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Effects of bottom topography on the spin-up in a cylinder
Fabian Burmanna) and Jerome Noir
Institute for Geophysics, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland

(Received 6 August 2018; accepted 12 September 2018; published online 5 October 2018)

Motivated by better understanding the long-standing issue of the role of topography on the trans-
port of angular momentum in rapidly rotating fluids, we conducted spin-up experiments in a straight
cylinder with a regular pavement of rectangular blocks at the bottom. We perform particle image
velocimetry measurements to monitor the decay of the initial differential motion generated by the
sudden increase of the container rotation rate. We observe that the re-synchronization time, the
so-called spin-up time, is shorter in the presence of topography with a minimum at a particular
length scale of the topography pattern. We show evidence of energy transport by inertial waves
as well as non-linear mechanisms leading to a scaling of the spin-up time significantly differ-
ent from the classical E−1/2 in the absence of topography. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5051111

I. INTRODUCTION

Rapidly rotating flows are omnipresent in planetary
dynamics, whether considering liquid cores, subsurface
oceans, or gaseous atmospheres. The effects of topography
on the flows in these liquid layers have been addressed mostly
for stratified fluids such as the Earth’s atmosphere and oceans,
where internal waves play a fundamental role.1–6 Less atten-
tion has been given to planetary core dynamics in the presence
of topography, where most studies have been performed on
the interplay between rotating convection and topography in
different geometries. The case of a cylindrical annulus with a
variable height on the top and bottom end walls has been inves-
tigated theoretically,7 numerically,8,9 and experimentally.10

Even though they differ in the exact configurations, all models
find the existence of thermal Rossby waves. In a more core-like
geometry, Calkins et al.11 numerically investigated the effect
of a single Gaussian ridge penetrating the outer core, leading
to a resonance of the zonal flow with a Rossby wave. However,
the mechanism underlying the transport of energy and angular
momentum from the scale of the topography to the large scale
of the zonal flow or the small scales of local vortices have yet
to be identified.

In the present study, we investigate experimentally the
classical problem of the flow in a cylinder after a sudden
increase of its rotation rate, the so-called spin-up. In this sys-
tem, the rate at which the fluid synchronizes with the container
gives a measure of the axial torque acting on the fluid and hence
the coupling between the container and fluid. For the spin-up
in the linear limit of a small increase of the rotation rate, it
is now well established12–14 that the characteristic time for
the fluid to resynchronize with the container is proportional
to LΩ−1/2ν−1/2, with L being the half height of the container,
Ω being the rotation rate, and ν being the kinematic viscosity
of the fluid. As the initial rapid change of the rotation rate is
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increased, non-linear effects become significant. Detailed dis-
cussions on the non-linear spin-up are provided in the reviews
of Benton and Clark15 and Duck and Foster.16 Both the lin-
ear spin-up and non-linear spin-up in a right cylinder with
flat end walls have been extensively studied theoretically,17,18

numerically,19 and experimentally.20,21

The present study differs from the aforementioned liter-
ature as we add bottom topography to the spin-up problem,
which we expect to inhibit the azimuthal circulation. This is the
case in the spin-up in a tank with a sloping bottom, for which
Pedlosky and Greenspan22 developed an analytical solution.
In the absence of the geostrophic flow, westward traveling
Rossby waves are excited in the system, which decay on the
same time scale as the flow in the flat bottom cylinder. The
theoretical results for this setup were later validated experi-
mentally and numerically by Van De Konijnenberg et al.,23

who also report on vortex shedding in the system. Depending
on the steepness of the sloping bottom in spin-up experiments
in a rectangular container, Heijst et al.24 observed either a reor-
ganization into cyclonic and anticyclonic flow cells for small
sloping angle or an irregular and unsteady flow pattern in the
case of a steep angle. A more extreme bottom topography
with no geostrophic contours is represented by the spin-up
in a half cone studied by Li et al.25 Van De Konijnenberg
and Van Heijst26 investigated the spin-up from rest in a rectan-
gular domain with a piecewise flat topography. They reported
the following three stages of the spin-up process. A first
stage is characterized by an initial flow of uniform vorticity
χ =−2Ω; during the second stage, the flow field detaches from
the container walls and a subsequent reorganization in to small
scale vortices resembling both the structure of the container
and the topography takes place. Finally, in the third stage, the
motion in the experiment decays due to Ekman pumping in
the bottom boundary layer. Despite lacking a quantitative mea-
surement of the kinetic energy, they claim that the third stage
happens only when the flow has already lost most of its kinetic
energy.
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In contrast to Van De Konijnenberg and Van Heijst,26 we
impose a strong background rotation and perform experiments
in the linear limit of a small increase in the rotation rate. We use
particle image velocimetry (PIV) to investigate the temporal
evolution of the flow field and the associated kinetic energy in
spin-up experiments with a discontinuous bottom topography
of different horizontal length scales.

