc,i,s , (12.12d)
xk+i+1 ∈ Xi+1 ∀ θk+i,s ∈ Θc,i,s , (12.12e)
xk+i ∈ X , (12.12f)
θk+i,s ∈ Θc,i,s . (12.12g)

This optimization problem is solved by transforming each simplex Θc,i,s to
the standard simplex and applying Pólya’s theorem.

Remark 12.4 Note that the proposed procedure is conservative, it does not exclude
all scheduling parameter trajectories which violate the constraint (12.8f). Neverthe-
less, the achieved exclusion of scheduling parameter trajectories can already lead to
significant performance improvements as will be shown in Example 12.1.

The online application of the computed control law now consists of the fol-
lowing steps:

(i) Measure or estimate the state xk and the scheduling parameter θk.

(ii) Identify the sub-simplex Θc to which θk belongs.

(iii) Compute the uncontrolled successor state zk.

(iv) Determine the control action uk by evaluating the parametric solution μΘc .

Taking the rate of parameter variation into account results in an increase
in complexity (approximately by a factor of the number of sub-simplices
ns). Hence the determination of an appropriate number ns remains to be a
tradeoff between control performance and complexity. Note however that
the additional complexity is affecting the online computation time far less
than the storage space. Step (iv) takes approximately the same amount of
time as before, and only step (ii) is added to the case with unlimited rate of
variation.

Remark 12.5 The presented modification of the explicit LPV-MPC scheme can also
be used to generalize the originally investigated case of unlimited rate of variation.
It allows for applications where the scheduling parameter is not living in a standard
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12 (Sub-)Optimal Control of Constrained LPV Systems with BRV

simplex, but in a general polytope. Instead of increasing the dimension of the param-
eter simplex for each additional vertex of the polytope by one, one can partition the
polytope into sub-simplices and apply the procedure above.

Remark 12.6 Performance benefits are not only due to considering the limitations
on the rate of variation, but also to the richer structure of the resulting control law.
Instead of being a continuous function of the scheduling parameter, the dependence
of the control law is piecewise continuous, with discontinuities possible at the bound-
aries of the sub-simplices Θc.

Remark 12.7 The larger the number ns of separately considered sub-simplices of
the parameter simplex, the tighter the approximation of the actual possible future
scheduling parameter values by the polytopes Θc,i, i = 0, . . . , N− 1. Moreover, the
choice of the input parametrizations can also be adapted to the size of the polytopes
Θc,i, since the input parametrizations become more and more accurate the smaller
the polytope.

12.3 Numerical Example

Knowledge of the future scheduling parameter values can be of crucial im-
portance for control performance. In order to demonstrate this statement,
the following example was constructed.

Example 12.1 (Bounded rate of parameter variation)

Consider the LPV system

xk+1 =

[
1 0

−1 + 2θk 0.99

]
xk +

[
1

−0.2 + 0.4θk

]
uk , (12.13)

under the constraints[−1
−1

]
≤ xk ≤

[
1
1

]
, −1 ≤ uk ≤ 1. (12.14)

The parameter θk is assumed to vary only slowly within [0,1], with the rate
of variation

Γ = {Δθ : −0.1 ≤ Δθ ≤ 0.1} . (12.15)

This system can be seen as a disturbed double integrator, where the influence
of the first integrator on the second depends on the scheduling parameter.
Note that the scheduling parameter has a severe influence on the dynamics
of the system.
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Figure 12.2: Scheduling parameter trajectory during the simulations. The dotted hor-
izontal lines indicate the boundaries of the parameter simplex regions
of brv9.

Four different controllers for this system were compared in terms of complex-
ity and control performance. By considering the scheduling parameter as an
unknown, bounded parametric uncertainty, an explicit robust controller was
computed, in the following indicated by rob. This robust MPC scheme is
presented in detail in [BBM03], where it is derived as the solution to the
closed-loop constrained robust optimal control (CL-CROC) problem. The
resulting control law is parameter-independent, uk = μ(xk).

Following Section 11.2, an explicit LPV-MPC controller with an affine input
parametrization (11.6) in the scheduling parameter, making use of the un-
controlled successor state zk and a Pólya degree of Np = 2 was computed, in
the following denoted by eMPCzWC. The obtained control law is parameter-
dependent, uk = μ(zk, θk). Finally two LPV-MPC controllers, which take the
bounded rate of variation (12.15) into account, were computed as described
in Section 12.2. The parameter interval [0, 1] was uniformly divided in three
subregions or in nine subregions, respectively; for each region, a parameter-
affine control law was computed using a Pólya degree of Np = 2 and the
uncontrolled successor state, resulting in parameter-dependent control laws,
uk = μΓ(zk, θk). These controller are denoted by brv3 and brv9.

The Multi-Parametric Toolbox (MPT) and Yalmip were used to compute the
control laws, [KGBM04, Löf08]. The weight matrices

Q =

[
1 0
0 1

]
, R = 0.01 , P = Q (12.16)

and a prediction horizon of N = 4 were chosen. The ∞-norm was used in the
cost function (12.7). All control laws were tested in the task to regulate the
system from the initial point x0 = [0.4, 0.5] to the origin, while the scheduling
parameter evolves as shown in Figure 12.2.
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Figure 12.3: State trajectories of the LPV system (12.13) under the control of rob (—),
eMPCzWC (− · −), brv3 (−−) and brv9(—).

In Figure 12.3 the state trajectories of the system controlled by each controller
is depicted. The strategy of the robust controller rob, which comprises 40

regions only, is simple. Since even the sign of the influence of the first inte-
grator on the second is uncertain, it discharges the first integrator immedi-
ately to prevent a possibly counter-productive influence. Instead rob relies
on the stability of the second ‘integrator’ to eventually converge to the ori-
gin. A similar strategy can be observed from eMPCzWC, which comprises
176 regions. In order to charge the first integrator appropriately, knowledge
of the current scheduling parameter is not sufficient. The crucial point in
this example is the anticipation of the future scheduling parameter values.
When the effect of the first integrator on the second in the succeeding time
step is conceivable, the first integrator can be charged accordingly. This al-
lows brv3 (which comprises 192 regions) and brv9 (which comprises 584

regions) to outperform the other two controllers significantly and to steer
the system to the origin within a few time steps.

In Figure 12.4, the control laws of the four compared MPC schemes at the
initial point x0 = [0.4, 0.5] are plotted vs. the scheduling parameter θk. While
rob is constant in the scheduling parameter, the remaining control laws are
piecewise quadratic in the scheduling parameter. Furthermore, the disconti-
nuities of the bounded rate of variation controllers at the boundaries between
the intervals in [0, 1] are visible.
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Figure 12.4: Control laws μ(x0, θk) at the initial point x0 = [0.4, 0.5] vs. scheduling
parameter θk: rob (—), eMPCzWC (− · −), brv3 (−−) and brv9(—). The
dotted vertical lines indicate the boundaries of the parameter regions of
brv9.

Controller: rob eMPCzWC brv3 brv9 brv27 brv81

No. of regions: 40 176 192 584 1724 5093

Actual costs: 19.220 15.711 1.754 1.557 1.518 1.511

Table 12.1: Complexity and cumulated actual cost of the different MPC schemes.

Table 12.1 summarizes the complexity and the cumulated actual performance
in terms of the cost function,

Jact =
30

∑
k=0
‖Qxk‖∞ + ‖Ru‖∞ ,

of the computed control laws. In order to point out the influence of the
number of parameter regions on complexity and control performance, two
more bounded rate of variation schemes were added, with 27 and with 81
subregions of the interval [0, 1]. Note that after 30 time steps the costs of
the first two approaches are still growing, while the costs of the remaining
approaches have converged.

12.4 Conclusions

In this chapter an extension to explicit LPV-MPC was proposed, which takes
limitations on the rate of parameter variations into account. This enables
the computation of less conservative controllers in the control scenarios (S2)
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and (S3), since impossible scheduling parameter trajectories are excluded.
Possible benefits of this extension were demonstrated in an example.

The current and preceding chapters provide the control engineer with an
attractive novel approach to tackle the control of constrained nonlinear sys-
tems, involving the following steps: (i) embedding of the nonlinear system
in an LPV model, (ii) computation of an explicit LPV-MPC controller, and
(iii) the implementation as a look-up table in a microprocessor. If the entire
behaviour of the nonlinear system is contained in the LPV model, guarantees
on stability and constraint satisfaction of the LPV closed-loop system pass
on to the nonlinear closed-loop system, and the cost function is an upper
bound on the actual cost of the nonlinear closed-loop system.
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13 Time-Optimal Control of
Constrained LPV Systems

‘Quaedam tempora eripiuntur
nobis, quaedam subducuntur,
quaedam effluunt. Turpissima
tamen est iactura quae per
neglegentiam fit.’

Lucius A. Seneca

Minimum-time MPC, involving the solution of the CTOC problem in-
stead of the CFTOC problem, was shown previously to be a low-

complexity alternative to explicit MPC for linear and hybrid systems. The
complexity of the MPC control laws, which is the main obstacle to the
application to systems of larger size, could be reduced significantly by a
minimum-time approach. In this chapter we show how Pólya’s relaxation
can be employed to compute minimum-time MPC controllers for discrete-
time LPV systems. Contrary to previous publications, our approach allows
the use of parameter-varying input matrices. In a comparison over 20 ran-
dom systems, explicit minimum-time MPC is compared to explicit LPV-MPC
in terms of complexity and control performance.



13 Time-Optimal Control of Constrained LPV Systems

13.1 Introduction

The model predictive control community has considered LPV systems in the
past, and proposed methods which enable optimal control of LPV systems
under state and input constraints, [LA00b]. Since MPC requires the solu-
tion of an optimization problem in each sampling interval (a semidefinite
program in the case of LPV systems, [LA00b]), its application is limited to
systems with sufficiently slow dynamics. A remedy for small systems is
explicit LPV-MPC, the a-priori computation of the parameter-varying state-
feedback control law.

In the previous chapters explicit MPC schemes for LPV systems were dis-
cussed, which allows for high-speed optimal control of constrained LPV
systems. These scheme are based on parametric programming and thus
participate in its shortcomings. One drawback of parametric programming
is the inherent complexity of the resulting control laws, which grows starkly
with the dimension of the parameter and the number of constraints. The
application of Pólya’s relaxation to a single polynomial constraint results in
a number of parameter-independent constraints, potentially amplifying the
complexity of the parametric program.

In order to mitigate these complexity issues, a common strategy is to for-
mulate a simpler, yet similar parametric optimization problem, resulting in
a less complex control law. Less complex control laws require less stor-
age space and can be evaluated more quickly online. Therefore these ap-
proximate control schemes can be applied to systems of higher dimensions
and/or with even faster dynamics. In this chapter we discuss such an ap-
proach which is based on minimum-time MPC. In minimum-time MPC, in-
stead of minimizing an objective function, the number of time steps to con-
verge to a terminal region is minimized. In [GM03] was shown for linear
systems that explicit minimum-time MPC can be a low-complexity alterna-
tive to explicit MPC. The complexity of the control laws could be reduced
by an order of magnitude, while yielding close-to-optimal control perfor-
mance. Moreover, if the control applied inside the terminal region is stabiliz-
ing and renders the terminal region invariant, the controller obtained using
minimum-time control is recursively feasible and stabilizing.

