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Abstract

The myelin sheaths that surround the thick axons of the peripheral nervous system are produced by the highly specialized
Schwann cells. Differentiation of Schwann cells and myelination occur in discrete steps. Each of these requires coordinated
expression of specific proteins in a precise sequence, yet the regulatory mechanisms controlling protein expression during
these events are incompletely understood. Here we report that Schwann cell-specific ablation of the enzyme Dicer1, which
is required for the production of small non-coding regulatory microRNAs, fully arrests Schwann cell differentiation, resulting
in early postnatal lethality. Dicer2/2 Schwann cells had lost their ability to myelinate, yet were still capable of sorting axons.
Both cell death and, paradoxically, proliferation of immature Schwann cells was markedly enhanced, suggesting that their
terminal differentiation is triggered by growth-arresting regulatory microRNAs. Using microRNA microarrays, we identified
16 microRNAs that are upregulated upon myelination and whose expression is controlled by Dicer in Schwann cells. This set
of microRNAs appears to drive Schwann cell differentiation and myelination of peripheral nerves, thereby fulfilling a crucial
function for survival of the organism.
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Introduction

Proper myelination is essential for the efficient saltatory

conduction of action potentials, the trophic support of axons,

and the maintenance of axonal integrity in the peripheral nervous

system (PNS). Defective PNS myelination occurs in hereditary

peripheral neuropathies [1]. Sporadic peripheral neuropathies can

arise due to a wide variety of factors, including metabolic disorders

(e.g. diabetes mellitus), intoxication (e.g. alcohol), and autoimmune

disorders (e.g. Guillain-Barré syndrome) [2]. Treatment of

peripheral neuropathies is still unsatisfactory in most cases, and

is likely to benefit from increased knowledge about peripheral

myelin development and maintenance.

The mature myelin sheaths wrapped around the large-diameter

axons of peripheral neurons arise from neural crest cells which

subsequently develop into Schwann cell precursors (SCPs),

immature Schwann cells, and finally mature myelinating or non-

myelinating Schwann cells. Each stage of Schwann cell develop-

ment is associated with a set of specific protein markers, the

expression of which is thought to be driven primarily by axon-

derived signals at the SCP stage and by the secretion of autocrine

survival factors at the Schwann cell stage (reviewed in [3]). This

precise developmental program requires tightly regulated tran-

scriptional and post-transcriptional control of protein expression,

the details of which are still incompletely understood.

One post-transcriptional mechanism that appears to be critical

for the proper development of numerous tissues is the microRNA

(miRNA) system [4]. miRNAs are short (20–30 nucleotides) non-

coding RNAs which are processed from endogenously expressed

pri-miRNAs by the enzyme Drosha. The resulting stem-loop pre-

miRNAs are exported to the cytoplasm where they are further

processed by the enzyme Dicer [5], unwound into single-stranded

miRNAs, and loaded into the RNA-induced silencing complex

(RISC). The miRNA-loaded RISC then binds to complementary

miRNA recognition sequences in the 39untranslated regions

(UTRs) of specific target mRNAs. The primary function of the

miRNA system appears to consist of mRNA silencing. Target

mRNAs are either degraded, or their translation is inhibited. A

single miRNA can have multiple mRNA targets, which allows for

broad miRNA-mediated regulation of expression programs

(reviewed in [6]). Genetic ablation of Dicer in mice is embryonic

lethal, illustrating the indispensable role that miRNAs play during

development [7]. Furthermore, studies utilizing tissue-specific

expression systems have revealed a vital role for miRNAs in the

development of specific organ systems (reviewed in [8]). In the

nervous system, miRNAs appear to be important for the

development of Purkinje [9] and forebrain [10] neurons,

oligodendrocyte differentiation and central nervous system

(CNS) myelination [11,12,13], and as shown more recently, also

for peripheral myelination by Schwann cells [14].

In order to determine which miRNAs might be required for

peripheral myelination, we created a mouse line undergoing

Schwann cell-specific deletion of Dicer1, by crossing mutants

whose endogenous Dicer1 sequences were flanked by floxP sites
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(Dicer1fl/fl) to mice expressing the Cre recombinase under the

control of the desert hedgehog promoter (Dhh-Cre).

Results

Dicer depletion in Schwann cells leads to arrest at the
pro-myelin stage and impairs myelination

In order to achieve Schwann cell-specific deletion of the

enzyme Dicer, we bred Dicerfl/fl mice to mice expressing Cre-

recombinase specifically in Schwann cells (tgDhh-Cre, henceforth

termed Dhh-Cre+). The Cre recombinase in these mice is already

active in Schwann cells of the precursor stage at embryonic day

12/13 (E12/13) [15]. In contrast to their littermates, Dicerfl/fl

Dhh-Cre+ mice lacking Dicer expression in Schwann cells

exhibited a severe behavioral phenotype characterized by ataxia

and hind limb paresis. In compliance with animal welfare

regulations, mice were euthanized at the age of 25 days. Electron

microscopy (EM) of 18-day old Dicerfl/fl Dhh-Cre+ sciatic nerves

revealed a severe myelination defect when compared to control

littermates Dicerwt/fl Dhh-Cre+ and Dicerfl/fl Dhh-Cre2. In

Dicerfl/fl Dhh-Cre+ sciatic nerves, most fibers remained unmy-

elinated; the few myelin sheaths present were abnormally thin

(Fig. 1). Most Dicer-depleted Schwann cells properly sorted

axons, resulting in the typical 1:1 Schwann cell to axon ratio.

However, some bundles of Dicer mutant nerves containing axons

.1mm, which would normally be sorted and myelinated,

remained unsorted (Fig. 1c and 1f).