II. THEORY

We consider a homogeneous and incompressible fluid
enclosed in a rapidly rotating straight cylinder. At time t = t0,
we suddenly increase the rate of rotation of the container and
monitor in time the decay of the initial differential motion.
Here, we compare the following two cases, first the cylinder
has a flat top and bottom end wall and second the bottom of the
tank is paved with blocks of different lateral extent (Fig. 1).
The system is characterized by the initial rotation of the con-
tainer Ω0, the small increase of the rotation rate δΩ, the half
height of the cylinder L, the radius R, and the length scale
of the topography λs. We work under the assumption of an
incompressible and homogeneous fluid of density ρ and
kinematic viscosity ν.

FIG. 1. Photograph of the experiment and the bottom topography.

The dynamics of the system are governed by the conserva-
tion of mass and momentum expressed in the frame attached
to the container. Using Ω−1

0 as a time scale, L as a length
scale, and U = LδΩ as a velocity scale, the non-dimensional
Navier-Stokes equation is written as

∇ · u = 0, (1)

∂tu + ε(u · ∇)u + 2ẑ × u = −∇π + E∇2u, (2)

where u is the velocity, π is the reduced pressure including
centrifugal acceleration, and ẑ is the axis of rotation. The two
control parameters of the system are the Rossby number

ε = δΩ/Ω0, (3)

measuring the ratio between advection and Coriolis forces, and
the Ekman number

E = ν/ΩoL2, (4)

which gives the ratio between viscous and Coriolis forces. In
the limit of small E and small ε, the system supports inertial
waves propagating with a group velocity expressed as

vg =
2

|k|3
k × (Ω0 × k), (5)

where k is the wave vector. In the limit of a quasi-steady per-
turbation, inertial waves propagate vertically giving rise to the
so-called Taylor-Proudman columns.

In the case of a spin-up with flat end walls, the fluid interior
and the container can exchange angular momentum only by
viscous coupling through a viscous boundary layer of thick-
ness LBL = E1/2L, the so-called Ekman layer, at the top and
the bottom of the container. Fluid is sucked into this bound-
ary layer where the angular momentum is exchanged with the
container before being re-injected into the interior. This suc-
tion/injection mechanism gives rise to a recirculation in the
bulk referred to as Ekman pumping. It leads to a typical time
scale τ = E−1/2Ω−1

o for the fluid to be spun-up. For straight
cylinder with flat end walls, the asymptotic limits ε � 1 and
E � 1 yield a flow in the interior that remains primarily in the
form of a solid body rotation

u(s, φ, z, t) = δΩ(t) × r + ũ(s, φ, z, t), (6)

where ũ ∝ E1/2 is the Ekman pumping in the interior. Both
δΩ(t) × r and ũ decay exponentially in time with a decay rate

σ ∼ E1/2. (7)

III. EXPERIMENTAL SETUP AND DATA PROCESSING

We perform spin-up experiments in an acrylic straight
cylinder of an equal height (H) and radius (R) of 142.5 mm
that is mounted on a rotating table driven by a Yaskawa
SGMCS-35E3B11 direct drive servomotor controlled by a
SGDV-5R5A11A servopack to maintain the rotation rate at
the desired value. The servopack is connected to a computer
via an MP2300S interface. For the topography, we use a Prusa
i3 3D printer to print a chessboard like arrangement of square
blocks in the sizes 8× 8 mm, 16× 16 mm, 32× 32 mm, and 64
× 64 mm, with a constant height of 16 mm, as shown in Fig. 1.
Each topography is characterized by its dimensionless length
scale λs, the ratio between the block size, and the radius R of



106601-3 F. Burmann and J. Noir Phys. Fluids 30, 106601 (2018)

the cylindrical container. Although λs is the relevant physical
quantity, it is more convenient to refer to a particular topogra-
phy by using a nomenclature based on the absolute size of the
blocks, namely, TOPO 16 for the 16 × 16 mm, TOPO 32 for
the 32 × 32 mm, and so on.

To interrogate the flows in a vertical plane containing
the axis of rotation, we adopt the well-known technique of
direct visualisation with Kalliroscope rheoscopic fluid27 and
a vertical laser light sheet. From the images, we obtain quali-
tative information regarding the vertical structures developing
in the system. In addition, we perform quantitative measure-
ments of the velocity using Particle Image Velocimetry (PIV)
techniques in three planes perpendicular to the rotation axis
at z

∗

= 3 cm, 7.5 cm, and 11 cm above the bottom surface,

corresponding to the dimensionless heights z = z
∗

/H = 0.21,
0.53, and 0.78. Movies are recorded with a NikonTM D810
camera fixed on the turntable with a frame rate of 60 images
per second at 2K resolution. Illumination is provided by
a Spectra Physics Excelsior diode pumped CW-laser at a
wavelength of 532 nm. To increase the contrast, we seed
the fluid with fluorescent polyethylene microspheres (from
Cospheric LLC) of diameter 38 µm–45 µm and density
1.004 g cm−3. The absorption band of the particles extends
from 300 nm to 550 nm, while the emission peaks at 600 nm.
We use an optical narrow bandpass filter to reject the green
excitation light, filtering out all reflections on the acrylic
walls and thus increasing drastically the contrast of the
images.