We consider the general class of discrete-time LPV systems, i.e. we do not
restrict our attention to constant input matrices. The consequences of a vary-
ing input matrix are more extensive than one might expect, because it results
in the closed-loop system to leave the class of polytopic systems. When the
system at hand is an LPV-A system with constant input matrix, the involved
computations simplify, and using an epigraph formulation instead of Pólya’s
relaxation is sufficient (compare Chapter 10).
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13.2 Problem Statement

13.2 Problem Statement

We consider again the class of LPV systems, linear discrete-time systems
with parameter-varying system matrices, which are defined by the state-
update equation

xk+1 = A(θk)xk + B(θk)uk , (13.1a)

with

A(θk) =
nθ

∑
j=1

Ajθk,j , B(θk) =
nθ

∑
j=1

Bjθk,j , (13.1b)

and

θk ∈ Θ :=

{
θk ∈ R

nθ
+

∣∣∣∣∣
nθ

∑
j=1

θk,j = 1

}
. (13.1c)

The discrete time is denoted by k ∈ Z, whereas the variables xk ∈ Rnx ,
uk ∈ Rnu , and θk ∈ Rnθ denote the state, the control input, and the time-
varying scheduling parameter, respectively. We assume that the state xk is
either measurable or observable. The system matrices A(θk) : Rnθ → Rnx×nx

and B(θk) : Rnθ → Rnx×nu are known to lie in polytopes with the description
(13.1b), where Aj ∈ R

nx×nx , Bj ∈ R
nx×nu denote the jth vertices of the corre-

sponding polytope. The scheduling parameter θk = [θk,1 . . . θk,nθ
]T ∈ Rnθ

is constrained to the standard simplex (13.1c). This polytopic description is
a common assumption in the LPV framework, see e.g. [AGB95].

The considered LPV system (13.1) is subject to polytopic state and input
constraints

xk ∈ X = {x ∈ R
nx | Hxx ≤ 1}, uk ∈ U = {u ∈ R

nu | Huu ≤ 1} , (13.2)

containing the origin in their interiors.

Remark 13.1 For ease of notation, we restrict ourselves to separate constraints on
the state and inputs in (13.2). It is straightforward to modify the presented algorithm
in this chapter to the case of mixed polytopic constraints, i.e. Exx + Euu ≤ fxu.

The computation of minimum-time controllers for uncertain discrete-time
systems, uk = μ(xk), was shown in [Bla92]. The objective of this chapter is
to compute a stabilizing minimum-time MPC controller for the LPV system
(13.1) which takes knowledge of the current scheduling parameter values
into account,

uk = μ(xk, θk) . (13.3)

For the control problem to make sense, it is assumed that the system (13.1)
is controllable (and observable) for all θk ∈ Θ, see [SM67, BBS03].
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13.3 Computation of Minimum-Time MPC
Controllers

In the following section we provide a procedure for the computation of ex-
plicit minimum-time MPC controllers for LPV systems. The offline compu-
tations consist of three steps, in order to determine

(i) a terminal controller for the unconstrained system to be applied in a
terminal region XT ,

(ii) the shape and size of the terminal region XT itself, which should be
parameter invariant under the terminal control, and

(iii) the solution of the constrained time-optimal control (CTOC) problem
as discussed in Section 4.4.

Unfortunately, taking the current scheduling parameter into account within
the control law (13.3) renders the closed-loop system polynomially1 depen-
dent on the scheduling parameter, such that the set of states which can be
mapped into a polytope under (13.3) is an intersection of infinitely many
polytopes, thus convex, but not necessarily a polytope itself. In the following
we propose to employ Pólya’s relaxation (which is presented in Section 2.2)
to approximate the maximum invariant and the maximum control invariant
set of the LPV system (13.1) by polytopic subsets, and to use these polytopic
sets within the minimum-time framework.

Terminal Region Control

The first step of the controller computation is concerned with the terminal re-
gion control, uk = μT(xk, θk), of the unconstrained system, which is applied
in a neighbourhood around the origin where no constraints are active. In
principle, any control technique for unconstrained LPV systems can be em-
ployed here, assumed it is asymptotically stable and renders a set of states
parameter invariant w.r.t. to the closed-loop system. Indeed, this flexibility
allows one to employ minimum-time MPC as an add-on to an already exist-
ing control scheme, only acting when the system is affected by constraints.

A straightforward choice for the control of the unconstrained LPV system
comprises the computation of LQR feedback matrices Kj ∈ Rnu×nx for each
vertex j = 1, . . . , nθ of the parameter simplex (13.1c), and the interpolation
of the obtained feedback matrices,

uk = μT(xk, θk) = K(θk)xk =
nθ

∑
j=1

Kjθk,jxk . (13.4)

1Assumed (13.3) is an affine or polynomial function of the scheduling parameter.
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In many cases this will result in a controller with satisfying stability and
performance properties. On the other hand, a-priori guarantees can only be
given for the vertices of the parameter simplex, while performance might
decrease or even stability might be lost for scheduling parameter values in
the relative interior of the simplex. Therefore we recommend to compute the
state feedback matrices Kj in (13.4) by a more holistic approach similar to the
computation of discrete-time LQR controllers . This approach is facilitated
by a matrix-valued version of Pólya’s relaxation, [SH04]. We consider the
quadratic Lyapunov function

J(xk) = xT
k Pxk

with P ∈ S
nx
+ symmetric and positive semidefinite. We require that the costs

decrease in each step at least by the quadratic stage costs,

xT
k+1Pxk+1 ≤ xT

k Pxk − xT
k Qxk − uT

k Ruk , (13.5)

with the weight matrices Q 	 0, R 	 0. Inserting the state-update equation
(13.1) and the state-feedback equation (13.4) yields

xT
k

[
(A(θk) + B(θk)K(θk))

TP(A(θk) + B(θk)K(θk))

−P + Q + K(θk)
TRK(θk)

]
xk ≤ 0 ∀θk ∈ Θ . (13.6)

For Equation (13.6) to be fulfilled, the matrix[
(A(θk) + B(θk)K(θk))

TP(A(θk) + B(θk)K(θk))− P + Q + K(θk)
TRK(θk)

]
(13.7)

must be � 0 ∀θk ∈ Θ. This matrix inequality is not linear in the matrix
variables K(θk) and P. Substituting Y := P−1 and F(θk) := K(θk)Y, and
multiplying from left and right with Y, [BEGFB94], yields[

(A(θk)Y + B(θk)F(θk))
TY−1(A(θk)Y + B(θk)F(θk))

−YPY + YQY + F(θk)
TRF(θk)

]
� 0 ∀θk ∈ Θ . (13.8)

Applying Schur complement we obtain the linear matrix inequality (LMI)

⎡
⎢⎢⎣

−Y A(θk)Y + B(θk)F(θk) O O
(A(θk)Y + B(θk)F(θk))

T −Y Y F(θk)
T

O Y −Q−1 O
O F(θk) O −R−1

⎤
⎥⎥⎦ � 0

∀θk ∈ Θ ,
(13.9)
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which inherits the requirements Y � 0, Q 	 0, R 	 0. In the semidefinite
program incorporating the LMI we can minimize the trace or the largest
eigenvalue of P, by solving

min
Y,F(θk)

trace(X) (13.10a)

s.t.
[

X I
I Y

]
� 0 and (13.9) , (13.10b)

with X ∈ S
nx
+ , or

min
Y,F(θk)

− t (13.11a)

s.t. Y � tI and (13.9) , (13.11b)

with t ∈ R
nx
+ , in order to obtain the cost function with the minimum expected

or worst-case costs, respectively. Note the necessity of t > 0, to ensure that
Y is invertible.

The LMI (13.9) is linear in the matrix variables Y and F(θk), but still depends
polynomially on the scheduling parameter θk. Hence we apply Pólya’s re-
laxation to obtain an LMI independent of the scheduling parameter θk. The
Pólya degree Np can be chosen high since there is a strong influence on the
performance of K(θ), but only indirect influence on complexity through the
size of the terminal region XT, which depends on the terminal region control
(13.4). The solutions of both semidefinite programs (13.10) and (13.11) yield
a stabilizing LPV gain-scheduling controller.

Proposition 13.1 Due to the properties of Lyapunov functions, the existence of any
Y, F(θk) which satisfy (13.9) for given Q 	 0, R 	 0 ensure asymptotic stability of
the unconstrained closed-loop system

xk+1 = A(θk)xk + B(θk)F(θk)Y−1xk

to the origin for all θk ∈ Θ.

Remark 13.2 It is also possible not to consider a constant matrix Y, but a matrix
Y(θk) polynomial in the scheduling parameter. This extension reduces the conser-
vatism of the approach, but requires a modification of the equations above, in order
to distinguish Y(θk) from Y(θk+1). The modified version of LMI (13.9) would have
to be satisfied for all possible θk and θk+1. Such an approach with a parameter-
dependent Lyapunov function is usually applied to (but not restricted to) the case
of a limitation of the rate of parameter variation (Scenarios (S2) and (S3)). The de-
scribed modification leads to the controller K(θk) = F(θk)Y(θk)

−1, being a rational
function of the scheduling parameter.
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Terminal Region

In the second step the terminal region XT is determined. The terminal re-
gion is required to be parameter invariant with regard to the LPV system
(13.1) under the terminal region controller (13.4), and represents a set of
states where neither state nor input constraints (13.2) are active. The termi-
nal region XT can be computed by the backpropagation Algorithm 2.1 on
page 16 combined with Pólya’s relaxation. Given the polytopic set Zi =
{x ∈ Rnx | Hix ≤ 1}, its preset Ω(Zi) is defined as

Ω(Zi) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

nx

Hxx ≤ 1 ,
HuK(θ)x ≤ 1 ,

Hi(A(θ) + B(θ)K(θ))x ≤ 1 ,
∀θ ∈ Θ

⎫⎪⎪⎬
⎪⎪⎭ . (13.12)

The preset Ω(Zi) contains all states which are mapped by the LPV system
(13.1) under the terminal region control (13.4) while satisfying the state and
input constraints (13.2). Note that Ω(Zi) is a C-set, but in general not a
polytope. Using Pólya’s relaxation, the parameter-dependent constraints of
(13.12) can be transformed into parameter-independent constraints, and we
obtain a polytopic approximation of this preset, namely ΩNp(Zi) := {x ∈
Rnx | Hi+1x ≤ 1}.

Definition 13.1 (Polytopic Preset) Let Zi ⊂ R
nx be a polytope. A set ΩNp(Zi)

⊂ Rnx is called polytopic preset of Zi for the LPV system (13.1) subject to the con-
straints (13.2), if it contains all states which fulfil the polytopic constraints arising
when applying Pólya’s relaxation with degree Np to the preset Ω(Zi).