We did not observe normal Remak bundle formation in Dicer

mutant nerves. Small-caliber axons remained in groups that also

contained large caliber axons. In contrast to normal Remak

bundle formation [16], groups of small-caliber axons and were

engulfed by Schwann cells as a whole, and axons were not

individually ensheathed and separated from each other by

Schwann cell processes (mesaxons). In addition, the number of

these immature axon bundles was far lower than the number of

Remak bundles in control nerves, indicating that unmyelinated

nerve fiber development was also severely disturbed in these

nerves. To determine at which stage myelin development was

blocked in Dicerfl/fl Dhh-Cre+ mice, we compared myelin markers

between Dicerfl/fl Dhh-Cre+ and Dicerwt/fl Dhh-Cre+ nerves with

immunohistochemical and biochemical techniques (Fig. 2). Com-

ponents of mature non-compact myelin like 29,39- cyclic

nucleotide 39-phosphodiesterase (CNPase), and of compact

myelin, like myelin basic protein (MBP) and peripheral myelin

protein 22 (PMP22), were nearly undetectable in Dicerfl/fl Dhh-

Cre+ nerves via immunoblot (Fig. 2d).

Figure 1. Defective myelination following Schwann cell specific Dicer depletion. Electron microscopy of sciatic nerves derived from 18-day
old Dicerfl/fl Dhh-Cre+ (C and F) and control Dicerwt/fl Dhh-Cre+ (B and E) and Dicerfl/fl Dhh-Cre2 (A and D) littermates. Low magnification figures
(A–C) show normally myelinated nerves fibers in control mice (A and B) and normal Remak bundles of unmyelinated small-caliber axons (black
stars). In Dicer depleted mice (C), most of the large caliber axons remain unmyelinated; only a few fibers are ensheathed by a thin myelin sheath
(black arrowheads). Most of these nerve fibers show proper axonal sorting by Schwann cells; only a few large-caliber axons remain unsorted (white
arrowheads). Higher magnification figures show normal myelinated and unmyelinated nerve fibers (D and E) in controls. A Schwann cell in Dicerfl/fl

Dhh-Cre+ mice containing non-sorted and unmyelinated large caliber axons is shown. Basal lamina formation by this Schwann cell is evident (black
arrow), indicating development into immature Schwann cell (F). Scale bar in A–C = 10 mm and in D–F = 1 mm.
doi:10.1371/journal.pone.0012450.g001
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Schwann cells were not absent in Dicerfl/fl Dhh-Cre+ nerves, as

evidenced by EM and by positive S100 immunoreactivity in

nerves of 22-day old mice (Fig. 2a). Furthermore, EM analysis of

Schwann cells in Dicer mutant nerves showed basal lamina

formation by Schwann cells (Fig. 1f). These findings indicate that

Schwann cells in Dicer mutant nerves developed at least until the

stage of immature Schwann cells. Proper sorting of the majority of

axons suggested an arrest at the pro-myelin stage. Development of

myelinating Schwann cells is known to be accompanied by

cessation of Schwann cell proliferation. In contrast to Dicerwt/fl

Dhh-Cre+ nerves, Dicer mutant nerves showed evidence of mitotic

events and a significantly increased percentage of Schwann cells

expressing proliferation marker MIB1 (Ki67; 11.860.9% in Dicer

mutant Schwann cells versus 1.2260.07% in controls, p = 0.0003;

Fig. 2b). Based on immunohistochemistry, we determined that

sciatic nerves of Dicer mutant mice contained no B-cells (B220)

and only rare T-cells (CD3; 1.660.6% positive cells per total

number of nuclei in Dicerfl/fl Dhh-Cre+ nerves versus 1.660.2%

in controls, p = 0.96, Fig. 2c). An increased prevalence of

macrophages was detected in Dicer mutant nerves (CD68;

11.363.5% positive cells per total number of nuclei in Dicerfl/fl

Dhh-Cre+ nerves versus 7.262.4% in controls, p = 0.04, Fig. 2c).

Although we observed an increased number of macrophages in

Dicer mutant nerves, the percentage was in a similar range in

Dicer mutant and controls. Based on this and based on their

morphology with elongated nuclei, we conclude that the

proliferating cells were indeed Schwann cells. In parallel to

increased proliferation, Dicer mutant nerves at p22 showed

increased cell death as determined by TUNEL staining

(,0.05% TUNEL positive nuclei in all control nerves and ca.

2% in Dicer mutant nerves). Erk and Akt signal transduction

pathways which are known to regulate myelination were

significantly altered in 18-day old mutant nerves. Both Akt and

Erk phosphorylation were significantly increased. Furthermore,

Ras and NFkB protein expression was significantly lower in Dicer

mutant nerves compared to controls (Fig. 2d).

Figure 2. Histological and biochemical analysis of mice lacking Dicer in Schwann cells. (A–C) Longitudinal sections of sciatic nerves from
22-day old Dicerfl/fl Dhh-Cre+ and control Dicerwt/fl Dhh-Cre+ littermates stained with haematoxylin and eosin (HE) or decorated with S100, MIB1, CD3,
or CD68 antibody. At least four nerves were analyzed per genotype. Scale bars = 50 mm. S100 positivity indicates Schwann cell development
progresses at least up to the stage of immature Schwann cells (A). Increased proliferation in Dicer mutant nerves, as indicated by mitotic events
(black arrows in A) and increased percentage of positive nuclei in MIB1 immunohistochemistry (B). Quantification of MIB1-positive nuclei shows a
significantly higher percentage of proliferating cells in Dicerfl/fl Dhh-Cre+ compared to Dicerwt/fl Dhh-Cre+ littermate nerves. Error bars indicate
standard deviation, p = 0.0003, p value was determined using unpaired two-tailed student’s t-test (B). Few CD3-positive T cells and an increased
percentage of CD68-positive macrophages infiltrated the nerves of Dicerfl/fl Dhh-Cre+ mice (C). Biochemical analysis of signal transduction pathways
and myelin components by Western blot (D). Compared to control Dicerwt/fl Dhh-Cre+ littermates, phospho-Akt and phospho-Erk were significantly
increased in sciatic nerves of 18-day old mice lacking Dicer in Schwann cells, while total Akt and Erk protein levels were unchanged compared to
controls, and NFkB was significantly decreased. In agreement with the histological findings, components of non-compact (CNPase) and compact
myelin (MBP, PMP22) were nearly absent from Dicer mutant nerves. In addition, Ras levels were significantly lower in Dicer mutant nerves. GAPDH
and b-actin served as loading controls.
doi:10.1371/journal.pone.0012450.g002
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Next, we performed a time course analysis of changes in Dicer

mutant nerves (Fig. 3). At four days of age (p4), EM analysis of

sciatic nerves showed myelin formation in control Dicerwt/fl Dhh-

Cre+. In contrast, no myelinating Schwann cells were observed in

Dicer mutant nerves of age-matched Dicerfl/fl Dhh-Cre+ litter-

mates. As in the 18-day old mice, proper radial sorting with 1:1

Schwann cell-to-axon ratio was observed in most fibers at p4

(Fig. 3a). In contrast, EM analysis of sciatic nerves from Dicerfl/fl

Dhh-Cre+ versus Dicerwt/fl Dhh-Cre+ mice at the age of 17

embryonic days (E17) revealed no structural difference (Fig. 3a).