TABLE I. Characterization of the topography (nomenclature and non-dimensional length scale λs) and mean spin-up time of repeated experiments τ, together
with standard deviation τSD. The final row gives the exponent of the τ = aEb scaling for all topographies together with 95%-confidence interval.

λs = 0.06 λs = 0.12 λs = 0.24 λs = 0.48 λs = 1
TOPO 8 TOPO 16 TOPO 32 TOPO 64 PLAIN

E ε z τ τSD τ τSD τ τSD τ τSD τ τSD E�1/2

5.40 × 10�5 0.025 0.21 48.10 0.28 32.18 0.06 37.27 0.23 46.17 3.90
3.25 × 10�4 0.05 0.21 44.17 0.33 26.65 0.20 22.77 0.06 27.44 0.17
1.62 × 10�4 0.05 0.21 45.57 0.53 28.50 0.00 26.98 0.10 34.98 0.59
1.08 × 10�4 0.05 0.21 46.80 0.04 30.02 0.03 29.66 0.07 39.71 0.86
8.12 × 10�5 0.05 0.21 46.46 0.43 30.90 0.54 31.60 0.01 42.78 0.41
6.48 × 10�5 0.05 0.21 46.32 0.02 29.77 1.87 32.68 0.06 45.32 0.44
5.40 × 10�5 0.05 0.21 45.50 0.23 31.04 0.02 33.71 0.05 49.33 4.03
4.64 × 10�5 0.05 0.21 44.92 0.34 31.37 0.13 34.69 0.02 48.42 1.49
4.08 × 10�5 0.05 0.21 43.70 0.75 31.49 0.21 35.18 0.06 50.23 0.34
3.61 × 10�5 0.05 0.21 42.95 0.00 30.09 0.06 34.36 0.39 48.62 1.12
5.40 × 10�5 0.1 0.21 42.51 0.05 26.80 0.01 31.25 0.07 42.80 0.02

8.12 × 10�5 0.025 0.53 48.54 0.09 29.93 0.22 36.28 0.27 48.52 1.16 119.76 0.82 110.97
5.40 × 10�5 0.025 0.53 49.41 0.11 31.99 0.21 40.55 0.24 57.68 0.58 151.03 1.17 135.91
4.08 × 10�5 0.025 0.53 49.99 0.51 32.97 0.25 43.36 0.38 65.70 0.10 174.77 1.15 156.94
3.25 × 10�4 0.05 0.53 41.10 0.40 24.51 0.08 23.52 0.39 29.71 0.10 61.00 0.48 55.49
1.62 × 10�4 0.05 0.53 45.16 0.16 27.04 0.24 27.58 0.17 35.70 0.09 88.04 0.73 78.47
1.08 × 10�4 0.05 0.53 47.41 0.27 29.16 0.09 31.07 0.20 41.57 0.25 107.64 0.77 96.11
8.12 × 10�5 0.05 0.53 47.87 0.10 30.09 0.06 32.96 0.09 44.74 0.21 123.81 0.66 110.97
6.48 × 10�5 0.05 0.53 47.61 0.14 30.98 0.09 34.79 0.11 48.08 0.43 138.24 0.30 124.07
5.40 × 10�5 0.05 0.53 46.34 0.08 31.27 0.11 35.50 0.14 48.66 1.17 149.09 0.94 135.91
4.64 × 10�5 0.05 0.53 45.83 0.27 31.75 0.20 36.20 0.49 51.23 0.48 157.86 1.45 146.80
4.08 × 10�5 0.05 0.53 44.98 0.48 31.79 0.23 36.90 0.24 53.14 1.24 162.42 1.51 156.94
3.61 × 10�5 0.05 0.53 44.45 0.35 31.84 0.15 37.72 0.20 53.63 0.34 170.41 2.19 166.46
8.12 × 10�5 0.1 0.53 43.65 0.48 26.78 0.06 30.40 0.09 39.61 0.25 114.77 5.40 110.97
5.40 × 10�5 0.1 0.53 43.42 0.07 26.90 0.10 31.59 0.12 42.88 0.18 138.73 0.61 135.91
4.08 × 10�5 0.1 0.53 44.03 0.06 27.76 0.14 33.23 0.72 45.67 0.21 160.66 0.73 156.94
5.40 × 10�5 0.025 0.78 49.07 0.38 33.68 0.13 43.15 0.02 57.79 1.38