For ΩNp(Zi) again the polytopic preset ΩNp(ΩNp(Zi)) can be computed.
Repeated computation of polytopic presets within Algorithm 2.1 eventually
yields the polytopic approximate maximum parameter invariant set Z∞. Note
that the exact shape of Z∞ depends on the Pólya degree Np.

The polytopic approximate maximum parameter invariant sets Z∞ can be
taken as terminal region XT . The choice of the Pólya degree Np reflects a
tradeoff between the number of facets of Z∞ and its size. It influences not
only the shape of the terminal region XT, but also the complexity of the
minimum-time control laws.

Note that the invariance property ensures that the state remains inside XT
once it has entered the terminal region, and that this property holds inde-
pendent of the actual scheduling parameter values. By strengthening the
invariance property of the terminal region with regard to the closed-loop
system to λ-contractiveness with λ ∈ [0, 1), asymptotic stability in the termi-
nal region can be guaranteed (see Section 11.3). Hence the computation of
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13 Time-Optimal Control of Constrained LPV Systems

the terminal region can also be used to verify stability of the terminal region
controller, no matter how the state feedback matrices in Equation (13.4) were
obtained.

Remark 13.3 In the case of a rational terminal region controller,

K(θ) = F(θ)Y(θ)−1 = F(θ)
adj(Y(θ))

det(Y(θ))
,

where adj(Y(θ)) and det(Y(θ)) denote the (parameter-dependent) adjugate and
determinant of Y(θ), respectively, we simply multiply with det(Y(θ)), such that
the preset (13.12) becomes

Ω(Zi) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

nx

Hxx ≤ 1 ,
HuF(θ) adj(Y(θ))x ≤ 1 det(Y(θ)) ,

Hi(A(θ) + B(θ)F(θ) adj(Y(θ)))x ≤ 1 det(Y(θ)) ,
∀θ ∈ Θ

⎫⎪⎪⎬
⎪⎪⎭ .

(13.13)
The resulting inequalities of (13.13) are polynomials in the scheduling parameter,
allowing the application of Pólya’s relaxation for the determination of the terminal
region. For procedures to compute the determinant or the inverse of polynomial
matrices, see e.g. [GJV03], [JV05].

Solution to the CTOC problem

After determining an invariant terminal region and terminal region control,
the control laws μi(x, θ), which steer the state in the minimal number of
time steps to the terminal region XT , are computed. We solve the con-
strained time-optimal control (CTOC) problem, which was discussed in Sec-
tion 4.4, for the LPV system (13.1). For this purpose the backpropagation
Algorithm 2.1 on page 16 is applied, while Pólya’s relaxation is employed
for the computation of polytopic presets. In the iteration i we determine
the set Zi of all states which can be mapped to the terminal region XT in i
steps.

In the proposed procedure, the dependence of the input on the scheduling
parameter has to be set beforehand. This dependence can be polynomial, but
due to complexity reasons, we recommend to choose an affine dependence,

uk = μi(xk, θk) =
nθ

∑
j=1

θk,jμi,j(xk). (13.14)

For notational simplicity we define Ui := [μi,1, . . . , μi,nθ
].

The control law μi(x, θ), which steers the state from Zi+1 to Zi, is not unique,
but can be selected from a set of control laws. For this selection the following
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parametric program can be employed,

min
Ui

J(uk ; xk) (13.15a)

s.t. Hxxk ≤ 1 , (13.15b)
Huuk ≤ 1 , ∀θk ∈ Θ , (13.15c)
Hi(A(θk)xk + B(θk)uk) ≤ 1 , ∀θk ∈ Θ , (13.15d)

where the objective function J(xk , uk) determines the preferred selection. A
possible objective function is

J(uk ; xk) = max
θk

‖Qxk+1‖p + ‖Ruk‖p , (13.16)

where p denotes a polyhedral norm. This objective function represents a min-
imization of the worst-case cost during a one-step-ahead prediction. Ana-
logue to Chapter 11, an epigraph reformulation can be used to handle the
maximization over the scheduling parameter.

It is possible, but not necessary, to minimize the worst case, since conver-
gence to XT is guaranteed, and the choice of the objective function J(xk, uk)
can focus entirely on control performance. When common operating points
of the scheduling parameter

{
θ̄1, . . . , θ̄nθ̄

}
(e.g. the vertices) are known, it is

also possible to minimize the cost predictions for these operating points,

J(uk ; xk) =
nθ̄

∑
r=1

(A(θ̄r)xk + B(θ̄r)uk)
TP(A(θ̄r)xk + B(θ̄r)uk) + uT

k Ruk . (13.17)

Since an epigraph formulation is not necessary, this objective function can
be quadratic. The matrix P can be taken from the terminal region control,
s.t. (13.17) reflects the infinite-horizon cost at the operating points under the
assumption of unconstrained state evolution.

Pólya’s relaxation can be employed to render the constraints of the para-
metric program (13.15) parameter-independent. The Pólya degree Np is
not only determining the size and number of constraints of the polytopic
preset ΩNp(Zi), but also has a direct impact on the number of parameter-
independent constraints, and thus on the complexity of the resulting control
laws μi(xk, θk). Hence it should be selected rather low.

Remark 13.4 It should be noted that the resulting control law is not a minimum-
time control law in a strict sense, since there might be states in the preset, which do
not belong to the polytopic preset, and thus are not mapped to the target region in
the minimum number of steps.

As described in Section 4.4, the collection of sets {Zi}∞
i=1 together with their

corresponding control laws μi(xk, θk) are stored. Online a bisection proce-
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dure can be performed to solve the problem (4.19) on page 52 and thus to
determine the set membership of the current state xk. Afterwards the corre-
sponding control law is evaluated.

Remark 13.5 For higher-dimensional systems, the control laws μi(xk, θk) might be-
come too complex for efficient storage and evaluation. In this situation it is still pos-
sible to compute the set collection {Zi}∞

i=1, by a set backpropagation (Algorithm 2.1).
Online, we perform a set membership test and solve the optimization problem (13.15)
with the cost function

J(uk ; xk, θk) = (A(θk)xk + B(θk)uk)
TP(A(θk)xk + B(θk)uk) + uT

k Ruk (13.18)

for the current state xk and scheduling parameter θk.

Comparison to Explicit LPV-MPC

Compared to the dynamic programming iterations in explicit LPV-MPC,
which was presented in Chapter 11, the parametric program (13.15) com-
prises significantly fewer constraints, mainly because the objective function
takes only the current and the succeeding step directly into account, and
thus has a simpler structure. This is the main reason for the low complexity
of minimum-time control compared to explicit LPV-MPC. Additionally, the
future scheduling parameter values are unknown, what can lead to a broad
variety of possible future trajectories, such that the exact future costs are sim-
ply not available. Hence it is questionable if much effort should be spend on
a tradeoff between current and future costs, or if a simple approximation of
the future costs as in (13.17) is not sufficient.

If the rate of parameter variations is limited (LPV scenario (S2) and (S3)),
the procedure described in this chapter can be adapted. This adaptation
can follow the lines of Chapter 12, i.e. partition the parameter simplex and
compute a separate control law for each subset.

13.4 Numerical Examples

In order to justify claims about complexity and control performance, we com-
pared the proposed minimum-time scheme to explicit LPV-MPC by means
of 20 random examples. This comparison is by no means a proof, but can
serve as an indicator of to be expected properties of the minimum-time
scheme. For the computations we employed the NAG solver, [Num02], un-
der MPT 2.6, [KGBM04], interfaced via Yalmip, [Löf08].
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The example systems consist of two states and one input. The scheduling
parameters live in standard 2-simplices, and the elements of the system ma-
trices are uniformly distributed random numbers in the interval [−1, 1], i.e.
also unstable systems are considered. The state and input constraints were
chosen to be

X = {x ∈ R
2 | ‖x‖∞ ≤ 10} , U = {u ∈ R | |u| ≤ 1} .

Two methods were compared, the first one being the minimum-time MPC
scheme proposed in this chapter, denoted by mt. The terminal region con-
trol was computed by solving the LMI (13.9), while the cost function (13.17)
penalizing the vertex predictions was minimized during the minimum-time
iterations. The Pólya degree of the relaxations was Np = 10 for the terminal
region controller, and Np = 2 for the terminal region computation and the
solution of the CTOC problem.

The second method is the explicit LPV-MPC scheme from Chapter 11, de-
noted by eMPCz. The setup of the explicit LPV-MPC scheme was guided
by the aim to achieve as much comparability as possible. In both methods
the control inputs depend affinely on the scheduling parameter. The Pólya
degree was set to Np = 2, and the terminal cost matrix P from the minimum-
time scheme was also used in the eMPCz scheme. In order to ensure a fair
complexity comparison, the terminal region of the minimum-time controller
was included as terminal region constraints in the eMPCz scheme. Thus both
approaches face the same state and input constraints, and the set of feasible
states is in principle the same, only limited by the methods itself. Unfortu-
nately, it is not possible to employ quadratic cost functions in the explicit
LPV-MPC approach, instead we are minimizing the maximum norm, p = ∞,
of the finite-horizon predictions.

The MPC setup of both methods is as follows. The stage cost matrices are

Q =

[
1 0
0 1

]
, R = 1 . (13.19)

The prediction horizon (and the number of minimum-time iterations, respec-
tively) was set to N = 3. For all 20 systems, control laws were computed
employing both mentioned control methods. The computation of eMPCz
for Systems 13 and 19 was aborted after several hours2. The complexity of
the remaining control laws is depicted in Figure 13.1. The complexity of mt
varies from about half the complexity of eMPCz, up to an order of magnitude

2By changing the final DP approach to (11.15), it is possible to compute an explicit LPV-
MPC controller. However, to keep the comparison consistent, we refrained from mixing
different approaches, and sticked to the worst-case minimizations.

221



13 Time-Optimal Control of Constrained LPV Systems

System

N
um

be
r

of
re

gi
on

s

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

Figure 13.1: Number of regions of the control laws mt (black), eMPCz (white) for 20
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Figure 13.2: Relative average costs under the control laws mt (black), eMPCz (white)
for 20 random example systems.

difference (System 2). For all systems, the offline computation time for mt
was way shorter than for eMPCz.

In order to compare the control performance of the three methods, a grid
of 900 uniformly distributed grid points was applied to the state space, and
each grid point served as initial state. The closed-loop system was simulated
for 40 time steps, and actually experienced stage costs were added up,

Jact =
40

∑
k=0
‖Qxk‖∞ + ‖Ruk‖∞ .

The scheduling parameter values at each time step were selected randomly
in the parameter simplex. These simulations were repeated ten times with
different scheduling parameter values (both control methods were confron-
ted with the same scheduling parameter values, of course). Overall, each
feedback system was tested on 9000 different trajectories, or 36000 sampling
points, respectively.

