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Sparse polynomial chaos expansions of vector-valued response quantities

G. Blatman
Materials and Mechanics of Components Department
EDF R&D, Moret-sur-Loing, France.

B. Sudret
Institute of Structural Engineering
Chair of Risk, Safety and Uncertainty Quantification
ETH Zürich, Switzerland.

ABSTRACT: Sparse polynomial chaos expansions have recently emerged in uncertainty quantification anal-
ysis as a tool to solve high dimensional problems, e.g. stochastic problems involving a few dozens to a few
hundred random variables. Based on penalized regression analysis and the so-called least angle regression al-
gorithm the method has proven efficiency in a number of applications. The approach was so far rather limited
to scalar output quantities, e.g. quantities of interest that are post-processed from the solution of a stochastic
partial differential equation (SPDE). In this paper we extend this approach to vector output quantities in order to
obtain the complete solution field. This is carried out by using principal component analysis before computing
the PC expansions of the various components. As a whole a complete non intrusive framework is obtained that
is only based on a set of deterministic solutions of the underlying deterministic problem. The approach is illus-
trated by the computation of the displacement field of a tension rod with lognormal, spatially variable Young’s
modulus. The problem exhibits 62 stochastic dimensions.

1 INTRODUCTION

Polynomial chaos (PC) expansions allow one to rep-
resent explicitly the random response of a mechanical
system whose input parameters are modelled by ran-
dom variables. The PC coefficients may be efficiently
computed using non intrusive techniques such as least
squares (Berveiller, Sudret, and Lemaire 2006). How-
ever, the required number of model evaluations (i.e.
the computational cost) increases with the PC size,
which itself dramatically increases with the number of
input variables when the common truncation scheme
of the PC expansion is applied (i.e. retain all the mul-
tivariate polynomials of total degree not greater than
a prescribed p).

To overcome this problem, an iterative procedure
based on Least Angle Regression for building up a
sparse PC approximation (i.e. a PC representation
containing a small number of significant coefficients)
was devised in (Blatman and Sudret 2010, Blatman
and Sudret 2011). This method allows an automatic
enrichment of both the PC basis and the experimen-
tal design (i.e. the set of model evaluations to be per-
formed). It has to be noticed though that LAR-PC was
mainly devoted to scalar model responses, e.g. the

maximal Von Mises stress in a finite element calcu-
lation. In case of vector-valued model responses, it is
necessary to build up separate LAR-PC metamodels
for each output variable, which may reveal cumber-
some when the model response has a large dimension,
e.g. a discretized field such as the Von Mises stresses
at all the integration points of all elements.

A two-step strategy is described in this paper in or-
der to decrease the computational effort. First a prin-
cipal component analysis (PCA) of the vector random
response is carried out, allowing one to capture the
main stochastic features of the response by means of
a small number of (non physical) variables compared
to the original number of output components. Then
the LAR-PC scheme is applied to each non physical
variable.

2 SPARSE POLYNOMIAL CHAOS
APPROXIMATION

2.1 Polynomial chaos approximation

Consider a mechanical system described by a numer-
ical model M which can be analytical or more gen-
erally algorithmic (e.g. a finite element model). Sup-



pose that this model has M uncertain input param-
eters which are represented by independent random
variables {X1, . . . ,XM} gathered in a random vec-
tor X with prescribed joint probability density func-
tion fX(x). Hence the model response denoted by
Y = M(X) is also random. Throughout this paper,
a vector valued response Y = {Y1, . . . ,YK}, K ≥ 2
is considered.

Provided that the quantity E [‖Y‖2] is finite (where
‖·‖ denotes the usual Euclidean norm), random vector
Y may be recast as follows (Soize and Ghanem 2004):

Y = M(X) =
∑
α∈NM

aαψα(X) ,

aα = {a(1)α , . . . , a(K)
α }

T

(1)

This expansion is referred to as the polynomial chaos
(PC) representation of Y . The aα’s are unknown de-
terministic vectors and the ψα’s are multivariate poly-
nomials which are orthonormal with respect to the
joint PDF fX of X, i.e. E [ψα(X)ψβ(X)] = 1 ifα = β
and 0 otherwise. For instance, if X is a standard nor-
mal random vector, the ψα are normalized multivari-
ate Hermite polynomials.