3.25 × 10�4 0.05 0.78 40.67 0.19 23.89 0.32 24.44 0.77 26.36 0.94
1.62 × 10�4 0.05 0.78 43.79 0.11 26.58 0.10 29.80 0.22 31.59 0.20
1.08 × 10�4 0.05 0.78 45.56 0.27 29.00 0.13 33.19 0.25 37.89 0.54
8.12 × 10�5 0.05 0.78 42.62 0.33 30.29 0.04 35.41 0.09 42.80 0.64
6.48 × 10�5 0.05 0.78 45.98 0.02 31.43 0.13 37.43 0.05 46.39 0.61
5.40 × 10�5 0.05 0.78 44.97 0.13 31.94 0.11 38.64 0.21 50.76 0.22
4.64 × 10�5 0.05 0.78 44.66 0.24 32.94 0.10 40.04 0.28 53.66 0.76
4.08 × 10�5 0.05 0.78 44.13 0.11 33.57 0.02 41.29 0.06 59.73 0.25
3.61 × 10�6 0.05 0.78 43.35 0.19 34.27 0.02 41.87 0.39 62.62 0.34
5.40 × 10�5 0.1 0.78 42.35 0.05 26.36 0.04 32.54 0.28 39.97 0.10

E scaling exponent �0.02 ± 0.04 �0.12 ± 0.02 �0.21 ± 0.02 �0.30 ± 0.02 �0.45 ± 0.04
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From the videos, we extract individual frames and adopt
a contrast limited adaptive histogram equalization (CLAHE)
algorithm to optimize the individual frames. We use the same
mask on all movie frames to select a Region Of Interest (ROI)
of size 12.5× 8.2 cm, and each frame is processed using DPIV-
soft201028 to extract 60 velocity fields per second made of 41
× 34 vectors. From the velocity fields, we extract the mean
kinetic energy over the entire ROI and maps of the vorticity.

We apply the same experimental protocol for all experi-
ments. The table is set into rotation atΩ0, and we wait until any
visible motion in the cylinder has ceased. We start recording
videos of the fluid in the container 5 s before we increase the
rotation rate of the table toΩ0 + δΩ and record videos for about
3 min. The increase of the table rotation to Ω0 + δΩ happens
within 0.2 s, but oscillations around Ω0 + δΩ remain present
for around 2 s. At all three heights, we perform experiments
at nine different rotation rates, linearly distributed between
0.628 rad s−1 and 5.655 rad s−1, corresponding to the Ekman
numbers between 3.25 × 10−4 and 5.4 × 10−5. For all experi-
ments, we consider Rossby numbers of 0.05. In the midplane
(z = 0.53), we perform additional experiments at three Ekman
numbers 8.12 × 10−5, 5.40 × 10−5, and 4.08 × 10−5 at Rossby
numbers 0.025 and 0.1. In the bottom plane (z = 0.21) and top
plane (z = 0.78), additional experiments at Rossby numbers
0.025 and 0.1 are performed at one fixed Ekman number 5.40
× 10−5. An overview of all performed experiments is provided
in Table I.

IV. RESULTS
A. Spin-up time as a function of the length scale
of the topography

In Fig. 2, we show the typical time evolution of the mean
kinetic energy Ek = 〈u2 + v2〉, where 〈〉 denotes the space aver-
age, deduced from the PIV measurements in the mid plane at
z = 0.53. We present the time series for five different topog-
raphy length scales [λs = 0.06 (TOPO 08), 0.12 (TOPO 16),
0.24 (TOPO 32), and 0.48 (TOPO 64), as well as the spin

FIG. 2. Time series of the mean kinetic energy during the spin-up for different
topographies recorded in the mid plane (z = 0.53) at ε = 0.05 and E = 5.40
× 10−5.

up with a flat bottom λs = 1], and the Rossby number and
Ekman number are fixed to ε = 0.05 and E = 5.40 × 10−5,
respectively.

In all experiments, the time evolution is characterized by
an exponential decay with an e-folding time that depends on
the topography. With the exception of λs = 0.48, where we
observe a change in the logarithmic slope for late stages of
the spin-up, we observe the same decay rate over the whole
measurement time.

We first extract the decay rateσ of the kinetic energy from
the time series, by picking the initial spin-up time t0 and the
initial kinetic energy E0 and applying a nonlinear least square
algorithm to fit an exponential function,

Ek = E0 exp[−σ(t − t0)]. (8)

We define the spin-up time as τ = 2/σ. The experimental values
of τ for all E and ε are reported in Table I for each topogra-
phy, where the uncertainties τSD are obtained by performing
multiple experiments with the same parameters.

The spin-up time τ as a function of λs is shown in Fig. 3 in
the three different planes at z = 0.21, 0.53, and 0.78 above the
bottom, where the Ekman number is fixed at E = 5.40 × 10−5

and three Rossby numbers ε = 0.025, 0.05, and 0.1 are dis-
played. Additionally, we display the theoretical spin-up time

FIG. 3. Spin-up time as a function of topography wavelength λs in experi-
ments at the Ekman number E = 5.40 × 10−5 and Rossby numbers ε = 0.025,
0.05, and 0.1. The red line indicates the theoretical spin-up time for a flat
cylinder.
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for a cylinder with a flat bottom. In all cases, we observe that
introducing topography enhances the spin-up process result-
ing in a shorter spin-up time. The spin-up times in different
measurement planes are not identical, but we do not find a
systematic dependence of the spin-up time on the altitude of
the measurement. Regarding the Rossby number, we find a
decrease of the spin-up time with increasing Rossby number,
indicating that the finite Rossby number might still have an
effect on the dynamics in the system. However, the most strik-
ing finding is that one particular length scale λs = 0.12 (TOPO
16) minimizes the spin-up time for all ε at all levels, which
holds at all other Ekman numbers but the largest one, E ∼ 10−4,
for which the spin-up time for λs = 0.12 (TOPO 16) and λs

= 0.24 (TOPO 32) is indistinguishable from one another. The
existence of a particular wavelength minimizing the spin-up
time is not totally surprising. Indeed, the two end cases λs = 1
and λs = 0 correspond to a flat cylinder and should result in the
same spin-up time. If intermediate topography has a positive
or negative effect, we expect a critical wavelength at which it
is maximum or minimum, respectively.