Finally the average cost values over all grid points and all simulations were
taken. Since the costs vary from system to system, a normalization with
respect to the average costs of the minimum-time controller was performed.
The resulting relative average costs are depicted in Figure 13.2. The control
performance of mt is often similar to eMPCz, though there also exist systems,
where one method outperforms the other.
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13.5 Conclusions

What can be drawn as conclusions? Firstly that minimum-time LPV-MPC
represents a low-complexity alternative to explicit LPV-MPC. Additionally
it provides a-priori guarantees for stability. Minimum-time MPC controllers
are not unique, and the cost functions of the optimization problems rep-
resent an additional degree of freedom for the selection of an appropriate
minimum-time MPC controller. Contrary to explicit LPV-MPC, these “cost
functions” can be quadratic. However, note that the true objective is to mini-
mize the number of steps to reach a target set. Occasionally minimum-time
LPV-MPC even outperforms explicit LPV-MPC, likely because the terminal
cost matrices P were adapted to quadratic costs and because explicit LPV-
MPC is optimizing worst-case costs instead of average costs. Consequently,
the benefits of minimum-time MPC are even more compelling for LPV sys-
tems than for linear or hybrid systems. The application of minimum-time
MPC for the high-speed close-to-optimal control of constrained LPV systems
should also be considered when complexity is not the primary objective.
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14 Autonomous Vehicle Steering
(II)

‘Knowing is not enough; we
must apply. Willing is not
enough; we must do.’

Johann Wolfgang von Goethe

Finally, we revisit the problem addressed in Chapter 8, the design of a
highly performant controller for autonomous vehicle steering. In this

chapter a novel control approach for autonomous steering of automobiles
is presented. A nonlinear model of the lateral vehicle dynamics and the
tire forces is approximated by an LPV model. Then explicit LPV-MPC is
employed to derive a controller which requires only little online computa-
tions. The achieved control performance is compared to nonlinear MPC and
explicit linear MPC in a double lane-change maneuver at different driving
speeds. This project was supported by the European Commission research
project FP6-IST-511368 Hybrid Control (HYCON).



14 Autonomous Vehicle Steering (II)

14.1 Introduction

During the time of this doctorate, several extensions and improvements for
the autonomous steering control were proposed. These include an improved
vehicle model, which allows combined steering and braking, [FTB+07], and
an experimentally validated stability analysis [FBT+08]. The issue of high
computational complexity was also tackled by developing simplified predic-
tion models that approximate the nonlinear model of the vehicle dynamics.
In [FBA+07, FTB+07, FBT+08], a linear time-varying (LTV) model is em-
ployed, which is derived by linearizing the nonlinear model online. The
LTV-MPC as well as the HPV-MPC procedure from Chapter 8 could reduce
the computational burden and thus present schemes which are applicable
on a test vehicle. Nevertheless, they still rely on solving the underlying op-
timization problem online, and require expensive computing equipment in
the vehicle. The hybrid and the linear model on the other hand allow the
computation of explicit controllers, and thus require significantly less online
computations, but do not take the varying driving conditions into account.
For a practical implementation however, both requirements are crucial. An
autonomous steering system has to be able to cope with different driving
situations, and should as well require only little online computations, since
those can directly be translated into costs of the steering system.

The motivation for this work was twofold. On the one hand we wanted
to propose a scheme for autonomous vehicle steering, which constitutes a
reasonable compromise between both aforementioned requirements. A po-
tential candidate for this task could be explicit MPC for linear parameter-
varying (LPV) systems. On the other hand, it was interesting to verify ex-
plicit LPV-MPC by applying it to a realistic example, and to introduce a
promising control method to the automotive community. As such, this chap-
ter can be regarded as an real-life example for high-speed control of LPV
systems under constraints.

The chapter is structured as follows. Section 14.2 shows how to derive a
linear parameter-varying model and a linear model of the lateral vehicle dy-
namics, [JR03]. In Section 14.3, the model predictive control schemes are
presented. Section 14.4 presents the application of the model predictive con-
trol schemes to the double lane-change maneuver.

14.2 Modelling

A nonlinear model of the lateral vehicle dynamics was presented in Sec-
tion 8.2. This section describes the linearizations made to obtain a linear
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parameter-varying model and a purely linear model of the lateral dynam-
ics.

In [BM08a], where Chapter 8 is based on, the derivation of a hybrid para-
meter-varying (HPV) model from (8.8) was presented. This HPV model
accounts for the scheduling signals μ, s f and the wind speed vw. In the
discussions following [BM08a], the difficulties to measure or estimate these
scheduling signals during complicated driving maneuvers were emphasized.
Hence, and contrary to [BM08a], we will not use the road friction μ as sched-
uling variable, but assume icy road conditions. We will also assume cruising
conditions, i.e. no slip s f . Instead we will investigate gain-scheduling for differ-
ent driving speeds vx. The hybridness of the HPV model was used to model
saturation effects which appear at higher slip angles. By assuming the slip
angles α f , αr small, it is possible to neglect the saturation and thus to simplify
the HPV model to an LPV model. Note that from a theoretical point of view,
it would be possible to consider more scheduling variables (e.g. the road fric-
tion, or to account for tire force saturation), though to the expense of quickly
increasing complexity of the resulting control law. Since explicit LPV-MPC
is based on dynamic programming, it also suffers from the curse of dimen-
sionality, i.e. it requires the number of states nx, the number of scheduling
parameters nθ and the number of prediction steps N to be relatively low.

In summary, the assumptions taken for the LPV model are:

(i) no slip (s f = sr = 0) ,

(ii) icy road (μ = 0.1) ,
(iii) constant normal tire forces Fz, f , Fz,r ,

(iv) small angles (ψ ≈ δ f ≈ α f ≈ αr ≈ 0) ,

(v) front wheel steering (δr = 0) .

With these assumptions, system (8.8) can be linearized to

d
dt

⎡
⎢⎢⎣

Y
Ẏ
ψ
ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ẏ
1
m(2Fy, f + 2Fy,r)

ψ̇
1
J (2aFy, f − 2bFy,r)

⎤
⎥⎥⎥⎦ . (14.1)

where the lateral forces Fy,i can be computed from the longitudinal and cor-
ner forces of the tires via the linearized force transformation (cf. (8.4))

Fy,i = Fl,iδi + Fc,i , i ∈ { f , r} . (14.2)

These tire forces now need to be approximated. In the Pacejka tire force
model, the longitudinal and corner forces are nonlinear functions of the slip
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Figure 14.1: Cornering tire force of rear wheels Fc,r for different road frictions μ (− ·
−) and its approximation F̂c,r (—) vs. slip angle αr. The arrow indicates
increasing road friction.

ratios si, the slip angles αi and the friction coefficient μ. The slip angles αi
are depending in a nonlinear way on the state and input of the system, see
(8.5) and (8.6). These relations can be linearized to

α f =− δ f − ψ + (Ẏ + aψ̇)/vx , (14.3a)

αr =− δr − ψ + (Ẏ− bψ̇)/vx , (14.3b)

where the relation (8.7) between car coordinate ẏ and global coordinate Ẏ
was linearized to

Ẏ = ẏ + vxψ . (14.4)

From (14.1) to (14.3) follows that in order to obtain a model which depends
on the state x and the control input δ f in a linear manner, we have to approx-
imate the longitudinal tire forces Fl,i to be independent of the slip angles
αi. Therefore the longitudinal forces Fl,i are approximated by evaluating the
longitudinal Pacejka tire force for αi = 0,

F̂l,i = Fl,i(0, 0, 0.1) = 0, i ∈ { f , r} . (14.5)

The approximations of the corner forces Fc, f and Fc,r can depend on αi in a
linear way, since they are not multiplied by the control input δ f in (14.2),

F̂c, f (α f ) = k f α f , F̂c,r(αr) = krαr , (14.6)

where the coefficients k f and kr can be determined by a least squares ap-
proach for fixed values μ, si and small slip angles αi. In Figure 14.1 the rear
cornering force Fc,r and its approximation vs. the slip angle αr are depicted
for different road frictions μ, while the slip sr is zero. It can be seen that the
linear approximation is reasonable for small slip angles, as long as the no-
slip condition holds. The road friction μ determines the level at which the
force saturates, but the slope of the force around zero is virtually unaffected.
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The approximation of the front cornering force is carried out analogue to the
rear force.

By replacing the tire forces in the linearized system (14.1) by its approxima-
tions (14.5) – (14.6), an LPV model with the following matrices is obtained:

A(θ) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0
2(k f +kr)

mvx

−2(k f +kr)

m
2(k f a−krb)

mvx
0 0 0 1

0
2(k f a−krb)

Jvx

−2(k f a−krb)
J

2(k f a2+krb2)

Jvx

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
−2k f

m
0

−2ak f
J

⎤
⎥⎥⎥⎦ ,

C = I4, D = O4 . (14.7)

The longitudinal velocity vx of the vehicle is used as scheduling signal ρ.
By defining the parameter θ = 1/vx, the dependence of the state transition
matrix A on the parameter is affine. Note that B, C and D are constant
matrices.

Finally, a linear model of the lateral vehicle dynamics is considered. This
linear model will be used to point out the performance degradations caused
by not considering varying vehicle speeds. A linear model can be obtained
from the LPV model (14.7) by fixing the scheduling variable to a constant.

14.3 Controller Design

This section describes the setup of the four MPC schemes. MPC was in-
troduced in Section 4.5. An Euler discretization with a sampling time of
Ts = 0.05 s is used to derive discrete-time models from the corresponding
continuous-time models. In order to investigate the best performance achiev-
able with MPC, the nonlinear model from Chapter 8 is employed for predic-
tion in nonlinear model predictive control. In later stages the LPV model
from Section 14.2 and finally the linear model is used for the prediction.

Nonlinear MPC

A nonlinear MPC (NMPC) controller for autonomous vehicle steering was
presented in [KFB+06]. The standard MPC approach is applied with the cost
function (8.27), i.e.

J(Uk; xk, Xref,k, pk) =
N

∑
i=1
‖xk+i − xref,k+i‖2

Q +
N−1

∑
i=1
‖sk+i‖2

qα
+

Nc−1

∑
i=0

‖Δuk+i‖2
R ,

(14.8)
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penalizing the difference between state vector and reference trajectory, and
using a Δu-formulation with Δuk+i = uk+i − uk+i−1. As in Chapter 8, we in-
troduce the sequence of reference states Xref,k := {xref,k+1, . . . , xref,k+N} and
the set of optimization variables Uk := {Δuk, Δuk+1, . . . , Δuk+Nc} to simplify
notation. The scheduling variables ρ(k) are assumed to stay constant over
the prediction horizon. A prediction horizon of N = 4 and a control horizon
of Nc = 2 is chosen. The weights are chosen as

Q = diag(
[
1 0 40 0

]
) , qα = 1000 and R = 1 .