2.2 Truncation of the polynomial chaos series

For computational purpose, the PC series is truncated
after a finite number of terms P . Typically one retains
only the polynomials ψα such that a given q-norm of
α is not greater than p, i.e. for a given q ∈ (0, 1]:

‖α‖q =

(
M∑
i=1

αq
i

)1/q

≤ p (2)

which yields the following PC approximation:

Y ≈
∑
‖α‖q≤p

aαψα(X) (3)

Classically q is set equal to 1, which leads to retain
those polynomials with total degree not greater than
p. In this case the number of terms P is given by:

P =
(M + p)!

M !p!
(4)

This formula shows that the PC size P increases
rapidly with both M and p. As shown later, the com-
putational cost required to estimate the coefficients
increases itself with P . Then the cost may become
prohibitive in the presence of high-dimensional prob-
lems. In order to moderate the inflation of PC terms, a
so-called hyperbolic truncation scheme based on pa-
rameters q strictly less than 1 was proposed (Blatman
and Sudret 2010, Blatman and Sudret 2011).

2.3 Estimation of the PC coefficients by ordinary
least squares

The PC coefficients in Eq.(3) can be estimated
using a least-squares approach (Berveiller, Sudret,
and Lemaire 2006). Let us denote their indices by
(α0, . . . ,αP−1) and let us introduce the P -by-K PC
coefficient matrix A = {aα0 , . . . ,aαP−1

}T . Consid-
ering a set of realizations of X denoted by X =
{x(1), . . . ,x(N)} as well as the corresponding model
evaluations Y = {y(1) = M(x(1)), . . . ,y(N) =
M(x(N))}, the coefficient estimates are then the so-
lution of the minimization problem:

min
A∈RP×K


N∑
i=1

M(x(i)) −
∑
‖α‖q≤p

aαψα(x(i))

2
(5)

The least squares problem admits a closed form solu-
tion:

Â =
(
Ψ

T
Ψ
)−1

Ψ
TY (6)

where Ψ is the matrix containing the evaluations of
the basis polynomials, that is Ψ = {ψαj

(x(i)), 1 ≤
i ≤ N, 0 ≤ j ≤ P − 1}.

The sample size N (i.e. the number of model eval-
uations) must be greater than P to make this problem
well-posed (in practice the thumb rule N = 3P is of-
ten used). In the presence of a time-demanding model,
the computational budget N is often limited and the
number P of unknown PC coefficients may be close
to or even greater than the number of model evalu-
ations N , leading to a numerically ill-conditioned or
even ill-posed problem.

2.4 Estimation of the PC coefficients by Least
Angle Regression

To overcome the abovementioned limitation, it is as-
sumed that the model response can be correctly ap-
proximated by a sparse PC approximation, i.e. a PC
that only contains a small number of non zero coef-
ficients. Such an assumption is reasonable as most
of physical systems are governed by main effects
and low order interactions (sparsity of effects princi-
ple (Montgomery 2004)).

Accordingly, the PC coefficients are sought as the
solution of a particular regularized least squares prob-
lem, referred to as the LASSO (Tibshirani 1996).
As the LASSO method is dedicated to scalar re-
sponse quantities, it could be applied successively
to every response component. The PC coefficients
A = (a

(k)
α0 , . . . , a

(k)
αP−1) of some response component



Yk, k = 1, . . . , K are obtained by solving:

min
A∈RP


N∑
i=1

Yk(x(i)) −
∑
‖α‖q≤p

a(k)α ψα(x(i))

2
+ λ ‖A‖1

(7)

where λ is a positive real number that adjusts the
trade-off between the goodness-of-fit and the com-
plexity of the solution. The choice of a `1-penalty on
the PC coefficients guarantees a sparse solution, the
latter being all the sparser as the parameter λ is large.
Note that the optimal value of λ is unknown. A brute-
force approach would consist in applying the LASSO
for many values of λ, and to retain the most accurate
PC approximation.

A much more efficient approach consists in deter-
mining a whole set of LASSO solutions using a vari-
able selection algorithm known as least angle regres-
sion (LAR) (Efron, Hastie, Johnstone, and Tibshirani
2004). The LAR algorithm is as follows:

1. Initialize the coefficients to aα0 , . . . , aαP−1
= 0.

Set the initial residual equal to the vector of ob-
servations Yk of Yk.

2. Find the vector ψαj
which is most correlated

with the current residual.

3. Move aαj
from 0 toward the least-square coeffi-

cient of the current residual on ψαj
, until some

other predictorψαk
has as much correlation with

the current residual as does ψαj
.