Dicer expression is upregulated upon myelination in control p4

nerves compared to control E17 nerves. In Dicerfl/fl Dhh-Cre+ at

E17 and at p4, Dicer depletion was found by quantitative RT-

PCR (Fig. 3e). Furthermore, presence of the inactivated Dicerflox

allele was shown by PCR (Fig. 3f).

The expression of specific miRNAs is altered in
Dicer-deficient peripheral nerves

To identify specific miRNAs involved in peripheral nerve

myelination, we performed a differential microarray analysis of

miRNA extracted from Dicerfl/fl Dhh-Cre+ and Dicerwt/fl Dhh-

Cre+ nerves. Since the Dhh promoter is specifically active in

Figure 3. Time course analysis of defective myelination following Schwann cell specific Dicer depletion. Sciatic nerves of embryos (E17)
and newborn mice (p4) were analyzed by electron microscopy for morphological effects of Schwann cell-specific Dicer depletion (A), and by
quantitative RT-PCR for mRNA expression of factors known to regulate myelination. Number of biological replicates used: Dicerfl/fl Dhh-Cre+ E17 n = 4,
Dicerwt/fl Dhh-Cre+ E17 n = 3, Dicerfl/fl Dhh-Cre+ p4 n = 4, and Dicerwt/fl Dhh-Cre+ p4 n = 4 (B–D). No morphological difference was observed before the
onset of myelination at E17 between Dicerwt/fl Dhh-Cre+ and Dicerfl/fl Dhh-Cre+ nerves. By p4, myelination had begun in Dicerwt/fl Dhh-Cre+ mice, but
not in Dicerfl/fl Dhh-Cre+ nerves. Some unsorted fibers were visible in Dicerfl/fl Dhh-Cre+ nerves. Scale bars = 2 mm (A). Quantitative RT-PCR for mRNA
expression in Dicer mutant nerves showed lack of developmental upregulation for activators of myelination. P values for comparisons between p4
controls and mutants were: p = 0.0026 (Oct6), p = 0.0028 (Egr2), p = 0.0003 (Brn2), p = 0.0028 (Sox10; B), no significant difference in expression of
suppressors of myelination Sox2 and c-jun (C) and altered expression of Notch signaling components and p75NTR. P values for comparisons between
p4 controls and mutants were: p = 0.061 (Delta1), p = 0.043 (Jagged1), p = 0.0001 (Jagged2), p = 0.02 (Notch3), p = 0.0061 (p75NTR; D). Dicer mRNA
expression was significantly upregulated upon myelination in Dicerwt/fl Dhh-Cre+ sciatic nerves (p4 in comparison with E17, p = 0.0004). At both time
points, E17 and p4, significant Dicer mRNA depletion in Dicerfl/fl Dhh-Cre+ was shown (E17: p = 0.0007; p4: p,0.0001; E). Presence of the recombined
Dicer allele in E17 and p4 mice was demonstrated by PCR using primers that differentiate between wild type Dicer and the recombined allele (F). The
wild type allele is 1.3 kb in length, and the recombined allele is approx. 500bp (G). Akt phosphorylation and expression were analyzed by Western
blot in Dicerwt/fl Dhh-Cre+ compared to Dicerfl/fl Dhh-Cre+ at p4. P-Akt in relation to total Akt was reduced to 62614% of control level in Dicerfl/fl Dhh-
Cre+ at p4. All p values were determined using an unpaired two-tailed student’s t-test. All error bars indicate standard deviation.
doi:10.1371/journal.pone.0012450.g003
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Schwann cells, we would expect Dicer to be ablated exclusively in

this cell type (not neurons or other cell types in the analyzed nerve)

and the microarray to identify miRNAs specifically expressed in

Schwann cells. We chose two different developmental time points

for analysis. The first time point was before the onset of

myelination and before structural differences could be observed

between Dicerfl/fl Dhh-Cre+ and Dicerwt/fl Dhh-Cre+ nerves (at

E17). The second time point was p4, when myelination had

already started in control mice and was already evidently impaired

in Dicerfl/fl Dhh-Cre+ mice.

Among the 216 miRNAs expressed in peripheral nerves, we

identified a total of 109 miRNAs which were either significantly

developmentally up- or downregulated (p4 compared to E17) or

significantly different between controls and mutants (Fig. 4). For

the observed phenotype, however, the miRNAs of major interest

were those which displayed an upregulation upon the onset of

myelination and were also significantly downregulated in p4 Dicer

mutant nerves compared to controls. The sixteen miRNAs which

fulfilled these two criteria mentioned above are listed (Table 1).

For nine of these miRNA we could confirm the differential

expression by real time PCR using miRNA specific Taqman

probes (Fig. 5). Since downregulation of Schwann cell miRNAs

might also control important steps of proper myelination, we

analyzed the microarray dataset for those miRNAs that were

significantly downregulated upon myelination and significantly

reduced by ablation of Dicer from Schwann cells (either at E17 or

at p4). Only three microRNAs met these criteria: miR-9, miR-

455, and miR-1224.

Altered myelination signals in Dicer-deficient peripheral
nerves

In order to determine the effect of miRNA depletion from

Schwann cells on the expression of molecules involved in

peripheral nerve myelination, we performed quantitative RT-

PCR on mRNA isolated from E17 and p4 Dicerfl/fl Dhh-Cre+ and

Dicerwt/fl Dhh-Cre+ nerves. The mRNA expression of several

transcription factors, cell surface receptors, and other molecules

known to be involved in peripheral nerve myelination was

significantly altered in p4 Dicerfl/fl Dhh-Cre+ nerves compared

to Dicerwt/fl Dhh-Cre+ (Fig 3b–d). The factors known to promote

myelination, Oct6, Egr2, Brn2, and Sox10, were all significantly

downregulated in Dicer mutant nerves. Apart from Brn2, dicerless

nerves from 4-day old mice expressed these factors at levels similar

to embryonic nerves from E17 mice (Fig. 3b). Inhibitors of

myelination, including Sox2 and c-Jun were not altered (Fig. 3c).