As in [KFB+06], the control input u and the input rate Δu are constrained to

umax/min = ±30 deg , Δumax/min = ±20 deg/s. (14.9)

Additionally the front slip angle was constrained to |α f | ≤ 2 deg by using
soft constraints. For this chapter, the nonlinear optimizations were performed
using Matlab’s internal solver fmincon.

Using the above stated cost function, we can formulate the constrained finite-
time optimal control (CFTOC) problem, which is solved at each time step k,
and employ a receding horizon control strategy, i.e. only the first input uk is
applied at time k, and another optimization is performed at the next time
step.

Explicit LPV-MPC

Two explicit MPC controllers were computed for the LPV model presented in
Section 14.2. The main issue in explicit MPC is the complexity of the result-
ing control laws. Driving forces for complexity are the number of scheduling
parameters, the prediction horizon, and the dimension of the optimization
problem. Hence several measures were taken to reduce the complexity of
the problem.

The number of scheduling parameters is one, and in addition this parame-
ter is only appearing in the state transition matrix A. This fact permits the
usage of the LPV-A MPC scheme, which was described in Chapter 10. The
dimension of the underlying parametric optimization problem is composed
by the state, the number of reference signals and the number of inputs (to
limit the input rate Δu). For the system at hand this would amount to a
seven-dimensional parametric optimization problem. Fortunately the LPV
model (14.7) can be decomposed into a three-dimensional subsystem con-
taining the states [Ẏ, ψ, ψ̇] and an integrator to derive Y. This allows us to
use a cascade loop for control, containing the explicit LPV-MPC controller in
the inner loop and a simple P-controller in the outer loop. The precise struc-
ture is depicted in Figure 14.2. Thus the controller computation simplifies to

230



14.3 Controller Design

Yref

−
kP
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Figure 14.2: Cascade loop for Explicit LPV-MPC.

a five-dimensional parametric optimization problem with reduced complex-
ity. While optimal performance is not guaranteed anymore, the satisfaction
of constraints (14.9) is still preserved.

The following settings were used for the explicit LPV-MPC controllers: In-
stead of a quadratic cost function, the polytopic maximum norm was mini-
mized,

J(Uk, Tk; xk, xref,k, θk) =
N

∑
i=1
‖Q(xk+i − xref,k+i)‖∞ +

Nc−1

∑
i=0

‖Ruk+i‖∞ ,

where the sequence of control inputs and the sequence of unknown fu-
ture scheduling parameters are denoted by Uk = {uk, uk+1, . . . , uk+N−1} and
Tk = {θk+1, . . . , θk+N−1}, repectively.

The reference trajectory is assumed constant over the prediction horizon,
xref,k+i = xref,k ∀i ∈ {0, . . . , N}. The prediction horizon was reduced to
N = Nc = 3. The weight matrices are

Q = diag(
[
0.15 15 0

]
) and R = 1 .

For the computation of the explicit LPV-MPC controller, the longitudinal
speed vx is assumed to vary within

10 m/s ≤ vx ≤ 20 m/s.

The control input and control rate are constrained as in (14.9). The tire force
approximations are only valid for sufficiently small slip angles (compare
Figure 14.1). Restricting the slip angle α f directly resulted in utterly conser-
vative results. Therefore the slip angle is constrained indirectly by tightening
the input constraints to umax/min = ±5 deg. State constraints, which are re-
quired in MPT, [KGBM04], were chosen large enough such that they do not
effect the control actions during the simulations. Computations were per-
formed using MPT via Yalmip, [KGBM04, Löf04]. The resulting controller
(subsequently denoted by LPV-MPC(1)) comprises 2180 regions.
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Explicit LPV-MPC with Bounded Rate of Parameter Variation

In the explicit LPV-MPC scheme presented in Chapter 10, it is assumed that
the scheduling parameter θ varies arbitrarily within the parameter simplex
Θ. If however the rate of parameter variation is bounded, this assumption is
conservative, since impossible realizations of the future scheduling parame-
ter are considered in the predictions. An extension of the explicit LPV-MPC
scheme is proposed in Chapter 12, which reduces the conservatism, when
bounds of the rate of parameter variation are known. The main idea of this
extension is to partition the parameter simplex Θ into a number of subsets,
and to compute for each subset a separate control law, only considering
those future scheduling parameter values which can be obtained if the cur-
rent scheduling parameter is contained in this subset. The choice of the
number of subsets is then a tradeoff between complexity of the resulting
control law and conservatism.

Control performance of the LPV-MPC scheme can be improved, if the rate
of variation of the scheduling parameter is bounded. In order to verify this,
we assumed the scheduling parameter θ to vary less than 0.1 per time step,
and separated the parameter simplex in half, resulting in a controller with
4478 regions, denoted by LPV-MPC(2).

Explicit linear MPC

For the linear model from Section 14.2 and for the longitudinal speed vx =
10 m/s, an explicit linear MPC controller was computed, [Bor03]. Besides the
different prediction model, the setup of the linear MPC scheme is identical
to the LPV-MPC schemes, to assure comparability. The resulting controller
comprises 561 regions.

14.4 Simulations

This section presents the application of autonomous vehicle steering in a
double lane-change maneuver on snow, [KFB+06]. In this control scenario, a
car is driving with different constant longitudinal speeds vx = 10, 15, 16 m/s
on a road with friction coefficient μ = 0.3. The double lane-change shall be
proceeded by following a reference trajectory in Y and ψ, assuming that this
reference is supplied by a trajectory planning system. The control objective is
to track the reference trajectory as closely as possible. The vehicle is assumed
to cruise during the maneuver, no braking or accelerating is proceeded. For
the simulation of the car in the control scenario, the nonlinear model (8.8) is
used.
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Figure 14.3: Double lane-change maneuver with vx = 10 m/s. Reference trajectory
(· · · ), NMPC (—), LPV-MPC(1) (– –), LPV-MPC(2) (—) and linear MPC
(– –).

Figures 14.3, 14.4 and 14.5 show the lateral position, the yaw angle and
the steering input for the four MPC schemes at the driving speeds 10 m/s,
15 m/s and 16 m/s, respectively. It can be seen that for 10 m/s, all controllers
achieve good results. This is no surprise since the driving speed is relatively
low and the linear MPC controller was designed for this speed. For larger
speeds the performance deteriorates. At 15 m/s the NMPC and the LPV-
MPC controllers can hold the vehicle within the lane, but the linear MPC
can not. At 16 m/s, also LPV-MPC(1) is not able to keep the vehicle on lane
and at higher speeds also LPV-MPC(2) and then the NMPC controller fail
(not depicted). The difficulty of the maneuver increases with speed, and
we see that LPV-MPC yields a better control performance than linear MPC,
when the vehicle speed differs from the assumed 10 m/s. On the other hand,
the control performance of the LPV-MPC schemes can not keep up with
NMPC.

What limits the performance of the LPV-MPC schemes compared to NMPC?
There are three causes for the introduction of prediction errors and conser-
vatism in the LPV-MPC schemes: (i) the assumptions of an icy road (μ = 0.1)
and the small angles assumption (ψ ≈ δ f ≈ α f ≈ αr ≈ 0) are not precise;
(ii) the LPV-MPC schemes take future variations of the vehicle speed into ac-
count, while the vehicle speed remains constant; (iii) the cascade loop, which
was selected to decrease the complexity of the explicit solvers, is accompa-
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Figure 14.4: Double lane-change maneuver at vx = 15 m/s. Reference trajectory
(· · · ), NMPC (—), LPV-MPC(1) (– –), LPV-MPC(2) (—) and linear MPC
(– –).

nied with some conservatism due to the imposed control structure and the
suboptimal tuning of kP.

Besides the control performance, the online computational effort plays a ma-
jor role, as it determines the applicability and the costs of the control system.
Table 14.1 summarizes the average and maximum CPU-times of the con-
trollers during the simulations, which were performed on a 3 GHz Pentium 4

Processor under Matlab. The online computational burden of explicit LPV-
MPC and explicit linear MPC is comparable, while both require orders of
magnitude less time than NMPC. It should be noted that no effort was spent
to implement the explicit MPC controllers efficiently. A further reduction
of the evaluation times of the explicit control laws is to be expected via the
computation of a binary search tree, evaluated under C (compare Example
11.4 on page 194).

14.5 Conclusions

Summarizing the results of the simulations, we conclude that the gain-sched-
uling with respect to the vehicle speed enables explicit LPV-MPC to outper-
form the explicit linear MPC controller, when the vehicle speed does not
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Figure 14.5: Double lane-change maneuver at vx = 16 m/s. Reference trajectory
(· · · ), NMPC (—), LPV-MPC(1) (– –), LPV-MPC(2) (—) and linear MPC
(– –).

vx 10 m/s 15 m/s 16 m/s

NMPC 66/156 ms 97/248 ms 113/778 ms
LPV-MPC(1) 2.8/3.8 ms 2.6/2.8 ms 2.6/3.3 ms
LPV-MPC(2) 2.5/3.3 ms 2.7/3.5 ms 2.7/4.0 ms
linear MPC 3.1/3.5 ms 3.1/3.4 ms 3.1/3.9 ms

Table 14.1: Online computation times (Average/Maximum).

match the predicted one. At the same time the online computational effort
remains similar, i.e. orders of magnitude lower than for the nonlinear MPC
scheme, and enables an efficient implementation on an electronic control
unit.

In future work, an extension of the LPV model should be considered. The
slip ratio could be included as an additional scheduling signal. When re-
liable information about the road friction coefficient becomes available, it
could be used to adapt the steering system to different road frictions. Fi-
nally, the proposed control scheme should be implemented and tested in an
experimental setup.
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Part IV

Appendix





A Notation

The following notation is used throughout this thesis. In the applica-
tion-based Chapters 7, 8 and 14 our notation follows the established

notation in mechanical engineering. Apart from those chapters, we use low-
ercase italic letters, x, to denote scalars and vectors, and uppercase italic let-
ters, X, to denote matrices. Spaces are denoted by blackboard-bold letters, X.
Calligraphic letters are used for uncountable sets, X , while bold italic capital
letters are used for sets with a finite number of elements X = {x1, . . . , xn}.
We use i, j, k as indices and nx to denote the dimension of x. 1 denotes a
column vector with ones, 1 = [1, . . . , 1]T, O a zero matrix of appropriate di-
mensions. ej denotes the jth standard basis vector. Element-wise inequalities
are denoted by ≤, while � denotes matrix inequalities. A � in a symmetric
matrix denotes the transposed complement.