4. Move jointly {aαj
, aαk
}T in the direction defined

as their joint least-square coefficient of the cur-
rent residual on {ψαj

,ψαk
}, until some other

predictor ψαl
has as much correlation with the

current residual.

5. Continue this way untilm ≡ min(P,N−1) pre-
dictors have been entered.

Steps 3 and 4 mention a “move” of the active coeffi-
cients toward their least-square value. It corresponds
to an updating of the form â(k+1) = â(k) + γ(k)w̃(k).
Vector w̃(k) and coefficient γ(k) are referred to as the
LAR descent direction and step, respectively. Both
quantities may be derived algebraically as shown
in (Efron, Hastie, Johnstone, and Tibshirani 2004)
and (Blatman 2009, Appendix E). Eventually LAR
returns a collection of m PC metamodels that re-
spectively contain 1, 2, . . . ,m non zero coefficients.
The optimal metamodel is determined using a cross-
validation technique (Blatman and Sudret 2010).

Note that a limitation of LAR lies in the require-
ment of given truncated PC basis such as in Eq.(3)
and design of experiments (matrices X and Y). An
iterative strategy was deviced in (Blatman and Sudret
2010) in order to automatically select an optimal trun-
cation level (integer p introduced in Section 2.2) as
well as the minimal sample size ensuring a target ap-
proximation accuracy.

3 REDUCED CHAOS EXPANSIONS BASED ON
PRINCIPAL COMPONENT ANALYSIS

In the presence of a vector-valued response Y, the di-
rect LAR procedure as described above should be ap-
plied componentwise. This may reveal cumbersome
in case of a large number K of response compo-
nents (e.g. a displacement vector in a finite element
model involving millions of DOF). In order to de-
crease the computational effort, one proposes to per-
form a principal component analysis (Jolliffe 1986)
of the vector random response, allowing one to cap-
ture the main stochastic features of the response by
means of a small number K ′ of (non physical) vari-
ables compared to the original number K of output
components.

3.1 Principal component analysis (PCA)

Let us define the sample covariance matrix of the
model response as:

Si,j :=
1

N − 1

N∑
k=1

(
y
(k)
i − ȳi

)(
y
(k)
j − ȳj

)
(8)

where i, j = 1, . . . , K and ȳ = {ȳ1, . . . , ȳK}
T de-

notes the sample mean:

ȳ :=
1

N

N∑
i=1

y(i) (9)

An eigenvalue decomposition of S is performed:

S = (w1, . . . ,wK)

︸ ︷︷ ︸
= W

 l1 0
. . .

0 lK


︸ ︷︷ ︸

= L

 w
T

1
...
w

T

K


︸ ︷︷ ︸

= W
T

(10)

where the li’s and the wi’s are the eigenvalues and
eigenvectors, respectively. We denote by Ȳ the (N ×
K)-matrix obtained by replicating N times the sam-
ple mean vector ȳ:

Ȳ := {ȳ, . . . , ȳ}︸ ︷︷ ︸
N times

T
(11)



As the wi’s form an orthonormal basis of RK , the
sample matrix Y can be cast as:

Y = Ȳ +
K∑
i=1

bi w
T

i (12)

where the bi’s are vectors of size N given by:

bi = (Y − Ȳ) wi (13)

The bi’s are empirically centered, have empirical vari-
ance equal to li and are mutually empirically uncorre-
lated, that is:

1

N

N∑
k=1

bi,k = 0 ,
1

N − 1

N∑
k=1

bi,k bj,k = li δi,j

(14)

for i, j = 1, . . . , K. It is possible to approximate the
sample matrix Y by the K ′-term truncation:

Ŷ
(K′)

= Ȳ +
K′∑
i=1

bi w
T

i (15)

where K ′ < K. The previous expression is referred
to as the principal component approximation of the
sample matrix Y . The number K ′ of retained prin-
cipal components can be selected with respect to a
prescribed approximation error εPCA:

K ′ = min
{
Q ∈ {1, . . . , K} :

∑Q
i=1 li

trace(S)
≥ 1− εPCA

} (16)

Eq.(15) suggests the following sample-based prin-
cipal component decomposition of Y:

Ŷ
(K′)

= Ȳ +
K′∑
i=1

Bi wi (17)

In the previous formula, each Bi is the projection of
the actual response Y onto the vector wi, that is:

Bi = w
T

i (Y− E [Y]) (18)

However, as Y is unknown, so are the random vari-
ables Bi. Therefore the latter have to be replaced with
some estimates B̂i based on the realizations bi. Hence
the following approximation:

̂̂Y(K′)

= Ȳ +
K′∑
i=1

B̂i wi (19)

Note that the double hat notation reflects the dou-
ble level of approximation, namely the sample-based
PCA approximation and the estimation of the Bi’s. In
the sequel the estimators B̂i are sought under the form
of truncated sparse polynomial chaos expansions of
the unknown Bi’s.