We also observed dysregulation of components of the Notch

signaling pathway, including significant downregulation of Notch3

and Jagged2, as well as a somewhat lower Delta1 expression

(which did not attain statistical significance) in Dicer mutant

nerves. In contrast, Jagged1 was upregulated in Dicer mutant

nerves. Therefore, loss of miRNA expression in peripheral nerves

dramatically alters the balance between pro- and anti-myelin

signals.

Discussion

Here we show that Dicer expression in developing Schwann

cells is crucially involved in peripheral myelination. By using a

different, independently generated conditional Dicer knockout

mouse strain [17,18], we confirm recently published data [14].

The morphological and ultrastructural changes in dicerless

peripheral nerves points to a crucial role for miRNAs in the

transition of Schwann cells from the pro-myelin stage to the

myelinating stage. Although Dicer is depleted at earlier develop-

mental stages in Schwann cell precursors of Dicerfl/fl Dhh-Cre+

mice, Dicer-deficient Schwann cells are nevertheless able to reach

the immature Schwann cell stage, as evidenced by positive S100

expression and basal lamina formation in Dicerfl/fl Dhh-Cre+

nerves and despite an altered microRNA expression profile

already evident at E17. Proper sorting of the majority of axons

indicate that Schwann cell differentiation into the myelinating

phenotype is mainly arrested at the pro-myelin stage at the time

when Dicer expression begins to increase in control sciatic nerves

(Fig. 6). The reduction in mature myelin by ultrastructural or

biochemical analysis (CNPase, MBP, PMP22) supports this

conclusion. Some fibers appeared to overcome the myelination

block, possibly due to incomplete recombination or due to the

presence of residual Dicer protein that persists after genetic

ablation. However, the myelin sheaths formed around these nerves

are abnormally thin, confirming previous findings [14]. Dicer-

deficient Schwann cells not only failed to myelinate, but also were

unable to form normal Remak bundles of unmyelinated small-

caliber axons. Cre expression itself has been shown to be toxic to

certain cell types [19]. To exclude that toxicity of Cre expression

in Schwann cells induced myelination defects or miRNA

expression changes, we used Dicerwt/fl Dhh-Cre+ littermates as

controls. We did not see any evidence for spurious effects on

myelination due to Cre expression.

Myelin formation is known to be associated with cessation of

Schwann cell proliferation. In 22-day old Dicerfl/fl Dhh-Cre+

nerves, we observed mitotic events within Schwann cell nuclei and

an increased proliferation rate as determined by Ki67 staining.

The increased cell proliferation observed in arrested immature

Schwann cells was not seen by others, as determined by BrdU

incorporation rates in younger mice only [14]. This difference may

reflect the age difference of the analyzed mice. In contrast to the

result of the previous study, our data suggests that increased

Schwann cell proliferation is indeed a consequence of Dicer

ablation from Schwann cells and accompanies the defect in

myelination, at least at an older age. Consistently with Pereira et

al., we also observed a slight increase in the number of TUNEL-

positive cells in sciatic nerves of Dicer mutant mice.

How can the above findings be mechanistically explained? In

Dicer-less Schwann cells, a global reduction of all miRNAs may

directly lead to both Schwann cell proliferation and death, maybe

because certain miRNAs are necessary for exiting the cell cycle,

terminal differentiation, and cell survival (Fig. 6). It is not

necessarily contradictory that both cell death and cell proliferation

are stimulated in the absence of Dicer, since its global effect on all

miRNAs is expected to produce pleiotropic phenotypes. Alterna-

tively, in the absence of Dicer, arrested pro-myelin Schwann cells

may become prone to degeneration. Cell death might induce

compensatory proliferation, either of Schwann cells lacking Dicer

or of Schwann cells in which recombination of the Dicerflox allele

has failed. However, it is not obvious which signalling pathway

might trigger such a hypothetical compensation. Also, the lower

percentage of dying cells (2%) compared to the higher percentage

of proliferating cells (11%) argues against compensatory prolifer-

ation.

By microRNA microarray, we identified numerous miRNAs

that are expressed in peripheral nerves during development at E17

and p4. Among the 216 expressed miRNA, 109 were either up- or

downregulated upon differentiation of immature Schwann cells at

E17 into myelinating Schwann cells at p4, or differentially

expressed as a consequence of Dicer depletion at E17 or at p4.

Unexpectedly, for a number of miRNAs, Dicer mutant Dicerfl/fl

Dhh-Cre+ nerves showed a higher expression when compared to

control Dicerwt/fl Dhh-Cre+ nerves. This suggests that other

miRNAs in Myelination
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endoneural cells like fibroblast and endothelial cells or axonally

transported miRNAs may contribute to the overall pool of

miRNAs which are regulated in response to Schwann cell-specific

lack of miRNA expression.