Spaces

N natural numbers (including zero)
N+ natural numbers (excluding zero)
Nn space of n-dimensional vectors of natural numbers

Z integers

R real numbers
R+ nonnegative real numbers
Rn space of n-dimensional real vectors
Rn1×n2 space of real matrices with n1 rows and n2 columns
R[θ] polynomial ring on R

Sn space of symmetric matrices in Rn×n

Sn
+ space of symmetric, positive semidefinite matrices in Rn×n

Sets

B ball
r, xc radius and centrepoint of a ball



A Notation

H hyperplane
P polyhedron
E ellipsoid
F face of a polyhedron
Δ, Δn simplex, standard simplex of dimension n
v vertex of a polyhedron
h, k, H, k matrices, vectors defining hyperplanes or polyhedra
H̃ scaled constraint matrix

Set Operators

Bb(P) bounding box of polytope P
Bc(P) Chebyshev ball of polytope P

dim(X ) dimension of set X
int(X ) strict interior of set X
relint(X ) relative interior of set X
X̄ closure of set X
δX boundary of set X

affh(X ) affine hull of set X
convh(X ) convex hull of set X
cone(X ) conic hull of set X

Function Terminology

f function
f̃ extension of function f
dom( f ) domain of function f
domx1( f ) partial domain of function f regarding variable x1
D domain of a function
epi( f ) epigraph of function f

‖ · ‖ norm
ψX Minkowski function induced by set X , gauge function
d distance function

det(A) determinant of matrix A
λi, vi ith eigenvalue, eigenvector of a matrix
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Polynomials and Pólya’s Theorem

α multi-index
θα monomial
deg(θα), |α| degree of a monomial

p polynomial
supp(p) support of a polynomial p
d, deg(p) degree of a polynomial p

Np Pólya degree
pNp polynomial extended by a Pólya relaxation of degree Np

p∗ minimum of a polynomial over the standard simplex
cmax maximum of the scaled coefficients of a polynomial
CNp coefficients of the extended polynomial pNp

Control Systems

t time
k discrete time
Ts sampling period
Tsim simulation period

u(t), uk input vector, continuous-time or discrete-time
x(t), xk state vector, continuous-time or discrete-time
y(t), yk output vector, continuous-time or discrete-time
w(t), wk uncertainty vector, continuous-time or discrete-time

f dynamic system, state-update equation of a dynamic system
fDYN state-update equation of dynamic system
fPWA piecewise affine state-update equation
g output equation of a dynamic system

A state transition matrix
B input matrix
C output matrix
D feed-through matrix
f affine term

x̄ equilibrium point
V Lyapunov function
P Lyapunov matrix
D domain of attraction
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A Notation

λ contraction ratio

(·)ref reference value

Optimization

J cost function, objective function
J∗ optimal value (function)

u optimization variable
u∗ solution
ū locally optimal point
U feasible set, set of candidate solutions
U∗ optimal set

x parameter
X set of parameters
X f set of feasible parameters

gi ith constraint
A, gA set of active constraints
I, gI set of inactive constraints

R critical region
nR number of critical regions

t epigraph variable

(·)c, (·)b continuous variable, binary variable
nuc, nub number of continuous variables, number of binary variables

Constrained Optimal Control

i prediction step
N prediction horizon
Nc control horizon
N∗ minimum number of steps to reach a target set

J cost function
Ji truncated cost function, cost-to-go at ith prediction step
Jact actually sustained cost
Li stage costs at ith prediction step
LN terminal cost
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Q, R, P weight matrices
s slack variable for soft constraints
qs weight of slack variable

Δu input rate
μ control law
μT terminal controller
Uk sequence of control actions
U∗k optimal control sequence
U set of admissible inputs

π control policy
π
∗ optimal policy

Π set of admissible control policies

Tk sequence of future scheduling parameters
Wk sequence of uncertainties
W uncertainty set

x̄ operating point
x̃ difference to operating point, x− x̄
Xref sequence of future reference states
X set of admissible states
X f set of feasible states
Xi set of feasible states at ith prediction step
XT terminal set

R controller region
P controller partition
Fr, gr state-feedback matrix and affine term in rth controller region
nr number of regions

Piecewise Affine Systems

D domain of a PWA system
nD number of polyhedral regions of a PWA system
Px, Pu, p0 constraints describing domains in state-input space

zk, δk continuous and binary auxiliary variables of the MLD form.
Ei, ei constraints of the MLD formulation

s switching sequence
ns number of switching sequences
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np number of partitions
mi mode of the system at the ith prediction step

(·)j related to the jth dynamic

Regions Removal

ΔJ difference of cost functions
A, b, c quadratic cost function coefficients
ΔA, Δb, Δc difference of cost function coefficients

np number of partitions
nr

p number of regions in the pth partition
nr number of regions of a control law
(·)p

r related to region r in partition p

αk angle of sine-cosine system

Linear Parameter-Varying Systems

ρ(t), ρk scheduling signal, continuous-time or discrete-time
ρ̄ constant scheduling signal
fρ scheduling function
θ(t), θk scheduling parameter, continuous-time or discrete-time
θk,j jth element of the scheduling parameter at time step k
Δθk rate of parameter variation
Θ parameter simplex
Θc cth subset of parameter simplex
Θc,i,s sth subsimplex of the successor of Θc at prediction step i
Γ bounds on the rate of parameter variation
nc,i number of subsimplices of Θc,i

μΓ control law considering the rate bounds Γ

μΘc control law in subset Θc of parameter simplex
μi,j control law at the ith prediction step at the jth vertex of Θ

Ui set of vertex control laws at ith prediction step

A(θ), B(θ) parameter-varying system matrices
Aj, Bj system matrices at the jthe vertex of the parameter simplex
A0, B0 nominal system matrices
ΔA, ΔB difference to nominal system matrices
f (θ) parameter-varying affine term
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Backlash

α half size of backlash gap
θ shaft angle
θb backlash position angle
Δθ total shaft displacement

ω rotational speed of shaft
ωl,ref reference value of load shaft speed
Δω shaft speed difference
Δωmax maximal shaft speed difference

xaug augmented state
Δy(t) output estimation error

b damping coefficient
c spring coefficient
I moment of inertia
K driving motor gain
M1, M2 driving motor, disturbance motor
T torque

(·)l , (·)m related to load shaft, related to motor shaft
(·)sh related to central shaft element
(·)bl , (·)co in backlash mode, in contact
·̂ estimated variable

Autonomous Vehicle Steering

X, Y road coordinate system
x, y vehicle coordinate system
v velocity
ψ yaw angle
δ steering angle

α slip angle
s slip ratio
μ road friction coefficient
vx vehicle speed

a, b distance between centre of mass and front/rear wheels
F force
I vehicle inertia
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A Notation

m vehicle mass
M moment
ci, ki coefficients
Jcum cumulated cost

(·)l , (·)c in longitudinal wheel direction, in cornering wheel direction
(·) f , (·)r front wheels, rear wheels
(·)x, (·)y in longitudinal vehicle direction, in lateral vehicle direction
(·)w wind
·̂ approximated saturated variable
·̃ approximated variable

Acronyms

CFTOC constrained finite-time optimal control
CROC constrained robust optimal control
OL-CROC open-loop constrained robust optimal control
CL-CROC closed-loop constrained robust optimal control
CPVOC constrained parameter-varying optimal control
CTOC constrained time-optimal control
DC direct current
DP dynamic programming
EKF extended Kalman filter
HPV hybrid parameter-varying
KKT Karush-Kuhn-Tucker
LICQ linear inequality constraint qualification
LP linear program
LPV linear parameter-varying
LPV-A linear parameter-varying state transition matrix
LQ linear quadratic
LQR linear quadratic regulator
LTI linear time-invariant
LTV linear time-varying
MHE moving horizon estimation
MILP mixed-integer linear program
MINLP mixed-integer nonlinear program
MIQP mixed-integer quadratic program
MPC model predictive control
MPT multi-parametric toolbox
NP nonlinear programming, non-deterministic polynomial-time
PID proportional-integral-derivative
pLP parametric linear program
pMILP parametric mixed-integer linear program
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pMIQP parametric mixed-integer quadratic program
pQP parametric quadratic program
PWA piecewise affine
QP quadratic program
SDP semidefinite program

247





B Mathematical Definitions

The material of this thesis is based on a number of mathematical no-
tions, definitions and concepts. This appendix was added for the sake

of completeness. Instead of being read linearly, it is intended to be used by
the reader to look up forgotten or unclear definitions. The advanced reader
may safely skip this chapter.

Of course it is not possible to cover all mentioned topics in their adequate
depth, such that we will give references to textbooks for further reading. If
not stated otherwise, we will restrict ourselves to the Euclidean space Rn.

B.1 Set Terminology

The first section states basic set notions which are commonly used through-
out this thesis. Starting with set algebra and basic topological concepts,
this section covers also some types of sets such as affine sets, convex sets
and conic sets. Finally, polyhedra are covered. For further reading see
[Dev93, Cro97] or [Roc70].

Set Algebra

Definition B.1 (Set operations) Given the two sets X ,Y ⊆ R
n, we denote the

following algebraic operations:

X ∪ Y := {z | (z ∈ X ) ∨ (z ∈ Y)} (Union)
X ∩ Y := {z | (z ∈ X ) ∧ (z ∈ Y)} (Intersection)
X c := {z | z /∈ X} (Complement)

X \ Y := {z | (z ∈ X ) ∧ (z /∈ Y)} (Difference)

X ⊕Y := {x + y | x ∈ X , y ∈ Y} (Minkowski sum)
X �Y := {z | (z + y ∈ X ) ∀y ∈ Y} (Pontryagin difference)



B Mathematical Definitions

Minkowski sum is sometimes called dilatation, Pontryagin difference erosion
or Minkowski difference.

Topological Concepts

Definition B.2 (n-dimensional Ball) Let d : Rnx × Rnx → R+ be a distance
function. Then an n-dimensional open ball around (or a neighbourhood of) a
centre point xc with radius r > 0 is defined as

B(xc, r) := {x ∈ R
nx | d(xc, x) < r} .

A closed ball is defined accordingly by replacing the strict inequality by an inequal-
ity.

Example B.1 (Euclidean ball) An Euclidean ball is a ball defined by the Eu-
clidean distance,

Be(xc, r) = {x ∈ R
nx | ‖x− xc‖2 < r} .

Example B.2 (Unit ball) An open unit ball is an open ball with radius 1 around
the origin, based on a norm ‖ · ‖p : Rnx → R+,

Bp = {x ∈ R
nx | ‖x‖p < 1} .

A closed unit ball is defined accordingly by replacing the strict inequality by an
inequality. Figure B.2 shows the closed unit balls induced by common vector norms.

Definition B.3 (Dimension) Let X be a set in R
nx. By dim(X ) we denote the

dimension of X , defined as the dimension of the affine hull of X . The dimension of
an affine set is defined as the dimension of the subspace parallel to it.

Definition B.4 (Full-dimensional set) A set X ⊆ Rnx is called full-dimen-
sional set if dim(X ) = nx. Otherwise it is called lower-dimensional.

Definition B.5 (Interior) The interior of a set X ⊂ Rnx is defined as

int(X ) := {x ∈ R
nx | ∃ε > 0 : B(x, ε) ⊆ X} .

Definition B.6 (Relative interior) The relative interior of a set X ⊂ R
nx is

defined as

relint(X ) := {x ∈ R
nx | ∃ε > 0 : (affh(X ) ∩ B(x, ε)) ⊆ X} .
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Definition B.7 (Open and closed set) A setX ⊂ Rnx is called open if relint(X )
= X . A set is called closed if X c is open.