B. Spin-up time as a function of the Ekman number

Considering a fixed Rossby number ε = 0.05, small
enough for the flow to remain laminar over the entire range
of accessible Ekman numbers, we investigate how the spin-
up time varies with E for various topographies (Fig. 4). In all
cases, we assume a scaling of the spin-up time τ = aE−b rep-
resented by the red dashed lines, where a and b are estimated
by a non-linear least square inversion. For the cylinder with-
out topography, we recover the well-established scaling law
τ ∝ E−1/2. In all experiments with topography, we observe a
significant deviation from this laminar scaling with the largest
discrepancy obtained for λs = 0.06 (TOPO 08), with a spin-up
time at all altitudes almost independent of the Ekman number.
For topography with λs > 0.06, we observe a scaling law expo-
nent b increasing with λs but always significantly smaller than
1/2. We notice a slight inflection at the lowest Ekman numbers,
which may suggest that we are not yet in a fully asymptotic
regime. Of particular interest is the case of λs = 0.06 (TOPO
08), where the spin-up time becomes almost independent of

FIG. 4. Spin-up time as a function of the Ekman number E for different topography in spin-up experiments at a Rossby number of 0.05. Dashed red lines
in panels (a)–(d) give the best fitting power law of the form τ = aEb. Solid red line in panel (e) gives the theoretical spin-up time τ = E−1/2. The error bars
correspond to the minimum and maximum values measured in the three PIV planes (z = 0.21, 0.53, and 0.78).
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the Ekman number, usually the signature of non-linear effects
dominating energy and angular momentum transport.

C. Flow structure

To infer the structure and dynamics of the flow in our
experiments, we use the PIV velocity fields to reconstruct time-
resolved 2D maps of the axial vorticity χ = ∂u/∂y − ∂v/∂x
and streamlines in three different horizontal planes at z = 0.21,
0.53, and 0.78. In addition, we use Kalliroscope rheoscopic
fluid and a vertical light sheet to visualize shear structures in
a meridional plane.

We observe an initial phase with a flow in the form of a
solid body rotation with a mean vorticity −2δΩ. Shortly after

this initial phase, the velocity field exhibits patterns reflect-
ing the length scale of the bottom topography as illustrated
in Fig. 5, where each row corresponds to one length scale of
the bottom topography λs, the left column displays the axial
vorticity, averaged over ∼0.6 rotation times, and the right col-
umn displays streamlines. The snapshots are taken at t = 15.7
after the spin-up started. The streamlines are superimposed on
the pattern of the topography, where the grey squares repre-
sent the elevated sections. The typical time for the topography
to reflect in the flow at a given altitude depends on λs, the
larger it is, the sooner the structures can be observed. Indeed at
t = 15.7, for the smallest topography λs = 0.06 (TOPO 08), the
streamlines still represent a solid body rotation, while larger
topographies already show a significant departure from this

FIG. 5. Vorticity (left) and streamlines (right) measured in the mid plane (z = 0.53) at a time of t = 15.7 after the increase of the rotation rate. Grey color marks
the elevated sections of the topography. The experimental conditions are ε = 0.05 and E = 5.40 × 10−5. Dimensionless size of the ROI 0.88 × 0.55.
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state with a non-zonal global circulation pattern. As the flow
evolves with time, the global circulation becomes less rele-
vant for the largest topography λs = 0.48 (TOPO 64), while it
remains a dominant feature at the smallest topography as illus-
trated in Fig. 6, which is the same as Fig. 5 but at t = 100.5.
For λs = 0.48 (TOPO 64), the flow is organized in vortices
following the contours of the topography. Cyclonic vortices
form in the low sections (white squares) of the topography
and anticyclonic vortices form in the elevated sections (gray
squares) in agreement with conservation of potential vortic-
ity as observed by Van De Konijnenberg and Van Heijst.26

For intermediate topographies, we observe a mixture of global
circulation and vortical structures with cyclonic vortices in the
low sections still observable at λs = 0.24 (TOPO 32). This
observation seems to hold at in particular at later times as

the intensity of the flow vanishes. Although present in the
PIV field, the small perturbations at the scale of the smallest
topography, λs = 0, 06 (TOPO 08), never dominate the flow at
z = 0.53.