It is plausible to assume that miRNAs crucially involved in

myelination should be upregulated as Schwann cell development

progresses towards the myelinating phenotype. We therefore

selected those miRNAs that were both (1) significantly upregulated

upon myelination and (2) significantly decreased upon Dicer

depletion in Schwann cells. Only 16 miRNAs met these criteria

(Table 1). Furthermore, we identified miR-9, miR-455, and miR-

1224 as microRNAs downregulated upon myelination and

reduced following Dicer ablation from Schwann cells. MiR-9

has previously been shown to regulate PMP22 expression in

oligodendrocytes [13]. Assuming that PMP22 is also regulated by

miR-9 in Schwann cells, the downregulation of this negative

Figure 4. Heat map of developmentally and/or Dicer dependently regulated miRNAs in sciatic nerves. Expression of miRNAs in sciatic
nerves of E17 and p4 Dicerfl/fl Dhh-Cre+ and control Dicerwt/fl Dhh-Cre+ littermates was analyzed by miRNA microarray. Four biological replicates for
each group were analyzed on separate arrays. Of the 216 miRNAs expressed, 109 miRNAs (listed on the right side of the heat map) were differentially
expressed, either in an age-dependent manner or in a manner dependent on the expression of Dicer in Schwann cells (p#0.05, log2 ratio$0.5).
Differential expression in log2 ratio is color coded as indicated in the legend below the heat map (red = upregulation, green = downregulation). Based
on hierarchical clustering, five groups, each containing miRNAs of similar expression pattern are indicated by gray bars on the left side. Group 1
contains miRNAs which are upregulated in Dicerfl/fl Dhh-Cre+ compared to Dicerwt/fl Dhh-Cre+ nerves at E17 and at p4. Group 2 contains miRNAs that
are downregulated in both genotypes at p4 compared to E17. Group 3 includes miRNAs that are downregulated in Dicerwt/fl Dhh-Cre+ nerves at p4
when compared to E17 and downregualted in Dicerfl/fl Dhh-Cre+ compared to Dicerwt/fl Dhh-Cre+ nerves at E17. Group 4 contains miRNAs which are
downregulated in Dicerfl/fl Dhh-Cre+ compared to Dicerwt/fl Dhh-Cre+ nerves at p4 and are abundantly expressed also in Dicerwt/fl Dhh-Cre+ nerves at
E17. Group 5 includes miRNAs that are upregulated in Dicerwt/fl Dhh-Cre+ nerves at p4 compared to both, Dicerfl/fl Dhh-Cre+ and Dicerwt/fl Dhh-Cre+

nerves at E17.
doi:10.1371/journal.pone.0012450.g004

Table 1. miRNAs significantly upregulated in sciatic nerves during myelination log2 ratio $0.5 and significantly decreased as a
consequence of Schwann cell specific Dicer depletion log2 ratio #20.5.

Agilent
Systematic
name

effect of Schwann cell specific
Dicer depletion in P4
[pValue]

effect of Schwann cell specific
Dicer depletion in P4
[log2 Ratio]

myelination effect in
Dicer +/2 Dhh-Cre+
[pValue]

myelination effect in
Dicer +/2 Dhh-Cre+
[log2 Ratio]

mmu-miR-338-3p 0.0000024 23.01 0.00087 0.96

mmu-miR-338-3p 0.000010 22.15 0.00067 1.05

mmu-miR-34a 0.00000046 22.31 0.0000039 1.55

mmu-miR-34a 0.00000041 22.20 0.0000061 1.52

mmu-miR-204 0.000010 22.28 0.0025 1.11

mmu-miR-204 0.000010 21.55 0.0011 0.92

mmu-miR-146b 0.00000031 22.25 0.00000023 2.14

mmu-miR-146b 0.000020 20.69 0.0000071 0.70

mmu-miR-27b 0.0000040 21.55 0.00019 0.97

mmu-miR-27b 0.000074 21.00 0.00025 0.71

mmu-miR-30a 0.000024 21.35 0.00015 1.05

mmu-miR-30a 0.000026 21.23 0.00016 0.98

mmu-miR-30a 0.000090 20.98 0.023 0.64

mmu-miR-140 0.000035 21.07 0.00015 0.83

mmu-miR-140 0.0000035 20.81 0.0000089 0.65

mmu-miR-23b 0.000092 21.00 0.0019 0.55

mmu-miR-23b 0.00018 20.98 0.0036 0.80

mmu-miR-138 0.0000038 20.90 0.000017 1.01

mmu-miR-138 0.000069 20.69 0.000091 0.74

mmu-miR-30a* 0.000027 20.88 0.00021 0.61

mmu-miR-100 0.00048 20.84 0.000047 0.92

mmu-miR-100 0.00039 20.57 0.000075 0.95

mmu-miR-140* 0.00089 20.78 0.00073 0.69

mmu-miR-30c 0.00044 20.77 0.000044 0.79

mmu-miR-30b 0.00080 20.77 0.00088 0.75

mmu-miR-24 0.00017 20.72 0.00039 0.54

mmu-miR-24 0.000048 20.67 0.0014 0.67

mmu-miR-195 0.0000083 20.57 0.00000067 1.31

doi:10.1371/journal.pone.0012450.t001
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regulator of the major myelin protein PMP22 upon myelination

should promote myelin formation.

Although downregulation of miRNAs might also be crucial

during the development of peripheral myelin, such miRNAs are

unlikely to be responsible for the observed phenotype following

Dicer depletion in our study.

Some of the upregulated miRNAs are important for oligoden-

drocyte differentiation, e.g. miR-338 [11,12] and miR-138 [11]. In

addition, developmental upregulation of some miRNAs identified

in our screen was observed in differentiating oligodendrocytes in

vitro, including miR-146, miR-23b, miR-24, and miR-27b in one

study [13] and miR-204, miR-27b and miR-100 very recently in

another study [20]. However, some miRNAs identified have not

been previously reported to be involved in myelination, including

miR-195, miR-140, miR-34a, miR-30a, miR-30b, miR-30c, and

miR-140*. Interestingly, miR-219, despite being independently

identified by two different groups as a key regulator of

oligodendrocyte differentiation and CNS myelination [11,12],

was not identified as being differentially expressed in Dicerfl/fl

Dhh-Cre+ peripheral nerves in our miRNA screen.

Another study analyzed and compared the miRNA expression

pattern in proliferating and differentiated rat Schwann cells in vitro

[21]. This study focused on downregulation of rno-miRNA-29a

expression in differentiated Schwann cells and the negative

regulatory effect of miRNA-29a on PMP22 expression. In our

study, miRNA-29a was slightly but not significantly upregulated

upon myelination, indicating that its inhibitory effect on PMP22

expression plays no major role in mice in vivo at this time point of

development. The miRNAs identified by Verrier et al. to be

upregulated in differentiated Schwann cells showed no overlap

with our main candidates in vivo [21]. This is most likely caused by

the differences in the experimental design. Under specific

conditions, e.g. in nerve regeneration or at later time points of

development, other miRNAs might be involved.