3.2 PCA-based vector-valued polynomial chaos
expansions

The actual random variables Bi arising from Eq.(18)
are regarded as functions of the input random vector
X, and more specifically linear combinations of the
latter:

Bi = w
T

i (M(X)− E [M(X)]) ≡ ϕi(X)

(20)

with i = 1, . . . , K ′ and these functional relationships
are approximated using the LAR approach summa-
rized in Section 2.4.

The following calculations are performed in the al-
gorithm iterations:

1. Estimate the sample covariance matrix S of the
response vector (Eq.(8)).

2. Compute its spectral decomposition (Eq.(10)).

3. Retain the appropriate numberK ′ of eigenvalues
according to the criterion (16) for a prescribed
error εPCA.

4. Compute the vectors {b1, . . . , bK′} (Eq.(13)).

5. For i = 1, . . . , K ′, apply LAR to the input-
output sample set {X , bi} in order to construct
a sparse PC approximation of the random vari-

able Bi. Eventually a PC approximation ̂̂Y(K′)

is
obtained.

The algorithm is stopped if some estimate ε̂ of the ap-
proximation error is less than a target error εtgt. Oth-
erwise, the experimental design is enriched by means
of additional model evaluations and the previous steps
are conducted again.

4 ERROR ESTIMATION

Let us recall the expression of the L2-approximation
error:

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣Y− ̂̂Y(K′)
∣∣∣∣∣∣∣∣∣∣∣∣2 = E

[∥∥∥∥Y− ̂̂Y(K′)
∥∥∥∥2
2

]

(21)

This error can be bounded by a sum of three different
contributions due to the triangular inequality:

Σ ≤
(√

ΣI +
√

ΣII +
√

ΣIII

)2
(22)



where:

ΣI :=
∣∣∣∣∣∣∣∣∣Y− Y(K′)

∣∣∣∣∣∣∣∣∣2
ΣII :=

∣∣∣∣∣∣∣∣∣∣∣∣Y(K′) − Ŷ
(K′)
∣∣∣∣∣∣∣∣∣∣∣∣2

ΣIII :=

∣∣∣∣∣∣∣∣∣∣∣∣Ŷ(K′)
− ̂̂Y(K′)

∣∣∣∣∣∣∣∣∣∣∣∣2
(23)

The term ΣI is the error due to the truncation of the
theoretical principal component decomposition. It is
recalled that this error is equal to the sum of the non
retained eigenvalues of the actual covariance matrix
of Y:

ΣI =
K∑

k=K′+1

λk (24)

The term ΣII is the error induced by the substitution
of the actual covariance matrix by its sample coun-
terpart. Thus it accounts for the approximation of the
actual eigenvalues and eigenvectors by the empirical
ones. Lastly, the term ΣIII corresponds to the error of
approximation of the random variables Bi by sparse
PC expansions B̂i.

In this work, the PCA error ΣI is estimated by the
following cumulated sum of sample-based eigenval-
ues:

Σ̂I =
K∑

k=K′+1

lk (25)

Actually such a choice leads to neglect the term ΣII .
This is all the more relevant since the size N of the
experimental design increases as the observed eigen-
values converge to the theoretical ones. Note that ΣII

might be estimated though by resorting to a bootstrap
procedure (Beran and Srivastava 1985). On the other
hand, the term ΣIII can be recast in terms of random
variables Bi and B̂i by exploiting Eqs.(17),(19) and
the orthonormality of the eigenvectors wi:

ΣIII =
K′∑
i=1

E
[(

Bi − B̂i

)2]
(26)

Thus ΣIII can be estimated from the cross-validation
error estimates ε̂(i)LOO related to the various scalar-
valued PC metamodels B̂i:

Σ̂III =
K′∑
i=1

ε̂
(k)
LOO (27)

Eventually the upper bound of the error is estimated
by:

Σ̂+ ≡


√√√√ K∑

k=K′+1

lk +

√√√√ K′∑
k=1

ε̂
(k)
LOO

2

(28)