Definition B.8 (Closure) The smallest closed set containing a set X ⊆ Rnx is
called the closure of X ,

X̄ := {x ∈ R
nx | (B(x, ε) ∩X ) 
= ∅ ∀ε > 0} .

Definition B.9 (Boundary) The boundary ∂X of a set X ⊆ R
nx is the difference

between its closure and its relative interior,

∂X := X̄ \ relint(X ) .

Definition B.10 (Bounded set) A set X ⊂ Rnx is called bounded if it is con-
tained in a ball of finite radius, i.e. if ∃xc ∈ Rnx , r < ∞ : X ⊆ B(xc, r).

Definition B.11 (Compact set) A set X ⊂ R
nx is called compact if every se-

quence {xi}i∈N with xi ∈ X ∀i ∈ N contains a subsequence that converges to a
point x̂ ∈ X .

Theorem B.1 (Heine-Borel) A set X ⊂ Rnx is compact if and only if it is a closed
and a bounded set.

Definition B.12 (Connected set) A set X ⊂ Rnx is called connected if it cannot
be partitioned into two nonempty subsets such that each subset has no common
points with the closure of the other set. Otherwise it is called disconnected.

Definition B.13 (Collection of sets) A finite number of sets {Xi}n
i=1 ⊂ Rnx is

called collection of sets or family of sets.

Definition B.14 (Partition) Let X ⊂ Rnx be a set and P = {Xi}n
i=1 ⊂ Rnx be a

collection of sets. P is called a partition of X , if the following conditions hold:

1.
n⋃

i=1

Xi = X (Collectively exhaustive) ,

2. Xi ∩Xj = ∅ ∀i 
= j (Mutally exclusive) .

Remark B.1 With an abuse of notation, we will call a collection of sets also a par-
tition (in a broader sense), if it is collectively exhaustive and the relative interiors
are mutually exclusive, i.e.

relint(Xi) ∩ relint(Xj) = ∅ ∀i 
= j .
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Affine Sets

Definition B.15 (Affine combination) An affine combination of a finite num-
ber of points x1, x2, . . . , xn ∈ Rnx is a point x ∈ Rnx which can be expressed by

x =
n

∑
i=1

λixi with some coefficients λi ∈ R :
n

∑
i=1

λi = 1 .

Definition B.16 (Affine set) A set X ⊆ R
nx is called affine if for any points

x1, . . . , xn ∈ X all affine combinations are contained in the set, i.e.

n

∑
i=1

λixi ∈ X ∀λi ∈ R :
n

∑
i=1

λi = 1 .

Definition B.17 (Affine hull) The affine hull of a set X ⊆ Rnx is the set of all
affine combinations of its elements:

affh(X ) :=

{
n

∑
i=1

λixi

∣∣∣∣∣xi ∈ X , λi ∈ R :
n

∑
i=1

λi = 1, n ∈ N

}
.

Convex Sets

The convexity of a set is a property of paramount importance to all kinds of
mathematical operations. This section states basic definitions of convexity,
[Roc70].

Definition B.18 (Convex combination) A convex combination of a finite num-
ber of points x1, x2, . . . , xn ∈ Rnx is a point x ∈ Rnx which can be expressed by

x =
n

∑
i=1

λixi with some coefficients λi ∈ R+ :
n

∑
i=1

λi = 1 .

Definition B.19 (Convex set) A set X ⊆ Rnx is called convex if for any points
x1, . . . , xn ∈ X all convex combinations are contained in the set, i.e.

n

∑
i=1

λixi ∈ X ∀λi ∈ R+ :
n

∑
i=1

λi = 1 .

Definition B.20 (Convex hull) The convex hull of a set X ⊆ Rnx denotes the
smallest convex set that contains X ,

convh(X ) =

{
n

∑
i=1

λixi

∣∣∣∣∣ xi ∈ X , λi ∈ R+ :
n

∑
i=1

λi = 1, n ∈ N

}
.
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Definition B.21 (C-set) A set X ⊂ Rnx is called C-set if it is a convex and com-
pact set containing the origin as an interior point.

Conic Sets

Definition B.22 (Conic combination) A conic combination of a finite number
of points x1, x2, . . . , xn ∈ Rnx is a point x ∈ Rnx which can be expressed by

x =
n

∑
i=1

λixi with some coefficients λi ∈ R+ .

Definition B.23 (Cone) A set X ⊆ Rnx is called cone, if λx ∈ X for all x ∈ X
and for all non-negative λ ∈ R+. A cone is called proper if it is closed, convex,
solid (nonempty interior) and pointed (x,−x ∈ X implies x = 0).

A proper cone X induces a partial ordering of the elements in Rnx . We write
x1 � x2 if and only if x1 − x2 ∈ X . Analogue, we write x1 	 x2 if and only
if x1− x2 ∈ int(X ).

Example B.3 The set of symmetric positive semidefinite matrices forms a proper
cone, denoted by Sn

+.

Definition B.24 (Conic hull) The conic hull of a set X ⊆ Rnx denotes the small-
est conic set that contains X ,

cone(X ) =

{
n

∑
i=1

λixi

∣∣∣∣∣ xi ∈ X , λi ∈ R+, n ∈ N

}
.

Example B.4 (Different hulls of two points) Figure B.1 depicts the affine hull,
affh(X), the convex hull, convh(X), and the conic hull, cone(X), of a set X con-
sisting of two points, X = {x1, x2}.

x1

x2

(a)

x2

x1

(b)

x2

x1

(c)

Figure B.1: Affine hull (a), convex hull (b) and conic hull (c) of two points x1 and x2
in R2.
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Polyhedra

Polyhedra constitute the mostly used sets in this thesis. In the following we
cover some common basic concepts. More on polyhedra can be found e.g. in
[Zie95] or [Grü03].

Definition B.25 (Hyperplane) A hyperplane H ⊂ R
nx is a set of the form

H := {x ∈ R
nx | hTx = k}

with some h ∈ Rnx , h 
= 0 and k ∈ R. h is the normal vector of the hyperplane.

Definition B.26 (Supporting hyperplane) A hyperplane H ⊂ Rnx is said to
support a set X ⊂ R

nx if

(i) the hyperplane contains at least one point of the set, H∩X 
= ∅,

(ii) the set lies only on one side of the hyperplane, �x1, x2 ∈ X : (hTx1 < k) ∧
(hTx2 > k).

Definition B.27 (Half-space) An open half-space is the set {x ∈ Rnx | hTx <

k} with some h ∈ Rnx , h 
= 0 and k ∈ R. A closed half-space is the set {x ∈
R

nx | hTx ≤ k}. h is the outward normal vector of the half-space.

Definition B.28 (Polyhedron) A polyhedron P ⊂ Rnx is the intersection of
finitely many halfspaces, i.e.

P = {x ∈ R
nx | Hx ≤ k} = {x ∈ R

nx | hT
i x ≤ ki, i = 1, . . . , nc}

with H = [h1, . . . , hnc ]
T ∈ R

nc×nx , k ∈ R
nc .

Definition B.29 (Polyhedral set) A set X ⊂ Rnx is called a polyhedral set if
its closure is a polyhedron,

X̄ = {x ∈ R
nx | Hx ≤ k} .

If a polyhedron P contains the origin in its interior, the elements of the right-
hand side vector k are positive, k ∈ R

nc
+ , and it is possible to rewrite the

polyhedron as P = {x ∈ Rnx | H̃x ≤ 1} where 1 = [1, . . . , 1]T ∈ Rnc denotes
the vector of ones.

Definition B.30 (Redundant inequality) An inequality describing a polyhedron
is called redundant if adding or removing it does not change the polyhedron.

Definition B.31 (Minimal representation of a polyhedron) A representation
of a polyhedron is called minimal if it does not contain redundant inequalities.
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B.1 Set Terminology

Definition B.32 (Polytope) A polytope is a compact polyhedron.

An equivalent definition of a polytope is the convex hull of finitely many
points in Rnx . A polytope can thus either be specified by its half-spaces (half-
space or H-representation) or by its vertices (vertex or V-representation). The
translation from one representation to another can be a difficult task, in the
worst case with exponential complexity.

Definition B.33 (Full-dimensional polytope) We call a polytope P ⊂ Rnx full-
dimensional, if dim(P) = nx. Otherwise we call it lower-dimensional.

Definition B.34 (Face) A face of an n-dimensional polyhedron P is the intersec-
tion of P with some of its supporting hyperplanes. Depending on the dimension d
of the face, we call a face: polyhedron (d = n), facet (d = n− 1), ridge (d = n− 2),
edge (d = 1), vertex (d = 0) or empty set.

The following proposition states some basic properties of faces of polytopes.

Proposition B.2 Let P ⊂ Rnx be a polytope and let F be one of its faces. Then the
following statements hold:

1. F is a polytope.

2. The intersection of faces of P is a face of P .

3. The faces of P contained in F are exactly the faces of F .

4. The vertices of P contained in F are exactly the vertices of F .

5. P is the convex hull of its vertices.

Definition B.35 (Simplex) An n-dimensional simplex is a polytope with n + 1
linear independent vertices x1, x2, . . . , xn+1 ∈ Rn,

Δ :=

{
x ∈ R

n

∣∣∣∣∣ x =
n+1

∑
i=1

λixi with λi ∈ R+ :
n+1

∑
i=1

λi = 1

}
.

Example B.5 (Standard simplex) The standard n-simplex is a simplex spanned
by the unit vectors,

Δn =

{
x = [x1, . . . , xn+1]

T ∈ R
n+1

∣∣∣∣∣ xi ∈ R+ :
n+1

∑
i=1

xi = 1

}
.

Definition B.36 (Polyhedral partition) A polyhedral partition is a partition of
a set into finitely many subsets such that the closure of each subset is a polyhedron.
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Definition B.37 (Bounding box) The bounding box Bb(P) ∈ Rnx of a poly-
tope P is the smallest axis-aligned, hyperrectangle containing P , and is determined
by the maximal and minimal values of P in each dimension.

Bb(P) :=
{

x = [x1, . . . , xnx ]
T ∈ Rnx | ∀xi∃x̂j∀j 
= i : [x̂1 . . . xi . . . x̂nx ]

T ∈ P
}

Definition B.38 (Chebyshev ball) The largest Euclidean ball inside a polytope P
is the Chebyshev ball:

Bc(P) := Be(xc, rc) with rc = max
{r,xc}

{r : Be(xc, r) ⊂ P} .

The centre xc is called Chebyshev centre.

The computation of a Chebyshev ball is a computationally inexpensive oper-
ation requiring only the solution of a single linear program. The Chebyshev
centre need not to be unique.

B.2 Function Terminology

Functions define relations between sets. This section describes function
terminology from real analysis, and covers properties of norms and matri-
ces. For more insight into these topics see a textbook on mathematics, e.g.
[Str86, Str93, Str91].