The alignment of the vortices with the topography at
t = 100.5 for λ = 0.48 (TOPO 64) strongly suggests that the
flow is geostrophic at this stage. We use Kalliroscope rheo-
scopic fluid and a vertical laser sheet to ascertain the structure
of the flow in the direction parallel to the rotation axis. In
Fig. 7, we present photographs of a meridional illuminated
cross section, where the transition from bright to dark regions
marks the presence of shear layers in the system. The experi-
ments have been conducted at E = 5.40 × 10−5 and ε = 0.05.
Displayed are the three different topographies λs = 0.06
(TOPO 08), λs = 0.12 (TOPO 16), and λs = 0.24 (TOPO 32)

FIG. 6. Vorticity (left) and streamlines (right) measured in the mid plane (z = 0.53) at a time of t = 100.5 after the increase of the rotation rate. Grey color marks
the elevated sections of the topography. The experimental conditions are ε = 0.05 and E = 5.40 × 10−5. Dimensionless size of the ROI 0.88 × 0.55.
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FIG. 7. Kalliroscope visualization of vertical shear layers in the fluid; the edges of one block of the topography are indicated by the vertical white dashed lines.
E = 5.40 × 10−5 and Rossby number 0.05.

at three times t = 7.5, 15.7, and 100.5, the latest two corre-
sponding to the vorticity fields and streamlines depicted in
Figs. 5 and 6, respectively. In all experiments, small struc-
tures occur in the vicinity of the topography edges immediately
after the spin-up of the tank, as shown in Fig. 7 at t = 7.5. As
time evolves, these structures propagate upwards in agreement
with the observation of vorticity patterns reported in Figs. 5
and 6, eventually becoming quasi-geostrophic as observed for
t ∼ 100.5. Since Kalliroscope is insensitive to global rotation,
it is a powerful technique to emphasize localized shear that
would otherwise be invisible using PIV. In particular, we note
that for λs = 0.12 (TOPO 16) and λs = 0.24 (TOPO 32) at
t = 100.5, structures do extend vertically in the fluid interior,
suggesting that the second order fluctuations superimposed
to the large scale circulation reported in Fig. 6 are quasi-
geostrophic. Eventually, the structures fade out as the fluid
resynchronizes with the cylindrical cavity, but they remain
present for much longer than one e-folding time of the kinetic
energy.

D. Inertial wave propagation

The Kalliroscope observations show quasi-geostrophic
columns with a horizontal extend reflecting to the length scale
of the bottom topography λs that might be formed by vertical
propagation of inertial waves, which after several reflections
form quasi-geostrophic columns. We also expect the sharp
edges to spawn inertial waves in the system with a broad range
of length scales λ < λs. Using the group velocity for a vertically
traveling wave with a horizontal wave number k,

|Vg(k)| =
2Ω0

|k |
, (9)

we can derive a time of arrival t for each k and altitude z as

t(z, k) =
z |k |
2Ω0

. (10)

To characterize the propagation of inertial waves, we calcu-
late spectrograms of the axial vorticity in the three different
PIV planes, i.e., the spatial Fourier transform of the vortic-

ity as a function of the wave number k =
√

k2
x + k2

y for each
frame. Here kx and ky refer to the wave numbers of our square
block topography in the direction of x and y, both as π/λs. The
results are shown in Figs. 8 and 9, where the solid white line
represents the theoretical time of arrival given by Eq. (10), the
dashed white line represents the wave number of the topog-
raphy ks =

√
2π/λs, and the red dashed line represents a

theoretical upper bound that will be introduced later in this sec-
tion. We use the same color scale for all plots. Figure 8 shows
the results for the two largest topographies λs = 0.24 (TOPO
32) and λs = 0.48 (TOPO 64), clearly exhibiting inertial wave
packets propagating from the bottom to the top of the cylinder
in agreement with Eq. (10). In addition, we observe that there
is an upper bound on the wave number [kmax(z)] for the inertial
waves propagating in the system, that depends on the height
of the measurement z but not on the length scale of the bot-
tom topography. From Figs. 8 and 9 we obtain an estimate for
kmax(z) as kmax(0.21) ∼ 9, kmax(0.53) ∼ 7, and kmax(0.78) ∼ 5.
The limited extent of the ROI does not allow us to extract
information for wave numbers less than k ∼ 3, which for
λs = 0.48 (TOPO 64) is more than the topography wave num-
ber k64 = 1.6. In all the presented results, we should bear in
mind that large scale circulation may not be captured by our
spectrogram.