In practice it is often convenient to evaluate a relative
error measure. In this respect the sources of error can
be divided by an estimate of |||Y|||2, such as the sum of
all the eigenvalues li (i.e. the trace) of the sample co-
variance matrix S. This yields the following estimate
of the scaled error bound:

ε ≡ Σ̂+

trace(S)
= (

√
ε1 +

√
ε2)

2 (29)

where:

ε1 :=

K∑
k=K′+1

lk

trace(S)
, ε2 :=

K′∑
k=1

ε̂
(k)
LOO

trace(S)
(30)

It has been shown that the PCA-LAR algorithm is
stopped as soon as the error estimate ε is less than a
prescribed target error εtgt. According to Eq.(29), it is
then relevant to respectively define target values ε1,tgt
and ε2,tgt for parameters ε1 and ε2 in such a way that:

εtgt ≡
(√

ε1,tgt +
√
ε2,tgt

)2 (31)

Note that setting ε1,tgt equal to zero leads to a pure
LAR strategy, i.e. to apply the LAR algorithm to ev-
ery component of the vector-valued model response
Y without having reduced the number of outputs by
means of PCA. In contrast, a too high value of ε1,tgt
would have to be counterbalanced by a significant
computational cost to construct a very accurate PC
approximation, i.e. to reach a very low value of ε2.

In practice the assigned value of ε1,tgt determines
the number K ′ of retained eigenvalues in PCA ac-
cording to Eq.(16) (parameter εPCA is then equal to
ε1,tgt). Then ε2,tgt determines the accuracy of the PC
approximations of the random variables Bi.

5 APPLICATION TO A STOCHASTIC
DIFFUSION PROBLEM

Let us consider a one-dimensional stochastic diffu-
sion problem defined by the following boundary-
value problem defined over a domain D = [0 , L]
(see Ernst, Mugler, Starkloff, and Ullmann (2012)):

[E(x, ω)u′(x, ω)]′ + f(x) = 0
u(0) = 0

(E u′)(L) = F
(32)

This PDE describes the displacement field u(x, ω) of
a tension rod having unit cross-section S = 1 and
spatially varying Young’s modulus E(x, ω) which is
clamped at x = 0 and is submitted to a uniform axial
load f(x) and pinpoint load F at its right-end x = L.

In Eq.(32) the diffusion coefficientE(x, ω) is a log-
normal stationary random field obtained by the expo-
nentiation of a Gaussian random field as follows:

E(x, ω) = exp [λE + ζE g(x, ω)] (33)



where g(x, ω) is a standard normal stationary Gaus-
sian random field with an exponential autocorrelation
function:

Cov [g(x) g(x′)] = e−|x
′−x|/` (34)

We select the following numerical values for the nu-
merical experimentation: L = 1, F = 1, f = 0.5 for
the boundary-value problem. The parameters λE , ζE
are chosen so that the mean value and standard devia-
tion ofE(x, ω) are 10 and 3 respectively and ` = 1/3.

Random field g is represented by its truncated
Karhunen-Love expansion:

g(x, ω) =
M∑
k=1

√
lk ϕk(x)ξk(ω) (35)

where {(lk ϕk), k = 1, . . . ,M} are the solution of
the Fredholm equation associated to the exponential
kernel, see Ghanem and Spanos (2003, Sudret and
Der Kiureghian (2000) for the detailed analytical so-
lution. The 5 first eingenmodes ϕk(x) are plotted in
Figure 1. We select M = 62 so as to have a mean-
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Figure 1: Five first Karhunen-Loève eingenmodes ϕk(x) of the
diffusion coefficient u(x, ω)

square error less than 1%:

M=62∑
k=1

lk/

∞∑
k=1

lk ≥ 0.99 (36)

For a given realization of the random field denoted
by e0(x)

def
= E(x, ω0) and assuming a constant uni-

form load f(x) ≡ f , Eq.(32) can be solved as fol-
lows:

u(x, ω0) =

∫ x

0

F + f(L− y)

e0(y)
dy (37)

Substituting for Eq.(33), Eq.(35) in Eq.(37) one fi-
nally gets the analytical solution related to a truncated
KL expansion of order M :

uM(x, ω0) =

∫ x

0

F + f(L− y)

exp [λE + ζE Φ(x)T ·Ξ0]
dy (38)

where Ξ0
def
= {ξ1(ω0), . . . , ξM(ω0)}T is a realization

of a standard random vector of size M and Φ(x)
def
={√

l1 ϕ1(x), . . . ,
√
lM ϕM(x)