Real Analysis

Definition B.39 (Domain) Given a function f : Rnx → R
ny we denote the do-

main by
dom( f ) := {x ∈ R

nx | f (x) exists } .

Given a function of multiple variables f : R
n1 ×R

n2 × · · · ×R
nn → R

ny we denote
the (partial) domain by

domx1( f (x1, . . . , xn)) := {x1 ∈ R
n1 | f (x1, x2, . . . , xn) exists } .

Note that the partial domain of a function is set-valued map of the remaining
variables. We will often refer to the domain of a function by D, and this
domain will also be used in the definition of a function, e.g. f : D → R

ny .
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Definition B.40 (Extension of a function) Given a function f : D → R
ny with

the domain D ⊆ Rnx we denote the extension of f by

f̃ (x) =

{
f (x), x ∈ dom( f )
∞, x 
∈ dom( f )

With a slight abuse of notation we will use the same symbol for the function
f and its extension.

Definition B.41 (Epigraph of a function) The epigraph of a function f : D →
R with domain D ⊆ Rnx is defined as

epi( f ) := {(x, t) ∈ R
nx+1 | f (x) ≤ t} .

Definition B.42 (Definite function) A function f : D → R
ny with the domain

D ⊆ Rnx is called

• positive definite if f (0) = 0 and f (x) > 0 ∀x ∈ D \ 0,

• positive semidefinite if f (0) = 0 and f (x) ≥ 0 ∀x ∈ D \ 0,

• negative definite if f (0) = 0 and f (x) < 0 ∀x ∈ D \ 0,

• negative semidefinite if f (0) = 0 and f (x) ≤ 0 ∀x ∈ D \ 0,

• indefinite if f (0) = 0 and ∃x1, x2 ∈ D : f (x1) > 0∧ f (x2) < 0.

Definition B.43 (Continuous function) A function f : D → R
ny with domain

D ⊆ R
nx is called continuous at a point x̄ ∈ D if

∀ε > 0 ∃δ > 0 : ‖ f (x)− f (x̄)‖ < ε ∀x ∈ B(x̄, δ) .

A function is called continuous if it is continuous at each point x ∈ D. Otherwise
it is called discontinuous.

Definition B.44 (Partial derivative) The partial derivative of a function f : D
→ R

ny with domain D ⊆ Rnx in the direction xi is defined as

∂ f
∂xi

(x) = lim
h→0

f (x1, . . . , xi + h, . . . , xnx)− f (x1, . . . , xi, . . . , xn)

h
.

Definition B.45 (Differentiable function) A function f : D → R
ny with do-

main D ⊆ R
nx is called differentiable at a point x̄ ∈ D if the partial derivatives in

all directions exist. A function is called differentiable if it is differentiable at each
point x ∈ D.

257



B Mathematical Definitions

Definition B.46 (Gradient) The gradient of a scalar-valued function f : D → R

with domain D ⊆ Rnx is the vector

∇ f (x) =

(
∂ f
∂x1

(x), . . . ,
∂ f

∂xnx

(x)

)
.

Definition B.47 (Continuously differentiable function) A function
f : D → R

ny with domain D ⊆ Rnx is called continuously differentiable, if it is
differentiable and its derivative is continuous.

Definition B.48 (Convex function) A function f : D → R
ny with domain D ⊆

R
nx is called convex if D is convex and if the condition

f (
n

∑
i=1

λixi) ≤
k

∑
i=1

λi f (xi) holds ∀λi ∈ R+ :
n

∑
i=1

λi = 1, n ∈ N

and for any points x1, x2, . . . , xn ∈ D. A function f is called strictly convex, if the
condition holds with strict inequality.

A function is convex if and only if its epigraph, epi( f ), is a convex set. If the
epigraph is a polyhedron, we use the term polyhedral function.

Definition B.49 (Concave function) A function f : D → R
ny with a convex do-

main D ⊆ Rnx is called concave if − f is convex, and strictly concave if − f is
strictly convex.

Definition B.50 (Affine function) A function f : D → R
ny with domain D ⊆

Rnx is called affine if it is convex and concave.

Definition B.51 (Piecewise affine function) A function fPWA : D → R
ny with

the domain D ⊆ R
nx is piecewise affine (PWA), if {Di}n

i=1 is a partition of D
and

fPWA(x) = Aix + bi ∀x ∈ Di

with Ai ∈ R
ny×nx and bi ∈ R

ny and i ∈ {1, . . . , n}. Moreover, a function is called
polyhedral piecewise affine (PPWA) or piecewise affine over polyhedra, if
{Di}n

i=1 is a polyhedral partition of D.

Definition B.52 (Polyhedral function) A function f : D → R
ny with the do-

main D ⊆ Rnx is called polyhedral function, if its epigraph is a polyhedron,

epi( f ) =

{(
x
t

)
∈ R

nx+1
∣∣∣∣H

(
x
t

)
≤ k

}
,

with H = [h1, . . . , hnc ]
T ∈ Rnc×nx+1, k ∈ Rnc.
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Norms

Definition B.53 (Norm) A function ‖ · ‖ : Rnx → R is called a norm if for any
x1, x2 ∈ Rnx and any λ ∈ R it fulfils the conditions:

1. ‖x1‖ ≥ 0 (Nonnegativity) ,
2. ‖x1‖ = 0 ⇔ x1 = 0 (Definiteness) ,
3. ‖λx1‖ = |λ|‖x1‖ (Absolute homogeneity) ,
4. ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ (Subadditivity) .

Example B.6 (Vector p-norm) For a p ∈ [1, ∞) the vector p-norm of x ∈ Rnx

is defined as

‖x‖p :=

(
nx

∑
i=1
|xi|p

) 1
p

.

The most common choices for are p = 1, p = 2 and p → ∞, resulting in the norms

‖x‖1 =
nx

∑
i=1
|xi| (Taxicab norm) ,

‖x‖2 =

√
nx

∑
i=1

x2
i (Euclidean norm) ,

‖x‖∞ = max
i

(|x1|, |x2|, . . . , |xnx |) (Maximum norm) .

Definition B.54 (Minkowski function) Given a C-set X ⊂ Rnx, the corres-
ponding Minkowski function (or gauge function) is defined as

ψX (x) := inf
λ
{λ ∈ R+ | x ∈ λX} .

A Minkowski function is convex, continuous and the unit ball of the Min-
kowski function is the set X . Moreover, a Minkowski function ψX satisfies
all properties of a gauge function:

1. ψX (x1) ≥ 0 (Nonnegativity) ,
2. ψX (x1) = 0 ⇔ x1 = 0 (Definiteness) ,
3. ψX (λx1) = λψX (x1) ∀λ ∈ R+ (Positive homogeneity) ,
4. ψX (x1 + x2) ≤ ψX (x1) + ψX (x2) (Subadditivity) .

Gauge functions are generalizations of norms with similar properties, but
with unit balls not necessarily symmetric to the origin. If a C-set X is sym-
metric with respect to the origin, the induced Minkowski function is a norm.
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If moreover the C-set X is a polytope/polyhedron, the induced norm is
called polytopic/polyhedral norm.

Definition B.55 (Polyhedral norm) We call a norm polyhedral norm if the
closed unit ball based on this norm is a polyhedron.

Example B.7 Figure B.2 shows the closed unit balls of the taxicab norm, B1, the
Euclidean norm, B2, and the maximum norm, B∞, in R2. The taxicab norm and
the maximum norm are both polyhedral norms, while the Euclidean norm is not a
polyhedral norm.

B1

B2

B∞

Figure B.2: Closed unit balls of the taxicab norm, the Euclidean norm, and the maxi-
mum norm.

Proposition B.3 (Distance function) Each norm ‖ · ‖ : Rnx → R induces a dis-
tance function or metric d : Rnx ×Rnx → R+ by

d(x1, x2) = ‖x2 − x1‖ .

Matrices

Let Sn ⊂ Rn×n denote the space of real symmetric square matrices of size
n × n. We denote the space of positive semidefinite matrices by Sn

+. Sn
+

forms a convex cone in Rn×n, while the interior of this cone, int(Sn
+), is the

space of positive definite matrices. For ease of notation we write A1 � A2
for A1 − A2 ∈ Sn

+ and A1 	 A2 for A1 − A2 ∈ int(Sn
+).

Definition B.56 (Eigenvalues, eigenvectors) The eigenvalues λi, i = 1, . . . , n,
of a square matrix A ∈ Rn×n are the solutions to the characteristic equation

det(A− λI) = 0 .
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The (right) eigenvector vi corresponding to the ith eigenvalue λi is a non-trivial
solution to

(A− λi I)vi = 0 .

Definition B.57 (Singular value decomposition) Any matrix A ∈ Rn1×n2 can
be decomposed into

A = UΣVT

with an orthogonal matrix U ∈ Rn1×n1 , an orthogonal matrix V ∈ Rn1×n1 and a
diagonal matrix Σ ∈ Rn1×n2 with nonnegative diagonal elements σi in descending
order. This decomposition is called singular value decomposition (SVD), and the
diagonal elements σi are called the singular values of A.

Definition B.58 (Definite matrix) Let A ∈ Snx be a real symmetric square ma-
trix and let x ∈ R

nx denote a non-zero vector. A is called

• positive definite if xT Ax > 0 ∀x 
= 0,

• positive semidefinite if xT Ax ≥ 0 ∀x 
= 0,

• negative definite if xT Ax < 0 ∀x 
= 0,

• negative semidefinite if xT Ax ≤ 0 ∀x 
= 0,

• indefinite if ∃x1, x2 ∈ D : xT
1 Ax1 > 0∧ xT

2 Ax2 < 0.

The definiteness of a matrix is related to other properties of the matrix, e.g.
its eigenvalues. The following proposition summarizes some properties of a
positive semidefinite matrix. Similar propositions can be formulated for the
other types of definiteness.

Proposition B.4 Let A ∈ Snx be a real symmetric square matrix. The following
statements are equivalent:

(i) A is positive semidefinite.

(ii) xT Ax ≥ 0 ∀x ∈ Rnx .

(iii) All eigenvalues of A are nonnegative, λi(A) ≥ 0 ∀i = 1, . . . , n.

(iv) A = UTU for some U ∈ R
n×n.

(v) A = ∑
n
i=1 λiaiaT

i for some ai ∈ Rn and λi ≥ 0.

Proposition B.5 (Schur complement formula) Consider the square matrix M
∈ Rn×n comprising the four blocks A ∈ Rn1×n1, B ∈ Rn1×n2, C ∈ Rn2×n1 and
D ∈ R

n2×n2 . The following statements are equivalent:

1. M =

[
A B
C D

]
≺ 0
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2. D ≺ 0 ∧ A− BD−1C ≺ 0

3. A ≺ 0 ∧ D− CA−1B ≺ 0

The term A − BD−1C is called the Schur complement of block D of matrix M,
and the term D− CA−1B is called the Schur complement of block A of matrix M.
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