Figure 9 is the same as Fig. 8 but for λs = 0.06 (TOPO 08)
and λs = 0.12 (TOPO 16). For λs = 0.12 (TOPO 16), we still
observe a vertical propagation with an arrival time in agree-
ment with Eq. (10) and additionally the limitation on the large
wave numbers seems to be in agreement with the thresholds
observed for λs = 0.24 (TOPO 32) and λs = 0.48. This is in
contrast to λs = 0.06 (TOPO 08), where only a marginal sig-
nature of the topography wave number is visible in the bottom
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FIG. 8. Spectrogram of the axial vorticity: Left and right columns correspond to the topography λs = 0.24 (TOPO 32) and λs = 0.48 (TOPO 64), respectively.
The three rows represent the plane of measurement, z = 0.21, z = 0.53, and z = 0.78 from the topography from bottom to top. The white solid line corresponds to
the theoretical prediction given by Eq. (10); the dashed white line corresponds to the wave number of the topography ks. Finally the dashed red lines represent
the upper bounds of the wave numbers that can propagate up to the different altitudes of the PIV planes according to Eq. (11). The experimental conditions are
E = 5.40 × 10−5 and Ro = 0.05, and all quantities are non-dimensional.

plane (z = 0.21) with a time of arrival not compatible with
inertial wave propagation. In the mid and top plane, the signal
is barely detectable. For this topography, even at the altitude of
the bottom plane, the topography wave number, presumably
the smallest one to be excited, is significantly larger than kmax,
as observed in each plane. The dimensionless vorticity is of
the same order ε for λs = 0.12 (TOPO 16), λs = 0.24 (TOPO
32), and λs = 0.48 (TOPO 64) but significantly smaller for λs

= 0.06 (TOPO 08). Meanwhile the PIV deduced streamlines
for λs = 0.06 (TOPO 08) clearly show that the flow remains in
the form of a large scale circulation. However, these observa-
tions are not contradictory since scales of order one cannot be
properly captured by the spectrogram; thus, low vorticity does
not necessarily mean that energy has already been dissipated
but that it may be on wave numbers below k ∼ 3.

Two mechanisms may be responsible for the reported
cutoff in wave numbers, viscous dissipation in the bulk or non-
linear effects transferring energy across the spectrum faster
than the waves propagating upward. The first mechanism is
characterized by the viscous attenuation rates of inertial waves
that propagate in the fluid,29 1/τbulk = 2k2E, resulting in short

wavelengths being more dissipative. An order of magnitude of
the cutoff wave number kmax in each plane can be obtain by
comparing the decay time τbulk to the travel time of the inertial
waves (10). For bulk viscous dissipation, the upper bound in
each plane would be kmax = 69, 52, and 45 for the bottom, mid,
and top planes, respectively, much too large compared to the
experimental cutoff around kmax ∼ 5–9.

Meanwhile, Kolvin et al.30 showed experimentally that
two time scales control the transfer of energy in a rapidly rotat-
ing system, τ1(z, k) = z/vg(k), characterizing the transport of
energy by inertial waves up to a distance z and 1/τ2(k) ∼ urmsk
the rate at which energy is transferred across the scales in the
spectrum by non-linear effects. For τ1 < τ2, inertial waves
transport energy faster than it spreads across the scales, while
for τ1 > τ2 the transfer across the spectrum dominates; hence,
inertial waves do not propagate anymore. Using the initial dif-
ferential rotation as a proxy for urms, the typical time scale
characterizing the transfer across the spectrum is given by τ2

∼ (εk)−1, while the typical travel time of inertial waves to
an altitude z in dimensionless units is written as τ1 = zk [see
Eq. (10)]. Hence for each PIV plane, we can derive a maximum
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FIG. 9. Spectrogram of the axial vorticity: Left and right columns correspond to the topography λs = 0.06 (TOP O8) and λs = 0.12 (TOPO 16), respectively.
The three rows represent the plane of measurement, z = 0.21, z = 0.53, and z = 0.78 from the topography from bottom to top. The white solid line corresponds
to the theoretical prediction given by Eq. (10); the dashed line corresponds to the wave number of the topography ks. Finally the dashed red lines represent the
upper bounds of the wave numbers that can propagate up to the different altitudes of the PIV planes according to Eq. (11). The experimental conditions are
E = 5.40 × 10−5 and Ro = 0.05, and all quantities are non-dimensional.

wave number above which the transfer across scales operates
faster than upward transport by inertial waves,

kmax =

√
1
zε

. (11)

It yields kmax = 9, 6, and 4.5 for the bottom, mid, and
top plane, respectively. These values are reported as the red
dashed line for each PIV plane in Figs. 8 and 9. The predicted
cutoff wave numbers are in quantitative agreement with our
observations; hence, there is little energy carried upward by
inertial waves with k > kmax. For λs = 0.24 (TOPO 32) and
λs = 0.48 (TOPO 64), the typical wave number of the topog-
raphy is below the critical value kmax for all ε considered in
this study. Hence for ks < kmax(z), inertial wave propagation
dominates the transfer of energy in the system from the very
beginning of the spin-up, while the non-linear mechanisms
govern the energy transfer for k > kmax(z), mostly affecting
inertial waves spawn by the edges of the topography. This is in
agreement with our streamlines representation in Figs. 5 and 6,
where the signature of the bottom topography is particularly
clear for λs = 0.24 (TOPO 32) and λs = 0.48 (TOPO 64). For

λs = 0.12 (TOPO 16) and λs = 0.06 (TOPO 08), a comparison
with the findings of Kolvin et al.30 predicts significant non-
linear effects to alter the propagation of inertial wave on the
length scale of the topography especially in the upper half of
the tank, which is supported both by our spectrograms and by
the PIV derived streamlines. Nevertheless, it should be noted
that our choice of Urms ∼ ε is only reasonable at the begin-
ning of the spin-up before the differential velocity has decayed
significantly. Once the differential velocity reduces, the non-
linear effects will become less preponderant and inertial waves
can again transit through the entire volume of fluid, which is
supported by our Kalliroscope images showing that even for
λs = 0.06 (TOPO 08), waves on the length scale of the topogra-
phy propagate and eventually form quasi-geostrophic columns
(Fig. 7).