The process of myelination requires the specific upregulation of

pro-myelinating proteins and the coordinated downregulation of

anti-myelinating proteins at specific stages of myelin maturation.

Interestingly, we found that several transcripts (Oct6, Egr2, Brn2,

Sox10) encoding pro-myelinating proteins fail to be upregulated in

Dicerfl/fl Dhh-Cre+ nerves, with expression levels of Oct6, Egr2,

and Sox10 in Dicerfl/fl Dhh-Cre+ p4 nerves closely matching those

in Dicerwt/fl Dhh-Cre+ E17 nerves. The only exception was Brn2,

which was further downregulated in Dicerfl/fl Dhh-Cre+ p4 nerves

than in E17 nerves. This is in contrast to the recent study by

Pereira et al., where Sox10 expression was not significantly

reduced and Oct6 expression was only marginally reduced. The

dramatic downregulation of Egr2 reported by Pereira et al., on the

other hand, was consistent with our study [14]. In addition, we

found elevated levels of p75NTR mRNA in Dicerfl/fl Dhh-Cre+

nerves, which is normally down-regulated after onset of myelina-

tion.

miRNA expression is normally associated with silencing of

target mRNAs, either through enhanced mRNA degradation or

translational inhibition of target transcripts. Therefore the Sch-

wann cell differentiation defect observed in nerves of Dicerfl/fl

Dhh-Cre+ mice might reflect the failure of Dicerfl/fl Dhh-Cre+

Schwann cells to downregulate anti-myelin signaling molecules.

We tested the mRNA expression of the anti-myelinating factors

Sox2 and c-Jun in Dicerfl/fl Dhh-Cre+ versus Dicerwt/fl Dhh-Cre+

nerves. We did not detect any significant difference in Sox2 or c-

Jun mRNA expression between these two groups at the mRNA

level; however, Pereira et al. reported elevated Sox2 in Dicerfl/fl

Dhh-Cre+ nerves [14].

miRNA-34a was recently shown to act as a tumor suppressor in

human glioma cells by inhibiting cell proliferation [22,23]. It has

recently been shown that miRNA-34a is also downregulated in

tumors of peripheral nerves called malignant peripheral nerve

sheath tumors (MPNST) where it may act as a tumor suppressor as

well [24]. MiRNA-34a was a main candidate in our screen and a

major histological observation in Dicer mutant nerves was an

increased Schwann cell proliferation. It is likely that miRNA-34a

drives Schwann cell differentiation by shutting down their

proliferation during development; failure of this regulatory circuit

may be involved in the histogenesis of schwannomas. Besides miR-

Figure 5. Real time PCR confirmation of miRNAs upregulated upon myelination. Expression of miRNAs in sciatic nerves of E17 and p4
Dicerfl/fl Dhh-Cre+ (fl/fl) and control Dicerwt/fl Dhh-Cre+ (wt/fl) mice was analyzed by real time PCR with Taqman probes. The levels of miRNA
expression were quantified in comparison with sno234 RNA as the endogenous control. Expression is shown as relative values compared to p4
Dicerwt/fl Dhh-Cre+. Error bars indicate standard deviation. All miRNAs analyzed were significantly downregulated in Dicerfl/fl Dhh-Cre+ nerves at p4:
p#0.0001 (miR-34a, miR-146b, miR-338-3p, miR-204, miR-27b, miR-140, miR-138, miR-30a), p = 0.0002 (miR-195). Furthermore, miRNAs were
confirmed to be upregulated upon myelination: p#0.0001 (miR-34a, miR-146b), p = 0.04 (miR-338-3p), p = 0.003 (miR-204), p = 0.0007 (miR-27b),
p = 0.005 (miR-140), p = 0.0002 (miR-138), p = 0.01 (miR-195), p = 0.0004 (miR-30a). P values were determined using unpaired two-tailed student’s t-
test.
doi:10.1371/journal.pone.0012450.g005
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34a, other miRNAs that were identified in our screen were

previously found to be associated with an inhibitory effect on

proliferation of non-neural tumor cells, including miR-24 in HeLa

cells [25] and miR-100 in oral squamous cell carcinoma [26].

Furthermore, we observed an increased phosphorylation of Erk

in Dicer mutant nerves at p20. Activation of the Erk pathway is

known to induce dedifferentiation of Schwann cells and Schwann

cell proliferation, and might contribute to the observed failure of

Schwann cells to myelinate [27,28]. Also, overexpression of Ras

protein can induce Schwann cell differentiation and proliferation

arrest, in contrast to its proliferation-promoting effects on other

cell types [29,30]. In Dicer mutant nerves, we observed a

significantly lower Ras expression compared to control nerves.

Therefore, low levels of Ras might also contribute to the observed

phenotype.

We also found altered mRNA expression of transcripts involved

in Notch signaling, including Jagged1, Jagged2, and Notch3. In

addition, Pereira et al. observed an increased expression of Notch1,

and Hes1, as well as a reduced level of ErbB2 in Dicerfl/fl Dhh-Cre+

nerves [14]. Of note, Jagged1 and Notch1 which were upregulated

at the mRNA level in Dicerfl/fl Dhh-Cre+ nerves compared to

Dicerfl/fl Dhh-Cre+, were previously identified as a target of miR-

34a, which we identified in our miRNA screen [22,31]. Deregulated

Notch and/or neuregulin signaling may therefore partly explain the

failure of immature Schwann cells to upregulate some pro-myelin

transcripts, such as Egr2. Consistently with Pereira et al. we

observed impaired Akt phosphorylation at Ser-473 in Dicer mutant

nerves at the onset of myelination (at p4/p5) [14]. In contrast, at

p18 we observed increased Akt phosphorylation in Dicer mutant

nerves. Hence in young mice deletion of Dicer led to a reduction of

the pro-myelinating phosphorylation of Akt. Since Akt activation

promotes myelination [32], increased Akt phosphorylation may

reflect a compensatory upregulation of pro-myelinating signals in

response to abnormally high levels of anti-myelinating factors in the

absence of miRNA regulation at an older age. In any case, it seems

as if the compensatory response in Dicerfl/fl Dhh-Cre+ nerves is

unable to override anti-myelination signals, as the nerves neverthe-

less fail to myelinate.