}T. For each realization
Ξ0 and due to the analytical expression of the eigen-
functions gathered in Φ(x) the integral in Eq.(38)
can be evaluated with arbitrary precision. In the se-
quel, we use it as a reference using Matlab’s built-
in integration routine quad and a tolerance of 10−10.
As an illustration, Figure 2 represents 5 realizations
of E(x, ω) and the associated solution obtained by
Eq.(38).
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(a) Coefficient of diffusion
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Figure 2: Five realizations of the coefficient of diffusion E(x, ω)
and associated solution field u(x, ω)

In the sequel the various results are compared to
a large Monte Carlo simulation (NMCS = 50, 000)
of the analytical solution in Eq.(38). The PC-based
numerical solution is carried out using a finite el-
ement model with 200 linear elements over [0, 1],
which appeared sufficient to get accurate determin-
istic solutions. The experimental design is of fixed
size (N = 500) and it is drawn by Latin Hypercube
Sampling. The mean value and standard deviation of
the solution field u(x, ω) are plotted in Figure 3 using
K ′ = 1, 2, 3 principal components (out of K = 201)
respectively.

It can be observed that the mean solution is actu-
ally the mere empirical mean of the trajectories ob-
tained from the experimental design. As far as stan-
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(a) Mean solution
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Figure 3: Mean and standard deviation of the solution field
u(x, ω) (finite element analysis using 200 linear elements)

dard deviation is concerned a rather accurate result is
obtained for x ∈ [0 ; 0.8L] as soon as two compo-
nents are used. The convergent over the full domain
is observed when increasing the number of principal
components K ′.

In order to better understand the convergence of the
PCA-gPC procedure for this example, the error esti-
mates proposed in Eq.(30) are computed as a func-
tion of the number of principal components K ′ =
1, . . . , 10. A cross-validation technique is also used
based on the data base built from the Monte Carlo
simulation: for each realizationg ω0 of the 62 input
variables used in the KL expansion, the mean-square
error between the solution field that is computed by
Eq.(38) and the finite element solution (K = 201) is
computed. This error is then averaged over the 50,000
available realizations. This so-called cross-validation
error is plotted together with ε, ε1, ε2 in Figure 4.

First it is observed that the PCA error ε1 decreases
rather fast with the number of components. This is due
to the fact that the components of a solution field that
is discretized by finite elements are rather correlated,
so that a few number of principal components already
captures much of the spectral content.

Using a fixed experimental design (N = 500) it
is observed that the accuracy of the PC expansion
of each Bk decreases when k increases. When us-
ing more and more components the metamodel er-
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Figure 4: Evolution of the various error estimates with the num-
ber of components K ′ = 1, . . . , 10

ror ε2 thus increases. The global error Eq.(29) which
combines ε1 and ε2 first decreases and then attains a
plateau. Note that the proposed error estimate is in-
deed an upper bound of the “true” cross-validation er-
ror as long as the accuracy of each single PC expan-
sion is not too bad, i.e. for K ′ ≤ 5 in the present ex-
ample. In order to have a better global control on the
error it is necessary to augment the size of the experi-
mental design dynamically so as to capture the details
of the higher order principal components.

6 CONCLUSION

Polynomial chaos expansions are more and more used
in the field of uncertainty quantification in engineer-
ing. In order to tackle large-dimensional problems
such as those appearing when spatial variability is ac-
counted for by using input random fields, it is neces-
sary to resort to so-called sparse PC expansions.

The present paper extends the approach developed
by Blatman and Sudret based on least angle regression
to the case of multidimensional-output computational
models. The procedure is based on a principal com-
ponent analysis of the experimental design matrix. By
keeping a few components (typically less than 10 for
a finite element problem) the problem is reduced to
computing a series of sparse PC expansions of scalar
variables which appear as “dual” to the eigenvectors
of the experimental matrix.

Due to the well-posedness of the approximation
problem in the L2 sense, errors made either by trun-
cating the PCA analysis or in the various truncated PC
expansions can be bounded. The illustration on a 1D
stochastic diffusion problem involving 62 input ran-
dom variables has shown that the PCA convergence
is extremely fast and the derived error estimate is an
upper bound to the real mean-square error provided
each component is properly approximated. More gen-
erally, the derivation of a strict upper bound remains a
challenging problem and will deserve further numeri-
cal and theoretical investigations.
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