V. DISCUSSION AND SUMMARY

In the limit of small Rossby and small Ekman numbers, the
spin-up time in a cylinder with flat end walls is dictated by the
so-called Ekman pumping, a flow normal to the boundary layer
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of amplitude E1/2. This pumping excites inertial modes in the
bulk, which by advection will facilitate the transfer of angular
momentum in and out of the boundary layer where the fluid
is readjusted to the container azimuthal velocity. The spin-up
time can be interpreted as the time it takes for the entire volume
of fluid to circulate through the boundary layer, which yields
τ ∝ E−1/2. This mechanism exists in our experiment on the top
flat end wall and will contribute to the re-synchronization of the
fluid rotation; however, as we observed by varying the Ekman
number, the scaling in the E1/2 characteristic of the purely
viscous spin-up is altered as soon as we add topography.

In any container that does not have both the top and bot-
tom wall smooth and perpendicular to the rotation axis, such as
spherical shells, sliced cylinders, or cylinders with topography,
the classical viscous meridional circulation is supplemented
by an inviscid component ud = u·∇h due to the deflection of
the flow normal to the boundary, with h being the height of
the column of water and u being the local velocity. In our
experiment, this supplemental pumping can be seen in our
Kalliroscope visualization near the topography just after the
tank is set to the new rotation rate (top row of Fig. 7). In con-
trast with the flat cylinder where the Ekman pumping drives
large scale inertial modes in the interior, the influx induced by
the topography will propagate in the interior in the form of
inertial waves that have no preferential azimuthal wave num-
ber and a broad range of length scales due to the sharp edges of
the blocks. As long as the initial influx exists, it will enhance
the transport of angular momentum compared to the purely
viscous pumping. This supports our observation that topogra-
phy always leads to a shorter spin-up time. With λs = 1 and
λs = 0 representing flat walls, we also expect the spin-up time
to be minimal for a particular wavelength, as reported in this
study.

Our results support a transport of the initial velocity per-
turbation induced by the topography through inertial waves for
all wave numbers smaller than a critical value kmax ∼ ε

−1/2. For
larger wave numbers, the local non-linear interactions at those
small scales transfer energy across the spectrum faster than
they are transported by the inertial waves. For λs = 0.06 (TOPO
08), the dynamics seem to be predominantly non-linear, as sug-
gested by the absence of inertial wave propagation and a decay
rate independent of the Ekman number, yet the spin-up is less
efficient than for λs = 0.12 (TOPO 16) where inertial waves
are still a dominant feature of the flow.

The inherent difficulties due to the transient nature of the
spin-up and the limited data make it difficult to draw a hard
conclusion on what defines the optimal wavelength. Neverthe-
less, what seems to emerge from this study is that the spin-up
with topography is governed by two competing mechanisms:
on the one hand, inertial wave propagation, which could be
increasingly efficient as the topography wavelength reduces;
and on the other hand, non-linear effects transferring energy
across scales, which seems to be less efficient at the conditions
of our experiments. The limited range of accessible Rossby and
Ekman numbers does not allow us to derive clear scaling laws
for each topography. Yet, as the spin-up time increases with
decreasing Ekman numbers for all but λs = 0.06 (TOPO 08),
the non-linear effects dominant for λs = 0.06 (TOPO 08) at
ε = 0.05 should eventually be associated with the shortest

spin-up time at low enough E. Meanwhile, if the cutoff wave
number defines the optimal wavelength, decreasing ε with
all other parameters constant such that kTOPO08 < (Hε)−1/2

should also result in λs = 0.06 (TOPO 08) in having shortest
spin-up time. However, neither of these experiments could be
performed with the actual device, indeed reducing ε leads to
perturbations too small to be measurable and increasing H or
the base rotation rate Ω would require a complete rethinking
of the experimental apparatus.

While the range of Ekman numbers covered in this study
applies to typical industrial applications, it remains difficult
to extrapolate our results in the context of planetary bodies.
Further experiments should be conducted in this direction, in
particular, considering the more realistic case of smooth topog-
raphy such as bumps for which the gradient of topography
remains finite. Finally we denote that the limiting case of a
topography height of comparable or even smaller height than
the Ekman boundary layer thickness is beyond the scope of
this paper, but preliminary experiments suggest that it is gov-
erned by different mechanisms enhancing exchange of angular
momentum in the boundary layer rather than an enhanced
advection of angular momentum outside of the Ekman layer.
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