It will be interesting to determine in the future whether miRNAs

that are upregulated in both CNS and PNS myelination play

analogous roles and/or target the same proteins in these cell types.

Conversely, miRNAs that are distinctly upregulated in either

oligodendrocytes or Schwann cells may target proteins and/or

control processes that are specific to either PNS or CNS

myelination.

Clearly, miRNAs play a crucial role in the myelination process

both in the CNS and the PNS. An important task that remains for

future studies will be to positively identify Schwann cell-specific

target transcripts of and the mode of regulation by miRNAs that

are specifically upregulated in peripheral nerves during PNS

myelination.

Materials and Methods

Mice and ethical statement
We housed mice and performed animal experiments in

accordance with the Swiss Animal Protection Law and in

compliance with the animal welfare regulations of the Canton of

Zurich. The Committee on Animal Experimentation of the

Cantonal Veterinary Office of the Canton of Zurich has

specifically approved this study under license number 200/2007.

Dicerfl/fl mice were obtained from Jackson Laboratory (strain

name: Dicer1tm1Bdh/J; stock number: 006001) [17]. Dhh-Cre mice

were kindly provided by Dr. Dies Meijer [33]. Dicerfl/fl mice were

crossed to Dhh-Cre, and subsequently, F1 mice were bred again to

Dicerfl/fl mice to obtain Dicerfl/fl Dhh-Cre+ mice. For identifying

Dhh-Cre transgene positive mice, the following primers were used:

Cre fw: ACC CTG TTA CGT ATA GCC GA, Cre rev: CTC

CGG TAT TGA AAC TCC AG. For distinguishing Dicer floxed

and Dicer wild-type alleles, the following primers were used: DF1:

CCT GAC AGT GAC GGT CCA AAG and DR1: CAT GAC

TCT TCA ACT CAA ACT, producing a wild-type allele-specific

product of 350bp and a floxed allele-specific product of 420bp.

The recombined allele was amplified using DF1 primer and Ddel

primer: CCT GAG CAA GGC AAG TCA TTC, the same primer

set recognized also the wild-type allele (product size 1.3 kb).

Figure 6. The role of Dicer and miRNAs in Schwann cell development. In the absence of Dicer, Schwann cells develop normally to the pro-
myelin stage with properly sorted axons (light yellow). The presence of Dicer is required for acquisition of myelination competence by Schwann cells
(turquoise). When Dicer is removed from Schwann cells (red), reduction of miRNAs leads to Schwann cell hyperproliferation and degeneration,
suggesting that miRNAs are essential both for driving maturing Schwann cells into cell cycle arrest and terminal differentiation, as well as for their
survival.
doi:10.1371/journal.pone.0012450.g006
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Electron microscopy
Mice at the age of p4 or older were anesthetized and

transcardially perfused with PBS followed by 3.9% glutaraldehyde

in 0.1 M phosphate buffer, pH 7.4. Sciatic nerves of embryos

(E17) were fixed with glutaraldehyde in situ for at least 5 minutes.

At least n = 4 mice of each genotype and age group (E17, p4, and

p18, mixed gender) were analyzed. All nerves were then postfixed

in glutaraldehyde in a test tube. Tissues were embedded in Epon

using standard procedures. Semithin sections were stained with

toluidine blue. Ultrathin sections were mounted on copper grids

coated with Formvar membrane and contrasted with uranyl

acetate/lead citrate. We examined the specimens using a Hitachi

H-7650 transmission electron microscope operating at 80 kV. We

took pictures with a digital CCD camera.

miRNA microarray
miRNA was extracted from sciatic nerves as described in the

next section. Sciatic nerves of embryos at the gestational age of 17

days (E17) or newborns at the age of 4 days (p4) were used. For

each time point, 4 pairs of Dicerfl/fl Dhh-Cre+ littermates and

Dicerwt/fl Dhh-Cre+ were used and analyzed separately on

individual arrays (Dicerfl/fl Dhh-Cre+ E17 n = 4: 1 male, 3

females, Dicer+/fl Dhh-Cre+ E17 n = 4: 1 male, 3 females,

Dicerfl/fl Dhh-Cre+ p4 n = 4: 1 male, 3 females, and Dicer+/fl

Dhh-Cre+ p4 n = 4: 2 males, 2 females). Purity and quality of the

isolated total RNA was determined using a NanoDrop ND 1000

(NanoDrop Technologies) and a Bioanalyzer 2100 (Agilent)

respectively. Only those samples with a 260 nm/280 nm ratio

between 1.6–2.1 and a 28S/18S ratio within 1.5–2 were further

processed. Fluorescent miRNA with a sample input of 100ng of

total RNA was generated. This method involves the ligation of one

Cyanine 3-pCp molecule to the 39 end of an RNA molecule using

a miRNA Complete Labeling and Hyb Kit (Agilent). The quality

of Cy3- RNA was determined using a NanoDrop ND 1000. Only

RNA samples with a dye incorporation rate .2 pmol/mg were

considered for hybridization. Cy3-labeled RNA samples were

mixed with an Agilent Blocking Solution and resuspended in

Hybridization Buffer using a miRNA Complete Labeling and Hyb

Kit (Agilent). Target RNA Samples (45ml) were hybridized to

Mouse miRNA 8x15k OligoMicroarrays (Agilent P/N G4472A,

Design ID 019119y) for 20h at 55uC. Arrays were then washed

using Agilent GE Wash Buffers 1 and 2 (Agilent), according to the

manufacturer’s instructions. An Agilent Microarray Scanner

(Agilent p/n G2565BA) was used to measure the fluorescent

intensity emitted by the labeled target. Raw data processing was

performed using the Agilent Scan Control and the Agilent Feature

Extraction Software Version 10.5.1.1. Quality control measures

were considered before performing the statistical analysis. These

included inspection of the array hybridization pattern (absence of

scratches, bubbles, areas of non hybridization), proper grid

alignment and number of green feature non-uniformity outliers

(below 100 for all samples). Expression data was analyzed using R/

Bioconductor. Briefly, median spot signals were log2-transformed

and normalized using quantile normalization. Differential expres-

sion was assessed using t-test and fold-change analysis. miRNAs

flagged as absent by the Feature Extraction Software in more than

50% of the samples in each of the 4 conditions were excluded from

the results. All data is MIAME compliant and the raw data is

available in the GEO archive under the accession GSE22023. For

hierarchical clustering of the heatmap, we used as distance

measure the euklidean distance of the normalized expression

profiles of the miRNAs. Clusters were linked using the Ward’s

linkage rule that minimizes intra-cluster variance. A simplified

version of the clustering tree is visualized on the left side of the heat

map, including five groups of miRNAs.

RNA extraction and real time PCR
RNA was extracted from sciatic nerves using miRNeasy

(Qiagen) as described by the manufacturer using a polytron PT

3100 (kinematica). CDNA from mRNA was synthesized with

QuantiTect, Reverse Transcription kit (Qiagen) and analyzed by

real-time PCR using QuantiFast SYBR Green PCR kit (Qiagen).

CDNA from miRNA was synthesized with TaqMan MicroRNA

RT kit (Applied Biosystems) and analyzed using TaqMan

MicroRNA Assays (Applied Biosystems) and Taqman Universal

Master Mix II (Applied Biosystems). All samples were analyzed

using a 7900HT Fast Real-Time PCR system (Applied Biosys-

tems). Three to four biological replicates were used for each group

analyzed (Dicerfl/fl Dhh-Cre+ E17 n = 4: 3 males, 1 female,

Dicer+/fl Dhh-Cre+ E17 n = 3: 3 males, Dicerfl/fl Dhh-Cre+ p4

n = 4: 3 males, 1 female, and Dicer+/fl Dhh-Cre+ p4 n = 4: 2 males,

2 females). Of each biological replicate, two (mRNA) or three

(miRNA) technical replicates were performed. The following

primers were used: c-jun fw: CCT TCT ACG ACG ATG CCC

TC, c-jun rev: GGT TCA AGG TCA TGC TCT GTT T; Notch3

fw: CCA TCC TTG GAC TCA GGC, Notch3 rev: AGC TGG

TGT TAG TAG CTC C; Jagged1 fw: GTT CTC CAA ATA ACT

GTT CCC, Jagged1 rev: ATT TCA TTC TGA CAG TGA CCC;

Jagged2 fw: TGC TGT CTG GCT TTG AAT GCC, Jagged2 rev:

AGC ATT AAG GCA CGG TTT CCC; Delta1 fw: TTG TTC

TTT CTC AGT GCC TCG, Delta1 rev: CCC TTC TTG TTG

ACG AAC TCC; Sox2 fw: GCG GAG TGG AAA CTT TTG

TCC, Sox2 rev: CGGGAAGCGTGTACTTATCCTT; Oct6 fw:

TCG AGG TGG GTG TCA AAG G, Oct6 rev: GGC GCA TAA

ACG TCG TCC A, Egr2 fw: AAT GGC TTG GGA CTG ACT

TG, Egr2 rev: GCC AGA GAA ACC TCC ATT CA; Sox10 fw:

AGA TGG GAA CCC AGA GCA C, Sox10 rev: CTC TGT CTT

TGG GGT GGT TG; p75NTR fw: CTA GGG GTG TCC TTT

GGA GGT, p75NTR rev: CAG GGT TCA CAC ACG GTC T;

Brn2 fw: GCA GCG TCT AAC CAC TAC AGC, Brn2 rev: GCG

GTG ATC CAC TGG TGA G; GAPDH fw: CCA CCC CAG

CAA GGA GAC T; GAPDH rev: GAA ATT GTG AGG GAG

ATG CT; Dicer fw: ACC AGC GCT TAG AAT TCC TGG

GAG; Dicer rev: GCA GCA GAC TTG GCG ATC CTG TAG.

Western blot
Sciatic nerves were homogenized in nerve buffer (1%

Triton6100, 137 mM NaCl, 2 mM EDTA, 20 mM Tris HCl,

pH 8) using a polytron PT 3100 (kinematica). For analysis of 18-

and 4-day old mice three different lysates were used, each

containing nerves pooled from three mice with the respective

genotype of mixed gender. Protein concentration was determined

using the BCA protein assay (Pierce). Proteins were boiled in LDS

(Invitrogen) containing b-mercaptoethananol, and loaded onto a

NuPAGEH Novex Bis-Tris Gel (Invitrogen). After electrophore-

tical separation, proteins were blotted onto nitrocellulose mem-

branes (Schleicher & Schuell) using XCell II Blot Module

(Invitrogen). Membranes were blocked using TBST containing

Top-Block (Sigma), and decorated with antibodies against CNPase

(Abcam), MBP (Serotec), PMP22, and Ras (Abcam), Erk,

phospho-Erk, Akt, phospho-Akt (Cell Signaling Technology),

followed by incubation with the secondary anti-mouse IgG1 and

IgG2a (Zymed) or anti-rabbit, and anti-rat IgG (Calbiochem). We

visualized proteins using SuperSignal West Pico Chemilumines-

cent Substrate System (Pierce) and Amersham Hyperfilm ECL

films (GE Healthcare).
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Immunohistochemistry
Sciatic nerves were fixed in 4% formalin and embedded in

paraffin. For each genotype, at least four nerves were analyzed

(22-day old Dicerfl/fl Dhh-Cre+ and control Dicerwt/fl Dhh-Cre+

littermates). Longitudinal paraffin or frozen sections were

incubated with the following antibodies: anti-S100 (Dako), anti-

MIB1 (Dako), B220/CD45R for B-cells (Pharmingen), CD3 for T-

cells (clone SP7, NeoMarkers), CD68 for macrophages (Serotec) or

stained with haematoxylin-eosin. For detection of primary

antibodies, a Ventana machine was used according to the

manufacturer’s protocol. Mounted slides were analyzed on an

Axiophot microscope (Zeiss), equipped with a JVC digital camera

(KY-F70; 3CCD). Rabbit immunoglobulin fraction (Dako) served

as negative control for S100 staining (data not shown). For

assessing proliferation, 940–1400 nuclei per mouse were counted

and the ‘‘MIB1 index’’ was determined as the percentage of nuclei

positive for MIB1 immunohistochemistry. CD3- and CD68-

positive cells were quantified in relation to total number of nuclei.
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